
A Formal Verification Environment for Distributed
Object-Oriented Models

Master of Science Thesis

GIAMPIERO BAGGIANI

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, January 2011

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A Formal Verification Environment for Distributed Object-Oriented Models

GIAMPIERO BAGGIANI

© Giampiero Baggiani, January 2011.

Examiner: Wolfgang Ahrendt

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, January 2011

Abstract

Distributed systems are gaining increasing interest in the research commu-
nity. The growing adoption of such systems for safety-critical structures
demands for a high reliability and thus, for in-depth functional verification.

This thesis contributes to the development of a formal environment for
the verification of Creol models. Creol is an executable modelling language
featuring many aspects which make it very suitable for its employment in
distributed, concurrent applications.

The major contributions of this work are: the design of a formal specifica-
tion language for Creol (CSL), the implementation of a front-end supporting
inline specifications and its integration in the theorem prover KeY.

CSL focuses on providing the user with an abstract way of expressing
properties on communication traces between objects. It relies on a compo-
sitional proof system which allows the independent verification of object’s
methods against invariants and operation contracts.

Keywords: formal verification, specification language, distributed systems,
concurrency, communication history

ii

Preface

This work presents the results of a project undertaken in fulfilment of a 30-
credit Master’s thesis for the “Secure and dependable computer systems”
Master’s program at the Computer Science and Engineering department of
Chalmers University of Technology. The thesis has been carried out under
the supervision of Prof. Wolfgang Ahrendt as part of a research project
within the Software Engineering using Formal Methods group.

I would like to thank all the members of the SEFM group for welcoming
me and for making me feel part of them. I’m very thankful to Wolfgang
Ahrendt for supporting me during this period and for showing constant
interest in my work, ideas and opinions. It’s been a real pleasure having
him first as a lecturer and then as my supervisor. A special thanks also goes
to Richard Bubel for sharing with me his infinite knowledge about the KeY
system and to Maximilian Dylla for always being willing to clarify aspects
of his previous work on this topic.

Last but not least I want to thank my family and all my friends who
filled this period of studies with unforgettable and irreplaceable moments.

Dedicato a coloro i quali mi hanno dato
il supporto, la forza, il coraggio e la libertà

di arrivare fin qui: i miei genitori.

Grazie!

iii

iv

Contents

1 Introduction 1

1.1 Project goals . 2

1.2 Thesis outline . 2

2 Overview of Creol 5

2.1 General aspects . 5

2.2 Data types . 6

2.3 Statements . 8

3 The KeY prover 11

3.1 Overview of KeY . 11

3.2 Dynamic Logic . 12

3.3 Deduction system . 13

4 Creol Denotational Semantics 15

5 CSL: Creol Specification Language 19

5.1 Specifications . 19

5.1.1 Operation contracts 20

5.1.2 Invariants . 21

5.2 Overview of CSL . 22

5.3 CSL Syntax and Semantics 22

5.3.1 CSL Histories . 23

5.3.2 CSL Predicates and Functions 25

5.3.3 Operation Contracts in CSL 28

5.3.4 Invariants in CSL . 30

6 Proof Obligations 33

6.1 Semantics of Creol Dynamic Logic 34

6.2 Proof obligation construction 37

7 Creol Calculus 39

7.1 Sequential Constructs . 39

7.2 Concurrent Constructs . 41

v

8 System Implementation 45
8.1 Program parsing . 45
8.2 Integration with KeY . 49

8.2.1 Rules . 52

9 An example scenario 57
9.1 The system . 57
9.2 The model . 58
9.3 Adding specifications . 59
9.4 Verification . 61

10 Limitations and future work 65

11 Conclusions 69

A CSL Grammar 71

vi

Chapter 1

Introduction

In a world where computer systems are a fundamental part of the society,
the reliability of the underlying algorithms and their implementation is a
necessity.

The research in fields related to the verification of object-oriented pro-
grams is witnessing a substantial growth. Several specification languages
and verification tools are in continuous development, but the main target
of such systems is prevalently sequential applications. In an environment
where distributed systems play an important role there is the lack of tools
able to verify the functionality of concurrent applications.

This thesis embodies a contribution in the development of formal verifi-
cation of distributed, concurrent systems. Its corner stones are represented
by two research projects, KeY and Creol. Both are described here briefly.

KeY is a research project undertaken at Chalmers University of Tech-
nology in collaboration with the University of Karlsruhe in Germany. It
targets the verification of object-oriented software, in particular Java. The
KeY system aims to integrate design, implementation, formal specification,
and formal verification of object-oriented software as seamlessly as possi-
ble. The core of the KeY system is a novel theorem prover for a program
logic that combines a variety of automated reasoning techniques. The KeY
prover is distinguished from most other deductive verification systems in
that symbolic execution of programs, first-order logic reasoning, arithmetic
simplification, decision procedures, and symbolic state simplification are in-
terleaved.

Creol is an European research project with the University of Oslo as the
main partner. The goal of the project is to develop a formal framework
for reasoning about dynamic and reflective modifications in object-oriented
open distributed systems, ensuring reliability and correctness of the overall
system. The core of the project is the language Creol (Concurrent Reflective
Object-oriented Language). It is object-oriented in that classes are the fun-

1

damental structuring unit and that all interaction between objects occurs
through method calls. What sets Creol apart from popular object-oriented
languages such as C++ or Java is its concurrency model: In Creol, each
object executes on its own virtual processor. This approach leads to in-
creased parallelism in a distributed system, where objects may be dispersed
geographically.

In a previous master thesis work [3] by Maximilian Dylla, a program
logic and a proof calculus have been designed and implemented for the Creol
language following KeY’s methodologies. Lately, this work has been carried
on by Wolfgang Ahrendt and Maximilian Dylla leading to the completion
of a journal paper [2] where the calculus and the logic have been redesigned
and broadened and a denotational semantics for Creol has been introduced.

1.1 Project goals

The goal of this thesis project can be generalized as providing a verifica-
tion environment for Creol models which, on top of a pure theorem prover,
offers a user front-end supporting specifications of components and their
communication. The primary landmarks of the work are:

• the design and implementation of a specification language for Creol

• the automatic generation of proof obligations

• the improvement of the calculus

• the increase of usability and automation

Additionally, the achievements of the work are evaluated in a case study
and complementary tests.

The contributions of the work are thus concerning theoretical aspects as
well as practical applications. On the theoretical side, the effort lies in the
underlying logical concepts needed for the improvement of the Creol calculus
and the definition of a specification language. The actual implementation
of a grammar for such language, its integration with a Creol parser and
the adaption of the KeY tool for the support of Creol programs with inline
specifications, represent the practical aspects of this thesis work.

1.2 Thesis outline

This thesis is targeted to students and researchers interested in verification
of computer systems. Knowledge of object-oriented programming paradigms
and first-order logic is recommended.

The structure of this report proceedes as follows:

2

• chapter 2 introduces the Creol language highlighting relevant aspects
for this thesis

• chapter 3 gives an overview of the KeY prover

• chapter 4 presents a denotational semantics for Creol

• chapter 5 describes the developed specification language for Creol

• chapter 6 explains the aim of proof obligations and shows the con-
struction of a proof obligation for Creol

• chapter 7 contains the calculus used for reasoning about Creol

• chapter 8 illustrates the implemented verification system

• chapter 9 uses the concept illustrated in the previous chapters in a
case study

• chapter 10 summarizes the limitation of this thesis and includes sug-
gestions for future development

• chapter 11 draws the conclusions and recapitulates the results of the
project

3

4

Chapter 2

Overview of Creol

In this chapter the Creol language is introduced. Many references on Creol
can be found on the project’s Web page1. Here, only the main aspects
relevant for this thesis are presented. The focus lies on the concurrency
and on the communication between objects. Features like dynamic class
upgrades, multiple inheritance, and non-determinism are not considered;
literature covering this topics can be found in [4, 5, 6].

Creol is still in a experimental phase and several dialects of this language
exist. This thesis follows the version used in the previous works [3, 2] on
which the project is based. As we will see in chapter 5 the syntax has been
here extended to allow inline specifications.

2.1 General aspects

Creol is a modelling language targeting distributed, concurrent systems. It
is an object-oriented language, meaning that objects, instantiating classes
and interfaces, are used as data structure and their internal state is hidden
and accessible only via method calls.

The major characteristic that sets Creol apart from other object-oriented
languages is its inherent support for concurrency. First, all the objects are
thought to be running on a separate (possibly virtual) processor, thus no
memory or computational resource is shared between different instances. On
the other hand, methods belonging to each object are run as instances of
threads sharing the processor. In this manner, Creol provides for the mod-
elling of parallel as well as interleaved execution. Additionally, as another
feature that makes Creol a very suitable language for distributed environ-
ments, the communication between objects, i.e. method calling, is asyn-
chronous: the invocation of a method may not coincide with the actual
execution of the method’s body and analogously the completion of a called
method is separate from the request of its return value (if any). This enforces

1heim.ifi.uio.no/creol/

5

http://heim.ifi.uio.no/creol/

the analogy to the communication in distributed systems which occurs by
asynchronous message passing.

2.2 Data types

A narrowed simple type hierarchy is used in this work. The Data type
represents the top of the type hierarchy, all other types are its subtypes.

The other primitive types are Int, Bool, and Any. The latter repre-
sents the basic interface which is by default inherited by all the user-defined
interfaces, therefore implemented by all the classes.

Creol includes an additional built-in data type, Label, used for labelling
method invocation and completion requests. We will see how to use labels
later on in this chapter.

Interfaces and classes

Creol allows for the definition of classes and interfaces. Interfaces specify the
outside vision of objects, meaning they contain the declaration of methods
accessible by other interface instances. Classes, on the other hand, contain
the implementation of the methods and encapsulate an internal state being
the class attributes, which are private by default, i.e. not directly accessible
by any other objects.

To clarify this, let’s see some actual code:

Creol

interface I
begin
with Any
op meth1(in i:Int)
op meth2(in j:Int, out b:Bool)

with I2
op meth3()

end

Creol

The above listing contains the definition of the interface I. As we can
see it contains the declaration, i.e. the signature, of its methods, but not
their implementation. Method bodies can not be implemented in interfaces.
The signature of the methods specifies, of course, the assigned identifier
(meth1, meth2, and meth3 for this example) and the (optional) in and
out parameters.

6

The major characteristic that distinguish Creol from other languages is
the presence of a co-interface. All the methods declared in an interface must
be inside a with-block asserting which interfaces the contained methods are
visible to. This means that, for instance, the method meth3 in the example
can be called only by an object whose class implements the interface I2,
while the other two methods can be potentially called by any object.

Now, let’s see how to define a class C implementing the interface I:

Creol

class C(x:Int) implements I
begin
var attr:Int;
var obj:I;

op init
== attr:=x;

obj:=new C(x)
op run
== body0

with Any
op meth1(in i:Int)
== body1

op meth2(in j:Int, out b:Bool)
== body2

with I2
op meth3()
== body3

end

Creol

The above class implements all the methods declared in the interface I;
besides, it contains two local methods, init and run. They are special
methods implicitly contained in all classes and assumed to be empty if not
stated otherwise. The method init is called on object creation and the
class parameters (x in this example) are its parameters. Afterwards run
is called to perform actions on the object. A class can define additional
local methods which are only internally visible. The body of the methods
is defined after a double-equal symbol.

The class attributes attr and obj are visible to all the class methods,
but not externally. It is important to notice how the type of the object obj is
an interface. In Creol objects can only be typed by interface, classes are not

7

belonging to the type hierarchy. This enforces information hiding between
different objects which, as is the case for distributed systems scenarios, have
a partial view of each other.

2.3 Statements

The body of methods contains the effectively executable code. The syntax
of Creol statements follows the standard patterns embraced by any other
programming language; the main aspects characterising Creol and which
are very relevant for this thesis, are the statements used for communication
between objects and for the control of the execution flow.

Object communication

In contrast to common programming languages, Creol separates method
invocation from the retrieval of the return value (completion) of a method.
Here is where labels comes into play: they are used to connect the invocation
of a method to its completion. To better understand consider the following
example:

Creol

var l1:Label;
var l2:Label[Bool];
var z:Bool;
l1!obj.meth1(7);
l2!obj.meth2(10);
...;
l2?(z);
l1?()

Creol

Here, the statements including the exclamation mark (!) represent the
invocation of a method. The request for method completion (marked by ?)
can appear at any point in the code following the invocation and assigns the
return value (if any) to the specified variable. In the case the called method
has not returned, the completion statement cause the current thread to be
set in a busy waiting state until the reply is available. We will see how to
avoid this in the next section.

Note that, since the communication is asynchronous and no assumption
is made on the underlying communication network, the order in which invo-
cation messages are delivered to the called object may not coincide to the
order in which they are actually sent by the callee.

8

Control flow

The scheduling process between concurrent threads, i.e. instances of meth-
ods belonging to the same objects, is ruled only by explicit release points.
This means that there is no preemption policy and a running thread will
never release the processor unless it terminates or it reaches one of the fol-
lowing statements:

release: this represents the simplest statement to allow another ready
thread to start executing.

await guard : this is a conditional release point. The control will be
released iff the guard evaluates to false. The guard can be a boolean
expression as well as a completion statement (l?()). In the latter
case the guard is considered true if a reply for the corresponding label
is available, false otherwise. If the control is released the thread will
be rescheduled only when the guard is true.

Other peculiar Creol statements are skip, which corresponds to the “no
operation” command, and block, which corresponds to an infinite busy
waiting. This two last statements are mainly practical for verification pur-
poses.

Exceptions are not supported by Creol. In case of errors, like a division
by zero or an invocation on a null reference, the object is blocked.

9

10

Chapter 3

The KeY prover

One of the cardinal points of this work is the KeY prover. It is a for-
mal method tool originally thought for the verification of Java with JML
(Java Modelling Language) as specification language, aimed to integrate de-
sign, implementation, formal specification and formal verification of Object-
Oriented software.

The project surrounding this tool, the KeY Project, is a collaboration
mainly between two European universities: Chalmers University of Tech-
nology (Gothenburg, Sweden) and University of Karlsruhe (Germany). It’s
possible to find more information about the project on the Web page1 where
it is also possible to download the KeY tool or directly run it via Java Web
Start.

3.1 Overview of KeY

The KeY tool offers a simple GUI which helps users which are not familiar
with formal methodologies, to go through the process of formal verification
with the support of a reliable tool which provide, among many others fea-
tures, highly automated translation from specifications to program logic,
generation of proof obligations, and interactive application of rules.

The usual user input to KeY consists of a program source file with an-
notations in the pertinent specification language (e.g. JML for Java code).
The specifications are then translated to KeY’s program logic and, from
the given specifications, different proof obligations arise which are to be
discharged, i.e. a proof has to be found. To this ends, the program is sym-
bolically executed with the resulting changes to program variables stored in
so-called updates. Once the program has been processed completely, there
remains a first-order logic proof obligation.

1www.key-project.org

11

http://www.key-project.org

At the heart of the KeY system lies a first-order theorem prover based
on sequent calculus, which is used in the whole process of closing the proofs.
Interference rules are mainly captured in so called taclets which consist of a
simple language to describe changes to a sequent.

3.2 Dynamic Logic

The core of KeY is a theorem prover for formulas in dynamic logic (DL)
where the code is part and parcel of the formulas. That is, the logic allows
for formulas like φ → [α]ψ, which intuitively means that the condition ψ
must hold in all program states reachable by executing the program α in
any state that satisfies the condition φ.

This is a very frequent pattern of DL formulas (as we will see in chapter 5)
for the verification of method implementations w.r.t. their contract; here, φ
is generally called precondition and ψ is referred to as postcondition of the
method.

The previously mentioned formula corresponds to the triple {φ}α{ψ} in
Hoare calculus [8] if φ and ψ are purely first order formulas. However, DL
extends Hoare logic in that formulas may contain nested programs, or that
quantification over formulas which contain programs is possible. Further,
the concept of modalities is added. The box modality we saw in the above
formula, [·], expresses that the formula following it must hold in all termi-
nating run of the contained program; note that this imply that a formula
[α]ψ is always true if there is no terminating run of α. On the other hand,
we have the diamond modality, 〈·〉, which requires termination, i.e. the for-
mula 〈α〉ψ is true if there exists a terminating run of α resulting in a state
where ψ holds.

Another main characteristic of KeY’s DL is the handling of substitutions
in formulas caused by the resolution of assignments. The used approach is
to delay the effect of the substitutions by means of accumulating updates
representing the effects of program execution.

An elementary update represents thus an explicit substitution and is ex-
pressed in the form of x := e where x is a location (e.g. a local variable
or attribute) and e is a side-effect free expression. When updates are accu-
mulated during symbolic execution of the program they are combined into
simultaneous updates like x1 := e1 | x2 := e2, where e1 and e2 are evaluated
in the same state.

Updates are connected to DL formulas using the modality {·}, to form
expressions like {U}〈α〉ψ, where U is an arbitrary update. The actual sub-
stitution expressed by the updates arises only once, when the modality have
been fully eliminated by sequent calculus transformations.

12

3.3 Deduction system

The theorem prover used to reduce proof obligations to axioms is based on a
sequent calculus. A sequent is of the form of Γ ` ∆, where Γ and ∆ are sets
(possibly empty) of formulas respectively called antecedent and succedent
and representing the assumptions and the propositions of the proof.

A sequent is considered valid if:∧
γ∈Γ

γ →
∨
δ∈∆

δ

meaning that the validity of all the formulas constituting the antecedent
implies the validity of at least one of the formulas in the succedent. Ap-
plying deductive transformations, an initial sequent representing the proof
obligation is shown to be constructable from just fundamental first-order
axioms.

The process of reduction of the initial sequent to an axiom is performed
by consecutively applying sequent rules. The application of a rule causes
the replacement of the sequent it is applied on (the conclusion) with one
or more sequents representing its premises. When an axiom is reached the
corresponding proof can be closed.

A sequent rule is expressed as:

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

where the upper part shows the n premises, which validity implies the
validity of the conclusion, in the lower part. Thus, the application of a rule
reduces the provability of the conclusion to the provability of its premises.

The applicability of some rules may not be depending on the side of the
sequent the conclusion is, and can even be applied to sub-formulas. In this
case we use the following syntax:

φ′

φ

where φ and φ′ are single formulas. Such syntax denotes a rule where
the only premise is formed replacing any occurrence of φ in the conclusion
with φ′.

For a complete description of KeY in all its aspects we strongly recom-
mend to refer to [1].

13

Different research projects in the software verification area have been
employing the KeY tool, such as the verification of concurrent Java [16] and
the generation of JUnit test cases [17].

Moreover, variants of the KeY system have been implemented to adapt
its functionalities to different fields. For instance KeY-Hoare features a
Hoare calculus with state updates used to exemplify formal methods in
undergraduate classes; also KeYmaera is a deductive verification tool for
hybrid systems based on a calculus for the differential dynamic logic [19].

This thesis work, as we will see in the next chapters, represents a step
forward in the implementation of a KeY version supporting Creol programs
with inline specifications.

14

Chapter 4

Creol Denotational
Semantics

This chapter introduces a denotational semantics for Creol proposed by
Wolfgang Ahrendt and Maximilian Dylla in [2]. The definitions shown here
are entirely taken from this paper and slightly adapted to highlight the most
relevant points for this thesis. Here, how Creol is modelled will be shown and
the basis to provide a compositional verification framework for this language
will be explained.

The basic idea for the semantics of Creol models follows the principle,
originally introduced by Zwiers in [14], of considering each existing pro-
cess independently and later compose them to model the whole program.
To this end, each process is modelled with the aid of histories, being se-
quences of messages marking significant program events. Whenever interac-
tion with other processes occurs, the effect on the current process results in
the construction of non-deterministic histories embodying all their possible
behaviours. Then, when composing the processes, the concordant histories
are merged and the other rejected.

To better understand this, we begin by giving the definition of single
Creol statements and then, following a bottom-up approach, we arrive at
the semantics of methods, objects, and finally the complete program.

The semantics makes use of a function M defined as follows:

M : PROG → (Σ→ 2Σ×H)

where PROG is the set of programs, Σ represents the set of all program
states, and H is the set of all histories.

This function draws the connection between a program and a function
which associates every initial state with a set of pairs containing the possible
states and histories the program terminates with.

15

A program state, which in the following will be denoted by σ, relates
local variables and object attributes with their current values; histories, as
mentioned before, contain the sequence of messages representing the execu-
tion of the program in subject and will be denoted by θ.

The simplest Creol statement is skip, which causes no change. Its
semantics will thus be the following:

M(skip)(σ) = {(σ, 〈〉)}

This means that, if executing the skip statement in a state σ, the
resulting state after its termination will correspond to the initial one and
the constructed history is empty (symbolized by 〈〉).

As another example, consider the block statement:

M(block)(σ) = {}

This statement causes the execution to never terminate, therefore no
state is ever reached and thus its semantics corresponds to the empty set.

Next, we continue with assignments. In this case, the initial state is
obviously required to change, but no event is recorded in the history:

M(x := e)(σ) = {(σ′, 〈〉) | ∃v. v = E(e)σ, σ′ = (σ : x→ v)}

With E(e)σ we indicate the result of the evaluation of the expression e
in the state σ. E is a partial function returning no value if an error (e.g. a
division by zero) is encountered in the evaluated expression. The resulting
state σ′ corresponds to the initial one except for the value of the assigned
variable x which is updated to the value of v. This is what is expressed by
σ′ = (σ : x→ v).

Now we switch the focus to statements dealing with thread concurrency
and object communication. Here is where the reader should pay particular
attention for a better understanding of the next chapters.

The release statement allows another ready thread to use the proces-
sor. Thus, the non-determinism caused by other threads here comes into
play:

M(release)(σ) = {(σ′, 〈yield(σ|a)〉_〈resume(σ′|a)〉) | σ′|l = σ|l}

where σ|l and σ|a are respectively used to restrict the preimage of the
state to the local variables or the object attributes.

Here the history is marked with a yield − resume pair to indicate a
point where a thread switch is allowed in the composition of histories. As
an effect on the local thread, the state is unchanged with respect to the local

16

scope, but no assumption is made on global attributes which may have been
changed by other running threads.

Very relevant for the modeling of the object communication is, of course,
the semantics of the invocation statement:

M(l!o.m(x̄))(σ) =(σ1, θ)

∣∣∣∣∣∣
∃oid . ∃v. ∃i. oid = E(o)σ, v = E(x̄)σ,
σ1 = (σ : l→ ((E(this)σ, E(me)σ), (oid , (m, i)))),
θ = 〈invoc(E(l)σ1, v)〉

In the updated state, the label is assigned with a tuple containing the

identity of the current thread and of the receiving one (i.e. an instance of
the called method) and, together with the input parameter values, the event
is recorded in the history with an invocation message.

Dual to the invocation, we have the completion statement:

M(l?(ȳ))(σ) =

(σ1, θ)

∣∣∣∣∣∣
∃v̄. ∃lv . lv = E(l)σ,
σ1 = (σ : ȳ → v̄),
θ = 〈comp(lv , v̄)〉

The label, initialized in the invocation, is here recalled and recorded

in a completion message together with the return parameters of the called
method. The state is accordingly updated.

Another event marked in the history is the creation of an object as
instance of a class C. The instance is identified by a unique ID and a “new”
message holding the identity of the creator as well is added to the history:

M(o := new C)(σ) =

{
(σ1, θ)

∣∣∣∣ ∃i. σ1 = (σ : o→ (C, i)),
θ = 〈new(E(this)σ, E(o)σ1)〉

}
Now we can introduce the sequential composition of statements. Here

the effects of sequential statements (S1 and S2) are merged together:

M(S1;S2)(σ) =

{
(σ2, θ

_
1 θ2)

∣∣∣∣ ∃σ1. (σ1, θ1) ∈M(S1)(σ),
(σ2, θ2) ∈M(S2)(σ1)

}
where _ represents the concatenation of histories. Clearly, a statement

can, in turn, be a sequence of statements itself; therefore, the above seman-
tics can describe the entire body of a method.

17

We can now introduce the semantics of a single thread being an instance
of a method m with its body representing a sequence of statements:

M(op m(in x̄; out ȳ) == body)(σ) =(σ2, θ
_
1 θ

_θ2)

∣∣∣∣∣∣∣∣∣∣
∃v̄. ∃σ1. ∃o. ∃o2.
σ1 = (σ : x̄→ v̄), (σ2, θ) ∈M(body)(σ1),
o = E(caller)σ, o2 = (E(this)σ, E(me)σ),
θ1 = 〈resume(σ|a)〉_〈begin((o, o2), v̄)〉,
θ2 = 〈end((o, o2), E(ȳ)σ2)〉_〈yield(σ2|a)〉

It is important to notice how the history created by the body of the

method is framed with additional histories (θ1 and θ2) used to mark the
actual beginning and ending of the thread execution, respectively. The
messages begin and end are the dual part of invoc and compl added to the
history by the caller. They are all used to model the asynchronism of the
communication: the invocation of a method doesn’t necessarily correspond
to the actual execution of the called method and the same is valid for the
completion.

Following similar reasoning, we can define the semantics of methods,
objects and finally the complete Creol program. Here, we omit a formal
description of their semantics since it is not strictly relevant for this thesis,
but we strongly recommend to refer to [2] for a complete and more detailed
description of the whole semantics.

Roughly speaking, methods are semantically described as the union of
all possible numbers of running threads being instances of the considered
method; objects are modeled as the combination of all methods of the class
instantiated by such object; the semantics of classes is presented as the
composition of all their instances as objects.

Finally, we arrive to the semantics of a complete program where the
different sets of histories are merged in a global one consistent with all the
possible communication patterns from different threads. For instance, the
final history will be required to have yield messages followed by resume
ones having the same global state as parameter; this means that we had a
consistent switch between thread execution. Further, we will require that
invocation messages contain the identification of the actual communication
partner and, moreover, they must be followed by the related begin messages.
Therefore, the semantics of a program will consist of a “well formed” history
describing the execution flow and its communication traces.

In the next chapter we will see how to use this modeling of Creol pro-
grams to express properties about its components by introducing a specifi-
cation language.

18

Chapter 5

CSL: Creol Specification
Language

This chapter gives a general overview about specifications and concepts re-
lated to this topics. After this, CSL is introduced and a detailed description
of its syntax and semantics is provided.

5.1 Specifications

When working on any kind of project, one of the most tedious tasks is to
give a complete and unambiguous description of how each component of the
whole framework is supposed to behave. Natural language can of course
come to the aid of this difficult task, but unfortunately it can easily fail
even in simple situations.

According to the Oxford English Dictionary, the 500 words used most
in the English language each have an average of 23 different meanings; this
represent what is usually called lexical ambiguity of the language. Another
pitfall of natural language is called structural ambiguity which arises when
sentences or clauses can be interpreted in different ways when in different
contexts or when read from different people. The first examination of this
issue when dealing with software specifications is contained in [7].

It is then clear how natural language can’t be a reliable tool for such a
sensible task, especially when involved in safety-related problems. Unclear
specifications can lead to substantial flaws in the system, hard to detect and
possibly expensive to fix when in a late stage of the development process.

Introducing a formal language which gives the possibility to describe the
behaviour of all the units constituting the system is a cardinal step to assure
a reliable implementation.

A specification is a general term which includes different sub-concepts
such as operation contracts and invariants. Following is an introduction to
such concepts.

19

5.1.1 Operation contracts

An operation contract can be referred to as the basic block constituting the
whole specification. As we are dealing with an object-oriented language, we
know that all the procedures are coded inside the body of the methods of
each class. Thus, the first thing one could think when willing to give the
description of the whole behaviour, is to specify for each single method what
it does (note what and not how) and possibly when it is meaningful to call
it. This is exactly the purpose of an operation contract.

We distinguish two different states when calling a method: a pre-state
representing the system just before the method invocation and a post-state
describing the system when the method completes. The method itself can
be thought as the transition connecting the two of them.

An operation contract let us specify which conditions should hold in
these two states (i.e. pre- and postconditions), so that we can verify that
the method implementation satisfies the postconditions, assumed that the
precondition was true when calling the method.

Example 5.1.1. Assume we want to specify that the following method

Creol

op log(in b:Int, x:Int; out y:Int)

Creol

calculates the logarithm base b of the number x and assign this value to y.

For this method to represent the logarithm function it is necessary that
the base b is a positive number unequal to 1, additionally x has to be
positive. If this constraints are met then we can expect the result to exist,
thus we could for instance say that y is not null.

We could also add as a postcondition that b raised to the power y is
equals to x, but for this condition to hold some other assumption must be
added: it is necessary that the value of b and x in the post-state is the same
as it was when calling the method.

To model this scenario (holding on the assumption that this method has
no side effects and does not change the value of the input parameters) we
could write the following operation contract:

precondition : b 6= 1 ∧ b > 0 ∧ x > 0
postcondition : y 6= null ∧ by = x

To be more formal a general definition of the validity of an operation
contract is the following:

Definition 5.1.1. An operation contract for a method is satisfied if: when
the method is invoked in any state which satisfies the precondition, then in
any terminating state of the method the postcondition holds.

20

It is important to realize how weak this definition is:

• No guarantee is given when the precondition is not satisfied. What
happens if we call the method log with negative parameters?

• Termination of the method is never assumed. The method could run
forever so that we don’t have a terminating state where the postcon-
dition must hold.

• The contract specifies properties only for some attributes. What about
the rest of the system-wide state? How the method can modify it?

This issues must be highly considered during the verification process and
will be addressed later in this chapter.

5.1.2 Invariants

Another construct widely used to specify properties of a program or model
is the invariant.

Although one could expect specifications to mainly deal with what is
changed by an operation, the same relevance should be given in expressing
what remains unchanged during program execution. This is the duty of the
invariant.

In object-oriented programming, invariants are usually “attached” to
classes and/or interfaces whose internal state and methods are addressed by
the expressed properties.

Trivially speaking, the invariant gives us the the possibility to express
properties we can always rely on and, on the other hand, we must always
guarantee it is preserved.

Example 5.1.2. Continuing from the previous example, assume we want to
implement a class, Binary, which implements methods to calculate func-
tions in base 2. It might have an attribute, base, which is for instance used
as b parameter when calling the log method of the previous example.

A very simple invariant for this class could be the following:

invariant : b = 2

which simply states that none of the class methods is allowed to change
the attribute base to a value different than 2.

A more formal definition of invariant is here given:

Definition 5.1.2. An invariant is preserved by a method of the class own-
ing such invariant if: when the method is invoked in a state satisfying the
invariant, the invariant holds in any terminating state.

As for operation contracts it is important to notice how termination is
generally not required. Moreover it is crucial to highlight how invariants are
not required to hold during the intermediate states of the method execution.

21

As we will see later, a stronger definition is generally adopted, as a
first approximation we can state that invariants must be true whenever no
operation is executing.

Another form of invariant used during the validation process is the loop
invariant. Informally it states a condition which should be true when en-
tering a loop and it is maintained during each iteration of the loop’s body,
thus it must hold when exiting the loop.

5.2 Overview of CSL

One of the main tasks of this thesis work has been to design a specification
language suitable for the peculiarities of the Creol language. Before this the-
sis work no front end was available, and users willing to write specifications
for any sequence of Creol code were forced to hard-code the problem in a
separate KeY file. Moreover the properties had to be expressed in program
logic and problem-specific taclets were required to be added and adapted to
match specific program statements.

As we have seen in chapter 4, Creol has the characteristic of having a his-
tory being part of the state of the program. This let us extend the properties
we can specify with respect to the program execution. Popular specification
languages, such as JML for Java, allow to state predicates mainly in terms
of class attributes and method parameters; with CSL, additionally to this, it
is possible to express properties on communication traces between objects,
i.e. the user can verify that method calls between different interfaces occur
following specific patterns and furthermore assert predicates across different
runs of the same method.

CSL provides an abstract syntax with strong information hiding which
allows the user to keep the ease of expressing complex properties on interface
communication without the necessity of being aware of the whole system-
wide history.

To better understand the expressiveness of this language, in the following
section we present a formal explanation of its syntax and semantics.

5.3 CSL Syntax and Semantics

CSL is completely integrated with the Creol language. Its syntax is designed
to maintain consistency in the code and to make it easier for someone fa-
miliar with Creol to switch to CSL specifications.

Generally speaking, every Creol boolean expression which does not con-
tain side-effect operations or assignments is a CSL expression. CSL extends
Creol with quantified expressions and with history predicates and functions.

22

Table 5.1 illustrates the mapping between basic CSL expressions and
first-order logic formulas where ei represents a CSL expression and ei is its
translation to FOL.

CSL Expression FOL formula

∼e1 ¬e1

e1 && e2 e1 ∧ e2

e1 || e2 e1 ∨ e2

e1 = e2 e1
.
= e2

e1 /= e2 ¬(e1
.
= e2)

e1 >= e2 e1 ≥ e2

e1 => e2 e1 → e2

e1 <=> e2 e1 ↔ e2

(\forall x:T; e1) ∀ T x. e1

(\exists x:T; e1) ∃ T x. e1

(\forall x:T; e1; e2) ∀ T x. (e1 → e2)
(\exists x:T; e1; e2) ∃ T x. (e1 & e2)

Table 5.1: Partial mapping from CSL to FOL

As we will shortly see, nowhere in the specifications we will directly
refer to the history for instance as a parameter of our predicates. Having
to deal with the history associated with the whole system could be a very
demanding task and would lead to extremely complex specifications; as seen
in chapter 4 it includes traces of every created object, each switch of thread
execution, and communication messages for every running thread.

To provide a more user-friendly environment the CSL language has been
designed so that the user could express properties focusing only on the local
history of the object we are writing specifications about. This means that,
when writing an invariant or an operation contract we are just considering
the history traces involving the current object and possibly a caller of its
methods.

To be more detailed on this topic we need to get acquainted with some
definitions. In the next section we are going to introduce some theoretical
ground which will help us clarify the semantics of our specifications.

5.3.1 CSL Histories

In chapter 4 we saw how the history is built during program execution.
It is a concatenation of messages representing the creation of objects, the
invocation and completion requests of methods between objects, and the
execution flow ruled by release points.

Following is a short recall to the structure of some of these messages:

23

Object creation message : 〈new(o1, o2)〉

Invocation message : 〈invoc(l, v̄)〉

Completion message : 〈comp(l, v̄)〉

where oi represents an object, v̄ is the tuple of parameters, and l appears
as a label which holds the identity of the caller and the callee as:

Label : ((o1, t1), (o2, (m, t2)))

where o1 and o2 represent the caller object and the callee object, respec-
tively; t1 and t2 are thread IDs and m is the invoked method.

As a counterpart of this messages we need to introduce a domain repre-
senting the specification messages; later we will see how they are related to
each other.

Definition 5.3.1. The specification message domain specMsgDom is de-
fined as:

specMsgDom =

type o.meth(x̄)
∣∣∣∣∣∣∣∣
type ∈ {?,!},
o ∈ {this,caller} ∪ refObj,
meth ∈ methDom,
x̄ ∈ domData∗

where refObj is the set of all the objects we have a reference to in

the current scope, methDom represents the domain of all possible method
identifiers and domData is the domain of all method parameters sorts. For
a more detailed description of the last two domains refer to [3].

To clarify this definition, here is how possible specification messages look
like:

CSL

!obj.meth(3)
!this.meth1(a,b)
?caller.meth2(true)

CSL

Now we can concatenate such messages composing a specification his-
tory:

Definition 5.3.2. The specification history domain specHistDom is defined
as:

specHistDom =
{<>}
∪ {sm | sm ∈ specMsgDom}
∪ {sm ŝh | sh ∈ specHistDom, sm ∈ specMsgDom}

where <> represents the empty history and the symbol ˆ is used to
concatenate specification messages.

24

A possible specification history can be the following:

CSL

!obj.meth(3)ˆ!this.meth1(a,b)ˆ?caller.meth2(true)

CSL

Having set the ground domains for the history specifications we pro-
ceed introducing some CSL predicates and functions following a top-down
approach which will lead us to a detailed description of their semantics.

5.3.2 CSL Predicates and Functions

The first predicate we’re going to introduce is ‘\HEmpty’. Its meaning is
pretty obvious: it states that the current history is empty. Following is its
semantics:

\HEmpty 4
= Hloc

.
= 〈〉

The above definition shows how, when writing specifications, we are
referring to a specific history Hloc which represents the local history we have
already mentioned before. A more detailed explanation of its semantics is
going to come later, by now just assume it is the history we are actually
interested in.

The next predicate we are introducing is ‘\HEndsOn(sh)’ which eval-
uates to true iff the local history is composed by a sequence of messages
where the last ones (i.e. the most recent chronologically speaking) match
the pattern represented by the parameter sh ∈ SpecHistDom:

\HEndsOn(sh) 4
= ∃θ, θ′. sh ≈ θ ∧Hloc

.
= θ′_θ

where sh ≈ θ indicates that the specification history sh matches the
history θ. Its formal definition is postponed to the end of this section.

A bit more general is the predicate ‘\HContains(sh)’ which requires
that the history matching sh is contained in the local history, not necessarily
at its end:

\HContains(sh) 4
= ∃θ. sh ≈ θ ∧ θ ⊆ Hloc

where θ1 ⊆ θ2 iff ∃θ′, θ′′. θ′_θ_1 θ′′
.
= θ2.

If we want to specify that in the history a message 〈m1〉 is always pre-
ceded by another message 〈m2〉, then we are going to use the predicate
‘\before’. It takes as arguments two specification histories and is defined
as:

\before(sh1,sh2)
4
=
∀θ2 ⊆ Hloc.
(sh2 ≈ θ2 → ∃θ1, θ. sh1 ≈ θ1 ∧ θ_1 θ_θ2 ⊆ Hloc)

25

it practically states that whenever there is an occurrence of an history
matching the pattern specified by sh2 then the preceding history contains a
history matched by sh1.

Reversely we define ‘\after’ as:

\after(sh2,sh1)
4
=
∀θ1 ⊆ Hloc.
(sh1 ≈ θ1 → ∃θ2, θ. sh2 ≈ θ2 ∧ θ_1 θ_θ2 ⊆ Hloc)

Note that \before(sh1,sh2) 6⇔ \after(sh2,sh1). For instance if we
have the history being a sequence like sh_1 sh

_
1 sh1 then \before(sh1,sh2)

holds, while \after(sh2,sh1) doesn’t.

Next is a function which returns the number of occurrences in the lo-
cal history of a message matching the passed specification message sm ∈
specMsgDom:

\count(sm) 4
= count(sm,Hloc)

where

count(sm, 〈〉) = 0

count(sm, 〈m〉_θ) =

{
1 + count(sm, θ) if sm ≈ 〈m〉
count(sm, θ) otherwise

It’s now time to draw the connection between specification histories and
actual histories and thus clarify when sh ≈ θ is valid.

When writing specification histories, we are abstracting from labels or
thread IDs which are contained in actual histories so that we can focus only
on the communicating objects, the called methods, and the parameters. We
start defining the correspondence between specification messages and history
messages (sm ≈ 〈m〉):

!o.meth(x̄) ≈ 〈msg〉 ⇔ ∃o′, th, th′.
(msg

.
= invoc(((o′, th′), (o, (meth, th))), x̄))

?o.meth(x̄) ≈ 〈msg〉 ⇔ ∃o′, th, th′.
(msg

.
= compl(((o′, th′), (o, (meth, th))), x̄))

where o′ is an object and th and th′ are thread IDs.

This means that a specification message corresponds to every possible in-
vocation or completion message where the called object, the method name
and the parameters match. Then the matching messages are further re-
stricted in our specifications (as we saw in the previous definitions) by re-
quiring them to be contained in the local history.

26

As we will see in the next paragraph this will imply the object this being
either the caller or the callee.

Based on the last definition we can now define the correspondence be-
tween specification histories and actual histories (sh ≈ θ):

sh ≈ 〈〉 ⇔ sh = <>
sm ŝh ≈ 〈m〉_θ ⇔ sm ≈ 〈m〉 ∧ sh ≈ θ

It’s now time to specify which history is the subject of our specifications.

Local History

As stated earlier in this section, when writing specifications we want to
reduce our focus on a subset of the whole system-wide history. Let’s see
what exactly is the history we referred to as Hloc in the semantics of CSL
predicates and functions.

We will use the projection operator “/” which, applied to a history,
returns a subset of it with all the messages having the original relative
order.

Initially we want to filter from the system-wide history only the messages
representing an invocation or a completion:

Definition 5.3.3. We define the communication history Hcom as:

Hcom = H/?!

where H is the system-wide history and the operation ‘/?!’ is defined as:

〈〉/?! = 〈〉

(〈m〉_θ)/?! =

{
〈m〉_(θ/?!) if m = invoc(.) or m = compl(.)
θ/?! otherwise

So far in Hcom we obtained a list of messages (wich we will call com-
munication messages from now on) containing only requests of methods
invocation and completion between all the objects involved in the system.
This is the only kind of messages we are dealing with in our specifications.

Now we need to further filter out all the objects we are not interested in
while writing specifications. To do this we need to introduce the projection
operation on objects:

Definition 5.3.4. We define the projection ‘/o’ to an object o with respect
to a communication history as:

〈〉/o = 〈〉

(〈m〉_θ)/o =

{
〈m〉_(θ/o) if o = toCaller(m) or o = toCallee(m)
θ/o otherwise

27

where toCaller() and toCallee() are two functions which have a commu-
nication message as parameter and respectively return the caller object or
the called object in the message.

Roughly speaking when projecting a history to an object we obtain the
history which is somehow related to the object at hand.

Another operation which will be later used in the semantics of CSL
is the projection to an object as a caller. With this we will obtain the
communication history of an object where it is playing the role of the callee:

Definition 5.3.5. We define the projection to an object o as callee and we
write ‘/o←’ with respect to a communication history as:

〈〉/o← = 〈〉

(〈m〉_θ)/o← =

{
〈m〉_(θ/o←) if o = toCallee(m)
θ/o← otherwise

where toCallee() is the function introduced in the previous definition.

It is clear how the history resulting from the projection ‘/o←’ is a subset
of the one resulting from ‘/o’ if applied to the same communication history.

Finally, we are now ready to answer to the question ”Which history are
we actually talking about when writing specifications?”. Unfortunately the
answer is not unique, so we’ll have to go with “It depends!”.

In fact, the history under consideration (Hloc) is connected with the
kind of specification we are writing i.e. whether we are writing an operation
contract for a method or an invariant for an interface or a class we are
considering two different histories.

In the following section we are going to further explain this topic and we
will go more in the details on how to write specifications.

5.3.3 Operation Contracts in CSL

This section shows how to write CSL operation contracts for methods. Be-
fore showing the actual structure of a contact we will finally define the
considered local history Hloc:

Definition 5.3.6. When writing an operation contract we define Hloc as
the communication history between the objects held in the special variables
this and caller :

Hloc = Hcom/this/caller

28

This means that no other object beside the one executing the body of
the method at hand (this) and the caller of such method are involved in
operation contracts.

This enforces the meaning of compositional verification which allows us
to verify only one method at time abstracting from the rest of the system.

For this reason we can restrict the specMsgDom to have only this and
caller as mentionable object in an operation contract.

Following is how a CLS operation contract for the method sample looks
like:

CSL

op sample(in a:Int, b:Int; out z:Int)
requires CSLexpr
ensures CSLexpr
diverges {true, false}
assignable modSet
[== body]

CSL

where CSLexpr is a valid CSL expression and modSet is the modifier set
which we will soon introduce. The body is shown between square brackets to
indicate that it is not needed in the case the contract belongs to an interface.

The requires statement specifies the precondition of the operation
contract. The postcondition is expressed in the ensures clause.

The diverges keyword states whether we require the method to ter-
minate (i.e. diverges false) or if we just want to verify the partial cor-
rectness of the implementation and thus allow non-termination (diverges
true).

Finally the assignable clause contains the modifier set which ex-
presses the attributes the method is allowed to modify during execution.
It is a list of program variables accessible from the current scope or, as spe-
cial keywords, \nothing and \everything can be used to respectively
indicate that no side effects are allowed to the method or, on the other hand,
that the method is allowed to modify all accessible fields.

Whenever one of the above introduced statements is missing, a default
value is assigned. In Table 5.2 the default values for each clause are shown.

As precondition of a method, beside the proviously introduced expres-
sions, an extra CSL predicate can be used: ‘\firstCall’. This predicate
asserts that the current method must be the first one to be invoked on the
current object:

\firstCall 4
= Hloc← = 〈〉

29

Clause Default value

requires true
ensures true
diverges true
assignable \everything

Table 5.2: Default values for operation contract clauses

where Hloc→ is defined as the projection of the local history on this as
called object:

Hloc← = Hloc/this←

5.3.4 Invariants in CSL

In Creol we distinguish mainly between two types of invariants: interface
invariant and class invariant.

The former is used to further specify patterns of interaction and is the
only invariant which is visible between different objects. The class invariant,
on the other hand, is used to express properties on the internal state of an
object and to relate it with the history; it is not visible to other objects, but
all the threads of the current object have to take this invariant into account.

Again we have to clarify which history we are dealing with when writing
invariants, but once more the answer is not unique. Beside the distinc-
tion between class and interface invariant, we divide them in two further
categories. Let’s see an example code to better illustrate it:

CSL

interface I
begin
inv CSLexpr
with I1
inv CSLexpr
op m()

with I2
inv CSLexpr
op n()

end

class C implements I
begin
inv CSLexpr
with I1
inv CSLexpr
op m() == body

with I2
inv CSLexpr
op n() == body

end

CSL

As you can see from the code there are several invariants (marked by
the inv keyword) involved both in interfaces and in classes. The global
invariants are the one placed just after the begin statement; the properties

30

expressed by such invariant must be considered by all the methods declared
inside the interface or class.

Additionally we can insert in each with-block what we will call a co-
invariant which will deal with all and only the methods contained in the
current block.

In global invariants it should then be possible to express specifications
involving the current object and, when in the case of a class invariant, all
the objects we have a reference to when interacting with it. Therefore the
local history we are going to consider is:

Hloc = Hcom/this

On the contrary, when writing a co-invariant we want to focus only on
the methods inside the current with-block and the caller whose interface is
known. Thus the considered history will be:

Hloc = Hcom/this/caller

In this chapter we saw how to write specifications, thus how to give an
abstract representation of the behaviour of a program. Now, the new ques-
tion is how to check if a method implementation respects its specification.
This is the topic of the next two chapters.

While the complete semantics can be used for specification purpose and
is recognised by the Creol parser (see chapter 8), the verification process is
able to handle a subset of it. For operation contracts, only the pre- and
postconditions are involved. The implemented calculus only supports the
verification of partial correctness of method bodies and the modifier set is so
far ignored. Thus methods are considered to possibly modify all accessible
fields. Refer to chapter 10 for a further discussion on limitations and future
development.

31

32

Chapter 6

Proof Obligations

The term proof obligation was coined by the Dutch computer scientist E.
W. Dijkstra, whose main interest was aimed to applications of formal ver-
ification. His idea was to combine specification and implementation so to
“develop proof and program hand in hand”.

So far we have seen how we can express properties about a program
and how they are translated in first-order logic, but no relation has been
drawn between this specifications and the implementation of method bodies.
This chapter is going to help us understand what is the proof obligation we
have to verify to consider a given implementation correct whit respect to its
specification.

We had previously given an overview of when to take into account spec-
ifications. For instance, we said we want a postcondition to hold after a
terminating execution of the method body, given that its precondition was
true and we argued that an invariant should hold whenever no operation is
running. Here we will unfold this concepts giving a more formal description
of how the final proof obligation we want to verify looks like.

For a complete understanding of this and the following chapter, basic
knowledge of dynamic logic is recommended. The used dynamic logic is
somehow similar to Hoare Logic [8] or the weakest precondition calculus
introduced in [9]; a good introduction of first-order logic, which represents
the base for this topics, can be found in [10].

Roughly speaking, a dynamic logic is a first-order logic extended with
sorts and modalities ([·] and 〈·〉) surrounding program statements. A com-
plete illustration of the ground on which the used dynamic logic builds on
can be found in [3] where the used sort hierarchy and the syntax and se-
mantics of predicates and functions are shown.

We start with expressing the aims of our proof from a semantical point
of view.

33

6.1 Semantics of Creol Dynamic Logic

To compositionally verify the correctness of a program we have to guarantee
that each method can rely on the correctness of the other methods. This
is achieved by having all the methods of a class preserving the class and
interface invariants and co-invariants for the shared variable concurrency to
work correctly; in addition to this, when calling a method of any object, its
interface invariant and co-invariant must be respected. Moreover, in order to
prove the correctness of a method, we must start from the assumption that
its precondition is satisfied which will result, for a correct implementation,
in the satisfaction of the postcondition.

To give a more formal explanation of what is expressed above we start
introducing some terminology. The upcoming definitions follow and extend
the definitions used in [2].

For notational simplicity, we are going to assume each method m to
belong to exactly one interface, which is a very weak assumption easily
obtainable by renaming or qualifying of methods’ identifiers.

In the upcoming formulas the following symbols will be used:

IGlInv(I) to indicate the global invariant of interface I;

ICoInv(W) to indicate the interface co-invariant of the with-block W ;

CGlInv(C) to indicate the global invariant of the class C;

CCoInv(m,C) to indicate the class co-invariant of the with-block the method
m belongs to when implemented in class C;

IPre(m) to indicate the interface precondition of method m;

IPost(m) to indicate the interface postcondition of method m;

CPre(m) to indicate the class precondition of method m;

CPost(m) to indicate the class postcondition of method m.

Further, we will use the symbol CompInv which stands for “Composed
Invariant” and is defined as:

CompInv(m,C)
4
=

CGlInv(C) ∧ CCoInv(m,C)
∧
∧
I∈impl(C) IGlInv(I) ∧ ICoInv(with(m))

∧
∧
I∈ref(C)(IGlInv(I) ∧

∧
W∈with(I,C) ICoInv(W))

where impl(C) returns the set of interfaces the class C implements,
with(m) returns the with-block m belongs to, ref(C) represents the sets
of interfaces potentially invoked by the class C (i.e. the types of the objects

34

class C has a reference to), and with(I, C) returns the with-blocks of inter-
face I where the co-interface is implemented by C. This last set is used to
include all the co-invariants of all the methods class C is able to call.

Note that when talking of any specification (i.e. invariants or operation
contracts) we refer to its translation into firs-order logic as showed in the
previous chapter. In the following we will refer to the set of all the speci-
fications in a program as Spec relatively to which, among other things, we
will evaluate the correctness of an implementation.

Based on the above definitions, we can proceed with the base case of
dynamic logic formulas, relative to an initial state σ representing an assign-
ment of object attributes and local variables to a value, an initial history θ,
an assignment γ of logical variables, and the program specifications Spec:

(σ, θ, γ, Spec,m,C) |= [S]ϕ

iff

for all (σ1, θ1) ∈M(S)(σ) :

if

{θ′ | θ′ ≤ θ_θ1} ⊆
assumeIGlInv ,ICoInv ,γ

∩ assumePost ,γ
∩ relyCompInv ,m,C ,γ

then

{θ′′ | θ′′ ≤ θ1} ⊆
commitIGlInv ,ICoInv ,γ

∩ commitPre,γ
∩ guaranteeCompInv ,m,C ,γ

and

(σ1, θ
_θ1, γ, Spec,m,C) |= ϕ

where the used sets of histories are defined as:

commitIGlInv ,ICoInv ,γ =

θ
∣∣∣∣∣∣

if θ = θ_0 〈invoc(((oid , t), (oid ′, (m, i))), v̄)〉
then
(θ, γ) |= IGlInv(intf (m)) ∧ ICoInv(with(m))

assumeIGlInv ,ICoInv ,γ =

θ
∣∣∣∣∣∣

if θ = θ_0 〈comp(((oid , t), (oid ′, (m, i))), v̄)〉
then
(θ, γ) |= IGlInv(intf (m)) ∧ ICoInv(with(m))

commitPre,γ =

{
θ

∣∣∣∣ if θ = θ_0 〈invoc(((oid , t), (oid ′, (m, i))), v̄)〉
then (θ0, γ) |= IPre(m)

}
35

assumePost ,γ =

{
θ

∣∣∣∣ if θ = θ_0 〈comp(((oid , t), (oid ′, (m, i))), v̄)〉
then (θ, γ) |= IPost(m)

}

guaranteeCompInv ,m,C ,γ =

{
θ

∣∣∣∣ if θ = θ_0 〈yield(σ)〉
then (σ, θ, γ) |= CompInv(m,C)

}

relyCompInv ,m,C ,γ =

{
θ

∣∣∣∣ if θ = θ_0 〈resume(σ)〉
then (σ, θ, γ) |= CompInv(m,C)

}

Intuitively, this means that S, if executed as body of method m imple-
mented in the context of class C, has to commit to the invariants of the
interfaces it calls and the preconditions of the called methods, and has to
guarantee the composed invariant at each release point. Moreover, in case
of termination, the formula ϕ must hold. To accomplish this, S can assume
the invariants and the postconditions of the replying methods to be true
both during and before the execution of S, and it can rely on the other
threads of this object to establish the composed invariant when releasing
control.

As seen in chapter 3, [S]ϕ does not claim termination of any run; in fact
the setM(S)(σ) can be empty. We can prove the termination of a sequence
of statements by simply claiming the existence of a terminating run and
thus writing:

(σ, θ, γ, Spec,m,C) |= 〈S〉ϕ

iff

there exists (σ1, θ1) ∈M(S)(σ) such that:

if

{θ′ | θ′ ≤ θ_θ1} ⊆
assumeIGlInv ,ICoInv ,γ

∩ assumePost ,γ
∩ relyCompInv ,m,C ,γ

then

{θ′′ | θ′′ ≤ θ1} ⊆
commitIGlInv ,ICoInv ,γ

∩ commitPre,γ
∩ guaranteeCompInv ,m,C ,γ

and

(σ1, θ
_θ1, γ, Spec,m,C) |= ϕ

In case we have updates in the formula (as described in chapter 3), the
following semantics apply:

36

(σ, θ, γ, Spec,m,C) |= {x1 := e1 | . . . |xn := en}ϕ

iff

((σ : x1 → E(e1)σ : . . . : xn → E(en)σ), θ, γ,m,C) |= ϕ

The semantics of Boolean connectives and quantifiers is defined as in
first-order logic and are therefore here omitted.

We can now define the validity of a formula in the context of method m
implemented in class C as:

(Spec,m,C) |= ϕ

iff

for all σ, θ, γ : (σ, θ, γ, Spec,m,C) |= ϕ

6.2 Proof obligation construction

Finally, we arrive to the construction of the “complete” proof obligation for
a method m implemented in a class C. Here we want to assert that given
the validity of the method precondition in the current state and assuming
that its invocation is compliant with the composed invariant, then the exe-
cution of its body will result (if terminating) in a state where the method
postcondition holds and the composed invariant is preserved.

More formally, for a method declared as op m(in x̄; out ȳ)== body the
resulting proof obligation will be:

(Spec,m,C) |=
Pre(m)(H,A, x̄)→ {U invocH }[body ; return(ȳ)]Post(m,C)(H,A, x̄, ȳ)

where:

Pre(m)(H,A, x̄) =

 IPre(m)(H, x̄)

∧ CPre(m)(H,A, x̄)
∧ Wf (H)

Post(m,C)(H,A, x̄, ȳ) =

 IPost(m)(H, x̄, ȳ)

∧ CPost(m)(H,A, x̄, ȳ)

∧ CompInv(m,C)(H,A)

here, when writing expressions like IPre(m)(H, x̄) we simply mean that

the formula IPre(m) may contain statements relative to the current history
H and the in-parameters x̄. The symbol A represents the class attributes

37

which may be addressed in class specifications and Wf (H) holds for well-
formed history, meaning we assume to have a history which includes the
creation message of this, contains invocation messages for all the corre-
sponding invocation ones, and does not have references to objects being
null. Lastly the abbreviation U invocH represents an update of the history
to a state where it contains an invocation message of method m and the
composed invariant holds. Its full form is:

H := some H.

 H ≤ H
∧ 〈invoc(((caller, i), (this, (m, j))), x̄)〉 ⊆ H
∧ CompInv(m,C)(H,A)

Here and in the following, we use the quantifier some which is not imple-

mented in the logic but better clarify the meaning of the actually expressed
formula. For instance, an update formula like {H := some H.(f(H) ∧ H ≤
H)}φ, which we will following refer to as an anonymizing update, is rewrit-
ten to:

∀H0. (H .
= H0 → ∀H1. {H := H1}((f(H1) ∧H0 ≤ H1)→ φ)) (6.1)

where the symbol ≤ is used to state that the old history, H1, is a prefix
of the new one, H0.

38

Chapter 7

Creol Calculus

The only missing step is to reduce our proof obligation into a logic formula
which does not contain any code, so that we can finally show its validity
applying the well known properties of first-order logic. This is achieved by
progressively applying sequent rules (see chapter 3) to each Creol statement
contained inside the modalities, until we arrive to have an empty modality
which can be removed.

We are going to start showing the sequent rules handling sequential
statements which will provide us with a better understanding about the
reasoning process; then, the rules applied on concurrent constructs, such as
method invocations and release statements, will be explained. In the latter,
the program specifications will play a central role thus our focus will go on
such statements and their relation to the construction of the history.

7.1 Sequential Constructs

The most basilar Creol construct is skip which corresponds to the com-
monly called “no operation” statement which, by definition, has no effect.
The sequent rule handling such statement is the following:

skip
〈[ω]〉φ

〈[skip; ω]〉φ

here and in the following, the 〈[·]〉 symbol is used as a replacement for
the modality to indicate that the same rule applies both in the context of a
box and a diamond modality.

The application of this rule simply delete the skip statement and leave
the rest of the code unchanged. No further modification is made to the
state.

39

Another very simple rule is the one applicable on the block statement.
This rule highlights the difference between proving total and partial correct-
ness of an implementation:

blockBox
true

[block; ω]φ
blockDia

false

〈block; ω〉φ

The block statement causes the program execution to stop, thus a non-
terminating program is always partially correct (box modality) but never
totally correct (diamond modality).

Now, we turn to declaration statements. The used rules reflect the im-
plicit assignment of variables to their default value:

intDecl
{i := 0}〈[ω]〉φ

〈[var i: Int; ω]〉φ
boolDecl

{b := false}〈[ω]〉φ
〈[var b: Bool; ω]〉φ

The above example shows the declaration rules for integers and boolean
variables, similar rules apply for labels and objects which are implicitly
initialized with the null value. Moreover, this rules show how updates are
generated during the reasoning process. They will eventually be applied in
later stages when the involved variables are recalled.

Similar rules are applied in case of assignments. The simplest case occurs
when the right side of the assignment is a terminal expression (denoted by
te) such as a variable or a literal. On the other hand, when we have an
expression, it is recursively unfolded until we get a top level operator applied
to terminal expressions. Following, we show such rules for assignment of
integers and and the handling of an addition:

assign
{x := te}〈[ω]〉φ
〈[x := te; ω]〉φ

addTerm
{x := te1 + te2}〈[ω]〉φ
〈[x := te1 + te2; ω]〉φ

add
〈[x′:= e1; x′′:= e2 ; x:= x′ + x′′; ω]〉φ

〈[x := e1 + e2; ω]〉φ

In case an error occurs, like a division by zero, the behaviour is simulated
by blocking the execution of the program. The rule applied to a division
distinguishes between the case where the divisor is not zero and thus an
update can be added, and the case of a division by zero where a block
statement is added:

DivTerm
(¬te2

.
= 0→ {x := te1/te2}〈[ω]〉φ) ∧ (te2

.
= 0→ 〈[block; ω]〉φ)

〈[x := te1/te2; ω]〉φ

40

The shown rules give us a wide overview on the reasoning process adopted
during verification. The sequent rules for the rest of the Creol sequential
statements are here omitted. A complete reference can be found in chapter
7 of [3].

Now, we shift the focus to concurrent statements which hold the main
significance for this thesis work and for the understanding of the treatment
of operation contracts of called methods and invariants in the verification
process.

7.2 Concurrent Constructs

As it has been mentioned several times, Creol supports concurrency in dif-
ferent ways: distinct objects are thought as running on distinct processors,
thus they can operate in parallel, moreover each object can process sev-
eral threads (instances of methods) which execute interleaved following a
scheduling process driven by explicit release points. In this section we will
see how this concurrency affects the verification process in its lowest level
and how specifications are dynamically integrated in the construction of the
proof.

We begin dealing with inter-thread communication within an object.
Whenever a thread releases the control of the object processor, any other
ready thread is allowed to take over and start its execution from the cur-
rent state which is partially unknown to the new thread. This is because
the shared memory (i.e. the class attributes) may have been modified by
previously running threads. Anyhow some assumption can still be made,
in fact we can rely on each releasing process to fulfil the contract between
all the object threads, represented by the composed invariant. In the same
way, when the initial thread resumes its execution, the global state will be
changed, but the validity of the invariant can still be assumed.

Following is the sequent rule handling the release statement, in which
all the above mentioned considerations will be applied:

release
Γ ` CompInv(m,C)(H,A),∆ Γ ` {UH,A}[ω]φ,∆

Γ ` [release; ω]φ,∆

As you can see, the rule splits the proof into two branches: in the first
one we have to show that the composed invariant is preserved, while the
second branch models the execution of the code following the release
when the thread resumes. In the latter case, the execution will start from
an unknown but fixed state where the composed invariant can be assumed.

41

This is expressed by the update UH,A which stands for:

H,A := some H,A.(CompInv(m,C)(H,A) ∧H ≤ H)

Here the system history is extended and the class attributes are anonymized,
still the obtained state must preserve the invariant.

Note how this rule, as well as the ones which will follow in this section, is
strictly related to the context we are executing the code in. For instance here
the composed invariant is dynamically loaded depending on which method
we are currently verifying and its class.

Similarly to the previous rule, we can handle the await l?(x̄) statement
by splitting the proof into two new branches: one will show that the invariant
is established, the other will continue the execution relying on it and with the
additional assumption that the method assigned to the label l has completed
its execution:

awaitLabel

Γ ` CompInv(m,C)(H,A),∆
Γ ` {UH,A}(∃ p̄. Comp(H, l, p̄)→ [ω]φ),∆

Γ ` [await l?(x̄); ω]φ,∆

with the predicate Comp(H, l, p̄) we assert that the history H contains
a completion message with label l and return values p̄ which will then be
assigned to the variables x̄.

By replacing “∃ p̄. Comp(H, l, p̄)” with “〈x := b〉x .
= true” in the previ-

ous rule, we obtain the sequent rule handling the await b statement, where
b is a boolean guard. This will assure that, when resuming the execution,
the guard evaluates to true without having any error occurred.

It is important to notice how the rules introduced so far enforce what we
semantically described in the previous chapter when presenting the validity
of formulas. When such statements occur, the history is marked with yield
and resume messages, thus the composed invariant must be taken into ac-
count as expressed by the guaranteeCompInv ,m,C ,γ and relyCompInv ,m,C ,γ sets.

Similar to the Comp(H, l, ȳ) predicate used above, we have Invoc(H, l, x̄)
which is going to be used in the next rules and guarantees the existence of
an invocation message in H containing the label l and the in-parameters
x̄. These predicates are monotonous with respect to the extension of the
history, meaning:

Comp(H0, l, ȳ) ∧H0 ≤ H1 → Comp(H1, l, ȳ)

Every message contained in a prefix of an history is also contained in the
extended history, moreover we can state that if a message is not contained in

42

a history, then it is not contained in any of its prefixes. This properties are
heavily used during the verification process since no actual data structure
is used to model the history, on the contrary, we base our proof asserting
properties on the current history and deductively expand our knowledge in
order to obtain more premises on which to base the proof.

Now, we continue with the sequent rules applied to method invocation
and completion statements. The used approach is based on the principle
of substituting the called method with its operation contract. A different
approach, usually called inlining, would be to replace the method invocation
with its full body. This would imply verifying the complete implementation
every time a method is called. Moreover, using inlining would indicate
that the method body is executed when the method is called, which is not
true in Creol programs since the execution of a method depends on the
scheduling policy. The compositional approach adopted in this work is thus
here highlighted, since every method implementation needs to be proven
correct only once with respect to its specifications which, in turn, can be
used as a behavioural description of the method when it is invoked elsewhere.

Assuming we have a valid invocation of a method, we need to show
that its precondition is satisfied in the current state, in addition we want
the invocation to be compliant with the interface invariants of the involved
object:

invoc

Γ ` o .
= null→ 〈[block; ω]〉φ,∆

Γ ` ¬o .
= null→ IPre(mtd)(H, x̄),∆

Γ ` ¬o .
= null→ {l := ((this,me), (o, i))}{U invoc

H }
(IGlInv(I)(H) ∧ ICoInv(with(mtd))(H),∆)

Γ ` ¬o .
= null→ {l := ((this,me), (o, i))}{U invoc

H }〈[ω]〉φ,∆
Γ ` 〈[l!o.mtd(x̄); ω]〉φ,∆

The upper branch handles the case where the referred object is null,
which results in the blocking of the execution; in the succeeding two branches
the correctness of the invocation is examined and in the last one the execu-
tion is continued. Notice how the precondition is checked before the history
is updated with the invocation message (see commitPre,γ in the previous
chapter), while the invariants are evaluated on the updated history as re-
quired in commitIGlInv ,ICoInv ,γ . The interface I is the type of o, remember
that in Creol objects are typed by interface. The first update involved in the
rule assigns a new value to the label l so that it can be successively recalled
to retrieve the out-values of mtd (the symbol i represent a newly created
value assigned to the new thread ID). Secondly we have the update of the
history to an extended history containing the invocation message invoc(l, x̄).
We can rewrite it as:

H := some H.(H ≤ H ∧ Invoc(H, l, x̄))

43

Similarly to the previous rules, when applying this kind of rule, the
precondition and the invariants must be dynamically loaded depending on
which is the actual object and method we are invoking.

Next, we present the rule for the handling of completion statements like
l?(ȳ). Here the consistency of the call is based on checking if a previous
invocation has been assigned to the label at hand. If this is not the case,
i.e. the label is null, the execution is blocked; otherwise the system state
is updated and the execution continues:

comp

Γ ` l .= null→ [block; ω]φ,∆
Γ ` ¬l .= null→ {U compH,ȳ }[ω]φ,∆

Γ ` [l?(ȳ); ω]φ,∆

The update U compH,ȳ , similarly to the one in the previous rule, extends
the history adding the pertinent completion message and assuming the in-
variants and the postcondition, fulfilling what expressed in the previous
chapter in assumeIGlInv ,ICoInv ,γ and assumePost ,γ . Moreover, here, the vari-
ables ȳ are updated with the return parameters of the method assigned to
the label, whose values are unknown but assumed to be compliant with the
postcondition of the method. The full form of the update is:

H, ȳ := some H, p̄.

 H ≤ H ∧ Comp(H, l, p̄)
∧ IGlInv(I)(H) ∧ ICoInv(with(mtd))(H)
∧ IPost(mtd)(H, p̄)

where the interface I and the method mtd are obtained from the label.

The last rule we are going to examine is the one for the return state-
ment, which simply adds a completion message for the currently verified
method m to the history and, since this is going to be the last executed
statement, removes the modality:

return
Γ ` {U return

H }φ,∆
Γ ` 〈[return(ȳ)]〉φ,∆

where U return
H is rewritten to:

H := some H.(H ≤ H ∧ Comp(H, ((caller, i), (this, (m, j))), ȳ))

Note how in the return rule we do not check the validity of composed
invariant and postcondition since this is already included in the proof obli-
gation, thus they will be contained in φ.

44

Chapter 8

System Implementation

A relevant part of this thesis work has been centred around implementing
a prototypical version of the verification system for Creol programs with
respect to their CSL specifications.

The implementation can be seen as the composition of two main branches:
one involving the integration of CSL into a Creol parser and the other con-
sisting in the extension of the KeY tool for supporting the loading of Creol
programs and for compatibility with the CSL specification language.

This chapter will give a wide overview of the architecture of the im-
plemented system. The description is not aimed to be fully exhaustive,
knowledge of object-oriented programming paradigms and construction of
language interpreters is required. Moreover, notions of formalisms as finite
state machines (FSMs), graphs and abstract syntax trees (ASTs) will be
assumed to be known.

The reader is highly encouraged to have the Java code at hand while
reading the chapter to fully understand the description. Additional helpful
notes can be found as comments in the source code.

The code is protected under the GNU general public license and can be
obtained upon request from the KeY project Web page1.

In the following the acronym CML (standing for Creol Modelling Lan-
guage) will be used to refer to the combination of Creol code and CSL
specifications.

8.1 Program parsing

In a previous work [3], a parsing library for Creol programs, namely jCreol,
has been implemented. It supports the recognition of valid Creol statements
and the resolving of program references. This library has been improved and

1www.key-project.org

45

http://www.key-project.org

adequately extended to allow the user to write inline CSL specifications and
to check their consistency. Moreover functionalities for the collection of the
data necessary for the verification process have been added.

We start by giving an overview of the execution flow followed by the
system when loading a CML program, then we will describe with more
details each performed procedures.

When running jCreol with a CML file as input, the following steps are
executed:

• An interpreter is called to validate the input code. If the the code is
accepted, i.e. the program is syntactically correct, an AST in gener-
ated.

• The AST is translated into a graph data structure.

• The graph is traversed by a walker which collects the identifiers of
declared classes, interfaces, and other references. Together with the
corresponding nodes of the graph, they are stored in a symbol table.

• A second walker is launched on the graph and a program structure is
created: an object is created for each class and interface and internal
attributes point to defined methods and with-bocks which, in turn, are
represented by other objects with references to the containing class or
interface.

• Finally, another walker traverses the graph and modify it resolving
used references such as variables and interface identifiers.

Interpreter

The implementation of the interpreter for CML has been carried out with
the use of the ANTLR Parser Generator2 which is a very powerful tool for
the construction of interpreters or translators and for the generation of trees.
A very exhaustive guide to this tool can be found in [11].

To create a lexer and the parser for the target language, it is necessary to
provide ANTLR with a grammar specifying the structure of the language. A
context free LL(*) grammar, expressed using Extended Backus Naur Form
(EBNF), is required.

The grammar used for CML, which can be found in Appendix A, is
an LL(1) grammar. This choice has been made given its better efficiency
with respect to grammars with higher values of lookahead. Additionally the
grammar has been enriched with rewriting rules for the construction of the
resulting abstract syntax tree (AST).

2ANTLR: ANother Tool for Language Recognition, www.antlr.org

46

http://www.antlr.org

The file containing the grammar (Creol.g) and the source code for the
obtained lexer (CreolLexer.java) and parser (CreolParser.java) can be found
in the antlr package of the source code of jCreol.

When loading the CML file, first the lexer translates the code in a se-
quence of tokens, then the parser checks the consistency of the input stream
with respect to the grammar. Finally the AST is built following the rewrit-
ing rules. In case of syntactic errors, an exception is launched and an error
message reports the found inconsistency and its position within the code.

Graph construction

The tree generated by the ANTLR parser is translated into a graph struc-
ture. The classes used for this task are all contained in the package graph.

First, an instance of Graph is created and its method addAST is called to
perform the translation of the passed AST. Here the tree is walked through
and for each encountered node an instance of GraphNode is created and ini-
tialized with the corresponding text (i.e. code snippet) and token. Moreover
a GraphEdge is created for each parent-child pair so to maintain the same
hierarchy denoted by the AST.

The result is a directed, acyclic graph constituted of data structures
which helps in traversing and modifying it.

Filling symbol table

When the graph has been created, its method fillSymbolTable is invoked.
Here an instance of the class Walker (contained in the package walker) be-
gins wondering the graph performing a left-depth-first visit of all the nodes.

When initializing the walker, an instance of a class implementing the
interface Behavior (package walker.behavior) must be provided. A behavior
specifies actions to be performed before the traversing of the graph (init),
when going up or down along an edge, and when finishing the traversing
(finish). An additional action, namely downNotInTree, is available which
specifies the routine to perform when encountering a modified edge of the
original tree (this will occur after the resolving step, as we will shortly see).

For this step the FillSymbolTable behavior is used, which collects a ref-
erence to all the declared interfaces, classes, functions, and data types and
stores them in an instance of the class SymbolTable (package symboltable)
passed as parameter when initialized. For each identifier an entry is added
to a hash map contained in the symbol table according to its type; addi-
tionally, the node of the graph storing its declaration is saved since it will
be used later on when resolving references.

47

In case an error occurs, e.g. two classes have been defined with the same
identifier, or there are references to not defined interfaces, an error message
will be shown providing the details.

Program structure

At this point a structure representing the provided program is created; the
classes used for this task are collected in the package programStructure.

An instance of CreolProgram is created initially, then, for each defined
class and interface an instance of CreolProgramClass and CreolProgram-
Interface is created respectively and a reference to these objects is saved in
the initial CreolProgram object.

Additionally, other relevant informations are stored as attributes in the
newly created instances, e.g. for each class the implemented interfaces are
collected in a vector as well as the class attributes and the invariants.

A reference to instances of CreolProgramMethod, representing all the
declared and implemented methods, is added to created classes and inter-
faces; this structure in turn contains references to the method parameters,
its body, and its operation contract.

In case there are methods defined inside with-blocks, then an instance
of CreolWith is created for each co-interface of each class or interface. The
reference is stored in the containing class or interface and co-invariants are
added.

To accomplish this, another Walker is instantiated and initialized with
the behavior Walker2FSM (in walker.behavior). This behavior forwards the
actions performed by the walker along the tree to a Finite state machine
which tracks the context the walker is in and executes appropriate actions
when shifting from a state to another. The Walker2FSM behavior must
be provided with an FSM layout (extending the abstract class Layout in
the package finitestatemachine) which describes the states constituting the
FSM and the transitions between its states. To create a layout it is necessary
to define all the different states and assign them the corresponding tokens,
further the possible transitions must be added to each state specifying the
type (i.e. up, down, or downNotInTree) and the action to perform during
the transition (an instance of a class extending the abstract class Action
must be provided). This approach makes easier to define operations to
perform while walking the graph, moreover it is possible to have a graphical
representation of the used layout provided by the method printDot of the
class FiniteStateMachine which creates a Graphviz3 file displayable with any
image viewer.

3Graphviz: Graph Visualization Software, www.graphviz.org

48

http://www.graphviz.org

For the purpose of creating the program structure, the layout Program-
StructureLayout from the package finitestatemachine.structure has been im-
plemented.

When the structure is complete, a check is run on it to establish if the
program is consistent, i.e. all the interfaces implemented by classes exists
and all the classes contains all the methods declared in the implemented
interfaces and have the same co-interfaces; in addition the interface specifi-
cations are added to the implementing classes and relative methods.

Errors are thrown if inconsistencies are found.

The obtained structure allows for easy access to all the elements of a
program. For instance, given a method, it is easy to get its pre- and post-
condition, obtain the with-block containing it (thus its co-interface and co-
invariant), or the class it is defined in, thus its class invariant and the in-
variants of all the implemented interfaces. As one may now foresee, this is
going to be handy during the verification process as we will see in the next
section.

Reference resolving

The last performed step checks the consistency of method bodies and spec-
ifications with respect to the used identifiers. Whenever a reference is made
to a class, an interface, a function, or a data type, it is checked if its identi-
fier is stored in the previously filled symbol table. At the same time nested
scopes are used to store declared variables and to resolve them when used
in the code.

For this task another walker provided with the previously described
Walker2FSM behavior is employed. This time the used layout is the Re-
solveLayout defined in the package finitestatemachine.resolve. This layout
causes the walked graph to be modified: all the nodes corresponding to the
use of a reference are replaced by the node holding its declaration. All the
newly introduced edges are marked as being not part of the original graph
by setting to false the attribute belongsToTree of the class GraphEdge. This
distinction allows for maintaining a directed spanning tree so that no loop
occurs when walking again the modified tree. This is why the action down-
NotInTree is supported by the walker and the FSM.

8.2 Integration with KeY

The functionalities described above can be both loaded running the Main
class, or called by an external program using the class jCreolExternal. KeY
uses this class to interact with jCreol.

As before, the aim of this section is to understand the program flow more
then the actual structure of the architecture. Again, we advice to look at

49

the code for a better understanding of the following description.
The base package for the here described code is de.uka.ilkd.key located

in the key/system source folder. In the following this will be the prefix for
all the mentioned packages and thus will be omitted.

Previously to this work the system supported the loading of Creol state-
ments from a key file containing the hard-coded proof obligation together
with the problem-specific rules and the desired specification expressed in
logic. The details about the implementation of this part can be found in
chapter 8 of [3].

The aim of the code introduced here is to add to KeY the capabil-
ity of loading full Creol programs with inline CSL specifications, translate
the specifications, and automatically generate the proof obligation and the
needed rules.

Loading of program

The first class called from KeY when loading a Creol program is CreolSer-
vices in the package lang.creol ; this class forwards all the calls to the final
class CreolLoader in lang.creol.loader which in turn has a reference to jCre-
olExternal and acts as a bridge between KeY and jCreol.

At this point jCreol preforms all the steps described in the previous
section and, if no errors are encountered, a CreolProgram structure is created
and accessible.

As next step, all the declared interfaces are introduced in the sort names-
pace so to be recognized as valid types for program variables by KeY. More-
over, program variables representing the methods’ identifiers are created:
they will be used as parameters for history predicates and functions during
the verification process. Basic classes for the instantiation of Creol objects’
sorts are available in the package lang.creol.sort.

Proof obligation

Now the user will be prompted to select the method to verify from a proof
obligation browser. The browser shows a tree representing all the defined
classes in the program and its methods.

For the implementation of this section, the utilized classes are avail-
able in the package lang.creol.proofObligation.browser. The code for the
implementation of the browser (CreolPOBrowser) reuses partially the one
used for loading of Java programs; the visualized tree (instance of the class
CreolClassTree) uses the previously created CreolProgram structure for the
creation of the tree nodes.

So far the system provides a single proof obligation (see chapter 6) and
it is implemented in the CreolCompletePO class contained in the package

50

lang.creol.proofObligation. Other than this class, the AbstractCreolPO is
provided which implements common functionalities for the generation of
proof obligations for future implementation of additional ones.

When the user has selected the target method and started the proof, an
instance of CreolCompletePO is created and initialized with the pertinent
CreolProgramMethod instance. From here, with consecutive calls to Creol-
Loader, first the method body is translated to a KeY-specific AST, then the
specifications for the method at hand are translated into logical terms.

The translation of the body reuses the code previously implemented for
the translation of Creol statements, for more details on this section refer
to [3]. The translation of specifications puts into effect what semantically
described in chapter 5 and it is further explained in the next paragraph.

The last task performed in the CreolCompletePO instance, is inserting
the translated body into modalities and composing the proof obligation as
shown in chapter 6.

This is achieved employing the functionalities provided by the class Cml-
TermBuilder in the package lang.creol.loader.cml2Term. This class extends
the TermBuilder class already implemented in the KeY system (package
logic) which allows for building complex terms by hand and automatically
applies basilar simplifications; CmlTermBuilder adds Creol specific func-
tionalities and, as we will see next, is one of the central classes for the
translation of specifications into terms.

Translation of specifications

In KeY, logical terms and formulas constituting the proof must be an in-
stance of the class Term provided in the package logic. The aim of this
section is indeed the conversion of the Graph embodying a CSL specifica-
tion into a Term instance, which can be later composed in a proof obligation
as seen before.

The classes utilized for this task are contained in the package lang.
creol.loader.cml2Term.

A Walker2FSM walker, imported from jCreol, is here used again; the
employed layout for the FSM is CmlLayout. While walking the graph, de-
pending on the FSM transition initiated, an action is triggered and the
CmlTermBuilder instance is invoked. This class, other than the common
functionalities inherited by its super-class TermBuilder, offers all the neces-
sary operation to translate the CSL graph into a final Term and to retrieve
the terms corresponding to CSL predicates and functions.

Since the Term structure is immutable, i.e. cannot be changed after
creation, the construction of the whole term translating the CSL graph must
be carried out in a bottom-up manner, i.e. starting from the terminal nodes

51

which will be the sub-terms of their parent graph node which in turn will
be a sub-term of the nodes with lower depth.

A stack is thus used to store the terms corresponding to sibling nodes and
when we are walking up from their parent node the new term is constructed
and stored in the stack. The same process repeats until we reach the root
of the graph.

To better understand the process, an example is here given.

Example 8.2.1. Assume we are about to translate the following CSL speci-
fication:

CSL

a > 0 && \HContains(!this.m(true))

CSL

where a is a declared parameter or attribute and m is the identifier of a
method.

A simplified version of the graph that will be created for this CSL code
is shown in Figure 8.1.

The translation will start from the leaves ‘a’ and ‘0’; they will be trans-
lated into terms and stored in the stack. When going up from the node ‘>’
the term corresponding to the “greater than” function will be created and
the two sub-terms will be retrieved from the stack and replaced by the new
term.

Now the walker will go down to the leaves of the ‘HContains’ tree
and, following the same procedure, stores them in the stack and then com-
poses them to generate an invocation message (‘!’) which will then be the
parameter for the ‘HContains’ function term.

Finally, the stack will contain only the two sub-terms for the ‘&&’ func-
tion, so they will be fetched and set in conjunction. The obtained term
is then stored and available by calling the getTerm method of the Cml-
TermBuilder instance.

8.2.1 Rules

For the implementation of the sequent rules described in chapter 7, two
different approaches have been followed.

Most of the rules are implemented in the taclet language, whereas dy-
namic rules, such as the one handling Creol concurrent constructs, are built
as an implementation of the interface BuiltInRule from the package rule.

52

doWork1

HContains

HIST

>

0a

CML

&&

true

OBJ

this

METHOD

!

PARAM

Figure 8.1: Graph representing a CSL expression

53

Taclets

The taclet is a formalism used in the KeY system to easily describe a sequent
rule. Mainly it expresses the applicability of a rule, obtained by an AST
matching mechanism, and the effect of the application of such rule, that is
how the AST will be modified.

Historically the taclets have been introduced by E. Habermalz under the
name of “Schematic Theory Specific Rules” [18]. An in-depth explanation
of the taclet language can be found in chapter 4 of [1], where they are first
introduced with a wide range of examples and then a more formal description
is provided.

To have an idea of what a taclet looks like, we give an example:

Example 8.2.2. Consider the following rule, impRight, which represents a
classical first-order rule commonly used during the verification process:

impRight
Γ, φ ` ψ,∆

Γ ` φ→ ψ,∆

The KeY file needed to define such rule will contain the following lines:

KeY

\schemaVariables{
\formula phi, psi;

}
\rules{

impRight {
\find(==> phi -> psi)
\replacewith(==> psi)
\add(phi ==>) };

}

KeY

Here, first the used schema variables are defined; the specified sort de-
fines which expressions the variable can stand for. In the above example
phi and psi represents arbitrary formulas; the taclet language provides
for all the sorts necessary to match also variables and terms and allows for
defining further sorts for matching program-specific expressions.

The rules are then defined. The \find clause defines the pattern that
must occur for the rule to be applicable; the \replacewith and \add
clauses describe the alteration caused by the rule when applied. The sequent
arrow (==>) is used to specify whether a rule is applicable in the succedent
or the antecedent of a proof; if omitted the rule will be applicable in any
context.

54

A taclet used for the simplification of CSL specifications comes next:

Taclet

HContainsEmpty{
\find (HContains(cmlEmptyHist,#hist))
\replacewith (true)

};

Taclet

which simply states that the empty history is always contained in any
history.

The taclet language provides for many more constructs, here omitted,
for the implementation of more complex rules; for instance, it is possible
to specify conditions on variables and add other needed constraints for the
applicability of rules.

All the KeY files containing the CML taclets can be found in the folder
resources/de/uka/ilkd/key/proof/rules/lang/creol/ and its sub-folders.

Built-in rules

Taclets are very easy and intuitive to write, but have the limitation of having
a fixed structure which can’t dynamically change, for instance we cannot
define a general taclets matching the invocation of any method. For this
reason, rules needed for the handling of such constructs (i.e. the ones defined
in section 7.2) are implemented as built-in rules.

The source code of the used classes is located in the package lang.creol.
profile.rules. The abstract class AbstractCreolRule implements common
functionalities needed for the implementation of the existing rules and can
be reused for future extension of the rule set.

Similarly to taclets, this classes contain a method, namely (isApplicable),
which performs an AST matching to establish if the rule at hand is applica-
ble; besides, the method apply defines the procedures to perform when the
rule is applied.

For instance, the class CreolMethodInvocationRule, corresponding to the
sequent rule invoc from section 7.2, when applied splits the proof, recalls the
specifications dealing with the method the rule is applied on, and builds up
the structure of the new proofs.

Here the translation procedure described in the previous section is ex-
ecuted again and the CmlTermBuilder instance is again employed for the
construction of the involved terms.

55

56

Chapter 9

An example scenario

This chapter will provide a step by step description of the verification process
for an example model.

First we introduce an hypothetical system suitable for an interesting
analysis, then we show how to model this system using the Creol language.
We add some CSL specifications to the model and finally we highlight mean-
ingful steps in the verification process using the KeY tool.

9.1 The system

Consider the simple system depicted in Figure 9.1. It represents a very
common scenario in distributed systems. It is composed of a node (Node
A) which resources are shared between two different threads (thr1 and thr2)
and the other node (Node B) which embodies a used resource.

Node A Node B

-

�

thr2

thr1

Figure 9.1: Depiction of the example scenario

Here, the threads running in Node A actively call the resource which will
provide functionalities to ensure mutual exclusiveness of its usage.

57

9.2 The model

To model this system we could use the following Creol interfaces:

Creol

interface IResource
begin
with IConsumer
op lock()
op use()
op unlock()

end

interface IWorker
begin
with Any
op doWork1()
op doWork2()

end

interface IConsumer
begin
with IResource
op holdsResource(in b:Bool)

end

Creol

The interface IResource will of course model the Node B; it offers
methods to lock and release the resource itself, and the method use which
models the actual utilization of it.

Node B will have just a partial view of the node calling its methods:
the caller will implement the interface IConsumer and offer a method,
holdsResource, to set its “status”.

The last interface, IWorker, together with IConsumer, will be both
implemented by the class modelling Node A. The implementation of this
class can be found in the code listing on the next page.

As we can see, the class NodeA has a reference to an object of type
IResource and the class methods, doWork1 and doWork2, perform se-
quential calls to the same shared object.

This is a very basic implementation which covers some of the main as-
pects of distributed system modelling, being asynchronous calls and the
handling of control switching between threads by explicit release points.

58

Creol

class NodeA implements IConsumer, IWorker
begin

var r : IResource;
var l : Label;
var busy : Bool;

with Any

op doWork1()
==
l!r.lock();l?();
l!r.use();
l!r.unlock();l?();
release;
l!r.lock();l?();
l!r.use();
l!r.unlock();l?()

op doWork2()
==
l!r.lock();l?();
l!r.use();
l!r.unlock();l?()

with IResource

op holdsResource(in b:Bool)
==
busy := b

end

Creol

9.3 Adding specifications

It’s now time to add some specifications to our model.
For instance, we don’t have an implementation of the methods of the

interface IResource; thus, we could add operation contracts to describe
their behaviour:

59

CML

interface IResource
begin
with IConsumer
op lock()
ensures \HContains(!caller.holdsResource(true))

op use()
requires \HContains(!caller.holdsResource(true))

op unlock()
requires \HContains(!caller.holdsResource(true))
ensures \HContains(!caller.holdsResource(false))

end

CML

Note how the previous operation contracts are far away from modelling
the complete behaviour of the three methods, they just assert some desired
properties for the pre- and post-state of our methods.

For the lock method we don’t require any special precondition, we just
assert that after its termination the caller of the method (which we know
being an instance of IConsumer) will hold the resource. This is modelled
by stating that at this point the local history will contain an invocation of
the method holdsResource with parameter true.

The same property will be a requirement for the method use, since we
have to check that the object using the resource has set a lock on it to
guarantee mutual exclusion.

Finally, for the unlock method, we require again the same condition
and we add as a postcondition the release of the resource on the caller object.

We can add a further piece of specification in the class NodeA. For
instance we can insert the following global invariant :

CSL

inv \after(!r.unlock(), !r.lock())

CSL

This states that whenever the local history contains an invocation of the
method lock on the common resource r, then an invocation of unlock
must follow.

Again, this is not a complete specification to ensure mutual exclusion of
the usage of the shared resource, anyhow it is a desired property that we
want to be preserved every time there is a switch between the concurrent
threads of the Node A.

60

9.4 Verification

Now we have our model, and we have some properties to check our imple-
mentation against. We can then load it into KeY and start the verification
process.

Assume we want to verify the method doWork1, so, when loading the
program, we select it in the proof obligation browser and we start the proof.

The created proof obligation will be the following:

KeY PO

==>
Wf(HS, mAX_LABEL)
-> \forall CreolHistory hPre; (hPre = HS
-> \forall CreolHistory hNew;
{HS:=hNew || mAX_LABEL:=mAX_LABEL + 1}
(Pf(hPre, hNew)

& after(invMsg(this, r, unlock, NP),
invMsg(this, r, lock, NP),
HS)

& Invoc(HS,
com(caller, this, doWork1, mAX_LABEL),
NP)

-> \[body \]
after(invMsg(this, r, unlock, NP),

invMsg(this, r, lock, NP),
HS)))

KeY PO

This represents a simplified version of the actually displayed PO, some
details have been omitted to improve the readability and set the focus on
the main details.

In the above listing, body is a place-holder for the actual body of the
method doWork1; the only precondition we have is the history being well-
formed followed by an anonymizing update (see 6.1) of the history to an
extended history containing the invocation message of doWork1 on this
object from caller. Additionally, the class global invariant is assumed
to hold in the updated history and it is also added as postcondition to be
preserved when the program terminates.

As we can notice, this properties are expressed with a different notation
than the CSL syntax we saw in chapter 5; this is because the translation pro-
cess triggered when loading the program converts the CSL specification to
the KeY’s program logic and also automatically adds parameters the user is
not required to specify. The reader is advised to compare the here presented

61

PO with the one previously described in section 6.2. The predicate Pf(H1,
H2) corresponds to what we previously denoted with H1 ≤ H2; Invoc(H,
lb, x) stands for 〈invoc(lb, x)〉 ⊆ H where lb is a label. In KeY’s notation,
we expressed a label with com(caller, callee, m, i) which contains all the
necessary parameters to define a label as seen in our semantics (chapter 4),
except for the thread id assigned to this which in the verification process
of a single method would be constant and thus here omitted.

The mAX_LABEL is thus used to identify the thread corresponding to
the called method and is constantly increased to ensure uniqueness. It is
also used as parameter for other predicates (as Wf(...) in this example) for
verification purposes.

Finally, we shift the attention on how our invariant has been translated
from CSL: the corresponding predicate is after(msg1, msg2, H). We
can notice that the history has been added as parameter and the CSL in-
vocation messages are translated to invMsg(this, r, m, NP) where
NP is used to specify the absence of parameters and the parameter this
has been automatically added since, as we saw in subsection 5.3.4, the local
history we are dealing with is always centred on the current object.

Overall, the syntax used for the implementation in KeY is very similar
to our specifications and logical predicates, some modifications have been
necessary for the adaptation to the previously adopted code, but users can
easily intuit the expressed properties.

Now the user is able to apply sequent rules to discharge the proof obli-
gation. Here we are not going to present the full process for the closure of
the whole proof, instead we will highlight some interesting steps.

The first rule we can apply when selecting the modality block in the
PO is the Method invocation rule corresponding to the invoc rule we
saw in section 7.2. The result will be a split of the proof in two branches:
one corresponding to the case of having a null reference, and the other
corresponding to a correct invocation. In the latter, the modality block of
the initial PO will be replaced by the following formula:

KeY PO

!r = null
-> {l:=com(this, r, lock, mAX_LABEL + 1)

|| mAX_LABEL:=mAX_LABEL + 1}
\forall CreolHistory hPreI0; (hPreI0 = HS
-> \forall CreolHistory hNewI0;
{HS:=hNewI0}
(Pf(hPreI0, hNewI0) & Invoc(hNewI0, l, NP)

-> \[stmts \] post)...)

KeY PO

62

where stmts stands for all the statements following the method invoca-
tion l!r.lock(); in the previous body, and post contains the formulas
following the modality block.

As we can see, here the label l is updated to hold a reference to the
invoked method, the thread index is increased and the history is extended
with the appropriate invocation message.

Since the called method has no precondition specified and the IResource
interface has no invariants, thus set to true by default, no further property
is required to be proved.

Next, we can continue applying the rule Method completion again on
the modality block. Again, two branches will be created: the one blocking
the execution in case of null label, and the one corresponding to a valid
completion request in which the modality block will be replaced by:

KeY PO

!l = null
-> \forall CreolHistory hPreC0; (HS = hPreC0
-> \forall CreolHistory hNewC0;
{HS:=hNewC0}
(Pf(hPreC0, hNewC0)

& Comp(hNewC0, l, NP)
& HContains(invMsg(r, this,

holdsResource, TRUE),HS)
-> \[stmts1 \] post)...)

KeY PO

Here, the completion statement l?(); is removed from the modality
block, now containing the remaining code (stmts1).

Note how the postcondition of the method previously assigned to label
l, i.e. lock(), is here added as assumption and translated as:

HContains(invMsg(r, this, holdsResource, TRUE),HS).
Again, the parameter this is automatically added as well as the history
and the caller is correctly resolved to the object r.

Similarly, we proceed on the following statements until we reach the
release point. Here we can apply the Release rule which splits the proof
into two additional branches: the first one where we have to show that our
class invariant is preserved and the second where we model the case where
the execution is resumed.

In the second one, it is interesting to notice how all the global references
we have are anonymized, i.e. updated to new, unknown values:

63

KeY PO

\forall CreolHistory hPreR1;
(hPreR1 = HS
-> \forall CreolHistory hNewR1;
\forall CreolIResource new_r1;
\forall CreolLabel new_l1;
\forall CreolBool new_busy1;
{busy:=new_busy1 || l:=new_l1 ||
r:=new_r1 || HS:=hNewR1}
(Pf(hPreR1, hNewR1)

& after(invMsg(this, r, unlock, NP),
invMsg(this, r, lock, NP), HS)

-> \[stmts2 \] post)...)

KeY PO

This is because the threads running when the processor was released,
could have modified the class attributes.

Following the same procedure, we can step by step remove all the state-
ments contained in the modality block and successively close all the open
goals.

This scenario has been completely tested and the code is available in the
key/examples/lang/creol/csl folder from the KeY source.

64

Chapter 10

Limitations and future work

To provide a reliable and complete environment for the verification of Creol
models with a more expressive specification language, many steps have to
be taken. This chapter contains a discussion on some aspects this work
is lacking and provides for some suggestions for future development and
improvement.

CSL and histories

So far, as we saw in chapter 5, CSL provides for a limited expressiveness
which in some situations can be restrictive for complete specifications of com-
plex models. Thus, an extension of the set of CSL predicates and functions
can largely contribute to an improvement of this work. The implemented
system allows for easy expansion of the syntax and easy integration with
KeY: introducing new predicates or functions would require just a minimal
modification of the grammar and a few additional lines of code.

Further, the verification process allows for the handling of a subset of
the CSL expressions. The main restrictions are the inability of using con-
catenation of messages as parameter for CSL predicates and functions (only
single messages are handled), and the limitation to the number of method
parameters to one in-parameter and one out-parameter. These weaknesses
are due to the adaptation to the previously implemented system. For in-
stance, as said before, the system doesn’t use any data structure for the
representation of the history which makes dealing with concatenation of
messages a difficult - sometimes impossible - task. The adoption of a data
structure for representing the history would probably lead to a much easier
definition of specifications dealing with object communication and thus to
a faster extension of CSL.

65

Program consistency

The specified grammar both for Creol and CSL allows for a superset of the
actually allowed syntax. Checks are performed when loading the program,
but probably not all aspects for a complete syntactical correctness are cov-
ered. This problem can be easily overcome by adding further checks on the
AST, for example by adding a walker and an FSM with a suitable layout.

Moreover, the parsing procedure doesn’t provide type checking, hence
errors of this type are only captured in a later stage when loading the code
in KeY. Again, it’s easy to add this feature to the parser by storing variables’
types in a hash map and recall them when needed.

Calculus

The calculus introduced in this work doesn’t cover all the possible statements
allowed in the Creol language. For instance, Creol supports parallel assign-
ments like ”a,b := b,a” which are not taken into account in this work.
Refinements have also to be made on the handling of non-deterministic com-
position of statements. As said before, Creol is still in a experimental phase
and several dialects exists. Thus, no final assertion can be made on the
completeness of the calculus with respect to Creol syntax. Anyhow all the
major aspects can be considered covered.

Data Types

Data structures as sets, strings, or tuples are not currently handled. This is
because only finite mathematical sets are supported by KeY, the handling
of strings is just a recent achievement, and tuples lead to inconsistencies as
they can hold different sorts for each entry.

Additionally, floating point representation is also an ongoing work and
therefore not addressed in this work.

Proof automation

The available proof strategy covers a limited spectrum of the reasoning
process needed to achieve complete automation. Additional characteris-
tic proofs of Creol programs must be undertaken and improvements on the
heuristics guiding the strategy must be made.

Readability of proofs

When a proof obligation is generated in KeY, it can be hardly readable.
Predicates and functions may have long names and it can be the case that
not all of the introduced ones during the verification process are used for the
closure of the proof. Pretty-printing can be implemented to improve read-
ability, some predicates can be expressed with infix notation: for instance

66

the symbol ⊆ could be used to express the presence of a message in a history.
Moreover, an analysis can be performed to hide non-relevant information so
to improve the user experience while carrying on the verification. For ex-
ample, in many cases, not all the parts of the frequently involved composed
invariant are used to close a proof, an automated process could thus hide
them to efficiently enhance readability.

67

68

Chapter 11

Conclusions

In this thesis significant aspects of software verification have been raised and
discussed. Distributed systems, which are the main target of this work, are
an essential domain of research which affects contemporary society from sev-
eral points of view. The growing demand for communication, cooperation,
and automation, brings distributed systems at the centre of our focus.

Reliability of such systems is thus a fundamental issue which leads to
the necessity of providing for instruments that guarantee the development of
error-free applications. A minimal failure in critical (possibly safety-related)
systems may result in inestimable loss.

The study of mathematics and logic has been undertaken for as far back
as written records exist, the knowledge on this fields is wider than it is in
any other domain. The employment of formal methods for the development
and verification of computer systems can be seen, from my point of view, as
the reduction of these tasks to the solution of problems concerning a field
we have complete knowledge about.

Functional models represent a powerful tool for highlighting the critical
aspects during the development of dependable systems. Further, the usage
of a formal specification language to express desired properties ensures for
an unambiguous description and for the possibility of a rigorous proof of
correctness.

Criticism has often been directed to the usage of formal methodologies.
The main discussions concern the difficulty of writing formal specifications
and the amount of resources needed for formal verification. Writing com-
plete specifications can, indeed, be a difficult task which may require deep
understanding of the specification language and of the underlying logic. On
the other hand, as learned from personal experience, sometimes formal lan-
guages make it much easier to express particular properties (possibly repre-
senting common patterns) which may be hard to express otherwise. More-
over, a formal verification procedure for relevant code snippets, even if pro-
vided with a minimal set of specifications, can easily show functional errors

69

which in many cases can be missed by the employment of test cases or other
methodologies not exploring all the possible program states.

The Creol language, as we saw in chapter 2, features many characteristics
which make it a promising choice for the modelling of concurrent distributed
systems. The calculus and denotational semantics elaborated in [3, 2] opened
wide perspectives for the verification of Creol models and set a solid basis
for this work. The KeY prover is among the state-of-the-art systems for the
verification of object-oriented programs. It is in constant development and
can lead to a powerful and user-friendly tool for the application of formal
methods.

This thesis represents a further step in the creation of a formal verifica-
tion environment for Creol models. The main contributions have been the
refinement and extension of the Creol logic and the design of a specifica-
tion language, CSL, which combines with the underlying logic emphasizing
significant aspects; for instance, the idea of projecting the communication
history on the relevant actors has been completed and integrated in the
newborn concepts of global invariant and co-invariant.

As a result CSL provides for a user-friendly syntax which abstracts from
logical details and allows, among other things, for the specification of com-
munication traces between concurrent objects and threads. Further, the au-
tomation of the verification procedure has been increased and the required
input from the user has been highly decreased.

Moreover an easily extendible platform has been built, which simplifies
the process of future development of the system.

Several aspects have still to be refined to consider this a complete work.
Further research has to be undertaken to prove the soundness and complete-
ness of the Creol calculus, CSL can be widely extended and improved, and
the limitations of the prototypical system have to be overcome. Anyhow, the
project shows great potential for applicability and research interest, most
importantly it contributes in showing the feasibility of the application of
formal methods in real scenarios.

70

Appendix A

CSL Grammar

// operation contract =====================

requires
: REQUIRES cmlExpr
;

ensures
: ENSURES cmlExpr
;

diverges
: DIVERGES (TRUE | FALSE)
;

assignable
: ASSIGNABLE (NOTHING | EVERYTHING

| IDENTIFIER (KOMMA IDENTIFIER)*)
;

// invariant ===============================

invariant
: INV cmlExpr
;

// CML expressions =========================

cmlExpr
: cmlImplicationExpr

(EQUIVALENCE cmlImplicationExpr)*

71

;

cmlImplicationExpr
: cmlOrExpr (IMPLICATION cmlOrExpr)*
;

cmlOrExpr
: cmlAndExpr (OR cmlAndExpr)*
;

cmlAndExpr
: cmlNotExpr (AND cmlNotExpr)*
;

cmlNotExpr
: (NOT)? cmlAtomicExpr
;

cmlAtomicExpr
: cmlCompExpr
| cmlPredicate
;

cmlCompExpr
: cmlAlgExpr ((EQUALITY

| INEQUALITY | comp_op) cmlAlgExpr)?
;

cmlAlgExpr
: cmlMultExpr ((PLUS | MINUS) cmlMultExpr)*
;

cmlMultExpr
: cmlPowerExpr ((MULT | DIV

| MOD) cmlPowerExpr)*
;

cmlPowerExpr
: cmlFactor (POW cmlFactor)?
;

cmlFactor
: MINUS? cmlAtom
;

72

cmlAtom
: IDENTIFIER
| INTEGER
| FLOAT
| NULL
| THIS
| CALLER
| TRUE
| FALSE
| cmlFunction
| LPAREN cmlParenExpr RPAREN
;

cmlParenExpr
: cmlQuantifiedExpr
| cmlNumericalQuantifiedExpr
| cmlExpr
;

cmlQuantifiedExpr
: cmlQuantifier var_decl_no_init_list

SEMICOLON cmlExpr (SEMICOLON cmlExpr)?
;

cmlQuantifier
: FORALL | EXISTS
;

cmlNumericalQuantifiedExpr
: cmlNumericalQuantifier var_decl_no_init_list

SEMICOLON cmlExpr SEMICOLON cmlAlgExpr
;

cmlNumericalQuantifier
: SUM | PRODUCT | MIN | MAX
;

cmlMsg
: (EXCLENATION_MARK | QUESTION_MARK) cmlMethod
;

cmlHist
: CML_EMPTY_HIST

73

| cmlMsg (CMLCONCAT cmlMsg)*
;

cmlMethod
: cmlObj DOT cmlMethodId cmlArgList
;

cmlObj
: THIS
| CALLER
| IDENTIFIER
;

cmlMethodId
: IDENTIFIER
;

cmlArgList
: LPAREN cmlExprList? RPAREN
;

cmlExprList
: cmlExpr (KOMMA cmlExpr)*
;

cmlFunction
: COUNT_FUNC LPAREN cmlHist RPAREN
;

cmlPredicate
: HEMPTY
| FIRSTCALL
| HCONTAINS LPAREN cmlHist RPAREN
| HENDSON LPAREN cmlHist RPAREN
| AFTER LPAREN cmlHist KOMMA cmlHist RPAREN
| BEFORE LPAREN cmlHist KOMMA cmlHist RPAREN
;

cmlOp
: HEMPTY
| FIRSTCALL
| HCONTAINS
| HENDSON
| COUNT_FUNC

74

| AFTER
| BEFORE
| FORALL
| EXISTS
;

// Predicates ===================

HEMPTY
: ’\\HEmpty’
;

FIRSTCALL
: ’\\firstCall’
;

HCONTAINS
: ’\\HContains’
;

HENDSON
: ’\\HEndsOn’
;

AFTER
: ’\\after’
;

BEFORE
: ’\\before’
;

// Functions ===================

COUNT_FUNC
: ’\\count’
;

// Other key-words =============

CML_EMPTY_HIST
: ’<>’
;

75

DIVERGES
: ’diverges’
;

ASSIGNABLE
: ’assignable’
;

NOTHING
: ’\\nothing’
;

EVERYTHING
: ’\\everything’
;

CMLCONCAT
: ’ˆ’
;

76

Bibliography

[1] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of
Object-Oriented Software. The KeY Approach. LNCS 4334. Springer-
Verlag, 2007.

[2] Wolfgang Ahrendt and Maximilian Dylla. A System for Compositional
Verification of Asynchronous Objects. Science of Computer Program-
ming. DOI: http://dx.doi.org/10.1016/j.scico.2010.08.
003. Elsevier, 2010.

[3] Maximilian Dylla. A Verification System for the Distributed Object-
Oriented Language Creol. Master Thesis, Chalmers University of Tech-
nology, Gothenburg, Sweden, June 2009.

[4] I. C. Yu, E. B. Johnsen, and O. Owe. Type-safe runtime class up-
grades in Creol. In R. Gorrieri and H. Wehrheim, editors, Proc. 8th
International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’06), volume 4037 of Lecture Notes in
Computer Science, pages 202-217. Springer-Verlag, June 2006.

[5] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Incremental rea-
soning for multiple inheritance. Technical Report 373, Department of
Informatics, University of Oslo, 2008.

[6] J. Dovland, E. B. Johnsen, and O. Owe. Reasoning about asynchronous
method calls and inheritance. In Chunming Rong, editor, Proc. of the
Norwegian Informatics Conference (NIK’04), pages 213-224. Tapir Aca-
demic Publisher, November 2004.

[7] I. D. Hill. Wouldn’t it be nice if we could write computer programs in
ordinary English - or would it? The Computer Bulletin, June 1972.

[8] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munication of the ACM, vol.12, 1969.

[9] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communication of the ACM, vol.18, 1975.

77

http://dx.doi.org/10.1016/j.scico.2010.08.003
http://dx.doi.org/10.1016/j.scico.2010.08.003

[10] E. W. Dijkstra. First-Order Logic and Automated Theorem Proving
(2nd ed.). Springer-Verlag New York, Inc., USA, 1996.

[11] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. The Pragmatic Bookshelf, May 2007.

[12] W. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers. Concurrency Verification: Introduction to Com-
positional and Noncompositional Methods. Number 54 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, November 2001.

[13] J. Hooman, W. de Roever, P. Pandya, Q. Xu, P. Zhou, and H. Schepers.
A Compositional Approach To Concurrency And Its Applications. un-
finished manuscript. Available online at http://www.informatik.
uni-kiel.de/inf/deRoever/books/, April 2003.

[14] Job Zwiers. Compositionality, Concurrency and Partial Correctness.
volume 321 of LNCS. Springer-Verlag, 1989.

[15] Colin J. Fidge. Timestamps in Message-Passing Systems That Preserve
the Partial Ordering. Australian Computer Science Communications,
10:55-66. 1988.

[16] B. Beckert and V. Klebanov. A dynamic logic for deductive verification
of concurrent programs. In M. Hinchey and T. Margaria, editors, Pro-
ceedings, 5th IEEE International Conference on Software Engineering
and Formal Methods (SEFM), London, UK. IEEE Press, 2007.

[17] C. Engel and R. Hähnle. Generating unit tests from formal proofs. In
Y. Gurevich and B. Meyer, editors, Proceedings, 1st International Con-
ference on Tests And Proofs (TAP), Zurich, Switzerland, volume 4454
of LNCS. Springer, 2007.

[18] Elmar Habermalz. Interactive theorem proving with schematic theory
specific rules. Technical Report 19/00, Fakultät für Informatik, Univer-
sität Karlsruhe, 2000.

[19] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. 1st Edition. Springer. September 2010)

78

http://www.informatik.uni-kiel.de/inf/deRoever/books/
http://www.informatik.uni-kiel.de/inf/deRoever/books/

	Introduction
	Project goals
	Thesis outline

	Overview of Creol
	General aspects
	Data types
	Statements

	The KeY prover
	Overview of KeY
	Dynamic Logic
	Deduction system

	Creol Denotational Semantics
	CSL: Creol Specification Language
	Specifications
	Operation contracts
	Invariants

	Overview of CSL
	CSL Syntax and Semantics
	CSL Histories
	CSL Predicates and Functions
	Operation Contracts in CSL
	Invariants in CSL

	Proof Obligations
	Semantics of Creol Dynamic Logic
	Proof obligation construction

	Creol Calculus
	Sequential Constructs
	Concurrent Constructs

	System Implementation
	Program parsing
	Integration with KeY
	Rules

	An example scenario
	The system
	The model
	Adding specifications
	Verification

	Limitations and future work
	Conclusions
	CSL Grammar

