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ABSTRACT

We propose and analyze eigenbeam transmission over line-
of-sight (LOS) multiple-input multiple-output (MIMO) chan-
nels with linear reception. In particular, we consider fixed
point-to-point microwave links for which the singular value
decomposition of the LOS MIMO channel matrix is analyt-
ically derived. We demonstrate that the Tx eigenbeams can
be defined without channel state information at the transmitter
and that the beams admit an insightful physical interpretation.
We also evaluate the performance of a lattice-reduction aided
linear receiver through numerical simulations.

I. INTRODUCTION

The widespread deployment of Third Generation Long Term
Evolution (LTE) networks based on MIMO-OFDM technology
will increase the demand for high-reliability high-rate fixed
microwave links for implementing the backhaul links. In fact,
the sum-rate of an LTE base station is anticipated to exceed
1Gbit/s, which makes MIMO technology a strong candidate
to realize such high data rates. In typical microwaves links,
the presence of a strong LOS component is highly likely
and hence the fading statistics can be efficiently modeled
via the Ricean distribution with a rather high K-factor. On
this basis, the area of Ricean fading MIMO channels has
recently attracted considerable research interest (see [1]–[3]
and references therein among others).

Tulino et al. have found the optimum input covariance ma-
trix assuming statistical channel state information at the trans-
mitter (CSIT), i.e. statistical waterfilling, [4] for both Rayleigh
and Ricean channels. Riegler and Taricco have evaluated
the ergodic capacity of the asymptotic separately-correlated
Ricean fading MIMO channel with interference [5], [6]. Nabar
et al. have defined a critical data rate for Ricean MIMO fading
channels [7] below which the MIMO channel behaves like an
additive white Gaussian noise (AWGN) channel. Bøhagen et
al. have analytically evaluated the ergodic capacity of dual-
branch Ricean MIMO systems, where the minimum number
of antennas is equal to two [1]. The statistics of the signal to
noise ratio (SNR) of each eigenmode for spatial multiplexing
MIMO systems can be found in [2]. This is accomplished by
deriving analytical expressions for the marginal eigenvalues
of the instantaneous correlation matrix. A similar analysis
for the case of optimized LOS MIMO configurations was

recently performed by Matthaiou et al. in [3], using tools
from random matrix theory. These optimized configurations,
originally proposed in [8], [9], are of high practical importance
since they lead to subchannel orthogonality which is a key
condition for capacity maximization. The key idea is to place
the antenna elements sufficiently far apart so that the spatial
LoS responses become unique with a phase difference of
π/2. The main disadvantage of these topologies though is
that the optimum spacing can sometimes be infeasible due to
space limitations (e.g. mobile handsets). Hence, an alternative
solution for achieving subchannel orthogonality with practical
inter-element spacings is highly desirable.

In this paper, we elaborate on the performance of fixed
point-to-point microwave links with a strong LOS compo-
nent by considering the case of eigenbeam transmission over
MIMO eigenmodes. In particular, the main paper contributions
can be summarized as follows:

• We first consider symmetric 2 × 2 MIMO systems, for
which the eigedecomposition and singular value decom-
position (SVD) of the channel matrix are derived in a
tractable closed-form, which offers very useful insights
into the eigenbeam design.

• Our analysis is then extended to 4 × 4 MIMO systems
which reveals an interesting Kronecker relationship with
the 2 × 2 case. This dependency holds not only for the
SVDs but also for the actual channel matrices.

• The performance of the considered systems is evaluated
using three different receivers. Our numerical results indi-
cate that a significant performance gain can be achieved
by implementing a lattice-reduction aided Zero-forcing
(ZF) scheme. Further, these gains are achievable even
for ill-conditioned channel matrices which correspond
to practical values of inter-element spacing (i.e. much
smaller than the optimum spacings proposed in [8], [9]).

The remainder of the paper is structured as follows: In
Section II the channel model used throughout the paper is
presented. In Section III, we present the eigenbeam design for
2× 2 systems while Section IV is devoted to 4× 4 systems.
The concept of eigenbeam transmission using lattice-reduction
ZF is discussed in Section V. A performance evaluation is
given in Section VI while the key conclusions of the paper
are summarized in Section VII.



Notation: We use upper and lower case boldface to denote
matrices and vectors, respectively. The (m,n)-th entry of an
M × N matrix X is Xmn with 1 ≤ m ≤ M and 1 ≤ n ≤
N . The symbols (•)T , ⊗ represent the matrix transpose and
Kronecker product, respectively.

II. LOS MIMO CHANNEL MODEL

The considered channel model includes a LOS component,
a frequency-selective ground reflection, and very limited
multipath otherwise [10]–[13]. The fading statistics of such
channels typically follow the Ricean distribution where the
Ricean K-factor depends on the rain intensity [10], [14]. The
channel matrix, H(t) is modeled according to [13]

H(t) =

√
K

K + 1
H0+

√
1

K + 1
Hrain+"e

−jωτHGR(t) (1)

where H0 is the deterministic LOS component while HGR is
the ground reflection matrix. The ground reflection coefficient
" and ground reflection delay τ are fixed and constant for
all sub-channels. More specifically, we assume that HGR(t)
is a zero mean circularly complex Gaussian random matrix
whose elements have covariances defined by the Kronecker
MIMO channel model. We simplify this model by neglecting
the delay of the ground reflection. In other words, we adopt
(1) with τ = 0 and

HGR(t) = R1/2W (t)T 1/2 . (2)

The Hermitian positive definite matrices R and T characterize
the spatial receive and transmit covariance, respectively. The
random matrix W (t) has i.i.d. zero mean circularly complex
Gaussian random elements (Rayleigh fading). The matrices R
and T are calculated from the power distribution of the ground
reflection versus elevation angle ϑ by assuming uncorrelated
scattering [15, Eqs. (23) and (24)]. A detailed derivation is
provided in the Appendix.

III. 2× 2 FREQUENCY-FLAT LOS-MIMO MODEL

We assume a highly symmetric 2× 2 antenna geometry as
depicted in Fig. 1 which represents a typical backhaul link.
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Fig. 1. Highly symmetric 2× 2 LOS MIMO geometry. Typical parameters
are D = 5 km, 1m < d < 5m, f = 32GHz [12, Fig. 3.3, po. 28].

In this case, the distances between all pairs of transmit
and receive antenna elements can be worked out via simple

geometrical tools as follows

d11 = d22 = D (3)

d12 = d21 =
√

D2 + d2 ≈ D +
d2

2D
. (4)

The input-output relationship in free-space can be expressed
according to

(
r1
r2

)
=

(
e−jkd11 e−jkd12

e−jkd21 e−jkd22

)(
s1
s2

)
+

(
n1

n2

)
.

where sk, rk, k = {1, 2} correspond to the transmitted and
received symbols, respectively while nk, k = {1, 2} denotes
the AWGN term. This results in the following idealized LOS
channel matrix

H0 = e−jkD

(
1 a
a 1

)
(5)

where k = 2π
λ is the wavenumber corresponding to the carrier

wavelength λ, while

a = e−jkD(
√

1+(d/D)2−1) ≈ e−j kd2

2D .

Note that H0 is a square complex matrix which commutes
with its conjugate transpose. This ensures that H0 is convert-
ible to diagonal form by a unitary transform. The eigendecom-
position of H0 reads

Λ0 = e−jkD

(
1 + a 0
0 1− a

)
(6)

V 0 =
1√
2

(
1 −1
1 1

)
= (v+

0 v−
0 ) (7)

and H0 = V 0Λ0V
T
0 . We note that the modal matrix V 0 is

real-valued and orthogonal. In fact,
√
2V 0 is the Hadamard

matrix of order 2. Most importantly, the modal matrix V 0

does not depend on model parameters.
The SVD of H0 = U0S0V

H
0 is closely related to the

eigendecomposition. More specifically, using (6) and (7), we
can get

U0 =
(
ζ+0 v+

0 ζ−0 v−
0

)
(8)

S0 =

(
|1 + a| 0

0 |1− a|

)
(9)

with the phase rotations ζ+0 , ζ−0 being given in closed-form
according to

ζ+0 =
1 + a

|1 + a|e
−jkD (10)

ζ−0 =
1− a

|1− a|e
−jkD. (11)

The chosen association of the phase rotations with the U 0

matrix is not at all mandatory. We exploit the non-uniqueness
of the SVD and move the phase rotations from the left
factor U0 to the right factor V H

0 . With this definition of the
SVD, we can use the transmit eigenbeams without requiring
channel state information at the transmitter (CSIT). Practically,
the model (5) is valid only approximately due to multipath
propagation effects (bottom bounce, etc.).
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Fig. 2. Highly symmetric 4× 4 geometry using square arrays on both sides
of the MIMO link.

IV. 4× 4 FREQUENCY-FLAT LOS-MIMO MODEL

Let us now extend the analysis of Section III to the case of
4 × 4 configurations. For this reason, we consider the highly
symmetric 4 × 4 square array topology shown in Fig. 2. In
this scenario, we assume that both ends of the MIMO link
are equipped with 4-element square arrays, [16, Fig. 1] and
[17, Fig. 4]. This results in the idealized LOS matrix model

H0 := H(4)
0 = e−jkD





1 a a b
a 1 b a
a b 1 a
b a a 1



 (12)

where

a = e−jkD(
√

1+(d/D)2−1) ≈ e−j kd2

2D (13)

b = e−jkD(
√

1+2(d/D)2−1) ≈ e−jkd2/D = a2. (14)

A. Eigen Decomposition

After some tedious manipulations, it turns out that the eigen-
value 1− b has a multiplicity equal to two and consequently
the eigendecomposition of H (4)

0 can be written as

Λ(4)
0 = e−jkD





1+2a+b 0 0 0
0 1−b 0 0
0 0 1−b 0
0 0 0 1−2a+b



 (15)

V (4)
0 = V 0 ⊗ V 0. (16)

We see that 2V (4)
0 is the Hadamard matrix of order 4. Thus,

the eigenvectors of the 4 × 4 MIMO channel matrix can be
computed from those of the 2×2 case by a Kronecker product.
This relation is exact.

1) Kronecker product interpretation: The exact Kronecker
product connection (16) between the two sets of eigenvectors
can be extended to the channel matrices itself and the
associated eigenvalues in an approximate sense as follows.
If we accept the Taylor series approximation for the phase
angles then b ≈ a2 in (14) and H0 as defined in (12) can
also be interpreted as a Kronecker product

H(4)
0 ≈ e−jkD

(
1 a
a 1

)
⊗
(

1 a
a 1

)
. (17)

Similarly, (15) can be read as the Kronecker product

Λ(4)
0 ≈ e−jkD

(
1 + a 0
0 1− a

)
⊗
(

1 + a 0
0 1− a

)
. (18)

B. Singular Value Decomposition

The SVD of H(4)
0 = U (4)

0 S(4)
0 V (4)H

0 is essentially identical
to the eigendecomposition, given in (15) and (16). In addition,
we can exploit the Kronecker product,

U (4)
0 = U0 ⊗U0 (19)

S(4)
0 = diag( |1 + 2a+ b|, |1− b|, |1− b|, |1− 2a+ b| )

V (4)
0 = V 0 ⊗ V 0.

V. EIGENBEAM TRANSMISSION WITH
LATTICE-REDUCTION AIDED ZERO FORCING

We closely follow the proposed scheme in [18, Sec. IV.B].
In particular, let the MIMO transceiver be modeled as

y(t) = H(t)s(t) + n(t) , (20)

where y(t) is the complex-valued received data vector, s is
the transmitted vector symbol, and n(t) is additive white
Gaussian noise. We use the Lenstra-Lenstra-Lovász (LLL)
algorithm to calculate the unimodular matrix Π(t) such that

y(t) = H̃(t)z(t) + n(t) , (21)

where H̃(t) = H(t)Π(t) and z(t) = Π−1(t)s(t). We set
the LLL algorithm parameter δ = 3

4 , cf. [18]. The matrix
H̃(t) has a lower condition number than H(t) with a higher
probability. We therefore implement a zero forcing equalizer
for the transformed model (21) and carry out the slicing
on z(t) instead of s(t). The resulting receiver is non-linear
because the slicing is carried out in the transformed domain.

VI. BIT ERROR RATIO SIMULATION

Simulations have been carried out to evaluate bit error
ratios (BER) for 2 × 2 and 4 × 4 MIMO systems at the
carrier frequency of f = 32GHz in dry weather conditions
(K → ∞). The distance between transmitter and receiver
is set equal to D = 5 km. The simulation is carried out for
uncoded 16-QAM symbols on both Tx antenna elements with
Gray mapping. The simulated MIMO channel realizations are
drawn randomly according to (1) for d = 2.4198m, " = 0.1,
and the elements of W are independent random variables and
identically distributed. These settings result in a ≈ e−jπ/8.
Please note that, following the methodology of [8], [9], se-
lecting d = 4.8395m would result in a ≈ e−jπ/2 = −j and
H0 would become unitary. This implies that the following
simulations are carried out with an inter-element spacing that
is approximately equal to half the optimal spacing.

Figure 3 shows the obtained BER for the 2 × 2 MIMO
connection for three types of MIMO transceivers. The BER
result for zero forcing based on (20) is labeled “perfect Rx
ZF”. The BER result for zero forcing based on (21) is labeled
“LLL-aided perfect Rx ZF”. We also show the BER result of



the exact maximum likelihood receiver which carries out an
exhaustive search over the whole Tx symbol vector alphabet.
(labeled “perfect Spatial Muxing ML”).
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Fig. 3. 2×2 LOS MIMO, 16-QAM, Gray mapping, a = e−jπ/8 (D = 5 km,
d = 2.4198m, 32 GHz) and ! = 0.1, elements of HGR are i.i.d.

We observe that the BER of all three types of receivers
is very similar in behavior. The LLL-aided zero forcing
scheme outperforms standard zero forcing and achieves close
to maximum-likelihood performance.

Next, Fig. 4 shows the obtained BER for the 4× 4 MIMO
connection for the same three types of MIMO transceivers.
The BER result for zero forcing based on (20) is labeled
“perfect Rx ZF”. The BER result for zero forcing based on
(21) is labeled “LLL-aided perfect Rx ZF”. We also show the
BER result of the exact maximum likelihood receiver which
carries out an exhaustive search over the whole Tx symbol
vector alphabet. (labeled “perfect Spatial Muxing ML”).

When comparing Figs. 3 and 4, we note that the BER of
these three types of receivers differs more in the latter (4 ×
4) than in the former (2 × 2). We note that the LLL-aided
zero forcing scheme achieves close to maximum-likelihood
performance although the random 4×4 MIMO channel matrix
is far from unitary.

Finally, we investigate the gain for the 4 × 4 setting with
a spatially correlated ground reflection. We simulate HGR

according to (2). We assume " = 0.1 as before, R = T and
the elements of R are defined by (24) for β = 20◦, ϑ0 = 0◦.
The results are shown in Fig. 5.

VII. CONCLUSIONS

The Tx eigenbeamforming vectors for fixed 2 × 2 LOS
MIMO links can be defined without CSIT. The eigenbeam-
forming vectors are defined by the Hadamard matrix which
effectively forms sum and difference beams. Further, we have
shown how these results carry over to a 4 × 4 LOS MIMO
configuration by exploiting an underlying Kronecker structure.
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Fig. 4. 4×4 LOS MIMO, 16-QAM, Gray mapping, a = e−jπ/8 (D = 5 km,
d = 2.4198m, 32 GHz) and ! = 0.1, elements of HGR are i.i.d.
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Fig. 5. 4 × 4 LOS MIMO with spatially correlated ground reflection, 16-
QAM, Gray mapping, a = e−jπ/8 (D = 5 km, d = 2.4198m, 32 GHz) and
! = 0.1, HGR according to (2) and (24) with β = 20◦ and ϑ0 = 0◦.

We show that a convenient low-complexity transceiver can
use eigenbeamforming at the transmitter while the baseband
receiver signal processing implements lattice-reduction aided
linear reception. By doing so, a near optimum performance can
be achieved even for ill-conditioned LOS channel matrices.
We investigated the corresponding transceivers by numerical
simulations and conclude that the LLL-aided zero forcing
scheme achieves close to maximum-likelihood performance.
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APPENDIX

This derivation closely follows [15, Appendix]. It is as-
sumed that the ground reflection geometry is planar, i.e., the
spread in azimuth shall be negligible compared to the spread
in elevation ϑ. Further, the antenna array is assumed to be a
vertical linear array. In this case, the (n,m)-th element of the
ground reflection covariance matrix R in (2) is given by [19]

Rnm =

∫ 2π

0
w(ϑ) exp

[
j
ω

c0
dnm cos(ϑ− ξnm)

]
dϑ , (22)

where dnm is the distance between the antenna array elements
n and m. Further, ξnm defines the orientation of the line which
joins them. If the n-th array element is mounted higher above
the ground than the mth array element then ξnm = 0 else
ξnm = π.

The weighting function w(ϑ) describes the power distribu-
tion in elevation. Thus, w(ϑ) ≥ 0 for all 0 ≤ ϑ < π and w(ϑ)
can be assumed to be periodic with period 2π. Now, let w(ϑ)
be expandable in a Fourier series

w(ϑ) =
∞∑

%=−∞
w%e

−j%ϑ, with w% =
1

2π

∫ π

−π
w(ϑ)ej%ϑ dϑ.

The Fourier series is inserted into (22) resulting in

Rnm =
∞∑

%=−∞
w%

π∫

−π

exp

(
j
ω

c0
dnm cos(ϑ− ξnm)− j+ϑ

)
dϑ.

The remaining integral is recognized as 2π exp(jξnm) =
±2π-times the Bessel function J%(·) of the first kind and order
+, yielding

Rnm = 2π
∞∑

%=−∞
w% e

j%ξnm J%

(
ω

c0
dnm

)
. (23)

An idealized ground reflection with elevation spread 2β is
e.g. described by the rectangular power weighting function
w(ϑ) = 0 for |ϑ − ϑ0| > β and w(ϑ) = 1 for |ϑ − ϑ0| < β.
In this case, the Fourier coefficients become

w% =

{ β
π , for + = 0
sin(β%)

π% , else .
(24)
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