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Jonas Svensson
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Division of Applied Acoustics, Vibroacoustic Group
Chalmers University of Technology

Abstract

Weight reduction is a key factor in lowering the fuel consumption and thereby the
greenhouse emissions from vehicles. However, reducing theweight normally re-
sults in a deterioration of the acoustic performance. Thus,the purpose of this thesis
is to investigate damping treatments for lightweight vehicle panels. Combining ac-
tive control and passive damping in hybrid control treatments have shown promis-
ing. Compared to pure active control, hybrid treatments canhave advantages such
as reduced control effort or improved fail-safe characteristics. The thesis is dived
into two parts, investigating two different concepts for hybrid damping. In the first
part of the thesis, a concept of active junction control is developed. Active in-
puts are used at structural junctions in order to confine vibrational energy to highly
dissipative parts of the structure. Theoretical models of beam junctions including
active forces and moments are employed to conduct parameterstudies. Results
show that such an approach can offer advantageous compared to pure active con-
trol, e.g. by reducing the control effort. However, it is very sensitive to variations
in the properties of the structure. In the second part of thisthesis, piezoelectric
elements are used for controlling vibrations and/or sound radiation. The piezo-
electric element is either shunted by a passive electrical network or by a voltage
source in series with a passive electrical network. Analytical models of plates and
beams with surface-bonded piezoelectric elements are developed, and experimen-
tally verified. Parameter studies are conducted in order to find the shunt which is
optimal under different conditions and control criteria. Results show that for lightly
damped structures, passive shunt damping may offer efficient reduction of both the
kinetic energy and radiated sound power over a wide frequency range. A properly
designed shunt network may also improve the characteristics of an actively driven
piezoelectric element, e.g. by reducing the control effort.

Keywords: Active junction control, Hybrid passive-active control,Piezoelectric
shunt damping, Sound radiation.
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Chapter 1

Introduction

A key factor in reducing fuel consumption and thereby greenhouse gas emissions
from vehicles is weight reduction. However, reducing the weight may severely
deteriorate the vehicle quality with respect to sound and vibration. Further, as leg-
islators are constantly increasing the demands on noise emissions the vehicle man-
ufacturers do not only have to maintain current sound and vibration performance of
the vehicle with reduced weight, but must actually improve it. Moreover, satisfying
sound and vibration properties can be an important selling point for the manufac-
turers. Since traditional noise and vibration control measures such as heavy walls,
damping layers and double walls significantly contribute tothe total weight of the
vehicle, other treatments, such as active and hybrid, have to be tested and devel-
oped.

1.1 Background

The transportation sector is a major contributor to the emission of particles and
greenhouse gases such asCO2 [1, 2] 1. Therefore, one of the most important tasks
of vehicle manufacturers today is to reduce these emissions. Two straightforward
ways to do so are to downsize the engine and to reduce the weight of the vehi-
cle. Reducing the weight means that e.g. various vehicle parts will be constructed
in lightweight materials. At the same time as the weight is reduced, the vehicle
performance cannot be deteriorated. While reducing the mass is important for low-
ering the fuel consumption, a high structural stiffness is vital for the load-carrying
capacity as well as for crash safety reasons. Reducing the weight, while keeping
the structural stiffness constant, normally results in lowered attenuation of air- and
structure-borne sound. This implies a decrease of passenger comfort due to in-
creased interior sound and vibration level, and an increaseof the overall exterior

1These citations refer to reports concerning emissions in the United States and Sweden respec-
tively.

1



2 1. Introduction

noise emissions from the vehicle. The latter have a negativeimpact on human ac-
tivities, especially in urban areas as the engine and powertrain are dominant noise
sources when accelerating at low speeds. At higher speeds, the tyre/road noise is
dominant and reducing the sound radiated by the engine has a negligible effect on
the overall noise emissions [3].

The transportation sector is also a major contributor to theoverall noise levels in
urban areas [4]. Long-term exposure to noise can be the causeof several adverse
effects such as sleep disturbance [5, 6], reduced performance of cognitive tasks [4]
and cardiovascular effects [4, 7]. This will most likely cause legislators to further
increase the demands on noise emissions from vehicles in thefuture. Therefore,
reducing the exterior noise from vehicles is an important task of the manufacturers.

In addition, a pleasant interior vehicle environment with respect to sound and vi-
bration can be an important selling point in today’s competitive market. A sur-
vey among 1000 people in Italy, presented in "Quattorroute"magazine, reveals
the importance to the customer of a satisfying interior noise level. When asked,
"What would you be willing to give up to have a cheaper car?" only a mere 3.45
% answered a "well-insulated interior". Furthermore, interior noise levels may be
important for safety reasons. Studies have shown that exposure to noise in combi-
nation with other stimuli may decrease the driver performance when operating cars
[8].

To summarize briefly, there are several reasons why it is vital to direct attention
towards reducing and/or controlling the vibration and sound radiation of vehicles.
Conventional methods to reduce the interior and exterior sound and vibration lev-
els in vehicles include adding damping materials, heavy walls or double walls, or
stiffening the structure. However, although these methodsmay offer some sound
and vibration attenuation, they also have severe disadvantages. Damping materi-
als are normally only sufficiently efficient at high frequencies because of the large
wavelengths of low-frequency vibrations. Heavy walls are by definition disadvan-
tageous if one prerequisite is to make the vehicle light-weight. Adding stiffness
may result in an increase of radiated sound due to a shift in the critical frequency.

Due to these disadvantages extensive research has been devoted to active and hy-
brid active-passive sound and vibration control. Active control means introducing
a secondary input to reduce or alter the effect from a disturbance. E.g. by the
use of an actuator, control vibrations may be introduced in astructure to inter-
act with the original disturbance, thereby reducing the total vibration field. The
control vibration is usually obtained by passing a sensor signal through a digital
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filter implemented on a digital signal processor (DSP). Due to reasons such as time
delay of the DSP unit, active control is normally most efficient in the lower fre-
quency region. Active control therefore offers a satisfying complement to passive
damping materials, which are most efficient at high frequencies. Hence by using
hybrid treatments, consisting of both active and passive control measures, sound
and vibration reduction over a broad frequency range can be achieved. Active and
hybrid sound and vibration control has proven to be promising, although practical
implementation of such control systems require careful design and may in certain
situations be difficult.

1.2 Goals

Based on the possible benefit of combining active and passivesound and vibration
control, the overall research question which the work behind this thesis is aimed at
investigating can be summarized as follows:

How can active and passive methods be combined in order
to form efficient hybrid systems for the control of vibration
and sound radiation from lightweight structures?

The scope of this thesis is thus to investigate and compare different concepts of
passive, active and hybrid vibration and sound radiation control. The thesis can
be divided into two main parts: the first concerns the controlof bending waves
propagating in beam-like structures; the second concerns piezoelectric transducers
mounted to plate-like structures. The stated research question is treated in four
topics:

• actively controlling bending waves in structures to cancelthe reflection or
transmission at structural junctions;

• using the concepts of cancelling bending wave reflection in order to confine
wave power to parts of a structure which are treated by passive damping;

• piezoelectric shunt damping in order to reduce the vibration and/or radiated
sound power levels from structures;

• hybrid piezoelectric sound and vibration control where thepiezoelectric el-
ement is not only shunted by a passive electric impedance, but where the
possibility of actively controlling the element is also included.



4 1. Introduction

The focus has primarily been on developing conceptual models in order to gain
insight into the mechanism and fundamental principles of the damping treatments.
Therefore analytical models of beam- and plate-like structures have exclusively
been used throughout this thesis. The scope of the thesis hasnot been to develop
an active or hybrid vibration control treatment ready for implementation in a ve-
hicle. This being said, though, some fundamental concepts of piezoelectric shunt
damping have also been tested experimentally, both on a simple beam structure and
on an actual vehicle structure.

1.3 Outline

Here follows a short summary of the chapters and scientific papers included in this
thesis:

Chapter 2provides the fundamental ideas of active control of bendingwaves at
structural junctions. Some previous literature is presented as well as the mathemat-
ical model used for the investigations in this thesis. Two approaches are presented:
the first is a model of a junction of two semi-infinite beams, while the second is
based on an impedance approach to handle more general junctions. Some key re-
sults fromPaperI andPaperII are presented.

In Chapter 3the concepts developed inChapter 2are applied to hybrid active-
passive vibration control. Bending wave cancellation is used in order to confine
all vibrational energy in a structure to parts with high passive damping. Selected
results fromPaperII andPaperIII are presented.

Chapter 4presents some concepts of piezoelectric shunt damping. A plate model
is used to theoretically investigate piezoelectric shunt damping. The model is used
to conduct a parameter study on the efficiency of shunt damping on both structural
response and sound radiation. Some key results fromPaper IV are presented. A
beam model, based on the same modelling approach as the platemodel, is also
presented. The beam model is used in order to verify the modelling approach and
is compared against measurements.

Chapter 5expands the concept presented inChapter 4by also allowing the piezo-
electric element to be used as an actuator. The combined effect of a passive shunt
network and active driving of the piezoelectric element is investigated. The most
important findings fromPaperV are summarized inChapter 5.
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Chapter 6presents an implementation of some fundamental shunt damping con-
cepts on a vehicle structure. The selected structure is an oil pan. The oil pan
has been recognized as a major contributor to the powertrainnoise emissions. An
approximate model of the resonance peaks of the top plate of the oil pan is con-
structed, and the potential of shunt damping is estimated. The shunt damping treat-
ment is also experimentally investigated.

Chapter 7summarizes the results presented in the main body of the thesis and the
appended papers. The key findings are highlighted and some prospects for future
research are presented.

Appendix Acontains mathematical derivations which are not included in the main
body or in any of the appended papers.

Appendix Bprovides some simple examples of applying the impedance approach
developed inPaperII on deriving the scattering matrices of some typical structural
junctions as well as influencing these scattering matrices by the means of active
control.
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Chapter 2
Active junction control

Active vibration control can be based on various approaches, e.g. wave-based or
modal-based. Wave-based control strategies are based on decomposing the vibra-
tion field into travelling wave components. Controlling certain waves enables ac-
tive junctions, e.g. cancelling reflection or transmissionof waves past a certain
point. This chapter presents some fundamental concepts of active vibration control
and some theoretical results based on coupled beams manipulated by active forces
or moments.

2.1 Active vibration control

Using secondary, active inputs to control unwanted vibrations in structures is the
fundamental idea behind active vibration control. The technique of using a sec-
ondary input to interact with a primary disturbance to reduce the total field was
proposed for sound propagation as early as 1936 by Lueg [9]. Twenty years later
Olson [10] studied control of sound and vibration. He discussed isolating a ma-
chine from its foundation by using active control, assumingthe machine to be a
lumped parameter system. This study is very enthusiastic about the possibilities
of active vibration control. Rockwell and Lawther [11] expanded the approach
of active vibration control to a distributed parameter structure. They presented a
feedback control approach to augment structural damping ona beam. Several text-
books and review articles have been written on the topic of active vibration control.
Books such as references [12] and [13] and review articles such as reference [14]
give exhaustive overviews of the principles, applications, possibilities and prob-
lems of active vibration control.

Active vibration control has found various applications, such as space structures
[15], automotive parts [16], power tools [17] and microscopes [18]. An exhaustive
review of using of active sound and vibration control for engineering application,is
given bin reference [19].

7



8 2. Active junction control

2.2 Travelling wave approaches

The vibration field on a structure can be composed of several different wave types
such as extensional waves, bending waves and torsional waves. An active vibration
control system based on a wave approach can be used to controlor cancel spe-
cific waves in a structure. This requires measurement of those waves and since the
waves cannot be measured directly they have to be estimated from other measure-
ments. This can e.g. be done by measuring the response at several positions on the
structure.

Several investigations have treated cancellation of bending waves propagating in
beam-like structures by means of active control. Scheuren [20] presented an ex-
perimental investigation of an active reflector. Acceleration measurements at two
positions allowed the bending wave amplitude and phase to beestimated. This in-
formation was used to drive a control force in order to reflecta bending wave at
a certain point. The experimental results revealed that thecontrol force rejected
almost all (99.97 %) of the incoming wave power.

Figure 2.1 shows an example of estimating the wave amplitudebased on the mea-
surements from two closely spaced accelerometers using theapproach of Scheuren.
The measurements are done on a 0.4 m long free-free aluminiumbeam. The beam
is excited in one end and two accelerometers spaced by 0.05 m are used to estimate
the bending wave in each direction. The figure shows that the measured bending
wave amplitude matches the theoretical value quite well above 500 Hz. Under 500
Hz the measurements severely underestimate the wave amplitude. This is partly
due to the near-field influencing the measurements at low frequencies. Thus in or-
der to get a better estimate for low frequencies the accelerometers have to be further
from the beam boundaries, or more accelerometers are needed.

Halkyard and Mace also presented a study of bending wave cancellation based on
multipoint acceleration measurements. A two-point [21] and a three-point wave es-
timation sensor [22] were developed; the latter sensor could also cope with bending
near-fields being present at the measurement point. Although usually multipoint
measurements are required, under certain conditions - suchas wave propagation in
only one direction - it might be sufficient to uses a single sensor [23, 24].

The purpose of the control system can be to cancel the reflection of waves at
structural junctions. By cancelling the reflected wave the generation of vibrational
modes can be hindered, thus significantly reducing the vibration field on the struc-
ture. Tanaka and Kikushima [25] presented a study of cancelling the reflection
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Figure 2.1: The measured and theoretical wave amplitude for positive wave.−: measure-
ment;·····: theory.

or transmission at a certain point on a beam, and thereby inactivating vibrational
modes. Tanaka and Iwamoto[26] presented an approach they referred to as active
boundary control, which had the purpose of creating desiredboundary conditions
at any point on a beam. The approach was used to create vibration-free regions on
the beam. Iwamoto et.al [27] developed a feedforward schemeto create vibration-
free regions on a plate.

In some situations it may be necessary to control not only a single bending wave
but also the near-fields. Mckinnel [28] reported that for low-frequency vibrations,
cancelling only the propagating wave may leave a significantresidual vibration
field caused by the near-fields. Von Flotow and Schafer [29] described a theoreti-
cal approach of how to create a matched (anechoic) termination with a matrix that
relates deflection and rotation to force and moment, thus considering both waves
and near-fields. They report that the matrix which will realize a matched termi-
nation is the driving point mobility of a semi-infinite beam.However, they also
acknowledged the problem of implementing such a controllerdue to the difficulty
of rotation measurements and moment actuation. Mace [30] also discussed collo-
cated sensing of deflection and rotation together with collocated actuation by force
and moment. Another way of controlling all wave types in a structure is to con-
trol the power flow. Audrain et al. [31] presented a study withthe aim of actively
controlling the structural intensity. Five accelerometers served as the basis for a
finite-difference scheme to estimate the structural intensity. This controller proved
effective in minimising the energy transmission past a certain control point.
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Cancelling the reflection or transmission of waves does not necessarily mean a re-
duction of the vibratory power in the structure. In fact, this may in some cases
actually be increased by the actuator injecting power into the structure. Controllers
may instead be based on maximizing the absorbed power. Guicking et al. [32]
showed that, in theory, a point force on an infinite beam couldat the most absorb
half the power carried by a single incident bending wave, while a quarter of the
power would be reflected and a quarter transmitted. However,at a free end all in-
cident wave power could be absorbed. The latter was also found experimentally by
Scheuren [33].

Redman [34] presented an experimental study where a pair of control forces were
driven in order to maximize their combined power absorption. Together the forces
absorbed almost all the incident power, leaving a residual power which was 36
dB lower than the incident power. An exhaustive theoreticalstudy by Brennan et
al. [35] presented several different wave-based control strategies. An important
result from this study is that, from a global point of view, itis advantageous to
minimize the total power input from both primary and secondary inputs rather than
maximising the power absorbed by only the secondary input. Thus, if the total
vibrational power of a structure is to be minimized, a controller which has the ob-
jective to alter the impedance at the primary force input canperform better than a
controller which is designed to absorb vibrational power. Other studies concerning
active control at structural junctions, either to influencethe scattering properties of
the junction or to absorb incoming wave power, include [36, 37, 38, 39].

As mentioned before, the vibration field may be composed of other wave types than
bending waves, such as extensional and torsional waves. Thus, the control system
may need to consider multiple wave types in order to achieve asignificant vibration
reduction. Simultaneous control of both extensional and flexural waves was treated
in [40, 41]. Gardonio and Elliot [42] investigated active control of flexural and
extensional waves on a beam with a termination that coupled the two wave types.

2.3 Deriving an active junction

2.3.1 Wave formulation

The theoretical investigations presented in this chapter are based on a travelling
wave solution to the Euler-Bernoulli bending wave equation. The Euler-Bernoulli
bending wave equation describes the bending motion on a beamstructure, neglect-
ing rotational inertia and shear deformation. Euler-Bernoulli theory describes the
low-frequency motion of a beam relatively well. Figure 2.2 shows a measured and
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Figure 2.2: The transfer mobility of a 0.4 m long free-free aluminium beam. The beam is
excited at one end and the velocity is measured at the midpoint. −: measure-
ment;·····: theory.

a calculated transfer mobility of a 0.4 m long, free-free aluminium beam. The beam
is excited at one end and the acceleration is measured at the midpoint, i.e. 0.2 m
from each end. The velocity is obtained by dividing the measured acceleration by
jω.

When considering a wave approach to the Euler-Bernoulli wave equation, the vibra-
tion field is composed of four wave components: two travelling wave components
and two evanescent wave components also referred to as near-fields. Consider a
wave and a near-field propagating towards a beam junction; see figure 2.3. The
junction is in this case a connection between two beams whereone is semi-infinite,
and with a characteristic impedance which differs from the first beam. The differ-
ence in impedance between the beams could be due to differences in the geometry
and/or the material properties. As the two wave components reach the junction,
they will be transmitted and reflected according to

b+ = ta+, a− = ra+. (2.1)

where

a+ =

{

a+
p

a+
N

}

, a− =

{

a−
p

a−
N

}

,b+ =

{

b+
p

b+
N

}

,

where the elements in the vectors represent wave amplitudesand are illustrated in
Figure 2.3. The matricest andr are referred to as the transmission and reflection
matrix respectively, and can be calculated to give

t =
2

∆

[

(1 + γ)(α − 1) (1 − jγ)(1 − α)
(1 + jγ)(α − 1) (1 + γ)(1 + α)

]

, (2.2)
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and

r =
1

∆

[

2α(1 − γ2) − jγ(1 − α)2 γ(1 + j)(1 − α2)
γ(1 − j)(1 − α2) 2α(1 − γ2) + jγ(1 − α)2

]

, (2.3)

where

α =
EIbk

2
b

EIak2
a

, γ =
kb

ka

, ∆ = 2α(1 + γ2) + γ(1 + α)2, (2.4)

whereEIa and EIb are the are the bending stiffnesses andka and kb are the
wavenumbers in the respective beams. The subscript on the bending stiffness,EI,
means that both the Young’s modulus (E) and the moment of inertia (I) may ar-
bitrarily change; however, it is their product which is important to the scattering
matrices. The reflection and transmission matrices were derived in [43]. By in-
troducing a force at the junction, (see Figure 2.3), the reflection and transmission
matrices can be derived, including the external force. By assuming that the junction
is located several wavelengths from the primary excitation, the incident near-field
can be neglected and thus only the first column of the scattering matrices is non-
zero. Calculating the non-zero elements of the transmission and reflection matrices
yields

ract
p = rpass

p +
F act

2k3
aEIaa+

p

−γ(1 + j) + αγ(1 − j) − 2jα

∆
, (2.5a)

ract
N = rpass

N +
F act

2k3
aEIaa+

p

(j − 1)(α(1 + γ) + j(α + γ))

∆
, (2.5b)

tact
p = tpass

p +
F act

2k3
aEIaa+

p

−α(1 + j) + (1 − j) − 2jγ

∆
, (2.5c)

tact
N = tpass

N +
F act

2k3
aEIaa+

p

(j − 1) − α(1 + j) + 2γ

∆
. (2.5d)

The external force at the junction has been given the superscript ’act’ in order to
indicate the intention to use it for active control. The scattering factors are also
superscripted by ’act’ and are here referred to as active scattering factors. Detailed
derivation of these scattering factors can be found inPaperI. The scattering prop-
erties of the junction may be altered by putting constraintson the active scattering
factors and deriving the force which is required to fulfil theconstraints. InPaper
I non-reflective, non-transmissive and power-absorbing junctions are studied. Pa-
rameter studies are conducted by varying the properties of the beams, and the power
flow across the junction and control effort is calculated. Some key findings from
Paper I are discussed in the final section of this chapter. The theory presented in
PaperI is confined to semi-infinite beams and just a point force at the junction. In
the following section, a more general approach based on an impedance formulation
of the junction is developed in order to overcome these limitations.



2. Active junction control 13

PSfrag replacements

b+
N

b+
p

a−
N

a+
N

a−
p

a+
p

EIaka
EIbkb

F act

x

Figure 2.3: The waves present on two connected beams of different properties, where the
right-side beam is semi-infinite. An active force is locatedat the junction.

2.3.2 Impedance formulation

A more general way to express the reflection matrix at a structural junction is
through an impedance formulation. The structure on the right side of the junction
(receiving system) can be treated as an arbitrary termination impedance,̂Z, seen by
the left-side beam; see figure 2.4. The termination impedance relates the deflection
and rotation to the internal force and moment at the junction. The reflection matrix
can be expressed according to

r =
(

C−
)−1
(

Z̃− − Ẑ
)−1 (

Ẑ − Z̃+
)

C+, (2.6)

where

C− =

[

1 1
jk k

]

, C+ =

[

1 1
−jk −k

]

.

The matrices̃Z+ andZ̃− represent the characteristic impedance matrices defined in
[44] and derived inPaperII. Note how equation 2.6 resembles the reflection factor
for longitudinal waves. In fact, if the matrices in equation2.6 are replaced by their
scalar equivalents, the expression reduces to the scalar reflection factor for longi-
tudinal waves. Using equation 2.6 the reflection matrix for any type of junction
can be calculated, under the requirement that the termination impedance matrix is
known. Appendix B presents the impedance matrix and corresponding reflection
matrix for some examples of junctions.

Using the impedance formulation, active control may be introduced at the junction
by splitting the termination impedance matrix into an active and a passive part
according to

Ẑ = Ẑpass+ Ẑact (2.7)

whereẐact is the active impedance matrix representing an external impedance load
andẐpass is the passive impedance matrix of the junction. The active impedance



14 2. Active junction control

a+
N

a+
p a−

p

a−
N

Ẑ

Figure 2.4: The waves present on an Euler-Bernoulli beam connected to anarbitrary junc-
tion impedance.

matrix, Ẑact, relates a sensing vector (translational and rotational velocities) to an
actuation vector (force and moment) according to

Qact = Zactu, (2.8)

where

Qact =

{

F act

Mact

}

, u =

{

ẇ

β̇

}

,

The actuation vector thus has a linear dependence on the translational and rotational
velocity at the junction, specified by the active impedance matrix. The actuation
vector can thus be used to manipulate the reflection matrix ata junction of an Euler-
Bernoulli beam and an arbitrary receiving structure. InPaper II the impedance
formulation is e.g. used to study the influence of bending near-fields on a reflection
cancelling controller.

2.4 Discussion of results fromPaperI and PaperII

As mentioned in the preceding section,PaperI presents a parameter study investi-
gating the effect of beam properties on the control effort and power flow of a junc-
tion between two semi-infinite beams. A non-reflective, a non-transmissive and an
absorptive junction are studied. The results from the non-reflective junction show
that if the properties of the beams have a certain relation the junction is always
absorptive, i.e. the active force which is driven to cancel the reflection removes vi-
bratory power from the junction; see Figure 3 inPaperI. However, the active force
only absorbs a part of the incident wave power while the rest is transmitted to the
receiving beam. This remaining transmitted wave power could possibly be pas-
sively dissipated in the receiving beam, thus forming a hybrid active-passive vibra-
tion control treatment. However,PaperI is limited to semi-infinite, non-dissipative
beams. The more general impedance approach developed inPaperII can be used to
study finite and dissipative receiving beams. This is developed further inChapter 3.
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The impedance approach presented inPaper II facilitates some understanding of
the impedance which is required in order to achieve certain junctions. For exam-
ple, introducing impedance control at a free end, all incident wave power can be
absorbed by choosing the (1,1) element of the active impedance matrix in equation
2.8 to be half the complex conjugate of the corresponding element in the character-
istic impedance matrix of the beam, as previously reported in [32]. However, this
assumes that only an incident wave is present at the junction. An incident near-
field may in fact reflect a propagating wave and thus diminish the performance of
the controller. InPaper II it was shown that if the junction is close (in terms of
wavelengths) to the primary excitation, the effect can be significant; see Figures 6
and 7 inPaperII. Still, this can be remedied by including additional elements in the
active impedance matrix in the control law, such as moment actuation or rotation
sensing.
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Chapter 3
Hybrid junction control

Combining passive and active vibration control results in hybrid vibration control.
In this chapter the concept of an active junction which was introduced in the previ-
ous chapter will be expanded upon. A highly dissipative beamwill be connected at
the junction. The aim is to use the active inputs to confine vibrational energy to the
highly dissipative beam, thereby achieving efficient hybrid active-passive vibration
control.

3.1 Hybrid active-passive vibration control

There are several types of hybrid vibration control treatments. The possible bene-
fits of using hybrid approaches are several. As passive damping is mainly a high-
frequency approach, and active control mainly a low-frequency approach, their
combination may provide vibration control over a broad frequency range. Further,
the passive damping may help to increase the stability margins of a feedback con-
trol system as well as providing fail-safe damping if the active control system fails.

A common hybrid approach is active constrained layer damping (ACLD). It is an
expansion of the passive constrained layer (PCL) by using anactuator as the con-
straining layer. The ACL consists of a viscoelastic dampinglayer constrained by
an actuator. The ACL does not only benefit from the purely active or purely pas-
sive damping effects of the treatment; there is also a combination effect due to the
actuator motion. As the actuator works against the primary vibration of the host
structure, additional shear losses are introduced in the viscoelastic layer; see Fig-
ure 3.1. Several studies have treated ACLD; see e.g. references [45, 46, 47, 48] for
beams, and [49, 50] for plates.

Some studies point out limitations of ACLD as a hybrid damping treatment. E.g. us-
ing a piezoelectric polymeric film (PVDF) as the constraining layer yields a damp-
ing treatment which is sub-optimal in its passive state, as the constraining layer is

17
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Actuator

Viscoelatic layer

Base structure

Actuator motion

Structural motion

Figure 3.1: A schematic figure of an active constrained layer. To the leftis the undeformed
structure and to the right the deformed structure.

not stiff enough [51]. Lam [52] reported that the actuator action is reduced, com-
pared to pure active control, because the actuator must act through the viscoelastic
layer. An approach to overcome the insufficient stiffness ofthe constraining layer is
to combine passive and active materials; see e.g. references [53, 54]. Another way
to increase the efficiency of ACL has been to connect the active elements directly
to the host structure through edge elements forming an enhanced active constrained
layer (EACL) [55], which may increase the control authorityof the configuration
[56]. Studies have also been presented where the ACL is splitinto pure active con-
trol (AC) and a PCL; see e.g. references [52, 56, 51, 57]. Illaire [51] reports that
the difference in control efficiency between ACL and AC-PCL is negligible, but
the AC-PCL treatment requires less control effort as the actuator does not have to
work through a viscoelastic layer.

3.2 Active junction with a sandwich beam

As hybrid treatments have many potential benefits compared to pure passive damp-
ing or active control the approach of active junction control - presented in the previ-
ous chapter - is here expanded upon to include also passive damping. The purpose
is to use active junction control to confine vibrational power to a part of the struc-
ture which is treated with passive damping.

Using the impedance approach presented in sectionSection 2.3.2, the reflection
matrix of a junction between an Euler-Bernoulli beam and a sandwich beam may
be derived; see Figure 3.2. The sandwich beam consists of a host beam treated with
a PCL. The sandwich beam was modelled using the approach of Mead and Markus
[58]. As the driving point impedance matrix of this sandwichbeam is quite compli-
cated to derive analytically, it was numerically calculated using appropriate values
for the material properties and geometry. The considered sandwich beam is 0.35 m
long and has a viscoelastic layer with high losses (η = 0.7) and a thickness which
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is 1% of the base beam; seePaperII for more details.

a+
p

a−
p

a−
N

F act

0.35m

Figure 3.2: The hybrid configuration using impedance matching techniques. The beam to
the right of the junction is a sandwich beam.

Figure 3.3 (a) shows the reflection efficiency of the junctionwithout considering
an incoming near-field. The figure shows that most of the powercarried by an
incident wave is reflected back from the junction and not muchis lost in the sand-
wich beam. In fact, less than 1 dB of the incident wave power isabsorbed in the
considered frequency range of 1-2000 Hz; hence the sandwichbeam in this case
is not a very efficient damping treatment. Active junction control may be intro-
duced to improve the damping efficiency of the sandwich beam.As no incident
near-field is considered, a single force at the junction may be used to cancel the
reflected wave. By cancelling the reflected wave all incidentwave power is lost in
the hybrid treatment, either passively in the sandwich beamor actively by the force.
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Figure 3.3: (a) The reflection efficiency of the junction of the Euler-Bernoulli and the sand-
wich composite, for the case of no active control at the junction. (b) The power
absorbed by the hybrid treatment.−: active power ; - - -: passive power. The
dotted line indicates the regions in between which the active power changes
sign.

The power absorbed at the junction, normalized to the incoming wave power, is
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plotted in Figure 3.3 (b). The figure shows how much of the incoming wave power
is absorbed passively in the sandwich beam or actively by theforce. It is evident
that in between the resonance frequencies the active force absorbs most power,
as the dashed line is 15-20 dB below the solid line. However, around the res-
onance frequencies where both the dashed and solid line has apeak, the active
power changes sign. This means that the active force injectspower into the sand-
wich beam. All incident wave power as well as power injected by the active force
is absorbed in the sandwich beam. This is also associated with high control effort
around the resonance frequencies, a control effort which issignificantly higher than
using a force to absorb all incoming wave power at a free end; see Figure 10 inPa-
per II. Thus this type of hybrid configuration is not optimal, as the control effort is
considerably higher when the sandwich beam is present compared using the active
force at a free end. This reveals the importance of a detailedknowledge of how
the properties of the passive treatment of the hybrid configuration affect the active
force and wether the properties of the passive treatment maybe chosen in such a
way that the active and passive treatments complement each other.

3.3 Parameter study of a highly damped beam

In order to investigate if the properties of the passive damping-treatment (the highly
dissipative beam) can be chosen so that the active and passive parts complement
each other, a parameter study was conducted. As mentioned inthe previous section,
an analytical expression for the driving point impedance matrix of the sandwich
beam is difficult to obtain. Thus in order to gain some understanding of how the
properties of the passive part of the hybrid treatment will affect the total hybrid
configuration, the sandwich beam was replaced by a finite Euler-Bernoulli, which is
simpler to treat analytically. As the beam to the left of the junction is non-resonant,
the beam to the right is referred to as the resonant beam. The resonant beam had the
lengthl, a rectangular cross-section, and arbitrary material properties. The driving
point impedance matrix of this resonant beam can be found analytically as

Zdp =
jEI

ω

cos kl cosh kl

cos kl cosh kl + 1

[

k3(tan kl + tanh kl) k2 tanh kl tan kl
k2 tanh kl tan kl k(tan kl − tanh kl)

]

,

(3.1)
wherekl is the product of the wavenumber and length. Internal lossesare included
in the model as a complex modulus,E∗ = E(1 + jη), whereE ′ is the Young’s
modulus andη is the loss factor. Inserting equation 3.1 into equation 2.6yields

r =
1

Ω

[

r11 r12

r21 r22

]

, (3.2)
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where

r11 = −jχ2 det(Z̆) −
√

2χ (γz̆11 − βδz̆22) + χ (z̆12 + z̆21) − j, (3.3a)

r12 = (1 + j)
(

1 − χ2 det(Z̆)
)

, (3.3b)

r21 = (1 − j)
(

1 − χ2 det(Z̆)
)

, (3.3c)

r22 = jχ2 det(Z̆) −
√

2χ (γz̆11 − βδz̆22) − jχ (z̆12 + z̆21) + j, (3.3d)

Ω = χ2 det(Z̆) +
√

2χ (γz̆11 + βδz̆22) + χ(z̆12 + z̆21) + 1,

wheredet(Z̆) denotes the determinant ofZ̆ which is a dimensionless matrix and a
function ofkl. The parameters appearing in equations 3.3a through 3.3d are defined
as

β2 =
EIb

EIa

, γ2 =
m′

b

m′
a

, δ2 = (1 + jη), χ = βδγ (3.4a,b)

The subscriptsa andb on EI andm′ refer to the non-resonant and resonant beam
respectively. The loss factorη is given no subscript as only the resonant beam in
this case has internal damping. The dimensionless impedance matrix,Z̆, is a nor-
malized version of the matrixZdp in equation 3.1. The important parameters for
the reflection matrix in equation 3.2 are the ratio of bendingstiffnesses and masses
between the beams, the loss factor and the product of the wavenumber and length,
kl, of the resonant beam. By considering the case where both beams have the same
mass and bending stiffness, the effect of the damping and thelength of the resonant
beam on the reflection matrix can be investigated.

Figure 3.4 shows the reflection efficiency of the junction foran incident bending
wave as a function of the loss factor for different values ofkl. The figure shows
that askl = 1 andkl = 5 the reflection efficiency decreases, i.e. the absorption
increases, with an increasing loss factor in the range ofη = 0 − 0.5. However, as
kl = 50 andkl = 100 there is an optimal choice of loss factor which maximizes the
absorption of incident wave power. A loss factor which is lower than this optimal
value means that the wave power that enters the resonant beamis less dissipated,
while a higher loss factor causes a greater impedance mismatch at the junction and
thus a higher reflection efficiency. This highlights the factthat the highest loss fac-
tor does not always result in optimal absorption.

Figures 7-9 inPaper III present the results of a parameter study of the reflection
efficiency of the junction, i.e. how much power is absorbed bythe passive junc-
tion if only an incoming wave is considered. The loss factor of the resonant beam
was chosen asη = 0.3 since the purpose of the study was to investigate a highly
dissipative beam. The results show that a high passive absorption can be achieved
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Figure 3.4: The reflection efficiency as a function of the loss factor, forthe caseβ2 =

γ2 = 1. −: kl = 1; - - -: kl = 10; ·····: kl = 50; - · -: kl = 100.

if the beams have similar bending stiffness and mass, and theresonant beam is
long in comparison to the bending wavelength. This seems natural, as there is a
small difference in impedance between the beams and the wavewill undergo sev-
eral cycles in the dissipative, resonant beam. Figures 4 and5 in Paper III show
that, for the case where the beams have identical bending stiffness and mass, the
junction impedance matrix approaches the characteristic impedance matrix of the
wave travelling towards the junction. The parameter study revealed that for most
beam combinations, however, most of the incident wave powerwas reflected at the
junction. Thus, active control could be used as a complementto the passive damp-
ing in order to impprove the overall damping efficiency.

An external force and moment can be introduced at the junction using the active
impedance matrix described inSection 2.3.2. If there is only an incident wave and
no near-field at the junction, a force or moment is sufficient to cancel the reflec-
tion and thereby absorb all incoming wave power, either passively in the resonant
beam or actively by the force or moment. The force which is required to cancel
the reflection at the junction can be derived by putting constraints in the reflection
matrix. The control effort of the active force, as well as theamount of the power
which is actively and passively absorbed respectively, is investigated inPaperIII.

A parameter study was conducted by varying the properties ofthe resonant and
non-resonant beam in relation to each other. The results were investigated in terms
of control effort and the amount of power absorbed by the active force and resonant
beam respectively. The magnitude of the force required to cancel the reflection at
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the junction is compared to the magnitude of the force required to cancel the reflec-
tion at a free end - the latter representing pure active control. These investigations
show that there exist combinations of beams where the activeand passive treat-
ments complement each other, and thus where a hybrid controlsolution may offer
benefits compared to a pure passive damping or pure active control. This implies
a control effort that is lower than cancelling the reflectionat a free end, and a pas-
sive power absorption which is substantially improved by the presence of the active
force.

One case where a hybrid system may be advantageous over pure passive damping
or pure active control is described: consider the case wherethe resonant-beam
has a bending stiffness which is 10 % of the non-resonant beam, a loss factor of
η = 0.3 and wherekl = 0.5. For this case the passive junction reflects about
30% of the power carried by an incident wave. Introducing theactive force to
cancel the reflection at the junction will result in all incident wave power being
absorbed, about 35 % passively in the resonant beam and 65 % bythe active force.
The control effort for this case is around 75 % of that of actively absorbing the
incident wave power at the free end. Thus, for this specific case the active and
passive parts of the hybrid system seem to complement each other to a certain
degree. However, this requires that the properties of the beams can be decided
with high precision, which might be difficult in a real implementation situation. A
more detailed discussion can be found inPaperIII. It may be pointed out that even
for cases where the passive damping does not absorb any of theincident power in
the presence of the active force, it can still be valuable as it may provide fail-safe
damping, and/or increase the stability margins if the active force was driven by a
feedback control system.
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Chapter 4

Piezoelectric shunt damping

The ability of piezoelectric materials to transform mechanical energy to electri-
cal energy and vice versa makes them suitable as transducersfor both active and
passive vibration control. By shunting an electrical network to the piezoelectric
element, it can provide passive structural damping, a technique referred to as shunt
damping. This chapter provides the fundamental principlesof this approach and
some of the literature published on the subject. A simple andcommon approach
of shunt damping is to connect an inductance and resistance to the piezoelectric
element and tune this shunt to augment structural damping toa certain mode. The
shunt is tuned using certain criteria based on e.g. interpreting the shunt as a tuned
vibration absorber using the principles know from there. However, there is not
much reported on how different inductive-resistive shuntsaffect a structure over
a wide frequency range. Further, if the objective is to reduce the radiated sound
power of the structure instead of the structural response the radiation properties of
the structure needs to be considered. The chapter presents two analytical models
of piezoelectric shunt damping, one beam model and one platemodel. The beam
model is used verify the modelling approach by comparing it with experimental
data. The plate model is used for a comprehensive parameter study of how differ-
ent inductuvive-resistive shunts affect the kinetic energy on the plate and radiated
sound power. Results show that the optimal shunt treatment varies depending on
if it is designed with respect to the kinetic energy or radiated sound power respec-
tively .

4.1 The piezoelectric effect

When a piezoelectric material is stressed it produces a small electric charge on the
material surface. This effect was discovered by Pierre and Jacques Curie in 1880
[59]. By attaching electrodes to the surfaces of the piezoelectric material, a voltage
potential is created between the electrodes; see Figure 4.1. Later the transverse
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Figure 4.1: A schematic drawing of a piezoelectric material with electrodes attached at
each surface

effect was also discovered, i.e. if an electric field is applied to the surfaces of the
piezoelectric material it changes its size and shape. The piezoelectric effect can be
found naturally in a number of different materials, e.g. quartz crystals, tourmaline
and topaz [59]. However, it can also be artificially induced in certain materials
during the manufacturing process. This is achieved by "poling" the material. In
its unpolarized state, the material dipoles are arranged inrandom directions so that
they cancel each other and no significant macroscopic effects are observable; see
Figure 4.2 (a). If the material is heated above its Curie temperature, the dipoles
in the solid phase material may change their location. By applying a large electric
field the dipoles can all be arranged in a certain direction, referred to as the polar-
ization direction; see Figure 4.2 (b). After the electric field is removed the dipoles
remain in approximate alignment; see Figure 4.2 (c). Piezoelectric materials are
used in a number of commercial products for sound and vibration sensing and ac-
tuation, e.g. accelerometers and ultrasonic transducers.

4.2 Shunted piezoelectric elements

4.2.1 Fundamental principles

The fundamental principle of piezoelectric shunt damping is to connect a passive
electric impedance between the electrodes of a piezoelectric element attached to a
host structure; see Figure 4.3. As the host structure vibrates, the piezoelectric ele-
ment deforms and a voltage is created between the electrodesof the element. If an
electrical network (impedance) is connected between the electrodes the voltage will
drive a current through the network. Electrical energy willbe lost as Joule heating
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Figure 4.2: Electric dipole moments: (a) before polarisation, (b) during polarisation, (c)
after polarisation.

ZELPiezoelectric element

Host structure

Figure 4.3: A schematic drawing of a piezoelectric element shunted by anelectrical
impedance and bonded to a host structure.

in the resistance of the electrical components. Thus, some vibrational energy is
converted to electrical energy by the piezoelectric element, and some of the elec-
trical energy is converted to heat in the electrical network, hence there is net loss
of energy in the mechanical system. The damping efficiency ofthe shunted piezo-
electric element is thus governed by the piezoelectric material’s ability to trans-
form mechanical energy into electrical energy. This property is characterized by
the piezoelectric coupling factor, the definition of which can be found in standards
on piezoelectricity [60].

The electrical network, i.e. shunt impedance, can be composed in a number of
ways. In one of the first research articles on shunted piezoelectric elements, For-
ward [61] proposed shunting an inductance to the piezoelectric element. The in-
ductive element together with the inherent capacitance of the piezoelectric material
will have an electrical resonance frequency. By tuning the electrical resonance fre-
quency to coincide with a structural eigenfrequency, modalsuppression could be
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achieved. Since no resistance was added in the electrical circuit, the purpose of the
treatment was not to add structural damping but merely to suppress the vibrational
response around the frequency for which the shunt network was tuned, in a fashion
very similar to a tuned vibration neutralizer; see e.g. references [62, 63]. Hagood
and von Flotow [64] extended the approach of Forward by also including a resis-
tive element in the shunt circuit, thereby dissipating energy. The resonant network
was compared to a purely resistive one, i.e. a non-resonant network which adds
broadband damping in a fashion similar to a viscoelastic material [64]. In order
to tune the components of the shunt network, Hagood and von Flotow developed
an analogy to the tuned vibration absorber, which is here differentiated from the
tuned vibration neutralizer mentioned earlier because it dissipates energy. By this
analogy the components of the shunt network could be tuned byeither minimizing
the mechanical system transfer function or using pole placement techniques.

Although resonant shunts are very common, other types have also been investi-
gated. Lesieutre [65] summarized different kinds of shunting networks in four
basic categories. These four are:

• Inductive shunt: since the piezoelectric element behaves electrically as aca-
pacitor, shunting an inductive element will result in a resonant LC circuit.
This works in practice as a vibration neutralizer and the inductive element is
tuned so that the electrical resonance frequency coincideswith a mechanical
resonance frequency. This is the type of shunt network proposed by Forward
[61].

• Resistive shunt: shunting a resistive element to the piezoelectric element
means that some of the electrical energy is lost in the circuit through Joule
heating. This virtually works as augmenting the structuraldamping, and can
be interpreted in terms of a loss factor [64].

• Capacitive shunt: a capacitive element in the shunt network will change the
apparent stiffness of the piezoelectric element without affecting the damping
properties of the structure. However, as a stiffer structure has the potential to
store more energy, capacitive shunting may help increasinginherent material
losses. A capacitive shunting could also be used to shift theeigenfrequencies
of a mechanical system. Davis and Lesiture [66] presented anapproach to
alter the natural frequency of a single degree-of-freedom system by actively
tuning a capacitance of a shunted piezoelectric element. This effectively min-
imized the structural response at a narrow frequency band given by the tuned
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electric circuit.

• Switched shunt: a switched network can change its characteristics rapidly
based on the state of the mechanical system. This enables a control of
the energy transfer. There are several different types of switching shunts,
e.g. switching the shunt between a high-stiffness state (open circuit) and low-
stiffness state (short circuit or resistive shunt). The high-stiffness state is kept
while the structural motion is large so that energy is storedin the shunted
piezoelectric element. When the structural motion is reducing (close to its
equilibrium state) so that it may receive the energy back from the shunted
piezoelectric element, the shunt is switched to the low-stiffness state and en-
ergy is dissipated [67]. Other studies concerning switchedshunts include
[68, 69]. A switched shunt may also be used to harvest energy from vibrat-
ing structures, i.e. to store the energy which is dissipatedfrom the mechanical
system; see e.g. [70]

4.2.2 Resonant shunt tuning

The electrical resonance frequencyωe of an inductive-resistive (LC) network is
given by

ωe =
1√
LC

, (4.1)

whereL andC are the inductance and capacitance respectively. Since thecapac-
itance is an inherent property of the piezoelectric element, the inductance can be
chosen so that the electrical resonance frequency coincides with the eigenfrequency
of a structural mode. In the RL shunt proposed by Hagood and von Flotow [64] the
shunted piezoelectric element was interpreted as a tuned vibration absorber. The
principles know from tuning a vibration absorber was applied to the tuning of the
inductance and resistance. The optimal tuning parameter and damping ratio are
then given by [64]:

δopt =
√

1 + K2
ij, ropt =

√
2Kij

1 + K2
ij

, (4.2a, b)

whereKij is the generalized electromechanical coupling coefficient, which is pro-
portional to the fraction of the system strain energy that isconverted to electrical
energy. The indicesi, j refer to the electrical and mechanical material axes respec-
tively; see figure 4.1. The optimal shunt components are thencalculated according
to

L =
1

(ωnδopt)2Cε
p

, R = ropt
1

Cε
pωn

(4.3a, b)
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Figure 4.4: The calculated response of a piezoelectric element-structural plate composite
for different values of the resistance: (a).0.1·ropt; (b). 0.25·ropt; (c). 0.5·ropt;
(d). ropt; (e). 2 · ropt; (f). short circuit; (g). open circuit

whereCε
p is the capacitance under constant strain. The shunt is designed to damp

the mode with eigenfrequencyωn.

Figure 4.4 shows the magnitude of the first mode for a plate treatment with piezo-
electric shunt damping. The results are calculated with themodel presented in sec-
tion 4.3.3. The inductance is tuned according to equation 4.3a and the resistance
is varied in order to see the effect on the damping performance. The figure shows
that as the resistance is reduced from its optimal value, thevibration at the modal
eigenfrequency is more efficiently suppressed, while the response just below and
just above the eigenfrequency is amplified, analogous to a tuned vibration neutral-
izer. Increasing the resistance amplifies the response again. Making the resistance
infinite will give an open circuit condition and the eigenfrequency is slightly shifted
compared to the short circuit case.

Since the early work of Hagood and von Flotow numerous research articles have
treated piezoelectric shunt damping. Several papers have treated the issue of how to
tune the components of a resistive-inductive (LR) shunt network. Behrens and Mo-
heimani [71] determined the optimal resistive element by minimizing the 2-norm
of a system transfer function, and Kim et al [72] propose a shunt tuning technique
based on measuring the electrical impedance.
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A problem associated with resonant shunt damping is the sensitivity to slight changes
in the electrical and/or mechanical resonance frequencies. A slight shift of the
modal eigenfrequency, e.g. due to temperature variations,will severely diminish
the damping performance of the shunt. In a similar fashion, temperature variations
can cause changes in the inherent capacitance of the piezoelectric element, which
will detune the shunt. Such problems can be overcome by adaptively updating
the shunt inductance. The inductance may be updated in different ways such as
minimizing the RMS voltage [73] or controlling the relativephase shift between
the velocity of the host structure and the current in the shunt network [74]. Some
additional literature on adaptive shunt damping is presented inSection 5.1.1.

4.2.3 Virtual and synthetic shunt impedances/admittances

A problem which has generally been associated with shunt damping is the large
inductance needed in order to tune the shunt to typical bending mode eigenfrequen-
cies. As an example it can be mentioned that, in order to tune the shunt inductance
to a mode with an eigenfrequency of 50 Hz using a piezoelectric element with a
capacitance of 100 nF, an inductance of around 100 H is needed. Such an induc-
tance normally needs to be synthesized with electronic circuitry, commonly using
operational amplifiers (op-amps). A common virtual inductance consists of four
resistances (R1, R2, R3, R5), a capacitance (C) and two op-amps; see Figure 4.5
and [75]. The inductance of the circuit is given by

Lvir =
R1R3R5

R2
C. (4.4)

Due to the high voltage created by the stressed piezoelectric, element high-voltage
components are normally necessary to implement such a virtual inductance.

Fleming et al. [76] proposed another approach using a synthetic admittance to cre-
ate an arbitrary shunt impedance. The synthetic admittanceconsists of two voltage
followers, a signal filter and a voltage-controlled currentsource. The voltage across
the electrodes of the piezoelectric element,uz, is used to determine the applied cur-
rent,iz, via the signal filterY (s); see Figure 4.6. The signal filter is implemented
digitally on a DSP. The controlled current source can be madeto synthesize an
arbitrary impedance according to

iz(s) = Y (s)vz(s), (4.5)

wheres is the Laplace parameter and the impedance is given byZ(s) = 1/Y (s). A
synthetic impedance circuit can be also be utilized by applying a controlled voltage
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Figure 4.5: A virtual inductance implemented using gyrator circuits.
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Figure 4.6: A synthetic impedance used to implement the shunt impedance

based on the measured current in the circuit. As the shunt is digitally implemented
on the DSP there are no constraints on the value of the inductance.

4.2.4 Multimodal shunt damping

The structural damping provided by a piezoelectric elementshunted by a LR cir-
cuit is usually confined to a single vibrational mode. A straightforward approach
to damp several structural modes is to attach a number of shunted piezoelectric el-
ements to the host structure. However, using one shunted piezoelectric element for
each vibrational mode seems fairly unattractive due to the finite amount of space
on a structure in which a large number of modes are excited. Another approach is
to adapt the shunt for multimodal damping by expanding the electrical network.
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Hollkamp [77] suggested adding one parallel RCL branch to the single RL branch
for each additional mode which is targeted by the damping treatment; see Figure
4.7 (a). For a single mode this circuit would be equivalent tothe one proposed by
Hagood and von Flotow [64]. No closed-form optimal solutionfor choosing the
electrical components was presented, but instead the components were tuned using
a numerical optimisation scheme. An obvious problem with this type of strategy is
the increasingly complex optimisation scheme as the numberof considered modes
(and thus RCL branches) increase.

Wu et al. [78, 79] proposed a shunt based on LR circuits (in series or parallel) to
damp each vibrational mode together with blocking LC circuits. The blocking cir-
cuits have the purpose of blocking the current at all frequencies except the tuning
frequency. Figure 4.7 (b) shows a two-mode current-blocking shunt circuit. LR
circuitsL1, R1 andL2, R2 are tuned to the eigenfrequencies of modes one and two
respectively, whileL̂1, Ĉ1 are tuned to block the current at the second eigenfre-
quency and̂L2, Ĉ2 to block the current at the first eigenfrequency. As the number
of targeted vibrational modes increases, the networks grows quite rapidly, which is
a drawback of such a configuration.

Behrens et al. [80] proposed a current-flowing circuit for multimodal damping. A
branch containing one LC-pair and one RL-pair is introducedfor each structural
mode to be damped. The LC-pair is tuned to approximate a shortcircuit condition
at the target frequency and an open circuit condition at adjacent target frequen-
cies; see Figure 4.7 (c). This type of circuit has a clear advantage compared to
the current-blocking circuit, since the network does not grow as rapidly with each
new mode targeted by the shunt. This is especially importantwhen op-amps are re-
quired in order to implement large inductances. In general2n+4n(n−1), wheren
is the total number of structural modes, op-amps are required for a current-blocking
multimodal shunt, while2n op-amps are required for a current-flowing multimodal
shunt [81].

4.2.5 Shunt damping for sound transmission and radiation

Shunted piezoelectric elements have also been used on structures in order to sup-
press the radiated sound field. Kim et al. [82, 83] applied their shunt design based
on the measured electrical impedance to reduce sound transmission through piezo-
electric smart panels. Ozer and Royston [84] compared the classical method for
choosing the inductance and resistance of the shunt network, based on the work of
Hagood and von Flotow [64], to a method based on the Sherman-Morrison matrix
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Figure 4.7: (a) The Hollkamp circuit. (b) A two-mode current-blocking shunt circuit of
Wu et al. [79] (c) The current-flowing circuit.

inversion theorem. Their results were evaluated in terms ofboth structural response
and radiated field. They recognized the limitations for tuning the inductance and
resistance values for multi-modal systems. As the radiatedfield from a structure is
combined by the response of several modes, which might overlap, the inductance
based on the work of Hagood and von Flotow may be suboptimal. By using the
Sherman-Morrison matrix inversion theorem, they showed that an optimal induc-
tance could be found by minimizing the radiated sound power (or pressure at a cer-
tain point). Other studies concerning shunted piezoelectric materials for reduction
of sound transmission or radiation include negative-capacitance shunts (explained
more inSection 5.1.2) [85], switched shunts [86], tuned LR shunts [87, 88] or mul-
timodal shunts [89].

4.2.6 Shunted constrained layer damping

Using shunted piezoelectric elements to constrain a viscoelastic layer has also been
investigated. Edberg and Bicos [90] presented a configuration where one piezo-
electric element was embedded in the structure and another was used to constrain
a surface-bonded viscoelastic layer. The embedded piezoelectric element was con-
nected to the constraining one with reversed polarity. As the structure deforms, the
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constraining piezoelectric element works against this andextra shear losses are in-
duced in the viscoelastic layer. This damping mechanism is also utilized in ACLD;
see e.g. [47]. Ghoneim [91] reported that this technique performed better than a
conventional PCL in suppressing the first bending and twisting modes of a plate.

4.2.7 Brief literature summary and motivation for study

Several papers treating resonant shunt damping have been presented during the last
20 years. Most studies concern damping of one vibrational mode by tuning the
shunt according to some predefined criterium. A few studies have presented shunt
damping to reduce the sound power radiated from- or transmitted through a struc-
ture, also mostly around a single mode. However, in many practical situation the
vibration field of a structure is composed of several vibrational modes. Further,
as the radiated sound field is composed of a weighted sum of several modes, in
order to design the shunt to reduce the sound it is important to have knowledge of
the radiation properties of the structure. Resonant shuntswhich targets more than
one mode by expanding the electrical network have been proposed. However, due
to the complexity of tuning the shunt consisting of several resonant branches the
analysis is often confined to two vibrational modes. Reducing one or two modes on
a plate where the vibrational field is composed of several modes does not always
lead to a significant decrease of the kinetic energy or the radiated sound power. A
question that arises is therefore, is it optimal to tune the shunt to a specific mode if
the purpose is to reduce the kinetic energy or radiated soundpower.

This chapter presents a parameter study of a plate with a piezoelectric element
which is shunted by an resonant (LR shunt). The inductance and resistance is
varied and the result is evaluated in terms of both the kinetic energy of the plate
and the radiated sound power. An analytical model is developed by considering
a perfectly bonded piezoelectric element. Two cases are studied: both when the
modes have there eigenfrequencies well below the critical frequencies; and where
the eigenfrequencies are in the same order as the critical frequencies. The results
are presented inPaper IV and some key results are included in this chapter. A
model of a beam with a piezoelectric element is also developed and compared with
measurement in order to verify the modelling approach.
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4.3 Modelling of piezoelectric shunt damping

4.3.1 The constitutive relations

The general constitutive equations, in matrix form, for a piezoelectric material are
given by [64]:

{

ε

D

}

=

[

SE dt

d ξσ

]{

σ

E

}

, (4.6)

where the vectorsε andσ contain the mechanical variables of stress and strain re-
spectively, and vectorsD andE contain the electric variables of electric displace-
ment (or charge per unit area) and electric field respectively. The matricesSE ,d
andξσ contain the materials’ elastic compliance, piezoelectricstrain constants and
dielectric constants respectively. The superscriptE andσ indicates that the quan-
tity is measured under a constant electric field and constantstress respectively. The
superscriptt represent a matrix transpose. Equation 4.6 is explained in more detail
in Appendix A.

4.3.2 Various modelling approaches

Several different models of piezoelectric element-structure composites can be found
in the literature. Early works by Forward [61] proposed modelling the host struc-
ture around a modal eigenfrequency by its analogue electrical circuit. The piezo-
electric element is then connected through a transformer tothe analogue circuit.
The resulting circuit can then be expanded by additional components describing
the shunt network.

Hagood and von Flotow [64] included the effect of the shunt inthe elastic compli-
ance of the piezoelectric element according to

sSU
jj = sE

jj(1 − k2
ijZ̄i

EL
), (4.7)

wherekij is the piezoelectric coupling factor and the superscriptSU denotes the
material’s elastic compliance with the shunted electric network. Z̄i

EL
is the normal-

ized electrical impedance which is found by normalising theelectrical impedance
with the impedance of the inherent capacitance of the piezoelectric element. The
electrical impedance is the total impedance of the shunt network and inherent ca-
pacitance, where the shunt is parallel to the piezoelectricelement’s inherent capac-
itance [64]. For an inductive-resistive shunt the normalized electrical impedance is
given by

Z̄i
EL

=
(R + Ls)cps

1 + (R + Ls)cps
, (4.8)
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whereR andL is the shunt inductance and resistance respectively andcp the inher-
ent capacitance of the piezoelectric element. A non-dimenisonalized mechanical
impedance can be defined by considering the ratio of the shunted stiffness to the
open circuited stiffness of the piezoelectric element according to

ZM
jj (s) =

(1 − k2
ij)

(1 − k2
ij)Z̄(s)EL

i

, (4.9)

The non-dimensional mechanical impedance may be frequency-dependent and com-
plex. The impedance can be interpreted as a complex modulus according to

ZM
jj (s) = Ejj(ω)(1 + jηjj(ω)), (4.10)

whereEjj is the stiffness ratio of the shunted stiffness to the open circuit stiffness,
andηjj is a loss factor. They are defined as

Ejj(ω) = ℜ{ZM
jj (s)}, ηjj(ω) =

ℑ{ZM
jj (s)}

ℜ{ZM
jj (s)} . (4.11a, b)

Thus using this approach the shunt network can be included inmodelling the stiff-
ness of the piezoelectric element.

Other studies have presented different approaches to modelthe shunt network. Law
et al [92] described the damping of a resistively shunted piezoelectric element by
using energy considerations. In general the constitutive relation in equation 4.6 is
considered to derived the coupled electromechanical equations for a shunted piezo-
electric element bonded to a host structure. The coupled electromechanical equa-
tions can be solved by e.g. a Ritz method [93] or finite elements [94, 86].

4.3.3 Plate model

In this section a Kirchhoff plate model is presented, this model is used to conduct a
parameter study on the effect of an inductive-resistive shunt on the kinetic energy
and radiated sound power of a plate structure over a wide frequency range. The
Kirchoff plate is the two-dimensional equivalent of the Euler-Bernoulli beam, and
is based on the same assumption of no rotational inertia. Themass of the piezo-
electric element is neglected in the plate model. Neglecting the mass may in some
situations be erroneous, especially at higher frequencieswere the inertial effects
are significant [95]. However, the purpose of this model was not to closely re-
semble reality for all masses of piezoelectric elements. Importantly, though, the
conclusions which can be drawn from a parameter study of the shunt circuit will
not be significantly affected by neglecting the mass. A thin plate-like structure can
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Figure 4.8: (a) Definition of load (q) and deflection directions (w) on the plate. (b) Def-
inition of stresses and strains on the piezoelectric element with its material
axes aligned with a Cartesian coordinate system.σx, εx andσy, εy are the ex-
tensional stresses and strains in thex andy and directions respectively and
τxy, γxy are the shear stress and strain in thex-y plane. The voltage in the
3-direction is given byv3. (c) The dimensions of the composite plate.
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for low frequencies be modelled quite accurately by using Kirchhoff’s plate theory.
The modified Kirchhoff plate equation is given by

D∇4w(x, y, t) + m′′ ∂2

∂t2
w(x, y, t) + Γw,Ω = q(x, y, t), (4.12)

wherew is the deflection,D andm′′ are the plate’s flexural rigidity and mass per
unit area respectively,q is a function describing an external loading,x, y, t are
the space and time coordinates, and∇ is the nabla operator. The definitions of
load and deflection are defined in Figure 4.8 (a). The flexural rigidity is given by

D =
Ekt3

k

12(1−ν2

k
)
, whereEk, tk andνk are the plate’s Young’s modulus, thickness and

Poisson’s ratio respectively, where the subscriptk is to denote Kirchhoff plate. The
termΓw,Ω includes the stiffness du to the piezoelectric element and is derived by as-
suming a linear stress distribution which is continuous across the material borders.
Γw,Ω is derived and explained inPaper IV. This stiffness is complex and contains
the effect of the shunt network using the approach in reference [64].

Assuming a modal approach, a solution to equation 4.12 underharmonic excitation
is given by

w(x, y, ω) =
∞
∑

n

∞
∑

m

an,m(ω)φn,m(x, y), (4.13)

wherean,m andφn,m are the modal amplitude and modal shape function respec-
tively. A more detailed derivation of equation 4.16 is givenin Paper IV. For a
rectangular plate which is simply supported along its edges, the modal shape func-
tion of then, m:th mode is given by

φn,m(x, y) = sin(knx) sin(kmy), (4.14)

where
kn =

nπ

Lx

, km =
mπ

Ly

, (4.15a, b)

n andm are natural numbers andLx, Ly are the plate dimensions; see figure 4.8
(c). The modal shape function are found by disregarding the piezoelectric element.
By inserting equation 4.13 into equation 4.12 and followingthe standard approach,
the deflection field on the plate is given as

w(x, y, ω) =

∞
∑

n

∞
∑

m

Qext
n,m

Mn,m

(

ω2
n,m − ω2

)

+ Kpzt
n,m

sin(knx) sin(kmy), (4.16)

where the eigenfrequenciesωn,m represent the plate without the piezoelectric ele-
ment and are given by

ωn,m =

√

D

m′′

(

k2
n + k2

m

)

. (4.17)
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The modal eigenfrequencies are found by considering the homogenous differential
equation, i.e. without external loading. The modal mass is given by

Mn,m =

∫∫

S

ρtkφ
2
n,mdS =

1

4
ρtkLxLy, (4.18)

and the modal force due to the external disturbance and modalstiffness due to the
piezoelectric element respectively are given by

Qext
n,m =

∫∫

S

q(x, y, ω)φn,mdS = F ext sin(knxe) sin(kmye), (4.19)

Kpzt
n,m =

∫∫

S

Γw,Ω
n,mφn,mdS

≈ lxlyD
SU
p11(k

4
n + k4

m + 2νpk
2
nk

2
m) sin2(knxc) sin2(kmyc)

+ lxlyD
D
p44k

2
nk2

m

(

sin2(knxc) − cos(2knxc)
) (

sin2(kmyc) − cos(2kmyc)
)

,

(4.20)

whereνp is the Poisson’s ratio of the piezoelectric element andΓw,Ω
n,m comes from

inserting equation 4.13 intoΓw,Ω. F ext is the amplitude of a harmonic point force
at (xy; ye). The approximation in equation 4.20 is based on the assumption that
the size of the piezoelectric element is much smaller than the bending wavelength,
i.e. knlx ≪ 1 andkmly ≪ 1. The cross-modal coupling terms are small and were
therefore neglected. The dimensions of the plate and piezoelectric element are il-
lustrated in Figure 4.8 (c).

As can be seen in equation 4.20 the modal stiffness due to the shunted piezoelec-
tric element is divided into two parts containing two different flexural rigidities
DSU

p11 andDD
p44. They represent the flexural rigidity due to the shunted piezoelec-

tric element and due to only the mechanical stiffness of the piezoelectric element
respectively and are defined as

DSU
p11 =

tc
SSU

11 (1 − ν2
p)

, DD
p44 =

tc
4SD

44(1 − ν2
p)

, (4.21a, b)

whereSSU
11 is the shunted compliance according to equation 4.7, andSD

44 is the open
circuit compliance in the 4-direction. The termtc is given by

tc =
t2ktp
4

+
tkt

2
p

2
+

t3p
3

, (4.22)

wheretp is the thickness of the piezoelectric element. The second part of equation
4.20 may in fact be neglected without significant effects. Infact many models
of a structure with surface bonded piezoelectric element neglect the mechanical
stiffness due to the piezoelectric element; see e.g. reference [59].
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4.3.4 Beam model

A beam model based on Euler-Bernoulli theory is developed for a shunt piezo-
electric element surface bonded to a host beam. This model isbased on the same
assumptions as the plate model and is used to verify the modelling approach. The
beam model is compared against measurements inSection 4.5. The modal mass
due to the piezoelectric element is included in the beam model as the mass of the
piezoelectric element used in the measurements cannot be neglected. The modified
Euler-Bernoulli bending wave equation is given by

EI
∂4

∂x4
w(x, t) + m′ ∂2

∂t2
w(x, t)

+ Epbptc

(

∂4w

∂x4
Ω(x) + 2

∂3w

∂x3
Ω′(x) +

∂2w

∂x2
Ω′′(x)

)

+ m′
p

∂2

∂t2
w(x, t)Ω(x) = q(x, t), (4.23)

wherew is the displacement,m′ the mass per unit length andEI the bending
stiffness of the beam, andm′

p the mass per unit length andEp the Young’s modulus
of the piezoelectric element,tc is given in equation 4.22. The functionΩ(x) is
given by

Ω(x) = [Θ(x − x1) − Θ(x − x2)] , (4.24)

whereΘ is the Heaviside step function. The primes denote differentiation with
respect tox. The length and width of the piezoelectric element are givenby la =
x2 − x1 and bp, x and t the length and time coordinate respectively. The force
distribution loading the structure is given byq(x, t) andΘ is the Heaviside step
function. A detailed derivation of the two-dimensional equivalent of equation 4.23
can be found inPaper IV. Assuming harmonic excitation, a solution to equation
4.23 is given by

w(x, ω) =

∞
∑

n

an(ω)φn(x), (4.25)

wherean andφn are the modal amplitude and modal shape function respectively. A
free-free boundary condition is considered as this is easy to achieve experimentally.
The modal shape function for a free-free beam is given by

φn = cosh(knx) + cos(knx) − γn (sinh(knx) + sin(knx)) , (4.26)

where

γn =
cosh(αn) − cos(αn)

sinh(αn) − sin(αn)
, (4.27)
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where

αn ≈
(

n +
1

2

)

π, kn =
αn

L
. (4.28a, b)

Inserting equation 4.25 into equation 4.23 and following the standard approach
yields the modal amplitudes. These can be inserted back intoequation 4.25 to give
the vibration field of the beam according to

w(x, ω) =

∞
∑

n

Qext
n

Mn (ω2
n − ω2) +

(

Kpzt
n − ω2Mpzt

n

)φn(knx), (4.29)

where the modal mass and the modal disturbance force are given by

Mn = ρbtb

∫ L

0

φ2
ndx =

Lbtbρ

2
, (4.30)

Qext
n =

∫ L

0

Feδ(x − xe)φndx = Feφn(knxe), (4.31)

whereρ andb is the density and the width of the beam respectively. The external
disturbance force is a harmonic point force atx = xe with amplitudeFe. The modal
eigenfrequenciesωn are considering the beam without the piezoelectric element
and are given by

ωn =

√

m′

EI
k2

n. (4.32)

The modal eigenfrequencies are found by considering the homogenous differential
equation, i.e. with no external loading.

Assuming that the bending wavelength is much larger than thelength of the piezo-
electric element, i.e.knla ≪ 1, and that cross-modal coupling terms can be ne-
glected the modal mass and stiffness of the piezoelectric element is given by

Mpzt
n = ρpbptp

∫ x2

x1

φ2
ndx ≈ ρptpbplaζn(xc), (4.33)

Kpzt
n = Epbptc

∫ L

0

(

k4
nφnΩ + 2φ′′′

n Ω′ + φ′′
nΩ′′

)

φndx

≈ k4
ntcbplaE

SU
p ζn(xc), (4.34)

whereρp is the density of the piezoelectric element. The expressionζn(xc) in equa-
tions 4.33 and 4.34 describes the location of the piezoelectric element in relation to
the mode shape, and they are derived and defined inAppendix A. The effect of the
shunt is included in compliance of the piezoelectric element according to equation
4.7. ThusESU

p = 1/SSU
11 , which is then complex and frequency-dependent.
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4.3.5 Sound radiation from a baffled plate

Suppressing the vibrational field is not necessarily the primary objective of vibra-
tion control treatments; instead it might be minimizing theradiated sound field.
Further, as the suppression of one or two structural modes does not necessarily re-
duce the radiated sound field it is important to consider the radiation properties of
the structure. Fuller et al. [96, 97, 98] introduced the concept of active structural
acoustic control (ASAC), which means using active structural inputs to reduce the
radiated sound. As reported by Fuller et al., reducing the radiated acoustic field
may under certain conditions actually lead to an increase ofthe plate’s vibration
field.

The radiated sound power can be calculated from the modal amplitudes of the
structure. Although the structural modes are orthogonal interms of the plate’s
vibrational response, they are not in terms of sound radiation. Thus, the modes
influence each other’s radiation efficiencies. This is especially important under the
critical frequency of the mode. The fluid loading of the plateis neglected, and the
plate is assumed to be in a rigid baffle. The radiated sound power,Πrad, in terms of
the structural modes can be expressed according to [12]:

Πrad = ȧHMȧ, (4.35)

where the matrixM is given by

M =
ωρ0

8π2
ℜ







∫∫

k2
x+k2

y≤k2

0

φ∗(kx, ky)φ
T (kx, ky)

√

k2
0 − k2

x − k2
y

dkxdky







, (4.36)

where the integration is done over the real-valued wavenumber components. The
vectorsȧ andφ contain the modal velocity amplitudes and the wavenumber repre-
sentation of the modal shape functions according to

ȧT = [ȧ1,1 ȧ1,2 . . . ȧn,m] , (4.37)

φT (x, y) = [φ1,1(x, y) φ1,2(x, y) . . . φn,m(x, y)] . (4.38)

The dimensions of these vectors depend on how many modes are considered in the
calculations.

4.4 Numerical results

4.4.1 The efficiency of resonant shunt damping

The potential of any piezoelectric shunt damping treatmentis governed by the
piezoelectric material’s ability to convert mechanical toelectrical energy. The gen-
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eralized electromechanical coupling factor is proportional to the fraction of the
strain energy of the composite system, which is converted toelectrical energy. The
generalized electromechanical coupling factor for each mode can be defined as

K2
ij =

(

KE
jj

KE
jj + K

)

(

k2
ij

1 − k2
ij

)

, (4.39)

whereK is the modal stiffness of the host structure andKE
jj the modal stiffness

of the piezoelectric element under a short circuit condition. The generalized elec-
tromechanical coupling factor may be determined from experimental data by mea-
suring the relative shift of the resonance frequency under ashort and an open circuit
condition respectively, according to

K2
ij =

(

(ωD
n )2 − (ωE

n )2

(ωE
n )2

)

, (4.40)

where superscriptsE andD denote short and open circuit respectively. Equation
4.39 shows that as long as the structural stiffness is largerthan the piezoelectric
modal stiffness the generalized electromechanical coupling coefficient increases if
the piezoelectric stiffness increases. Hence, so does alsothe potential of more effi-
cient shunt damping.

The reduction in modal peak amplitude for different values of the generalized elec-
tromechanical coupling factor, and different internal damping values of the host
structure, is presented in Table 4.1. The numerical values are calculated with the
model presented inSection 4.3.3using an inductive-resistive shunt.

The left column in the table shows that quite significant damping of the modal peak
magnitude is achieved for reasonable values ofKij for a lightly damped host struc-
ture, i.e.η = 0.001. For a host structure with very low internal damping, even
small counteracting forces from passive shunt treatments can significantly increase
the system damping [99]. However, many practical structures have considerable
internal damping. If the loss factor of the host structure isincreased, the reduc-
tion in the structural response which can be achieved by adding shunt damping
is significantly decreased. The right column in Table 4.1 shows the reduction in
peak magnitude if the internal damping of the host structureis increased 10 times,
i.e. η = 0.01. It is clear that as the internal damping of the host structure is in-
creased, the additional reduction due to the shunt is significantly decreased.
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Table 4.1: The reduction in peak amplitude of the first mode for different values of the
generalized electromechanical coupling factor and different loss factors (η) of
the host structure. The reduction is given in dB relative to the short circuit case.

K2
ij η = 0.001 η = 0.01

0.01 % -17.1 dB -3.9 dB
0.11 % -27.4 dB -10.0 dB
0.53 % -34.1 dB -15.4 dB
1.02% -37.2 dB -18.3 dB

4.4.2 Parameter study of LR shunts

The reduction in modal peak magnitudes presented in table 4.1 have been all been
based on tuning the shunt to a specific mode according to the design approach pre-
sented by Hagood and von Flotow [64]. However, the response of a structure often
consists of several modes with different amplitudes. Further, if the shunt ought to
be designed to reduce the radiated sound power, a weighted sum of several modes
needs to be considered. In fact, at a particular frequency itmay not be the mode
with the closest eigenfrequency which is driving the radiation, at least below the
critical frequencies where the radiation efficiencies of the modes may differ sub-
stantially.PaperIV presents a comprehensive parameter study, calculated with the
model presented inSection 4.3.3, of how different inductive-resistive shunts affect
the kinetic energy and sound radiation of a plate. The shuntswhich minimize the
kinetic energy of the plate and the sound radiation respectively are compared and
discussed. The position of the piezoelectric element is also varied so that it is ei-
ther optimally located to damp the efficiently radiating odd-odd modes and no other
modes, or so that it may provide some damping for all modes. The key results from
PaperIV are summarized here.

Figure 4.9 shows the total sound power (TSP) as a function of different LR shunts.
The total sound power is calculated by summing the spectral components of the
sound power over the considered frequency range. The TSP is given in dB rela-
tive to the short circuit case. In the left figure the piezoelectric element is located
at the centre point of the plate where all odd-odd modes suffer maximum strain,
while the other modes suffer no strain. This location is optimal for damping the
odd-odd modes but provide no damping for the other modes. In the right figure
the piezoelectric element is collocated with the primary disturbance at a location
where all modes could be damped some. The first nine eigenmodes are included
in the model, and the primary disturbance force is positioned so that all modes are
excited with similar peak amplitudes. The geometry and material properties of the
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host structure and piezoelectric element are given in Tables 1 and 2 inPaper IV.
In Figures 4.9 are also marked the shunts which minimize the response of the first
mode and the total kinetic energy (TKE), referred to as the modal shunt and TKE
shunt respectively. The TKE is defined analogously to TSP.

Figure 4.9: The total sound power (TSP) normalized to the short-circuited case as a func-
tion of the inductance and resistance. The×, ◦, ∗ mark the inductance and
resistance of the TSP, TKE and modal shunts respectively. Left: The piezo-
electric element centered on the plate. Right with the piezoelectric element
collocated with the primary disturbance force

Figures 4.9 (left) and (right) shows that the TSP and TKE shunts are relatively sim-
ilar, while the modal shunt differs from them quite a lot. TheTKE shunt has a
larger resistance than the TSP shunt, which gives less efficient but more broadband
damping. The TSP shunt gives about 9 dB and 4 dB reduction of the TSP respec-
tively if is centered on the plate or collocated with the primary disturbance. The
relatively broad region of a TSP around negative 8-9 dB showsthat the TSP shunt
is relatively insensitive to small changes in the inductance and resistance. Small pa-
rameter variations will not degrade the reduction of the TSPin a significant wave.
This is contrary to modal shunt damping where the shunt is very sensitive to small
parameter variations. The inductance of the TSP shunt is insensitive to the loca-
tion of the piezoelectric element. This can be expected because the stiffness added
by the piezoelectric element does not shift the modal eigenfrequencies significantly.
The TSP shunt is more efficient if the piezoelectric element is centered on the plate.
With this location the odd-odd modes can be well damped and these modes are the
most efficient radiators below the critical frequency. The shunt which minimizes
the TSP in this case is not tuned to any specific mode. In fact the inductance of this
shunt is tuned somewhere in between the eigenfrequencies ofmode (3,1) and (1,3).
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Figure 4.10 shows the sound power as function of frequency for the TSP, TKE- and
modal shunt compare to the short circuit case. The figure shows that the TSP shunt
effectively reduces the sound power around the eigenfrequencies of modes (3,1)
and (1,3). A similar behaviour is shown for the TKE shunt. It is important to men-
tion that these results are calculated for a plate with very low inherent losses, a loss
factor of 0.1% (η = 0.001). If the loss factor of the plate is increased to damping
performance of these shunt are severely diminished. As the TSP shunt is not tuned
to a specific mode it is relatively insensitive to small changes in the inductance or
resistance; see figures 4.9 (left) and (right). The modal shunt is efficient at reduc-
ing the sound power around the eigenfrequency of the first mode, but simply shifts
the eigenfrequencies of the higher modes; see Figure 4.10. As the modal eigen-
frequencies are under the critical frequency, this will increase the radiation at these
frequencies. However, as can be seen in Figure 4.10 (b) this effect is not significant.

Table 3 inPaper IV sumarizes the results from figure 4.9, that below the critical
frequency placing the piezoelectric element in the centre of the plate is more ad-
vantageous for the TSP shunt. However if the objective is to reduce the TKE it is
better to place the piezoelectric at a point where several modes can be effected by
the shunt. If the eigenfrequencies appear above the critical frequencies though it is
more efficient to place the piezoelectric at a point where allmodes can be effected,
in terms of reducing both the TSP and the TKE; see table 4 inPaperIV. This high-
lights the fact that the optimal shunt location does not onlydepend on the purpose
of the damping treatment but also on the properties of the structure. Thus when
implementing shunt damping it is vital to have proper knowledge of the physical
behavior of the structure as well as the shunted piezoelectric element.

4.5 Experimental implementation of LR shunt damp-
ing

4.5.1 Untreated beams

An experimental investigation of shunt damping applied to abeam is presented
here. These experiments are conducted in order to verify thebeam model presented
in Section 4.3.4. Ast he plate model is constructed based on the same principles as
the beam model, it can be assumed to be quite accurate if the beam model is ex-
perimentally validated. The beam used in the experiments was of aluminium, 0.4
m long and suspended by a soft spring in one end to simulate a free-free condition.
The primary disturbance force was given by an electrodynamic shaker at one of the
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Figure 4.10: (a) The radiated sound power. (b) The radiated sound power around the eigen-
frequencies of the odd-odd modes (1,1);(3,1);(1,3).−: short-circuit; - - -: the
TSP shunt;·····: the TKE shunt; -· -: the modal shunt. The piezoelectric
element is centered on the plate.

beam ends, and the acceleration was measured at the same location. A photo of the
set-up is shown in Figure 4.11.

Figure 4.12 shows the measured and calculated driving pointmobility of the beam.
The mobility was calculated with the model presented inSection 4.3.4, excluding
the piezoelectric element, i.e. settingKpzt

n = Mpzt
n = 0 in equation 4.29. The

properties of the beam are given in Table 4.2.

Table 4.2: The properties and geometry of the beam used in the experiments.

Eb ρ L b t
73 GPa 2800 kg/m3 400 mm 30 mm 2.7 mm

4.5.2 Effect of bonding

In the theoretical models, the piezoelectric element was assumed to be perfectly
bonded to the host structure. In practice, though, the piezoelectric element needs
to be attached to the host structure by using an adhesive. Twodifferent types of
adhesives were used to attach the piezoelectric element, one electrically insulat-
ing (EPO-TEK 301-2) and one electrically conducting (EPO-TEK E4110). Four
composite beams were constructed, two using the insulatingadhesive (referred to
as beams i1 and i2) and two using the conductive adhesive (c1 and c2). The con-
ductive adhesive has the advantage that no connector had to be placed between the
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Figure 4.11: A photograph of the experimental set-up.

piezoelectric element and the host structure. The purpose of this was to create a
better bonding surface. Table 4.3 shows the effect of the adhesive on the general-
ized electromechanical coupling factor, calculated with equation 4.40, for the odd
modes for the different beams. The piezoelectric element was centred on the beam
and thus only the odd modes could be significantly affected. The table shows that
there are some variations between the different beams. The difference between
the beams with the same adhesive is just as large as, or largerthan, the difference
between the beams with different adhesives. However, the sample is too small to
draw any statistically significant conclusions.

Table 4.3: Measured generalized electromechanical coupling factor for the different
beams.
Mode: K31 mode 1 K31 mode 3 η mode 1 η mode 3
bare: - - 0.36 % 0.36 %
i1: 0.060 0.085 2.8 % 1.1 %
i2: 0.071 0.068 1.5 % 1.0 %
c1: 0.085 0.068 1.2 % 1.0 %
c2: 0.074 0.085 3.1 % 0.6 %

Figures 4.13 (a) and (b) show the measured point mobilities of the four different
beams. Figure 4.13 (a) shows that the point mobility of the different beams are
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Figure 4.12: The driving point mobility of a 0.4 m long free-free aluminium beam. −:
measurement;·····: model.

very similar, but Figure 4.13 (b) reveals that there are are small differences in am-
plitude and frequency at the first resonance. Bonding the piezoelectric element
to the structure adds damping due to the adhesive layer whicheffects the ampli-
tude at the resonance frequency. The treatment will in practice work as a passive
constrained layer and augment structural damping due to shear losses in the adhe-
sive bond. Due to the location of the piezoelectric element,it is mainly the odd
modes which are affected. The modal loss factors were calculated from the mea-
sured mobilities by using modal circle fitting. By calculating the modal loss factors
of the first and third modes of the untreated beam and the beam with the bonded
piezoelectric element, the additional losses due to the adhesive layer could be es-
timated; see Table 4.3. The modal loss factors are substantially increased by the
bonded piezoelectric element. Just as for the generalized electromechanical cou-
pling factors, there is a large spread between the beams. Thesmall differences in
resonance frequencies suggest that there are also individual differences in stiffness
and/or mass in the beams and piezoelectric elements.

4.5.3 Open and short circuit conditions

The driving point mobility of the beam was measured under a short circuit and an
open circuit condition respectively in order to derive the generalized electrome-
chanical coupling factor according to equation 4.40. The properties of the piezo-
electric patch are given in Table 4.4. The measured driving point mobility under
a short circuit condition compared to the results calculated with the beam model
is shown in Figure 4.14. The figure shows that the model agreeswell with the
measurements. The piezoelectric coupling factork31 in the model was tuned so
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Figure 4.13: The driving point mobility of the four beams under a short circuit condition:
(a) 0-1000Hz, (b) a zoom around the first resonance frequency. −: I1; - - -:
I2; ·····: C1; - · -: C2

that the generalized electromechanical coupling factor inthe model agrees with the
measured one. The reason that this tuning is needed is because the piezoelectric
element is not perfectly bonded as assumed in the model. The figure shows that
it works well to model the piezoelectric-beam composite by using equation 4.29,
if the additional damping due to the adhesive layer is accounted for and the piezo-
electric coupling factork31 is tuned. Comparing Figure 4.14 with Figure 4.12 one
can se that the most obvious difference between the bare beamand the beam with
a bonded piezoelectric element is the damping effect due to the bond. Although,
closer inspection reveals small shifts in the resonance frequencies of the odd modes.
It may be mentioned that modelling approaches exist where the adhesive layer is
included; see e.g. reference [100].

The discrepancy between model and measurements at low frequencies is most
likely due to a rigid body mode appearing in the measurement due to the suspension
of the beam.

Table 4.4: The properties and geometry of the piezoelectric element used in the experi-
ments.

Ep ρp la b tp Cε
p

58.8 GPa 7200 kg/m3 50 mm 25mm 1mm 18.06 nF
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Figure 4.14: The driving point mobility under a short circuit condition.−: measurement;
- - -: model

4.5.4 Shunt damping of the first and third bending modes

The experimental set-up was used to implement modal shunt damping. The shunt
circuit was implemented by using the synthetic admittance concept proposed by
Fleming et al. [76] which was briefly explained inSection 4.2.3. The schematic
figure of the synthetic shunt circuit is shown in Figure 4.15.The synthetic shunt
was implemented on the digital signal processor (DSP) as an admittance transfer
function according to

Y (s) =
1

Ls + R
, (4.41)

whereL andR are the shunt inductance and resistance respectively. The DSP was
a dspacesystem with a sampling frequency ofFs = 4000Hz. The resistorRg in
Figure 4.15 sets the transconductance gain as1/Rg A/V. The resistor was chosen
asRg = 1000 Ω, and a corresponding gain was set on the DSP. The input to the
DSP was highpass filtered and the output was lowpass filtered to remove access
frequencies from the signal.

Figure 4.16 shows the measured and modelled driving point mobility around the
first and third resonance frequencies when shunt damping wasimplemented, com-
pared to the measured driving point mobility under a short circuit condition. The
optimal resistance and inductance were chosen according tothe design concept of
Hagood and von Flotow [64] (Section 4.2.2), and are shown in Table 4.5. Figure
4.16 shows that the amount of damping which can be achieved inpractice is very
well predicted by the model, although the model slightly overestimates the damp-
ing. The first and third modes were damped by about 15 dB and 20 dB respectively
at their eigenfrequencies. The experimental results showsthat the beam model
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presented inSection 4.3.4works well in describing damping by a surface bonded
shunted piezoelectric element. This also suggest that the plate model presented in
Section 4.3.3is accurate, as it is derived using the same principles.

iz

vz

DSP

Rg

Figure 4.15: A schematic figure of the implementation of the synthetic admittance circuit.

Table 4.5: The shunts which were implemented to damp the first and third modes respec-
tively on the beam.

Mode: L R
1 172 H 9830Ω
3 6 H 1749Ω
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Figure 4.16: The driving point mobility: (a) zoomed around the first resonance frequency;
(b) zoomed around the third resonance frequency.−: measurement; - - -:
model;·····: measured under a short circuit condition.



Chapter 5
Active shunts and hybrid
piezoelectric vibration control

Shunt damping as presented in the previous chapter have somelimitations such
as shunt detuning due to temperature changes or the relativenarrowband damping
characteristics. Some of the limitations can be overcome byallowing the shunt
to be active. Adding a voltage or current source in the electrical network of the
shunted piezoelectric element forms a hybrid active-passive vibration control sys-
tem. This approach has proved to have several advantages over conventional active
vibration control, e.g. reduced control effort or improvedfail-safe characteristics.
Similarly to passive shunt damping most studies on piezoelectric hybrid damping
have focused on one single vibration mode. This chapter provides a model of a
plate with surface bonded piezoelectric element which is connected to an external
voltage source in series with an inductive-resistive shunt. The piezoelectric hybrid
damping treatment is evaluated in terms of both the plate’s structural response and
radiated sound power including several structural modes. The model is used to
identify particular situations where hybrid damping can provide advantages com-
pared to pure active control or pure passive damping. Compared to active control
a hybrid system may for example help reduce spillover effects, i.e. energy leakage
into uncontrolled modes, and/or reduce the control effort.

5.1 Active or semi-active shunt damping

There are several techniques for improving the performanceof passive shunts. Two
common approaches are to adaptively updating the shunt in order to avoid detuning,
and to use a negative-capacitance shunt in order to improve the broadband damping
of the shunt. Updating the shunt circuit is here considered as and active or semi-
active technique as it requires variable components and possibly additional sensors.
A negative capacitance cannot be constructed by using passive components only.
They are usually implemented using op-amp which require power supply and are

55
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therefore here regarded as active shunts. The following twosubsections briefly
explain adaptive shunts and negative-capacitance shunts.

5.1.1 Adaptive shunt tuning

As was mentioned in the previous chapter, a major disadvantage with resonant
shunt damping is the sensitivity to slight variations in thecapacitance of the piezo-
electric element or in the eigenfrequencies of the host structure, as this will detune
the shunt. Moheimani and Fleming [81] report that the damping performance of
a resonant shunt circuit diminished from 14 dB to only 4 dB dueto a 40-degree
temperature change. However, by adaptively updating the shunt, detuning can be
prevented and the damping performance ensured. As briefly mentioned inSection
4.2.2there are different ways of updating the shunt components inorder to ensure
the damping performance of the shunt.

Hollkamp and Starchville [101] presented a self-tuning shunt based on the RMS
voltage across the shunt. They used an adjustable resistor in the form of a motorized
potentiometer to adjust the value of a virtual inductance. Fein and Gaul [102] used
a digital potentiometer to adjust the resistance of a purelyresistive shunt. Fleming
and Moheimani [73] used a synthetic shunt impedance and a reconstructed estimate
of the RMS strain. They experimentally implemented a two-mode current-flowing
adaptive shunt circuit to damp the second and third modes of apinned-pinned beam.
The shunt provided 22 dB and 19 dB reduction of the response around the second
and third eigenfrequencies [73].

Niederberger et al. [74] made an electrical equivalent model of the host structure
and recognized that the phase shift between the host structure velocity and the cur-
rent in the shunt circuit can be used to tune a LR shunt. At the tuning frequency,
i.e. ω = 1/

√
LC, this phase shift was exactlyπ/2. The adaptive shunt circuit

was tested experimentally on a cantilever beam. The adaptation proved success-
ful in compensating both temperature variations in the piezoelectric element and
changes in the eigenfrequency of the host structure. Simulation results showed that
the adaptive shunt based on the relative phase was faster in tuning to changes in
structural eigenfrequencies than an adaptive technique based on the RMS strain
[74]. However, the approach requires a sensor on the host structure to monitor the
velocity. Niederberger also developed this approach for adaptive electromagnetic
shunt damping [103].
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Figure 5.1: A negative-capacitance converter. The impedance seen fromthe terminal is
equivalent to a negative capacitance,Zin = −R1

R2
Csu

5.1.2 Negative capacitor shunt impedances

If the internal voltage produce by the stressed piezoelectric element is interpreted
as a power supply and the shunt impedance as a load, the maximum power transfer
concept may be used [81] to convert a maximum amount of structural energy into
electrical energy. The electrical energy can than be dissipated by resistive elements.
This can add broadband damping to a structure. The optimal shunt impedance
should then be equal in magnitude to the source impedance butopposite in phase.
As the piezoelectric element electrically behaves as a capacitance, a negative ca-
pacitance is required as shunt impedance. A negative capacitance cannot be con-
structed by using only passive components, and can thus be regarded as an active
or semi-active technique. However, it is in principle an easy circuit to construct and
no additional sensors are needed. An example of a negative-capacitance converter
is shown in Figure 5.1. The implementation requires an op-amp and does therefore
need a power supply. The maximum power transfer principle does not apply to
circuits with internally dependent sources, thus derivation of the shunt impedance
needs to be modified [81]. Moheimani and Fleming [81] presented a technique for
a negative-capacitance shunt based on their concept of synthetic impedances; see
Section 4.2.3. They notice that choosing the shunt impedance as a negativecopy
of the impedance of the piezoelectric element is equal to making the closed loop
dynamics zero. However, they point out that this is equivalent to a strain feed-
back controller of infinite gain and therefore not realizable. As a consequence, the
synthetic shunt capacitance is made slightly greater than the inherent capacitance
of the piezoelectric element. The negative-capacitance shunt was successfully im-
plemented in experiments [104, 81]. Other studies of negative-capacitance shunts
include [105, 85, 106].
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5.2 Hybrid piezoelectric control

Hybrid piezoelectric control is here defined as connecting both a passive electric
network and an active source to the piezoelectric element. Thus, though such a
configuration, energy can be passively dissipated in the electrical network, and the
piezoelectric element may be driven like an actuator by the active source. The ac-
tive source can e.g. be a voltage or a current source.

Adachi et al. [107] presented an investigation of hybrid piezoelectric damping us-
ing an active voltage source in series with a tuned LR shunt. The shunt circuit was
treated as a filter and the control gains and shunt componentswere determined us-
ing linear quadratic (LQ) control theory. They showed that the control effort of the
hybrid system was decreased, compared to a purely actively driven piezoelectric
element. Agnes [108] investigated the difference in driving an LR shunted piezo-
electric element with a charge or current source. He pointedout that the purpose of
the shunt, other than reducing the modal response, was to increase the effectiveness
of the actuator close to its tuning frequency. He also reported that, in the case of
voltage driving, the shunt works as a filter causing a faster roll-off at high frequen-
cies, which could reduce the risk off control spillover [108].

Tsai and Wang [109] also pointed out that the shunt of a piezoelectric hybrid system
could improve the control authority of the actuator close tothe tuning frequency.
In order to determine the control gains and optimal shunt, they formed a quadratic
cost function of the weighted control effort and control performance. They inves-
tigated how the optimal shunt varied with different weightings and showed that, if
the weighting on the control effort is reduced, the shunt approaches a short circuit
and the hybrid system approaches a purely active system; andif the weighting on
control effort was increased, the shunt approached the optimal passive shunt as the
hybrid system approached a purely passive shunt.

Tang and Wang [110] investigated the influence of the generalized electromechan-
ical coupling coefficient (see equation 4.39) on the passivedamping performance
and control authority of a hybrid system where a resonant shunt was optimally
tuned for passive damping. They also showed that the generalized electromechani-
cal coupling coefficient could be increased by using a negative capacitance circuit.
Ozer and Royston [111] extended their approach of using the Sherman-Morrison
matrix inversion theorem for choosing the shunt to piezoelectric hybrid damping.
Just as for their study on the passive shunt [84], it was pointed out that the standard
method for shunt tuning based on the work by [64] has limitations, since it neglects
the system’s inherent damping and the response from adjacent modes.
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Using the synthetic impedance or admittance approach described in section 4.2.3,
the system of host structure with a bonded shunted piezoelectric element may be
interpreted as a feedback control problem. The shunt impedance can then be deter-
mined by using standard regulator design approaches such asLQG, H2 andH∞

control synthesis [112, 99, 81]. As the shunt impedance is nolonger confined to
being passive, the shunt can be much more effective in control structures with sig-
nificant inherent damping [112].

The mentioned studies consider only one or possibly two vibration modes. Further,
the shunt is often designed using some predefined design criterium. Thus, it is not
straightforward to draw conclusions on how different shunts will affect e.g. the con-
trol performance or control effort of a hybrid system over a wide frequency range.
This chapter presents a model of hybrid piezoelectric damping where an active
voltage source is connected in series with an inductive-resistive shunt. The piezo-
electric element is assumed perfectly bonded on a structural plate. The purpose is
to identify and investigate situation where hybrid dampingmight be advantageous
compared to pure active control. A parameter study is performed in order to find
the shunt which e.g. gives the lowest control effort over a wide frequency range
including four structural modes. A beam model is developed in order to verify the
modelling approach. The beam model is compared against measurement for active
driving of the piezoelectric element.

5.3 Modelling piezoelectric actuation

5.3.1 Various modelling approaches

Several studies have presented models of piezoelectric elements bonded to struc-
tures and used for sensing vibrations and/or actuating vibrations. Crawley and de
Luis [113] showed that the influence on a beam-like structureby the piezoelec-
tric element driven by an external voltage could be includedas edge moments at
the boundaries of the piezoelectric element. The same approach was presented for
plate-like structures by Dimitriadis et al. [114]. These models are based on static
relations, i.e. the inertial forces due to the mass of the piezoelectric element are
neglected. They also neglect the local increase in stiffness due to the mechanical
stiffness of the piezoelectric element. Recently models including both the inertia
and increased local stiffness have been developed [95].
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5.3.2 Hysteresis

The constitutive relation in equation 4.6 as well as the models presented in the suc-
ceeding sections are all based on considering the piezoelectric elements as being
governed by linear relations. This is generally true for many applications, but for
high driving-volatges the piezoelectric elements may experience hysteresis, i.e. the
relationship between the mechanical stress or strain and the electric field or dis-
placement is no longer linear; see e.g. references [115, 116]. Non-linear effects
may severely degrade the damping performance and control stability of control sys-
tems with piezoelectric transducers [117]. Several techniques have been presented
to decrease the non-linear effects, e.g. the hysteresis effect is reduced when the
piezoelectric element is driven by charge or current instead of voltage. Both cur-
rent and charge driving have been successfully implementedin experiments [118].

5.3.3 Plate model

PZT

Host structure

Z

vc

+

−

Figure 5.2: A host structure with a surface-bonded piezoelectric element (PZT) which is
shunted by a passive impedance (Z) and an active voltage sourcevc.

The plate model presented in this section is similar to the one presented in the pre-
vious chapter. However, in addition to shunting a piezoelectric element by a passive
electrical network, a voltage source is added in series to the shunt; see Figure 5.2.
This forms a hybrid active-passive vibration control system. In order to model the
hybrid damping treatment, the shunt network is not includedin the material com-
pliance as in the previous chapter. Instead and electrical model of the piezoelectric
element, the shunt and the voltage source is used; see Figure5.3. The voltage
source is assumed to drive the piezoelectric element at moderate voltages, hence
linear relations for the piezoelectric element can be used.Considering the piezo-
electric element as a voltage source in series with a capacitance, as in reference
[81], an expression for the terminal voltage (v3) can be found as

v3(s) =
vc(s) − Zs(s)vp(s)cps

1 + Zs(s)cps
= gcvc + gsuvp, (5.1)
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where s is the Laplace variable, and wheregc = 1/(1 + ZsCps) and gsu =
−Zscps/(1 + Zscps). The voltagesvc andvp describe the control voltage and volt-
age produced by the stressed piezoelectric element respectively, Zs describes the
shunt impedance andcp the inherent capacitance of the piezoelectric element. The
voltage produced by the stressed piezoelectric element,vp, is found by integrating
the charge over the area of the piezoelectric element and canbe expressed as

vp =
d31

cp

∫∫

a

(σ1 + σ2)da, (5.2)

wherea is the area of the piezoelectric element.

+

+

+

−

−
−

Zs
v3

vc

vp

i

cp

Figure 5.3: The electrical model of the piezoelectric element, shunt impedance (Zs) and
external voltage source (vc). vp andcp is the voltage produced by the stressed
piezoelectric element and its inherent capacitance respectively, andv3 is the
terminal voltage andi is the current.

By including a voltage across the piezoelectric element in the derivations, equation
4.12 is replaced by

D∇4w(x, y, t) + m′′ ∂2

∂t2
w(x, y, t) + Γw,Ω = q(x, y, t) + qpzt(x, y, t), (5.3)

where
qpzt = v3d13Dpc(1 + νp)∇2Ω(x, y), (5.4)

whered31 is the piezoelectric strain constant. The termDps is defined as

Dpc =
Eptpc

1 − νp

, (5.5)

wheretpc = tk+tp

2
. The derivation of equation 5.3 can be found inPaperV. The

term Γw,Ω in equation 5.3 does here only include the mechanical stiffness of the
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piezoelectric element and no shunt effects, and is derived and explained inPaper
V. This term is often neglected and is only included here to becoherent with the
model inChapter 4. For the purposes of this study, it has no significant effects.
Excluding this term will simply shift the eigenfrequenciesslightly downward in the
spectrum as the composite structure becomes less stiff. Equation 5.3 is solved by a
modal approach, for a simply supported rectangular plate, and gives the deflection
field according to

w(x, y, ω) =

∞
∑

n

∞
∑

m

Qext
n,m − Qpzt

n,m

Mn,m

(

ω2
n,m − ω2

)

+ Kpzt
n,m + Ξpzt

n,m

sin(knx) sin(kmy).

(5.6)
The termKpzt

n,m does here only describe the mechanical stiffness of the piezoelectric
element and does not include the shunt effects. The modal complex stiffness due
to the shunt is instead included inΞpzt

n,m. The force due to the voltage driving of the
piezoelectric element is given by

Qpzt
n,m =

∫∫

S

gcvcd13Dc(1 + νp)∇2Ω(x, y)φn,mdS

≈ gcvcd13Dc(1 + νp)(k
2
n + k2

m)lxly sin(knxc) sin(kmyc). (5.7)

The modal stiffness due to the shunt is given by

Ξpzt
n,m =

∫∫

S

gsuvpd13Dc(1 + νp)∇2Ω(x, y)φn,mdS

≈ gsu

k2
13

1 − k2
13

Dpc(k
2
n + k2

m)2a sin2(knxc) sin2(kmyc). (5.8)

The modal mass, disturbance force and modal stiffness due tothe shunted piezo-
electric element are defined in equations 4.18, 4.20 and 4.19respectively. The
approximation in equations 5.7 and 5.8 comes again from assuming that the piezo-
electric element is small compared to the bending wavelength.

5.3.4 Beam model

A beam model is derived using the same modelling approach as for the plate. The
beam model is used in order to verify the model against measurements. The model
is derived for pure driving of the piezoelectric element andnot hybrid damping.
The beam model with a surface bonded piezoelectric element,presented inSec-
tion 4.3.4, can be extended to including an external electric field. By including an
external electric field (in this case a voltage) in the derivations of the differential
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equation an additional term appears and equation 4.23 is replaced by

EI
∂4

∂x4
w(x, t) + m′ ∂2

∂t2
w(x, t)

+ Epbptc

(

∂4w

∂x4
Ω(x) + 2

∂3w

∂x3
Ω′(x) +

∂2w

∂x2
Ω′′(x)

)

+ m′
p

∂2

∂t2
w(x, t)Ω(x) = q(x, t) + qpzt, (5.9)

where
qpzt(x, t) = v3d13Eptc [δ′(x − x1) − δ′(x − x2)] , (5.10)

whereδ′ is the derivative of the Dirac function. Equation 5.9 is similar to the
standard equation for modelling piezoelectric driving as found in reference [12].
However, equation 5.9 includes mass- and stiffness effectsof the piezoelectric el-
ement. Inserting equation 5.10 into equation 5.9 using a modal approach to solve
for the deflection field yields

w(x, ω) =

∞
∑

n

Qext
n + Qpzt

n

Mn (ω2
n − ω2) +

(

Kpzt
n − ω2Mpzt

n

)φn(knx). (5.11)

Equation 5.11 contains an extra terms compared to equation 4.29, describing the
actuation by the control voltage (Qpzt

n ). The modal force due to the external voltage
source can be expressed as

Qpzt
n ≈ vck

2
ntpztbplaEpd31φn(xc). (5.12)

The modal shape functionsφn for a free-free beam are given by equation 4.26.
Equation 5.11 describes a free-free beam with a surface bonded piezoelectric ele-
ment.

Figure 5.4 shows the transfer function between the terminalvoltage and the veloc-
ity at one end of the beam. The figure shows that the model describes the beam
motion well, especially around the eigenfrequencies of thefirst and third modes.
The piezoelectric element is centred on the beam. However, as the second and
fourth modes are weakly excited the piezoelectric element is slightly off-centre.
The beam and piezoelectric element have the same propertiesand geometry as in
Section 4.5. The model has been tuned some in order to get the correct level of
the transfer function. This is due to that the piezoelectricelement is not perfectly
bonded as assumed in the model.

Including the mass and stiffness in equation 5.9 was done in order to be coherent
with the previous chapter. However, neglecting these will lead to very similar re-
sults except a slight increase in magnitude of the transfer function. As the model
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is anyway slightly tuned in order to get the correct level of the transfer function
magnitude, in practice the mass and stiffness in equation 5.9 could have been ne-
glected. Aoki et.al. showed that including the stiffness effects of the piezoelectric
element bonded to a plate results in a transfer function between driving voltage and
plate response which decreased compared than when these effects are excluded
[95]. However, the frequency behavior of the transfer functions with and without
the stiffness effects were very similar, as long as the bending wavelength was sig-
nificantly larger than the size of the piezoelectric element. They also showed that
including the mass of the piezoelectric element only affected the transfer function
for high frequencies.
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Figure 5.4: The transfer function between voltage applied to the terminals of the piezo-
electric element and the velocity at one end of the beam.−: measurements; -
- -: model

5.3.5 Control law for the active voltage source

The control voltage may be determined in several ways, e.g. by measuring the
current in the shunt circuit; as in the case of the synthetic impedance [81]; or by
a structural sensors [115]. A control law is defined, based onwhat is desirable to
achieve for the specific case. In order to ensure global vibration control of the plate,
a straightforward control law is to minimize the kinetic energy. The kinetic energy
can be expressed in terms of the structural modes according to [12]:

Ek(ω) =
Mω2

4
aHa. (5.13)
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The modal amplitudes can be written as a sum of the contribution of the primary
excitation and control voltage respectively according to

a = ap + bvc, (5.14)

whereap is a vector containing the modal amplitudes in the presence of only the
primary disturbance, andb is a vector of transfer functions which relate the control
voltage to the modal amplitudes. Substituting 5.14 into 5.13 gives

Ek(ω) = |vc|2bHb + v∗
cb

Hap + vca
H
p b + aH

p ap. (5.15)

Ek is a quadratic function which has a unique minimum given by

Ek,0(ω) =
Mω2

4

(

aH
p ap −

bHaaH
p b

bHb

)

, (5.16)

for the control voltage given by

vc,0(ω) = −
aH

p b

bHb
. (5.17)

This control law requires that the primary disturbance is known. This may be un-
realistic in many practical cases but serves the purpose of the investigation well,
i.e. identify situations where hybrid piezoelectric soundand vibration control can
be advantageous compared to pure active control or passive damping. The kinetic
energy of the plate and the radiated sound power with and without active control
are shown in Figures 5.5 (upper) and 5.5 (lower) respectively. The piezoelectric el-
ement was collocated wit the primary disturbance at(xc; yc) = (Lx/4; Ly/4). The
figures show that the energy of the plate is efficiently reduced over the entire con-
sidered frequency range. Reducing the kinetic energy of theplate naturally leads
to a reduction in the radiated sound power.

The results in Figure 5.5 are calculated with the optimal frequency domain results
given by equation 5.17; thus there are no guarantees that thefilter is realizable.
Further, this controller requires that modal amplitudes can be exactly measured,
something which is hard to achieve in practice. However, it has been shown that
the kinetic energy can be efficiently reduced by consideringthe sum of responses
at several spatial points; see references [12, 51] for minimizing the kinetic energy
on a beam or [119] for minimising the far field sound pressure.

5.3.6 Parameter study of LR-shunt for hybrid piezoelectricdamp-
ing

This section will provide examples of some cases where hybrid active-passive
piezoelectric damping might be advantageous compared to pure active control.
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Figure 5.5: Upper: The kinetic energy of the composite plate. Lower: Thesound power
of the composite plate. No control (−) compared to active control (- - -) .
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Previous literature have identified positive effects of having and inductive-resistive
shunt together with active driving of the piezoelectric element, e.g. an improved
control authority around the tuning frequency.

The control law presented in the preceding section for active voltage driving effi-
ciently reduces the kinetic energy of the plate; see Figure 5.5. Thus, in this ideal
case, additional damping provided by a shunt network may notbe very interesting.
However, there are other advantages that the shunt network can contribute. Pas-
sive damping will provide fail-safe damping in case the active control fails due to
e.g. loss of power. Furthermore, the control law proposed inthe preceding section
is the optimal frequency domain controller and may not be realizable in the time
domain. In fact, the control law is non-causal and thus the controller needs to pre-
dict the future behaviour of the disturbance signal. This might be possible in some
cases but is generally not. Thus, the causal controller may not be as efficient, and in
that case the shunt may provide additional reduction of the sound and/or vibrations.

Further, as only a finite number of modes can be included in thecontroller, there
may be some control spillover, i.e. the controller excites residual modes. As re-
ported in reference [108] a LR shunt causes a roll-off of the control authority above
the tuning frequency of the shunt. This will in practice worksimilar to a lowpass
filter which will reduce the spillover effect.

Figure 5.6 shows the energy contained in each mode for the case of no control
(black), active control (dark grey) and hybrid control (light grey). The modal en-
ergy is calculated by summing the response of each mode in thefrequency range
where the mode is dominant. The control law in this case is to minimize the kinetic
energy of only the first mode, i.e. the vectors in equation 5.14 reduce to scalars.
The figure shows that the pure active control efficiently controls the first mode. As
the simulations consider ideal conditions, the kinetic energy in the first mode is
reduced to virtually zero, i.e. negative infinity dB. However, energy is leaked into
the other modes, which are amplified compared to the case of nocontrol. Introduc-
ing a passive LR-shunt reduces the effect of control spillover and the energy in the
higher modes is less or equal to the uncontrolled case. The shunt is chosen from
a parameter study to give the lowest total kinetic energy of the plate in the case
of the controller only including the first mode. The parameter space was chosen
to include optimal damping according to reference [64] for all considered modes,
and the total kinetic energy was calculated by summing the spectral components
of the kinetic energy over the considered frequency range. The "optimal" shunt in
this case was tuned to a frequency in between the third and fourth mode. Thus, the
(2,1) and (2,2) modes are slightly damped due to the passive damping provided by
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the shunt. In the passive configuration this shunt give abouta 3.5 dB reduction for
the kinetic energy. Thus proving fail-safe damping to the structure.

It may also be mentioned that, in case of a feedback control, control spillover in
combination with observation spillover - i.e. residual modes observed by the sen-
sors - can lead to instabilities [120, 121]. In that case, passive damping can help
improve the stability margins.
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Figure 5.6: Modal energy. No control (black), active control (grey), hybrid control (light
grey)
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Figure 5.7: The control effort using only active control (−) compared to using hybrid con-
trol (- · -)
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The magnitude of the voltage which is needed to fulfil the control law describes the
control effort. The control effort will in turn set the requirement on the hardware
which is needed to implement the controller, e.g. the amplifier which is needed to
provide the voltage and the tolerance of the actuator. References such as [108, 110]
report that the shunt may increase the control authority around the tuning frequency
of the LR-shunt which will reduce the control effort around this frequency. Figure
5.7 shows the control effort of pure active control comparedto hybrid control. The
figure shows that there is a significant reduction of the control effort around the
tuning frequency of the shunt, which is approximately at 970Hz. The shunt is in
this case chosen from the parameter space explained above inorder to minimize
the total control effort. The total control effort is the sumof the spectral compo-
nents of the control effort over the considered frequency range. The shunt which
gives this "optimal" results in terms of control effort is a purely inductive shunt.
Such a shunt does not dissipate any vibrational energy in thepassive configuration
and does not offer any of the fail-safe damping which is normally associated with
hybrid control. Therefore it might be advantageous to introduce a resistive element
in the shunt. This gives a trade-off between control effort and passive damping.

The figure also shows that at the upper end of the considered frequency range the
control effort is increased for hybrid control compared to pure active control. This
is due to the lowpass filtering effect explained above. Thus ahybrid system may
cause an increased control effort if modes included in the controller appear above
the tuning frequency of the shunt. This phenomenon was also reported in [111].
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Chapter 6

Implementation of shunt damping on
an oil pan

This section presents an experimental investigation of implementing piezoelectric
shunt damping on a car structure. The chosen structure was the oil pan. Studies
have revealed that the oil pan is responsible for a major partof the radiated sound
from the engine and power train. Bending modes of the oilpan are identified and
shunt damping is implemented to reduce the modal response. Experimental reduc-
tion of around 10 dB is achieved.

6.1 Car structure

The structure which was chosen in order to implement the shunt damping technique
on was an oil pan from a passenger car; see Figure 6.2. The oil pan has been identi-
fied as a major contributor of engine noise emission, both forcars [122] and trucks
[123]. The oil pan was mounted in a wooden wall in order to giveit a relatively stiff
mounting as well as significant damping. This is not a mounting condition which
will reflect the actual mounting of the oil pan inside the car engine. However, it
captures two important features: firstly the stiff mountingcan be expected also in
the car engine, as the oil pan is screwed to the gearbox; secondly the high damping
can also be expected because of viscous damping from the oil inside the oil pan.
The measurement set-up is shown in Figure 6.1.

An electromechanical shaker was used to excite the oil pan. The stinger was
mounted as indicated by the arrow in Figure 6.1. The shaker isnot mounted in
order to resemble the real excitation when the oil pan is mounted in the engine,
but merely to try to excite some potentially efficiently radiating modes. The trans-
fer function (accelerance) between the force input and the acceleration at various
points on the oil pan was measured. The mobility can be calculated by integrating

71
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F

Figure 6.1: A schematic drawing of the oil pan mounted on a wooden frame. The arrow
indicates where on the top plate the force was applied by the shaker.

I
II

Figure 6.2: A photo of the oil pan; the circles indicate the measurement points.
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Figure 6.3: Measured transfer mobilities between the force input and velocity at three dif-
ferent points.−: the velocity at point I; - - -:the velocityat point II;·····: the
velocity at a control point not located on the top plate.

the accelerance, which in the case of harmonic oscillationscorresponds to a divi-
sion with jω. The transfer mobilities between the input force and velocity at the
points indicated by the arrows in Figure 6.2 are shown in Figure 6.3. The figure
also includes the transfer mobility between force input anda point on the oil pan
outside the top plate. There seem to be two distinct peaks in the mobility functions,
one at approximately 1200 Hz and one at approximately 2150 Hz. Plotting the
vibrational response at these frequencies may indicate wether any particular mode
is driving the response. Figures 6.4 show the velocity distribution of the oil pan
at the two mentioned frequencies. The figures indicate that,at the first and second
resonance frequencies the velocity fields look like they aredominated by the first
and second bending modes, respectively, of a simply supported plate. Thus the
model presented in the previous section may be used to gain some insight into the
possibility of applying piezoelectric damping to the oilpan.

6.2 Engineering model

The transfer functions measured on the oil pan can be roughlyestimated with the
plate model described inSection 4.3.3. The simply supported plate model can
approximately describe the top plate of the oil pan. The material data of the oil pan
may be difficult to find by looking in standard tables. However, the product of the
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Figure 6.4: Upper: The velocity field at 1207 Hz. Lower: The velocity fieldat 2157 Hz.
The asterisks (∗) indicate the measurements positions.
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Table 6.1: The material properties and geometry used in the plate model.

Young’s modulus Density Width Height Thickness
158 MPa 3000 kg/m3 220 mm 130 mm 4.5 mm

mass per unit area and bending stiffness can be found by finding the level of the
plate mobility. The mobility of an infinite plate is given by

Yinf =
1

8
√

m′′B
, (6.1)

wherem′′ andB are the mass per unit area and bending stiffness respectively. The
dimensions of the top plate of the oil pan can be roughly measured, and by choosing
the density as that of casting iron the stiffness can be determined by finding the
proper level of the infinite plate mobility. The properties and dimensions of the
plate are given in Table 6.1. The modal damping of the plate was determined
by finding the correct level of the resonance peaks. The mobilities of the plate
model are compared to the measured mobilities in Figures 6.5. The first seven
bending modes are included in the model, the highest with an eigenfrequency of
around twice the upper considered frequency limit. The plate model can be used to
estimate the potential damping that a shunted piezoelectric element would augment
to the oil pan. The model can also assist in choosing the properties, geometry and
location of the piezoelectric element.

6.2.1 Prediction of shunt damping efficiency

The shunted piezoelectric element can be designed to provide optimal damping ac-
cording to [64] of either of the two modes which have their eigenfrequencies in the
considered frequency range. A common piezoceramic material with the properties
given in Table 6.2 was used in the simulation. The model was used to investigate
the effect of the thickness of the piezoelectric element on the efficiency of the shunt
damping treatment. Figure 6.6 (a) shows the plate’s centre point velocity per unit
force zoomed around the first resonance frequency for three different thicknesses.
The piezoelectric element was placed in the centre of the plate, as this is the point
of maximum strain for the first mode. As the thickness of the piezoelectric element
increases (i.e. the bending stiffness increases) the shuntdamping becomes more
efficient. A piezoelectric element 1 mm thick can only provide a reduction of the
velocity of less than 3 dB, while a 3 mm thick element can provide almost 5 dB
reduction. Figure 6.6 (b) shows the plate velocity atx = Lx/2, x = Ly/4 per
unit force zoomed around the second resonance frequency forthree different thick-
nesses. The piezoelectric element was placed at the point ofmaximum strain for
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Figure 6.5: Upper: Measured and calculated mobilities at point I. Lower: Measured and
calculated mobilities at point II.−: measured mobility; - - -: calculated mo-
bility; ·····: mobility of an infinite plate.
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Table 6.2: The material properties and geometry for the piezoelectricelement.

SE
11 lx ly k31 Cp

1.7 · 10−11 m2/N 0.05m 0.025m 0.327 25µF

the second mode. A piezoelectric element 1 mm thick can provide a reduction of
the velocity of approximately 10 dB, while a 3 mm thick element can provide about
15 dB reduction. Piezoelectric shunt damping is thus more efficient in damping the
second mode compared to the first mode, due to that the piezoelectric element in
this case is larger compared to the bending wavelength. Increasing the thickness of
the piezoelectric element is one way to increase the generalised electromechanical
coupling coefficient, thereby increasing the efficiency of shunt damping. Another
way would be to increase the area. However, increasing the thickness is more effi-
cient than increasing the area, as the thickness has a largereffect on the total modal
stiffness of the shunted piezoelectric element.

6.3 Experimental implementation of shunt damping

Inductive-resistive shunt damping of the second bending mode on the oil pan was
experimentally implemented. The shaker was placed in the position shown in
Figure 6.2, which is the position where the second bending mode is most eas-
ily excited. An accelerometer was placed at the point where the second bending
mode has maximum strain. The shunt was implemented on the DSPboard as de-
scribed inSection 4.5. The optimal resistance and inductance were calculated to
beR = 344 Ω andL = 0.23 H respectively. Figure 6.7 shows the measured trans-
fer mobility with the piezoelectric element shorted and shunted respectively. The
figure shows that the peak amplitude could be reduced by approximately 10 dB.
This is approximately the reduction which was predicted by the plate model. The
measurement with shunt damping is quite noisy. This is due tothe fact that the
piezoelectric element is exciting the structure at other frequencies except the tun-
ing frequency. This was most likely due to poor electrical circuitry.

Figure 6.8 shows the sound pressure level in the direct field of the radiating oil
pan. It is clear that the sound pressure level is reduced in the frequency range of
approximately 1900 Hz to 2100 Hz. In the one-third octave band with a centre
frequency of 2000 Hz the sound pressure level is reduced by approximately 3 dB.
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Figure 6.6: (a) The normalised velocity at the centre point of the plate,zoomed around the
first resonance frequency. (b) The normalised velocity atxc = Lx/2; yc =

Ly/2, zoomed around the second resonance frequency.−: tp = 0.001m
short circuit, - - -: tp = 0.001m LR shunt; ·····: tp = 0.002m LR shunt;
tp = 0.003m LR shunt.



6. Implementation of shunt damping on an oil pan 79

1700 1800 1900 2000 2100 2200 2300
−80

−75

−70

−65

−60

−55

Frequency [Hz]

M
ag

n
itu

d
e

[d
B

re
f1

V
/N

s]

Figure 6.7: The measured transfer mobility under an open circuit condition (−) and with
shunt damping (- - -).
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Figure 6.8: The sound pressure level in the direct field of the oil pan, under and open
circuit condition (−) and with shunt damping (- - -).
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Chapter 7
Discussion and conclusions

7.1 General discussion

This thesis has presented approaches to passive, active andhybrid active-passive vi-
bration control for lightweight vehicle structures. Mathematical models describing
beam- and plate-like structures were developed to theoretically evaluate the vibra-
tion damping treatments, and experiments were conducted toverify the models.

Referring back to the introduction, the outcome of the first part of the thesis - in-
vestigating the potential of controlling propagating waves in structures in order to
confine vibratory energy in structural components with highinherent passive damp-
ing - can be summarized as follows:

The concept of active scattering factors (Section 2.3.1) enabled simple derivations
of control laws to alter the scattering properties at a structural junction of two semi-
infinite, non-dissipative beams. Results from a parameter study (Paper I) showed
that if an active force is driven to cancel the reflection at the junction, the properties
of the beams can be chosen so that the force always absorbs a part of the incident
wave power. This result inspired a hybrid active-passive damping treatment, as pas-
sive damping could be introduced to possibly dissipate the remaining wave power
transmitted across the junction.

By developing an impedance approach to active junction control (Section 2.3.2),
more general beams could be treated, such as finite and dissipative beams. By in-
troducing a highly dissipative sandwich beam at the junction, with the force driven
to cancel the reflection of a wave, all incident wave power could be absorbed, either
actively by the force or passively in the sandwich composite. However, studying
this junction reveals that, at resonance frequencies of thesandwich beam ,the re-
quired control effort is substantial. Furthermore, at these frequencies the active
force injects power, which is naturally unfortunate for a hybrid damping treatment
(Section 3.2andPaperII).

81



82 7. Discussion and conclusions

PaperIII presented a detailed parameter study of a hybrid dampingtreatment con-
sisting of an active force driven to cancel the reflection at astructural junction and
a beam with high inherent losses with the purpose of dissipating wave power trans-
mitted across the junction. The study revealed that the properties of the highly
dissipative beam can be chosen in a way so that the hybrid system may offer ad-
vantages compared to pure active control (i.e. a lower control effort), and pure
passive control (i.e. an improved efficiency). However, this requires that the prop-
erties of the passive damping treatment can be chosen with high precision, which
will severely limit the possibility of experimental implementation. Moreover, this
investigation assumed that exact measurements of the bending wave amplitudes, or
deflection and rotation, could be obtained as well as having actuators applying ideal
point forces and moments. This would further complicate actual implementation.

Furthermore, as this approach requires structural components with specific proper-
ties, it could imply a structure with high mass, which is evidently not acceptable.
These results motivated the second part of the thesis, replacing the structural com-
ponents with electrical components to provide passive damping.

Piezoelectric shunt damping can be used to augment structural damping to a struc-
ture by introducing electrical losses (Chapter 4). Analytical models of a plate and
a beam with a surface-bonded, shunted piezoelectric elements were developed for
investigating shunt design based on both structural response and radiated sound
power (Section 4.3.4, Section 4.3.3andPaperIV). For very lightly damped struc-
tures, piezoelectric shunt damping using an LR network which was detuned from
any structural eigenfrequency could be used to influence thekinetic energy and ra-
diated sound power over a wider frequency range than just a single mode (Chapter
4.4.2andPaperII). Detuning the LR shunt gives the potential to reduce the total-
kinetic energy and/or sound power (i.e. the sum of respective spectral components),
and makes the shunt less sensitive to changes in structural eigenfrequencies and/or
piezoelectric capacitance.

If the eigenfrequencies of the first structural modes of the plate appear under their
critical frequencies the shunt treatment which is optimal from the viewpoints vi-
bration and sound radiation respectively may differ substantially - in terms of both
the inductance and resistance of the shunt as well as the location of the piezoelec-
tric element (PaperIV). The analytical model of the beam with a surface-bonded,
shunted piezoelectric element agreed very well with measurement and could be
used to predict the efficiency of modal shunt damping (Section 4.5).

Shunt damping was also successfully implemented on an oil pan of an automotive
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vehicle. The oil pan has been recognized as a major contributor of external noise
emission. Experiments showed that the amplitude of the second bending mode
could be reduced by approximately 10 dB by implementing a simple inductive-
resistive shunt, although the measurements were very noise.

Combining voltage driving of the piezoelectric element with a passive LR shunt
may offer certain advantages over pure active driving (Chapter 5andPaper V).
E.g. in cases where the active controller excites residual uncontrolled modes, a
passive shunt can help to provide passive damping of these modes. Further studies
are needed in order to clarify in which situations hybrid damping is advantageous
and how it can be designed. However, initial results reveal the potential of a piezo-
electric hybrid damping. Previous studies have reported that a passive shunt can be
used to increase the control authority of the active controller; see e.g. [108, 107].

In general it can be said that when designing passive, active, or hybrid damping
treatments it is vital to have knowledge of the specific circumstances for which the
treatment is intended, as this may significantly influence the optimal design. This is
clearly shown in the results from the study of piezoelectricshunt damping, where
the shunt varies significantly when optimized on the basis ofdifferent criteria.

7.2 Future work

Based on the results from the studies presented in this thesis, several points in
the discussion could be used as topics of subsequent studies. However, the most
natural extension of this work would be to experimentally implement the piezo-
electric hybrid active-passive control system, for broadband control. Control laws
for designing the control filter and principles for shunt designing could be studied
with respect to vibration levels, radiated sound and fail-safe damping, thereby in-
vestigating wether there are any general design principleswhich can be applied to
piezoelectric hybrid damping treatments.
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Appendix A

Mathematical derivations

Here follows some mathematical derivation which are not included in the main
body of the thesis or in the appended papers.

A.1 The piezoelectric constitutive relations

The general constitutive relation for a linear piezoelectric material is given by equa-
tion 4.6 inChapter 4. The stress and strain vectors given in equation 4.6 are defined
as
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, (A.1)

where it is assume that the material axes (1,2,3) of the piezoelectric plate are
aligned with the coordinate axes (x, y, z) of a Cartesian coordinate system; see
figure??. σ andτ represent extensional stress and shear stress respectively, andε
andγ extensional strain and shear strain respectively. Thus, the material axes 4,5,6
represents shear around thex, y, z-axes respectively. The electrical field and the
electrical displacement vectors are defined as
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The elastic compliance matrix is given by
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
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As the electric field can only contribute to electric charge in the same direction as
the field is applied the matrixξσ is diagonal according to

ξσ =





ξσ
1 0 0
0 ξσ

2 0
0 0 ξσ

3



 . (A.4)

The electromechanical coupling matrix is given by

d =





0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0



 . (A.5)

A.2 Modal forces by a shunted piezoelectric element
on a free-free beam

The contribution by the piezoelectric element in equation 4.23 is given by the term

Epbptc

(

∂4w

∂x4
Ω(x) + 2

∂3w

∂x3
Ω′(x) +

∂2w

∂x2
Ω′′(x)

)

+ m′
p

∂2

∂t2
w(x, t). (A.6)

Inserting the modal solution approach gives for the n:th mode

Epbt
(

k4
nφnΩ + 2φ′′′
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nΩ′′

)

an − ω2m′
panφnΩ (A.7)

Multiplying this expression byφm and integrating over the length of the beam gives
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φnφmdx+2Epbtan

∫ L

0

φ′′
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∫ L

0

φ′′
nφmΩ′′dx

(A.8)
Solving this integral and assuming orthogonality of the modes, i.e.φnφm = 0
if n 6= m yields the modal mass and stiffness due to the piezoelectricelement
according to

Mpzt
n = ρptpbplaω

2ζn(x) (A.9)

Kpzt
n = Epbtk

4
nζn(x). (A.10)
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Assumingknla ≪ 1 the functionζn(x) can be approximated as

ζn(xc) ≈1 +
(1 + γ2

n)

2
(cosh2(knxc) − sinh2(knxc))

+
(1 − γ2

n)

2
(cos2(knxc) − sin2(knxc))

− 2γn(sinh(knxc) cosh(knxc) + cos(knxc) sin(knxc))

+ 2(cosh(knxc) − γn sinh(knxc))(cos(knxc) − γn sin(knxc)) (A.11)

(A.12)

Which is the expression found in equation 4.29.
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Appendix B
Examples of beam junctions

This chapter presents some examples of passive and active junctions and how the
impedance formulation, which was presented in 2.3.2, can beused to calculate the
scattering properties of such junctions.

B.1 Passive junctions

Two examples of passive junctions are presented: A beam terminated by a deflec-
tion spring and a mass; and a junction where a semi-infinite beam with arbitrary
cross-sectional area and material properties is connected.

B.1.1 Example I: A beam terminated with a mass and deflection
spring

In order to derive the reflection matrix for an Euler-Bernoulli beam terminated by a
mass and deflection spring at a free end, the impedance matrixfor each component
has to be derived and added. Thus the impedance matrix for a free end, a deflection
spring and a point mass has to be known. Table B.1 gives the impedance matri-
ces for a point-mass and a deflection spring respectively. The combined junction
impedance matrix is given by

Ẑtot = Ẑfree + Ẑmass+ Ẑspring =

[

j(ωm− Kd

ω
) 0

0 0

]

. (A I)

kaEIa m

Kd

Figure B.1: Figure depicts the junction in example A.
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Inserting this into equation 2.6 gives

rmKd =
1

σ

[

−jk3EI − mω2(1 + j) + Kd(1 + j) k3EI(1 + j)
k3EI(1 − j) jk3EI − mω2(1 + j) + Kd(1 + j)

]

,

(A II)
wherem andKd represent mass and spring stiffness respectively and,

σ = k3EI + mω2(1 + j) − Kd(1 + j). (B.1)

B.1.2 Example II: A beam with an arbitrary change in Young’s
modulus, density or cross-sectional dimensions

In this example the beam is connected to a semi-infinite beam with arbitrary cross-
sectional dimensions material properties. The junction impedance matrix is thus
the characteristic impedance matrix of a semi-infinite Euler-Bernoulli according to

Ẑ = Z̃+
b =

EIb

ω

[

(1 + j)k3
b k2

b

k2
b (1 − j)kb

]

, (B.2)

where the subscriptb has been introduced in order to separate this matrix from the
characteristic impedance matrix of the original beam. Inserting this into equation
2.6, the reflection matrix will turn into that of equation 2.3. Also the transmission
matrix can for this case be stated with the impedance formulation according to,

tarb = C+
b

(

I +
(

Z̃− − Ẑ
)−1 (

Ẑ− Z̃+
)

)

, (B.3)

whereC+
b is just asC+ except with a discriminating wave number and bending

stiffness, andI is a 2×2 unit matrix. By solving this equation the transmission
matrix will be equal to the one in equation 2.2. Hence, the impedance formulation
was here used to derive the scattering matrices matrices in equations 2.3 and 2.2,
originally presented in [43].

kaEIa kbEIb

Figure B.2: Figure depicts the junction in example B.
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Table B.1: A few standard junction impedance matrices and the corresponding reflection
matrix. m represents mass,Kd spring stiffness whileEI andk represent the
bending stiffness and the wavenumber respectively of he beam.

Case Ẑ r

Free end 0

[

−j 1 + j
1 − j j

]

Continuous beam Z̃+ 0

Point mass

[

−jωm 0
0 0

]

1
Γ

[

(1 + j)k3EI − 2ω2m −2k3EI
2jk3EI −(1 + j)k3EI − 2ω2m

]

Deflection spring

[

jKd

ω
0

0 0

]

1
Ω

[

−j(k3EI + Kd − jKd) (1 + j)k3EI
(1 − j)k3EI j(k3EI − Kd + jKd)

]

Constants Γ = 2ω2m − k3EI(1 − j)
Ω = Kd + Kdj + k3EI

B.2 Active junctions

Constraints may be specified on the reflection matrix in equation 2.6 and the cor-
responding required active impedance load can be derived. Inserting equation 2.7
into equation 2.6 yields

r =
(

C−
)−1
(

Z̃− − (Ẑpass+ Ẑact)
)−1 (

(Ẑpass+ Ẑact) − Z̃+
)

C+. (B.4)

From this equation,̂Zact can be solved as

Ẑact =
Z̃−(T + I|T|) + Z̃+(I + adj(T))

|T| + trace(T) + 1
− Ẑpass, (B.5)

where
T = C−r(C+)−1, (B.6)

and where adj denotes the adjugate matrix ofT. Almost any beam junction can be
actively achieved by a correct choice of the active impedance matrix, e.g. a con-
tinuous beam can be modified to behave as a free end. Note, it isimportant to
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remember that this reasoning is highly theoretical. For an actual implementation
on a real beam a number of issues would complicate the matter,filter implementa-
tion, measurements and actuation.

The power injected or absorbed by the active impedance load is given by

Win =
1

2
Re
{

(

(C+ + C−r)a+
)H

Zact(C+ + C−r)a+
}

, (B.7)

whereH denote Hermitian transpose. An optimal power absorbing controller may
be derived by choosingZact in a way that will minimise equation B.7.

Different control laws, for both force and moment actuation, are investigated in
Paper II. A few examples are given here in order to facilitate understanding of
actively manipulating beam junctions in this way.

B.2.1 Example III: Making a continuous beam into a free end

The active impedance matrix is here used in order to manipulate a continuos beam
to have the reflection matrix of a free end. The reflection matrix for a free end is
given by Table B.1

rfree =

[

−j 1 + j
1 − j j

]

. (B.8)

The passive junction matrix for a continuous beam is

Ẑpass=
EI

ω

[

(1 + j)k3 k2

k2 (1 − j)k

]

, (B.9)

which is the characteristic impedance matrix for a wave and near-field traveling in
positive x-direction. Inserting B.8 into equation B.6 and then together with equa-
tion B.9 into equation B.5 and yields

Ẑact =
EI

ω

[

−(1 + j)k3 −k2

−k2 −(1 − j)k

]

= −Z̃+. (B.10)

In this case the choice of the active impedance matrix is obvious. Since the free end
impedance matrix is the null matrix, according to equation 2.7 the active impedance
load just has to be equal to the negative of the passive junction impedance matrix.
However, in other cases the correspondence between the desired reflection matrix
and the junction impedance matrix might be less obvious. This active impedance
load will block any incident wave field from being transmitted across the junction.
This could be helpful for isolating a part of a structure froma disturbance.
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B.2.2 Example IV: Avoid reflections at a junction with an ar-
bitrary change in Young’s modulus, density and/or cross-
sectional dimensions.

The reflection matrix for junction where the beam is connected to a semi-infinite
beam with arbitrary cross-sectional dimensions material properties is given in equa-
tion 2.3. The active impedance load can be chosen so that the reflection matrix
becomes zero and no reflection occurs at the junction despitethe impedance mis-
match between the beams. The desired reflection matrix is thus the null matrix, and
the passive-junction impedance matrix is

Ẑpass=
EIb

ω

[

(1 + j)k3
b k2

b

k2
b (1 − j)kb

]

= −Z̃+
b , (B.11)

where the subscriptb denotes the difference in bending stiffness and bending wavenum-
ber between the beam to the left and right side of the junctionrespectively. Inserting
equation B.11 andT = 0 into equation B.5 yields

Ẑact =
EI

ωγ

[

k3(1 + j)(γ − αγ2) k2(γ − αγ)
k2(γ − αγ) k(1 − j)(γ − α)

]

, (B.12)

whereα andγ are defined in equation 2.4. The active impedance load definedby
the matrix in equation B.12 compensates for the impedance mismatch introduced
by the step change in Young’s modulus, density or cross-sectional dimensions, or
any combination of these. If the beam is continuous, i.e.α = γ = 1, equation
B.12 becomes the null matrix. This is obvious, since in that case no active control
is needed. Ifα = 1 andγ → 0, i.e. the right side beam vanishes and the junction
turns into a free end, the matrix in equation B.12 turns into the matrix of equation
B.11. Hence, to avoid any reflection at the free end the activeimpedance load has to
be equal to the characteristics impedance matrix for a wave and near-field traveling
in the positive x-direction. In this case the beam junction is matched. This has
previously been reported by [29].

B.2.3 Example V:Active absorber on an infinite beam.

The last example treats an active absorber on an infinite beam. An infinite beam
can be seen as two connected semi-infinite beams. Thus, the passive impedance
matrix is equal to

Ẑpass=
EI

ω

[

(1 + j)k3 k2

k2 (1 − j)k

]

. (B.13)
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Here it is assumed that the control system consists of a translational velocity sensor
which provides the reference for a force actuator, and thus only the (1,1) element of
the active impedance matrix is non-zero. The impedance control law is thus scalar
and equation B.7, which expresses the power injected or absorbed by the active
impedance load, reduces to

Win =
1

2
Re{Zact} |v|2, (B.14)

whereZact is a scalar active impedance andv is the velocity in the position where
the force is applied. Further assume that only a wave and no near-field is incident
at the junction, then minimisingWin gives

Zact = 2
(

Z̃+
11

)∗

, (B.15)

whereZ̃+
11 is the (1,1) element in the characteristic impedance matrixof rightward

travelling wave and near-field and∗ denotes complex cnjugate. This control law
gives a reflection factor and a transmission factor of 0.5. Thus, half the incident
power absorbed while one quarter is reflected and one quartertransmitted, as re-
ported in [32].
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