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Abstract

It is important to study the aerodynamic effects on high speed trains, due to both
comfort and stability. The Swedish high speed trains are aiming to go at a speed
of 250 km/h. The present work closely connects the aerodynamic effects with the
vibration dynamics within the train.

Two scenarios are simulated, two trains meeting each other and a train leaving
a tunnel and is hit by a strong wind gust (35 m/s). From the aerodynamic part,
computational fluid dynamics (CFD) is used with the k-ζ-f turbulence model. To
simulate both scenarios a moving mesh needs to be used. From the CFD the moments
and forces from the pressure and traction on the train body are calculated, and these
loads are taking into a low order mathematical model that simulates the vibration
dynamics in the train.

For the scenario with meeting trains the train experiences some slight vibrations,
causing discomfort, but has no impact on the stability of the train, but for the
scenario with the tunnel and side wind the train has a very high risk of derailment.

From the results of the dynamics simulations a comfort and stability measure-
ments were constructed based on the vibrations in the train car and the risk of wheel
climbing. From simulating different speeds of the train it could be seen that the
comfort and stability change linearly with the speed. Work was also done to see
how much impact the coupling between the car bodies can have on the comfort and
stability. A comparison was made to a simple, stiff coupling and one that optimizes
a set of passive dampers. It’s seen that the coupling can make a difference of around
8% in comfort and stability, which equals an effect of lowering the speed 3-5 m/s.

Semi-active dampers of sky-hook and ground-hook type were also tested in the
coupling, but they only showed insignificant changes or changes to the worse.

Keywords: Moving mesh, Wind loads, Coupling, Vibration dynamics, CFD, High speed
train, Comfort, Stability
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1 Introduction

Due to the magnitude of the velocity of a high speed train (HST) the flow around it
becomes an increasingly important factor. The unsteadiness and the different forces and
moments that start acting on the train have a big impact on the stability of the train and
safety and comfort of the passengers. This can probably be countered using damping in
the bogies and coupling between the trains. This is the reason behind this project. To
find the forces and moments affecting the train and if it’s the effects on discomfort and
instability can be reduced. In previous studies of HST instabilities it has either been purely
aerodynamic or dynamic with simplified aerodynamic forces. In this case it is intended to
combine them to get an as accurate simulation as possible.

1.1 Purpose

The purpose of this project is to combine two different fields, aerodynamics and dynamics,
to accurately simulate the HST by considering all the forces acting on the train in order
to get an accurate model. The goal of this project is to combine the aerodynamic forces
that acts on a HST with the dynamics on the trains bogie and coupling. An interesting
final result would be to find how sensitive the dynamics in the train is to varying velocity.

From vehicle dynamics side the focus of the project will be two folds:

• Create low-order mathematical and computational models for vibration dynamics
and stability analysis of HST taking into account aerodynamic excitations. The
models must implement the conventional bogie and conventional car-body coupling
functional component mechanical models.

• Using created models simulate the vibration dynamics and study stability of motion
of HST for the two scenarios.

1.2 Limitations

Two different scenarios were studied. One where two trains meet each other and one where
a single train has left a tunnel and is met by a strong wind gust. The model of the train
used for the CFD simulations was an ICE2 train. The train consists of two locomotives
and one car in the middle making it symmetrical. It has bogies and inter-car gaps. The
parameters for the dynamics model were that of a typical HST. For the meeting trains
the simulation was carried out at three different velocities, 67 m/s, 70 m/s and 73 m/s,
which correspond to 240, 250 and 260 km/h respectively. For the scenario where the train
coming out of a tunnel the speed of the train was 70 m/s and the speed of the wind gust
was 35 m/s.

1.3 Approach

The aerodynamics was simulated with AVL-Fire CFD solver. For the double train, two
train models were used with a moving mesh to simulate the two trains meeting each other.
For the second scenario with the HST coming out of the tunnel a model of a ICE2 train
in a simulated windtunnel with a moving crosswind was used. The forces and moments
acting on the each train car on one of the trains were then handed over for the dynamics
calculations.

The dynamics were simulated with a low order mathematical model using MATLAB
and functional components for bogie and coupling. The input were the forces and moments
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calculated from the CFD simulations and the forces acting on the wheels from the rail.
Unknown parameters, such as damping coefficients in the bogie, were decided by minimiz-
ing a cost function for comfort and stability. As a last step, active damping was added to
the model.

2 Theory of Aerodynamic Simulations

To solve the flow around the trains CFD was used. CFD is based on the finite volume
approach. This means that the conservational principals are applied for the properties
describing the behaviour of a matter interacting with its surrounding. The laws of conser-
vation of mass and momentum for a finite volume gives the continuity equation (2.1) and
the equation of motion (2.2).

∂ρ̃

∂t
+

∂

∂xi
(ρ̃ũi) = 0 (2.1)

ρ̃

(
∂ũi
∂t

+ ũj
∂ũi
∂xj

)
= ρ̃bi +

∂σ̃ij
∂xj

(2.2)

σ̃ij = −p̃δij + λδij
∂ũi
∂xi

+ µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.3)

Combining these together with the constitutive equations and assuming Stokes condi-
tion (λ = −2

3
µ) for an isotropic homogeneous Newtonian fluid (2.3), which air is, one ends

up with the instantaneous compressible Navier-Stokes equations (2.4).

ρ̃

(
∂ũi
∂t

+ ũj
∂ũi
∂xj

)
= ρ̃bi −

∂p̃

∂xi
+

∂

∂xj

[
µ

(
∂ũi
∂xj

+
1

3

∂ũj
∂xi

)]
(2.4)

The Navier-Stokes equations are non-linear partial differential equations and believed
to precisely describe any type of flow. However only a few exact solutions exists so the
Navier-Stokes equations have to be solved numerically. This is easier done by splitting up
the instantaneous variables into a mean and a fluctuating part.

r̃ =
1

T

∫
T

r̃(t)dt = R

r̃ =R + r

This is called Reynolds decomposition and the resulting equations are called Reynolds-
averaged Navier-Stokes equations (2.5) (RANS). Note that no incompressibility assumption
were done in this project.

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj
− ui

∂uj
∂xj

)
=

ρbi −
∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui
∂xj

+
1

3

∂Uj
∂xi

)
− ρuiuj

]
(2.5)

The decomposition leads to a few extra terms, which lead to more unknowns than
equations. This is known as the turbulence closure problem and in order to solve the
equations the terms has to be modelled.
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Table 2.1: Explanation of variables used in continuum mechanics.
t Time
p Pressure
ui Velocity vector
xi Coordinate vector
bi Body force vector
µ Viscosity
λ Bulk viscosity
ρ Density
σij Stress tensor
δij Kronecker delta
r Arbitrary instantaneous variable

2.1 Turbulence Models

Two important components of turbulent flow is the kinetic energy k and the dissipation ε.

k =
1

2
uiui (2.6)

ε =ν
∂ui
∂xj

∂ui
∂xj

(2.7)

The Boussinesq eddy viscosity assumption is that there is an turbulent viscosity that
can linearly describe the turbulent flow structures. For the k-ε model the assumption is

νt =
µt
ρ

= Cµ
k2

ε
(2.8)

Using an eddy viscosity model as k-ε the kinetic energy and the dissipation are calcu-
lated by solving the modelled transport equations (2.9) numerically.

dk

dt
= Pk − ε+B +

1

ρ

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
dε

dt
=

(
Cε1Pk − Cε2ε+ Cε3B +

1

3
k
∂Uk
∂xk

)
ε

k
+

1

ρ

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
 (2.9)

where

Pk = νt

(
∂Ui
∂xj
− ∂Uj
∂xi

)(
∂Ui
∂xj
− ∂Uj
∂xi

)
− 2

3

(
νt
∂Uk
∂xk

+ k

)
∂Uk
∂xk

(2.10)

B = −bi
µt
σρ

∂ρ

∂xi
(2.11)

The body force term bi is neglected in this case because of the cold flow. The coefficients
used have the following standard values given in table 2.2 [1].

Table 2.2: Coefficients for the k-ε model.
Cµ Cε1 Cε2 Cε3 σk σε σρ

0.09 1.44 1.92 0.8 1 1.3 0.9

Another eddy-viscosity model used in this project is the k-ζ-f model [8]. It is an
altered version of a v2-f model for numerical stability, where special treatment of the wall
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normal stress v2 is taken. This in order to improve the modeling of the wall effects on the

turbulence. The new variable ζ is the velocity scale ratio ζ =
v2

k
. This variable get its own

transport equation to be solved. The eddy viscosity in the k-ζ-f model is obtained from

νt = Cµζkτ (2.12)

and the transport equations are

dk

dt
= Pk − ε+

1

ρ

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
dε

dt
= (C∗ε1Pk − Cε2ε)

1

τ
+

1

ρ

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
dζ

dt
= f − Pk

ζ

k
+

1

ρ

∂

∂xj

[(
µ+

µt
σζ

)
∂ζ

∂xj

]


(2.13)

The function f is obtained by solving

L2 ∂2f

∂xj∂xj
− f =

(
Cf1 + Cf2

Pk
ε

)(
ζ − 2

3

)
1

τ
(2.14)

The turbulent time scale τ and length scale L are given by

τ = max

[
min

[
k

ε
,

a√
6Cµ|S|ζ

]
, Cτ

(ν
ε

)1/2
]

(2.15)

L = CL max

[
min

[
k3/2

ε
,

k1/2

√
6Cµ|S|ζ

]
, Cη

(
ν3

ε

)1/4
]

(2.16)

The coefficient C∗ε1 are modified in the ε equation by dampening the coefficient close
to the wall

C∗ε1 = Cε1 (1 + 0.012/ζ) (2.17)

The value of the coefficients shown in table 2.3 are all based on empirical studies [8].

Table 2.3: Coefficients for the k-ζ-f model.
Cµ Cε1 Cε2 Cf1 Cf2 σk σε σζ Cτ CL Cη

0.22 1.4 1.9 0.4 0.65 1 1.3 1.2 6.0 0.36 85

4 , Applied Mechanics, Master’s Thesis 2009:03



Table 2.4: Explanation of variables used in the turbulence models.
t Time
p Pressure
ui Velocity vector
xi Coordinate vector
bi Body force vector
k Kinetic energy
Pk Production
ε Dissipation
µ Viscosity
µt Turbulent viscosity
ν Kinematic viscosity
νt Turbulent kinematic viscosity
ρ Density
ζ Velocity scale ratio
f Function implicitly defined by itself
L Length scale
τ Time scale
S Strain rate tensor
σ∗ Model coefficient
C∗ Model coefficient

2.2 Coefficients and Mesh Quality Measurements

The force and moment coefficients are calculated as

CF =
F

ρAu2/2
(2.18)

CM =
M

ρALu2/2
(2.19)

where density used for scaling is ρ = 1.189 kg/m3, reference length L=3 m,the reference
area A=10 m2 and u is the speed of the train.

The standard procedure to check the quality of the calculations is to look at the dimen-
sionless wall distance, y+ and the Courant number, C. The lower y+ the more resolved
the flow is, which means more accurate results. The y+ is calculated as

y+ =
u∗y

ν
(2.20)

u∗ ≡
√
τw
ρ

(2.21)

τw = µ

(
∂u

∂y

)
y=0

(2.22)

where y is the height of the first cell from the wall.
The Courant number of the flow is calculated as

C =
u′∆t

h
< 1 (2.23)

where u′ is the RMS of the velocity and h is the height of cell. The Courant number (CFL
number) is supposed to be below one at all times in the entire mesh to ensure that the
information travels from one cell to the next. The Courant number can however locally be
higher without affecting the flow.
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3 Theory of Vibration Dynamics

The equations of motion with springs and dampers give differential equations for ẍ from
x and ẋ. The model could also include PID (proportional-integral-derivative) controller in
the active dampers the equations needs to be expanded to take into account the integral
of the displacement as well, but in present work such controllers were not considered. We
obtain a set of differential equations

ẍi = fi[t, x, ẋ] (3.1)

In order to solve this numerically it’s usefull to rewrite it to a set of first order differential
equations. This leads to a set of generalized coordinates expressed as

q =

(
x
ẋ

)
(3.2)

resulting in the form of a set of first order differential equations

q̇ = f̂ [t, q] (3.3)

The model is separated into a linear part A and nonlinear part R as

q̇ =

(
ẋ
ẍ

)
= A · q +

(
0

M−1 ·R

)
(3.4)

where R = R[q] and

A =

(
0 I

K̂ Ĉ

)
(3.5)

where

K̂ = −M−1 ·K (3.6)

Ĉ = −M−1 · C (3.7)

The matrices K and C depends on which parts that are part of the model. In the case
of a single bogie being modeled it’s simply

x = xb1 (3.8)

=⇒
M = M

b1
(3.9)

K = K
b1

(3.10)

C = C
b1

(3.11)
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and with a single train car with two bogies they are assembled as

x =

 xc1
xv1b1
xv1b2

 (3.12)

=⇒ (3.13)

M =

M c1
0 0

0 M
c1b1

0

0 0 M
c1b2

 (3.14)

K =

 K
c1

BK
c1b1

BK
c1b2

BKT

c1b1
K
c1b1

0

BKT

c1b2
0 K

c1b2

 (3.15)

C =

 C
c1

BC
c1b1

BC
c1b2

BCT

c1b1
C
c1b1

0

BCT

c1b2
0 C

c1b2

 (3.16)

where 1 is for the train car, 2 for the front bogie and 3 for the back bogie and the matrices
BK, BC are the coupling between the car and bogies.

In the simulations where no PID regulator is used, the system is simplified by reducing
the first row and first column of A.

The nonlinear forces, R, can be separated into a set of nonlinear forces

R = Rcontact +Rwind (3.17)

3.1 Wind Load

The wind load can be expressed as Rwind[t], or more suitable as Rwind[s[t]] where s[t] is the
location of the train. Expressing the wind loads as a function of the location instead of
the time will make it easier to interpolate over different absolute velocities. Interpolating
is only suitable if the set of CFD simulations over different train velocities is not to coarse,
as the form of the forces and moments, F [s[t]], M [s[t]] should have a similar shape when
changing the velocity a little as opposed to F [t] where the trains will pass each other faster.
This can be seen in figure 6.12.

When simulating for a higher speed than available from the CFD simulations, extrap-
olation is done by scaling through the drag, side and lift coefficient.

C =
F [u]

1
2
ρAu2

= constant =
Fu0

1
2
ρAu2

0

(3.18)

=⇒

F [u] =
1

2
ρAu2C = Fu0

(
u

u0

)2

(3.19)

where u0 is the closest speed for which forces have been calculated. If the simulated speed
is within the simulated domain the forces can be interpolated when expressed as functions
of the traveled distance.
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3.2 Contact Forces

The contact forces are calculated from creep in the contact plane. The creep is defined as

ξx =
Vwheel,x
V0

(3.20)

ξη =
Vwheel,η
V0

(3.21)

where x is in the longitudinal direction, η is perpendicular x and the normal at the contact
point and V0 is the forward velocity of the train.

y

z

x

r0
w0

η

Rail

Figure 3.1: Wheelset showing width and radius from center of gravity to nominal contact
point.

Right side refers to the right in the forward direction of the train, i.e. the right wheel
is shown in figure 3.1.

The velocities can now be calculated as

ω0 =
V0

r0
(3.22)

s =

{
+1 if right side

−1 if left side
(3.23)

r = r[−sx2] (3.24)

w = sw0 − x2 (3.25)

d =

0
w
r

 (3.26)

R
z

=

cos[−ϕ3] − sin[−ϕ3] 0
sin[−ϕ3] cos[−ϕ3] 0

0 0 1

 (3.27)

V wheel = ẋ+

V0

0
0

+R
z
· (d× (ϕ̇+

 0
ω0

0

)) (3.28)

where the r is an interpolating function of the geometry of a standardized S1002 wheel
profile [7].
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Table 3.1: Explanation of variables for calculating the creep.
x Translation vector of wheelset.
ϕ Rotation vector of wheelset.
r0 Wheel radius at nominal contact point.
r Wheel radius at current contact point.
w0 Lateral distance from COG to nominal contact point.
w Lateral distance from COG to current contact point.
V0 Nominal forward velocity of train.
ω0 Nominal angular velocity of wheels.
δ Inclination of wheels (positive).
s Side dependence, +1 for right side, -1 for left side.

3.2.1 Contact Patch Dimensions

To calculate the forces the dimensions of the contact patch are required. According to
Hertz theory the dimensions are calculated as [4] and [7]

A+B =
1

2

(
1

rη,r
+

1

rη,w
+

1

rx,r
+

1

rx,w

)
(3.29)

B − A =
1

2

((
1

rx,r
− 1

rη,r

)2

+

(
1

rx,w
− 1

rη,w

)2

+

2

(
1

rx,r
− 1

rη,r

)(
1

rx,w
− 1

rη,w

)
cos[2φz]

) 1
2

(3.30)

Ψ = 3

√
3N

2(A+B)

(
1− ν2

w

Ew
+

1− ν2
r

Er

)
(3.31)

θ = arccos

[
B − A
A+B

]
(3.32)

a =mΨ (3.33)

b =nΨ (3.34)

where m = m[θ] and n = n[θ]. There is no explicit expression for m[θ] or n[θ] but they
can be solved numerically with (4.25) through (4.32) in [11]. This has been done in table
8-1 in [7] which values are used.

Table 3.2: Explanation of variables for calculating the creep.
N Normal force in contact.

Ew, Er Modulus of elasticity in the wheel and rail.
νw, νr Poissons ratio for the wheel and rail.
a, b Contact patch dimension along x and η.

rx,w, rx,r, rη,w, rη,r Radius around the respective axis for wheel and rail.
φz The angle of the wheel.

The radius rη,r is zero since the rail is straight. The other radii varies with the contact
point and wheel profile. However they are approximated as constant for the contact geom-
etry at a point far from the flange where the wheel is almost flat. In that case rx,w = ∞
and rη,w = r. For the wheel the radius over the top of the rail is almost constant and be
approximated as rx,r = 300mm. In this case η-axis is parallell with the y-axis. The effect
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from the rotation of the wheel is also neglected, as this angle will always be small, i.e.
linearisation of cos[2φz] ≈ 1. This simplifies the equations and with the approximations of
the radii the variables m and n are constant.

The rest of the material parameters were set to Ew = Er = 200 GPa and νw = νr = 0.3.

3.2.2 Wheel Forces from Creep

The creep forces are calculated with Kalker’s linear theory [7]. The coefficients for the
creep, C = C[a

b
], are interpolated from a set of data taken from table 8-2 in [7].

F lin = −Gab
(
C11ξx
C22ξη

)
(3.35)

u =
|F lin|
µN

(3.36)

F̂ = F lin

{
1− u

3
+ u2

27
if u < 3

µN
|F lin|

otherwise
(3.37)

The behaviour of the flange will be greatly simplified as done in [13]

Fflange =


kflange(nflange − x2) if x2 > nflange ∧ s > 0 (right side)

kflange(−nflange − x2) if x2 < −nflange ∧ s < 0 (left side)

0 otherwise

(3.38)

where Fflange acts in the y-axis and is added to Fy.

The force vector F̂ is here acting on the contact plane, so to get the horizontal compo-
nent

F =

(
Fx
Fy

)
=

(
F̂1

F̂2
δ√

1+δ2
+ Fflange

)
(3.39)

The contributions to the nonlinear force on the system will be

Re =


Fx
Fy
0
0
rFx

−wFx − wFy sin[φ3]

 (3.40)

which is assembled into R for each wheel.

3.3 Statement of the Vibrational Problem

The problem is divided into two parts, handled separately, stability and comfort. It is
necessary to define a single scalar J that is a measurement of how well the system is
performing, with J = 0 being the perfect case. The goal is to minimize J by changing the
dampers in the bogie and introducing active dampers in the coupling.
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α

Nh

Fflange

QRail

Wheel R

Figure 3.2: Free body diagram for the forces on the wheel when the flange is in contact.

3.3.1 Cost Function for Stability

The flange forces is most critical for safety and may not reach a to high value, since it
would mean a high risk of derailment from wheel climb or rail roll. According to [5] a
simple measurement of the stability can be constructed by looking at the forces when the
flange is in contact. When the wheel starts to climb there will be a single contact point in
the flange, shown in figure 3.2. The reaction force R on the flange is solved by summing
the forces in the normal direction

↗: R−Nh cos[α]− Fflange sin[α] = 0 (3.41)

In this scenario it matters if the wheel is angled towards the rail or not, as the friction
orce Q will then change sign. The friction is fully developed and with the coordinate system
z vertical downwards the expression for Q is obtained as

Q =

{
sgn[φ3]µR if right side

− sgn[φ3]µR if left side
(3.42)

where µ is the friction coefficient between the wheel and rail and α is the flange angle.
Projecting the forces on the flange angle α one obtains the condition for stability as

↘: Nh sin[α]− Fflange cos[α] +Q > 0 (3.43)

and rearranging the inequality one obtains

L =


tan[α]− sgn[φ3]µ

1 + sgn[φ3]µ tan[α]
if right side

tan[α] + sgn[φ3]µ

1− sgn[φ3]µ tan[α]
if left side

(3.44)

|Fflange|
Nh

< L (3.45)

where derailment will occur when the inequality is not fullfilled.
This leads to a suitable cost function to minimize

Fs,i =

(
Fflange,i
Nh,iLi

)2

(3.46)

Js,1 =

√
1

t1 − t0

∫ t1

t0

∑
Fs,idt (3.47)

, Applied Mechanics, Master’s Thesis 2009:03 11



where Fs,i is calculated for every wheel. The quotient may also not reach a too high value
at any time as this would cause derailment.

In addition to Js,1, the normal forces on the wheels will also be analyzed, and they
should not drop below a certain threshold, calculated as percentage of the static forces,
and (3.45) should be fullfilled at all times.

Since the flange might not touch at all if the wind load is to small, i.e. Js,1 ≡ 0 for all
dampers, a secondary measurement is used to analyze the stability. For that, the lateral
movement of the wheelsets are analyzed according to

Js,2 =

√
1

t1 − t0

∫ t1

t0

∑
y2
i dt (3.48)

where yi is the lateral displacement of each wheelset.

3.3.2 Cost Function for Comfort

For comfort the vibration felt by the passenger defines the cost function F . The rotational
effect is neglected, leaving only displacement at any given position in the train car.

di = xi + ϕ
i
×−→v i (3.49)

Fi = |d̈i|2 (3.50)

Jc =

√
1

t1 − t0

∫ t1

t0

∑
Fidt (3.51)

where x is the displacement of a train car and Ω is the domain of the train, i.e. −→v is the
vector from the COG to any seat within the train car. This domain is set to seat level, and
can be simplified to only the end points of the train, as the displacement must be largest
in any of these points.

4 Method for Aerodynamic Simulations

CFD uses finite volumes method which means that a mesh has be created. The cells of the
mesh contains the information of the flow. A finer mesh leads to a more accurate result but
it also means longer computational time and that more computer resources are needed.

4.1 Mesh Creation

For creating the mesh the CFD tool FameHexa and the CFD software Fire was used. The
calculations are done on a ICE2 train geometry. The geometry can be seen in profile in
figure 4.1.

Figure 4.1: The geometry of the high speed train ICE2.

The geometry is symmetric and consists of two locomotives and a middle car. It has
bogies, wheels and inter-car gaps. The train proportions can be seen in figure 4.2. The
width of the train is W ≈ 3 meters.

The aim of the calculations is to simulate actual trains so the full scale on all the
parameters are used. Rails is added to the train geometry for getting the right distance
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W

1.3W

26.5W

Figure 4.2: The train with its proportions.

from the ground. The height of the rail is 0.18 meters which is standard height of rails in
Sweden. However, any effect from sleepers is neglected and is not going to be meshed. In
order to be able to mesh the rails they had to be wider then the train wheel which is not
the case in reality. A box not much bigger the train itself is created around the train. The
reason for adding this box is that inside the box an unstructured automatically generated
mix of hexagonal and tetragonal mesh is built. The mesh also have boundary layers on the
surfaces of the train ground and rail to better resolve the flow. In figure 4.3 a cut through
the mesh is seen.

Figure 4.3: Profiles of unstructured mesh.

4.1.1 Mesh Topology for the Two Meeting Trains

The rest of the mesh is then created from the meshed box. The mesh is created from
extruding the faces of the box creating a structured grid. The lower part of the domain
containing one of the trains can be seen in figure 4.4.

The mesh is then mirrored to obtain the second train. The final topology of the mesh
domain can be seen in figure 4.5.
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Figure 4.4: The mesh of the lower part of the domain seen from behind.

10W

20W

126.5W

Figure 4.5: The whole mesh domain with both trains.
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4.1.2 Mesh Topology for the Train Exiting a Tunnel

The creation of the mesh for the second scenario was done in a similar manner. The box
containing the mesh around the train was used to expand the grid creating the tunnel from
which the train will exit. The size of the tunnel is the minimum of the standard size used
on Swedish tunnels. The shape of the tunnel roof is in reality the shape of half a circle.
This could however not be recreated due to the nature of the creation of the mesh. In
figure 4.6 the topology for the train coming out of the tunnel can be seen. The wind gust
is simulated by setting an inlet for the first 10W closest to the tunnel, also seen in figure
4.6. The second tunnel seen in the domain is only used for cell deformation in front of the
train. The train itself will never be close to that tunnel.

10W

240W

2.3W

1.8W

10W

66.5W

18W 8W

Figure 4.6: The mesh domain for the train coming out of a tunnel.

4.2 Mesh Deformation

A mesh deforming code formula is used and implemented into the CFD calculations in order
to get the two trains to meet. The formula makes use of two different objects that it will
move in opposite directions on the x-axis. The two objects are two cell selections done on
the mesh and they are arbitrary selections. These two selections will remain undeformed
and the rest of the mesh can be deformed as much as the movement demands. It is
imperative that careful considerations are done before starting the mesh deformation or else
the mesh can become skewed or element volumes can become negative which immediately
stops the calculations. In figure 4.7 the two selected areas are shown.

In figure 4.7 the trains can be seen meeting. The area around the trains are the
selections for the movement. The selected objects for the movement have constant cell
sizes and the areas behind and in front the movement are compressed or expanded. The
selections are made from wall to wall and from top to bottom of the domain, so only the
the cells closest to the in- and outlets are deformed. This fully covering selection makes
the mesh only deform in x-direction. The movement is described with a linear function

x = ∓L± v t (4.1)
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Figure 4.7: The mesh domain with the two trains seen from above at three different
timesteps.

where x describes the translation displacement from the origin, the parameter L prescribes
the initial displacement from the origin, v is the velocity of the objective and t the current
timestep.

The mesh is then mirrored so that the domain is doubled. To connect the two meshes
a so called arbitrary interface is used with an arbitrary connetion. This makes the two
meshes slide against each other. In figure 4.8 a close up from figure 4.7 shows the sliding
interface.

Figure 4.8: The sliding interface seen from above.

To calculate the value of a cell one checks the values of neighbouring cells. However
for the cell on the sliding interface the neighbours changes after some timesteps, so the
calculation is instead done with coordinates over this arbitrary sliding interface. The cell
gives the coordinate of where the neighbouring cell should be and the software checks which
cell is on that coordinate and then picks that cell as the neighbour.

For the second scenario with the train coming out of a tunnel only one selection is
made for movement, as seen in figure 4.9. A box around the train that slides against three
interfaces, the sides and roof of that box, is made. The area closest to the train will be
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moving with the train causing these cells to be undeformed. The cells in front and behind
will be deformed only in x-direction. The rest of the mesh will be unaffected by the mesh
movement.

Figure 4.9: The sliding mesh used for the tunnel.

4.3 Setup of CFD Solver

The timestep used were in both cases ∆t=0.001 seconds. The two trains were moved 120
meters each and simulated at three different speeds, 67, 70 and 73 m/s. In equation (4.1)
L was set to 60 meters. The train coming out of a tunnel was moved 140 meters and
simulated at a speed of 70 m/s. For this case L was set to 50 meters in equation (4.1). So
from figure 4.5 and 4.6 the trains were moved 60 and 50 meters back or 20 W and 16.7
W respectively. The wind gust hitting it were set to 35 m/s. The boundary conditions
were for set to no-slip on the trains and on the walls behind and in front of the trains.
Symmetry boundary condition were used at the side walls and on the roof. The ground
that moved with the train was set to moving wall at the negative speed of the movement
to counter flow phenomenon to appear from the ground, so the selection made for moving
the train had a special selection on the floor. The principle was that the no-slip condition
on the moving train would create the correct flow.

Figure 4.10: The train with the moving ground under it.

The flow is computed as compressible because of the mesh deformation. The k-ζ-f
model is the turbulence model that have been used to obtain the final results from the
CFD calculations. That is because it is considered a better option than the k-ε model
[8]. This project had no intention to compare different turbulence models and there are
turbulence models that are more advanced then the k-ζ-f model, but this means that they
are more complex to use and more time consuming. Although the results could probably
be improved, the k-ζ-f model can be considered sufficient for this project. Hybrid wall
treatment,[14] and [3], have been used in both cases. The flow simulated have no change
in temperature so the energy equations have not been solved.
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5 Method for Vibration Dynamic Simulations

In all dynamic simulations the coordinate system will have the x-axis in the longitude
direction, and the z-axis vertically downwards which is the same as the standard in flight
dynamics. This means that the force and moments from the CFD simulations will have to
change signs for longitude, vertical, roll and yaw.

Table 5.1: Data for the train car.
m Ix Iy Iz

35000[kg] 90× 103[kgm2] 1.8× 106[kgm2] 1.8× 106[kgm2]

The train will be expressed in a system of rigid bodies connected with linear springs
and dampers, and for some simulations also a set of nonlinear connectors in the coupling
between the cars. The actual train car is modeled as a single rigid body, connected to a
bogie frame. Its mass and mass moment of inertia is in table 5. The center of mass was
estimated to be at 1.22 meters from the top of the rail. The bogies are connected at ±9
meters from the center of the car.

5.1 Bogie model

Figure 5.1: Reference photo of the bogie used in high speed trains.

The most important part of the system are the bogies. The bogie used in figure 5.1 has
been tested in speeds up towards 300 km/h within the Gröna T̊aget research programme.
Two mechanical models have been developed and both describe the same bogie. The first
model is more complicated, and is made to as accurately as possible describe the behaviour
of the real bogie, and a second conventional bogie model for easier comparison with other
work on train dynamics.

5.1.1 Degrees of Freedom

To simplify the contact behaviour the vertical displacement and the roll of the wheelsets
are locked in the simulations. The small vertical movement and roll which would occur
when the wheelset moves laterally is very small, and can be assumed to be zero with little
effect on the train dynamics. This also means that the wheelset will hold the train in place,
i.e. the normal contact force can be negative, but at that point the instability of the train
will be over any acceptable criteria.

The axle boxes are also neglected. The pitch on the wheelsets can rotate freely with
respect to the bogie, and the pitch of the axle box is not included in the degrees of freedom.
For the displacement and yaw degrees of freedom the wheelset and axle box are merged.
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φ3 (roll)

Train car

Figure 5.2: Front of bogie showing degrees of freedom.

y1x1

ψ1 (yaw)
y2

x2

ψ2

y3
x3

ψ3

Figure 5.3: Top of bogie showing degrees of freedom.

Train car

x3

z3

θ3 (pitch)

x1 x2

z1 z2

θ1 θ2

Figure 5.4: Side of bogie showing degrees of freedom.
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5.1.2 Geometry of Bogie

Train car

h3

h1 h2

h4

h5

h6 h7

Figure 5.5: Front of bogie showing geometry.

d3

w3

d1d2

w1

x

y
w4

w5w2

d4

Figure 5.6: Top of bogie showing geometry.

Train car

Figure 5.7: Side of bogie showing geomtry.

The bogie is simplified to two symmetry planes shown in figure 5.6.

5.1.3 Placement of Springs and Dampers

All springs and dampers are modeled with momentless joints, so a pair of horizontal springs
have been added to each real vertical spring to simulate the horizontal stiffness and ro-
tational stiffness of the bogie. The horizontal springs and dampers will be modeled with
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Train car

Figure 5.8: Front of bogie showing springs and dampers.
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Figure 5.9: Top of bogie showing springs and dampers.

Train car

6
32

5

Figure 5.10: Side of bogie showing springs and dampers.
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zero relaxed length and is connected to the same point as the vertical spring at both ends,
marked by red crosses for springs and blue crosses for dampers in figure 5.5 to figure 5.10.
The model also assumes symmetry along both the x-axis and y-axis shown in figure 5.6.

The two vertical springs connecting the bogie to the train were changed to four vertical
springs (9 to 12 in figure 5.6) placed at the distance d3 in order to carry the moment
between the bogie and train car. The spring stiffness and the distance d3 are to be adjusted
according to the real springs vertical strength and bending strength.

Table 5.2: Spring and damper coefficients for the bogie. Numbers are shown in figure 5.9
and 5.10.

Spring[kN/m] Damper[kNs/m]

1 2500 100/
√

2

2 400 100/
√

2
3 500 900
4 90 15
5 90 15
6 90 -

Table 5.3: Geometry of the bogie. Numbers are shown in figure 5.6, 5.7 and 5.5.
d[m] w[m] h[m]

1 1.3 0.9 0.2
2 0.1 1.1 0.25
3 0.1 0.9 -0.04
4 0.2 0.5 0.2
5 - 1.2 0.2
6 - - 0
7 - - 0.04
8 - - 0

The second bogie model implemented as a conventional bogie [10] with an additional
spring between bogie and train car was added.

Train car

h2

h1

h3

Figure 5.11: Front of conventional bogie showing springs.

For the conventional bogie model the placement is in figure 5.11, 5.12 and 5.13. Every
spring is in parallell with a damper which is not shown in the figures.
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Figure 5.12: Top of conventional bogie showing springs.

Train car

6

3

Figure 5.13: Side of conventional bogie showing springs.

Table 5.4: Initial spring and damper coefficients for the conventional bogie. Numbers are
shown in figure 5.12 and 5.13.

Spring Damper
1 5000[kN/m] 0[kNs/m]

2 800[kN/m] 100/
√

(2)[kNs/m]

3 1000[kN/m] 100/
√

(2)[kNs/m]
4 360[kN/m] 1800[kNs/m]
5 180[kN/m] 7.5[kNs/m]
6 180[kN/m] 4.629[kNs/m]
7 292[kNm] 2178[kNsm]
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Table 5.5: The mass and area moment of inertia for both types of bogies.
Part Mass [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]

Wheelset 1109 605.9 61.6 605.9
Frame 1982 2670.0 1400.0 2670.0

Using the data in table 5.1.3 the simulations show a very similar behaviour to the more
complex bogie model. It is however not possible to fullfill the correct model with the
conventional bogie model. Comparing the stiffness matrices the diagonal elements are very
close in both models, except for vertical and roll damping in the secondary suspension. The
value of of c6 was adjusted to fullfill the roll damping, as it was believed to have higher
impact on the simulations.

5.2 Optimization of the Coupling

Table 5.6: Initial guess of the spring and damper coefficients for the passive coupling.
Spring Damper

Longitude 150[MN/m] 300[kNs/m]
Lateral 20[MN/m] 100[kNs/m]
Vertical 30[MN/m] 110[kNs/m]
Roll 300[kNm] 5[kNsm]
Pitch 300[kNm] 5[kNsm]
Yaw 100[kNm] 0.5[kNsm]

One of the main purposes of this work is to see what can be achieved in the coupling
between two trains. The coupling is greatly simplified as a single point between the cars
where only the relative motion between the cars is meassured. The coupling point is located
at the same height at the center of mass of the train car, and at 13 meters from the center
in longitude. As a first step, a set of passive springs and dampers are used, for which the
damping coefficients were optimized with respect to Js and Jc separately. The initial guess
is written down in table 5.6. The spring constants are very high and simulate a near stiff
coupling between the cars.

An additional coupling model is also simulated that allows for larger lateral movements
between the cars. To simulate this the spring stiffness in the lateral axis is dropped
significantly and the three parameters klateral, clateral and croll are going to be optimized.
Vertical and longitudinal movement, as well as pitch and yaw, between the cars cannot be
high enough without derailment, and it will be hard to efficiently use dampers on these.

For the resulting optimized parameters a sky-hook damper is tested in the coupling.
It’s maximum value is set to the passive dampers, and the minimum value to a fraction of
these.

5.3 Computational Model

The computational model is very close to the mathematical model as a solver for ordinary
differential equations (ODE) will be used. When enabling the wheel-rail contact the set of
working solvers was greatly reduced as most of them failed to take sufficient time steps.
This is typically a trait that loosely defines a stiff ODE system, i.e. an ODE system is stiff
if its numerical solution by some solvers requires a significant depression of the step-size
to avoid instability [9].
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5.3.1 Choice of the ODE Solver

Table 5.7: Available ODE solvers in MATLAB.
Problem type Order of accuracy Time

ode45 Nonstiff Medium ∞
ode23 Nonstiff Low ∞

ode113 Nonstiff Low to high ∞
ode15s Stiff Low to medium Fast
ode23s Stiff Low Fast
ode23t Moderately Stiff Low Untested

ode23tb Stiff Low Untested

With the information from the MATLAB help manual [2] the first solver to try should
be ode45. If it woudl fail because the problem is to stiff go on and instead try ode15s.
The slightly higher accuracy of ode15s compared to other ODE solvers makes it a suitable
choice for all simulations. It would be possible to estimate the stiffness factor of the system,
taking the determinant of the Jacobian, but it was not considered necessary.

5.3.2 Automatic Construction of the Stiffness Matrices

Even for a low order mathematical model, assembling the stiffness matrix for the linear
contribution manually is time consuming and error-prone. For a complete train with one
passenger car and two locomotives this results in a minimum of 21 parts and 102 degrees
of freedome.

An algorithm similar to that of assembling a stiffness matrix was implemented to au-
tomatically assemble the stiffness and damping matrices. The following algorithm doesn’t
support rotational springs as only one such spring is in use and it was added manually.

1 % function [X] = StiffnessConstructor(pxtot ,xconp ,vx)

2 % Helper function for models. Used for constructing K or C.

3 % Input:

4 % x : [3xnx2] Coordinates from cog on each connected part

5 % c : [2xn] Coupling matrix (to which part)

6 % v : [3xn] List of "springs" with directed stiffness [x,y,z]

7 % n = Number of "springs", any integer >= 0

8 % Output:

9 % X : [6* nx6*n] "Stiffness" matrix

10
11 function [X] = StiffnessConstructor(p,c,v)

12 parts = max(c(:));

13 X = zeros(parts *6);

14 for i = 1:size(v,2)

15 L1 = p(:,i,1); % Vector from COG to spring connection

16 L2 = p(:,i,2); % and the same for the other end of the spring

17 Xe = zeros (12);

18 for j = 1:12

19 dof = zeros (12 ,1); dof(j) = 1; % change in dof (unit size)

20 t1 = dof (1:3); t2 = dof (7:9); % Split up the dof -vector

21 r1 = dof (4:6); r2 = dof (10:12); % and into rotation

22 d = t2 + cross(r2,L2) - (t1 + cross(r1 ,L1));

23 f1 = v(:,i).*d; % Multiply displacement with directional stiffness

24 f2 = -f1;

25 m1 = crossf(L1,f1); % And the moments

26 m2 = crossf(L2,f2);

27 Xe(:,j) = [-f1;-m1;-f2;-m2]; %

28 end

29 edof1 = (1:6) +(c(1,i) -1)*6; % The degrees of freedom that these loads

30 edof2 = (1:6) +(c(2,i) -1)*6; % corresponds to.

31 edof = [edof1 ,edof2]; % Element degree of freedom vector

32 X(edof ,edof) = X(edof ,edof) + Xe; % Assembles the full stiffness matrix

33 end

34 end
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The algorithm is suitable for any multibody system with springs or dampers and was
mainly used to calculate the stiffness contribution from the bogies.

6 Results from Aerodynamic Simulations

The primary objective of the results from the aerodynamic simulations is to be used in the
dynamic calculations. The results from the scenarios differs greatly from each other. It is
interesting to study where the different forces come from and why they behave like they
do.

6.1 Two Trains Meeting at High Speed

In figure 6.1 one can see the upcoming impact from the two trains passing each other at
high speed. The distribution of the pressure can be seen on the train bodies as well as
vortices created from the tail of the train.

Figure 6.1: The meeting of two trains.

Figure 6.2: The relative pressure acting on the train.

The relative pressure on the train is seen in figure 6.2. This profile is taken from the
left train in figure 6.1. This is the characteristic profile of where the pressure is high and

26 , Applied Mechanics, Master’s Thesis 2009:03



low, but the spectrum on the colorbar is reduced in order to see the more subtle variations.
This means that the maximum and minimum values cannot be obtained from the figure.

Figure 6.3: Relative pressure on tail and nose.

In figure 6.3 a zoomed view on the tail and the nose of the train can be seen. The train
is traveling from left to right so the tail is on the left side and the nose on the right side.
There is a large section of low pressure in close vicinity to the high pressures. The big
pressure differences will affect the meeting train.

Figure 6.4: Velocity in x-direction around tail and nose.

To see some correlation between the pressure and the velocity one can study the velocity
U in x-direction in figure 6.4. A high velocity means a low pressure on the train. The
biggest difference is seen on the tail where the vortices are. The vortices are however
created the other two velocities V and W in the y and z-direction.

Figure 6.5: Velocity magnitude around tail and nose.

One can also study the magnitude of the velocity on the tail and nose. This is seen in
figure 6.5. The highest velocity is on the very front and very back of the train.

The velocity vectors show the direction of the velocity in figure 6.5 in figure 6.6. The
vectors are not scaled to its speed and the direction is projected onto this cut.

How this affects the other train for different positions can be seen in figure 6.7. The
left picture is the noses of the trains from timestep 0.4 s or position 28 m. The right is the
tails of the trains from timestep 1.2 s or position 84 m. The high and low pressure from
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Figure 6.6: Velocity vectors around tail and nose.

Figure 6.7: High and low pressure on the train at different positions seen from above. The
upper train is moving from left to right.

the nose of the trains is having a great influence on the meeting train. Same thing goes
for the low and high pressure from the tail of the trains.

Figure 6.8: The relative pressure around the train.

The alignment of the trains are what gives one of the most interesting effects. The high
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pressure on the nose and the tail is aligned at the same time as the low pressures are. This
gives an overall low pressure that affects almost the whole train at the same time. The
time steps before and after the alignment can be seen in figure 6.8 which is time step 0.8
s and 0.9 s corresponding to 56 m and 63 m respectively.

Figure 6.9: The relative pressure acting on the train.

The pressure on the body of the train will determine the forces and moments. In figure
6.9 the relative pressure from time 0.2 seconds to 1.5 seconds which corresponds to position
14 to 105 meters is shown. The first and the last timestep the train is almost unaffected
by the meeting train. The distribution of pressure can be seen changing from timestep to
timestep. The first timesteps show how the influence from the nose of the oncoming train
is going from one end to the other. The pressure then shifts to be over all lower and the
influence of the tail from the oncoming train can be seen instead.
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Figure 6.10: The forces and moments acting on the train cars.

For the purpose of calculating the forces and moments the train is split up into three
parts, one for each car. These three cars will be called front, middle and rear car. The
forces are integrated in each direction from the relative pressure and shear forces. The
shear forces are small and do not affect the total force much. The moments are also taken
from integration on each car. The train that the results are taken from is the upper one
in for example figure 6.8 which is the left one in figure 6.1. The results are not entirely
the same for both trains, but the differences are negligible so there is no reason in covering
both trains. The train which the results are taken from is going in negative x-direction and
the meeting train is in positive y-direction and the z-direction is positive going upwards.
This leads to that a high positive drag force, a negative side force means that the train is
pushed away from the other train and a negative lift force is down force on the train.

The forces and moments acting on the three different cars can be seen in 6.10. The
stars in the graphs mark where the front nose of the trains are aligned when they meet
and where the back tails are aligned when they leave each other. The trains moved 120
meters each at constant speed, 70 m/s. The position of the train on the x-axis of the
figures is described by (4.1). The biggest force is the side force and the biggest moments
is the yaw moment. For the dynamics the mean of FD, FL and MP are removed as the
vibration dynamics only simulates the fluctuations, i.e. these will be non-zero for a single
train traveling forward.

The side force have four distinct peaks seen in figure 6.11. The first peak is negative
which means that the train car is pushed away from the meeting train. The second and
third peak implies that the car is pulled towards the meeting train and the fourth peak
means that the train car is pushed away from the meeting train again.

The pattern of the four force peaks repeats itself. This results in great changes of the
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yaw moment. Note that the first two side force peaks result in negative yaw moment peaks
and the last two side force peaks result in positive yaw moment peaks. The transition of
two force changing sign give the moment of opposite signs of the peaks. The roll moment
of the cars are very much dependent on the position of the center of gravity of the cars.
This is not known so an estimation is made.
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Figure 6.11: Side force on the different cars meeting another train at 140 m/s.

The side force on the different cars can be seen in figure 6.11. One can observe how
the forces from the meeting of the other train is going from one car to the next. The force
travels with double the speed of one train, i.e their relative speed, 140 m/s.
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Figure 6.12: Side force on the middle car at speed 67, 70 and 73 m/s.
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The forces on the middle car at three different velocities can be seen in figure 6.12. There
is not much difference between them in magnitude. In general the higher the velocity the
bigger the force. However for the the first two peaks the highest amplitude is from the 70
m/s case. And the last peak the 67 m/s case is higher then the 70 m/s one. The differences
between the speeds are not big, but at these small changes the forces already differ a bit
in behaviour.
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Figure 6.13: The force coefficients on the train from meeting a train at 140 m/s.

The forces and moments on the whole train traveling at 70 m/s can also be studied
and seen in figure 6.13. The force coefficients are on the left and the moment coefficients
are on the right. There is a distinct force amplitude when the trains are aligned with each
other. This is when the forces from low pressures from the front car and rear car collapses
which makes the two trains being pulled towards one another.

The coefficients for the different velocities can be seen in table 6.1.

Table 6.1: Coefficients from the meeting trains scenario.
Mean CD CS CL CRM CPM CYM
u67 0.66360 0.05968 -0.09752 -0.02177 -1.52177 0.11707
u70 0.65961 0.05966 -0.09954 -0.02059 -1.52515 0.09030
u73 0.65758 0.05823 -0.09418 -0.02043 -1.51897 0.09519

Variance CD CS CL CRM CPM CYM
u67 0.00657 0.06634 0.00649 0.00461 0.04679 0.48449
u70 0.00650 0.07291 0.00675 0.00514 0.04103 0.49875
u73 0.00634 0.07555 0.00668 0.00541 0.04170 0.50117

6.2 Train Exiting a Tunnel under Influence of a Wind Gust

Figure 6.14 show the train coming out of the tunnel at time step 0.6 s or position 42 m.
The train is traveling in 70 m/s and the wind have a initial speed of 35 m/s. The train
starts inside the tunnel and goes all the way out and past the wind gust.

In figure 6.15 the iso surfaces of low pressure are shown from the same position as seen
in figure 6.14. The surfaces are colored by velocity W ,i.e in z-direction. The red surfaces
are wind going upwards and the blue are wind going downwards. The effect this has on
the pressure of the train can be seen in the right picture where the relative pressure on the
train body is shown.
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Figure 6.14: The wind gust hitting the train as it exists the train.

Figure 6.15: The low pressure surface around the train and the pressure on the train.
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For the full scenario of pressure on the train one can study the time steps shown in
figure 6.16. Note how the very low pressure on the top of the train travels as the train
is exiting. This will cause a large lift force. Note also how the high pressure on the side
travels from car to car. The magnitude of this pressure is however going down as the train
travel, causing the side force to go down as well.

Figure 6.16: The relative pressure acting on the train during exit of tunnel.
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Figure 6.17: The forces and moments acting on the train cars.

The scenario was performed with the train traveling at 70 m/s and an inlet wind of 35
m/s at the first 30 m (10W ) from the tunnel exit. This is meant to simulate a strong wind
gust influencing the train when exiting the tunnel.

In figure 6.17 the forces and moments acting on the different cars can be seen. The
stars mark when the nose of the train exit the tunnel and when the rear tail of the train
exit the tunnel. The lift force is the greatest force acting on the train and can be seen
wander from one car to the next during the exit of the tunnel.
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Figure 6.18: The force coefficients on the train from meeting a train at 140 m/s.

The coefficients were calculated for the whole train as in (2.18-2.19) and is seen in figure
6.18.
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Table 6.2: Coefficients from the tunnel scenario.
Mean CD CS CL CRM CPM CYM
u70 1.71200 1.15886 3.20398 -0.22480 -1.08609 -4.05955

Variance CD CS CL CRM CPM CYM
u70 0.28743 3.63883 6.43379 0.21016 5.05362 13.40303

6.3 Discussion of CFD method and results

The difference in flows between the two cases is large. It is interesting to study two so
different scenarios and what consequences they have on the stability and comfort. A similar
simulation to a train leaving a tunnel has been done in [12], where the train exiting a tunnel
is made with an entirely different method. The behaviour and magnitudes of the forces and
moments are similar which indicate a reasonable result. The fact that the train geomtry
used for CFD calculations is from ICE2 and that the data used in the dynamic calculations
is from a different high speed train is also an issue for using the results. The differences
in shape of nose and body will have influence of the results which have been studied in
[6], but the differences will probably mainly consist of slight changes in magnitude of the
forces.

Figure 6.19: The y+ on the walls of the trains.

The resolution of the cases can be seen in figure 6.19. The upper figure shows the y+ of
the trains passing each other. The value never passes 100 except at local positions where
the velocity is locally high. The fact that the flow is resolved to this point means that the
use of wall functions is applicable. For the train exiting the tunnel the value of y+ exceed
600 on the front. The consequences of this is hard to predict but the results are probably
good enough to use.

The Courant number (CFL number) is supposed to be below one at all times in the
entire mesh to ensure that the information travels from one cell to the next. The Courant
number can however locally be higher without affecting the flow. The Courant number at
critical positions around the trains in both cases can be seen in figure 6.20. The Courant
number is mostly below one in both cases. Both y+ and CFL is supposed to be as low as
possible to get more accurate results. These two contradict one another. Close to the walls
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Figure 6.20: The Courant number on the walls around the trains.

where y+ is calculated the Courant number is calculated for the same height, i.e. y = h in
(2.20) and (2.23). So having small cells to resolve the flow also means that the time step
has to be lowered.

7 Results from Vibration Dynamic Simulations

Throughout all results all the cost functions should be minized, i.e. a lower Jc, Js,1 and
Js,2 is better, where they meassure comfort and two stability measurements respectively.
In the scenario with meeting trains, the flange never touches the rail, so Js,1 is zero for all
simulations.
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Figure 7.1: Comfort and stability measurements over speed with the initial spring and
damper coefficients for a passive coupling.
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Table 7.1: Absolute values of the stability and comfort measurements for both scenarios
at 70 m/s.

Jc [m/s2] Js,1 [-] Js,2 [m]
Meeting trains 0.66 0.00 4× 10−4

Tunnel and side wind 10.71 0.55 245× 10−4

A speed sensitivity analysis was performed over a five second long simulation for both
scenarios. Extrapolation for the higher and lower speeds was done as described in (3.19).
In figure 7.1 the results for both scenarios are shown with the comfort and stability mea-
surements normalized at 70 m/s. For the meeting trains, data was available for three
speeds, which fit into the straight almost linear increase well, but for the train leaving
the tunnel data was only available for 70 m/s and to achieve true air speed the side wind
should also be considered scaled when extrapolating the forces.

It is interesting to note that the comfort and stability measurements scale linearly,
while in fact the forces on the train, both wind loads and rail contact behaviour does not.
A comparison between the scenarios can be seen in table 7.1. The side wind causes many
times higher load on the train, and it also causes the flange to hit the rail.
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Figure 7.2: Normal forces and flange forces on the wheel-rail contact for the train for the
tunnel scenario.

It is not easy to compare the measurements, but in the tunnel and side wind, Js,1 = 0.55
is very high, with high risk of derailment. The normal forces and flange forces using the
optimized parameters in table 7.2 are shown in figure 7.2. For the normal forces one can
see that the train nearly lifts and for the flange forces are already to high, i.e. risk of wheel
climbing. The limits shown in figure 7.2 are for when the wheel is rolling towards or from
the rail.

7.1 Optimization of the Coupling

The two different scenarios gives two very different optimization criteria as seen in figure
7.3 and figure 7.5. For meeting trains, it’s typically better with higher values, and for the
tunnel the lower is better. When looking at croll the spectrum was unnecessarily large, and
for both scenarios a optimum value can be found at the very beginning in figure 7.4 and
7.6. In table 7.2 some values chosen as optimal is compared and they were intentionally
picked as similar as possible for both scenarios.
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Figure 7.3: Optimization of the lateral spring and damper for meeting trains.
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Figure 7.4: Optimization of the roll damper for meeting trains.

Table 7.2: Comparison of the optimized values.
Initial Meeting trains Tunnel and side win

klateral [kN/m] 2×104 50 50
clateral [kNs/m] 100 700 100
croll [kNsm] 5 20 20
Relative change of Jc -7.82% -7.18%
Relative change of Js,1 -4.58%
Relative change of Js,2 -0.55% -8.88%
Effect in speed -3 to -4[m/s] -3 to -5[m/s]
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Figure 7.5: Optimization of the lateral spring and damper for tunnel and side wind.
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Figure 7.6: Optimization of the roll damper for tunnel and side wind.
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Figure 7.7: The trains displacement for the meeting trains.
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Figure 7.8: The trains displacement for the tunnel and side wind.

Figure 7.7 and 7.8 shows how the middle train car and the front wheelset on the middle
car responds in each respective scenario.
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7.2 Coupling Sky-hook
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Figure 7.9: Sky-Hook for varying fractions.
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Figure 7.10: Ground-Hook for varying fractions.

By sky-hook in these simulations the sky is referred to as the locomotives, and the
middle car the ground. If vsky∆v > 0 then just a fraction, f , of the damping coefficient is
used, i.e. cy,min = fcy and croll,min = fcroll. For the sky-hook on the meeting trains the
ODE solver had problems, thus the values are missing.

8 Conclusions

Only a few simplifications were done on the model as a whole which are described and
motivated in the theory for this report. The implementation in MATLAB used high level
mathematics and automated construction to minimize the amount of manual work. The
contact model was built upon established techniques for contact, creep and forces. The
components of the system have been tested individual and the dynamic simulations are
very trustworthy.

The scenario with the meeting trains will only cause slight vibrations for the passengers,
while the tunnel and side wind has a major impact on the stability of the train. For
the side wind at 35 m/s the train would experience to much movement, and at these
weather conditions (12 on the Beaufort scale) the train cannot go at full speed due to
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safety concerns. Such wind can make large objects airborn and these conditions occur a
few times a year around Europe.

One of the most interesting results is how very linearly the stability and comfort mea-
surements scale towards the true air speed. The CFD simulations only cover a spectrum
between 67 to 73 m/s in the meeting trains scenario, and only for 70m/s for the tunnel, but
the loads on the train behaves very similarly between 67 and 73m/s making it reasonable to
scale using constant drag and lift coefficients. Even if the flow starts to behave differently
when nearing 60 and 80 m/s, the speed analysis still show that the comfort and stability
still change linearly for a quadratically changing wind load and highly nonlinear reaction
forces from the wheel contact.

The swaying movement of the train car in both scenarios can most likely be damped
efficiently by the secondary suspension and most research on train dynamics focus on
just the bogie. This work shows that there is also a noteable room for improvements
in the coupling between the car bodies. While the initial parameters for the coupling
were not accurately calibrated after an actual high speed train, the simulations show that
carefully adjusting the coupling is important and can make a difference that equals the
effect of lowering the speed around 3 m/s ≈ 10 km/h. The initial coupling parameters only
model a simple, stiff connection with some small internal damping and the real coupling
might already have better or worse behaviour. In particular the effects from changing
the roll damper are very strong for smaller values, making it unreasonable to believe that
a optimized coupling is already in place, unless a similar analysis have been performed.
Lowering the lateral stiffness by designing a momentless joint in the coupling might be a
good idea, but more scenarios needs to be studied.

9 Recommendations

For further work we recommend the following:

• Improve mesh for movement. Some information is lost when the mesh is moved far
from the initial position. The mesh quality could also be improved, the automatic
mesh generator does not create a perfect mesh.

• It is difficult to use a moving mesh. Much control is lost. They are time consuming
and when a calculation is started it is difficult to alter the settings.

• More velocity tests is needed. The velocities of the meeting trains should be done at
several more velocities as well as the velocity of the train and the wind speed for the
tunnel scenario. More is always good for use in the dynamic calculations.

• Cases with side wind velocity should be lowered. The 35 m/s currently used is a
worst case scenario. To improve dynamic calculations and optimization of trains
lower wind velocities should be used.

• Look at PID regulators in the coupling.

• Compare the performance of active damping in the secondary suspension to the
coupling.

• Compare stability and comfort measurements with non wind related scenarios such
as curves.

• The other springs and dampers could also be put under optimization, especially the
roll spring.
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