

Automatic generation of PLC programs

using Automation Designer
Based on simulation studies and function block libraries
Master of Science Thesis in the Master Degree Program, Production Engineering

Mikael Andersson

Erik Helander

Department of Signals and Systems

Division of Automation

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

Report No. EX063/2010

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose

make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures and other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party 8for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Automatic generation of PLC programs using Automation Designer

Based on simulation studies and function block libraries

Mikael Andersson

Erik Helander

©Mikael Andersson, October 2010

©Erik Helander, October 2010

Examiner: Petter Falkman

Department of Signals and Systems

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone +46 (0)31-772 10 00

The cover picture shows a 2D layout inside Automation Designer

Department of Signals and Systems

Göteborg, Sweden October 2010

i

Abstract
New virtual commissioning tools are constantly being developed to help production engineers in

their line of work. One of these new tools is Siemens Automation Designer. A goal for VCC (Volvo Car

Corporation) is to be able to do the whole commissioning process virtual and not have to test the

programs in the real factory many times. Without several real time tests the ramp up time could be

decreased significantly and more time could be spent on producing cars.

An important issue which needs be solved is the possibility to reuse information. By using

Automation Designer reusable templates, containing information that always stays the same, can be

created. The templates can also include scripts which can ensure that naming standards is kept.

Depending on what information the templates are built up with, Automation Designer is able to

generate PLC code and HMI screens.

In this report three stations at VCC in Torslanda, Göteborg, is used in a case study to build up

templates inside Automation Designer. The goal with the study is to test if PLC code and HMI screens

can be generated from the software and still be according to the VCC standard. Information from

earlier simulation studies in Process Simulate is also imported into Automation Designer to see which

information that can be reused.

The final result is a generated PLC project where code is built up and generated by Automation

Designer and library function blocks are collected from the VCC function block library.

Keywords: PLC code generation, HMI screen generation, Automation Designer

ii

Acknowledgements

The master thesis had great support from the guys working with Automation Designer at Siemens AG

Industry Automation Division in Germany. A special thanks to Michael Geck for his help and support

throughout the whole project. We would like to thank VCC for giving us the opportunity to do our

master thesis at the company. Especially John Selander, our supervisor at VCC, and Stefan Axelsson

for helping us with administration and necessary education for the master thesis. We would also like

to thank Mathias Sundbäck at VCC for giving us information about virtual simulation.

Last but not least we would like to send a big thank you to our examiner at Chalmers University,

Petter Falkman, who helped us to find the master thesis and has given us feedback through the

master thesis.

iii

Table of Contents
Abstract .. i

Acknowledgements ..ii

List of Figures ... vi

List of Tables ... vii

Abbreviations .. viii

1 Introduction ... 1

1.1 Background .. 1

1.2 Purpose .. 1

1.3 Objectives .. 1

1.4 Delimitations ... 2

1.5 Research questions.. 2

2 Station 15-38-100, 110, 120 at VCC Torslanda .. 3

2.1 Layout of the three stations .. 3

2.2 Work description ... 4

2.2.1 Station 15-38-100 .. 4

2.2.2 Station 15-38-110 .. 4

2.2.3 Station 15-38-120 .. 5

2.3 Tree structure for station 15-38-100, 110, 120 ... 7

3 Frame of Reference ... 8

3.1 Programmable Logic Controller (PLC) for Industrial Automation ... 8

3.1.1 IEC 61131 ... 8

3.1.2 Function Block Diagrams (FBD) ... 10

3.1.3 Different ways of structure the PLC code.. 10

3.1.4 SIMATIC STEP 7 .. 11

3.1.5 Methods for verification and validation of PLC programs .. 11

3.1.6 Requirements for automatic generation of PLC code ... 12

3.2 Human Machine Interface (HMI) for Industrial Automation .. 12

3.2.1 SIMATIC WinCC flexible ... 12

3.3 Simulation Studies ... 13

3.3.1 Technomatix Process Simulate/ Process Designer .. 13

3.3.2 Simulation Studies at VCC ... 13

4 PLC programming at VCC ... 14

4.1 VCC PLC programming philosophy .. 14

iv

4.1.1 Handling alarms at VCC ... 15

4.1.2 Siemens STEP 7 programming standard at VCC .. 15

4.1.3 HMI programming standard at VCC .. 17

4.2 PLC programming/HMI in the commissioning process at VCC .. 17

5 Automation Designer .. 19

5.1 What is possible to do in the software? .. 19

5.1.1 PLC code generation .. 19

5.1.2 Generation of HMI pictures ... 20

5.1.3 Generation of EPLAN drawings ... 21

5.1.4 Reuse information from earlier simulation studies .. 21

5.2 Engineering with Automation Designer .. 21

5.2.1 User interface and layout of Automation Designer .. 22

5.2.2 Base project ... 22

5.2.3 Engineering project ... 23

5.2.4 Base objects ... 23

5.2.5 Templates .. 23

5.2.6 eBlocks ... 23

5.2.7 2d-layout and polygons (areas) ... 24

6 Methodology ... 25

6.1 Creating the Base project for this case study .. 25

6.1.1 Base objects ... 25

6.1.2 Templates .. 26

6.2 Working with templates in the engineering project ... 34

6.2.1 Configuration of the engineering project with the right click of the mouse................. 34

6.2.2 Configuration of the project by importing an XML file from Process Simulate 36

6.2.3 Exporting the engineering project to STEP 7 ... 38

6.2.4 Exporting the engineering project to WinCC flexible .. 40

7 Results ... 42

7.1 STEP 7 code generation ... 42

7.1.1 Generated FCs ... 42

7.1.2 Generated DBs ... 43

7.1.3 Generated symbol table .. 44

7.1.4 Generated Hardware ... 45

7.2 WinCC flexible screen generation ... 45

v

7.3 EMserver import.. 49

8 Discussion .. 51

9 Conclusion ... 53

10 Future recommendations .. 54

11 References ... 55

Appendix A .. 1

A.1 Adding objects in the navigation tree ... 1

A.2 Configuration of the General folder .. 2

A.3 Configuration of Roller 2W2S-DDP .. 5

A.4 Configuration of Turntable .. 7

A.5 Configuration of ABB Robot .. 9

A.6 Configuration of ModeZone .. 9

A.7 Unit layout and polygons... 11

A.8 Configure the hardware interface ... 15

A.9 Adding H_IAnim tags and configuring the WinCC flexible project fragments 18

A.10 Generating code to STEP 7 .. 20

A.11 Generating pictures to WinCC flexible .. 23

Appendix B .. 1

B.1 Creating a base object. .. 1

B.2 Creating a template. .. 6

vi

List of Figures

Figure 1 – Process Simulate layout of the stations included in this master thesis 3

Figure 2 - Real layout of the stations included in this master thesis .. 3

Figure 3 – ABB Robot applying glue on a metal part in station 15-38-110 ... 5

Figure 4 - Spot-welding in station 15-38-120 .. 6

Figure 5 - Illustration of the tree structure for station 15-38-100, 110, 120 .. 7

Figure 6 - Programming structure for the different PLC languages .. 9

Figure 7 - General description of a function block .. 10

Figure 8 - Example of flat and hierarchal structures ... 11

Figure 9 - Structure of Function Block Diagrams for VCC in STEP 7 .. 15

Figure 10 - Icons for different HMI levels .. 20

Figure 11 - User interface and layout of Automation Designer .. 22

Figure 12 - 2D layout with polygons .. 24

Figure 13 - Automation Designer database with created Base objects ... 25

Figure 14 - Created attributes for the Base object PLC Area .. 26

Figure 15 - Basic templates and their contents, Units to the left and Components to the right 27

Figure 16 - Content inside the S7-software template for the Conveyor ... 28

Figure 17 - System data for FB1515 (function block for Conveyor) inside Automation Designer 29

Figure 18 - Inline macros to include networks .. 30

Figure 19 - WinCC flexible template for Conveyor .. 31

Figure 20 - XML data for WinCC flexible template .. 31

Figure 21 - eBlocks inside the object templates for Turntable and Conveyor 32

Figure 22 - Script data for setting names and numbers on instance DBs ... 33

Figure 23 - Hardware wizard for PLC cabinet .. 34

Figure 24 - Insert a new object in the navigation tree by the right click of the mouse 35

Figure 25 - Final tree structure with 2D-layout ... 36

Figure 26 - JT-drawing of station 15-38-110 inside Automation Designer.. 37

Figure 27 - Pop-up window where an XML file needs to be chosen when importing information from

EMserver ... 37

Figure 28 - STEP 7 generator ... 38

Figure 29 - Export tab inside the STEP 7 generator ... 39

Figure 30 - WinCC flexible generator inside Automation Designer .. 41

Figure 31 - Placeholders for the interlock calculations ... 42

Figure 32 - The DB for the ModeZone ... 43

Figure 33 - Variables in DB20 .. 44

Figure 34 - Generated symbol table .. 44

Figure 35 - Hardware configuration for the generated project. ... 45

Figure 36 - List of screens in WinCC flexible generated from Automation Designer 46

Figure 37 - Generated screen forOB1 ... 47

Figure 38 - Generated screen for mode zone ... 47

Figure 39 - Detail screen for conveyer FB1515 ... 48

Figure 40 - Tags with addresses generated from Automation Designer ... 49

Figure 41 - Tree structure from XML file imported from Process Simulate .. 50

file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652580
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652584
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652587
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652590
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652592
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652593
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652608

vii

List of Tables

Table 1 - Description of the PLC tree structure at VCC ... 14

Table 2 - Description of the different levels in the VCC PLC tree structure from Table 1 14

Table 3 - Standard for FB, FC and DB numbering .. 16

Table 4 - Description of VCC network structure in STEP 7 .. 16

Table 5 - Description of different Networks in Automation Designer .. 29

Table 6 -Description of modified and created eBlocks for this master thesis 32

viii

Abbreviations
AD Automation Designer

CAD Computer Aided Design

FBD Function Block Diagram

FFI Fordonsstrategisk Forskning och Innovation

(Strategic Vehicle Research and Innovation)

HMI Human Machine Interface

PD Process Designer

PLC Programmable Logic Controller

PS Process Simulate

S7 STEP 7, Siemens’ PLC programming tool

TCP Tool Center Point

VCC Volvo Car Corporation

VINNOVA Verket för Innovationssystem

(The Swedish Governmental Agency for Innovation Systems)

1

1 Introduction
Product lifecycle management (PLM) is a business strategy that helps companies to share and store

information of products and common processes to facilitate the development of new ones. Virtual

commissioning, which is the programming and testing of PLCs, robots and other in a virtual

environment, is a large part of PLM and it is increasing in the large production companies due to its

ability to decrease ramp up times (Smith, 2009). New virtual commissioning tools are constantly

being developed to help production engineers in their line of work. One of these new tools is

Siemens Automation Designer.

1.1 Background
Preparing an automatic production system takes a lot of time and to be able to decrease this time

virtual simulation studies are used more frequently. Traditionally a lot of work is done twice because

of the lack of integration between software and systems. For a virtual simulation study all logic is

needed to be created to be able to do a proper simulation and to investigate the station behavior.

However, this logic cannot be transferred to the PLC software directly.

When creating the PLC program the station logic from the simulation study cannot be satisfactory

reused. A step with manual transfer of the logic is needed which leads to both double work and

possible human errors. It is also hard to verify the PLC code before the real station is built in the

factory because of the lack of integration with the virtual simulation study.

A goal for VCC (Volvo Car Corporation) is to be able to do the whole commissioning process virtual

and not have to test the programs in the real factory many times. Without several real time tests the

ramp up time could be decreased significantly and more time could be spent on producing cars.

This master thesis is a part of the FFI (Strategic Vehicle Research and Innovation) initiative for VCC.

FFI is a research program launched by the Swedish governmental agency for innovation systems

(VINNOVA), to help the Swedish car production companies develop a competitive and sustainable

vehicle industry (Vinnova, 2010).

1.2 Purpose
The purpose is to generate PLC code and HMI (Human Machine Interface) screens in an earlier phase

of the commissioning. Also to be able to reuse information created in Process Simulate, stored in a

common database and decrease the ramp up time by using the software Automation Designer.

1.3 Objectives
To generate PLC programs and HMI screens with Siemens Automation Designer version 9.1, based on

already created specifications and generic function libraries.

Then evaluate how well the program coincides with the programming structure VCC uses today and

through the evaluation come up with suggestions how Automation Designer and VCC work

methodology can be changed to work in conjunction.

Another aim of the project is also to learn Automation Designer well enough to be able to educate

VCC personnel in the basics of the software.

2

1.4 Delimitations
 EPLAN drawings will not be a part of this project.

 PLC code and HMI screens will only be generated for Siemens products.

 Generated code shall be based on existing VCC libraries.

 The stations 15-38-100, -110 and -120 in the TA-factory at VCC Torslanda are the only

stations that will be used as a case study in Automation Designer.

1.5 Research questions
 What is possible to do with Automation Designer today?

 What does VCC need to change in their way of working to be able to use Automation

Designer?

 What needs to be changed in Automation Designer to fit VCC work methodology?

 How much information can be transferred from Process Simulate to Automation Designer?

 To what degree can VCCs current PLC function blocks be integrated with Automation

Designer?

3

2 Station 15-38-100, 110, 120 at VCC Torslanda
The stations named 15-38-100, 15-38-110 and 15-38-120 are situated in the TA factory at VCC in

Torslanda, Gothenburg Sweden. These three stations are included in the case study for this master

thesis.

2.1 Layout of the three stations

Figure 1 – Process Simulate layout of the stations included in this master thesis

Figure 2 - Real layout of the stations included in this master thesis

15-38-120 15-38-110 15-38-100

15-38-100

15-38-110

4

2.2 Work description
The stations shown in Figure 1 are a part of a line producing the underbody for the car models V70

and S80. The main operations for the three stations are spot welding performed by robots. The PLC

controls when a robot is allowed to work, however the PLC does not handle the robot operations.

When a robot has been given the confirmation that it is allowed to start the robot is completely

driven by the robot program until the operations are finished. The robots also control the special

equipment they use during their work, as for example the gluing guns in station 15-38-110.

Following is a detailed description of each station. The information presented is only concerning the

PLC, since this is the focus of this master thesis.

2.2.1 Station 15-38-100

Station 15-38-100 consists of two spot-welding robots, one conveyor, one decoder and one lift (see

Figure 1). The robots perform enhanced spot-welding on parts assembled onto the underbody in the

previous stations. A decoder reads a tag to check if the arriving model is the same as expected. The

tag is placed on the skid that carries the car body, to determine which model it is and to be able to

track it through the production.

To be able to handle different car models in this station there are two steering pins that needs to

adjust position relative to the arriving underbody. This is done by cylinders controlled by the PLC

before a new underbody arrives to the station.

Below is a brief description of the PLC operations in station 15-38-100:

1. Get information of which model is arriving from the previous station or buffer

2. Adjust the steering pins

3. Start the conveyor to bring in a new underbody to the station

4. Lower the underbody down to fixate it for the robot welding

5. Start the robot programs to spot-weld the underbody

6. Get a confirmation from the robots that the work is finished

7. Lift up the underbody

8. Check if the next station is empty

9. Start the conveyor to send it to the next station

2.2.2 Station 15-38-110

In station 15-38-110 the A-pillars of the car is assembled onto the underbody. The station consists of

two spot-welding robots, two robots with grippers, one conveyor, one decoder, two turn-tables, one

lift and one fixture. The fixture is placed above the underbody (see Figure 1 and Figure 2) and helps

the turntable to fixate the A-pillars. As for station 15-38-100 a decoder checks which model the

underbody belongs to.

The two robots with grippers are starting their operation cycle when an underbody arrives to the

previous station (station 15-38-100). This is needed to decrease the cycle time for this station. The

robots collect one part each from the racks (see Figure 1) and travels to the gluing gun on special

designed conveyors (see Figure 3). The gluing operation is controlled by the robot, but the PLC is

starting and stopping the heater of the gluing gun when for example a shift ends or a longer stop is

needed. Parts are always available in the racks due to a two level system. When the top level is

5

empty a gate is raised and the robot can start collecting part from the lower level. Forklift drivers

load the upper level with new parts and give a confirmation to the PLC that the upper level is refilled

with the help of a barcode scanner. Later when the lower level is empty the gate will go down and

the robot will start collecting parts from the upper level again.

The spot-welding robots perform welding operations to fasten the A-pillars. The parts are both glued

and welded onto the underbody.

Below is a brief description of the PLC operations in station 15-38-110:

1. Receive information of which car model that will arrive next

from the previous station (station 15-38-100)

2. Start the gripper robots operations

3. Start the conveyor to bring in a new underbody to the

station

4. Lower the underbody down to fixate it for the robot welding

5. Get a confirmation that the gripper robots are finished and

that the metal parts are placed in on the turntable.

6. Turn the turn table and press the metal parts onto the

underbody

7. Close the clamps of the fixture above the underbody to hold

the parts

8. Start the robot programs to spot-weld the underbody

9. Get a confirmation from the robots that the work is finished

10. Release the clamps of the above fixture and turntable

11. Turn the turn table to its home position

12. Lift up the underbody

13. Check if the next station is empty

14. Start the conveyor to send it to the next station

2.2.3 Station 15-38-120

The tasks performed in s are enhanced spot-welding as in station 15-38-100 (see Figure 4). The

station consists of four spot-welding robots, one conveyor and one lift. When the underbody is

finished at this station it is stored into a buffer before it heads to the next station. However this

buffer is not a part of this master thesis and will not be considered.

Below is a brief description of the PLC operations in station 15-38-120:

1. Start the conveyor to bring in a new underbody to the station

2. Lower the underbody down to fixate it for the robot welding

3. Start the robot programs to spot-weld the underbody

4. Get a confirmation from the robots that the work is finished

5. Lift up the underbody

6. Check if the buffer is ready to receive

7. Start the conveyor to send it to the buffer

Figure 3 – ABB Robot applying glue on a
metal part in station 15-38-110

6

Figure 4 - Spot-welding in station 15-38-120

7

2.3 Tree structure for station 15-38-100, 110, 120

Figure 5 - Illustration of the tree structure for station 15-38-100, 110, 120

Components Object Station ModeZone PLC

3835PL

S100

15-38-100

Robot 72-31

Robot 72-32

Conveyor 101

Fixture

15-38-110

Robot 72-33

Robot 72-34

Robot 72-35

Robot 72-36

Conveyor 111

Fixture

Turn Table 112

Clamps

Turn Table 113

Clamps

Barcode
Scanner 114

Rack protection
up/down

Barcode
Scanner 115

Rack protection
up/down

15-38-120

Robot 72-37

Robot 72-38

Robot 72-39

Robot 72-40

Conveyor 121

Fixture

8

3 Frame of Reference
This chapter will describe a theoretical background of the different concepts, definitions and

software’s used in this master thesis. Since the main topic of the report, automatic generation of PLC

programs using Automation Designer, is a fairly new concept there have been some difficulties to

find publications and literature dealing with this topic solely.

3.1 Programmable Logic Controller (PLC) for Industrial Automation
A PLC (Programmable Logic Controller) is a digital computer used for controlling an automated

production system such as factory assembly lines. The PLC controls equipment like robots, fixtures

and conveyors and the PLC programs are traditionally done late in the commissioning process.

3.1.1 IEC 61131

The main standard for PLC is the IEC 61131 developed by the International Electro-technical

Commission (IEC). The standard is divided into the following five parts (PLCopen, 2008):

1. General information

2. Equipment requirements and tests

3. Programming languages

4. User guidelines

5. Messaging service specification

The programming instructions at VCC are partially based on the IEC 61131-3 standard (Volvo Car

Corporation, 2008) that handles the allowed programming languages and supplies guidelines on how

to get the most out of each language (Ashton, 2007). The supported programming languages in IEC

61131-3 are:

 Textual

 Instruction list (IL)

 Structured text (ST)

 Graphical

 Function block diagram (FBD)

 Ladder diagram (LD)

 Sequential function chart (SFC)

SFC is used as a way to structure the internal organization of the program (see Figure 6) while the

textual language with instruction list and structured text are inter-operable languages. The graphical

language with function block diagram and ladder diagram are also inter-operable languages but they

differ a lot from the textual when it comes to programming. Some samples of the different

programming languages are shown in Figure 6.

All programming languages have their advantages but for reuse from one program to the next the

graphical languages is preferred. Function block diagrams are very easy to use when storing certain

programming functions, e.g. robot communication. With this language it is possible to build up a

database with different block or diagrams that the programmer can use for a lot of different projects

and save time by reusing already created code for different functions. This is also possible to do for

the textual languages but it is much easier to connect different graphical languages (Selander, 2010).

9

Figure 6 - Programming structure for the different PLC languages

10

3.1.2 Function Block Diagrams (FBD)

The function block diagram (FBD) language is one of the PLC programming languages stated in the

IEC 61131-3 standard (PLCopen, 2008).

A standard FBD is built up by input/output variables, through variables, internal variables and the

behavior of the FBD (Torsten Heverhagen). An illustration of a standard FBD is shown in Figure 7.

 Input variables

The input variables are all external signals that are necessary for the FBD to be able to

perform its specified function. Input variables can only be set from outside the FBD.

 Output variables

Output variables are the signals that are generated in the FBD through the internal logical

behavior. The output variables are often the desired result from the FBD and they are the

only variables in the FBD that can be read from the outside.

 FBD behavior

The internal logical behavior is determined by the FBDs specified function. The internal logic

can be programmed in one or a combination of the existing inter-operable PLC programming

languages.

 Internal variables

Internal variables are only used inside the FBD and cannot be accessed from the outside.

 Through variables

Through variables are used to when several FBDs in a row uses the same input variable. The

value or data type of a through variable never changes when passing through a FBD

3.1.3 Different ways of structure the PLC code

When programming a PLC with function blocks there are two ways to structure the program, flat

structure and hierarchal structure. A flat structure is often easier to program but for larger projects it

tends to get very complex and hard to overview, therefore it is also harder to maintain. The

hierarchal structure works in an object oriented way and requires more planning but it allows for a

wider use of library blocks. A library block is a function block with functionality reused frequently and

therefore stored in a library. In a larger company with a lot of similar processes the use of library

blocks will in the long term save a lot of time and simplify the maintenance work. A hierarchal

structure is good when organizing the PLC program and its code for objects such as robots or

Through Variables

Input

Variables

Internal

Variables

FB Behavior

Output

Variables

Figure 7 - General description of a function block

11

conveyors. It will enable the possibility to group together objects in a desired way. Figure 8

represents the difference between a flat and a hierarchal structure.

Figure 8 - Example of flat and hierarchal structures

3.1.4 SIMATIC STEP 7

STEP 7 is a software package for programming SIMATIC PLC´s from Siemens. The standard package

includes symbol editor, SIMATIC Manager, NETPRO Communication Configuration, Hardware

Configuration and Hardware Diagnostics. STEP 7 supports the programming languages Ladder

Diagram, Function Block Diagram and Statement List (Siemens AG Automation and Drives, 2006).

However all the programming standards in IEC 61131-1 can be implemented in the program with

expansion packages.

3.1.5 Methods for verification and validation of PLC programs

To verify a PLC program is to check that the program is created in the right way e.g. according to a

standard (Frey & Litz, 2000). The methods to do this are to investigate the code yourself and also to

have someone else to look at it. However, this person needs to have a wide knowledge about the

standards followed in the project (Selander, 2010). Another step in the verification process is to

compile the PLC code to make sure that there are no syntax errors.

The validation is to investigate that the PLC program works and behaves according to the

specification (Frey & Litz, 2000). The first step is to test the program in a virtual PLC. This is done by

running the code virtually in the PLC software and manipulate the input signals. Then study the

behavior of the program and the output signals that will appear. After this step the only way to make

sure that the PLC program works correctly is to test it on the real production line to find the

remaining errors and correct them. This trial and error process have to be completed before the

12

production can start. This process needs to be as optimized as possible because of the costs of having

a production line halted for testing is very high (Selander, 2010).

3.1.6 Requirements for automatic generation of PLC code

When generating PLC code automatically it is important that the generated code not only works in

ideal conditions when the process or production plant is up and running. The generated code shall

also be able to handle parts such as interlock logic, safety instructions, start-up and shutdown

sequences (Güttel, Weber, & Fay, 2008). Otherwise a lot of manual work will still be needed

afterwards.

In a scientific study made by Güttel et al. four requirements have been established to be able to auto

generate PLC code. The first requirement is that the plant structure must be available in a computer

readable form. This is necessary because to be able to generate e.g. interlock logic for a conveyor the

connection between its sensors needs to be defined. The second requirement is that a process

description needs to be available. The description also needs to be in a machine readable form where

Güttel et al. suggest using the IEC 61131-3 language SFC and “PLCopen-XML” as the representation of

the format. The third requirement is that a well-defined and standardized function block diagram

library needs to be available. This is very important because it is within these function block diagrams

the functionality is represented of the components in the process or production plant. The last

requirement is that the knowledge of today’s process engineers needs to be extracted and put down

into computer readable rules. This must be done to ensure the quality of the generated PLC code.

3.2 Human Machine Interface (HMI) for Industrial Automation
HMI in this paper is the interaction between the PLC system and the operator. The interaction is

presented by a screen with dynamic icons, figures and text. The HMI screen is presented on a panel

or a standard PC positioned in the production area. An operator can monitor the production and

control it to a certain level by the help of an HMI panel or PC. To be able to be an interface between

the PLC and the operator the HMI system has to be able to do the following tasks (Siemens AG

Industry Sector, 2008):

 Visualize the process

 Control the process with help of an operator

 Display upcoming alarms

 Archive alarms and process values

 Log alarms and process values

 Manage process and machine parameters

3.2.1 SIMATIC WinCC flexible

WinCC flexible is a Windows based engineering software created by Siemens for producing HMI

screens. The screens are available for use on SIMATIC HMI operator control and monitoring devices

as well as standard PC´s (Siemens AG Industry Sector, 2010). WinCC flexible is available in four

different versions which are Micro, Compact, Standard and Advanced. The difference between the

versions is the number of SIMATIC panels that the software is applicable with. Micro has the least

number of compatible SIMATIC panels while Advanced supports all SIMATIC panels and is the only

version that is PC compatible (Siemens AG Industry Sector, 2010).

SIMATIC WinCC flexible is closely integrated with the PLC software SIMATIC STEP 7. It is possible to

manage WinCC flexible projects within STEP 7 and communication settings, tags and alarms can be

13

shared between the software’s (Siemens AG Industry Sector, 2010). The integration is made by the

program SIMATIC Manager, a component of STEP 7. The coupling in the production between the HMI

screens and PLC is made via PPI, MPI, PROFIBUS DP and PROFINET (TCP/IP) (Siemens AG Industry

Sector, 2010).

3.3 Simulation Studies
This chapter will cover the work methodology at VCC when it comes to simulation studies. The

chapter will also include the type of software used in the simulation studies.

3.3.1 Technomatix Process Simulate/ Process Designer

Process Simulate (PS) and Process Designer (PD) are two product lifecycle management (PLM)

software tools from Siemens. The software’s makes it possible to plan the manufacturing process

virtually in a 3D environment before it is implemented in the factory. With PS and PD it is possible to

reuse information from earlier manufacturing process planning’s and this will decrease the time of

work when a factory needs to be redesigned or complemented with new equipment (Sundbäck,

2010).

Process Designer is used to virtually design the production layout. This includes importing CAD

(Computer Aided Design) models of the factory and its components and machines into the software.

Then to design the line, model capabilities of the process and balance the line (Siemens PLM

Software, 2008).

Process Simulate is the next step when performing a virtual simulation study. The software is a tool

for verification, optimization and commissioning of the designed factory created in PD (Siemens PLM

Software, 2008). PS consists of five segments designed to verify and optimize in a certain area of the

factory. The different segments are Assembly, Human, Spot Weld, Robotics and Commissioning

(Siemens PLM Software, 2008). The software simulates the logical behavior of the production and

sequencing of the operations (Siemens PLM Software, 2008).

3.3.2 Simulation Studies at VCC

VCC uses Process Simulate and Process designer in the first steps of the commissioning phase. The

software’s are mainly used to verify if a new car model is possible to produce in the factory. When

the engineers start working with their simulation projects the car is not yet completely developed.

The specifications available at the project start up for the virtual simulation studies usually changes

and the models needs to be modified later on in the commissioning process (Sundbäck, 2010).

The engineers work is to investigate how much equipment that is possible to reuse and how much

new equipment that is needed to produce the new car model. Studies on the possibility to modify

existing lines and if enough space is available to place the new equipment needed also has to be

performed. If there is a lack of space a new line needs to be built inside the factory. But sometimes

that is not an option for the company and this result in redesign of the parts that could not be

produced or assembled on the modified current production line (Sundbäck, 2010)

Another assignment for the simulation engineers is to check the reachability for the robots. Robot

programs are also produced to simulate the production lines to get a clear view whether it is possible

or not to produce the new car at the production line designed by the engineers. When the

simulations are validated and the solutions are found, the external line builders take over and start

developing the real production line that will be installed in the factory (Sundbäck, 2010).

14

4 PLC programming at VCC
Most of the PLC programming at VCC is done by contracted line builders. However when the PLC

code has been delivered to VCC, all maintenance and minor changes to the code is performed in-

house. To ease this work VCC has developed a standard for the structure of the PLC programs that all

their suppliers must follow.

4.1 VCC PLC programming philosophy
VCC PLC programs are built up by function block diagrams in a tree structure (see Table 1 and Table

2). Each function block diagram represents either a real object, such as a conveyor or a robot, or a

function such as a mode zone or a bit to word converter (Volvo Car Corporation, 2008).VCC has built

up a library of function block diagrams that are designed to be as general as possible and to fit in all

possible station configurations. VCC provides this library to their line builders who are required to

use it as far as possible. The function block diagrams are used in conjunction with the tree structure

(see Table 1) so that each function block diagram only speaks to one level above and below in the

tree. A description of each level can be found in Table 2. If this standard has been followed properly

the engineers at VCC have it much easier navigating the code during maintenance and upgrades

(Selander, 2010).

Table 1 - Description of the PLC tree structure at VCC

Level 1 2 3 4 5 6 7 8

 PLC

 EStop
Zone

 Mode
Zone

 Objects

 Objects

 Components/Functions

 Components/Functions

Table 2 - Description of the different levels in the VCC PLC tree structure from Table 1

Level Description

PLC The PLC level is the topmost level that is represented within the PLC code. It deals
with the basic functions of the PLC and handles the relationship between the
different mode zones.

EStop Zone An emergency stop zone covers all objects that need to be stopped if the
emergency stop is triggered. One PLC can control several EStop Zones.

Mode Zone A mode zone contains all objects that have to be run in the same mode
simultaneously e.g. automatic or manual mode. It is within the function block
diagram for the mode zone the majority of the interlock calculations for the
objects is made.

Object The objects are the machines that are used to build and transport the car and its
parts. VCC has a library with function block diagrams that covers most of the
objects used. But for some of the more complex or unique objects the FBDs have
to be manually created.

Components The components are physical parts of the objects that have a specific function and
are used in multiple instances. For example a conveyors motor. VCC have several
different types of conveyors that use the same type of motor.

15

Functions Function block diagrams used to execute a specific operation commonly used by
several objects. An example of this is the “transfer in” operation that is used by
the conveyors.

4.1.1 Handling alarms at VCC

To make sure workers and equipment are safe and that troubleshooting goes as fast as possible VCC

has defined four types of alarms for their PLC programs:

 Level A: Safety function tripped. All machines must immediately stop.

 Level B: All machines in automatic mode are stopped. Manual mode is still allowed.

 Level C: Error that requires intervention from an operator. E.g. machine has run out of

assembly parts.

 Level D: Error that does not requires intervention from an operator. E.g. machine is waiting

for an interlock requirement to be fulfilled.

If a level A or B alarm is generated, an operator needs to manually reset the alarm after the cause

has been fixed. Otherwise the alarm won’t go away. Each function block diagram shall be able to

generate its own alarms. These alarms are summarized in each level and sent upwards in the PLC

structure. A function block diagram can stop itself and the blocks below directly. However, it can only

report errors upwards in the structure and the function block diagram on a higher level will have to

decide if any other consequences are needed.

4.1.2 Siemens STEP 7 programming standard at VCC

VCC has decided to only use hardware and software from Siemens when building new installations

and has therefore specified a detailed Siemens PLC programming standard that is based on their

general standard (Selander, 2010).

Figure 9 - Structure of Function Block Diagrams for VCC in STEP 7

16

The programming in STEP 7 shall be done with function block diagrams in according with the general

standard. In STEP 7 there are two types of function block diagrams called FB and FC. The main

differences between them are that FB must have a specified data area called data block (DB)

connected to it. A FB can also store static variables between each scan cycle. At VCC all FC created by

line builders must also have a DB (Volvo Car Corporation, 2008). This is to make it easier finding the

variables connected to each FC. VCC uses FB for functions that are reusable and these blocks are

stored in a library. The FCs are used for unique project specific functions (see Figure 9). It is required

in STEP 7 that each FB, FC and DB is assigned a unique number that works as an identifier. VCC has

set in their standard a convention for how numbering shall be made in their projects. The most

important numbering rules can be found in Table 3.

Table 3 - Standard for FB, FC and DB numbering

Type Adress Description

FB/FC

Local functions – General 251-299 Project specific block for general functions.

Local functions - Mode Zone 300-549 Project specific blocks for blocks within a mode zone.

S7 Graph 550-599 SFC blocks

Local library 600-999 Library blocks that are unique to Torslanda or Ghent.

Standard library 1000-2048 VCC library blocks.

DB

Local functions – General 251-299 Project specific DB. Always the same number as its
connected FC.

Local functions - Mode Zone 300-549 Project specific DB. Always the same number as its
connected FC.

S7 Graph 550-599 DB for SFC blocks

General 1000-1199 Instance DB for library blocks that is not part of a
mode zone

Mode Zone 1 1200-1399 Instance DB for library blocks that is a part of mode
zone 1

Mode Zone 2 1400-1599 Instance DB for library blocks that is a part of mode
zone 2

Mode Zone 3 1600-1799 Instance DB for library blocks that is a part of mode
zone 3

FBs and FCs are built up of networks containing PLC code. Networks are used to structurize the code.

A network could for example contain the call of another FB or the calculation of an interlock variable.

In the VCC standard (Volvo Car Corporation, 2008) there are rules for in which order the networks

shall be placed and what they shall contain (see Table 4).

Table 4 - Description of VCC network structure in STEP 7

Network Description

1. Inputs Functions whose main purpose is to read and move inputs.

2. Alarms Functions dealing with alarm creation.

2.1. Enable Alarms Disabling alarms if a higher priority alarm is active.

2.2. Alarm generation Functions dealing with alarm creation.

3. Communication Functions whose main purpose is communication.

3.1. Other systems Functions for communication with other systems e.g. other
PLC:s or the manufacturing execution system.

17

3.2. Devices Functions for displays and BUS nodes

4. Machine status Functions whose main purpose is machine status.

4.1. Detected Functions whose main purpose is to deal with detectable
machine status from inputs.

4.2. Parameter Functions whose main purpose is to deal with machine status
derived from memorized variables.

4.3. Operator selection Functions whose main purpose is to deal with machine status
from operator selections

4.4. Calculated Functions whose main purpose is to deal with machine status
calculated using other statuses as inputs.

4.5. Modes Functions dealing with the different production modes.

4.6. Indications Functions whose main purpose is to indicate the machine
status to the operator.

5. Equations Equations that does not fit in any of the other areas.

5.1. Interlocks Equations dealing with interlocks.

5.2. Flow equations Equations dealing with the process flow.

6. Sequences All sequences

7. Submodules Sub levels that is not part of any other dedicated areas.

7.1. Non machine Sub levels who doesn’t deal with machines.

7.2. Command summary Function to sum-up all signals to steer each output

7.3. Machine Sub levels dealing with machines e.g. robots or rollers.

8. Outputs Functions dealing with the outputs from the function block

9. Alarm summary Summary of all A, B, C and D alarms.

4.1.3 HMI programming standard at VCC

For creating the HMI screens Siemens WinCC is used. Since WinCC and STEP 7 are highly integrated

the screens shall be created in the same project as the PLC code. For each FC and FB in the project

there shall be a corresponding screen (see Figure 9) as well as for the OB1. VCC provides finished

screens for the FB from their library and a starter pack containing templates to be used for the

project unique screens. For each FB and FC there is also an icon that is to be used in the screen one

level higher in the tree structure to display the status of the object (Volvo Car Corporation, 2008).

Each FB and FC has two variables of the type word that are used only by the HMI to read the

necessary information to the screens and icons respectively. The words are interpreted in WinCC

through visual basic scripts. The result is a communication between the function block diagrams (FCs

and FBs) and the HMI screen where the screen shows the information such as alarms to the

operator. WinCC flexible is used in the same way by VCC, but all screens and all other functions are

not yet finalized.

4.2 PLC programming/HMI in the commissioning process at VCC
The development of the PLC programs and HMI screens are always outsourced by VCC to external

line builders. The line builders are also responsible for other things like mechanical and electrical

construction of the production line. The line builders have close contact with the engineers at VCC

and need to follow the standards that are available. In some special cases VCC have been forced to

do some PLC programs and HMI themselves (Selander, 2010).

18

The first thing a line builder needs to do before he can start programming the PLC code is to think

through and present the structure of the program and which function blocks that will be used from

VCC’s programming library. The structure needs to be approved at VCC before the new PLC code can

be developed. In the end the developed PLC code and HMI also needs to be presented to VCC and be

approved before it can be implemented into the production line (Selander, 2010).

19

5 Automation Designer
Automation Designer (AD) is a software from Siemens that is developed on the base of Comos. The

software is an engineering platform, mainly for the manufacturing industry, to help decrease the

time for engineering and start commissioning earlier. Automation Designers main purpose is to help

the engineers take the step from the digital factory to the real plant and to reuse as much

information as possible at all times (Siemens AG Industry Sector, 2010). Because of the lack of

information about Automation Designer, this chapter has been reviewed by Michael Geck and

Steffen Weber at Siemens AG Industry Automation Division in Nürnberg, Germany.

5.1 What is possible to do in the software?
Automation Designer is developed to decrease the ramp up time in a factory when new equipment

needs to be installed or a new line is going to be developed. This is done through reuse of

information and a possibility to generate the information needed to implement the equipment or the

line. The software is intended to be the last step before implementation of the prepared work in the

physical factory.

Automation Designer has got three main features (Siemens AG Industry Sector, 2010):

 Functional, Layout based Engineering

 Generators for PLC Code, EPLAN electric P8 and WinCC flexible

 Data Connection to earlier engineering phases like mechanical simulation

All three features are connected to each other in the software but it is possible to work with only one

or two of them. It is important to know that the user must have a valid license of the software´s in

the list above to be able to use the generated information. STEP 7, EPLAN and WinCC flexible is not

part of Automation Designer; however it is possible to work with the different features inside AD

without having the software´s installed.

Automation Designer is also a powerful tool when it comes to documentation. A lot of different

documents such as list of equipment in the factory and other are possible to generate with the push

of a button if you have the right information inside the software. In the following chapters the

different features of Automation Designer is described further.

5.1.1 PLC code generation

Automation Designer (AD) is able to generate PLC code to the Siemens software SIMATIC STEP 7.

Along with the PLC code AD is also capable to generate the hardware and symbol table for the

project. The symbol table is generated automatically within AD and then exported along with the

generated PLC program. However the hardware must be selected by the help of a hardware wizard.

The hardware wizard inside Automation Designer has got the same functionality as the one in STEP 7.

To be able to generate PLC code, the software needs to know which code to generate. This is done by

adding function block diagrams to different templates (more information about templates in chapter

5.2.5). The function blocks can either include the PLC code it should have or be empty. In the case

where it is empty, AD can collect its code from a function block library during the generation of the

PLC program. The idea with the code generation is that function block diagrams are connected to

templates and Automation Designer connects these blocks together into a PLC program. Afterwards

20

the generated program is editable in STEP 7. More information about what is needed to make this

work is described in chapter 6 Methodology.

5.1.2 Generation of HMI pictures

Automation Designer is using the XML format for importing and exporting data to and from WinCC

flexible. The software is able to generate complete HMI projects with up to four different levels of

details. Tags and other information can be connected inside Automation Designer to the right signals

from the PLC structure before the user exports the HMI pictures. This anticipates that Automation

Designer includes PLC code for the desired project.

To be able to generate HMI pictures the software needs to know which icons and other information

to generate in every level of the HMI. This is solved through import of XML files to the Templates in

the software. These XML files should include the icons and other information that represents the

template object in the different levels of the generated HMI project. An example of this is shown in

Figure 10.

Another thing that is necessary before generating an HMI project is that Automation Designer needs

to know where to place the different objects relative to each other on the HMI screens. This is solved

through a 2D-layout inside AD (more information of this in 5.2.7). The user places his objects in the

right place on the layout and draws polygon lines around the objects. This is done to explain to the

software which objects that should be in the different levels.

The HMI project is generated to one single XML file that can be imported to WinCC flexible and

afterwards be edited if necessary. The idea with the HMI generation is that XML files are connected

once to a template object. Then every time this object is used in a project the software will use the

same HMI information for generating HMI pictures.

HMI level 3 HMI level 2 HMI level 1

Figure 10 - Icons for different HMI levels

21

5.1.3 Generation of EPLAN drawings

Beside the integrated E-CAD functionality Automation Designer is currently supporting EPLAN electric

P8. To generate electrical drawings to EPLAN is done in a similar way as the HMI. The idea is that

single electrical documents are connected to templates inside AD. By then placing the templates on

the 2D-layout, the software is able to connect the different equipment represented by the templates

and create electrical drawings which can be exported to EPLAN and later be modified if necessary.

The connection of the electrical drawings to template objects is only supposed to be done once and

then be reused in every new project inside Automation Designer.

5.1.4 Reuse information from earlier simulation studies

One of the main purposes with Automation Designer is to help the engineer to reuse information

from earlier simulation studies. This is possible if the simulation study is made in Process Simulate or

Process Designer. Then the simulation study can be exported in an XML file and be imported into

Automation Designer. By doing this the engineer will get the structure and the objects needed in his

engineering project (more information of different types of projects in chapter 5.2). The key factors

to make this work are that a database with template objects is already developed where every object

in the simulation study is represented and also that the names from the simulation study are

connected to the right templates.

Another thing that the engineer can gain from importing an XML file from Process Simulate or

Process Designer is to get the sequences from the simulation. The sequences can be stored and used

inside Automation Designer with a special feature called Sequence Designer. With this tool the

engineer is able to complete the sequences and include information such as interlocks that may be

left out from the simulation study. By doing this Automation Designer is able to generate SFC in

addition to the function blocks to complete the final PLC code for export to STEP 7.

5.2 Engineering with Automation Designer
When introducing Automation Designer into companies there are two things that are very important

to keep in mind. First is to come up with a structure for the engineering projects that fits well with

the company's perception of their factories. All objects created later on in the project will have to fit

into this structure so a well-defined structure will help a lot. The second thing is to specify all relevant

naming conventions that are in use in the company and if possible create new rules where there are

none. An Automation Designer project relies heavily on scripting and with naming conventions the

complexity of these scripts can be reduced.

22

5.2.1 User interface and layout of Automation Designer

Figure 11 - User interface and layout of Automation Designer

1. Menu bar

2. Symbol bar – Contains shortcuts to some of the most used functions in the menu bar.

3. Recent projects – Quick access to the most recent opened projects and layers.

4. Navigation tree – Enables the user to navigate between objects in the hierarchal tree

structure of the project.

5. Detail view – Shows the selected objects attributes without having to open it in the

configuration area.

6. Configuration area - Displays the current opened object.

7. Status area – The status of the currently opened project

5.2.2 Base project

In the base project all the base objects and templates are created and stored. The base project is the

database of Automation Designer and works as a foundation for the engineers. Only a selected few

people with great knowledge of both Automation Designer and the work methods the company uses

for their automated systems should be allowed to make modifications and add new things into the

base project. To build up a base project requires a lot of time and resources in the beginning but if

prepared well it will save time in the long run.

It is in the base project the structure of the engineering project is created. This is done partially in the

templates but also by assigning which objects should appear and be addable when right clicking on a

specific object.

1
2 3

4
5 6 7

23

To avoid destroying working objects when doing changes in the base project, Siemens has added a

layer functionality. The layers works as a copy of the original database where changes can be made

and checked before releasing and implementing it to the original database. There are tools included

so the user can see which objects have been changed before releasing a layer.

5.2.3 Engineering project

While the work in the base project is to create general objects and templates it is in the engineering

project that they are specified and fitted together to create a representation of a real part of the

factory. It is here most of the work will be done after the base project has been built up. If the

templates and base objects have been done well the users in the engineering project only needs to

know what parts that needs to be added and they won't need deep knowledge of the involved

technologies such as PLC-code, HMIs and Electrical drawings.

As in the base project it is possible to use layers in the engineering project to avoid destroying

functional parts of an existing project.

5.2.4 Base objects

Base objects are the building blocks of an Automation Designer project. The base objects can be

anything from a representation of a physical object to a function for linking together function blocks.

Siemens provides a large library with base objects that can handle most of the problems the

engineers will encounter but if need there is the possibility to create your own or copy and modify

one from the library.

A base object is built up by scripts and attributes. The attributes can be grouped together in tabs to

get the related information stored in one place. This information can be used or generated by scripts

to get the desired function of the object. Automation Designer uses the VB-script language for its

internal macros. An attribute can be locked in the base project so a user in the engineering project

can't change it. It is also possible to hide attributes which makes them visible only in the base project.

Another thing which is possible is to set a limitation of the maximum characters for the names of the

base objects. This could solve the problem of having to long names in the PLC code. The limitation

would stop an engineer working in an engineering project to set a name that would be too long and

cause problems in the STEP 7 export.

5.2.5 Templates

A template is used to group together base objects to create more complex objects. For example a

template for a conveyor can include sensors, motors, PLC-code, electrical drawings among other

things. In each template there is the possibility to add unique values to the base objects attributes so

the same base objects can be used in several templates but with different purposes. New scripts can

also be added that will only be applied in the current template.

5.2.6 eBlocks

eBlocks are special base objects that Siemens provides. These are connected to templates and are

used to either assign connections between different templates or to copy in other templates to an

existing one in the engineering project. Using eBlocks to connect templates is for example used when

assigning which objects that shall be connected to a certain terminal box or to connect PLC blocks to

create a calling structure.

24

The “copy in eBlocks” is used in a template when there are objects that is not always wanted or

when a choice between different parts should be made. In the case with the conveyor there are

several different types of motors available. When adding the conveyor in an engineering project a

motor type has to be chosen to be copied in. Instead of creating five large, but only slightly different

conveyor templates, one large can be created and five small templates for the motors.

5.2.7 2d-layout and polygons (areas)

In Automation Designer there is the possibility to create overview drawings of the production facility.

Within these drawings there is the possibility to quickly assign eBlocks to objects using polygons (see

Figure 12). The polygons are drawn around the desired target objects and a source object which the

objects shall be connected to is chosen. The different levels in the HMI hierarchy can be assigned by

this method. One large polygon for the top level is drawn around all objects and the lower levels are

divided into smaller polygons in accordance with the designer’s specifications.

Figure 12 - 2D layout with polygons

25

6 Methodology
This chapter will briefly describe how the base project and engineering project was created in

Automation Designer (AD) for this case study. It will also describe the chosen database structure in

AD. In Appendix A and B there is a detailed step by step description of how base objects and

templates are created and how to generate STEP 7 code and WinCC flexible screens.

6.1 Creating the Base project for this case study
The base project is, as described in Chapter

5.2.2, the core of Automation Designer. It is in

fact a database where all the information

needed to create engineering projects and be

able to generate PLC code and HMI screens is

stored. The idea is that the base project, which

includes templates and base objects, is only

created once and then not modified unless

there is a need to add new objects. In this case

study the base project is developed to match

the VCC structure, however as Automation

Designer is a completely new software and a

new way of working, no structure was

available. Therefore a structure is developed in

cooperation with Siemens AG in Germany to

match VCC´s way of work as good as possible.

6.1.1 Base objects

Base objects are the lowest level in

Automation Designer. Every object such as

robots, conveyors, etc. is represented by a

base object in the lowest level. However

Siemens provides most of the base objects

needed, as described in chapter 5.2.4. Most of

the work for this case study, when it comes to

base objects, is to modify the objects that

already existed such as PLC, HMI and Sensors

amongst other. When Siemens library base

objects are used the objects have been copied

to a separate folder and then modified. The

most common modifications that have been

done is scripting of names.

All base objects needed for this case study was

not available in Automation Designer.

Therefore eight new base objects were created

and these are PLC Area, ModeZone, Station,

General, ABB Robot, Conveyor, Turntable and

Clamp (see Figure 13). As well as for the library

Figure 13 - Automation Designer database with
created Base objects

26

objects used in this case study, these new objects needed scripts to get the right name when it is

copied into an engineering project. Otherwise every object in the engineering project will have the

same name. This could be solved by setting the names manually but this study tries to create as

smart objects as possible which will decrease the work for the engineering in the engineering project.

Figure 14 - Created attributes for the Base object PLC Area

Another thing done on the Base object PLC Area is to create attributes on it, other than the default

ones already existing (attributes are described in chapter 5.2.4). The necessary attributes are

concerning the PLC code. When STEP 7 function blocks are imported to an object in the engineering

project the system needs to know which number it should assign the data blocks and the FC's. This is

remembered by the help of the attributes displayed in Figure 14. Scripts are created to set the names

for the data blocks and FC's in Automation Designer and the scripts are reading the attributes to

know which number to assign the blocks. Attributes are also created on the Conveyor because it

needs to have some specific DB names as inputs to its calling function block. The reason for this

functionality is because of the VCC library block for the Conveyor that requires this.

6.1.2 Templates

A template can be seen as a collection containing information needed to represent an object (more

information about templates in chapter 5.2.5). Working with template is a way to reuse information

which always stays the same for an object e.g. HMI icons, HMI detail screens and library FBs. In this

case study three templates have been created for every object. These are:

 Device template

 S7 Programs template

 WinCC flexible template

27

The reason for not creating only one template for each object is that the user may only want to work

with the PLC part and then there can be errors if the WinCC flexible part is connected to the object

and not configured. Another reason is when developing the database, with its templates and base

objects, it is much easier if there is a possibility to choose which part to test and search for errors.

With different templates for the same equipment it is possible to control the equipment in different

ways. One example of this is the Conveyor where only one device template is created but different

S7 templates. By connecting different S7 templates functionality such as different speeds and

directions can be chosen for one device template.

The device templates are represented by two groups, Units and Components. The units group has

got templates for the ModeZone and General, but not for the PLC Area and the Station (see Figure

15). The reason for this is due to the VCC Standard where no PLC code should be connected to these

levels. These levels are only represented in the hierarchy of the navigation tree in the engineering

project and therefore base objects of these two levels are created but not templates. The General

level contains the PLC cabinet, BUS, HMI hardware and Terminal box (see Figure 15). However, the

safety area should be below General as well but safety configuration is not a part of this master

thesis.

Figure 15 - Basic templates and their contents, Units to the left and Components to the right

28

The reason for creating a General template containing information about PLC, HMI, BUS etc. is that

the engineer will have a much better overview of the structure in the engineering project. There is a

possibility to place these things directly below the level PLC Area, but this will result in a lot more

objects on the same level and make the engineering harder if larger projects will be created in the

future.

The components group is represented by four different folders; Robots, Turntables, Conveyors and

Other Components. The first three is containing one template each for the represented object, while

Other Components are containing two different Clamp templates, Clamp and 4 Clamps (see right

picture in Figure 15). The reason for this is that there is a possibility to choose how many clamps a

Turntable shall have in the engineering project. The Turntable can either have one clamp or four

clamps on it and therefore one template for each possibility is needed.

6.1.2.1 S7 programs templates

To be able to generate PLC code, Automation Designer needs to know what to generate and which

connections there should be between different blocks. Templates including STEP 7 software are

created for the PLC, ModeZone, ABB Robot,

Turntable, Clamp and Conveyor. A reason for

creating S7 software templates is that the same

template can be used by many objects. An

example of this is the base object templates

Clamp and 4 Clamps where both are using the

S7 template Clamp.

In Figure 16 the S7 template for the conveyor is

displayed. As seen in the figure the template

T01 has got two subfolders, S7-software and

Networks. The S7-software folder contains

every block the conveyor type for this case

study needs to work properly. The template is

build up in the same calling structure as the

conveyor block FB1515 in VCC´s function block

library.

Inside the instance datablocks all variables are

included with initial values. However the FB´s

and FC´s that is available in the VCC function

block library has got no code connected to

them. These blocks are instead collected from a

library when an STEP 7 export is performed in

the engineering project. To make this work

three things are needed. At first a STEP 7

function block library with the blocks included

must be available and be connected to the

automation tree inside the engineering project.

Second the symbolic adress and symbolic name
Figure 16 - Content inside the S7-software template for the

Conveyor

29

of the empty block must be set to the same name as the symbolic name of the block inside the STEP

7 library. Also the adress and data type needs to be the same as the block that should be copied from

the STEP 7 library (see Figure 17). All this information can be set in the system data tab of the block

inside Automation Designer where also the third thing can be set.

The check box “Check existence only” must be checked (see Figure 17). This tells Automation

Designer that this block data should be collected from a library and no errors will be displayed

bacause of an empty block. The reason for not getting the instance datablocks information from a

library is that these does not have the same DB number each time.

Figure 17 - System data for FB1515 (function block for Conveyor) inside Automation Designer

The networks displayed in Figure 16 are the ones creating the structure of the PLC code inside

Automation Designer. Each network has got a special purpose that is described in Table 5.

Table 5 - Description of different Networks in Automation Designer

Network Description

NT10 Code fitting into level 1 Inputs

NT21 Code fitting into level 2.1 Alarms - Enable Alarms

NT22 Code fitting into level 2.2 Alarms - Alarm generation

NT31 Code fitting into level 3.1 Communication – Other systems

NT32 Code fitting into level 3.2 Communication – Devices

NT41 Code fitting into level 4.1 Machine Status - Detected

30

NT42 Code fitting into level 4.2 Machine Status – Parameter

NT43 Code fitting into level 4.3 Machine Status – Operator selections

NT44 Code fitting into level 4.4 Machine Status – Calculated

NT45 Code fitting into level 4.5 Machine Status – Modes

NT46 Code fitting into level 4.6 Machine Status – Indications

NT51 Code fitting into level 5.1 Equations - Interlocks

NT52 Code fitting into level 5.2 Equations – Flow equations

NT60 Code fitting into level 6 Sequences

NT71 Code fitting into level 7.1 Sub modules – Non Machine

NT72 Code fitting into level 7.2 Sub modules – Command summary

NT73 Code fitting into level 7.3 Sub modules – Machine

NT80 Code fitting into level 8 Outputs

NT90SumA Code fitting into level 9 Alarm Summary (only level A alarm summary)

NT90SumB Code fitting into level 9 Alarm Summary (only level B alarm summary)

NT90SumC Code fitting into level 9 Alarm Summary (only level C alarm summary)

NT90SumD Code fitting into level 9 Alarm Summary (only level D alarm summary)

NT100 Symbolic Names with initial value that should be in the calling Data Block

NT101 Declaration of Symbolic Names that should be in the calling Data Block

NT102 Symbolic Names with initial value that should be in DB20 _INTLK

NT103 Declaration of Symbolic Names with initial value that should be in DB20 _INTLK

To get the VCC PLC structure, where the OB1 calls the ModeZone and the ModeZone calls the other

objects, these networks are used inside Automation Designer. By using networks and inline macros

(see Figure 18) it is possible to create a PLC structure where one block calls another and also to

create FCs with internal code sorted as described in the VCC standard (see chapter 4.1.2). Each S7

template has got their own networks folder where networks with the information needed to call the

blocks amongst other things are stored.

Figure 18 - Inline macros to include networks

31

6.1.2.2 WinCC flexible templates

Templates for the HMI are only made for the objects that shall be represented inside the generated

HMI screens. In this master thesis templates for the Robot, Turntable and Conveyor is created. The

only thing placed inside the WinCC flexible template is a project fragment as shown in Figure 19.

Figure 19 - WinCC flexible template for Conveyor

By opening this fragment it is possible to assign XML data for the different levels of the HMI (more

information about this in chapter 5.1.2). After loading of XML data to the different levels it is

possible, by choosing the assignment tab, set the tags to be exported with the HMI screens. The tags

is connected to the datablocks by inline makros.

Figure 20 - XML data for WinCC flexible template

32

6.1.2.3 eBlocks and Scripting

eBlocks are one of the core functions inside Automation Designer to make the connections between

templates as well as the S7 code. eBlocks are placed inside the templates and can then be reached

and executed inside an engineering project when the templates have been imported. The eBlocks

has got an exclamation mark as a symbol in the navigation tree as seen in Figure 21. More

information about how eBlocks work is described in Chapter 5.2.6.

Figure 21 - eBlocks inside the object templates for Turntable and Conveyor

There are some standard eBlocks such as assign CPU and hardware interface. These are found in the

database and can be put inside the templates and be used without any configuration. However for

this master thesis some special eBlocks was needed to make the connection between the templates

created (see Table 6). Most of them was found in already existed sample projects inside Automation

Designer and these could be used by configurating them to the VCC templates.

Table 6 -Description of modified and created eBlocks for this master thesis

Scripting is another important factor when working with Automation Designer. By the help of

scripting the engineer can create smart and dynamic templates which will decrease the time of work

in the engineering project. Scripting can be used in a lot of places inside the software. For this project

scripting is mainly used to set the right names and numbers on different things when importing them

to the engineering project from the database. The best example is the script for setting the DB

number of the instance datablocks. Each time the S7-software template for the Conveyor, Turntable,

E-blocks

E-blocks

eBlock name Functionallity

ES01 - Copy S7 facet Imports the S7 code from the S7-software template

ES02 – Copy Sensors Imports standard sensors available in the database to the Conveyor

EW01 – Copy WinCC
flexible facet

Imports the screen and tag information from the HMI templates

EC01 – Copy Clamps Imports the Clamps from the object template to the Turntable

CFB – Assign caller FB Sets the connection which FC that calls which FB or FC

C_INTLK – Assign DB20 Sets the connection to the DB20 from the different objects

33

Clamp and ABB Robot gets imported inside the the engineering project the instance DBs must get a

unique number and name according to the VCC standard (more information about the VCC standard

in chapter 4). There can not be two instance DBs with the same number or name. To solve this, a

script is placed inside the scriptdata tab of the data block as seen in Figure 22. The first part of the

script is assigning the name of the DB by looking at the name of the object it lie beneath. Then the

second part, which is assigning the DB number, looks at the attributes created on the object PLC

Area. From the attribute the script can read which numer to assign the DB.

Figure 22 - Script data for setting names and numbers on instance DBs

6.1.2.4 Default settings

If there is a standard of which hardware devices a component such as the PLC should have. Then

there is a possibility to set the default values in the templates and get the right hardware each time a

template is added to the engineering project. In this case study the PLC, HMI, BUS and Terminal box

is configured with default equipment found in earlier created STEP 7 and WinCC flexible projects at

VCC. In Figure 23 the default devices of the PLC cabinet is displayed. In the hardware wizard,

displayed in the figure, it is possible to choose a slot and place a device in it. When selecting one of

the slots a list of possible devices to connect to it will appear as shown in Figure 23. As Automation

Designer is a Siemens software there is only the possibility to choose Siemens hardware devices at

the moment. The same goes for the default settings of the HMI panels, which also can be set in the

templates. The HMI is set to a default panel size and resolution in this case study.

34

Figure 23 - Hardware wizard for PLC cabinet

6.2 Working with templates in the engineering project
When the base project is created, all the engineering will be performed in the engineering project of

Automation Designer. The first thing to do in the engineering project is to create a structure in the

navigation tree. There is two different ways to do this:

 Build up the structure with the right click of the mouse

 Build up the structure by importing an XML file from Process Simulate

Both methods is tested in this master thesis and briefly described in the following chapters.

6.2.1 Configuration of the engineering project with the right click of the mouse

In Automation Designer it is possible to choose which object to get into the navigation tree by right

clicking on the different objects in it. To build up this feature some connections is needed in the

database between the templates and base objects. Figure 24 shows how a selection of different

objects to import is available when right clicking on an object in the navigation tree. By right click on

different levels in the tree the user will get different choices. This will prevent the user from creating

an invalid structure where for example a station is below a robot.

35

Figure 24 - Insert a new object in the navigation tree by the right click of the mouse

When the tree structure is created with the right click there are a couple of steps needed to be done

before an export to either WinCC flexible or STEP 7 is possible. These are

1. Configure devices inside the General folder

2. Configure all objects below the stations

3. Configure the ModeZone

4. Place the objects on the 2D layout

5. Drag polygons around the objects on the 2D layout and calculate eBlocks

6. Configure hardware addresses and connect the sensors to the terminal box

7. Generate the symbol table

How to do these steps is described in Appendix A. The final structure of the three stations in this case

study with the 2D layout is displayed in Figure 25.

36

Figure 25 - Final tree structure with 2D-layout

6.2.2 Configuration of the project by importing an XML file from Process Simulate

It is possible to import an XML file from Process Simulate and get the tree structure from the

simulation study. By importing a XML file will also give the user a 2D layout inside Automation

Designer including the right objects. Another thing the user will get in his navigation tree is a JT

drawing which can be opened inside Automation Designer. This drawing will show the 3D

environment that has been built up in Process Simulate and Process Designer (see Figure 26). As

there is a lot of different component such as fences that is needed in Process Simulate but not in

Automation Designer, there is a possibility to choose what to not import from the XML file.

The configuration needed for this case study to make it possible to import an XML file is:

1. The object names in the XML file needs to be connected to the names of the templates inside

Automation Designer.

2. A structure to the ModeZone level in the navigation tree needs to be built up with the right

mouse click. This is because the XML file at VCC only includes structure from the Station

level.

3. An XML configuration file needs to be edited. The file is available in the system root of the

software.

37

Figure 26 - JT-drawing of station 15-38-110 inside Automation Designer

When all this is performed the XML file can be imported by right clicking on the ModeZone level and

choosing “EMserver Import”. A new window comes up and the path to the XML file needs to be

chosen as seen in Figure 27. In the window there is also a possibility to choose if Automation

Designer shall create a new working layer in the engineering project when importing the XML file or

not. This box is always checked as default. The XML import feature is not yet a standard feature

inside Automation Designer and the possibility to do this have been given to this case study

exclusively.

Figure 27 - Pop-up window where an XML file needs to be chosen when importing information from EMserver

The final step is to import the XML file and get the structure with the objects included in the

simulation study. How the structure will appear in Automation Designer is presented in chapter 7

Results.

38

6.2.3 Exporting the engineering project to STEP 7

To be able to generate PLC code to STEP 7 an engineering project must be built up and configured in

the right way. When this is completed the export of the engineering project to STEP 7 is quite easy.

Inside Automation Designer there is an export to STEP 7 icon in the tool bar of the software. This icon

will open a window where the entire project can be dragged to as seen in Figure 28. Before an export

is possible Automation Designer needs to generate the STEP 7 project. This will create the final blocks

that will be exported as well as the calling structure of the PLC project. It is also in the generation

part where the name of the STEP 7 project is set and the path where it should be stored.

Figure 28 - STEP 7 generator

The generated project will be placed in the tab automation tree inside Automation Designer. In this

tree it is possible to go into every block and see what code that has been generated. After the

generation it is also possible to connect a STEP 7 function block library from where Automation

Designer will get the library blocks needed. This is done in the properties of the generated project

inside Automation Designer. For this case study a library named VolvoLib is connected to every

generated project as default. The connection to a STEP 7 library is done by pointing at a search path

from where the library is available.

The last step is to export the generated project to STEP 7. This is done by selecting the generated

project and then selecting what to export from the project (software, hardware, symbol table) as

seen in Figure 29. The final step is to click on the export button which will enable the export of the

project and give errors if something is wrong with the PLC code. If nothing is wrong it is possible to go

into SIMATIC Manager and open the project to see what is generated and continue working with the

project if needed.

39

Figure 29 - Export tab inside the STEP 7 generator

A detailed step by step description of how the STEP 7 generation and export is done for the case

study project is described in Appendix A.

40

6.2.4 Exporting the engineering project to WinCC flexible

An object in Automation Designer can be represented in the HMI screens in four different levels; HMI

level 1-3 and detail level. The HMI levels are designed to be a combination of several objects while

the detail level only represents a single object. In the VCC standard the detail level is comparable

with the library function blocks for e.g. the conveyor. For this project all levels except HMI level 3 are

used. Level 1 represents OB1, level 2 the ModeZone and the detail screens are used for the ABB

Robot, Turntable and Conveyor. To assign objects to a HMI level polygons are drawn on the 2D-

layout around the desired objects. The design of each object icon in each level is done in WinCC

flexible and screens are exported from there as XML files. One file per object and level is created and

imported into the WinCC flexible templates where the files are assigned to its appropriate level. Each

level can also contain tags that are used to connect the HMI to signals in the PLC program.

The VCC standard allows for two different types of HMI signals, H_Anim which contains the

information for the currently viewed function block diagram (FBD) in a HMI and H_IAnim which

contains information from an underlying FBD. These tags are included in the single exported XML

files from WinCC flexible and have to be assigned an address in Automation Designer. To be able to

assign addresses to these tags an object called DB variables must be added below the DB from where

the tag should be connected to. For instance DBs this has been done in the templates where the DB

variable is manually given the same address as the signal have got in the DB. Unless the library blocks

are changed these DB variables will never have to be changed or updated.

The tags used to connect signals from the global DBs (H_IAnim signals) also need to be connected to

a DB variable. However, the DB variable must be manually created inside the engineering project and

cannot be predefined in the templates. The reason for this is Automation Designer which cannot

create the address of DB variables and set the right names, depending on how many objects the user

have got in his engineering project. Therefore this has to be done manually. However, a DB variable

only needs to be created below the DB from where the WinCC flexible tag needs to be connected

and be assigned a label which is the same as the signal it shall represent from the DB. After this is

done the DB variable automatically calculates the signals address within the DB.

When the DB variables have been set and the HMI levels have been assigned, an export is possible. In

the Automation Designer WinCC flexible generator there is the possibility to choose which screens to

export, how far from the edges of the screen icons should be placed and the distances between each

object (see Figure 30). The screens are exported as one single XML file which can be imported into a

new WinCC flexible project and be applied with the final configurations.

41

Figure 30 - WinCC flexible generator inside Automation Designer

42

7 Results
This chapter displays the results of the generated STEP 7 project and the generated WinCC flexible

screens within this case study. The result also includes which information that has been transferred

from Process Simulate into this project.

7.1 STEP 7 code generation
Automation Designer is able to generate and export the STEP 7 project according to the VCC

standard. All the library FBs and FCs which were needed to be copied from the VCC function block

library was successfully transferred by Automation Designer into the generated STEP 7 project. The

generated STEP 7 project does not contain any function blocks or DBs other than the ones needed

and used for the case study project. OB1 was also successfully generated and a modular program

structure was achieved.

7.1.1 Generated FCs

In this master thesis there are FCs generated for

three different objects; ModeZone, ABB Robot

and Turntable. The generation of these FCs

works all in the same way. All code is generated

by the network structure described in the VCC

standard (chapter 4.1). The generated FCs

includes the calls for the underlying library FBs

and FCs and variables or static values are

connected to the inputs and outputs on the

calling functions. In the FCs there are also

summations of the existing alarms which will be

sent up through the hierarchy according to the

VCC standard in chapter 4.1.1. Placeholders have

also been created with standard interlocks

signals set to a default value. This is done to

show the engineer which signals that requires

interlock calculations (see Figure 31).

Figure 31 - Placeholders for the interlock calculations

43

7.1.2 Generated DBs

The generated global DBs contain variables needed for the FCs used in this case study project. All

variables in the DBs have automatically been given a name that follows the VCC standard. The signals

have also been given an initial value according to its data type (see Figure 32).

Figure 32 - The DB for the ModeZone

DB20 (Figure 33) which contains the variables used for interlock calculations is also generated and

contain variables for all the added devices that might need it. The Conveyor and ModeZone are the

only objects where default interlocks have been tested in this case study.

44

Figure 33 - Variables in DB20

7.1.3 Generated symbol table

The generated symbol table contains the addresses for all FCs, FBs and DBs (see Figure 34). Sensors

connected to the conveyor are also generated with the right names and addresses. In the symbol

table some static values such as TRUE and FALSE are declared. These values are commonly used by

VCC in their function blocks to send in a true or false value to their calculations inside the networks.

The reason for having TRUE and FALSE symbols for this is because of STEP 7 which does not allow the

user to send in values directly into a network calculation.

Figure 34 - Generated symbol table

45

7.1.4 Generated Hardware

The exported S7 project contains the right hardware configuration of the PLC and one terminal box.

The names for hardware are based on the objects search path in Automation Designer and therefore

not correctly assigned according to VCCs standards (see Figure 35). However the sensors on the

conveyor are connected to the terminal box and are assigned a valid address. The BUS type and its

addresses are also set to the right values in the exported project.

Figure 35 - Hardware configuration for the generated project.

7.2 WinCC flexible screen generation
The export from Automation Designer includes screens for the highest level (OB1), the mode zone

and detail screens for each included object such as robots, conveyors and turntables. A tag list

containing all tags used in the screens is also included in the export. The screen names (see Figure

36) are generated by Automation Designer and are based on the search paths in Automation

Designer for each object. The screen names do not correspond to the VCC standard.

46

Figure 36 - List of screens in WinCC flexible generated from Automation Designer

The screens for OB1 and the mode zone are based on the 2D layout defined in Automation Designer

(see Figure 25). The OB1 screen (Figure 37) includes graphical representations of all objects and an

icon for the mode zone. The mode zone screen contains icons for all objects (Figure 38). All icons

have H_IAnim tags connected to them pointing to correct addresses in the DBs. All icons are created

according to the VCC standard in chapter 4.1.3.

47

Figure 37 - Generated screen forOB1

Figure 38 - Generated screen for mode zone

48

The detail screens (Figure 39) has got H_Anim tags connected to them as specified in the VCC

standard. Detail screens are generated in the same way as they were imported to Automation

Designer from WinCC flexible, as described in chapter 6.1.2.2. The information generated by

Automation Designer concerning the detail screens is the tags connected to the screens.

Figure 39 - Detail screen for conveyer FB1515

The generated tag list (Figure 40) contains tags with correct addresses to the already generated PLC

project. The names for these tags are generated by Automation Designer and do not follow the VCC

standard. It is not possible to change the names in Automation Designer before the export to WinCC

flexible is done.

49

Figure 40 - Tags with addresses generated from Automation Designer

7.3 EMserver import
Figure 41 shows the imported structure from Process Simulate. The highest levels of the structure

are the stations; therefore the importation is done from the ModeZone object. The imported

structure contains many objects that are not defined in Automation Designer. These objects are set

as a default object and have got blue dots as icons (see Figure 41). The robots and conveyors are set

as their respective template. The naming scripts associated with the templates are not executed

instead the robots and conveyors keeps their names from Process Simulate. The structure from

Process Simulate provided for this case study includes several extra layers and several instances of

the same conveyors. This makes it incompatible with the structure defined in the base project of

Automation Designer.

50

Figure 41 - Tree structure from XML file imported from Process Simulate

51

8 Discussion
The main goal with this master thesis was to test how Automation Designer can be used to generate

PLC code according to the VCC standard. The three stations 15-38-100, 110, 120 at VCC in Torslanda

were chosen to be used as a case study. The three stations are controlled by the same PLC and

contained a variety of different equipment which made them suitable for the study. The first task

was to build base objects and templates for every object in the stations that is controlled by the PLC;

however the time limit did not make this possible. Only the main equipment such as the robots,

conveyors and turntables was created. The reason for this was that Automation Designer has been in

the development phase during the entire time of this case study and a lot of work has been to deal

with bugs and other problems in the software. Nevertheless the created objects were enough to test

the possibility in Automation Designer to create STEP 7 code in accordance with the VCC standard.

The results of the generated PLC code show that the VCC PLC structure is possible to generate by the

help of Automation Designer, but the code still have to be complemented with logical calculations

such as interlocks afterwards in Simatic Manager. It is hard to validate and verify the generated PLC

code because the stations are using Mitsubishi PLCs instead of Siemens today. These are

programmed in a different way which makes it hard to compare the results. The standards for

programming the different types of PLCs are also different within VCC.

The generated PLC project can work as a better base project than the one used by VCC today.

Advantages with the generated PLC project in comparison with the start PLC project VCC uses today

is that the generated program only includes the function and data blocks used in the project. No

unnecessary information is stored in the project. Another advantage is that the majority of the

needed variables in the global DBs are defined and every DB and FC has been set with the right name

and number. The most important advantage is that the VCC PLC structure is set in the generated PLC

project which decreases the risk of getting an inaccurate structure in the finished PLC program.

The VCC function block library was successfully integrated into Automation Designer. The library

function blocks used in the generated PLC project is collected from the library during the export of

the PLC code to STEP 7. This makes is possible to have only one function block library on one place

from where Automation Designer can collect the required blocks each time it generates a PLC

project.

A secondary goal after generating the PLC code was to generate HMI screens for the stations. The

feature to do this inside Automation Designer was not fully functional until late in the case study.

Therefore only some of the H_Anim and H_IAnim variables from the data blocks are connected in the

used screens. The assignment for the HMI generation was the same as for the PLC code; to test if the

result concedes with the VCC standard. Screens generated for OB1 and the mode zone shows that it

is possible to get the layout desired by VCC; however the names on the tags connected to the

screens are not named according to the Standard. The same goes for the names on the screens

which have a search path from Automation Designer as a name. It is possible to change the names

manually in WinCC flexible and still maintain the address to the data blocks. This problem is known

by Siemens and they are going to take a look at it and hopefully change it in a future service pack.

As this master thesis is about how to reuse information one of the tasks was to have a look upon how

information from earlier simulation studies, in this case from Process Simulate, could be reused. As

seen in the results it is possible to import an XML file from Process Simulate into Automation

52

Designer and get the tree structure with the same names on the objects as they had in Process

Simulate. To make this possible a connection between the objects in Process Simulate and the

templates in Automation Designer must be set up. The result in this case study was a tree structure

which did not fit very well with the way of working in Automation Designer. One of the reasons for

the bad structure was because the simulation study was old and performed in the software Robcad.

Another reason for this was that the XML import feature was presented late in the project and the

focus was to build up a structure with the VCC PLC standards as reference.

Working with Automation Designer has been tricky sometimes because, as written earlier, the

software was under development during this case study. A lot of time when a problem have occurred

the reason has been software related instead of errors from the user. This has taken much time that

could have been spent on developing and optimizing templates and base objects. The final version of

Automation Designer 9.1 is due for release at the same time as this report is published. Now there

are a lot of smart functions included in the software which we would have had use for when creating

the base project inside the software. An example of a new feature is the possibility to quickly import

source code from function blocks by the push of a button. In our case we have had to do a couple of

steps inside SIMATIC Manager and then copy and paste the information needed. Nevertheless the

software is easier to work with since the last service pack (service pack 100) where a lot of the bugs

are solved.

53

9 Conclusion
This master thesis has shown that it is possible to use Automation Designer for generating PLC code

according to the VCC standards. The generated PLC program will not be completely functional and

has to be completed before it can be used in a real production line. However, the workload that has

to be performed on the generated STEP 7 project from Automation Designer in comparison to the

standard VCC start project is decreased significantly. Generating PLC projects with Automation

Designer will also ensure they follow the VCC PLC structure. A function block library can also be

integrated with Automation Designer from which the software can collect the necessary library

blocks and no unnecessary blocks will be included in the generated PLC project.

HMI screens for WinCC flexible are possible to create with the help of Automation Designer and tags

can be connected to a PLC project and get the right address. However, the names of the generated

tags and screens cannot be generated according to the VCC standard.

It is possible to transfer information from Process Simulate into Automation Designer by the help of

an XML file. To have any advantage of importing a XML file into the software the naming standard of

objects must be the same in both software’s. Otherwise it is hard to reuse the information in a useful

way and the benefits of earning working hours will be lost on changing names inside Automation

Designer.

Our conclusion about Automation Designer is that it is developed to decrease the commissioning

hours when creating new lines. For updating lines already implemented in the factory and where

only smaller changes has to be made, there is no benefits to use Automation Designer. The largest

earnings of using the software would be in the long run when creating completely new lines.

54

10 Future recommendations
The first recommendation is that VCC needs to come up with a common naming standard of objects

between the simulation and PLC department. This would be a first step to solve the issue of reusing

information within the company.

The second recommendation is that VCC should initiate a new master thesis which could continue

the work on Automation Designer and investigate the possibility of generating electrical drawings.

55

11 References
Ashton, A. (2007, July 1). PLC programming standards. Retrieved Mars 3, 2010, from SA

instrumentation & Control:

http://instrumentation.co.za/article.aspx?pklArticleId=4564&pklCategoryId=67

Frey, G., & Litz, L. (2000). Formal methods in PLC programming. IEEE Conference on System Man and

Cybernetics, (pp. 2431-2436). Nashville.

Güttel, K., Weber, P., & Fay, A. (2008). Automatic generation of PLC code beyond the nominal

sequence. Emerging Technologies and Factory Automation, (pp. 1277 - 1284). Hamburg.

PLCopen. (2008, December 4). PLCopen. Retrieved March 3, 2010, from plcopen.org:

http://www.plcopen.org/pages/tc1_standards/

Selander, J. (2010). Control System Expert VCC. (M. Andersson, & E. Helander, Interviewers)

Göteborg.

Siemens AG Automation and Drives. (2006, May 2). Operating Manual for Programming with STEP 7

V5.4. Retrieved March 5, 2010, from Siemens.com:

http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objID=1

0805383&subtype=133300

Siemens AG Industry Sector. (2008, October 20). Operating Manual for WinCC flexible 2008 Compact/

Standard/ Advanced. Retrieved March 2, 2010, from Siemens.com:

http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objID=1

6502685&subtype=133300

Siemens AG Industry Sector. (2010, 06 29). Manual SIMATIC Automation Designer based on Comos.

Nürnberg, Germany.

Siemens AG Industry Sector. (2010, February 18). SIMATIC WinCC flexible Brochure March 2010.

Retrieved March 2, 2010, from Siemens:

http://www.automation.siemens.com/salesmaterial-as/brochure_simatic-wincc-

flexible_en.pdf

Siemens PLM Software. (2008, January 25). Process Designer fact sheet. Retrieved March 4, 2010,

from Siemens.com:

http://www.plm.automation.siemens.com/en_us/Images/tx%20process%20designer%20fs%

20W%205_tcm1023-4941.pdf

Siemens PLM Software. (2008, January 22). Process Simulate fact sheet. Retrieved March 3, 2010,

from Siemens.com:

http://www.plm.automation.siemens.com/en_us/Images/7457_tcm1023-80351.pdf

Smith, F. O. (2009, October). When eBOMs and mBOMs converge. Control Engineering, pp. 41-44.

Sundbäck, M. (2010). Simulation Expert VCC. (M. Andersson, & E. Helander, Interviewers) Göteborg.

56

Torsten Heverhagen, R. H. (n.d.). Function Blocks. Retrieved Mars 4, 2010, from Function Blocks:

http//www.functionblocks.org/Introduction.html

Vinnova. (2010, January 25). FFI - Strategic Vehicle Research and Innivation. Retrieved February 11,

2010, from Vinnova.se: http://www.vinnova.se/en/Activities/Transportation/FFI-English/

Volvo Car Corporation. (2008, November). Programming instructions PLC equipment Simatic S7.

Volvo Car Corporation. (2008, November). Programming instructions PLC systems.

A-1

Appendix A

This appendix will describe how to create and configure an engineering project from the database

created in this master thesis.

A.1 Adding objects in the navigation tree
1. Right click on the project object, the topmost item in the units tab of the navigation tree, and

select New -> PLC Area. All objects controlled by a single PLC will be added under the PLC

area later on.

2. Now right click on the PLC Area object and select New-> ModeZone. The mode zone is a

crucial part of the VCC PLC structure and it is within the FC for the mode zone most of the

A-2

interlock calculations for the equipment will occur. A PLC can control several mode zones.

3. Right click on the ModeZone object and select New -> Station. The stations do not have any

impact on the PLC code but the name of some of the objects that will be created below the

Station depends on the name of it.

4. The last step is to add the objects that build up the stations. This database contains three

different objects that can be added:

I. First there is an ABB robot. There is a folder for KUKA robots also though it is empty

and just there for exemplifying how the structure in a complete database could look

like.

II. Next is the Turntable. The turntable object consists of a two position turntable plus a

variable set of clamps (see chapter A.4).

III. The last device is a two way two speed roller with Danfoss equipment controlled

through Profibus.

5. Add the preferred objects by right clicking on the Station object and select New and then the

desired object.

A.2 Configuration of the General folder
1. Right click on the General folder, choose New -> General and add the following items:

 HMI

 BUS

 PLC cabinet

 Terminal Box

A-3

2. Double click on the BUS in the navigation tree to open its properties in the configuration area

and select System data in the attributes tab.

3. Select Profibus as S7 bus system and assign a start address (e.g. 1) and a offset (e.g. 10).

4. Press OK to save and close the BUS property window.

5. Double click on the HMI in the navigation tree to open its properties in the configuration

area and select the eBlock tab.

6. In the copy in tab for the HMI object there is one eBlock for copying in the hardware

specification of the hmi. The default template that is chosen is a 12” Multi Panel. It is

A-4

possible to choose a larger multi panel or even a PC though the HMI screen templates in this

project only works with multi panels. To execute the eBlock click on the check icon

highlighted in the picture below.

7. Press OK to save and close the HMI property window.

8. Double click on the PLC cabinet in the navigation tree to open its properties in the

configuration area and select the eBlock tab.

9. First the “Assign PLC” eBlock needs to be executed in order for some of the Siemens base

objects to work properly. Do this by clicking on the execute icon highlighted in the picture

below.

10. Switch to the Copy in tab. Here we need to copy in the hardware configuration for the PLC

and the STEP 7 source code that is used in the top level of the PLC program e.g. OB1, DB20.

For the hardware configuration use the SIMATIC S7-300. To execute all eBlocks press the

A-5

arrow next to the checker icon (red circle) and select Execute(all).

11. The HW-interface tab in the eBlocks requires that all the devices in the project e.g. Robots,

Roller has been added and configured before they can be executed. Theses will be dealt with

later. Press OK to save and close the PLC cabinet property window.

12. Double click on the Terminal box in the navigation tree to open its properties in the

configuration area and select the eBlock tab.

13. Press the execute icon to copy in the hardware configuration for the Terminal box. As for the

PLC cabinet the HW-interface can’t be configured until later.

14. Press OK to save and close the Terminal box property window.

A.3 Configuration of Roller 2W2S-DDP
1. Open the properties for the Roller you wish to configure and select the eBlock tab.

2. At first there are three different eBlocks under the copy in tab. The eBlock “Copy S7 facet”

copies in all FB:s, FC:s and DB:s that the roller is using. “Copy Sensors” copies in six

predefined sensors that the roller needs. “Copy WinCC flexible facet” supplies the base

objects needed for generating HMI screens for the roller. To execute all eBlocks at the same

time press the arrow next to the execute icon (red circle) and select Execute(all).

A-6

3. You should now have some new objects under your roller in the navigation tree as well as a

tab called “SW interface” in the configuration display of the roller.

4. In the software interface the hierarchal connection between the function blocks is made. The

software interface is used by the inline macros in the STEP 7 source code objects. In this case

we want the mode zone to be the one calling the roller. Drag the ModeZone object from the

navigation tree to the target object cell for “Assign caller FB”. VCC also uses a data block

called DB20 to store all the variables that are used for interlocks. In this structure the DB20 is

placed in the S7-software folder for the PLC cabinet. To be able to automatically create these

interlock variables for the roller we need to assign a connection between the roller and the

PLC cabinet. This is done by dragging the PLC cabinet object from the navigation tree to the

A-7

target object cell for “Assign DB20”.

5. Execute the eBlocks as in step 2.

6. The roller should now be configured. Press OK.

A.4 Configuration of Turntable
1. Open the properties for the turntable you wish to configure and select the eBlock tab.

2. At first there are three different eBlocks under the copy in tab. The eBlock “Copy S7 facet”

copies in all FB:s, FC:s and DB:s that the roller is using. “Copy WinCC flexible facet” supplies

the base objects needed for generating HMI screens for the roller. “Copy Clamps” adds four

new clamps to the turntable as default. It is possible to only copy in one clamp. To do this

select the copy clamps eBlock and double click on the Clamp (LmoveUnit2Pos) template in

the box below. To execute all eBlocks at the same time press the arrow next to the checker

icon and select Execute(all).

A-8

3. After executing the eBlocks four new will appear. These are the for the clamps STEP 7 code.

Press Execute(all) again to copy in the STEP 7 code blocks for the clamps.

4. Switch to the SW interface tab.

5. In the software interface the hierarchal connection between the function blocks is made. The

software interface is used by the inline macros in the S7 source code objects. In this case we

want the mode zone to be the one calling the turntable. Drag the ModeZone object from the

navigation tree to the target object cell for the “Assign caller FB” eBlock which has a source

object that ends with FC***. The four other “Assign caller FB” eBlocks are there to make the

connection between the clamps and the turntables FC. Here we need to assign the turntable

which the clamps belong to the target object for the “Assign caller FB” eBlocks. Just drag the

turntable from the navigation tree to the target object cells.

6. Execute the eBlocks as in step 2.

7. The turntable should now be configured. Press OK.

A-9

A.5 Configuration of ABB Robot
1. Open the properties for the turntable you wish to configure and select the eBlock tab.

2. At first there are two different eBlocks under the copy in tab. The eBlock “Copy S7 facet”

copies in all FB:s, FC:s and DB:s that the roller is using. “Copy WinCC flexible facet” supplies

the base objects needed for generating HMI screens for the roller. To execute all eBlocks at

the same time press the arrow next to the checker icon and select Execute(all).

3. Switch to the SW interface tab.

4. In the software interface the hierarchal connection between the function blocks is made. The

software interface is used by the inline macros in the S7 source code objects. In this case we

want the mode zone to be the one calling the robot. Drag the ModeZone object from the

navigation tree to the target object cell for “Assign caller FB”.

5. Execute the eBlocks as in step 2.

6. The robot should now be configured. Press OK.

A.6 Configuration of ModeZone
1. Open the properties for the ModeZone you wish to configure and select the eBlock tab.

2. In the Area tab we need to assign a PLC to the ModeZone. Drag the PLC cabinet from the

general folder to the target object. Press the checker icon to execute the eBlock

A-10

.

3. Switch to the copy in tab

4. In the eBlocks tab for the ModeZone we can see the eBlocks for all devices that resides under

it in the navigation tree e.g. conveyors and robots. These eBlocks can be executed from here

so we don’t need to open each object separately to execute its eBlocks as we did in chapter

A.3, A.4 and A.5. All eBlocks that has been already executed should have a green circle in its

status cell. Beware though that the green circle can be bugged sometimes and will show an

incorrect status so to be on the safe side press the arrow next to the checker icon and select

execute (all). The only unique eBlock for the ModeZone in the copy in tab is for copying in

the STEP 7 code. Notice in the source object column that eBlock is linked to the ModeZone.

5. Switch to the SW interface tab. If you choose to work with the eBlocks from all devices here

in the property window for the ModeZone you need to be careful of which source object you

assign your target objects to. The two eblock connected to the ModeZone needs to have the

PLC cabinet from the general folder as target object.

A-11

6. After assigning the target objects press the arrow next to the checker icon and select

execute(all).

7. The robot should now be configured. Press OK.

A.7 Unit layout and polygons
The unit layout and polygons are used to quickly assign specific eBlocks with the same target object

to multiple source objects on a layout drawing.

1. First add a new unit layout object by right clicking on the PLC Area and select New -> Unit

layout DIN A3 landscape.

2. Open the unit layout by double clicking on it in the navigation tree.

3. To add objects to the unit layout just drag them from the navigation tree and drop them on

the layout.

The objects that needs to be added are the following:

 All robots, rollers and turntables.

 The ModeZone

 HMI, BUS , Terminal box and PLC cabinet from the general folder.

A-12

4. To start mapping eBlocks press the Map eBlock targets button (red circle).

5. In the drop down list that appears are the different eBlocks that is possible to map with

polygons. Start with selecting the “Assign HMI” and press the button next to the list.

6. A polygon could either be dragged by dragging lines until it forms a closed loop or only a

rectangular shape is needed by placing a line that forms the diagonal of the rectangle and

press the right mouse button.

7. When creating a polygon around your objects Automation Designer will automatically select

a target object if a viable one is placed within the polygon. You can see the name of the

A-13

target object in the upper left corner of the polygon.

8. If the target object is not automatically assigned or the target object is wrong you can assign

it manually. To do this click on the polygon. Press the button with three dots. Select the

appropriate object in the list that appears and press OK to confirm.

A-14

9. Repeat step 5 – 8 for the I/O-Hardware, the PLC and for the bus and assign the target objects

described in the table below.

eBlock Target object

Assign HMI General -> HMI

Assign I/O-Hardware General -> Terminal box

Assign PLC General -> PLC cabinet

Assign bus General -> BUS

A-15

10. The layouts for the generated HMI screens are set with polygons in the 2D layout. This is

done with the “Assign HMI level 1-3” eBlocks. In this project only level 1 and 2 are used. Level

1 will represent the top level controlled by OB1.The polygon for this level should be dragged

so it covers the entire 2D layout. Level 2 represents the mode zones. These should be

dragged so only the objects included in the specific mode zone are covered by the polygon.

Several level 2 polygons can be made depending on the number of mod zones. Assign HMI

level shall have the General -> HMI object as target object.

11. To execute all eBlocks press the “Calculate eBlock target” button

A.8 Configure the hardware interface
1. Open the PLC cabinet object and select the eBlock -> HW-interface tab. Select Assign HW

address. In the start column assign a bus address for the first object and press execute. This

will give bus addresses to all other objects as well.

A-16

2. Press OK.

A-17

3. Open the terminal box object and select the HW interface tab. Press the binocular icon.

4. The sensors will appear in the lower left window. Press the arrow next to the lower checker

icon and choose Implement (all) to automatically assign the sensors to hardware addresses.

5. Press the upper checker icon to execute the eBlock.

6. Press OK to save.

A-18

A.9 Adding H_IAnim tags and configuring the WinCC flexible

project fragments
To assign variables to theHMI tags from WinCC flexible the DB address must be known. For the

H_Anim tags this is done automatically but it has to be done manually for the H_IAnim tags by adding

a DB variable object. One DB variable for each device is added under the data block for the mode

zone and one for each mode zone is added under DB1.

1. Right click on the DB for the modezone and select HMI tag for global DB

2. Open the properties for the newly created DB variable. Select the Attributes -> System data

tab. In the DB name field fill in the symbolic name for the mode zones DB. The label field

shall contain the name of the H_IAnim variable. For the conveyor and turntable it is

H_[Object name]IAnim. For the robots the variable name is H_Robot[robotnumber]FCIAnim

e.g. H_Robot7231FCIAnim.

3. Press OK to save.

4. Repeat step 1 -3 for each device in the project. A DB variable must be added for the mode

zones as well. This is done under DB1 in the S7 folder for the PLC cabinet. The name of the

H_IAnim variable for the mode zone is H_[mode zone name]IAnim.

5. To be able to assign the DB variables to the HMI tags we need to update the symbol table

first. To do this by go to General -> PLC cabinet and right click on symbol table and select

Symbol table -> Refresh symbol table.

A-19

6. Now open a WinCC flexible project fragment under one of your devices.

7. Select the assignment tab. The H_Anim tags should already be connected. In the symbol

name cell for the H_IAnim write the inline macro {T[CFB].S[*]} where * is the name of

variable you want to connect.

8. Press OK to save.

9. Repeat step 6 – 8 for all your devices and mode zones.

A-20

A.10 Generating code to STEP 7
To generate STEP 7 code requires that all previous steps are completed.

1. Open the STEP 7 generator: The STEP 7 generator can be found either in the symbol bar or in

the menu bar under Generators.

2. Drag the PLC area object from the navigation tree to Root object. Automation Designer will

then collect all FB:s, FC:s and DB:s that exists in the project.

3. Open the drop down menu under Select project and click on New.

4. Select a name for the project and choose where you want to save your exported project.

5. Press Generate. This will make Automation Designer execute all inline macros in the FB:s,

FC:s and DB:s that specifies the project specific names contained in the STEP 7 source code.

Automation Designer will create an Automation Tree which contains the source code which

now is ready for export.

6. Before exporting the project open the properties for the generated project in the

Automation Tree. Make sure that the path for the standard library points to the correct

location. Otherwise Automation Designer won’t be able to import the library FB:s, FC:s and

A-21

DB:s.

7. Open the STEP 7 generator and select the export tab. Drag the generated project to Start

object. If this is the first time a project has been generated the project might not show up in

the automation tree. In this case just close and reopen the STEP 7 generator.

8. Check all checkboxes. This will make sure all necessary objects will be exported.

9. Press Start export to compile the source code into STEP 7

A-22

10. If there are no error messages a new project that is possible to open in STEP 7 will have been

created. If you get the warning message “CodeBlocks partly compiled” it means that STEP 7

failed to compile the code. Double click on the error message will display the compilation log

from STEP 7 which describes why the compilation failed. The error in the compilation log

below is caused because OB1 is used by another process at the same time. To fix this

problem close both Automation Designer and STEP 7. Reopen STEP 7 and follow the steps

below.

11. Select File->Open and choose your project

12. Open tmpSource in the source folder

A-23

13. Press the compile button.

14. The log should now say 0 Errors, 0 Warnings. In case any errors remain double click the error

message to display where in the code the error occurs.

15. Go back to the project view and choose the “Blocks” folder. Your project should now look

something like in the picture below.

A.11 Generating pictures to WinCC flexible
To be able to generate WinCC flexible screens a successful generation of the PLC code must be made

first.

1. Open the WinCC flexible generator: The WinCC flexible generator can be found either in the

symbol bar or in the menu bar under Generators.

2. Drag the HMI object from the General folder to the HMI field.

A-24

3. A list with all objects that have a WinCC flexible screen will appear. Generate all should be

selected.

4. The next step is to decide the generated images distance for the edges and each other.

5. Select a destination to save the exported XML-file.

6. Press start to generate the HMI screens.

A-25

7. You will get a warning message that the ModeZone object is missing a detail level screen.

Ignore this warning.

B-1

Appendix B

This appendix will describe how you can create a base object and a template inside Automation

Designer. Remember that this can only be done if you are in the base project of Automation Designer,

not the engineering project.

B.1 Creating a base object.
1. Open the base project and go to the base objects tab in the navigation tree.

2. Navigate to the position in the navigation tree where you want to create your new base object.

Right click and select New -> New base object.

3. The newly created base object will inherit its unset properties from its parent base object. It is

also possible for the new object to inherit its properties from other objects in the base project.

B-2

This is done by assigning the desired base object as a reference.

4. The naming conventions for the base are set in the system tab. To access the syntax options for

naming rules press the “I” button. It is also possible to set names by scripts in the script tab.

B-3

5. To add new attributes to your base object go to the attributes tab. Right click anywhere in the

window and select Design mode.

6. To add a new attribute right click and select New -> Attribute

B-4

7. In the new window that appears you can fill in the details about the attribute. In the scripts tab

scripts can be added for manipulating the attribute.

8. Press confirm to save the changes.

9. Right click and select working mode to leave the design mode.

10. Open the Elements tab.

11. In the element tab we can add actions that we want to be able to perform on the object. The

actions are later performed by eBlocks in the templates. We can also add devices that we want

to have available when right clicking on the object. The items with a black arrow in the name

B-5

column are inherited from a parent object.

12. In the script tab there is the possibility to add scripts for different occasions.

B-6

B.2 Creating a template.
1. In your base project, open the units tab in the navigation tree.

B-7

2. Navigate to where you want to create your new template. Right click and select New -> ADT

Facet template.

3. Open the properties for the newly created template and assign it a proper description.

4. To add base objects to your template just copy or drag them to your new template in the

navigation tree. All attributes for the added base object can be changed so they have a unique

B-8

configuration for the current template.

5. eBlocks are used to perform actions in a template. A list of available eBlocks can be found by

right clicking on the template object and select New -> Actions.

6. After adding a eBlock it must be moved so it is below the resource object in the hierarchy. To

move an objet hold Ctrl and drag the object to its new position.

7. Open the properties for the eBlock.

8. An eBlock needs a source object. By default this will be the parent object. It is also possible to

set the target object. In the example below we want to add a folder with S7-code. To assign

B-9

target template for this press the button with three dots.

B-10

9. Navigate to an appropriate template and press OK.

10. When the eBlock is executedin the engineering project the selected template will be copied in.

11. Press OK to save

