(v)
f V)
) NANCE S 1
N %,/
X f

{ bl View Admiisrator Doowents Genertors Exra Plgins bl

i © G HSES iwy- BRAACHE BRI XL 488

‘=350 (4 PTLOL Unit layout DIN A3 bndscage.

- BgagS0e QoA B

ANoda 7% Flalwa msonc v
I

>

Qﬁ; ; V%
A |

NI N :
ngpo0 s
Sy
H T 1o Y
2786 \
3 d :
2 |
28
o,
g4
Tasm008

h ! ; 4 4 p:
. . . T H iy
MR :
| IN A3 lands
. 72-34.000 . . £
2

N, 4] (]

V2
|G Comos

m,i & | T

Automatic generation of PLC programs
using Automation Designer

Based on simulation studies and function block libraries
Master of Science Thesis in the Master Degree Program, Production Engineering

Mikael Andersson
Erik Helander

Department of Signals and Systems
Division of Automation

CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden, 2010

Report No. EX063/2010

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose
make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures and other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party 8for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Automatic generation of PLC programs using Automation Designer
Based on simulation studies and function block libraries

Mikael Andersson
Erik Helander

©Mikael Andersson, October 2010
©Erik Helander, October 2010

Examiner: Petter Falkman

Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 10 00

The cover picture shows a 2D layout inside Automation Designer

Department of Signals and Systems
Goteborg, Sweden October 2010

Abstract

New virtual commissioning tools are constantly being developed to help production engineers in
their line of work. One of these new tools is Siemens Automation Designer. A goal for VCC (Volvo Car
Corporation) is to be able to do the whole commissioning process virtual and not have to test the
programs in the real factory many times. Without several real time tests the ramp up time could be
decreased significantly and more time could be spent on producing cars.

An important issue which needs be solved is the possibility to reuse information. By using
Automation Designer reusable templates, containing information that always stays the same, can be
created. The templates can also include scripts which can ensure that naming standards is kept.
Depending on what information the templates are built up with, Automation Designer is able to
generate PLC code and HMI screens.

In this report three stations at VCC in Torslanda, Goéteborg, is used in a case study to build up
templates inside Automation Designer. The goal with the study is to test if PLC code and HMI screens
can be generated from the software and still be according to the VCC standard. Information from
earlier simulation studies in Process Simulate is also imported into Automation Designer to see which
information that can be reused.

The final result is a generated PLC project where code is built up and generated by Automation
Designer and library function blocks are collected from the VCC function block library.

Keywords: PLC code generation, HMI screen generation, Automation Designer

Acknowledgements

The master thesis had great support from the guys working with Automation Designer at Siemens AG
Industry Automation Division in Germany. A special thanks to Michael Geck for his help and support
throughout the whole project. We would like to thank VCC for giving us the opportunity to do our
master thesis at the company. Especially John Selander, our supervisor at VCC, and Stefan Axelsson
for helping us with administration and necessary education for the master thesis. We would also like
to thank Mathias Sundback at VCC for giving us information about virtual simulation.

Last but not least we would like to send a big thank you to our examiner at Chalmers University,
Petter Falkman, who helped us to find the master thesis and has given us feedback through the
master thesis.

Table of Contents

Y o1 o - [ot A OO SO U UTOP PRI POROPRP i
Yol g Lo 1Ty F=To F =T o Y=Y o PR ii
I o) ST ={ U LTSRN vi
LISt Of TaBI@S ...ttt sttt ettt b e b sh e sae e e at e et e e b e e ebeesaeesane e vii
ADDIEVIGLTIONS ...ttt ettt ettt st e b e b e b st et e e b e e nbeesare e viii
N) o oo [¥ o1 T o OO TP UP RPN 1
1.1 (2Tl =4 Lo 18 Vo [PP 1
1.2 P U POSE . e a e aaaaaaaaaaaens 1
1.3 (0] o T =Tot 41V USSR 1
1.4 DElIMITATIONS ..ttt ettt st ettt be e b st st s b e b b nes 2
1.5 T =F: [ol o Jo [V =Ty [o LR 2

2 Station 15-38-100, 110, 120 at VCC TOrSIanda......eeeeeeeeeeciriiieeeeeeccciireeeeeeeeeceirreeeeeeeeeeetrareeeeeeeenn 3
2.1 Layout of the three StatioNseoviiiiiice e e 3
2.2 LV T g (e [g1 1 4o] o PPt 4
221 StAtion 15-38-100....cccueeiteeriieriienite ettt ettt sttt ettt b e e b st st et et e e reesaeesaneeas 4
222 SEAtiON 15-38-110 . ccitieiieiieiiie ettt sttt st ettt b e st he e sae e sttt ente e b e sanesaneeas 4
223 SEAtioN 15-38-120 .. .ccuiiiieitieiie ettt ettt sttt b e b e saeesaneea 5

2.3 Tree structure for station 15-38-100, 110, 120........uuuuuuuumumenrnnnrrrnrniniiriierinnrerererasanaearea.————— 7

3 Frame Of REFEIENCE c...eoeeieeee et st r e sre e saeesane e 8
3.1 Programmable Logic Controller (PLC) for Industrial AUtomationcccceveevveencieeeiveeccieeenns 8
3.1.1 TEC 113Dttt ettt ettt st ettt b e h et sh et et e et e e be e be e sae e st e eabeebe e reenes 8
3.1.2 Function Block Diagrams (FBD)cccueeeeiiiiieecciiee ettt et e e vee e e evae e e e vae e e e 10
3.1.3 Different ways of structure the PLC COE.......uviiiiiiiii ettt e 10
3.14 SIMATIC STEP 7.ttt ettt st sttt et e s s e n e neene 11
3.15 Methods for verification and validation of PLC programscccceceveeeevcieeescvieeeeennnen. 11
3.16 Requirements for automatic generation of PLC code........cccoecieiiiiiieiiccciee e, 12

3.2 Human Machine Interface (HMI) for Industrial Automationccceeeecieiiecciee e, 12
3.2.1 SIMATIC WINCC fIEXIBIE ..ottt 12

33 SIMUIALION STUIES ..t e esne e e sanes 13
3.3.1 Technomatix Process Simulate/ Process DESIZNET........ceeeveevveeieeeveeireenieeneeseeeveeneens 13
3.3.2 SIMUIation STUdIES @t VCCouviiiieieeiieeeeeee ettt s s e e 13

O o O oY e =4 = 010 0 ¥ oV == S N 14
4.1 VCC PLC programming pPhiloSOPNYeuviiiiiiee ettt e brare e e e e 14

5

7

41.1 Handling @larms @t VCCoii ittt ettt e s s sbee e s s aree e s s ereeas 15

4.1.2 Siemens STEP 7 programming standard at VCC.........cccuviiiiiieieciciee e 15
4.1.3 HMI programming standard at VCCc.ueeiiiiiieiiciiie et 17
4.2 PLC programming/HMI in the commissioning process at VCC.......c.cccovveerereeecrveeeveeecnreeenennn 17
AUTOMATION DESIGNET ittt ettt ettt e e e e e e ettt et e e e e s s s abebeeeeeeesasnabtaaeeeesssanannneaeeeeas 19
5.1 What is possible to do in the SOftWare?..........eovvciiii i 19
5.1.1 M oloTe [l = LT o [=T =] d To] o TSP 19
5.1.2 Generation Of HMI PICTUIES.......coocuviii ettt e aaae e 20
5.1.3 Generation of EPLAN draWingsccoccuiieieiiieee e e et e ecieee e e stee e e esrae e e eenaeeeeenaaea e 21
5.14 Reuse information from earlier simulation studiesccccccevveiriiienieeinieenieceeeeee, 21
5.2 Engineering with AUtOMation DESIGNETcciivciiiiiiiiee et 21
5.2.1 User interface and layout of Automation DeSIgNEerccceeveiieieiiiiee e, 22
5.2.2 BaSE PrOJE T . i 22
5.2.3 ENGINEEriNG PrOJECT o ovieeeeee e 23
5.2.4 2 F Ty =N o] o<l -y USSR 23
5.2.5 E=T001] L= PP 23
5.2.6 EBIOCKS ... e e e 23
5.2.7 2d-layout and POIYZONS (Ar€aS)ccueeviieicrieeiieeeieeeciteeereeertee e sre e e eree e sre e s reeesraeesebae e 24
1V T34 g ToTe [o] FoY -V NSRS 25
6.1 Creating the Base project for this case STUAY........cceeciieeieiiiii et 25
6.1.1 2 F Ty =N o] o<l Y USSP PR 25
6.1.2 E=T001] = L= PP 26
6.2 Working with templates in the engineering projectcccoccveveeciieeiiccieee e e 34
6.2.1 Configuration of the engineering project with the right click of the mouse................. 34
6.2.2 Configuration of the project by importing an XML file from Process Simulate 36
6.2.3 Exporting the engineering project to STEP 7.....ccooiiiiieee et 38
6.2.4 Exporting the engineering project to WinCC flexible...........ccccoviieeiiiiiciieieeciee e, 40
RESUILS <.ttt ettt st ettt s bt sae e st e bt e b e e s b e e sbe e s et e et e e bt e b e e beenre e eateenreen 42
7.1 Y I L A oo o [l T YT - (o] o PPN 42
7.11 GENEIATEA FCS ..ttt sttt e et e s e e s be e e sare e sbeeesmeeesnaeesnreean 42
7.1.2 GENEIATEA DBS...coiiieiieeetie ettt s et s e b e s e s re e sne e e s nee e saree s 43
7.1.3 Generated SYMDOI Lableuviiiiii e 44
7.1.4 GeNnerated HardWarecooui ittt s e e 45
7.2 WIinCC flexible SCreen geNerationceeccvieeeeciiee ettt e e e seae e e e eaaeeeean 45

7.3 1Y =T V=T ol [0 oY o To] o SO PO PP PPPPTRROPPPP 49

8 DHSCUSSION .eetiiiiiiiiii ittt ettt s a e e s a e e s era e e e s sanee 51
S B 6] o 1ol [V To T H OO UTUP PRSPPI 53
10 FUture recommendations.......cocuioieiiiiieeeeee ettt st s 54
11 REFEIENCES ...ttt ettt e st e st e s bt e e aee e s be e e sabeesabeesneeesareeeneas 55
Yo7 o 1=] o Lo [P N PP PPROTPPPN 1
A1l Adding objects in the NAVIGatioN trEEc.uviieciiii e e e 1
A2 Configuration of the General folder ... iiie i e e 2
A3 Configuration of RoIler 2W2S-DDP........ccocuiiiiiciee ettt ettt e e tee e e e e e e bae e e earaeas 5
A4 Configuration of TUMNTADIEcceviie e 7
A5 Configuration of ABB RODOTuuiiiiiiiei ettt e e e sbee e s 9
A.6 Configuration Of MOAEZONEuuiiiiiiie e ebee e e areeas 9
A7 0Tl = 1Yo T UL =T g To e To] V7 =o T o [P 11
A.8 Configure the hardware iNterface......cccooiii i 15
A9 Adding H_IAnim tags and configuring the WinCC flexible project fragments 18
A 10 Generating COUE TO STEP 7 ...ttt et e e et e e et ae e e et e e e e s sabeaeeenreeas 20
A.11 Generating pictures to WINCC flexiblecooviiiiiiii i 23
F Y oY1= o Lo [t - TSP PPRTPRRN: 1
B.1 Creating @ Dase ODJECT. ...cocuiii et e e ba e e e eareeas 1
B.2 Creating @ tEMPIATE. ...uei ettt e e et e e e et e e e e etr e e e e bee e e earaeas 6

List of Figures

Figure 1 — Process Simulate layout of the stations included in this master thesiscccccceeevveeeiinnenn. 3
Figure 2 - Real layout of the stations included in this master thesisccccoveeeeciieiieciieec e, 3
Figure 3 — ABB Robot applying glue on a metal part in station 15-38-110......cccccccveeeviiiereriiveeesniineeenns 5
Figure 4 - Spot-welding in station 15-38-120.......cccuutiiiiiiiiieeiieieeeciie e e esire e e ecrre e e s stae e e e rraeeessareeesesaneeeas 6
Figure 5 - lllustration of the tree structure for station 15-38-100, 110, 120cccceeeevriereeicrreeeecireeenn. 7
Figure 6 - Programming structure for the different PLC Ianguagesccccevvcvieeiriiieeieiiiees e 9
Figure 7 - General description of a function bIOCK..........c..eeiiiiiiiiiiiiiie e 10
Figure 8 - Example of flat and hierarchal StruCtUreSscooecuieiiiiiiie e e 11
Figure 9 - Structure of Function Block Diagrams for VCC in STEP 7 ..cccovcuveiiiiiiiie e erveee e 15
Figure 10 - Icons for different HMI IEVEIS..........ooiouiiiieeeee ettt e e 20
Figure 11 - User interface and layout of Automation DESIZNErccoccuieeieiieeeeciiiee et 22
Figure 12 - 2D 1ayout With POIYEONS...cccuiiiiiciiie ettt e ree e e e e s abe e e e s areeas 24
Figure 13 - Automation Designer database with created Base objectsccccceevcieeeecciieeeccciiee e, 25
Figure 14 - Created attributes for the Base 0bject PLCAI€accccuveeeeciiiee ettt 26
Figure 15 - Basic templates and their contents, Units to the left and Components to the right.......... 27
Figure 16 - Content inside the S7-software template for the Conveyor........ccccceeecieeeeeciiee e, 28
Figure 17 - System data for FB1515 (function block for Conveyor) inside Automation Designer 29
Figure 18 - Inline macros to inClude NETWOIKSuiviiiiiieiciee e 30
Figure 19 - WiIinCC flexible template for CONVEYOIcccuuiiieciieie ettt e 31
Figure 20 - XML data for WinCC flexible template........ccueeieeiiiii it 31
Figure 21 - eBlocks inside the object templates for Turntable and Conveyor.......ccccccoeeiveeeicivee e, 32
Figure 22 - Script data for setting names and numbers on instance DBScccocccveeeeeciieeecciiee e, 33
Figure 23 - Hardware wizard for PLC Cabinet.......ccuviiiiiiiiiicee et 34
Figure 24 - Insert a new object in the navigation tree by the right click of the mouse 35
Figure 25 - Final tree structure With 2D-1ayOUt.........ccoeciuiiiieiiiie e et 36
Figure 26 - JT-drawing of station 15-38-110 inside Automation Designer........cccccccveeevvieeeeeiiveeeeennen. 37
Figure 27 - Pop-up window where an XML file needs to be chosen when importing information from
1Y L= V=T P PSP PPPPPUPPTTN 37
FIGUIE 28 - STEP 7 SENEIATON ..uvtiiiiii ittt ettt e e e e sttt e e e e s s s s sbaae e e e e s s sssasbabaeeaesssssssssanaeeesssnnns 38
Figure 29 - Export tab inside the STEP 7 SENErator......cccueiiiiiiiie et 39
Figure 30 - WinCC flexible generator inside Automation DESIZNErcccceeeeciieeeeciiieeceeiee et e 41
Figure 31 - Placeholders for the interlock calculationsccceeiiiiiei i, 42
Figure 32 - The DB for the MOdEZONE.......coocuiiiiiceieeccee ettt e e e abae e e araeas 43
Figure 33 - Variables iN DB20ccceiiiiiiiiiiee ettt e e e e e e eecveee e e e e e e e e e bt e e e e e e e e sesnnraaaeeeeeeessnnseaneseeessanns 44
Figure 34 - Generated Symbol table..........ooi i e 44
Figure 35 - Hardware configuration for the generated project.cccecveeeiviiee e, 45
Figure 36 - List of screens in WinCC flexible generated from Automation Designer...........cccccueeenneen. 46
Figure 37 - Generated SCreen fOrOBLcoociiiiiiiiiec ettt ee e e s abee e e s aae e e e e abae e e enreeas 47
Figure 38 - Generated screen for MO ZONEccceviiiicciiie et 47
Figure 39 - Detail screen for conveyer FBL5L5 ...t e e eevrrre e e e e e e enrrane e e e e e 48
Figure 40 - Tags with addresses generated from Automation Designer........cccceeeecveeeeiivieeeeciveeeeeneen. 49
Figure 41 - Tree structure from XML file imported from Process Simulate.........cccccceeeeeieicciiiiieeenennnn. 50

Vi

file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652580
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652584
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652587
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652590
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652592
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652593
file:///C:/Users/Mikael/Documents/Exjobb/Documentation/Automatic%20generation%20of%20PLC%20programs%20using%20Automation%20Designer%20v36.docx%23_Toc274652608

List of Tables

Table 1 - Description of the PLC tree structure at VCCccccuiieieiiieee ettt evee e e e e 14
Table 2 - Description of the different levels in the VCC PLC tree structure from Table 1..................... 14
Table 3 - Standard for FB, FC and DB NUMDBEIINGciiiiuiiiieiieeeeciiee e esireeeesree e esree e s sree s s savee e s sveeas 16
Table 4 - Description of VCC network structure in STEP 7uvviieiiieee ettt e 16
Table 5 - Description of different Networks in Automation DeSignerccccccueeeeecieeeeecieeeeeciiee e, 29
Table 6 -Description of modified and created eBlocks for this master thesiscccccceeieeciiiieennnnnnn. 32

Vii

Abbreviations

AD
CAD
FBD
FFI

HMI

PD

PLC

PS

S7

TCP

VCC
VINNOVA

Automation Designer

Computer Aided Design

Function Block Diagram

Fordonsstrategisk Forskning och Innovation
(Strategic Vehicle Research and Innovation)
Human Machine Interface

Process Designer

Programmable Logic Controller

Process Simulate

STEP 7, Siemens’ PLC programming tool
Tool Center Point

Volvo Car Corporation

Verket for Innovationssystem

(The Swedish Governmental Agency for Innovation Systems)

viii

1 Introduction

Product lifecycle management (PLM) is a business strategy that helps companies to share and store
information of products and common processes to facilitate the development of new ones. Virtual
commissioning, which is the programming and testing of PLCs, robots and other in a virtual
environment, is a large part of PLM and it is increasing in the large production companies due to its
ability to decrease ramp up times (Smith, 2009). New virtual commissioning tools are constantly
being developed to help production engineers in their line of work. One of these new tools is
Siemens Automation Designer.

1.1 Background

Preparing an automatic production system takes a lot of time and to be able to decrease this time
virtual simulation studies are used more frequently. Traditionally a lot of work is done twice because
of the lack of integration between software and systems. For a virtual simulation study all logic is
needed to be created to be able to do a proper simulation and to investigate the station behavior.
However, this logic cannot be transferred to the PLC software directly.

When creating the PLC program the station logic from the simulation study cannot be satisfactory
reused. A step with manual transfer of the logic is needed which leads to both double work and
possible human errors. It is also hard to verify the PLC code before the real station is built in the
factory because of the lack of integration with the virtual simulation study.

A goal for VCC (Volvo Car Corporation) is to be able to do the whole commissioning process virtual
and not have to test the programs in the real factory many times. Without several real time tests the
ramp up time could be decreased significantly and more time could be spent on producing cars.

This master thesis is a part of the FFI (Strategic Vehicle Research and Innovation) initiative for VCC.
FFl is a research program launched by the Swedish governmental agency for innovation systems
(VINNOVA), to help the Swedish car production companies develop a competitive and sustainable
vehicle industry (Vinnova, 2010).

1.2 Purpose

The purpose is to generate PLC code and HMI (Human Machine Interface) screens in an earlier phase
of the commissioning. Also to be able to reuse information created in Process Simulate, stored in a
common database and decrease the ramp up time by using the software Automation Designer.

1.3 Objectives
To generate PLC programs and HMI screens with Siemens Automation Designer version 9.1, based on
already created specifications and generic function libraries.

Then evaluate how well the program coincides with the programming structure VCC uses today and
through the evaluation come up with suggestions how Automation Designer and VCC work
methodology can be changed to work in conjunction.

Another aim of the project is also to learn Automation Designer well enough to be able to educate
VCC personnel in the basics of the software.

1.4 Delimitations
e EPLAN drawings will not be a part of this project.
e PLC code and HMl screens will only be generated for Siemens products.
e Generated code shall be based on existing VCC libraries.
e The stations 15-38-100, -110 and -120 in the TA-factory at VCC Torslanda are the only
stations that will be used as a case study in Automation Designer.

1.5 Research questions

e What is possible to do with Automation Designer today?

e What does VCC need to change in their way of working to be able to use Automation
Designer?

e What needs to be changed in Automation Designer to fit VCC work methodology?

e How much information can be transferred from Process Simulate to Automation Designer?

e To what degree can VCCs current PLC function blocks be integrated with Automation
Designer?

2 Station 15-38-100,110, 120 at VCC Torslanda
The stations named 15-38-100, 15-38-110 and 15-38-120 are situated in the TA factory at VCC in
Torslanda, Gothenburg Sweden. These three stations are included in the case study for this master

thesis.

2.1 Layout of the three stations

¥ TR
S -

Figure 2 - Real layout of the stations included in this master thesis

3

2.2 Work description

The stations shown in Figure 1 are a part of a line producing the underbody for the car models V70
and S80. The main operations for the three stations are spot welding performed by robots. The PLC
controls when a robot is allowed to work, however the PLC does not handle the robot operations.
When a robot has been given the confirmation that it is allowed to start the robot is completely
driven by the robot program until the operations are finished. The robots also control the special
equipment they use during their work, as for example the gluing guns in station 15-38-110.

Following is a detailed description of each station. The information presented is only concerning the
PLC, since this is the focus of this master thesis.

2.2.1 Station 15-38-100

Station 15-38-100 consists of two spot-welding robots, one conveyor, one decoder and one lift (see
Figure 1). The robots perform enhanced spot-welding on parts assembled onto the underbody in the
previous stations. A decoder reads a tag to check if the arriving model is the same as expected. The
tag is placed on the skid that carries the car body, to determine which model it is and to be able to
track it through the production.

To be able to handle different car models in this station there are two steering pins that needs to
adjust position relative to the arriving underbody. This is done by cylinders controlled by the PLC
before a new underbody arrives to the station.

Below is a brief description of the PLC operations in station 15-38-100:

Get information of which model is arriving from the previous station or buffer
Adjust the steering pins

Start the conveyor to bring in a new underbody to the station

Lower the underbody down to fixate it for the robot welding

Start the robot programs to spot-weld the underbody

Get a confirmation from the robots that the work is finished

Lift up the underbody

Check if the next station is empty

Lo N R WNRE

Start the conveyor to send it to the next station

2.2.2 Station 15-38-110

In station 15-38-110 the A-pillars of the car is assembled onto the underbody. The station consists of
two spot-welding robots, two robots with grippers, one conveyor, one decoder, two turn-tables, one
lift and one fixture. The fixture is placed above the underbody (see Figure 1 and Figure 2) and helps
the turntable to fixate the A-pillars. As for station 15-38-100 a decoder checks which model the
underbody belongs to.

The two robots with grippers are starting their operation cycle when an underbody arrives to the
previous station (station 15-38-100). This is needed to decrease the cycle time for this station. The
robots collect one part each from the racks (see Figure 1) and travels to the gluing gun on special
designed conveyors (see Figure 3). The gluing operation is controlled by the robot, but the PLC is
starting and stopping the heater of the gluing gun when for example a shift ends or a longer stop is
needed. Parts are always available in the racks due to a two level system. When the top level is

empty a gate is raised and the robot can start collecting part from the lower level. Forklift drivers
load the upper level with new parts and give a confirmation to the PLC that the upper level is refilled
with the help of a barcode scanner. Later when the lower level is empty the gate will go down and
the robot will start collecting parts from the upper level again.

The spot-welding robots perform welding operations to fasten the A-pillars. The parts are both glued
and welded onto the underbody.

Below is a brief description of the PLC operations in station 15-38-110:

1. Receive information of which car model that will arrive next
from the previous station (station 15-38-100)

2. Start the gripper robots operations
Start the conveyor to bring in a new underbody to the
station

4. Lower the underbody down to fixate it for the robot welding

5. Get a confirmation that the gripper robots are finished and
that the metal parts are placed in on the turntable.

6. Turn the turn table and press the metal parts onto the
underbody

7. Close the clamps of the fixture above the underbody to hold
the parts

8. Start the robot programs to spot-weld the underbody

9. Get a confirmation from the robots that the work is finished

10. Release the clamps of the above fixture and turntable

11. Turn the turn table to its home position

12. Lift up the underbody

. L Figure 3 — ABB Robot applying glue on a
13. Check if the next station is empty metal part in station 15-38-110

14. Start the conveyor to send it to the next station

2.2.3 Station 15-38-120

The tasks performed in s are enhanced spot-welding as in station 15-38-100 (see Figure 4). The
station consists of four spot-welding robots, one conveyor and one lift. When the underbody is
finished at this station it is stored into a buffer before it heads to the next station. However this
buffer is not a part of this master thesis and will not be considered.

Below is a brief description of the PLC operations in station 15-38-120:

Start the conveyor to bring in a new underbody to the station
Lower the underbody down to fixate it for the robot welding
Start the robot programs to spot-weld the underbody

Get a confirmation from the robots that the work is finished
Lift up the underbody

Check if the buffer is ready to receive

No ok wnN e

Start the conveyor to send it to the buffer

Figure 4 - Spot-welding in station 15-38-120

2.3 Tree structure for station 15-38-100, 110, 120

Figure 5 - lllustration of the tree structure for station 15-38-100, 110, 120

3 Frame of Reference

This chapter will describe a theoretical background of the different concepts, definitions and
software’s used in this master thesis. Since the main topic of the report, automatic generation of PLC
programs using Automation Designer, is a fairly new concept there have been some difficulties to
find publications and literature dealing with this topic solely.

3.1 Programmable Logic Controller (PLC) for Industrial Automation

A PLC (Programmable Logic Controller) is a digital computer used for controlling an automated
production system such as factory assembly lines. The PLC controls equipment like robots, fixtures
and conveyors and the PLC programs are traditionally done late in the commissioning process.

3.1.1 IEC61131
The main standard for PLC is the IEC 61131 developed by the International Electro-technical
Commission (IEC). The standard is divided into the following five parts (PLCopen, 2008):

General information

Equipment requirements and tests
Programming languages

User guidelines

vk N e

Messaging service specification

The programming instructions at VCC are partially based on the IEC 61131-3 standard (Volvo Car
Corporation, 2008) that handles the allowed programming languages and supplies guidelines on how
to get the most out of each language (Ashton, 2007). The supported programming languages in IEC
61131-3 are:

e Textual
- Instruction list (IL)
- Structured text (ST)
e Graphical
- Function block diagram (FBD)
- Ladder diagram (LD)
e Sequential function chart (SFC)

SFC is used as a way to structure the internal organization of the program (see Figure 6) while the
textual language with instruction list and structured text are inter-operable languages. The graphical
language with function block diagram and ladder diagram are also inter-operable languages but they
differ a lot from the textual when it comes to programming. Some samples of the different
programming languages are shown in Figure 6.

All programming languages have their advantages but for reuse from one program to the next the
graphical languages is preferred. Function block diagrams are very easy to use when storing certain
programming functions, e.g. robot communication. With this language it is possible to build up a
database with different block or diagrams that the programmer can use for a lot of different projects
and save time by reusing already created code for different functions. This is also possible to do for
the textual languages but it is much easier to connect different graphical languages (Selander, 2010).

Instruction List Structured Text
A #1n1 CA;SE'DU +D2-D3 0OF
4 ﬁ;ni D=3
3 ol P
D0 :=4;
ELSE
D0 :=6;
END_CASE;

Function Block

&
#Inl — #out
#In2 —
Ladder Diagram
l #Inl #In2 #out
| | Il {1y |

| [[v |

Sequential Function Chart

1| 2

INzZ

Stepl

Figure 6 - Programming structure for the different PLC languages

3.1.2 Function Block Diagrams (FBD)
The function block diagram (FBD) language is one of the PLC programming languages stated in the
IEC 61131-3 standard (PLCopen, 2008).

A standard FBD is built up by input/output variables, through variables, internal variables and the
behavior of the FBD (Torsten Heverhagen). An illustration of a standard FBD is shown in Figure 7.

e Input variables
The input variables are all external signals that are necessary for the FBD to be able to
perform its specified function. Input variables can only be set from outside the FBD.

e Output variables
Output variables are the signals that are generated in the FBD through the internal logical
behavior. The output variables are often the desired result from the FBD and they are the
only variables in the FBD that can be read from the outside.

e FBD behavior
The internal logical behavior is determined by the FBDs specified function. The internal logic
can be programmed in one or a combination of the existing inter-operable PLC programming
languages.

e Internal variables
Internal variables are only used inside the FBD and cannot be accessed from the outside.

e Through variables
Through variables are used to when several FBDs in a row uses the same input variable. The
value or data type of a through variable never changes when passing through a FBD

SN Through Variables —>
Input Internal Output
— 3| Variables Variables Variables ——
FB Behavior
—» —

Figure 7 - General description of a function block

3.1.3 Different ways of structure the PLC code

When programming a PLC with function blocks there are two ways to structure the program, flat
structure and hierarchal structure. A flat structure is often easier to program but for larger projects it
tends to get very complex and hard to overview, therefore it is also harder to maintain. The
hierarchal structure works in an object oriented way and requires more planning but it allows for a
wider use of library blocks. A library block is a function block with functionality reused frequently and
therefore stored in a library. In a larger company with a lot of similar processes the use of library
blocks will in the long term save a lot of time and simplify the maintenance work. A hierarchal
structure is good when organizing the PLC program and its code for objects such as robots or

10

conveyors. It will enable the possibility to group together objects in a desired way. Figure 8
represents the difference between a flat and a hierarchal structure.

Flat structure Hierarchal structure

 FBS |
=
FB10]
(FB11]

(FB13

Figure 8 - Example of flat and hierarchal structures

3.1.4 SIMATICSTEP 7

STEP 7 is a software package for programming SIMATIC PLC’s from Siemens. The standard package
includes symbol editor, SIMATIC Manager, NETPRO Communication Configuration, Hardware
Configuration and Hardware Diagnostics. STEP 7 supports the programming languages Ladder
Diagram, Function Block Diagram and Statement List (Siemens AG Automation and Drives, 2006).
However all the programming standards in IEC 61131-1 can be implemented in the program with
expansion packages.

3.1.5 Methods for verification and validation of PLC programs

To verify a PLC program is to check that the program is created in the right way e.g. according to a
standard (Frey & Litz, 2000). The methods to do this are to investigate the code yourself and also to
have someone else to look at it. However, this person needs to have a wide knowledge about the
standards followed in the project (Selander, 2010). Another step in the verification process is to
compile the PLC code to make sure that there are no syntax errors.

The validation is to investigate that the PLC program works and behaves according to the
specification (Frey & Litz, 2000). The first step is to test the program in a virtual PLC. This is done by
running the code virtually in the PLC software and manipulate the input signals. Then study the
behavior of the program and the output signals that will appear. After this step the only way to make
sure that the PLC program works correctly is to test it on the real production line to find the
remaining errors and correct them. This trial and error process have to be completed before the

11

production can start. This process needs to be as optimized as possible because of the costs of having
a production line halted for testing is very high (Selander, 2010).

3.1.6 Requirements for automatic generation of PLC code

When generating PLC code automatically it is important that the generated code not only works in
ideal conditions when the process or production plant is up and running. The generated code shall
also be able to handle parts such as interlock logic, safety instructions, start-up and shutdown
sequences (Guttel, Weber, & Fay, 2008). Otherwise a lot of manual work will still be needed
afterwards.

In a scientific study made by Giittel et al. four requirements have been established to be able to auto
generate PLC code. The first requirement is that the plant structure must be available in a computer
readable form. This is necessary because to be able to generate e.g. interlock logic for a conveyor the
connection between its sensors needs to be defined. The second requirement is that a process
description needs to be available. The description also needs to be in a machine readable form where
Guttel et al. suggest using the IEC 61131-3 language SFC and “PLCopen-XML” as the representation of
the format. The third requirement is that a well-defined and standardized function block diagram
library needs to be available. This is very important because it is within these function block diagrams
the functionality is represented of the components in the process or production plant. The last
requirement is that the knowledge of today’s process engineers needs to be extracted and put down
into computer readable rules. This must be done to ensure the quality of the generated PLC code.

3.2 Human Machine Interface (HMI) for Industrial Automation

HMI in this paper is the interaction between the PLC system and the operator. The interaction is
presented by a screen with dynamic icons, figures and text. The HMI screen is presented on a panel
or a standard PC positioned in the production area. An operator can monitor the production and
control it to a certain level by the help of an HMI panel or PC. To be able to be an interface between
the PLC and the operator the HMI system has to be able to do the following tasks (Siemens AG
Industry Sector, 2008):

e Visualize the process

e Control the process with help of an operator
e Display upcoming alarms

e Archive alarms and process values

e lLogalarms and process values

e Manage process and machine parameters

3.2.1 SIMATIC WinCC flexible

WinCC flexible is a Windows based engineering software created by Siemens for producing HMI
screens. The screens are available for use on SIMATIC HMI operator control and monitoring devices
as well as standard PC’s (Siemens AG Industry Sector, 2010). WinCC flexible is available in four
different versions which are Micro, Compact, Standard and Advanced. The difference between the
versions is the number of SIMATIC panels that the software is applicable with. Micro has the least
number of compatible SIMATIC panels while Advanced supports all SIMATIC panels and is the only
version that is PC compatible (Siemens AG Industry Sector, 2010).

SIMATIC WinCC flexible is closely integrated with the PLC software SIMATIC STEP 7. It is possible to
manage WinCC flexible projects within STEP 7 and communication settings, tags and alarms can be

12

shared between the software’s (Siemens AG Industry Sector, 2010). The integration is made by the
program SIMATIC Manager, a component of STEP 7. The coupling in the production between the HMI
screens and PLC is made via PPI, MPI, PROFIBUS DP and PROFINET (TCP/IP) (Siemens AG Industry
Sector, 2010).

3.3 Simulation Studies
This chapter will cover the work methodology at VCC when it comes to simulation studies. The
chapter will also include the type of software used in the simulation studies.

3.3.1 Technomatix Process Simulate/ Process Designer

Process Simulate (PS) and Process Designer (PD) are two product lifecycle management (PLM)
software tools from Siemens. The software’s makes it possible to plan the manufacturing process
virtually in a 3D environment before it is implemented in the factory. With PS and PD it is possible to
reuse information from earlier manufacturing process planning’s and this will decrease the time of
work when a factory needs to be redesigned or complemented with new equipment (Sundback,
2010).

Process Designer is used to virtually design the production layout. This includes importing CAD
(Computer Aided Design) models of the factory and its components and machines into the software.
Then to design the line, model capabilities of the process and balance the line (Siemens PLM
Software, 2008).

Process Simulate is the next step when performing a virtual simulation study. The software is a tool
for verification, optimization and commissioning of the designed factory created in PD (Siemens PLM
Software, 2008). PS consists of five segments designed to verify and optimize in a certain area of the
factory. The different segments are Assembly, Human, Spot Weld, Robotics and Commissioning
(Siemens PLM Software, 2008). The software simulates the logical behavior of the production and
sequencing of the operations (Siemens PLM Software, 2008).

3.3.2 Simulation Studies at VCC

VCC uses Process Simulate and Process designer in the first steps of the commissioning phase. The
software’s are mainly used to verify if a new car model is possible to produce in the factory. When
the engineers start working with their simulation projects the car is not yet completely developed.
The specifications available at the project start up for the virtual simulation studies usually changes
and the models needs to be modified later on in the commissioning process (Sundback, 2010).

The engineers work is to investigate how much equipment that is possible to reuse and how much
new equipment that is needed to produce the new car model. Studies on the possibility to modify
existing lines and if enough space is available to place the new equipment needed also has to be
performed. If there is a lack of space a new line needs to be built inside the factory. But sometimes
that is not an option for the company and this result in redesign of the parts that could not be
produced or assembled on the modified current production line (Sundback, 2010)

Another assignment for the simulation engineers is to check the reachability for the robots. Robot
programs are also produced to simulate the production lines to get a clear view whether it is possible
or not to produce the new car at the production line designed by the engineers. When the
simulations are validated and the solutions are found, the external line builders take over and start
developing the real production line that will be installed in the factory (Sundback, 2010).

13

4 PLC programming at VCC

Most of the PLC programming at VCC is done by contracted line builders. However when the PLC
code has been delivered to VCC, all maintenance and minor changes to the code is performed in-
house. To ease this work VCC has developed a standard for the structure of the PLC programs that all
their suppliers must follow.

4.1 VCCPLC programming philosophy

VCC PLC programs are built up by function block diagrams in a tree structure (see Table 1 and Table
2). Each function block diagram represents either a real object, such as a conveyor or a robot, or a
function such as a mode zone or a bit to word converter (Volvo Car Corporation, 2008).VCC has built
up a library of function block diagrams that are designed to be as general as possible and to fit in all
possible station configurations. VCC provides this library to their line builders who are required to
use it as far as possible. The function block diagrams are used in conjunction with the tree structure
(see Table 1) so that each function block diagram only speaks to one level above and below in the
tree. A description of each level can be found in Table 2. If this standard has been followed properly
the engineers at VCC have it much easier navigating the code during maintenance and upgrades
(Selander, 2010).

Table 1 - Description of the PLC tree structure at VCC

Level |1 2 3 4 5 6 7 8
PLC

EStop
Zone

Mode

Zone

Objects
Objects

Components/Functions
Components/Functions

Table 2 - Description of the different levels in the VCC PLC tree structure from Table 1

Level Description

PLC The PLC level is the topmost level that is represented within the PLC code. It deals
with the basic functions of the PLC and handles the relationship between the
different mode zones.

EStop Zone An emergency stop zone covers all objects that need to be stopped if the
emergency stop is triggered. One PLC can control several EStop Zones.
Mode Zone A mode zone contains all objects that have to be run in the same mode

simultaneously e.g. automatic or manual mode. It is within the function block
diagram for the mode zone the majority of the interlock calculations for the
objects is made.

Object The objects are the machines that are used to build and transport the car and its
parts. VCC has a library with function block diagrams that covers most of the
objects used. But for some of the more complex or unique objects the FBDs have
to be manually created.

Components | The components are physical parts of the objects that have a specific function and
are used in multiple instances. For example a conveyors motor. VCC have several
different types of conveyors that use the same type of motor.

14

Functions Function block diagrams used to execute a specific operation commonly used by
several objects. An example of this is the “transfer in” operation that is used by
the conveyors.

4.1.1 Handling alarms at VCC
To make sure workers and equipment are safe and that troubleshooting goes as fast as possible VCC
has defined four types of alarms for their PLC programs:

o Level A: Safety function tripped. All machines must immediately stop.

e Level B: All machines in automatic mode are stopped. Manual mode is still allowed.

e Level C: Error that requires intervention from an operator. E.g. machine has run out of
assembly parts.

e Level D: Error that does not requires intervention from an operator. E.g. machine is waiting
for an interlock requirement to be fulfilled.

If a level A or B alarm is generated, an operator needs to manually reset the alarm after the cause
has been fixed. Otherwise the alarm won’t go away. Each function block diagram shall be able to
generate its own alarms. These alarms are summarized in each level and sent upwards in the PLC
structure. A function block diagram can stop itself and the blocks below directly. However, it can only
report errors upwards in the structure and the function block diagram on a higher level will have to
decide if any other consequences are needed.

4.1.2 Siemens STEP 7 programming standard at VCC

VCC has decided to only use hardware and software from Siemens when building new installations
and has therefore specified a detailed Siemens PLC programming standard that is based on their
general standard (Selander, 2010).

F&‘F%fé;raph VCC Library

FB1600

1 DB1200
LRobS4C+

e

FB1601

T DB1201
LRobCom
———

FB1502
DB 1210
LRolleriW2s-C
OBf1 FC312 =

DB312 M

Fixture \1\. FB1102
bB1211

LMovFunc2Pos

e T

WinCC PDL

FC310
DB310]
Robot10

AlarmA
Alarmg
Alam(
AlamD FC300
DB300
ModeZone
010

Supplier Library |
shall be agreed :
withVCC

FC400
DB400
ModeZone
020

FC412
DB412
Fixture

FBxxx
DB xxx
Looooox

Figure 9 - Structure of Function Block Diagrams for VCC in STEP 7

15

The programming in STEP 7 shall be done with function block diagrams in according with the general
standard. In STEP 7 there are two types of function block diagrams called FB and FC. The main
differences between them are that FB must have a specified data area called data block (DB)
connected to it. A FB can also store static variables between each scan cycle. At VCC all FC created by
line builders must also have a DB (Volvo Car Corporation, 2008). This is to make it easier finding the
variables connected to each FC. VCC uses FB for functions that are reusable and these blocks are
stored in a library. The FCs are used for unique project specific functions (see Figure 9). It is required
in STEP 7 that each FB, FC and DB is assigned a unique number that works as an identifier. VCC has
set in their standard a convention for how numbering shall be made in their projects. The most
important numbering rules can be found in Table 3.

Table 3 - Standard for FB, FC and DB numbering

Type Adress Description

FB/FC

Local functions - General 251-299 Project specific block for general functions.

Local functions - Mode Zone | 300-549 Project specific blocks for blocks within a mode zone.

S7 Graph 550-599 SFC blocks

Local library 600-999 Library blocks that are unique to Torslanda or Ghent.

Standard library 1000-2048 | VCC library blocks.

DB

Local functions - General 251-299 Project specific DB. Always the same number as its
connected FC.

Local functions - Mode Zone | 300-549 Project specific DB. Always the same number as its
connected FC.

S7 Graph 550-599 DB for SFC blocks

General 1000-1199 | Instance DB for library blocks that is not part of a
mode zone

Mode Zone 1 1200-1399 | Instance DB for library blocks that is a part of mode
zone 1

Mode Zone 2 1400-1599 | Instance DB for library blocks that is a part of mode
zone 2

Mode Zone 3 1600-1799 | Instance DB for library blocks that is a part of mode
zone 3

FBs and FCs are built up of networks containing PLC code. Networks are used to structurize the code.
A network could for example contain the call of another FB or the calculation of an interlock variable.
In the VCC standard (Volvo Car Corporation, 2008) there are rules for in which order the networks
shall be placed and what they shall contain (see Table 4).

Table 4 - Description of VCC network structure in STEP 7

Network Description
1. Inputs Functions whose main purpose is to read and move inputs.
2. Alarms Functions dealing with alarm creation.
2.1. Enable Alarms Disabling alarms if a higher priority alarm is active.
2.2, Alarm generation Functions dealing with alarm creation.
3. Communication Functions whose main purpose is communication.
3.1. Other systems Functions for communication with other systems e.g. other

PLC:s or the manufacturing execution system.

16

3.2. Devices Functions for displays and BUS nodes

4. Machine status Functions whose main purpose is machine status.

4.1. Detected Functions whose main purpose is to deal with detectable
machine status from inputs.

4.2. Parameter Functions whose main purpose is to deal with machine status
derived from memorized variables.

4.3. Operator selection Functions whose main purpose is to deal with machine status
from operator selections

4.4, Calculated Functions whose main purpose is to deal with machine status
calculated using other statuses as inputs.

4.5. Modes Functions dealing with the different production modes.

4.6. Indications Functions whose main purpose is to indicate the machine
status to the operator.

5. Equations Equations that does not fit in any of the other areas.

5.1. Interlocks Equations dealing with interlocks.

5.2. Flow equations Equations dealing with the process flow.

6. Sequences All sequences

7. Submodules Sub levels that is not part of any other dedicated areas.

7.1. Non machine Sub levels who doesn’t deal with machines.

7.2. Command summary Function to sum-up all signals to steer each output

7.3. Machine Sub levels dealing with machines e.g. robots or rollers.

8. Outputs Functions dealing with the outputs from the function block

9. Alarm summary Summary of all A, B, Cand D alarms.

4.1.3 HMI programming standard at VCC

For creating the HMI screens Siemens WinCC is used. Since WinCC and STEP 7 are highly integrated
the screens shall be created in the same project as the PLC code. For each FC and FB in the project
there shall be a corresponding screen (see Figure 9) as well as for the OB1. VCC provides finished
screens for the FB from their library and a starter pack containing templates to be used for the
project unique screens. For each FB and FC there is also an icon that is to be used in the screen one
level higher in the tree structure to display the status of the object (Volvo Car Corporation, 2008).
Each FB and FC has two variables of the type word that are used only by the HMI to read the
necessary information to the screens and icons respectively. The words are interpreted in WinCC
through visual basic scripts. The result is a communication between the function block diagrams (FCs
and FBs) and the HMI screen where the screen shows the information such as alarms to the
operator. WinCC flexible is used in the same way by VCC, but all screens and all other functions are
not yet finalized.

4.2 PLC programming/HMI in the commissioning process at VCC

The development of the PLC programs and HMI screens are always outsourced by VCC to external
line builders. The line builders are also responsible for other things like mechanical and electrical
construction of the production line. The line builders have close contact with the engineers at VCC
and need to follow the standards that are available. In some special cases VCC have been forced to
do some PLC programs and HMI themselves (Selander, 2010).

17

The first thing a line builder needs to do before he can start programming the PLC code is to think
through and present the structure of the program and which function blocks that will be used from
VCC'’s programming library. The structure needs to be approved at VCC before the new PLC code can
be developed. In the end the developed PLC code and HMI also needs to be presented to VCC and be
approved before it can be implemented into the production line (Selander, 2010).

18

5 Automation Designer

Automation Designer (AD) is a software from Siemens that is developed on the base of Comos. The
software is an engineering platform, mainly for the manufacturing industry, to help decrease the
time for engineering and start commissioning earlier. Automation Designers main purpose is to help
the engineers take the step from the digital factory to the real plant and to reuse as much
information as possible at all times (Siemens AG Industry Sector, 2010). Because of the lack of
information about Automation Designer, this chapter has been reviewed by Michael Geck and
Steffen Weber at Siemens AG Industry Automation Division in Nirnberg, Germany.

5.1 Whatis possible to do in the software?

Automation Designer is developed to decrease the ramp up time in a factory when new equipment
needs to be installed or a new line is going to be developed. This is done through reuse of
information and a possibility to generate the information needed to implement the equipment or the
line. The software is intended to be the last step before implementation of the prepared work in the
physical factory.

Automation Designer has got three main features (Siemens AG Industry Sector, 2010):

e Functional, Layout based Engineering
e Generators for PLC Code, EPLAN electric P8 and WinCC flexible
e Data Connection to earlier engineering phases like mechanical simulation

All three features are connected to each other in the software but it is possible to work with only one
or two of them. It is important to know that the user must have a valid license of the software’s in
the list above to be able to use the generated information. STEP 7, EPLAN and WinCC flexible is not
part of Automation Designer; however it is possible to work with the different features inside AD
without having the software’s installed.

Automation Designer is also a powerful tool when it comes to documentation. A lot of different
documents such as list of equipment in the factory and other are possible to generate with the push
of a button if you have the right information inside the software. In the following chapters the
different features of Automation Designer is described further.

5.1.1 PLC code generation

Automation Designer (AD) is able to generate PLC code to the Siemens software SIMATIC STEP 7.
Along with the PLC code AD is also capable to generate the hardware and symbol table for the
project. The symbol table is generated automatically within AD and then exported along with the
generated PLC program. However the hardware must be selected by the help of a hardware wizard.
The hardware wizard inside Automation Designer has got the same functionality as the one in STEP 7.

To be able to generate PLC code, the software needs to know which code to generate. This is done by
adding function block diagrams to different templates (more information about templates in chapter
5.2.5). The function blocks can either include the PLC code it should have or be empty. In the case
where it is empty, AD can collect its code from a function block library during the generation of the
PLC program. The idea with the code generation is that function block diagrams are connected to
templates and Automation Designer connects these blocks together into a PLC program. Afterwards

19

the generated program is editable in STEP 7. More information about what is needed to make this
work is described in chapter 6 Methodology.

5.1.2 Generation of HMI pictures

Automation Designer is using the XML format for importing and exporting data to and from WinCC
flexible. The software is able to generate complete HMI projects with up to four different levels of
details. Tags and other information can be connected inside Automation Designer to the right signals
from the PLC structure before the user exports the HMI pictures. This anticipates that Automation
Designer includes PLC code for the desired project.

To be able to generate HMI pictures the software needs to know which icons and other information
to generate in every level of the HMI. This is solved through import of XML files to the Templates in
the software. These XML files should include the icons and other information that represents the
template object in the different levels of the generated HMI project. An example of this is shown in
Figure 10.

HMI level 1 HMI level 2 HMI level 3
W e
Q\‘ _I":u:li
e &ed) ——
BTy =Tl Q\\,
Clag
e |
A N

Figure 10 - Icons for different HMI levels

Another thing that is necessary before generating an HMI project is that Automation Designer needs
to know where to place the different objects relative to each other on the HMI screens. This is solved
through a 2D-layout inside AD (more information of this in 5.2.7). The user places his objects in the
right place on the layout and draws polygon lines around the objects. This is done to explain to the
software which objects that should be in the different levels.

The HMI project is generated to one single XML file that can be imported to WinCC flexible and
afterwards be edited if necessary. The idea with the HMI generation is that XML files are connected
once to a template object. Then every time this object is used in a project the software will use the
same HMI information for generating HMI pictures.

20

5.1.3 Generation of EPLAN drawings

Beside the integrated E-CAD functionality Automation Designer is currently supporting EPLAN electric
P8. To generate electrical drawings to EPLAN is done in a similar way as the HMI. The idea is that
single electrical documents are connected to templates inside AD. By then placing the templates on
the 2D-layout, the software is able to connect the different equipment represented by the templates
and create electrical drawings which can be exported to EPLAN and later be modified if necessary.

The connection of the electrical drawings to template objects is only supposed to be done once and
then be reused in every new project inside Automation Designer.

5.1.4 Reuse information from earlier simulation studies

One of the main purposes with Automation Designer is to help the engineer to reuse information
from earlier simulation studies. This is possible if the simulation study is made in Process Simulate or
Process Designer. Then the simulation study can be exported in an XML file and be imported into
Automation Designer. By doing this the engineer will get the structure and the objects needed in his
engineering project (more information of different types of projects in chapter 5.2). The key factors
to make this work are that a database with template objects is already developed where every object
in the simulation study is represented and also that the names from the simulation study are
connected to the right templates.

Another thing that the engineer can gain from importing an XML file from Process Simulate or
Process Designer is to get the sequences from the simulation. The sequences can be stored and used
inside Automation Designer with a special feature called Sequence Designer. With this tool the
engineer is able to complete the sequences and include information such as interlocks that may be
left out from the simulation study. By doing this Automation Designer is able to generate SFC in
addition to the function blocks to complete the final PLC code for export to STEP 7.

5.2 Engineering with Automation Designer

When introducing Automation Designer into companies there are two things that are very important
to keep in mind. First is to come up with a structure for the engineering projects that fits well with
the company's perception of their factories. All objects created later on in the project will have to fit
into this structure so a well-defined structure will help a lot. The second thing is to specify all relevant
naming conventions that are in use in the company and if possible create new rules where there are
none. An Automation Designer project relies heavily on scripting and with naming conventions the
complexity of these scripts can be reduced.

21

5.2.1 User interface and layout of Automation Designer

Fie _View _Adminsirator _Documents _Generators_Bdra_Plugins_Help | |/ pd SIMATIC AUTOMATION DESIGNER [

=3835P15100.15-38-100 105 Tumtable

= @ 03/09/2010 11:08:42 CHALMERS » Volvo
= (38351 PLC Avea
(5 BRPTLOL Unit layout DIN A3 landscape
& @ S000 General
= FSI00 ModeZone
% [S7 S7-software
= &% 15-38-100 Station
® @101 Tumtable
® 35102 Roller2W25-DDP
® 103 Turtable
® HE104 Roller2W25-DDP
® “2,72-31-000 ABB Robot
* #9105 Tumtable
© @ @AT Automation Tree
oW USERS User administration

= @105 Tumntable
EQEMSData eMS-Data
B2)TData JT-Data

T Details|
Query: 3/3 Selected: 1 Row: 1 Cok: 1 3835PL 15100 1 1 -38-100 1 1051 ECO1 1 5YS 1 SysAcdtIsExec Status HALMERS 07/09/2010 Total objects: 3178 Save: 0 Check: 0

Figure 11 - User interface and layout of Automation Designer

Menu bar

Symbol bar — Contains shortcuts to some of the most used functions in the menu bar.

Recent projects — Quick access to the most recent opened projects and layers.

Navigation tree — Enables the user to navigate between objects in the hierarchal tree
structure of the project.

5. Detail view — Shows the selected objects attributes without having to open it in the

P WNR

configuration area.
6. Configuration area - Displays the current opened object.
7. Status area — The status of the currently opened project

5.2.2 Base project

In the base project all the base objects and templates are created and stored. The base project is the
database of Automation Designer and works as a foundation for the engineers. Only a selected few
people with great knowledge of both Automation Designer and the work methods the company uses
for their automated systems should be allowed to make modifications and add new things into the
base project. To build up a base project requires a lot of time and resources in the beginning but if
prepared well it will save time in the long run.

It is in the base project the structure of the engineering project is created. This is done partially in the
templates but also by assigning which objects should appear and be addable when right clicking on a
specific object.

22

To avoid destroying working objects when doing changes in the base project, Siemens has added a
layer functionality. The layers works as a copy of the original database where changes can be made
and checked before releasing and implementing it to the original database. There are tools included
so the user can see which objects have been changed before releasing a layer.

5.2.3 Engineering project

While the work in the base project is to create general objects and templates it is in the engineering
project that they are specified and fitted together to create a representation of a real part of the
factory. It is here most of the work will be done after the base project has been built up. If the
templates and base objects have been done well the users in the engineering project only needs to
know what parts that needs to be added and they won't need deep knowledge of the involved
technologies such as PLC-code, HMIs and Electrical drawings.

As in the base project it is possible to use layers in the engineering project to avoid destroying
functional parts of an existing project.

5.2.4 Base objects

Base objects are the building blocks of an Automation Designer project. The base objects can be
anything from a representation of a physical object to a function for linking together function blocks.
Siemens provides a large library with base objects that can handle most of the problems the
engineers will encounter but if need there is the possibility to create your own or copy and modify
one from the library.

A base object is built up by scripts and attributes. The attributes can be grouped together in tabs to
get the related information stored in one place. This information can be used or generated by scripts
to get the desired function of the object. Automation Designer uses the VB-script language for its
internal macros. An attribute can be locked in the base project so a user in the engineering project
can't change it. It is also possible to hide attributes which makes them visible only in the base project.
Another thing which is possible is to set a limitation of the maximum characters for the names of the
base objects. This could solve the problem of having to long names in the PLC code. The limitation
would stop an engineer working in an engineering project to set a name that would be too long and
cause problems in the STEP 7 export.

5.2.5 Templates

A template is used to group together base objects to create more complex objects. For example a
template for a conveyor can include sensors, motors, PLC-code, electrical drawings among other
things. In each template there is the possibility to add unique values to the base objects attributes so
the same base objects can be used in several templates but with different purposes. New scripts can
also be added that will only be applied in the current template.

5.2.6 eBlocks

eBlocks are special base objects that Siemens provides. These are connected to templates and are
used to either assign connections between different templates or to copy in other templates to an
existing one in the engineering project. Using eBlocks to connect templates is for example used when
assigning which objects that shall be connected to a certain terminal box or to connect PLC blocks to
create a calling structure.

23

The “copy in eBlocks” is used in a template when there are objects that is not always wanted or
when a choice between different parts should be made. In the case with the conveyor there are
several different types of motors available. When adding the conveyor in an engineering project a
motor type has to be chosen to be copied in. Instead of creating five large, but only slightly different
conveyor templates, one large can be created and five small templates for the motors.

5.2.7 2d-layout and polygons (areas)

In Automation Designer there is the possibility to create overview drawings of the production facility.
Within these drawings there is the possibility to quickly assign eBlocks to objects using polygons (see
Figure 12). The polygons are drawn around the desired target objects and a source object which the
objects shall be connected to is chosen. The different levels in the HMI hierarchy can be assigned by
this method. One large polygon for the top level is drawn around all objects and the lower levels are
divided into smaller polygons in accordance with the designer’s specifications.

& v File Edit View Administrator Documents Extra Plugins Help

\\;’e% ‘BaEHE iy ‘BROEFH EEMw
¥ Open project =A01 [%u PFB.001 Unit layout DIN A3 landscape

equence Designer example linked to SkidDemo S SE S0 E LeGiaed oS I 6 i N Giid <4 Zoom < 55% »
Sequence Designer example » COMOS_AD Engi NOA L A @
¢d AL Plant = - : - T
FAPFE.00L Unit layout DIN A3 landscape
S @S1 Search object
& A0L Sub unit general
a2 TFDl Sub unit functions
= T DFOL Conveyor belt (2R1G)
PESO11 Reversing starter LCU121
iI,B1 Initiator, 2 inputs
41,82 [Initiator, 2 inputs
04 Elecricals
= [s3S7 S7 program
[E FB301 FB unit
= B FB401 FB GRAPH
[B 5D Our Sequence
‘S FB401 FB_HMIOI TFOLDFO
[E1 DB504 Extension DB LCU 121
[E1 DB505 Roller conveyor 2 directi
FC181 Reversing starter Lenze_

)l J=] =]

= & PFB.001 Unit layout DIN A3 landscape S S
® BI COM101 Header e i
B3 svs System data

o=

- LTAD NS HE

_____ e

=A01.PFB.001 Unit layout DIN A3 landscape 2010-04-18
. - e R ———.

Figure 12 - 2D layout with polygons

24

6 Methodology

This chapter will briefly describe how the base project and engineering project was created in

Automation Designer (AD) for this case study. It will also describe the chosen database structure in

AD. In Appendix A and B there is a detailed step by step description of how base objects and

templates are created and how to generate STEP 7 code and WinCC flexible screens.

6.1 Creating the Base project for this case study

The base project is, as described in Chapter
5.2.2, the core of Automation Designer. It is in
fact a database where all the information
needed to create engineering projects and be
able to generate PLC code and HMI screens is
stored. The idea is that the base project, which
includes templates and base objects, is only
created once and then not modified unless
there is a need to add new objects. In this case
study the base project is developed to match
the VCC structure, however as Automation
Designer is a completely new software and a
new way of working, no structure was
available. Therefore a structure is developed in
cooperation with Siemens AG in Germany to
match VCC’s way of work as good as possible.

6.1.1 Base objects

Base objects are the lowest level in
Automation Designer. Every object such as
robots, conveyors, etc. is represented by a
base object in the lowest level. However
Siemens provides most of the base objects
needed, as described in chapter 5.2.4. Most of
the work for this case study, when it comes to
base objects, is to modify the objects that
already existed such as PLC, HMI and Sensors
amongst other. When Siemens library base
objects are used the objects have been copied
to a separate folder and then modified. The
most common modifications that have been
done is scripting of names.

All base objects needed for this case study was
not available in Automation Designer.
Therefore eight new base objects were created
and these are PLC Area, ModeZone, Station,
General, ABB Robot, Conveyor, Turntable and
Clamp (see Figure 13). As well as for the library

= € 100823

» S01 Base project

= £ @00 Volvo Project
= 3 01 Units for Volvo Project

(@ 01 PLC Area
@A PTL.OL Unit layout DIN A3 landscape
& PTL.02 Unit layout DIN A2 landscape
@ (02 General
& 03 ModeZone
o» 04 Station

= 3,02 Components

001 Robots
01 KUKA
=" 02 ABB
“P,01 ABB Robat
002 Turntables
i 01 Turntable
003 Conveyors
BB 01 Roller2W25-DDP
004 Other components
& 02 Clamp

& @01 Material

i+ | I |+

+

& d

bd

+

+ |* % |* + % % |

+ % |+ |*

i d

[Units | & Base objects

=¥ @02 General objects

EE @03 Structures

@10 @Y Attribute catalog

[PE @1PE Process engineering

=3 @3D Don't delete

T @Catalog Discipline independent standard catalogs
+ FR @CBO Maintenance

T @ISO Isometry

4 @) Project

fi @L Locations

., @Motionx

& @0 Documents

X @P Positions, metering points

& @PDMS Interface

B @Q Action: decision tables and object queries
CE @QS Objectdefinitions f. inspection

&+ @SAP SAP interface

L @System System settings

X @U Units

3 @VIPER Pipe part catalogs, standard systems, PipeSpecs
= @WF Workflow management

7' CE Cost estimation

A s

L T S Sy P NPT S

Figure 13 - Automation Designer database with

25

created Base objects

objects used in this case study, these new objects needed scripts to get the right name when it is
copied into an engineering project. Otherwise every object in the engineering project will have the
same name. This could be solved by setting the names manually but this study tries to create as
smart objects as possible which will decrease the work for the engineering in the engineering project.

|=3835PL.SOOO & HMIO1 HMI

[System I System settings I Attributes | Elements [Connectors [Symbols [Script [Usage [Inheritance sources [Configuration

| eMS-Data | JT-Data | Software identiication | System data

FB-No.: Startvalue Increment
Last DB 1200 1

Last ModeZone | 300 100

Last Object FC | 310 10

Last graph 400 1

Figure 14 - Created attributes for the Base object PLC Area

Another thing done on the Base object PLC Area is to create attributes on it, other than the default
ones already existing (attributes are described in chapter 5.2.4). The necessary attributes are
concerning the PLC code. When STEP 7 function blocks are imported to an object in the engineering
project the system needs to know which number it should assign the data blocks and the FC's. This is
remembered by the help of the attributes displayed in Figure 14. Scripts are created to set the names
for the data blocks and FC's in Automation Designer and the scripts are reading the attributes to
know which number to assign the blocks. Attributes are also created on the Conveyor because it
needs to have some specific DB names as inputs to its calling function block. The reason for this
functionality is because of the VCC library block for the Conveyor that requires this.

6.1.2 Templates

A template can be seen as a collection containing information needed to represent an object (more
information about templates in chapter 5.2.5). Working with template is a way to reuse information
which always stays the same for an object e.g. HMI icons, HMI detail screens and library FBs. In this
case study three templates have been created for every object. These are:

e Device template
e S7 Programs template

e WinCC flexible template

26

T —

T — .,
@ [EIC Electrical-, measuring and control engineering a8 l:_l 02_ Components
= 3 Volvo Volvo templates =0 00_1 Robots
= G301 Units © Q01 KUKA
= 2301 General = 302 ABB
= @hT0l HMI = ¢ TO1 ABB Robot
= G HMIOL HMI [= “¥,72-31-110 ABB Robot
B FCo1 Copying desk B ES01 Copy S7 facet
¥ ESO1 Copy S7 facet . EW01 Copy WinCC flexible facet
= GhT02 BUS El= 002 Turntables
= s BUSOL BUS = @b T0L Turntable (LMovUnit2Pos)
B cpu Assign PLC = ™1 Turntable
= @B T03 PLC ¥ ECO1 Copy Clamps
= [[8 SPS01 PLC cabinet ¥ ES01 Copy S7 facet
%1STL Symbol table ¥ Ewn1l Copy WinCC flexible facet
B cru Assign PLC = Q3003 Conveyors
B ECO1 Copying station = @4 T0L Roller 2W25-DDP
B ESo1 Copy S7 facet =31 Roller2W2s-DDP
= B QHWA Assign HW address ¥ ES01 Copy S7 facet
QDev004 Automatic address assignment § FS02 Copy Sensors
&5 T04 Safety area ¥ EWo1 Copy WinCC flexible facet
= GhT05 Terminal box = i 004 Other components
= @ KK01 Terminal box S ¢4 T01 Clamp (LMoveUnit2Pas)
B ECo1 Copy switch on mounting group = @1 Clamp
= €502 ModeZone 8 ES01 Copy S7 facet
= GhT01 ModeZone = g T02 4 Clamps (LMoveUnit2Pos)
= & 5100 ModeZone = @1 Camp
B cpu Assign PLC U ES01 Copy S7 facet
B ESOL Copy S7 facet = @2 Clamp
® (302 Components U ES01 Copy S7 facet
® 304 S7 Programs = @3 Camp
= £ 05 WinCC Flexible 8 ES01 Copy S7 facet
® 306 FElectricals = @4 Camp
@ 2307 Basic ¥ ES01 Copy S7 facet
= .ﬁ USERS User administration ® 2304 S7 Programs
——}E Units I. Lo::ations“l__.% Documents“ A Objem“g AU Tree‘ X Unilsﬂ fi Locationsn DooumentS“ & Base obJectsﬂo Automation Tree

Figure 15 - Basic templates and their contents, Units to the left and Components to the right

The reason for not creating only one template for each object is that the user may only want to work
with the PLC part and then there can be errors if the WinCC flexible part is connected to the object
and not configured. Another reason is when developing the database, with its templates and base
objects, it is much easier if there is a possibility to choose which part to test and search for errors.
With different templates for the same equipment it is possible to control the equipment in different
ways. One example of this is the Conveyor where only one device template is created but different
S7 templates. By connecting different S7 templates functionality such as different speeds and
directions can be chosen for one device template.

The device templates are represented by two groups, Units and Components. The units group has
got templates for the ModeZone and General, but not for the PLC Area and the Station (see Figure
15). The reason for this is due to the VCC Standard where no PLC code should be connected to these
levels. These levels are only represented in the hierarchy of the navigation tree in the engineering
project and therefore base objects of these two levels are created but not templates. The General
level contains the PLC cabinet, BUS, HMI hardware and Terminal box (see Figure 15). However, the
safety area should be below General as well but safety configuration is not a part of this master
thesis.

27

The reason for creating a General template containing information about PLC, HMI, BUS etc. is that
the engineer will have a much better overview of the structure in the engineering project. There is a
possibility to place these things directly below the level PLC Area, but this will result in a lot more
objects on the same level and make the engineering harder if larger projects will be created in the
future.

The components group is represented by four different folders; Robots, Turntables, Conveyors and
Other Components. The first three is containing one template each for the represented object, while
Other Components are containing two different Clamp templates, Clamp and 4 Clamps (see right
picture in Figure 15). The reason for this is that there is a possibility to choose how many clamps a
Turntable shall have in the engineering project. The Turntable can either have one clamp or four
clamps on it and therefore one template for each possibility is needed.

6.1.2.1 S7 programs templates

To be able to generate PLC code, Automation Designer needs to know what to generate and which
connections there should be between different blocks. Templates including STEP 7 software are
created for the PLC, ModeZone, ABB Robot,

Turntable, Clamp and Conveyor. A reason for = 5 Volvo Volvo templates
. . % 301 Units
creating S7 software templates is that the same 5 6302 Components
template can be used by many objects. An = 3 04 S7 Programs
L . # 01 Units
example of this is the base object templates = 502 Components

£3 01 Robots
(J 02 Turntables

S7 template Clamp. = @03 Conveyors
= % T01 Roller2W25-DDP 57 facet

= [51) S7 S/-software

Clamp and 4 Clamps where both are using the

In Figure 16 the S7 template for the conveyor is — FB1515 LRoller?W2S-0DP
displayed. As seen in the figure the template [E1 DB1515 Instance Data Block
play g P # [B) FB1100 LTrfIn
TO1 has got two subfolders, S7-software and % [E) FB1101 LTrfout
. = [£) FB1306 [Motor2W25-DDP
Networks. The S7-software folder contains s B DB1306 Tnstance Data Block
every block the conveyor type for this case # [) FB1305 [DanfossDP
. = [FB1426 L1AlarmMultiln
study needs to work properly. The template is % [B) FC1000 LBitToWord
. . . = [FC1005 LSimpleTAnim
build up in the same calling structure as the o F) FBH400 LAlarmToWord
conveyor block FB1515 in VCC’s function block FC1000 LBitToWord
. FC1001 L WordToBit
library. B FC1004 LComplexTAnim

FC1005 LSimpleIAnim
FC1011 LRollerConfig
=l (1) NT Networks

included with initial values. However the FB’s # [NT42 Machine Status - Parameters
, I NT52 Flow equations

and FC’s that is available in the VCC function EANT73 Call for FB1515

block library has got no code connected to

Inside the instance datablocks all variables are

NT80 Alarm AB condition
NT100 Symbolic names to calling DB
NT101 Symbolic names declaration to calling DB

+|
them. These blocks are instead collected from a ;
+ B NT102 Symbolic names to _INTLK
+|
+|
+|

llbrary when an STEP 7 export is performed In EE NT103 Symbolic names declaration to _INTLK

NT90SumA Summary for level A alarms
NT90SumB Summary for level B alarms
NT90SumC Summary for level C alarms
NTO0SumD Summary for level D alarms

9 CFB Assign caller FB

the engineering project. To make this work
three things are needed. At first a STEP 7
function block library with the blocks included

must be available and be connected to the # B CINTLK Assign DB20
automation tree inside the engineering project. Figure 16 - Content inside the S7-software template for the
Second the symbolic adress and symbolic name Conveyor

28

of the empty block must be set to the same name as the symbolic name of the block inside the STEP
7 library. Also the adress and data type needs to be the same as the block that should be copied from
the STEP 7 library (see Figure 17). All this information can be set in the system data tab of the block
inside Automation Designer where also the third thing can be set.

The check box “Check existence only” must be checked (see Figure 17). This tells Automation
Designer that this block data should be collected from a library and no errors will be displayed
bacause of an empty block. The reason for not getting the instance datablocks information from a
library is that these does not have the same DB number each time.

=@Template.Volvo.04.02.03.T01.57 5 FB1515 LRoller2W2S-DDP

=k JFL

Addressing Address calculation
Address FBL515 | Start |:|
Symb. address |LRoller2W25-DDP | Step]
Comment |£Raf£9r2W25—DﬂP \
Data type FBI515 |

Symb. name LRoller2W25-DDP |

Check existence only

Creation language ‘AM v

Figure 17 - System data for FB1515 (function block for Conveyor) inside Automation Designer

The networks displayed in Figure 16 are the ones creating the structure of the PLC code inside
Automation Designer. Each network has got a special purpose that is described in Table 5.

Table 5 - Description of different Networks in Automation Designer

Network Description

NT10 Code fitting into level 1 Inputs

NT21 Code fitting into level 2.1 Alarms - Enable Alarms

NT22 Code fitting into level 2.2 Alarms - Alarm generation
NT31 Code fitting into level 3.1 Communication — Other systems
NT32 Code fitting into level 3.2 Communication — Devices

NT41 Code fitting into level 4.1 Machine Status - Detected

29

NT42 Code fitting into level 4.2 Machine Status — Parameter

NT43 Code fitting into level 4.3 Machine Status — Operator selections
NT44 Code fitting into level 4.4 Machine Status — Calculated

NT45 Code fitting into level 4.5 Machine Status — Modes

NT46 Code fitting into level 4.6 Machine Status — Indications

NT51 Code fitting into level 5.1 Equations - Interlocks

NT52 Code fitting into level 5.2 Equations — Flow equations

NT60 Code fitting into level 6 Sequences

NT71 Code fitting into level 7.1 Sub modules — Non Machine

NT72 Code fitting into level 7.2 Sub modules — Command summary
NT73 Code fitting into level 7.3 Sub modules — Machine

NT80 Code fitting into level 8 Outputs

NT90SumA Code fitting into level 9 Alarm Summary (only level A alarm summary)
NT90SumB Code fitting into level 9 Alarm Summary (only level B alarm summary)
NT90SumC Code fitting into level 9 Alarm Summary (only level C alarm summary)
NT90SumD Code fitting into level 9 Alarm Summary (only level D alarm summary)

NT100 Symbolic Names with initial value that should be in the calling Data Block
NT101 Declaration of Symbolic Names that should be in the calling Data Block

NT102 Symbolic Names with initial value that should be in DB20 _INTLK

NT103 Declaration of Symbolic Names with initial value that should be in DB20 _INTLK

To get the VCC PLC structure, where the OB1 calls the ModeZone and the ModeZone calls the other
objects, these networks are used inside Automation Designer. By using networks and inline macros
(see Figure 18) it is possible to create a PLC structure where one block calls another and also to
create FCs with internal code sorted as described in the VCC standard (see chapter 4.1.2). Each S7
template has got their own networks folder where networks with the information needed to call the
blocks amongst other things are stored.

|=@Temp\ate.\lolvn.04.01.02.T01.57 FC300 MZ1 =(@Template.Volvo.04.01.02.T01.FC300 ' NT300 Call for blocks induded in ModeZone

L Fier WiIR® T H

//#Foreach(B[CF¥])

//#Include(S7T\NT\NT10)
//#Next

//#Foreach(B[CF¥])
//#Include(S7ANT\NT21)
//#Next

//#Foreach(B[CF¥])

/% Include(S7\NT\NT22)
//#Next
/[4Foreach(B[CF*])

//#Include(S7T\NT\NT31)
//#Next

Figure 18 - Inline macros to include networks

30

6.1.2.2 WinCC flexible templates

Templates for the HMI are only made for the objects that shall be represented inside the generated
HMI screens. In this master thesis templates for the Robot, Turntable and Conveyor is created. The
only thing placed inside the WinCC flexible template is a project fragment as shown in Figure 19.

= 305 WinCC Flexible
= C3 01 Facets
® CJ 01 Robot
3 02 Turntable
= CJ 03 Conveyors
= G4 T01 Roller 2W2S-DDP WinCC flexible facet
= (03 WinCC flexible
01 WinCC flexible project fragment

Figure 19 - WinCC flexible template for Conveyor

By opening this fragment it is possible to assign XML data for the different levels of the HMI (more
information about this in chapter 5.1.2). After loading of XML data to the different levels it is
possible, by choosing the assignment tab, set the tags to be exported with the HMI screens. The tags
is connected to the datablocks by inline makros.

:@Tmﬂate.anvo.(J5.[)1.03][]1.03‘ % 01 WinCC flexible project fragment
=it
- | Genera | Atibutes [XML cata

You can provide a WinCC flexible screen in a XML format for this resource for each available hierarchy level on this tab. Select the desired hierarchy level to do so:

| Hierarchy level Status

| Assign HMI Level 1 (Start Screen) XML data available
| Assign HMI Level 2 XML data available
i| Assign HMI Level 3 XML data available

Detail level No XML data available

| The XML data for the selected hierarchy levels can be managed:

Load the XML data... Save the XML data... Delete XML data

The XML data of the selected hierarchy levels contains the following image and tag structures:
= "5 HmiScreenFolder
= 5 Layers
1 Conveyor_Layer_1

The XML data of the selected hierarchy level refers to the following files which were also loaded to the WinCC flexible project fragment:

o ok 3 G O

Figure 20 - XML data for WinCC flexible template

31

6.1.2.3 eBlocks and Scripting

eBlocks are one of the core functions inside Automation Designer to make the connections between
templates as well as the S7 code. eBlocks are placed inside the templates and can then be reached
and executed inside an engineering project when the templates have been imported. The eBlocks
has got an exclamation mark as a symbol in the navigation tree as seen in Figure 21. More
information about how eBlocks work is described in Chapter 5.2.6.

= (3 002 Turntables
= 3 T01 Turntable (LMovUnit2Pos)
= 1 Turntable
Bl EC01 Copy Clamps
E-blocks Ul ES01 Copy S7 facet
Ul Ewo1 Copy WinCC flexible facet
= (3 003 Conveyors
= LQTUI Roller 2W2S-DDP
= 221 Roller2W2s-DDP
Bl ES01 Copy S7 facet
E-blocks 8| ES02 Copy Sensors
9| EW01 Copy WinCC flexible facet

Figure 21 - eBlocks inside the object templates for Turntable and Conveyor

There are some standard eBlocks such as assign CPU and hardware interface. These are found in the
database and can be put inside the templates and be used without any configuration. However for
this master thesis some special eBlocks was needed to make the connection between the templates
created (see Table 6). Most of them was found in already existed sample projects inside Automation
Designer and these could be used by configurating them to the VCC templates.

Table 6 -Description of modified and created eBlocks for this master thesis

eBlock name Functionallity
ESO01 - Copy S7 facet Imports the S7 code from the S7-software template
ES02 - Copy Sensors Imports standard sensors available in the database to the Conveyor

EW01 - Copy WinCC Imports the screen and tag information from the HMI templates
flexible facet

ECO01 - Copy Clamps Imports the Clamps from the object template to the Turntable
CFB - Assign caller FB Sets the connection which FC that calls which FB or FC
C_INTLK - Assign DB20 | Sets the connection to the DB20 from the different objects

Scripting is another important factor when working with Automation Designer. By the help of
scripting the engineer can create smart and dynamic templates which will decrease the time of work
in the engineering project. Scripting can be used in a lot of places inside the software. For this project
scripting is mainly used to set the right names and numbers on different things when importing them
to the engineering project from the database. The best example is the script for setting the DB
number of the instance datablocks. Each time the S7-software template for the Conveyor, Turntable,

32

Clamp and ABB Robot gets imported inside the the engineering project the instance DBs must get a
unique number and name according to the VCC standard (more information about the VCC standard
in chapter 4). There can not be two instance DBs with the same number or name. To solve this, a
script is placed inside the scriptdata tab of the data block as seen in Figure 22. The first part of the
script is assigning the name of the DB by looking at the name of the object it lie beneath. Then the
second part, which is assigning the DB number, looks at the attributes created on the object PLC
Area. From the attribute the script can read which numer to assign the DB.

=3835PL.5100.15-38-100-101.FC310.FB1611 B2 DB1201 _101Expert1
Call = E [E]

| General | Source | Status informations | System data | Header data | Script data
($0@ <-~- H T em

Set curCwner = Device,owner()

While Mot {curCwner. Description =)]
Set trpOwner = curCwner.owner()

Set curCwner = mpOwner

Wend

Device. Desaiption = + curCwner.Name +

Set curOwner = Device.owner()

While Not {curCwner.Description =)
Set tmpOwner = curOwner.owner()

Set curCwner = tmpOwner

Wend

x=curCwmer.spec().Get¥Value(0)
inc=curOwner.spec().GetxValue(1)
ourOwner.spec().SetiValue 0 , x+int{inc)
Device.Name = +%

Figure 22 - Script data for setting names and numbers on instance DBs

6.1.2.4 Default settings

If there is a standard of which hardware devices a component such as the PLC should have. Then
there is a possibility to set the default values in the templates and get the right hardware each time a
template is added to the engineering project. In this case study the PLC, HMI, BUS and Terminal box
is configured with default equipment found in earlier created STEP 7 and WinCC flexible projects at
VCC. In Figure 23 the default devices of the PLC cabinet is displayed. In the hardware wizard,
displayed in the figure, it is possible to choose a slot and place a device in it. When selecting one of
the slots a list of possible devices to connect to it will appear as shown in Figure 23. As Automation
Designer is a Siemens software there is only the possibility to choose Siemens hardware devices at
the moment. The same goes for the default settings of the HMI panels, which also can be set in the
templates. The HMI is set to a default panel size and resolution in this case study.

33

£ Hardware wizard

Sl DS T

AO00 Simatic S7-300
@ 0 Profile rail, 2000mm

195 Devices
Filter:

Order number:

[l 6ES73121AD100AB0 CPU 312

[l 6ES73121AE130AB0 CPU 312

[l 6ES73125AC020ABO0 CPU 312 IFM
[6ES73125AC820AB0 CPU 312 IFM
6ES73125BD0O00AB0 CPU 312C

[6ES73125BD010AB0 CPU 312C

[6ES73125BE030AB0 CPU 312C

[GES73131AD0O30ABO CPU 313

[l 6ES73135BE00DABO CPU 313C

[6ES73135BED10ABO CPU 313C

Figure 23 - Hardware wizard for PLC cabinet

6.2 Working with templates in the engineering project

When the base project is created, all the engineering will be performed in the engineering project of
Automation Designer. The first thing to do in the engineering project is to create a structure in the
navigation tree. There is two different ways to do this:

e Build up the structure with the right click of the mouse
o Build up the structure by importing an XML file from Process Simulate

Both methods is tested in this master thesis and briefly described in the following chapters.

6.2.1 Configuration of the engineering project with the right click of the mouse

In Automation Designer it is possible to choose which object to get into the navigation tree by right
clicking on the different objects in it. To build up this feature some connections is needed in the
database between the templates and base objects. Figure 24 shows how a selection of different
objects to import is available when right clicking on an object in the navigation tree. By right click on
different levels in the tree the user will get different choices. This will prevent the user from creating
an invalid structure where for example a station is below a robot.

34

[SIMATIC AUTOMATION DESIGNER

= @ HML » Volo
= [3a) 3835PL PLC Area
= B PTLOL Unit layout DIN A3 landscape
= @ SO00 General
[@ BUSOL BUS
EF HMIDL HMI
= g KK01 Terminal box
= [sps01 PLC cabinet
= % S100 ModeZone
® (3057 S7-software
= ... 15-38-100 Stgr
[351101 Roller
= @ @AT Automation Tret
= [X] Recovery
® ¥ USERS User administ

Paste

Move
Copy structure
Paste link

Mavigate

Figure 24 - Insert a new object in the navigation tree by the right click of the mouse

When the tree structure is created with the right click there are a couple of steps needed to be done
before an export to either WinCC flexible or STEP 7 is possible. These are

Configure devices inside the General folder

Configure all objects below the stations

Configure the ModeZone

Place the objects on the 2D layout

Drag polygons around the objects on the 2D layout and calculate eBlocks
Configure hardware addresses and connect the sensors to the terminal box
Generate the symbol table

No ks wnR

How to do these steps is described in Appendix A. The final structure of the three stations in this case
study with the 2D layout is displayed in Figure 25.

35

Fle Vew sdwnsor Doames Genew Bt Hagns Hep SIMATIC AUTOMATION DesicreR [l
(@9 BIHE ‘e ‘BREOCH HEuwXZ $TH g

<L (4 PTLOL Urit lyout DIN A3 bncscape
BF¥SE 0D QA Ew

=IIPLS000HMIO!

o s or Lo | T msomeo

2, 7231000 ABB Rotet
% 2, 723200 ABB Rohet
5 % 15580 Sbon
2 AW Roll WIS DOP
® @102 Tumtabs
& m 113 Tumtable
= L7300 ABB Robot
"2, 7234000 ABB Roket
% 2, 7235000 ABB Rohot
5 3, 72-36-000 ABB Robot
5 % 155800 St
= W01 RollrnzS DOP
% 2, 72:37-000 AB Rohot
3 2, 72-36-00 ABB Robot
3 "2, 7230000 ABBRobet
"2, 7240000 ABB Robet
= @ oaT Auomaton Tree
% S)PLoFinal Project
L USERS wsar adminstration

=JPLSob0sPEl |

- . - TR39000 ¢ -
7236000

72-37-000
. o,

- 7231000

72.32.000 7240008
1236000

= BAPTLON Rt yout DIN A3 lancscape
= Emcomon Header
% BASYS System daia

Taw 0. EUsTamer, -
Dz 1o enain —-

| SESSPLETLOL Unk layout DIN AS lndecape 2010-09-13 x=152y=39 rdm Save:0 Check: 0
Figure 25 - Final tree structure with 2D-layout

6.2.2 Configuration of the project by importing an XML file from Process Simulate

It is possible to import an XML file from Process Simulate and get the tree structure from the
simulation study. By importing a XML file will also give the user a 2D layout inside Automation
Designer including the right objects. Another thing the user will get in his navigation tree is a JT
drawing which can be opened inside Automation Designer. This drawing will show the 3D
environment that has been built up in Process Simulate and Process Designer (see Figure 26). As
there is a lot of different component such as fences that is needed in Process Simulate but not in
Automation Designer, there is a possibility to choose what to not import from the XML file.

The configuration needed for this case study to make it possible to import an XML file is:

1. The object names in the XML file needs to be connected to the names of the templates inside
Automation Designer.

2. A structure to the ModeZone level in the navigation tree needs to be built up with the right
mouse click. This is because the XML file at VCC only includes structure from the Station
level.

3. An XML configuration file needs to be edited. The file is available in the system root of the
software.

36

Fle View Adminsvator Douments Gemerstors Bara Plugins Help SIMATIC ATOMATION DESIGNER

09 a9 HSE ‘am- BREFH BllwxZ 4$TA

e .

= @ BMsenerimpot » Volvo
= (s PLC Area

@ Robots and toois Robots and tocks

% @ Transport foang Transport foeng
 Josti5.38.120 Staton

{9 USERS ser adminitration

8 Locabons| 3 Documents| & Base abjects|

%] units|

Total cbjects: 4240 Savez 0 Checke 0

Figure 26 - JT-drawing of station 15-38-110 inside Automation Designer

When all this is performed the XML file can be imported by right clicking on the ModeZone level and
choosing “EMserver Import”. A new window comes up and the path to the XML file needs to be
chosen as seen in Figure 27. In the window there is also a possibility to choose if Automation
Designer shall create a new working layer in the engineering project when importing the XML file or
not. This box is always checked as default. The XML import feature is not yet a standard feature
inside Automation Designer and the possibility to do this have been given to this case study
exclusively.

x
Import Settings

Xml File _|

| Create new Working-Overlay

ok | Cancel |

Figure 27 - Pop-up window where an XML file needs to be chosen when importing information from EMserver

The final step is to import the XML file and get the structure with the objects included in the
simulation study. How the structure will appear in Automation Designer is presented in chapter 7
Results.

37

6.2.3 Exporting the engineering project to STEP 7

To be able to generate PLC code to STEP 7 an engineering project must be built up and configured in
the right way. When this is completed the export of the engineering project to STEP 7 is quite easy.
Inside Automation Designer there is an export to STEP 7 icon in the tool bar of the software. This icon
will open a window where the entire project can be dragged to as seen in Figure 28. Before an export
is possible Automation Designer needs to generate the STEP 7 project. This will create the final blocks
that will be exported as well as the calling structure of the PLC project. It is also in the generation
part where the name of the STEP 7 project is set and the path where it should be stored.

[Generate | tmport | egort
Collect opbons
Root bject: (7 =3835PL - PLC Area @ - X
Filter v Hardware 7| Symbol table | Software

- Generale & &Xport | Ganerat info new working layer

object Select project Project path
5 SPSO1- PLC cabinet pLCFinal ¥ | Ci\Step7iFinal Expart\PLCFnal\PLCFinal\PLCF_Prj
= [IA000 - Simatic $7-300
= [l - Profie ral, 2000mm
= 2 - cpu i3 PR
= EProgram foider
E5T1 - Symbal table
= coBlock foider
3081 - 3835PL
£308L-_3835PL
50820 _INTLK
EIFEL400 - LAlarmToord
IFBL008 - LTimer
£HFCAL0 - Robol7239FC
SHFCL001 - LWordTobit
£I081I73 - _121TIRes
3081286 -_Robol7233R0sStd
SHRCL005 - LSimplelAnim
4371608 - LRobstd
JDBLZES - _Robol?230Timer
3081790 - Robol7240
3781400 - LAlarmToword
£308410 - _Robot7239FC
081268 - _1211AksrmMultinl
3081284 - Robol7233AlarmToWord
SHRCL000 - LBitToword
SHFCLOL3 - LMURIANT
EHFCL000 - LBitToword
SHFCL00S - LSimplelAnim
3781515 - (Roller225-D0P
$FB1003 - LTimer
£3081266 - _121TrfOuSet
E3FBLO0S - LTimer
£H0BL287 -_Robol7240Timer
S30BLI7E -_Robot7237AlarmToword
EH0BL272 - _1211AamMutin2

£HFEL400 - LAlarmTowerd
| SAFRIIN T

1@ oemors [o wamings [f@ o messages

Description: Source. Positon

Figure 28 - STEP 7 generator

The generated project will be placed in the tab automation tree inside Automation Designer. In this
tree it is possible to go into every block and see what code that has been generated. After the
generation it is also possible to connect a STEP 7 function block library from where Automation
Designer will get the library blocks needed. This is done in the properties of the generated project
inside Automation Designer. For this case study a library named Volvolib is connected to every
generated project as default. The connection to a STEP 7 library is done by pointing at a search path
from where the library is available.

The last step is to export the generated project to STEP 7. This is done by selecting the generated
project and then selecting what to export from the project (software, hardware, symbol table) as
seen in Figure 29. The final step is to click on the export button which will enable the export of the
project and give errors if something is wrong with the PLC code. If nothing is wrong it is possible to go
into SIMATIC Manager and open the project to see what is generated and continue working with the
project if needed.

Start object - @ATIPLCFinal

= @ @AT Automation Tree

¥ Symboftabelle

@ATIPLCFinal
@AT|PLCFinall
@ATIPLCFinal|
@ATIPLCFinall
QATIPLCFinal
@ATIPLCFinall
@AT|PLCFinal|Simatic S7-300/012IS7 Program|Blocks
@ATIPLCFir 2 lol2ls7

@ATIPLCFir

@ATIPLCFi

@ATIPLC
QATIPLCFi
QATIPLC
@ATIPLCFir
@ATIPLC
@ATIPLC
QATIPLC
@ATIPLC
@ATIPLCFil
@ATIPLC
@ATIPLC

 G3DB1200_101TrInSet
3081201 _1011AlrmMubiln2
¥ £3DB1202 _101Timer3

¥ £3DB1203 101

¥ 3DB1204 _101Timer2
 3DB1205 _1011AlrmMuliIn]
 {3DB1206 _101TrfOutRes

¥ G3DB1207 _101TrfOutSet

¥ 3081208 _101Mator

¥ £3DB1209 _101TrInRes
3081210 _101AlarmToword
¥ £3DB1211 _101DanfossDP

¥ 081212 _101Timerl

o 4TAD1217 DARATIIDARCH

Figure 29 - Export tab inside the STEP 7 generator

A detailed step by step description of how the STEP 7 generation and export is done for the case
study project is described in Appendix A.

39

6.2.4 Exporting the engineering project to WinCC flexible

An object in Automation Designer can be represented in the HMI screens in four different levels; HMI
level 1-3 and detail level. The HMI levels are designed to be a combination of several objects while
the detail level only represents a single object. In the VCC standard the detail level is comparable
with the library function blocks for e.g. the conveyor. For this project all levels except HMI level 3 are
used. Level 1 represents OB1, level 2 the ModeZone and the detail screens are used for the ABB
Robot, Turntable and Conveyor. To assign objects to a HMI level polygons are drawn on the 2D-
layout around the desired objects. The design of each object icon in each level is done in WinCC
flexible and screens are exported from there as XML files. One file per object and level is created and
imported into the WinCC flexible templates where the files are assigned to its appropriate level. Each
level can also contain tags that are used to connect the HMI to signals in the PLC program.

The VCC standard allows for two different types of HMI signals, H_Anim which contains the
information for the currently viewed function block diagram (FBD) in a HMI and H_IAnim which
contains information from an underlying FBD. These tags are included in the single exported XML
files from WinCC flexible and have to be assigned an address in Automation Designer. To be able to
assign addresses to these tags an object called DB variables must be added below the DB from where
the tag should be connected to. For instance DBs this has been done in the templates where the DB
variable is manually given the same address as the signal have got in the DB. Unless the library blocks
are changed these DB variables will never have to be changed or updated.

The tags used to connect signals from the global DBs (H_IAnim signals) also need to be connected to
a DB variable. However, the DB variable must be manually created inside the engineering project and
cannot be predefined in the templates. The reason for this is Automation Designer which cannot
create the address of DB variables and set the right names, depending on how many objects the user
have got in his engineering project. Therefore this has to be done manually. However, a DB variable
only needs to be created below the DB from where the WinCC flexible tag needs to be connected
and be assigned a label which is the same as the signal it shall represent from the DB. After this is
done the DB variable automatically calculates the signals address within the DB.

When the DB variables have been set and the HMI levels have been assigned, an export is possible. In
the Automation Designer WinCC flexible generator there is the possibility to choose which screens to
export, how far from the edges of the screen icons should be placed and the distances between each
object (see Figure 30). The screens are exported as one single XML file which can be imported into a
new WinCC flexible project and be applied with the final configurations.

40

! WinGC flexble generator

Har & =3835PLSODOHMIDL HMI

® Include all elevant unit layouts for the selected HME
Select unit layout

== Not sat F X

® Generate all

Generate selectively
Please selext the resources that are to be part of the WinCC flexible project data

Overview screens for unit parts Detail screens
Do ot generate Generate Do not generate Generate
>» []=3835PLPTLOL-05 Assign HMI Level 1 (Start Screen) %, =3835PLS100 ModeZone
> []=3835PLPTLO1-06 Assign HMI Level 2 =3835PL-5100=15-38-100-101 Roller2W2S-DDP
“£,73835PL-§100=15-38-100-72-31-000 ABB Robot
*#,=3835PL-5100=15-38-100-72-32-000 ABB Robot
Z=3835PL-S100=15-33-110-111 Roller2W2S-DDP
{7)=3835PL-6100=15-38-110-112 Turntzble
{71=3835PL-5100=15-38-110-113 Turntable
~%,73835PL-5100=15-38-110-72-33-000 ABB Robot
*%,=3835PL-5100=15-38-110-72-34-000 ABB Robot
*%,=3835PL-5100=15-38-110-72-35-000 ABB Robot
*%,73835PL-§100=15-38-110-72-36-000 ABB Robot
5=3835PL-5100=15-38-120-121 Roller2W2S-DDP
~%,=3835PL-5100=15-38-120-72-37-000 ABB Robot
*%,=3835PL-5100=15-38-120-72-38-000 ABB Robot
*#,=3835PL-5100=15-38-120-72-39-000 ABB Robot
“#,73835PL-5100=15-38-120-72-40-000 ABB Robot

Properties of the overview screenss
Screen padding (pixel) Distance between screen alaments (pixe)
Tpleo Hozontal [20
eft[so | Rght[o | vetial [
Batom [50
Saeas

Please enter the path and file name in which the generated WinCC flexble project data is to be stored.
Z\C\Documents and Settings\ChalmersiMy Documenis\Mikael & EriKWin

Automatic impart {requires a WinCC flexble installation)

Select a WinCC flexible project which is to be the target of the import.

Perform automatic import

Figure 30 - WinCC flexible generator inside Automation Designer

41

7 Results

This chapter displays the results of the generated STEP 7 project and the generated WinCC flexible
screens within this case study. The result also includes which information that has been transferred
from Process Simulate into this project.

7.1 STEP 7 code generation

Automation Designer is able to generate and export the STEP 7 project according to the VCC
standard. All the library FBs and FCs which were needed to be copied from the VCC function block
library was successfully transferred by Automation Designer into the generated STEP 7 project. The
generated STEP 7 project does not contain any function blocks or DBs other than the ones needed
and used for the case study project. OB1 was also successfully generated and a modular program
structure was achieved.

7.1.1 Generated FCs
In this master thesis there are FCs generated for

LAD/STL/FBD - [FCIO0 - “5100" — PLCFinal_Pej\Simatic 57- 300500057501 -A0DD-0
O Fe KR [uet PIC Debug fiew Opicos Wedow telp

three different objects; ModeZone, ABB Robot DE*@@ b8 - - clohe OEEIEIGIIicaN

= Contents Of: 'Enviromwent)Interface’

= & Interface Hame

and Turntable. The generation of these FCs

@ ™ o [

#-G OUT 2 OUT
@ m_ouT o m_our
@ Tenp L TERP

T RETURN & reTURN

works all in the same way. All code is generated

by the network structure described in the VCC
standard (chapter 4.1). The generated FCs
includes the calls for the underlying library FBs

Hetwork 4: +%++ 5.7 - Equations - Flow Equationz *+%%

Interlock transfer in

DE2D. DEED
3 [

M10101.4 " INTLE"
A 101TcfIn

and FCs and variables or static values are

“TRUE" —|

M Mike st
Libraries

connected to the inputs and outputs on the ek 52 3 s e s
calling functions. In the FCs there are also
summations of the existing alarms which will be moma |5 | e

sent up through the hierarchy according to the e -

VCC standard in chapter 4.1.1. Placeholders have R
also been created with standard interlocks ——

M10101.4 "_INTLE"
Alumy: 111Trfin

signals set to a default value. This is done to

“TRUE® —|

show the engineer which signals that requires

Fetwork 7: ++++ 5.2 = Equations = Flow Equations

Interlock transfer out

interlock calculations (see Figure 31).

0. pExD

o83
& 3
ol | »f MLO101.4 "_INTLE"
= Alvmys 111Trfour
S pr—
. [Eee

| [AEGER 76w 2ma £ 3 Cowmecss J 4 Addeswia J_ EWedlhy J, & Dageie

Press F1 to get Hep,

Figure 31 - Placeholders for the interlock calculations

42

Tl

7.1.2 Generated DBs

The generated global DBs contain variables needed for the FCs used in this case study project. All
variables in the DBs have automatically been given a name that follows the VCC standard. The signals
have also been given an initial value according to its data type (see Figure 32).

{3 File Edt Insert PLC Debug ¥ew Options ‘Window Help

D@ (&[4 B@lo e b= < [OE|

=l Address (Hame Type Initial value [«
0.0 STRUCT
+0.0(|AlarmaBCondition BOOL FALSE
+0.1(|Alarmd BOCL FALIE
+0.2| |Alarmb EOCL FALSE
+0. 3| [AlarmC BOCL FALSE
+0.4(|AlarmD BOCL FALSE
+2.0| |H_IAnim TIORD WH#leg0
+4.0(|HomePosition BOCL FALSE
+4.1| |_101TrfIn3etBegin BOOL FALSE
+4.2 _lDlTrfInSEtOutRESIlkOk BOOL FALSE
+4.3 _lDlTrfInSEthYDlv BOCL FALSE
+4.4] | 101TrfIn3etTM BOCL FALSE
+4.5| |_101TrfoutSetBegin BOOL FALSE
+4.6| |_101TrfoutSetInkesIlkok EOCL FALSE
+4.7 _lDlTrfOutSEthyRcv BOOL FALSE
+3.0{ |_101TrfoutSetirrived BOOL FALZE
+5.1| | 101TrfInResBegin BOCL FALSE
+5.2| |_101TrfInResRdyDlv BOOL FALSE
+3.3| |_101TrfInResTM BOCL FALIE
+5.4| |_101TrfoutResBegin BOOL FALSE
+5.5| |_101TrflutResRdyRev EBOOL FALSE
+5.6| |_101TrfoutResArrived EOOL FALSE
+5.7| |_101ManInfeeddllowed BOOL FALSE
+6.0| |_101ReleaseBrake BOOL FALSE
+6.1 _lﬂlFBFCCDntSCtDr BOOL FALSE
+6.2| | _101EnshleFCReset BOCL FALSE
+6.3| | _101EnsbleCheckspeedok BOCL FALSE
+6.4| |_101FCAlarm BOCL FALIE
+6.5| |_101LocalFPBE3et BOCL FALIE
+6.6| |_101LocalFERes BOOL FALSE
+6.7| |_101EndlmiW BOCL FALSE
+7.0| |_101lEnAlwTransfer EOCL FALSE
+8.0| |_101lActiveMode TIORD WHle#0
+10.0([_101GeneralFunc TORD WH 1640
+12.0([_101FProductionMode WORD Wi le%0
+14.0(|_101confighWord DIORD Dlag 16H0
+18.0(|_101lActive EOCL FALSE
+18.1([101RelayReleaseErake BOCL FALSE
+18.2([_101FCContactor BOOL FALSE
+18.3([_101TrfInSetRdyRev BOOL FALSE
+18.4([101TrfInSetArrived BOOL FALSE
BI +18.5([_101TrfInSetictive EBOOL FALSE
+18.6([101TrfInSetFinished EOOL FALSE
" @iProga.. IE_E C= +18.7| |_101Trfoutsetrdybly BOOL FALSE
x|
e

H |4-§ T Ever A Zlnfa A 2 Cross-ieferences A 4 Address info. A B Modiy A 5

Press F1 to get Help.

Figure 32 - The DB for the ModeZone

DB20 (Figure 33) which contains the variables used for interlock calculations is also generated and
contain variables for all the added devices that might need it. The Conveyor and ModeZone are the
only objects where default interlocks have been tested in this case study.

43

¥ALAD/STL/FED - [DB20 - |
{} File Edit Insert PLC Debug Yew Options Window Help
DSEES s e o - cdo|2e < ! |OE
-l BAddress |Hame Type Initial value |Comment
Libr aries = STROET
+0.0(|_101TcfIn BOCL FATLSE
+0.1| |_101Trfout BOCL FALSE
+0.2 _111TrfIn EOCL FALSE
+0.3(| _111Trfout BEOCL FATSE
+0.4 _12 1TrfIn BOCL FALSE
+0.5 _12 1Trfout BOCL FALSE
+0.6| |_3100Homerun3c EOCL FALZE
+0.7| |_S100Bypass3C BOCL FATLSE
+1.0(|_S1005imPartsc BOCL FALSE
Al o 1L] 1008 imNoPartsc EOCL FALSE
+1.2(|_3100Maintsc BEOCL FATSE
=2.0 END_3TRUCT
=

Figure 33 - Variables in DB20

7.1.3 Generated symbol table

The generated symbol table contains the addresses for all FCs, FBs and DBs (see Figure 34). Sensors
connected to the conveyor are also generated with the right names and addresses. In the symbol
table some static values such as TRUE and FALSE are declared. These values are commonly used by
VCC in their function blocks to send in a true or false value to their calculations inside the networks.
The reason for having TRUE and FALSE symbols for this is because of STEP 7 which does not allow the
user to send in values directly into a network calculation.

B syl e - (57 Progrem(s) Symbets) =P ol 57500\ S000.7S0L-AONS] L8l
D) gl e B st Yo Qptivs i iaixl

B &L BE| o o | [asma =% | W2
Status] Symbal © [ciress [Data type [Comment

1 08 1203 ER B
2 0L 1Akttt |08 1205 142 _1011AlarmMuRing
El oLl 81201 P 12 _i0118lar RN
0 101 brmTovord 081210 P 1900 _i01alarmToword

_101Danfoss08 08 1211 P 1305 _10IDanfosstR

_101Motor |0 1208 P 136 101t

_IoiTimert 08 1212 P 1009 _i01Timer1

_ID1Timer2 0B 1204 Fa 1009 _I01Timer2

_101Timer3 | P00 101Timer3

_I01Tr R [o8_1209 Fa_um _i01TrfrRes

_niTringet 081200 T/ 00 _io1Tringet

I0iTrfouRes 0B 1206 Fa 1101 JI01TrfouRes

CIo1Truset 81207 o CI01TefouSset

i [os 1223 T 1515)

_1LLAGrmiuiing |08 1228 e 1426 _1111AlarmMuRand

1L ABrmhlting 0B 1224 Fa 1425 _1LiArmMuRInz

iliaBrmToneed 8 1231 /1900 Cai1rmTaword

_1110anfoss0P [oe 1228 e 1305 _111DanfosscP

o 0B 1232 Fa 1308 BT

H1Tierl 8 1221 T/ 1009 Ti11Timerl

TiiTmerz 81233 T/ 1009 TiniTimerz

Ty o6 125 o w0 Tt

_LiiTrirRes 08 1229 Fa 100 CiiTeinkes

iiiTenGet e 1222 /e um TinTeArGet

iiiTroutes 61230 /e 101 CiiTrouses

_LLiTrioutet |08 1227 | 101 _1ITrfousat

12 06 33 e 30 BT

izt 61302 T/ 1611 _11ZClamphe

lioCampteastpios [os 1305 T/ 1310 I I2ClamphzstopPes

_1L2ChmpizalrmToward |08 1304 JFa 1900 _112ClampeAlrmTavord

1L2CameheMovFrezPos 0B 1301 Fa o _1EClamphEMovFIczPos

112 e eTimer] 61306 /1009 12 ClamphET el

ioCampheTimerz o6 1303 T/ 1009 i12ClampheT imer2

_1L2Ckmhs |o& 1308 /e 1811 _112Ckamphia

1l ESpRas 06 1312 Fa_1310 _1EClamphStopPos

1o EmpalarmT oo 81311 Fa 1400 i 1aClamphza armTaiicrd

Lo rePas |08 1307 Fa 12 Ti2ClamphevFrezros

LLZCamphaTimerl e 1308 Fa 1000 _ii2ClamphiET mer 1

12T imer2 61310 Fa 1009 12 ClamphaT mer2
0 B 8 1314 Fa 111 _i1zClampii
1 L2 amptM2SpPos |08 1317 Fa 13m0 _ii2ClamphHEStopPes
2 L2 mghMAlrmToMord 08 1316 Fa 1400 _112ClamphMAlrmTaWerd
£ _I2CarphMbovFrezPas 8 1313 Fa 10 12ClamphMovFrePas
& _LL2CarpM TimerL 08 1318 Fa 1009 _i12ClamphMT imer L
5 LA g Timer2 o8 1315 1009 12ClamplvHTimer2
46 113CkehS 08 1322 Fa 1611 112Campl
7 1120 g E2StopPas D8 1324 F 1310 115ClampivS2StopPos
] 112G lampl Al mToord Joe 1321 Fa 1900 A12ClampEA rmTaird
£ AL amphEMovFrzPas |oe 1310 F 12 _12ClamphEMavFIczFos
50 _LL2CampMETimer 1 |oe 1323 Fa 100 _112ChamphST imer
51 MM Timer2 |oe 1320 109 _A12CiamphST mer2
52 _tizEsperty |08 1230 111 _i12Eperty |
53 etz opFos |oa 1237 Fa 1310 _112ExpertizSiopPos |
54 _1LZEpert Lkl mTaerd |oe 1239 190 _11ZEpertialer mTgwerd |
55 _LLzExpart IMvFrezPos |oe 1234 F 102 2BtV |
56 _11ZExpertiTimer] |08 1238 1009 _i12ExpertiTimer 1 |
57 _LLZEpertiTimer2 |oa 1235 B 1000 | i12EmpertiTimer2 |
E3 i Joe 240 e 30 E |
59 1L |oe 1330 111 =t
PressF1 ko get e, [T

Figure 34 - Generated symbol table

44

7.1.4 Generated Hardware

The exported S7 project contains the right hardware configuration of the PLC and one terminal box.
The names for hardware are based on the objects search path in Automation Designer and therefore
not correctly assigned according to VCCs standards (see Figure 35). However the sensors on the
conveyor are connected to the terminal box and are assigned a valid address. The BUS type and its

addresses are also set to the right values in the exported project.

[Hw Config - [Simatic 57-300 (Configuration) - PLCFinal_Prj] =10l x|
E“] Station Edit Insert PLC Miew Options ‘Window Help ;Iilil
0228 88| ee da {22
=3535PL.5000.BLUS0: DF master system (1] | =——=—=gd
Bt | ot i
o E T 3 (10] 3836 Profile: ISlandard 'I
X2 oP Y PROFIBLS DF
X3 A0 388 PROFIBUS-PA,
x3e1 || Port B2 PROFINET 10
3 SIMATIC 300
4 SO00.5PS 01-A000-0-4 SIMATIC 400
5 S000.5P501-A000-05 : SIMATIC PC Bas
3 -8 SIMATIC PC Stat
7
]
]
10
11

4]

4m|= | (o) S000SPSDT-AD00
Slat Muadule

Order number

Firmuware

MP| addiess

| address

0 address

Comment

V2.5 2

MEAE

T]E S000.5P501-AD00-0-26E57 318-3FL00-0AB0

Pl

x| o &
A G SRR
el £rE
3
4 S000.5PS01-A000-0-4_ |BES7 321-1BHOZ-04A0 6 7 5M 321, 16D, DC 24v
5 S000.5PS01-A000-05 |BES7 322-1BHON-04A0 8.9 5M 322, 1600, DC 24v, 0.54
5
7 [&
B FROFIEUS-DF 3
9 o slaves for SIMATIC -
10 | |[gz:M7.andCr
T [distributed rack)
Press F1 to get Help, [[2

Figure 35 - Hardware configuration for the generated project.

7.2 WinCC flexible screen generation

The export from Automation Designer includes screens for the highest level (OB1), the mode zone
and detail screens for each included object such as robots, conveyors and turntables. A tag list
containing all tags used in the screens is also included in the export. The screen names (see Figure
36) are generated by Automation Designer and are based on the search paths in Automation

Designer for each object. The screen names do not correspond to the VCC standard.

45

fg‘h WinCC flexible Advanced - Import XML from AD. hmi
Project Edit “iew Insert Format Faceplates Options

New - b XXhi. & pgan

English (United St. +

-

@ x

L Project

s Device_1(MF 377 12" Touch)

=45 Screens
A Add Screen
1 Template
Y 3535FPLIPTL.O1|O5
[3835PLPTL.OT|O6
[3835FL|S100)15-38-100101_FB1515_LRoller2\Wes-D0DF
[3835FL|S100[15-38-100|72-31-000_FB1600_LRobABES4
[3835FL|2100[15-38-100]72-32-000_FB1600_LRobABBS4
[3835FLS100[15-38-110[111_FB1515_LRoller2W25-D0F
[3836FLS10015-38-110112_FB1611_LkowveUnit2Pos
[3835FLS100[15-38-1101113_FB1611_LkoweUnit2Pos
[3835PLS100[15-38-110]72-33-000_FB1600_LRobABBS4
[3835RL|S10015-38-110|72-34-000_FBE1E00_LRohABBES
[3835PLS100[15-38-110]72-35-000_FB1600_LRobABBS4
[3835RL|S10015-38-110|72-36-000_FBE1E00_LRohABBES
[3835FPLS100[15-38-12001 21 _FB1516_LRollerwW2S-D0F
[3835FL2100[15-38-120]72-37-000_FB1600_LRobABBS4
[3835FL|S100[15-38-120|72-38-000_FB1600_LRobABBS4
[3835FLS100[15-38-120]72-39-000_FB1600_LRobABBS4
[3835FL|5100[15-38-120|72-40-000_FB1600_LRobABES4
1 Screen_1
=g Cammunication

== Tags
S Connections

Figure 36 - List of screens in WinCC flexible generated from Automation Designer

The screens for OB1 and the mode zone are based on the 2D layout defined in Automation Designer
(see Figure 25). The OB1 screen (Figure 37) includes graphical representations of all objects and an
icon for the mode zone. The mode zone screen contains icons for all objects (Figure 38). All icons
have H_IAnim tags connected to them pointing to correct addresses in the DBs. All icons are created
according to the VCC standard in chapter 4.1.3.

46

[3835PL| PTLO1| 05

SIEMENS

Figure 37 - Generated screen forOB1

O Sereen 1§ [3835PLIPTL.O1| 06

SIEMENS

:22/2010:9:05:AM

Figure 38 - Generated screen for mode zone

47

The detail screens (Figure 39) has got H_Anim tags connected to them as specified in the VCC
standard. Detail screens are generated in the same way as they were imported to Automation
Designer from WinCC flexible, as described in chapter 6.1.2.2. The information generated by
Automation Designer concerning the detail screens is the tags connected to the screens.

SIEMENS

Transport In
Transport In Interlock OK

Transport Memory In

Transport Dut Begin .
Transport Dut Interock 0K :

Transport In Begin
Transport In Interlock OK
Transport Memory In
Transport Dut Begin
Transport Out Interlock DK

Figure 39 - Detail screen for conveyer FB1515

The generated tag list (Figure 40) contains tags with correct addresses to the already generated PLC
project. The names for these tags are generated by Automation Designer and do not follow the VCC

standard. It is not possible to change the names in Automation Designer before the export to WinCC
flexible is done.

48

EEDME—

3835PL|5100_FCModeZone _HLAnim CPU - |\idard j DB 1 DBWY 2 =
3835PL|S5100]15-38-100] 101_FB1515_Hanim CPU Wdard DB 1208 DB 52 B
3835FL|5100| 15-38-100(101_FB1S1S_Hanimz CPU Word DB 1208 DBW 54
3835FL|5100(15-38-100(101_FB1515_Hanim3 CPU Word DB 1208 DBW 56
3835PL|S100]15-38-100] 101_FB1515_HIAnim CPU Ward DB 300 DR 26
3835PL|S5100] 15-38-100| 72-31-000_FB 1600_Hanim CPU Wdard DB 1215 DB 28
3835FL|5100(15-38-100| 72-31-000_FB1600_HAnim2 CPU Word DB 1215 DBW 40
3835FL|5100(15-38-100| 72-31-000_FB1600_HAnim3 CPU Word DB 1215 DEW 42
3835PL|5100] 15-38-100] 72-31-000_FB 1600_HIAnim CPU Ward DB 300 DEMwW 42
3835PL|S5100] 15-38-100| 72-32-000_FB 1600_Hanim CPU Wdard DB 1218 DBW 28
3835FL|5100(15-38-100| 72-32-000_FB1600_HAnim2 CPU Word DB 1218 DBW 40
3835FL|5100(15-38-100| 72-32-000_FB1600_Hanim3 CPU Word DB 1218 DBW 42
3835PL|5100] 15-38-100| 72-32-000_FB 1600_HIAnim CPU Ward DB 300 DEMwW 52
3835PL|S100]15-38-110] 111_FB1515_Hanim CPU Wdard DB 1231 DB 52
3835FL|S100]15-38-110| 111_FB1S1S_Hanimz CPU Word DB 1231 DBW 54
3835FL|5100]15-38-110| 111_FB1515_Hanim3 CPU Word DB 1231 DBW 56
3835PL|S100]15-38-110] 111_FB1515_HIAnim CPU Ward DB 300 DB\ 76
3835PL|S100]15-38-110] 112_FB1511_Hanim CPU Wdard DB 1239 DB 46
3835FLIS100|15-38-110| 112_FB1511_HIANim CPU Word DB 300 DB 98
3835FL|5100]15-38-110| 113_FB1611_HAnim CPU Word DB 1244 DBW 46
3835PL|S100]15-38-110] 113_FB1511_HIAnim CPU Ward DB 300 Dew 102
3835PL|S5100] 15-38-110| 72-33-000_FB 1600_Hanim CPU Wdard DB 1247 DB 28
3835FL|5100(15-38-110| 72-33-000_FB1600_HAnim2 CPU Word DB 1247 DBW 40
3835FL|5100(15-38-110(72-33-000_FB1600_HAnim3 CPU Word DB 1247 DBW 42
3835PL|S100] 15-38-110| 72-33-000_FB 1600_HIAnim CPU Ward DB 300 DEMY 106
3835PL|S5100] 15-38-110| 72-34-000_FB 1600_Hanim CPU Wdard DB 1251 DB 28
3835FL|5100(15-38-110| 72-34-000_FB1600_HAnim2 CPU Word DB 1251 DB 40

Figure 40 - Tags with addresses generated from Automation Designer

7.3 EMserver import

Figure 41 shows the imported structure from Process Simulate. The highest levels of the structure
are the stations; therefore the importation is done from the ModeZone object. The imported
structure contains many objects that are not defined in Automation Designer. These objects are set
as a default object and have got blue dots as icons (see Figure 41). The robots and conveyors are set
as their respective template. The naming scripts associated with the templates are not executed
instead the robots and conveyors keeps their names from Process Simulate. The structure from
Process Simulate provided for this case study includes several extra layers and several instances of
the same conveyors. This makes it incompatible with the structure defined in the base project of
Automation Designer.

49

= @ EMserver import = Volvo
= [Fal 3835PL PLC Area
=

= o8 st15_38_100 Station
B IT Viewer Drawing
4 PFE.O0L
& Layout Layout
= & Robots and tools Robots and tools
= @ m72_31_110 m72_31_110
€© m72_31_001 Robot_Controler_Cabinet
& m72_31_009 Mediapanel
& m72_31_000_90 Mediapanel
© m72_31_110_002 Application_Cabinet
& m72_31_190 Robot_Base
& m72_31_210 Manual_Tool_Changer
@ m72_31_ 311 Gun
& m72_31_311_90_pd™ Tool_Stand
& m72_31_910_pd* Tip_Dresser
“¥,m72_31_110 ABB Robot
@ m72_32_110 m72_32_110
@ m72_33_110 m72_33_110
@ m72_34_110 m72_34_110
@ m72_35_110 m72_35_110
@ m72_36_110 m72_36_110
= € Transport fiing Transport fixing
@ Fixtures Fixtures
000 431119535 _001_01 Roller2W25-DDP
000 d31119536_001_ 01 Roller2W25-DDP
000 431110530 001_ 01 Roller2W25-DDP
= o st15_38_110 Station
(B 1T Viewsr Drawing
[E4 PFB.00L
@ Layout Layout
& Robots and tools Robots and tools
& Transport fang Transport fixing
= oa st15_38_120 Station
(B 1T Viewsr Drawing
4 PFB.00L
@ Layout Layout
& Robots and tools Robots and tools
& Transport fdng Transport fixing
@ S000 General
o7 USERS User administration

B Locations | (= Documents|[57] Lnits|| = Base objects

Figure 41 - Tree structure from XML file imported from Process Simulate

50

8 Discussion

The main goal with this master thesis was to test how Automation Designer can be used to generate
PLC code according to the VCC standard. The three stations 15-38-100, 110, 120 at VCC in Torslanda
were chosen to be used as a case study. The three stations are controlled by the same PLC and
contained a variety of different equipment which made them suitable for the study. The first task
was to build base objects and templates for every object in the stations that is controlled by the PLC;
however the time limit did not make this possible. Only the main equipment such as the robots,
conveyors and turntables was created. The reason for this was that Automation Designer has been in
the development phase during the entire time of this case study and a lot of work has been to deal
with bugs and other problems in the software. Nevertheless the created objects were enough to test
the possibility in Automation Designer to create STEP 7 code in accordance with the VCC standard.

The results of the generated PLC code show that the VCC PLC structure is possible to generate by the
help of Automation Designer, but the code still have to be complemented with logical calculations
such as interlocks afterwards in Simatic Manager. It is hard to validate and verify the generated PLC
code because the stations are using Mitsubishi PLCs instead of Siemens today. These are
programmed in a different way which makes it hard to compare the results. The standards for
programming the different types of PLCs are also different within VCC.

The generated PLC project can work as a better base project than the one used by VCC today.
Advantages with the generated PLC project in comparison with the start PLC project VCC uses today
is that the generated program only includes the function and data blocks used in the project. No
unnecessary information is stored in the project. Another advantage is that the majority of the
needed variables in the global DBs are defined and every DB and FC has been set with the right name
and number. The most important advantage is that the VCC PLC structure is set in the generated PLC
project which decreases the risk of getting an inaccurate structure in the finished PLC program.

The VCC function block library was successfully integrated into Automation Designer. The library
function blocks used in the generated PLC project is collected from the library during the export of
the PLC code to STEP 7. This makes is possible to have only one function block library on one place
from where Automation Designer can collect the required blocks each time it generates a PLC
project.

A secondary goal after generating the PLC code was to generate HMI screens for the stations. The
feature to do this inside Automation Designer was not fully functional until late in the case study.
Therefore only some of the H_Anim and H_IAnim variables from the data blocks are connected in the
used screens. The assignment for the HMI generation was the same as for the PLC code; to test if the
result concedes with the VCC standard. Screens generated for OB1 and the mode zone shows that it
is possible to get the layout desired by VCC; however the names on the tags connected to the
screens are not named according to the Standard. The same goes for the names on the screens
which have a search path from Automation Designer as a name. It is possible to change the names
manually in WinCC flexible and still maintain the address to the data blocks. This problem is known
by Siemens and they are going to take a look at it and hopefully change it in a future service pack.

As this master thesis is about how to reuse information one of the tasks was to have a look upon how
information from earlier simulation studies, in this case from Process Simulate, could be reused. As
seen in the results it is possible to import an XML file from Process Simulate into Automation

51

Designer and get the tree structure with the same names on the objects as they had in Process
Simulate. To make this possible a connection between the objects in Process Simulate and the
templates in Automation Designer must be set up. The result in this case study was a tree structure
which did not fit very well with the way of working in Automation Designer. One of the reasons for
the bad structure was because the simulation study was old and performed in the software Robcad.
Another reason for this was that the XML import feature was presented late in the project and the
focus was to build up a structure with the VCC PLC standards as reference.

Working with Automation Designer has been tricky sometimes because, as written earlier, the
software was under development during this case study. A lot of time when a problem have occurred
the reason has been software related instead of errors from the user. This has taken much time that
could have been spent on developing and optimizing templates and base objects. The final version of
Automation Designer 9.1 is due for release at the same time as this report is published. Now there
are a lot of smart functions included in the software which we would have had use for when creating
the base project inside the software. An example of a new feature is the possibility to quickly import
source code from function blocks by the push of a button. In our case we have had to do a couple of
steps inside SIMATIC Manager and then copy and paste the information needed. Nevertheless the
software is easier to work with since the last service pack (service pack 100) where a lot of the bugs
are solved.

52

9 Conclusion

This master thesis has shown that it is possible to use Automation Designer for generating PLC code
according to the VCC standards. The generated PLC program will not be completely functional and
has to be completed before it can be used in a real production line. However, the workload that has
to be performed on the generated STEP 7 project from Automation Designer in comparison to the
standard VCC start project is decreased significantly. Generating PLC projects with Automation
Designer will also ensure they follow the VCC PLC structure. A function block library can also be
integrated with Automation Designer from which the software can collect the necessary library
blocks and no unnecessary blocks will be included in the generated PLC project.

HMI screens for WinCC flexible are possible to create with the help of Automation Designer and tags
can be connected to a PLC project and get the right address. However, the names of the generated
tags and screens cannot be generated according to the VCC standard.

It is possible to transfer information from Process Simulate into Automation Designer by the help of
an XML file. To have any advantage of importing a XML file into the software the naming standard of
objects must be the same in both software’s. Otherwise it is hard to reuse the information in a useful
way and the benefits of earning working hours will be lost on changing names inside Automation
Designer.

Our conclusion about Automation Designer is that it is developed to decrease the commissioning
hours when creating new lines. For updating lines already implemented in the factory and where
only smaller changes has to be made, there is no benefits to use Automation Designer. The largest
earnings of using the software would be in the long run when creating completely new lines.

53

10 Future recommendations

The first recommendation is that VCC needs to come up with a common naming standard of objects
between the simulation and PLC department. This would be a first step to solve the issue of reusing
information within the company.

The second recommendation is that VCC should initiate a new master thesis which could continue
the work on Automation Designer and investigate the possibility of generating electrical drawings.

54

11 References

Ashton, A. (2007, July 1). PLC programming standards. Retrieved Mars 3, 2010, from SA
instrumentation & Control:
http://instrumentation.co.za/article.aspx?pklArticleld=4564&pklCategoryld=67

Frey, G., & Litz, L. (2000). Formal methods in PLC programming. IEEE Conference on System Man and
Cybernetics, (pp. 2431-2436). Nashville.

Guttel, K., Weber, P., & Fay, A. (2008). Automatic generation of PLC code beyond the nominal
sequence. Emerging Technologies and Factory Automation, (pp. 1277 - 1284). Hamburg.

PLCopen. (2008, December 4). PlLCopen. Retrieved March 3, 2010, from plcopen.org:
http://www.plcopen.org/pages/tcl_standards/

Selander, J. (2010). Control System Expert VCC. (M. Andersson, & E. Helander, Interviewers)
Goteborg.

Siemens AG Automation and Drives. (2006, May 2). Operating Manual for Programming with STEP 7
V5.4. Retrieved March 5, 2010, from Siemens.com:
http://support.automation.siemens.com/WW/llisapi.dlI?func=cslib.csinfo&lang=en&objlD=1
0805383&subtype=133300

Siemens AG Industry Sector. (2008, October 20). Operating Manual for WinCC flexible 2008 Compact/
Standard/ Advanced. Retrieved March 2, 2010, from Siemens.com:
http://support.automation.siemens.com/WW/llisapi.dlI?func=cslib.csinfo&lang=en&objlD=1
6502685&subtype=133300

Siemens AG Industry Sector. (2010, 06 29). Manual SIMATIC Automation Designer based on Comos.
Niirnberg, Germany.

Siemens AG Industry Sector. (2010, February 18). SIMATIC WinCC flexible Brochure March 2010.
Retrieved March 2, 2010, from Siemens:
http://www.automation.siemens.com/salesmaterial-as/brochure_simatic-wincc-
flexible_en.pdf

Siemens PLM Software. (2008, January 25). Process Designer fact sheet. Retrieved March 4, 2010,
from Siemens.com:
http://www.plm.automation.siemens.com/en_us/Images/tx%20process%20designer%20fs%
20W%205_tcm1023-4941.pdf

Siemens PLM Software. (2008, January 22). Process Simulate fact sheet. Retrieved March 3, 2010,
from Siemens.com:
http://www.plm.automation.siemens.com/en_us/Images/7457_tcm1023-80351.pdf

Smith, F. O. (2009, October). When eBOMs and mBOMs converge. Control Engineering, pp. 41-44.

Sundback, M. (2010). Simulation Expert VCC. (M. Andersson, & E. Helander, Interviewers) Géteborg.

55

Torsten Heverhagen, R. H. (n.d.). Function Blocks. Retrieved Mars 4, 2010, from Function Blocks:
http//www.functionblocks.org/Introduction.html

Vinnova. (2010, January 25). FFI - Strategic Vehicle Research and Innivation. Retrieved February 11,
2010, from Vinnova.se: http://www.vinnova.se/en/Activities/Transportation/FFI-English/

Volvo Car Corporation. (2008, November). Programming instructions PLC equipment Simatic S7.

Volvo Car Corporation. (2008, November). Programming instructions PLC systems.

56

Appendix A

This appendix will describe how to create and configure an engineering project from the database
created in this master thesis.

A1 Adding objects in the navigation tree
1. Right click on the project object, the topmost item in the units tab of the navigation tree, and
select New -> PLC Area. All objects controlled by a single PLC will be added under the PLC
area later on.

SIMA

= @ Ny general _» Volvo

New b|

® ER@C{WL* B New unit
® 4 USER 5] Delere ¥ General
w9 Cut | 01 PLC Area
(LN Copy [@ProjectManagement Project manage
@Y Paste @) @Template Project template folder
Move ¢ FieldConnect FieldConnect-navigator

Copy structure

Paste link

Navigate 4
Print

Working layers/History »
Search

Rights

@ & @ (1% [

Properties »
Refresh

&

X Unitsl[= Base objects|| @ Locations| [Documents|
2. Now right click on the PLC Area object and select New-> ModeZone. The mode zone is a
crucial part of the VCC PLC structure and it is within the FC for the mode zone most of the

A-1

interlock calculations for the equipment will occur. A PLC can control several mode zones.

= @ Ny general » Volvo
[Recovery
® ¥ USERS User administration
= (Fa) 825D DLC Aroa

@ |é‘- New ’|.§€ General 4
XK Delete & 01 ModeZone
% Cut B4 PTL.O1 Unit layout DIN A3 landscape
[— [———— e

3. Rightclickon the ModeZone object and select New -> Statlon The statlons do not have any
impact on the PLC code but the name of some of the objects that will be created below the
Station depends on the name of it.

= @ Ny general » Volvo

[Recovery
& % USERS User administration
=l (J93835PL PLC Area
= @ S000 General
- —
@ |é‘- New 4 | ¥ General C
X Delete 2 04 Station
o Cut

4. The last step is to add the objects that build up the stations. This database contains three
different objects that can be added:

l. First there is an ABB robot. There is a folder for KUKA robots also though it is empty
and just there for exemplifying how the structure in a complete database could look
like.

= &% 5100 ModeZone
se 15-38-100 Station

‘é‘ New " & General ’
X Delete | 001 Robots y 01 KUKA ri
S Cut 002 Turntables » 02 ABB »|[-2 01 ABB Robot
3| Copy 003 Conveyors ’
] 004 Other components ¥

Il Next is the Turntable. The turntable object consists of a two position turntable plus a
variable set of clamps (see chapter A.4).
llI. The last device is a two way two speed roller with Danfoss equipment controlled
through Profibus.
5. Add the preferred objects by right clicking on the Station object and select New and then the
desired object.

A2 Configuration of the General folder
1. Right click on the General folder, choose New -> General and add the following items:
o HMI
e BUS

e PLC cabinet
e Terminal Box

= & ny general » Volvo
® @ @AT Automation Tree
& [Recovery
® 4% USERS User administration
= (Ja) 3835PL PLC Area

@ S000 General

|.¥ New ’|,¥| General ’

X Delete 01 General b‘ B 01 HMI

Fo Cut == 02 BUS

3 Copy 8 03 PLC cabinet

[E Paste Bl 04 Safety area
Move |ﬁ 20 Terminal box
Copy structure

[E Paste link

< Navigate 4

=l Print

& Working layers/History *

B Search

& Properties

2. Double click on the BUS in the navigation tree to open its properties in the configuration area
and select System data in the attributes tab.
3. Select Profibus as S7 bus system and assign a start address (e.g. 1) and a offset (e.g. 10).

=3835PL.S000 BUSD1 BUS
=LA

JGeneraI Attributes | eBlock

[Safety requirements [Environmental conditions | System data

Assign CPU v X A Automation Interface

| 7 bus system: |Profibug 4

No choice
MPI - Multi Point Interface
Profibus

Industrial Ethernat

Group label So008LSO!

- Pai i Profib
Calculation parameter lor t nt
Start address | |
Offset | |

4. Press OK to save and close the BUS property window.

5. Double click on the HMI in the navigation tree to open its properties in the configuration
area and select the eBlock tab.

6. Inthe copy in tab for the HMI object there is one eBlock for copying in the hardware
specification of the hmi. The default template that is chosen is a 12” Multi Panel. It is

A-3

10.

possible to choose a larger multi panel or even a PC though the HMI screen templates in this
project only works with multi panels. To execute the eBlock click on the check icon
highlighted in the picture below.
=3835PL.S000 HMIO1 HMI
==)
| General | Attributes [eBlock |

Copy in

Status Order Template Source objects
Copying desk (b MP 377 12" Touch B =3835PL.S000.HMIO

;%v@v

= 2503 HMI
[301 Push Button Panels
= 02 Multi Panels
= @ T01 MP 377 12" Touch
= @ T02 MP 377 15" Touch
(§ T03 MP 377 19" Touch H E SRS AR SRS R FE RS S RS RS S S SRR S SIS
Q503 PC(WInCC flexible Runtim |21 1al 10200t sn

Press OK to save and close the HMI property window.

v
Double click on the PLC cabinet in the navigation tree to open its properties in the
configuration area and select the eBlock tab.
First the “Assign PLC” eBlock needs to be executed in order for some of the Siemens base
objects to work properly. Do this by clicking on the execute icon highlighted in the picture
below.

=3835PL.S000 L] SPSO1 PLC cabinet
A
| General | Attributes [eBlock

Area | Copy in [HW-interface

R (e

Status Order Target object Source objects
Assign PLC \ =3835PL.5000.5PS01 [LE| :3B3SPL.SOUU.SP501

Switch to the Copy in tab. Here we need to copy in the hardware configuration for the PLC
and the STEP 7 source code that is used in the top level of the PLC program e.g. OB1, DB20.
For the hardware configuration use the SIMATIC S7-300. To execute all eBlocks press the

A-4

11.

12.

13.

14.

A3

arrow next to the checker icon (red circle) and select Execute(all).
=3835PL.S000 1! SPSO1 PLC cabinet
d= =]
| General | Attributes [eBlock |
[Area Copy in | HW-interface

Qv -:é Al Y
Status | Order Template Source objects Execute(all)
Q Copying station G SIMATIC S7-300 [[¥] =3835PL.S000.5PS01 ® Execute (selected)

Qo Copy 57 facet i PLC facet =3835PL.5000.5PS0]

= 5 02 SIMATIC
@ @ TOL SIMATIC S7-300
gy T02 SIMATIC S7-400

The HW-interface tab in the eBlocks requires that all the devices in the project e.g. Robots,
Roller has been added and configured before they can be executed. Theses will be dealt with
later. Press OK to save and close the PLC cabinet property window.

Double click on the Terminal box in the navigation tree to open its properties in the
configuration area and select the eBlock tab.

Press the execute icon to copy in the hardware configuration for the Terminal box. As for the
PLC cabinet the HW-interface can’t be configured until later.

=3835PL.S000 <. KKO1 Terminal box

555 @
| General | Auributes [eBlock
Copy in | HW-interface
Q-
Status Order Template Source objects Execute (selected)
Copy switch on group | ET200S (151- HF) | 68 =3835PL.S000.KK01

Press OK to save and close the Terminal box property window.

Configuration of Roller 2W2S-DDP
Open the properties for the Roller you wish to configure and select the eBlock tab.
At first there are three different eBlocks under the copy in tab. The eBlock “Copy S7 facet”
copies in all FB:s, FC:s and DB:s that the roller is using. “Copy Sensors” copies in six
predefined sensors that the roller needs. “Copy WinCC flexible facet” supplies the base
objects needed for generating HMI screens for the roller. To execute all eBlocks at the same
time press the arrow next to the execute icon (red circle) and select Execute(all).

A-5

=3835P1.5100.15-38-100 == 104 Roller2W25-DDP
[l
[General [Attributes | eBlock

Copy in

R Al

Dy :] w v
Status | Order Template Source objects Execute(all)
‘ Copy S7 facet & Roller?W2S-DDP S7 facet 1 =3835PL.5100.15-38 * Execute (selected)

Copy Sensors ¢ Sensars Roller JW2S-DDP :I; =3835PL.5100.15-38
Copy WinCC fexible facet (& Roller 2W25-DDP WinCC flexible facet _:’; =3835PL.5100.15-38

= 303 Conveyors
= @4 T01 Roller2W25-DDP 57 facet
& 4 T02 RolleriW35-DDPM S7 facet

3. You should now have some new objects under your roller in the navigation tree as well as a
tab called “SW interface” in the configuration display of the roller.
= EZ104 Roller2W2S-DDP
11, S104M10QH Logical element, 2 inputs
I, S104M1QM Logical element, 2 inputs
I, S104M15G1 Logical element, 2 inputs
®
=

*

1r, 5104M1SG2 Logical element, 2 inputs
1T, S104M1SG8 Logical element, 2 inputs
1, S104M1SG9 Logical element, 2 inputs
= [03 WinCC flexible

[(7] 57 S7-software

53]

=3835PL.5100.15-38-100 == 104 Roller2W25-DDP

|i-1‘l_! ..

| General | Attributes | eBlock |

J Copy in | SW interface

4. Inthe software interface the hierarchal connection between the function blocks is made. The
software interface is used by the inline macros in the STEP 7 source code objects. In this case
we want the mode zone to be the one calling the roller. Drag the ModeZone object from the
navigation tree to the target object cell for “Assign caller FB”. VCC also uses a data block
called DB20 to store all the variables that are used for interlocks. In this structure the DB20 is
placed in the S7-software folder for the PLC cabinet. To be able to automatically create these
interlock variables for the roller we need to assign a connection between the roller and the
PLC cabinet. This is done by dragging the PLC cabinet object from the navigation tree to the

A4

target object cell for “Assign DB20”".

=3835PL5100.15-38-100 == 104 Roller2W25-DDP

I=k=d Al
= € 03/09/2010 11:08:42 CHALMERS » Volvo NTP—
 (3)3835PL PLC Area | Genera | el

= & PTLOL Unit layout DIN A3 landscape J Copy in | SW interface

= & S000 General

[+ w2 BUSO1 BUS

Status | Order ArE Source objects
Assign caffer F8 % =3835PL.5100 AE) =3835PL.5100.15-38-100-104.FB1515 |
Q Assign DB20 f¥] =3835PL.S000.5PS01 'r- =3835PL.5100.15-38-100-104 |

® §sT1 Symbol table « =@AT.test1-Simatic 57-300-0-2.57 Program.ST1
@ (5] 57 S7-software

= =3835PL.PTL.01-02 Assign PLC
25100 ModeZone ™
Execute the eBlocks as in step 2.
The roller should now be configured. Press OK.

Configuration of Turntable
Open the properties for the turntable you wish to configure and select the eBlock tab.
At first there are three different eBlocks under the copy in tab. The eBlock “Copy S7 facet”
copies in all FB:s, FC:s and DB:s that the roller is using. “Copy WinCC flexible facet” supplies
the base objects needed for generating HMI screens for the roller. “Copy Clamps” adds four
new clamps to the turntable as default. It is possible to only copy in one clamp. To do this
select the copy clamps eBlock and double click on the Clamp (LmoveUnit2Pos) template in
the box below. To execute all eBlocks at the same time press the arrow next to the checker
icon and select Execute(all).

=3835PL.5100.15-38-100

105 Turntable

Copy in
9 Via ey
Status | Order Template Source objects Execute(all)
Copy Clamps s 4 Clamps (LMoveUnil = =3835PL.5100.15-38 * Execute (selected)

Copy 57 facet ¢ Turntable S7 facet i =3835PL.5100.15-38
Copy Win€C fexible facet ¢ Turntable 2 Pos Win! i) =3835PL.5100.15-38

)E/S 004 Other components

4 T01 Clamp (LMoveUnit2Pos)
g T02 4 Clamps (LMoveUnit2Po;

A-7

3. After executing the eBlocks four new will appear. These are the for the clamps STEP 7 code.

Press Execute(all) again to copy in the STEP 7 code blocks for the clamps.
=3835PL.5100.15-38-100 105 Turntable

o/
| General | Atmbutes [eBlock
Copy in | SW interface

|'-1"3

X

Status | Order Template Source objects

Copy 57 facet ¢ Clamp S7 facet = =3835PL.5100.15-38

Copy 57 facet (b Clamp S7 facet = =3835PL.5100.15-38

Copy S7 facet (b Clamp S7 facet & =3835PL.5100.15-38

Copy S7 facet ¢ea Clamp S7 facet = =3835PL.5100.15-38
Q Copy Clamps ¢kh 4 Clamps (LMoveUnil /=) =3835PL.5100.15-38
Q Copy S7 facet ¢¢h Turntable S7 facet v =3835PL.5100.15-38
Q Copy WinCC flexible facet ¢h Turntable 2 Pos Wint =) =3835PL.5100.15-38

4, Switch to the SW interface tab.
=3835PL.5100.15-38-100 105 Turntable

= A

| General | Avtributes [eBlock

J Copy in | SW interface

5. Inthe software interface the hierarchal connection between the function blocks is made. The
software interface is used by the inline macros in the S7 source code objects. In this case we
want the mode zone to be the one calling the turntable. Drag the ModeZone object from the
navigation tree to the target object cell for the “Assign caller FB” eBlock which has a source
object that ends with FC***, The four other “Assign caller FB” eBlocks are there to make the
connection between the clamps and the turntables FC. Here we need to assign the turntable
which the clamps belong to the target object for the “Assign caller FB” eBlocks. Just drag the
turntable from the navigation tree to the target object cells.

=3835PL.5100.15-38-100 105 Turntable

\&/@

|'-1'vs‘r_

= @ 03/09/2010 11:08:42 CHALMERS » Volvo [General [Attbutes [eBloc |
= (F9)3835PL PLC Area

@ @& PTL.OL Unit layout DIN A3 landscape | Copy in | SW interface

® @ S000 General

Status | Order Target object Source objects

g %ﬁgiggﬂvggzm Assign caller F8 i =3835PL.5100.15-38-100-105 | &) =3835PL.5100.15-38-100-105-105ClampM2.FB1

® @101 Tumteble Q Assign caller F8) =3835PL.5100,15-38-100-105 | [=3835PL.5100.15-38-100-105-105ClampM3.FB1611
® GH102 Roller2W25 DDP Assign caller FB =i =3835PL.5100.15-38-100-105 | &) =3835PL.5100.15-38-100-105-105ClampM4.FB611
© @103 Tumteble [6) Assign caller F8 e =383 .15-38-100-105 | B =3835PL.5100.15-38-100- [ampMS.FB1611
G5 104 Roler2W2S-DDP Assign caller FB =3835PL.5100 [=3835PL.5100.15-38-100-105.

|
. ® L723T000 ABB Robot
6. Execute the eBlocks as in step 2.
7. The turntable should now be configured. Press OK.

o oK

S

A-8

A5

A.6

Configuration of ABB Robot

Open the properties for the turntable you wish to configure and select the eBlock tab.
=3835PL.5100.15-38-100 " 72-31-000 ABB Robot

TeeaSian
| General | Atibutes [eBlock
Copy in
Ry a)w
Status | Order Template Source objects Execute(all)
Copy S7 facet | (s Rabot01FC S7 facet | “F, =3835PL.5100.15-38 ® Execute (selected)

[0) Copy WinCC flexible facet | (¥ ABB Robot WinCC flexible facet *3, =3835PL.5100.15-38 ﬁ

At first there are two different eBlocks under the copy in tab. The eBlock “Copy S7 facet”
copies in all FB:s, FC:s and DB:s that the roller is using. “Copy WinCC flexible facet” supplies
the base objects needed for generating HMI screens for the roller. To execute all eBlocks at
the same time press the arrow next to the checker icon and select Execute(all).

Switch to the SW interface tab.

=3835PL.5100.15-38-100 "+ 72-31-000 ABB Rohot

Es e

|_General | Attibues [eflock

J Copy in | SW interface

In the software interface the hierarchal connection between the function blocks is made. The
software interface is used by the inline macros in the S7 source code objects. In this case we
want the mode zone to be the one calling the robot. Drag the ModeZone object from the

navigation tree to the target object cell for “Assign caller FB".

~3835PL.5100.15-38-100 ' 72-31-000 ABB Robot
Salaa
| General | Attributes [eBlock

J Copy in | SW interface

Status Order Target object Source objects
Assign caller FB

|'-1'-;|

|E =3835PL.5100 | =3835PL.5100.15-38-100-72-31-000.FC460

Execute the eBlocks as in step 2.
The robot should now be configured. Press OK.

o oK

Configuration of ModeZone
Open the properties for the ModeZone you wish to configure and select the eBlock tab.
In the Area tab we need to assign a PLC to the ModeZone. Drag the PLC cabinet from the
general folder to the target object. Press the checker icon to execute the eBlock

=3835PL ::: 5100 ModeZone
= =R

| General [eBlock | Attibutes

Area | Copy in [SW interface

Status | Order Target object Source objects
Assign PLC & =3835PL.S100

_v(vr

Switch to the copy in tab

In the eBlocks tab for the ModeZone we can see the eBlocks for all devices that resides under
it in the navigation tree e.g. conveyors and robots. These eBlocks can be executed from here
so we don’t need to open each object separately to execute its eBlocks as we did in chapter
A.3, A.4 and A.5. All eBlocks that has been already executed should have a green circle in its
status cell. Beware though that the green circle can be bugged sometimes and will show an
incorrect status so to be on the safe side press the arrow next to the checker icon and select
execute (all). The only unique eBlock for the ModeZone in the copy in tab is for copying in

the STEP 7 code. Notice in the source object column that eBlock is linked to the ModeZone.
“ 5100 ModeZone

=3835PL

5% (]
| General [eBlack | Attributes
[Area | Copy in | SW interface
R VY
Status Order Template Source objects
Q Copy WinCC flexible facet (b Turntable 2 Pos Wint (=) =3835PL.5100.15-38-100-101
[9) Copy 57 facet (43 Roller?W2S-DDP 57 &% =3835PL.5100.15-38-100-102
. Copy Sensors & Sensors Roller 2W25 53 =3835PL.5100.15-38-100-102
[9) Copy WinCC flexible facet (4 Roller JW2S-DDP Wi 5 =3835PL.5100.15-38-100-102

Copy 57 facet & Robot01FC 57 facet ", =3835PL.5100.15-38-100-72-31-000
Copy WinCC flexible facet & ABB Robot WinCC fle ¥ =3835PL.5100.15-38-100-72-31-000

Copy 57 facet 4 ModeZane 57 facet =3835PL.S100

Switch to the SW interface tab. If you choose to work with the eBlocks from all devices here
in the property window for the ModeZone you need to be careful of which source object you

@

assign your target objects to. The two eblock connected to the ModeZone needs to have the
PLC cabinet from the general folder as target object.

=3835PL ::: 5100 ModeZone
| E
| General [eBlock | Attributes

J Area | Copy in | SW interface

Stat | A Order Target object Source objects 4
. Assign caller FB e =3835PL.5100 =3835PL.5100.15-38-100-72-31-000.FC320

. Assign caller FB E =3835PL.5100 =3835PL.5100.15-38-100-102.FB1515

. Assign DBE20 =3835PL.5000.5P501 310 =3835PL.5100.15-38-100-102

. Assign cafler FB E =3835PL.5100 =3835PL.5100.15-38-100-101.FC310

. Assign caller FB [a] =3835PL.5100.15-38-100-101 =3835PL.5100.15-38-100-101-101ClampM5.FB1611
. Assign caller FB @ =3835P1.5100.15-38-100-101 =3835PL.5100.15-38-100-101-101ClampM4.FB1611
. Assign caller FB @ =3835P1.5100.15-38-100-101 [=3835PL.5100.15-38-100-101-101ClampM3.FB1611
. Assign caller FB @ =3835PL.5100.15-38-100-101 =3835PL.5100.15-38-100-101-101ClampM2.FB1611
. Assign DBE20 =3835PL.5000.5P501 % =3835PL.5100

. Assign caller FB =3835PL.5000.5P501 &% =3835PL.S100

A-10

6. After assigning the target objects press the arrow next to the checker icon and select
execute(all).
7. The robot should now be configured. Press OK.

.

’V 0K

A.7 Unit layout and polygons
The unit layout and polygons are used to quickly assign specific eBlocks with the same target object
to multiple source objects on a layout drawing.

1. First add a new unit layout object by right clicking on the PLC Area and select New -> Unit
layout DIN A3 landscape.

= & Ny general » Volvo
= (J9)3835PL PLC Area

= @ 5000 Gener|cf New v ¥ General b
=9 BUS0L | X Delete & 01 ModeZone
[HMIOA
. zml S| Cut @ PTLO1 Unit layout DIN A3 landscape
= [spso1 FED Copy |1_3|| PTL.0Z Unit layout DIN A2 landscape
w [annnl [0 pacie

2. Open the unit layout by double clicking on it in the navigation tree.
3. To add objects to the unit layout just drag them from the navigation tree and drop them on

the layout.
Eile Miew Administrator Documents Generators Extra Plugins Help SIMATIC AUTOMATION DESIGNER
®©9 99HE ey BROFH ERDaXE HTH =
3935PL 1% PTLOL Unit layout DIN A3 landscape
PRS0 R QRS b
= @ Ny general » Vobvo AINOEA 5 # 2 23w ABS Rotol ~
= (F93835PL PLC Aren T I ‘ I T I | I -+
= @ 5000 General | I K
wRBUSIL BLS o B i : RO : o : i : e i : [.

B HMIOL HMI
= @KKO1 Teminal box
+# [SPS01 PLC cabinet
= F 5100 ModeZone | 0
@57 ST-software H i AR R . . o o o H
= % 1538100 Satin s o : N R : s : :]
® @101 Tumtable
G102 Roller2W2S-DDP
L7300 ABeRobot
@ BAPTLOL Unit layout DIN A3 landscape

[Recovery
¥ USERS User administration

This document s prolecied iy law:

Jevy ks, ven i perts; i et
S I

52 units|| = Base objects|| @ Locations||[Documents|

= @ SPS01 PLC cabinet
% B BAS22 Safety requirements
B 1020 Environmental conditions.
= B2 SWK SW identification
= B2 5YS System data

01 PLCcabinet 03/09/2010 X=156y=92 Total objects: 29218 Save: 4 Chedk: 0

The objects that needs to be added are the following:
e All robots, rollers and turntables.
e The ModeZone
e HMI, BUS, Terminal box and PLC cabinet from the general folder.

A-11

To start mapping eBlocks press the Map eBlock targets button (red circle).

=3835PL [4 PTL.01 Unit layout DIN A3 landscape

eSS S LE
RINOEA % #Hgko

— 1 1 .
1iiii:::::iiii:ﬂMWEmmkm@ﬂBPiiii:::::iii

In the drop down list that appears are the different eBlocks that is possible to map with
polygons. Start with selecting the “Assign HMI” and press the button next to the list.

B | Assign functional groups (
— | Structure
| Assign functional groups
General
ModeZones
o Stations
- | Area
.| Assign EPLAN Electric P8 project
Assign HMI
Assign I/O-Hardware
Assign PLC
Assign bus
Assign feed
- | Assign safety area
- -|HMI Screen Hierarchy | - -
| Assign HMI Level 1 (Start Screen) 0
Assign HMI Level 2 A
Assign HMI Level 3 -
......................... —

A polygon could either be dragged by dragging lines until it forms a closed loop or only a
rectangular shape is needed by placing a line that forms the diagonal of the rectangle and
press the right mouse button.

When creating a polygon around your objects Automation Designer will automatically select
a target object if a viable one is placed within the polygon. You can see the name of the

A-12

target object in the upper left corner of the polygon.
PTL.01 Unit layout DIN A3 landscape

PTLO1 Unit layout DIN A3 landscape

IOa -5 #[glpea | Ainim
: R :

X | s |
V] a % ﬁeﬁeq Assign HMI v |
..... I R N R A R A A I
P I O O S O
.
SEEESPLI00IBUSIE - - - [T e e =F03SPLS000 BUSDT + « + 0 v e e e e e e
O DO B T e O D S DI
L 2300
H-
=EB35PLS000.HII1 %
R FER ECS o e
Feeameinyzt AR IR <\:§/y S R i N SIS
D A0 -102
It T RO DR <BEERL S00 £P50]

it manually. To do this click on the polygon. Press the button with three dots. Select the
appropriate object in the list that appears and press OK to confirm.

A-13

e eS8 i) 0.
1 [+0[sp et | Assign ML v Noser OEC)
I | I I ||Se|ecttargetsp

R
=
W01
n S
. r——"
I
0 .‘
I
I .
oz 181 | 4] !
[
[
PR .

% Select targets: Assign HMI

|HM101 | HMI 7

=/ (S9)3835PL PLC Area
= @ S000 General
£ HMIOL HMI

oK *. Cancel

9. Repeat step 5 — 8 for the I/O-Hardware, the PLC and for the bus and assign the target objects
described in the table below.

eBlock Target object

Assign HMI General -> HMI

Assign [/0-Hardware | General -> Terminal box
Assign PLC General -> PLC cabinet
Assign bus General -> BUS

A-14

A.8

Assign functional groups 4| M
Structure —
Assign functional groups —
General o
ModeZones
Stations
Area
Assign EPLAN Electric P8 project
Assign HMI
Assign I/0-Hardware «~——
Assign PLC =——
Assign bus =——
Assign feea
Assign safety area
HMI Screen Hierarchy
Assign HMI Level 1 (Start Screen)
Assign HMI Level 2
Assign HMI Lavel 3

10. The layouts for the generated HMI screens are set with polygons in the 2D layout. This is

done with the “Assign HMI level 1-3” eBlocks. In this project only level 1 and 2 are used. Level
1 will represent the top level controlled by OB1.The polygon for this level should be dragged
so it covers the entire 2D layout. Level 2 represents the mode zones. These should be
dragged so only the objects included in the specific mode zone are covered by the polygon.
Several level 2 polygons can be made depending on the number of mod zones. Assign HMI
level shall have the General -> HMI object as target object.

Assign functicnal groups A |
Structure —
Assign functional groups —
General
ModeZones
Stations
Area
Assign EPLAN Electric P8 project
Assign HMI
Assign L/O-Hardware
Assign PLC
Assign bus
Assign feea
Assign safety area
HMI Screen Hierarchy
Assign HMI Level 1 (Start Screen) «~——
Assign HMI Level 2 { R

Assign HMI Level 3

11. To execute all eBlocks press the “Calculate eBlock target” button

I e_ﬁ Assign HMI Level 1 (Start Screen) v | Mg
I

Configure the hardware interface
Open the PLC cabinet object and select the eBlock -> HW-interface tab. Select Assign HW
address. In the start column assign a bus address for the first object and press execute. This
will give bus addresses to all other objects as well.

A-15

=3835PL [PTL.OL Unit layout DIN A3 landscape 5000 1| SPSO1 PLC cabinet

Labsl A Task description Start ADR.STFD State valus
iz |BDE DOV 10 3
T 80E, DC 2V i 3
1 808, bC 2V n 3
is 400 ST, OC 24, 0.54 13 3
I 7 (400 ST, DC 24V, 0.54 14 3
g | SM 322, 16DI, DC 24V 15 3
is | SM 322, 1600, DC 29, 054 7 3

 Label A Task description St ADRSTFD Statevalue
T | i
iz 80E DC 24V] 2
E 4 8D DC 24V 4 2
L] 6 4DO ST, DC 24V, 0.5 0 120
7 40O ST, DC 24V, 0.54 0 2
4 \SM 321, 1601, DC 24V 9 2
s SM 322, 1600, DC 24V, 0.5 0 2

A-16

3. Open the terminal box object and select the HW interface tab. Press the binocular icon.

=3835PL 4 PTL.OL Unit layout DIN A3 landscape

=3835PLS000 <+ KKO1 Terminal basx

| General | riutes [eblock |

| Avea | copyin [MW-interface | HMI Screen Hierarchy

By vy

Status | Order Target object Source ohjects
Implement PLC channels [KK
| Implement safety-relevant PLC channek LK1 M) =3835PL.S000.KKD1-

4. The sensors will appear in the lower left window. Press the arrow next to the lower checker
icon and choose Implement (all) to automatically assign the sensors to hardware addresses.

=3835PL [PTL.OL Urnit layout DIN A3 landscape

=3835PLS000) KKOL Terminal bax

| enera | atibtes [eelock |

® e
ﬁ =3835PL.S000.KK01) =3835PL.S000.KKD1-1
Module 4 | symbol address 4 Module Module A | Address A

[Area | copy in [Hinterface | HMI Screen Hierarchy

Dy vy

Status Order Target object Source ohjects.
Implement PLC channels |
| Implement safety-retevant PLC channels) =3835PL.S000.KKOL:

B

g =3835PLSOOOKKOL) =3835PL.SDO0.KKDI-L
Module 4 symbol address 4 Madule Module A Address &
T, S102MIQH S102MIQH -1-2 (8DE, DC 24V) E10.0
T, S102M1QM S102M1QM -1-2 (8DE, DC 24V) EI0.1
T, S102M1SGL S102M1SG1 -1-2 (8DE, DC 24V) E10.2
T, S102M1SG2 S102M1SG2 -1-2 (8DE, DC 24V) EI10.3
T, S102M1SG8 $102M1SG8 -1-2 (8DE, DC 24V) E10.4
T, S102M1SGS S102M1SGS -1-2 (8DE, DC 24V) EI0.5
~1-2 (8DE, DC 24V) EL0.5
~1-2 (8DE, DC 24V) EL0.7
-1-2 (8DE, DC 24V) ELLO
-1-2 (8DE, DC 24V) ELL1
-1-2 (8DE, DC 24V) ElLZ
-1-2 (8DE, DC 24V) ELL3
-1-2 (8DE, DC 24V) ElL4
-1-2 (8DE, DC 24V) ELL5
-1-2 (8DE, DC 24V) ELLS
-1-3 (8DE, DC 24V) E11.7
-1-4 (8DE, DC 24V) E12.0
-1-4 (8DE, DC 24V) E12.1

5. Press the upper checker icon to execute the eBlock.

=3835PL [PTLOL Unit [ayout DIN A3 landscape

=3835PL.S000 7 KKD1 Terminal box

XTI

T
| Implement safety-relevant PLC chamiet 59 =3835PLS000.16C0L M) =3835PL SDO0.KKOL:

6. Press OK to save.

A-17

H vy
ﬂ =3835PL.S000.KKO1 @) =3835PL.S000.KKD1-1
Module 4 symbol address A Module Module A Address 4
=3835PL-5100=15-38-1 -1-2 (8DE, DC 24V) E10.0
=3835PL-5100=15-38-11 -1-2 (8DE, DC 24V) E10.1
=3835PL-5100=15-38-11 -1-2 (8DE, DC 24V) E10.2
=3835PL-5100=15-38-11 -1-2 (8DE, DC 24V) E10.3
=3835PL-5100=15-38-1 -1-2 (8DE, DC 24V) E10.4
=3835PL-5100=15-38-1 -1-2 (8DE, DC 24V) E10.5
-1-2 (8DE, DC 24V) E10.6
-1-2 (8DE, DC 24V) E10.7
-1-3 (8DE, DC 24v) E1L0
-1-3 (8DE, DC 24v) ElL1
-1-3 (8DF. NC 74} F117

A9 Adding H_IAnim tags and configuring the WinCC flexible

project fragments
To assign variables to theHMI tags from WinCC flexible the DB address must be known. For the
H_Anim tags this is done automatically but it has to be done manually for the H_IAnim tags by adding
a DB variable object. One DB variable for each device is added under the data block for the mode
zone and one for each mode zone is added under DB1.

1. Right click on the DB for the modezone and select HMI tag for global DB

Pl mlam ESESAA

1 E1DB300 | = 2o
Dz@m|# New '| .—!ﬁ‘ General 3
& =@a1 X| Delete D H2 HMI tag for Global DB |
i =@AT Y| cut param. Blocks.DB300 _S100

2. Open the properties for the newly created DB variable. Select the Attributes -> System data
tab. In the DB name field fill in the symbolic name for the mode zones DB. The label field
shall contain the name of the H_IAnim variable. For the conveyor and turntable it is
H_[Object name]lAnim. For the robots the variable name is H_Robot[robotnumber]FCIAnim
e.g. H_Robot7231FCIAnim.

@ Ny general » Voivo Name o001 Label H_101IAnim

|"':3835pL—5100.Fc300 B pe:

= (2 3835PL PLC Area .
A PTLOL Unit leyout DIN A3 landscape Description | tag for Globel D8 | Folger O
= &%, 5100 ModeZone
D EST S7-software [General | Attributes | Elements [Connectors [Status

5 BIFC00 S100 « =@AT.100923-Simatic S7-300-0-2.57 Program.®l [['system data
NT300 Call for blocks included in ModeZone

= B)DB200 _S100 « =@AT.100823-Simatic 7-300-0-2.57 Progr Data madule entry Offsets
& =@AT.100923-Simatic S7-300-D-2.57 Program.Blocks.DB3(
7 =[@AT.100923b-Simatic S7-300-0-2.57 Program.Blocks.DB: Symb. Name 001 | Byte D
& =[@AT.100923c-Simatic S7-300-0-2.57 Program.Blocks.DBZ Symb. adcress [001 | Bit D
=1 H_1011Anim HMI tag for Global DB
FC301 S100_Modes « =@AT.100923-Simatic S7-300-0-2.57 Dafa type |worg v|
& =(DAT.100923-Simatic S7-300-0-2.57 Program.Blocks.FC300
& =@AT.100923b-Simatic S7-300-0-2.57 Program.Blocks.FC300 Comment |:LM tag for Global D8 |
&+ =[@AT.100923c-Simatic S7-300-0-2.57 Program.Blocks. FC300
NT Networks Value |wr1az0 |
s 15-38-100 Station
@ S000 General DB name <100
& @AT Automation Tree =
X Recovery Model Word v
&7 USERS User administration ermit mutiplacement

Insert mode
DE-parameter

3. Press OK to save.

4. Repeat step 1 -3 for each device in the project. A DB variable must be added for the mode
zones as well. This is done under DB1 in the S7 folder for the PLC cabinet. The name of the
H_IAnim variable for the mode zone is H_[mode zone name]lAnim.

5. To be able to assign the DB variables to the HMI tags we need to update the symbol table
first. To do this by go to General -> PLC cabinet and right click on symbol table and select
Symbol table -> Refresh symbol table.

A-18

6. Now open a WinCC flexible project fragment under one of your devices.

= 2101 Raller2W2s-0OP

1T, S101IM1QH Logical element, 2 inputs
1T, S101M1QM Logical element, 2 inputs
1T, S101M1SG1 Logical element, 2 inputs
1T, S101M1SG2 Logical element, 2 inputs
1T, S101M1SG8 Logical element, 2 inputs
iF, S101M1SG9 Logical element, 2 inputs
02 WincC flexible

H 01 WinCC flexible project fragment

[= =S

[

7. Select the assignment tab. The H_Anim tags should already be connected. In the symbol
name cell for the H_IAnim write the inline macro {T[CFB].S[*]} where * is the name of
variable you want to connect.

{T[CFB].S[==N
= _S100_ModesProdMode
= _£100_ModesTimerl
= _S100_ModesTimer2
= _S100_ModesTimer3
= _5100_ModesToggle
|

= H_111TAnim

hm 44 mmmwa t

| General | Attributes | XML data [Assignment |

You can assign a symbol of the symbol table to the WinCC flexible tags of the loaded XML data on this tab.
A complete mapping of all varizbles is a prerequisite for the address detection during the generation of WinCC flexible project data.

| Tanq folder Tag Cmneninnl Data typelAddrms | Cnmmentl Symbol name | Symbol
HmiTagFolder FB1515 HAnim CPU WORD DB 1208 DBW 52 {S[FB1515_HAnm]} & =3835P1-5100=15-38-100-101.FB1515.0B1208FB1515_HAnim HMI Tag
FB1515 HAnm2 CPU WORD DB 1208 DBW 54 {S[FB1515_HAnim2]} 21 =3835PL-5100=15-38-100-101.FB1515.0B1208FB1515_HANm2 HMI Tag
FB1515_HAnim3 CPU WORD DB 1208 DBW 56 {S[FB1515_HANm3]} 51 =3835PL-5100=15-38-100-101,FB1515.0B1208FB1515_HAnm3 HMI Tag
FB1515_HIAnim CPU WORD {rrcrsl.sl === Nok set
= 5100
= _S100_Modes

= _S100_ModesAlarmToWordl
‘= _5100_ModesAlarmToWord2
= _5100_ModesGeneralFunc
= _5100_ModesMode

‘= _S100_ModesModeSelector

8. Press OK to save.

9. Repeat step 6 — 8 for all your devices and mode zones.

A-19

A.10 Generating code to STEP 7

To generate STEP 7 code requires that all previous steps are completed.

1. Open the STEP 7 generator: The STEP 7 generator can be found either in the symbol bar or in
the menu bar under Generators.

(BT %

2. Dragthe PLC area object from the navigation tree to Root object. Automation Designer will
then collect all FB:s, FC:s and DB:s that exists in the project.

Collect options

Root object; ($)=3835PL - PLC Area =l

Filter: v Hardware « Symbol table v Software

3. Open the drop down menu under Select project and click on New.

Object Select project Project path
= SPS01 - PLC cabinet A
= [MA000 - Simatic 57-300
= fifiio - Profile rail, 2000mm New ...
e n2 - CPU 319F-3 PN/DP testl
(= (z7)Program folder
/2"ST1 - Symbol table
= e#PBlock folder
1+DB20 - _INTLK
{7+0B1 - 3835PL
13DB1 - _3835PL
{4DB1643 - _101ClampM2Timer2

4. Select a name for the project and choose where you want to save your exported project.

& Create new project

Project name:

Project path:

0k Cancel

5. Press Generate. This will make Automation Designer execute all inline macros in the FB:s,
FC:s and DB:s that specifies the project specific names contained in the STEP 7 source code.
Automation Designer will create an Automation Tree which contains the source code which
now is ready for export.

Generate Generate & export Generate into new working layer

6. Before exporting the project open the properties for the generated project in the
Automation Tree. Make sure that the path for the standard library points to the correct
location. Otherwise Automation Designer won’t be able to import the library FB:s, FC:s and

A-20

DB:s.

_ (“]
. G

=] @ @AT Automation Tree

X Units“ 5] Localions"@ Documents“ﬁ Base objects | @ Automation Treeﬁ

=@AT &! testl Project

Name testl & Label

Description ‘ijm | Folder O

| General [Attributes | Elements | Connectors | Status

J Automation interface | System information

Application ID ‘ ‘
Comos object ‘ [X| @
Project path ‘ C:\Step7\Test\test1\test1\test_Prj ‘
Project UID \ |
Standard library WI Valvolib| VolvoLib|Volvolib.s7l _\ﬁ>

7. Openthe STEP 7 generator and select the export tab. Drag the generated project to Start
object. If this is the first time a project has been generated the project might not show up in
the automation tree. In this case just close and reopen the STEP 7 generator.

-~ Step/ generator (=@ﬁT @testl Project

J Generate [Import | Export |

Start object = @AT]|test1

= @& @AT Automation Tree
=+ [Tytestl Project

Start export

Filter

Hardware

Object

= Mtestl Project
EP_3835PL.SI
(= Ml Simatic 57-

8. Check all checkboxes. This will make sure all necessary objects will be exported.

Filter

~ Hardware

+| Symboltabelle Software

9. Press Start export to compile the source code into STEP 7

Start export

A-21

10. If there are no error messages a new project that is possible to open in STEP 7 will have been
created. If you get the warning message “CodeBlocks partly compiled” it means that STEP 7
failed to compile the code. Double click on the error message will display the compilation log
from STEP 7 which describes why the compilation failed. The error in the compilation log
below is caused because OB1 is used by another process at the same time. To fix this
problem close both Automation Designer and STEP 7. Reopen STEP 7 and follow the steps

below.

e T D ——

Description Source Posibon
A\ CodeBlocks partly compled, dick to see detals 183Code blocks have been compiled

B BlockCompile.Jog - Natepad

J«
11. Select File->Open and choose your project

12. Open tmpSource in the source folder

-0 x|
File Edit Format ‘iew Help
09/06/10 12:41:01: COMPILE won tmpSource ;l
Compile: tmpsource
E Ln 017734 col 020: Block s disabled and cannot be opened. Please close all other windows in which this block is used.
icompiler result: 1 Errords), O warninggs
o

K] SIMATIC Manager - 100906a_Prj

File Edit Insert PLC Wiew Options ‘Window Help

Dm|§“@|;¢a|ﬁ|!_%|—nl?s-s- |||<N0Fmer> =

=10l x|

E|" Simatic 57-300
EI . S000.5PS01-A000-0-2
= - [z7] 57 Program(1)

A-22

13. Press the compile button.

natic §7-300%5000.5PS01-ADD0-
File Edit Insert PLC Debug View Options Window Help

D@2 E& 8 B> o ek o 5| KON
;lEI Sidummary of alarms C
A r_S1007, Alarmc:
= #O_LlarmC;
NETWORE

TTTT T —kkww A F A U

14. The log should now say 0 Errors, 0 Warnings. In case any errors remain double click the error

message to display where in the code the error occurs.

END_DATA_ELOCK

E] Program elements EE Call structure 5 i”"\ RIACT M THITT I

Hllcompile: 100906a Pri)\Siwatic 57-300%45000,5P501-A000-0-2%57 Program(l)‘Sources’ tmpSource
npiler r 0 Error|

5], 0 Warnim

15. Go back to the project view and choose the “Blocks” folder. Your project should now look
something like in the picture below.

T/SIMATIL Manager - [100906a_Pr) — C:\Step?\ Test\ 1009062\ 100906a\1009_Pri)
File Edt Insert PLC View Options window
D | B?& & i chefre: Z|W Bw BmEM W
Et Ba_Fy Cieated in i the work. Name [Header] Urirked Anither NonFelsn DB wri
= [Simeic 57300 - =
- [l sonsPsn-atoa2 = FE1000 Furction Block vee 272472010 03553
=& 57 Frogiamil) = FB1on LheneraFunc FED 622 Funchon Bk 10 GonFu veo DVI/2008 (8 360 L
& Sovces = FB1002 LhodeSelector FED 3712 Function Block. 10 ModsSel veo DVIVANBIEIET - [
o S FB1003 LPioduchonMode. FED 2606 Funchon Block. 10 ProdMode v 05/21/2009 4 11:2 02
S FB1008 Liner ED 208 Function Bhok 10 TimeiON vee /272008 03 240 e
= FB1100 LTl FED 36 Function Bhok 10 Tin vie 11472008 08 480 wns
= 10 LTiDu FED 022 Furion Block 10 T vee UDT/Z008 5k @
= 102 UfovFrczPos FED 1370 Furion Block 10 LFra2Pos vie /232008 01 252 s
G FB1108 LTogge FBD 86 Funchon Block o1 LTogge v 05/21/2008 W 10:2 wns
5 FB105 LDanlossDP FED 640 Furwion Block 10 DerlesdP vt Wz m2s war
3 FB1306 LMoten2/25 DDP FBD 2072 Funchon Block. 10 M2WZS 00 o - /08/2008 10365 it
& FB1310 L2SIepPos: FBD 478 Funchion Block. Lixs L2SIpPos o - 08N 2/2008 10263 - s
G FE1400 LT dwioed FED 186 Funcion Block. 10 AT WL - - 1A8/2007 00531, - 1AL
@ FE142E LAlambubin FBD 318 Funcion Block. 10 Tiklarm VL - - LE/04/2009 07 022 - [t
@ FEI51S LAalei2w25-D0P FBD 6254 Funcion Block. 10 Danoss VL - - LEV28/2009 07.01:1. - [t
@ FE1600 LAabABE FBD 4156 Funcion Block. 16 Flobtgd VL - - L5/20/2009 5 420 - [0
€ FB1606 LAabSid FBD 604 Funcion Block. 20 FobSin wiL - - U5/29/2009 0 082 - [t
@ FE16T1 LMovire 2oz FBD 2736 Functon Block. al Mev2Unt L= - - TIAE/2008 (3 492 - [0
@ FC300 5100 STL 6250 Functon a0 - - V062010 01223 - (=0
@ fcm 100 Mods =N 280 Furcien a Loca vt - - RN 2. - Caner;
@ Fos 101 =N 208 furcien a0 - - 0N 2. - Caner;
@ fon 15 =N 208 furcion a0 - - 0N 2. - Caner;
@ fom 106 =N 208 furcion a0 - - N2 - Cansr;
o fm Abal72NFC sn @2 furcion 0 - 00 223 Cansr;
@ foo Fcbil7 2326 sn 92 furcion 0 - 00 223 cansr;
e Fibal7213FC sn 92 Furcion 0 - 00 223 canss;
@ Frion LiTowad oD 176 Furcion 10 Sz s 1271672006 07 042 o
= oo LwordTcgi oD 176 Furcion 10 WondzBh s 121672008 07075 s
= Frion LCompleiérim FED 19 Furcicn 10 Gl vt 0117200812383 wnz
= Frios LSimpltarim ED 190 Furcicn 10 Stérim vee 0117200812383 wns
= Frion URaleiCoriy ED 176 Furcicn 10 B vee T&1/2009 12180 e
= Foims Ututiéim ED 19 Furcicn 10 MulSéim vee D007 01 5 s
5 Frism LRotPignFlee ED 816 Furicn 10 Robfite vee ENV07 12045 e
=081 _3EEPL 0B 40 DataBlock o DV0E/2010 1 223 08/
@ D820 _INTLE 0B 3% DataBlock a0 - [EV06/2010 01223 8/06/
S 08300 51 0B 232 DataBlock a0 [EV06/2010 01223 806/
@ 0830 _5100_Modes: 0B 66 DataBlock a Cantrol ot TEV06/2010 01223 S/0es

A11 Generating pictures to WinCC flexible
To be able to generate WinCC flexible screens a successful generation of the PLC code must be made
first.

1. Open the WinCC flexible generator: The WinCC flexible generator can be found either in the
symbol bar or in the menu bar under Generators.

HMI [=3835PLSODOHMIOL HMI @ X

A-23

3. Alist with all objects that have a WinCC flexible screen will appear. Generate all should be

selected.

* Include all relevant unit layouts for the selected HMI
Select unit layout

7 Not set

m X

® Generate all
Generate selectively

Owerview screens for unit parts

[=1=3835PLPTL.01-05 Assign HMI Level 1 (Start Screen)
> [El=3835PLPTLOI-06 Assign HMI Level 2

Detail screens

=3835PL-5100 ModeZone
3835PL-5100=15-38-100-101 Roller2W2S-DDP
3835PL-S100=15-38-100-72-31-000 ABB Robot

"}, =3835PL-S100=15-38-100-72-32-000 ABB Robot
1 =3835PL-5100=15-38-110-111 Roller?W2S-DDP

=3835PL-5100=15-38-110-112 Tumtable

=3839PL-S100=15-38-110-113 Tumtable

3835PL-5100=15-38-110-72-33-000 ABB Robot
3835PL-5100=15-38-110-72-34-000 ABE Robot
“},=3835PL-5100=15-38-110-72-35-000 ABB Robot
"}, =3835PL-S100=15-38-110-72-36-000 ABB Robot
1 =3835PL-5100=15-38-120-121 Roller?W2S-DDP
“},=3835PL-5100=15-38-120-72-37-000 ABB Robot
"}, =3835PL-S100=15-38-120-72-38-000 ABB Robot
"}, =3835PL-S100=15-38-120-72-39-000 ABB Robot
“},=3835PL-5100=15-38-120-72-40-000 ABB Robot

4. The next step is to decide the generated images distance for the edges and each other.

Properties of the overview screens

Screen padding (pixel) Distance between screen elements {pixel)

Top I &0 Horizontal | 20

Left | 50 Right|120 Vertical |2|}
Bottom IE{?

5. Select a destination to save the exported XML-file.
Save as

Please enter the path and file name in which the generated WinCC fleable project datz is to be stored.

|2:‘-,C\Dc-:umenlr. and SettingsiChalmers\My Documents\Mikael & ErkWin ...

6. Press start to generate the HMI screens.
Start

A-24

=g

<<

7. You will get a warning message that the ModeZone object is missing a detail level screen.
Ignore this warning.

=10l x|

Generation completed with warnings

<< Details Close
@ 0 Errors [|A 2 Warnings || 0 Massages
Description Source Position
A The XML data is not set or is empty. Hierarchy level: Detail level =3835PL-5100
A The XML data for the hierarchy level ‘Detail level’ is empty. Resource: 3835PL|S100 ModeZone

A-25

Appendix B

This appendix will describe how you can create a base object and a template inside Automation
Designer. Remember that this can only be done if you are in the base project of Automation Designer,

not the engineering project.

B.1 Creating a base object.

1. Open the base project and go to the base objects tab in the navigation tree.

=] Locations“[ﬂ DDcuments"[Z] Unil5|

2. Navigate to the position in the navigation tree where you want to create your new base object.
Right click and select New -> New base object.

= @00 Vohio Project

= T3 02 Components
", 001 Robots

D04 Other

= @ Test » SO1 Base project

002 Turntables
L, 003 Conveyors

T3 01 Units for Violvo Project

&= 03 Miscellaneou

¥

-

6 @01 Material
=¥ @02 General objects
FS @03 Structures
@10 @Y Atribute
[PE @1PE Process engin
T @30 Don't delete

T3 @Catalog Discipline

X

by
IK
IE]

Delete

Cut

Copy

Paste

Move

Copy structure

‘ Mew document

= New base object |

News guery 4
l Mew standard import »

3. The newly created base object will inherit its unset properties from its parent base object. It is
also possible for the new object to inherit its properties from other objects in the base project.

B-1

This is done by assigning the desired base object as a reference.

[system | System setings | Attributes | Elements | Connectors | Symbols | Script | Usage | Inheritance sources | Configuration

General
Class |evice v| X sudass [(none) X &5
@ &

Name | | | ||| | [todked (V] Chack
Label | | | Jil| | [iocked (V] Check
Description | other components | [Loked
Reference Miscellaneous

Visible for all users

Working area

=55 ot set Al | .. | B

Template
| TNt set @ . X
Object behavior Creation option Creation mode
[| Define run cases X @A
(| Folder) Eements
Doy | et O pimsraeerrs R
Status
X

4. The naming conventions for the base are set in the system tab. To access the syntax options for
naming rules press the “1” button. It is also possible to set names by scripts in the script tab.

General
Class | Device 1r| > Subclass |(None) T| b Al -

@ &
Narme | | |\t\E\E\t<9*>®r.E51:1 | | [Logked [¥] Check
Label | | | il || [Locked [¥] check
Description | Gther components | [Locked

B-2

5. To add new attributes to your base object go to the attributes tab. Right click anywhere in the
window and select Design mode.

Assign CPU | L X

Group label | |

38 pesignmode |

6. To add anew attribute right click and select New -> Attribute

| |
| |
| |
| |

ey e =

Group label | |

X| Delete I Tzh

Paste
Al attributes 3
Refresh

2
iiil Properties

7.

10.
11.

In the new window that appears you can fill in the details about the attribute. In the scripts tab
scripts can be added for manipulating the attribute.

) Test; Tutorial attribute =10l %]) Test; Tutorial attribute -0 =]
Gene'dLhk[Suipt[Hdp[Um [Gemra![th:Sa"ltHdp[UBE
o
Type of display Edit field v X Cases Script functions of attributes <@00|02|004]|SYS| >
Description | Tutorial attribute | | (M= |Functions
4 [] Sub OnChange()
Name |T‘-'5t | — . .
| Function IsValueValid(ValueStr)
Value | hd | O Sub OnChangeOther()
Decimal digits | I U Sub OnEdit()
L Function FilterRow(StdTablte
Formatting digits | | — O on FiterRow(StdTabitem)
| | [ra O Sub FillComboList(Combobox)
el o
Format d O Function GetlinkedSpecification()
Length | | O Function GetDisplayValue()
Unit X O Function GetDisplayXValue{Index)
Type Ii = | x| g Sub OnSaveDone(savedAtiribute)
Sub BeforeChedk(checkObject)
Standard table] - X 0 " ScriptBlockParameter
Working area |A‘| | - [} " UserScriptBlock1
Edit mode | Edlitable - normal v | X || O " UserScriptBlock2
Catalog attribute | Mot set %| X — L UserSariptBlodks
o) |None v | x O " UserScriptBlock4
Engineering object status [" UserSariptBlocks
Enginzering object - status value |None v | X[O " UserScriptBlocks
Inheritance mode |“\‘-‘f“"a v | | " UserScriptBlock?
| ' UserScriptBlocks
| " UserScriptBlock

Press confirm to save the changes.

Right click and select working mode to leave the desigh mode.
|# working mode |
MNew 3
Delete

Cut

Copy

Paste

All atinbutes J
Refresh

o 0o X e

K B

Properties

Open the Elements tab.

In the element tab we can add actions that we want to be able to perform on the object. The
actions are later performed by eBlocks in the templates. We can also add devices that we want
to have available when right clicking on the object. The items with a black arrow in the name

B-4

column are inherited from a parent object.

Name | Description |Class Subcass Virtual | Dereference | Base ohject
02 Clamp Device |(MNaone) N-times No -] 2]004]02

W BsA. | Assige HMT Level 1 (Start Soreel Acion (None) N-imes No B @o0lo2BsA
W oBSE | Assign HMT Level 2 Acton (Mone) N-times | No B @00|02!ESB
W oBsC | Assign HMT Level 3 Acton (Mone) N-times | No B @o0l021EsC
W Bs_ Assign HMT Acton (Mone) N-times | No A 21BS
¥ BUs Assin bus Acton (Mone) N-times | No A 21BUS
¥ cru Assign AL Acton (Mone) N-times | No B @oolozicry
¥ 10 Assign I/0-Hardware Acton (Mone) N-times | No B @oolo2110
W e Assign safely area Action (None) N-imes No B @o0lo2!sB

12. In the script tab there is the possibility to add scripts for different occasions.

] 01 Other components:

[}

Script functions of base object <@00[02100401>

| Implemented | Functions A

Sub DisConnect(Connector)

[m]

] Sub OnDocObjCreate{DocObj)
O Sub OnDocokj Obi)
[m]

[l

Function OnEGitok()

Coinetinn nbnnusentf o Canted

B.2 Creating a template.
1. Inyour base project, open the units tab in the navigation tree.

= @ Voho » SO1 Base project
&5 @AT Automation Tres
= [X] @Template Templates
C ADC Automation Designer
4 EIC Elacirical-, measuring and control engineering
= £ Voo Volvo templates
£ 01 Units
€3 02 Components
£5 04 57 Programs
£ 05 WinCC Flexible
5 06 Electricals
£ 07 Basic
4% USERS User administration

] Localinnsll Dor:umems"[Z] Unils”ﬁ Base ub]a:ls"@ Automation Tree

B-6

2. Navigate to where you want to create your new template. Right click and select New -> ADT
Facet template.

m w@.ﬂ"ll Auonigusg ee
= [X] @Template Templates
CF ADC Automation Designer
2 EIC Electrical-, measuring and control enginesring
= £ Voo Volvo templates
® 2301 Units
= £3 02 Components
3001 Robots
[3 002 Turntables

STR Template cbject with assembly script

H 401 Un !

= 02 Cof

A CH 05 Wincg

Cf 06 Electi

® Cf 07 Basic

9 USERS User admi

Paste link

MNavigate

A

e b [
Description | Tutorial templatel | Fotder O
Base object (@ @02/010[D]01IADT Facet template & -

4. To add base objects to your template just copy or drag them to your new template in the
navigation tree. All attributes for the added base object can be changed so they have a unique

B-7

configuration for the current template.

File \iew Administrator Documents Generators Exira Plugins Help

@0 GIHS ey BPAFHE BRMv2 222

= @ Test » SO1 Base project
= O @00 Volvo Project
v £3 01 Units for Voivo Praject
= @ Test » SO1 Base project = 3,02 Companents

@ @AT Automation Trea ", 001 Robots
= (X @Template Templates 002 Turntables
£3 ADC Automation Designer , 003 Conveyors
£ EIC Electrical-, measuring and control engineering =, 004 Other components
= £ Voo Vaolvo templates & 02 Clamp
3 01 Units =03 Miscellaneous
= £J 02 Components % @01 Material
5 001 Robots =3 @02 General objects
£ 002 Turntables fS @03 Structures
£ 002 Conveyors @10 @Y Attribute catalog
= 1004 Other components PE @1PE Process engineering
b TO1 Clamp (LMoveUnit2Pos) 1 @30 Don't delete
GhTOZ 4 Clamps (LMovelnit2Pos) T3 @Catalog Discipline independent standard catalogs
= igh TO3 Tutorial template FIR @CBO Maintenance
=1 camp 3 @ISO Isometry
= Cf 04 S7 Programs i @ Project
[£ 01 Units fi @L Locations
£3 02 Components _, @Motionx
£3 05 WinCC Flexible BE @0 Documents

5. eBlocks are used to perform actions in a template. A list of available eBlocks can be found by
right clicking on the template object and select New -> Actions.

1+ i 101 Ulamp (LMoveUnit2Hos) [RI' ADC Automahion Designer
&Tﬂ2 4 Clamps (LMovelnit2Pos) BAS BAS General structures
(=) (h TO3 Tutarial | % & EIC Electrical-, measuring and contral engineering
=1 ||§IE New ’| 2 General » | FOS FDS Fluidics
= @04 57 Progr)X Delete [B A Adions v B o1 strucure ,
£501 Units
1 cut »
S0 com Ho 0 F Facets . H 02 Model »
505 wince F| | Copy BA PTL.OI? Unitlayout B 03 Area ,
Qi 06 Electrical El =B 04 copyin v| B Ecot copy basic templates
3 07 Basic | -
) 05 HW-interface 3
&7 USERS User admini :) | § EsoL Copy S7 facet
Copy structure B | 07 swinterface »| B | ESDDI Copy Sequence Designer structure template
B B | 08 Hierarchical Assemblies » | B | ET01 Copy ET facet
<= Navigate » B | 09 HMIScreen Hierarchy » | | Ewo1 Copy WincC flexible facet
= B 51 Subactions 3
© | Working layers/History » 002 Tumtables

6. After adding a eBlock it must be moved so it is below the resource object in the hierarchy. To
move an objet hold Ctrl and drag the object to its new position.

e e e

=] QTEB Tutorial template
= @1 Clamp
B ESOl Copy 57 facet
£3 04 S7 Programs

R

7. Open the properties for the eBlock.
8. An eBlock needs a source object. By default this will be the parent object. It is also possible to
set the target object. In the example below we want to add a folder with S7-code. To assign

B-8

target template for this press the button with three dots.

=(@Template Moho.02.004.T03-1 | ESD1 Copy S7 facet

S T .

Description Capy 57 facet | Folder O

General Elements | Connectors | Status

System data | Layout
General
Order |Ct:py.$?!ém‘.‘ |
Function |Mm M | [] Undo task at copy
Detail area | Tempisie search v Undo task at delete
Reference- and destination object
Source ob]'eds| | - X A Source default |:|
Template | | v X A Target default |:|
Master action | | v X A
Detail area
Standard tzhle | - | ["] Create new objects for implementation
Base object for new destination | L X
Root-object for target search | d:>(A
Funktion

|| Active for hierarchical assemblies

Execute task
Result [status

9. Navigate to an appropriate template and press OK.
oot-object for target search seleck: - |EI|5|

S e e e e

Heq External documents
{8 @AT Automation Tres
= [@Template Templates
£3 ADC Automation Designer
£ EIC Electrical-, measuring and control engineering
= £f Voho Volvo templates
€3 01 Units
1 02 Components
= £ 04 S7 Programs
€101 Units
= £3 02 Components
£3 01 Robots
702 Turntables
1 03 Conveyors
1 04 Other components
(p TO1 Clamp 57 facat
£3 05 WinCC Flexible
€3 06 Electricals
€3 07 Basic

0®E BB

BB B

Selection: |ﬂ =@Template.Volvo.04.02.04.T01 Clamp S?|>(

10. When the eBlock is executedin the engineering project the selected template will be copied in.

Detail area
Standard table | v | [Create new objects for implementation
Base object for new destination | | . XK
Root-object for target search |damp 57 facet |E X &

11. Press OK to save

o oK

S

B-10

