


School of Electrical and Computer Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
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Abstract

The propagation of optical beams and pulses under the influence of nonlinear e↵ects is
characterized by a rich variety of phenomena and many potentially important applica-
tions. We analyse two main topics in this context: nonlinear beam propagation, and
nonlinear pulse propagation in optical fibers.

The propagation of an optical beam is characterized by di↵ractive broadening. For Kerr-
media, in which the refractive index increases with beam intensity, at a certain intensity,
the beam may induce its own waveguide and propagate without broadening. For higher
intensities, the nonlinearly induced refractive index causes self-focusing and in some cases
even collapsing singularities. We demonstrate in this work that an analytical variational
approach describes the dynamics of nonlinear beam propagation very well, in particular
with respect to the phase modulation dynamics, which previous approaches are found
to describe erroneously. The collapse can be removed by allowing the refractive index
to saturate. Beam dynamics in saturable nonlinear media is therefore an important is-
sue. Using the variational method, we manage to reproduce the essential features from
numerical simulations, and to give a complete picture of optical beam dynamics in sat-
urable nonlinear media. Another important e↵ect in nolinear media is the modulational
instability, which is well-known to break up broad beams into filaments. However, this
instability can occur only in nonlinear focusing media. Considering a pulsed beam with a
defocusing-in-time and focusing-in-space nonlinearity, we show that temporal breakup is
possible due to the spatial instability, despite the fact that a purely temporal modulation
is stable.

Pulse propagation in optical fibers is strongly a↵ected by nonlinear e↵ects for pulse dura-
tions around 10 ps and power levels around 0.1 W. In particular, the dispersive broadening
of a pulse is enhanced in the normal dispersion regime of the fiber, and reduced in the
anomalous dispersion regime. In the normal dispersion regime, the enhanced pulse broad-
ening leads to wave breaking, which is steepening with subsequent oscillations in the pulse
wings. We show in this work that some pulse shapes may be wave breaking free, i.e. prop-
agate in a self-similar manner without change of shape. For anomalous dispersion, the
nonlinearity can eliminate the dispersive broadening and create stable, non-broadening
pulses, solitons. In this thesis we carry out the first systematic investigation of solitons
perturbed by fourth-order dispersion (4OD), which is important for short pulses at par-
ticular carrier wavelengths. For positive 4OD, we find solitons to be unstable and to
decay due to radiation. For negative 4OD, we demonstrate the existence of a new class
of stable, soliton-like states. For the kind of short (subpicosecond) pulses which are im-
portant in this context, the Raman e↵ect, which downshifts the soliton spectrum, cannot
be neglected. In an investigation of the simultaneous action of positive 4OD and Raman
downshift, we analyse a new pulse compression scheme, which in recent experiments was
used to compress optical pulses from 95 to 55 fs.
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Chapter 1

Introduction

1.1 Nonlinear optics and self-action phenomena - phys-
ical and historical background

The invention of the laser in the late 1950’s opened up the field of nonlinear optics. Before
this technological breakthrough, coherent optical radiation sources were rather limited.
However, with the laser came a source capable of producing intense monochromatic light.
As a result, intensity dependent, i.e. nonlinear, optical phenomena could be investigated
systematically. The first nonlinear optical experiment was carried out in 1961 by Franken
et al. [1], and demonstrated second harmonic generation. Together with the theory by
Bloembergen [2] and others, this marks the birth of nonlinear optical physics.

Similarly to other fields of nonlinear physics, nonlinear optics is characterized by a vari-
ety of complex phenomena; e.g. chaos, turbulence, shock-waves, solitons and instabilities.
All such e↵ects are generated via the interaction between optical waves and a nonlinear
medium. An understanding of nonlinear optical processes involves two questions: i) how
does the electromagnetic field a↵ect the medium, and ii) how is the field a↵ected by the
medium response. Mathematically, stage i) is modelled through the constitutive relations
between the electromagnetic fields, and stage ii) is described by Maxwell’s equations.
In order to significantly alter the properties of the medium, an intense optical wave, a
“pump”, is required. A weaker wave, a “probe”, is then used to measure the medium re-
sponse. If the two interacting waves have di↵erent frequencies, power can be transferred
between them, and this forms the basis for the stimulated scattering- and parametric
processes. Harmonic generation, like that Franken observed in the first nonlinear optical
experiment, belongs to this class of phenomena, which has widespread applicability in e.g.
optical amplifiers. The degenerate case, when the pumping wave a↵ects itself through the
nonlinear response of the medium is commonly denoted as self-action phenomena. Those
phenomena are the main issue of this thesis.

The optical self-action e↵ects are most easily described through a weakly intensity depen-
dent refractive index. It was observed already by Kerr 1875 [3] that a stationary electric
field could a↵ect the refractive index of a material. This is known as the electrooptic- or
Kerr-e↵ect. Even prior to the development of the laser, it was pointed out by Buckingham
[4] that the Kerr-e↵ect could be generalized to AC-fields, and in particular, an intense
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beam could induce its own birefringence via this e↵ect. A more rigorous theory was given
by Maker and Terhune 1964 [5]. Several phenomena can arise due to an intensity depen-
dence of the refractive index. The earliest examples were induced birefringence, leading
to rotation of the polarization ellipse of the wave, and the self-focusing phenomenon. The
latter is a crucial concept for this thesis, and is briefly explained below. A refractive
index that increases with the optical intensity will cause a lower light-velocity in the cen-
tral, high-intensity parts of a beam than in the beam wings. This will make the beam
focus, and since it is the beam itself that causes the focusing e↵ect, the phenomenon is
known as self-focusing. Similarly, a medium in which the refractive index decreases with
intensity is found to boost the di↵ractive spreading of an intense beam via self-defocusing.

The idea that the nonlinear response of a medium could prevent the di↵ractive spreading
of an optical beam was originally suggested in 1962 by Askaryan [6]. Independently of
this, Chiao, Garmire and Townes published the “landmark paper” on optical self-focusing
1964 [7]. They demonstrated a useful theory for the static self-focusing of optical beams,
the so called self-trapping phenomenon. In the self-trapped state, the nonlinear focusing
exactly balances the di↵ractive spreading, thus forming a non-spreading beam, trapped
by itself. In waveguide theory, one would say that the beam is a mode of the waveguide
it induces. A dynamic picture of the self-focusing process for cylindrical beams was soon
suggested by Kelly [8], and it showed the inherent instability of the cylindrically self-
trapped state. A small perturbation of the beam power would lead to either di↵ractive
spreading, or a runaway self-focusing process, the so called optical collapse.

The early experimental results both agreed and disagreed with these findings. Hercher
[9] observed optical collapse with subsequent material damage, prior to the theoretical
explanations in 1964. In fact, the first application of the self-focusing theory was to avoid
material damage caused by the collapse. Several experimental features were unexplaind,
however. For instance, the experiments showed that the self-focusing of a broad beam,
⇠ 100µm in diameter, led to beam break-up and formation of stable filaments of the order
of a wavelength in width, which showed no collapsing instability. This stable feature could
be explained by allowing the refractive index to saturate at high intensities [10]. Thus the
filaments could be explained as self-trapped beams in a saturable nonlinear medium. The
beam break-up phenomenon was explained by Bespalov and Talanov [11] 1966. Using
linear stability analysis, they showed that the plane-wave solution in a nonlinear medium
under certain circumstances is unstable to transverse modulations. In fluid mechanics,
the same kind of instability was discovered simultaneously by Benjamin and Feir [12],
were it is known as the Benjamin-Feir instability. In a nonlinear optical context it is
commonly denoted as modulation instability, and its relation to the filamentation process
was experimentally verified 1973 by Campillo et al. [13]. Another important e↵ect that
was found to accompany pulsed self-focusing was self-phase modulation, which manifests
itself as strong spectral broadening of the self-trapped filaments [14].

It should be stressed that an immense amount of research was devoted to self-focusing
during the latter half of the sixties, and the above is only a brief selection of some im-
portant result. One should also emphasize that the self-focusing scenario outlined above
is not valid for all media. In fact a wide variety of e↵ects (e.g. stimulated scattering pro-
cesses, dielectric breakdown, etc.) can occur due to the intense fields that self-focusing

4



give rise to. Strong sensitivity to inhomogeneities in the initial beams was also found in
several experiments. Here we focus on the e↵ects that arise due to the intensity-dependent
refractive index only. It is worth emphasizing that a lot of the self-focusing features can
be explained in terms of the simple model of a nonlinear refractive index.

1.2 The technological developments

Parallelling the previously mentioned developments was the breakthrough in the fabrica-
tion of low-loss optical fiber waveguides in the beginning of the 1970’s [15]. As a result of
this, optical fibers became a realistic alternative for signal transmission. An unexpected
consequence was that low-loss fibers themselves was found to be a proper medium for
the generation and observation of nonlinear phenomena, e.g. stimulated Brillouin- and
Raman scattering [16], and self-phase modulation [17].

As transmission lines, optical fibers have many advantages over the conventional coaxial
cable; higher bandwidth (by several orders of magnitude) and insensitivity to noisy en-
vironments are some examples. Fibers are therefore mostly considered for transmission
line purposes, and have had a large impact on telecommunications. However, signal dis-
torsions due to fiber dispersion were early recognized to limit the information carrying
capacity [18]. The dispersion causes di↵erent frequencies to propagate with di↵erent ve-
locities, thereby giving rise to pulse broadening. From a mathematical point of view, the
dispersive broadening of a pulse is equivalent with the di↵ractive broadening of a beam.
Thus, if the nonlinear refractive index can prevent di↵ractive brodening, (as in the self-
focusing process), it can be used to counteract the dispersive pulse broadening in fibers as
well. This simple but ingenious idea was proposed by Hasegawa and Tappert 1973 [19].
However, there are two important di↵erences from the previously studied self-focusing.
Firstly, the dispersive broadening in a fiber is a one-dimensional phenomenon, contrary
to the cylindrical self-focusing process which occurs in two transverse dimensions. When
this di↵erence was investigated in detail, it was found to remove the collapsing instabil-
ity. Moreover, the stationary, non-broadening pulse solutions was found to be very stable
against almost any kind of perturbation. The particle-like behaviour of such pulses has
given them the name solitons. The second di↵erence between di↵ractive and dispersive
broadening is that the fiber dispersion can have either sign; i.e. be either normal, or
anomalous. It was found that bright solitons can be obtained only in the anomalous
dispersion regime, which for fibers correspond to carrier wavelengths above 1.3 microns.
Unfortunately, in the beginning of the seventies there were no lasers that could produce
high enough intensity at those wavelengths, and the optical solitons seemed to be theo-
retically interesting, but of no practical value.

Nonlinear optical experiments is a branch of research that greatly relies on technological
advances. New materials and lasers can create new and previously unexpected fields of
research. On the other hand, theoretical ideas may be impossible to realise because of the
lack of suitable equipment. This is the reason why it took seven years until the proper
lasers were available to create optical soliton pulses in fibers. In a beautiful experiment
1980, Mollenauer, Stolen and Gordon [20] gave the optical soliton its experimental ver-
ification. The importance of this experiment is hard to overrate, since it proved that
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solitons were not just of academical interest as claimed by several sceptics. And indeed,
the research in nonlinear optics and nonlinear waveguides increased tremendously during
the eighties, especially with respect to optical solitons [21].

Another important application of the self-phase modulation e↵ect in fibers is in optical
pulse-compressors [22, 23]. By using a fiber in the normal dispersion regime, followed by
a linear anomalously dispersive delay line, pulses have been compressed down to 6 fs [24].
Such short pulses contain only three optical cycles, and are spectrally “superbroadened”
by the nonlinear self-phase modulation. There are promising applications is in e.g. spec-
troscopy and ultrafast measurements for these pulses.

The research on fiber-optical communication systems today is aimed towards extremely
high bit-rates, of the order of 10-100 Gbits/s. At those time scales (picoseconds and be-
low), electronic switching and modulation concepts are not fast enough, and all-optical
switching methods, based on nonlinear self-action e↵ects are promising alternatives [25].
Although the loss in today’s fibers is very low (⇠ 0.3 dB/km), the optical signal still
needs to be regenerated every 10-100 km. Optical amplifiers are therefore an essential
device in long-distance fiber-optical communication systems. A particularly important
recent development was the Erbium-doped fiber amplifier (EDFA) [26]. The EDFA:s have
several advantages over conventional fiber amplifiers; e.g. polarization insensitivity, high
gain, and low noise. They are therefore the likely choice in future optical communication
systems.

1.3 Mathematical developments

The crucial di↵erence between linear and nonlinear phenomena is that the superposition
principle does not apply to nonlinear systems. Thus, for a nonlinear system, a sum of
two solutions is not a solution itself. From a mathematical point of view this implies
that the traditional means of solving partial di↵erential equations, i.e. by expansion in
Fourier sums, are not applicable to nonlinear equations. In fact there are no known, gen-
eral analytical methods for finding solutions to nonlinear partial di↵erential equations.
Consequently, prior to the 1950’s there was a rather limited knowledge of the rich dy-
namics embedded in seemingly simple nonlinear equations. However, the development of
the computer changed this drastically. From the beginning of the sixties and onwards,
computer simulations have become an important tool in physics.

Not only numerical simulations, but also the analytical theory of nonlinear equations
made important progress in the sixties. An analytical breakthrough came in 1967 when
Gardner, Greene, Kruskal and Miura [27] demonstrated an exact analytical method of
solving the initial value problem for the nonlinear Korteweg-de Vries (KdV) equation.
Prior to this, Zabusky and Kruskal [28] had discovered stationary, pulse-like solutions to
the KdV equation. These pulse-like solutions had remarkable stability properties; two
initially well-separated pulses could collide, interact nonlinearly, and emerge intact after
the interaction. Thus, in this nonlinear system it seemed possible to superpose two sepa-
rate solutions, despite the fact that the superposition principle is not valid! Zabusky and
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Kruskal suggested the name solitons to these special solutions, due to their particle-like
means of interaction. In the exact solution technique for the KdV equation that was
later devised [27], the soliton solutions play a crucial role, somewhat analogous to the
eigenfunctions of linear systems. The method is based on the fact that the eigenvalues of
a certain scattering problem remain constant if the scattering potential function satifies
the KdV equation. Furthermore, the solution to the KdV equation requires the recon-
struction of the scattering potential from the scattering data. This important physical
problem, the inverse scattering problem, had been solved a decade earlier by Gelfand, Lev-
itan, Marchenko and others [29]. The ingenious way of solving nonlinear equations via
linear scattering problems is somewhat analogous to the conventional Fourier transform,
and the technique is commonly known as the inverse scattering transform (IST).

Further progress was made 1972 in an important paper by Zhakarov and Shabat [30],
which demonstrated how the inverse scattering transform could be applied to another
nonlinear partial di↵erential equation, the nonlinear Schrödinger (NLS) equation. This
equation is of particular importance in nonlinear optics, because it is the NLS equation
and modifications of it that govern the self-action e↵ects, including the formation of opti-
cal solitons in fibers. An important finding in the work by Zakharov and Shabat was that
the light in a lossless optical fiber always can be decomposed into a stationary soliton
part, and a radiation part that disperses away at long distances.

Despite its theoretical beauty, the IST su↵ers from two practical drawbacks. Firstly, it
can be applied only to a limited number of equations. Modifications of these equations
with e.g. additional terms of physical importance cannot be treated exactly. Secondly,
the exact solutions that are obtainable are often very complicated and not very explicit.
In fact, the only localized, exact solutions that are available are the soliton solutions.
There is thus need for other approximate, analytical methods for solving the nonlin-
ear partial di↵erential equations that describe the self-action e↵ects. During the sixties
and seventies, several such schemes were proposed. The first approximate method, the
“paraxial-ray approximation” were suggested by Wagner et al. 1968 [31], and are based
on a Taylor expansion of the transverse profile. A moment theory for these equations were
demonstrated by Zakharov 1972 [32] and by Lam et al. 1975 [33]. A variational approach
was suggsted for the static self-trapping equation [34], and for the dynamic self-focusing
problem by Tzoar et al. [35], and Anderson et al. [36].

1.4 The present thesis

Above, we have discussed nonlinear optical e↵ects from a fundamental physical point of
view, but we have also stressed that there are many potentially important applications for
nonlinear optics; especially in high-bandwidth communication systems. There is obviously
a great need for convenient mathematical models to aid experimentalists and engineers.
In the present work, we put special emphasis on analytical results and methods, be-
cause of their general applicability. Numerical computations are also used, both to check
analytical results, and to demonstrate phenomena beyond the reach of analytical investi-
gations. The thesis is separated into two di↵erent parts; one dealing with the nonlinear
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propagation of beams, and one dealing with ultrashort pulse propagation in optical fibers.

In the case of nonlinear beams, we reexamine the self-focusing dynamics in bulk media
(paper A) and graded-index waveguides (papers B-C). Self-focusing governed by a sat-
urable nonlinearity is considered in paper D. Our analytical tool in these works is the
variational method. In particular, with respect to the self-phase modulation dynamics,
we find it to be more accurate than other analytical approaches. The results in these
papers are explicit and useful for potential applications of nonlinear beams in e.g. switch-
ing and modulation schemes. In paper E, we predict and examine the dynamics of the
modulational instability of a pulsed beam at normal dispersion. Despite the stability nor-
mally associated with normal dispersion, we show that the spatial instability may boost
a spatio-temporal beam-pulse breakup.

The analyses of nonlinear pulse propagation cover two e↵ects. One is the phenomenon of
wave breaking of pulses in normally-dispersive fibers. This e↵ect arises when the dispersive
pulse broadening is nonlinearly enhanced. Due to this, the pulse will change shape during
propagation, and acquire steep, ringing edges. The e↵ect is commonly denoted optical
wave breaking since it resembles the breaking of water waves. We demonstrate in paper
F that wave-breaking-free pulses can exist, i.e. pulses that do not change shape during
propagation. Due to their self-similar properties, such pulses may be of great importance
in nonlinear pulse compression systems.

The e↵ect of fourth-order dispersion (4OD) on optical soliton propagation has not been
investigated previously. In papers G and H we discuss under which circumstances 4OD
can be important, and how it a↵ects optical solitons. By considering the simultaneous
action of 4OD with the Raman downshift in an optical fiber, we also predict a novel pulse
compression method (paper I).

This thesis is organized as follows: Chapter one provides an introduction to the field and
present some historically important developments with respect to this work. Chapters
two and three present derivations of the basic propagation equations for nonlinear beam-
and pulse propagation, respectively. Nonlinear beam propagation is then discussed from
a phenomenological point of view in chapter four, and papers A-E are put in their proper
context. Chapter five is devoted to the important question of stability of nonlinear optical
waves, and presents paper E. Chapter six discusses nonlinear pulse propagation in fibers,
and provides the framework for papers F-I. Finally, the papers included in the thesis
follow.
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Chapter 2

Nonlinear beam propagation - the
physical framework

2.1 Maxwell’s equations

The evolution in time and space of the electric field E(r,t) (V m�1) of an optical beam is
governed by Maxwells equations, which in the absence of free currents and charges read

r⇥ E(r, t) = �@B(r, t)

@t
r · D(r, t) = 0

r⇥H(r, t) =
@D(r, t)

@t
r · B(r, t) = 0. (2.1)

Where B, H denote the usual magntic fields, and D the displacement field. Eliminating
the H field using the constitutive relations D = ✏0E + P = ✏E and B = µ0H + M, and
assuming no magnetisation (i.e. M=0), yields the wave equation

r⇥r⇥ E(r, t) +
1

c2

@2E(r, t)

@t2
+ µ0

@2P(r, t)

@t2
= 0, (2.2)

where P(r,t) (Cm�2) is the induced polarisation. The first term in Eq. (2.2) can be
approximated as

r⇥r⇥ E(r, t) = r(r · E)�r2E ⇡ �r2E, (2.3)

i.e. it can be set equal to �r2E provided |r(r · E)| = |r(E · r✏/✏)| ⌧ |r2E|. The
physical meaning of this requirement is that the beam is weakly guided [1, 2, 3], and this
approximation is also known as the weakly guiding approximation. It has been made in
the vast majority of the nonlinear optics literature, and we will adopt it here as well.

In order to find an equation governing the envelope of the electric field E, we need an
additional relation between E and the induced polarisation P. The polarisation field can
be seen as a macroscopic sum of the response of individual molecules and atoms to an
applied electric field. In general, this response is a complicated nonlinear tensor relation,
involving dependencies on both frequency and spatial coordinates. A quantum mechanical
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approach [4, 5, 6] is needed if all features are to be examined in detail. We avoid this by
making two simplifying assumptions. Firstly, we divide the polarisation into a linear and
a nonlinear (in E) part, where only the linear part may have an explicit dependence on
spatial coordinates. Thus we can write (using tensor notation)

P̃i(r,!,E) ⌘ P̃L
i (r,!,E) + P̃NL

i (!,E). (2.4)

The tilde notation indicates the Fourier transform, i.e.

Ẽ(r,!) =
Z +1

�1
E(r, t) exp[�i!t]dt. (2.5)

The function relating the induced polarisation to the electric field is the susceptibility,
�. It is customary to expand the susceptibility in its di↵erent nonlinear terms, where
the n:th suscebtibility �̃n

1...(n+1)(!1, ...,!n) is a tensor of rank n+1 and (in the frequency
domain) a function of n frequency variables [6].

Our second simplification is that we restrict the analysis to microscopically isotropic me-
dia, i.e. the medium is assumed to have the same microscopic properties in all directions.
This is true for e.g. gases, plasmas, liquids, and most amorphous solids. The latter in-
cludes optical fibers and a wide class of glasses. The assumption of isotropy will greatly
simplify the susceptibilities, by causing several tensor elements to vanish. We will specify
this in more detail in the subsequent discussion around the di↵erent susceptibilities.

2.2 The linear susceptibility

The linear part of the polarisation is most generally written in Fourier space as

P̃L
i (r,!,E) = ✏0�̃

(1)
ij (r,!)Ẽj (2.6)

where �̃(1)
ij (r,!) is the first-order, or linear, susceptibility tensor. Assuming isotropic

media implies that the o↵-diagonal elements of this tensor vanish, and that the diagonal
elements are the same so that the induced polarisation becomes parallell to the applied
electric field. This means that we can write the linear susceptibility as

�̃(1)
ij (r,!) = �ij�̃

(1)(r,!) (2.7)

where �ij denotes the unity matrix and �̃(1)(r,!) is a scalar function. Note that the
assumption of microscopic isotropicity does not contradict with the fact that we allow
�̃(1)(r,!) to be spatially dependent. The reason is that the spatial dependence in � is on
a macroscopic scale, independently of the microscopic isotropy. By Fourier transforming
Eq. (2.2), and applying the weakly guiding approximation we obtain

r2Ẽ(r,!) +
!2

c2
(1 + �̃(1)(r,!))Ẽ(r,!) ⌘

r2Ẽ(r,!) + k2(r,!)Ẽ(r,!) = �µ0!
2P̃NL. (2.8)
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The frequency and spatially dependent wavenumber k(r,!) has been defined in the last
equality which, in the absence of the nonlinear polarisation, is the Helmholtz vector wave
equation. The wavenumber k is related to the refractive index n via k(r,!) = !n(r,!)/c.
We now write k(r,!) as a sum of one spatial part and one frequancy dependent part,
i.e. k(r,!) = k(!) + k(!0)f(r). We emphasize that k(!) in the time domain corresponds
to an operator consisting of time derivatives. By Taylor expanding around the carrier
frequency !0 we find

k(r,!) = k0(1 + f(r)) +
1X

m=1

(! � !0)m

m!
k(m)

!=!0
⌘

k0(1 + f(r)) + �k(! � !0) (2.9)

or in the operator form

k(r,!0 � i
@

@t
) = k0(1 + f(r)) +

1X

m=1

(�i @
@t

)m

m!
k(m)

!=!0
(2.10)

where we have introduced the notation k0 for k(!0), and the function f(r)⌧ 1 to describe
the refractive index profile of a weakly guiding optical waveguide. We are now in position
to peel o↵ the rapidly oscillating factor of the electromagnetic wave by substituting

E(r, t) =
1

2
F(r, t) exp[i(!0t� k0z)] + c.c. (2.11)

so that the LHS of Eq. (2.8) becomes

 
@2

@z2
+ �k2(! � !0)� 2ik0

@

@z
+ 2k0�k(! � !0) + 2k2

0f(r) +r2
?

!
1

2
F̃(r,! � !0) + c.c.

(2.12)

for the envelope F of the electric field. The envelope F will be regarded as slowly varying
with z and t in comparison with the wavelength and wavenumber of the electromagnetic
wave. As a result of this, several of the higher derivatives in Eq. (2.12) may be omitted.
However, if the spatial and temporal derivatives are not treated with some degree of
symmetry, unphysical results may arise [2]. A discussion around a proper way to omit
the higher order derivatives will be carried out below.

2.3 The slowly varying envelope approximation

The slowly-varying envelope approximation is a crucial step in obtaining the governing
equation for nonlinear optical beams and pulses. In principle, it simplifies the equation
for dispersive wave-packet propagation from being second-order in z to first-order in z.
As every approximation, however, it removes physical information from the system, and
it is therefore important to know exactly what information is lost. Moreover, we will be
interested in dispersive pulse propagation under the influence of higher (than second) or-
der dispersion, and it is crucial to know which higher order derivatives shall be removed,
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and which shall be retained. The following describes how to apply the slowly varying
envelope approximation to arbitrary dispersive order in a physically sound way, without
introducing unphysical e↵ects into the system. We follow essentially the approach used
in e.g. Refs. [2, 7, 8].

Assume, for simplicity, that a component of the electric field of an electromagnetic wave
is governed by the equation

 
@2

@z2
+ �2(!)

!

Ẽ(!, z) = 0 (2.13)

where �(!) is an arbitrary dispersion relation, corresponding to an operator in the time
domain. To study the evolution of a wave-packet at the carrier frequency !0 we substitute
E(t, z) = 1

2F (t, z) exp[i(!0t � �0z)] + c.c. where F is the envelope function of the wave-
packet, into Eq. (2.13). We obtain

 
@2

@z2
+ ��2(! � !0)� i2�0

@

@z
+ 2�0��(! � !0)

!

F̃ (! � !0, z) = 0 (2.14)

where ��(! � !0) = �(!) � �0. Now we make the restriction that F must describe a
wave that propagates in one direction only. Since the two first terms of Eq. (2.14) is an
operator sustaining propagation in both directions, those terms are omitted. This is a
physically consistent way of omitting higher derivatives of F. The resulting equation for
F reads, in the time domain

 

�i
@

@z
+ �(!0 � i

@

@t
)� �0

!

F (t, z) =

 

�i
@

@z
+

1X

m=1

(�i @
@t

)m

m!
�(m)

!=!0

!

F (t, z) = 0. (2.15)

Note also that the coe�cient in front of the m:th time derivative in Eq. (2.15) is simply
�(m)

!=!0
/m!. In some texts one can find cross-terms like �02!=!0

in front of the second-order
dispersion, or �00!=!0

�0!=!0
in front of third-order dispersion. However, the the above

analysis shows that these terms should not be present if the slowly varying envelope ap-
proximation is properly used. Thus, the approximation we do, and this is the essence of
the slowly varying envelope approximation, is that we neglect the backscattered part of
the envelope function F. This was originally pointed out by Shen [9].

Some important features regarding linear pulse propagation governed by Eq. (2.15) are
worth emphasizing. Retaining terms to second order in the dispersion operator yields

i
@F

@z
+ i�00

@F

@t
+
�000
2

@2F

@t2
= 0 (2.16)

which describes a wave packet which moving with the group velocity vg = 1/�00 in the
z-direction. The factor proportional to �000 describes second-order, or group-velocity, dis-
persion (GVD). This causes the pulse to broaden during propagation, since the di↵erent
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frequency components have di↵erent group velocities [10, 11]. The GVD is defined as
normal if �000 > 0, and anomalous if �000 < 0. This means that the group velocity increases
(decreases) with frequency in the anomalous (normal) dispersion regime.

After these considerations, we can apply the slowly varying envelope approximation to
Eq. (2.12), thus removing its first two terms:

 

�i
@

@z
+ [k(!0 � i

@

@t
)� k0] + k0f(r) +

1

2k0
r2
?

!

F(r, t) + c.c. (2.17)

The quantity in the square bracket is the dispersion operator, cf. Eq. (2.15).

2.4 The nonlinear susceptibility

We will now consider the nonlinear part of the polarisation in Eq. (2.8). We thus need
to consider the properties of the n:th order susceptibility tensor �(n). This tensor has
3n+1 elements, and the number of independent and nonzero elements of the tensor can be
reduced if the medium has certain symmetries. In particular, it can be shown using the
transformation properties of the susceptibility tensors [6], that in an isotropic medium
the tensor elements must fullfill �(n) = (�1)(n+1)�(n), and consequently all even-order
tensors must vanish. In such media, the lowest order nonlinear susceptibility is the third
order, �(3)

ijkl, possessing 81 elements. Furthermore, the isotropy of the medium makes �(3)

invariant under any rotational transformation. Using this condition it is straightforward
to show that �(3) has the 21 nonzero elements

�iikk = �jjll �ikki = �jllj

�ikik = �jljl �iiii = �jkjk + �jjkk + �jkkj (2.18)

where i,j,k,l are all possible permutations of x,y and z. Obviously, of these elements only
three are independent, e.g. �xyxy,�xxyy and �xyyx.

A di�culty with the nonlinear susceptibilities is their frequency dependence. For example,
�(3) depends on the frequencies of all participating electric fields in the tensor product.
In the time domain this is expressed in the most general way by the triple convolution
integral:

PNL
i (r, t) = ✏0

Z 1

�1

Z 1

�1

Z 1

�1
�(3)

ijkl(t� t1, t� t2, t� t3)

Ej(r, t1)Ek(r, t2)El(r, t3)dt1dt2dt3. (2.19)

This relation is of course very complicated to treat as it stands, but several simplifying
approximations can be made. In the first approximation, we consider the electronic Kerr-
e↵ect, which is responsible for the main contribution to �(3) in dense glasses. The response
time for this e↵ect is extremely fast, being of the order of femtoseconds. If we are not going
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to study the propagation of subpicosecond pulses, it su�ces to approximate the response
with delta functions, i.e. to assume an instantaneous response. In the next chapter we will
generalise the formalism to include a frequency dependent response; the so called Raman
scattering process, but as a first approximation we consider only a frequency independent
nonlinear susceptibility. Furthermore, since we will investigate how a wave oscillating at
a single frequency interacts with itself, the triple integral in Eq. (2.19) degenerates into a
single one. This integral can be carried out with the delta function response, and we are
left with the tensor product

PNL
i (r, t) = ✏0�

(3)
ijklEj(r, t)Ek(r, t)El(r, t). (2.20)

If we introduce an electric field oscillating at the frequency !0, the nonlinear polarisa-
tion specified by Eq. (2.20) will give rise to oscillations at the frequencys !0 and 3!0, a
phenomenon known in nonlinear optics as degenerate four-wave mixing. Non-degenerate
four-wave mixing arises when the three fields of Eq. (2.20) oscillate at di↵erent freqencies,
but since we are interested in self-action e↵ects, this is beyond the scope of the present
study. The interested reader is referred to [11] for a recent review.

In order to get further we have to specify the vector properties of the electric field. If the
electric field has components in the transverse (x and y) directions only, we have

E(r, t) =
1

2
(Fx(r, t)x̂ + Fy(r, t)ŷ) exp[i(!0t� k0z)] + c.c. (2.21)

By performing the tensor products implied in Eq. (2.20), and using the properties of the
isotropic susceptibility �(3), we obtain the following expressions for the induced nonlinear
polarisation

PNL
x =

✏0
8
�(3)

xxxx(3|Fx|2Fx + 2|Fy|2Fx + F 2
y F ⇤

x ) exp[i(!0t� k0z)] +

✏0
8
�(3)

xxxx(F
2
x + F 2

y )Fx exp[i3(!0t� k0z)] + c.c. (2.22)

The y-component is easily derivable from the above expressions by interchanging the x-
and y- indicies. An interesting feature, evident from Eq. (2.22) is that the third harmonic
contribution vanishes in the case of circularly polarised beams [12], i.e. for Fx = iFy . We
do, however, restrict the present analysis to linearly polarised beams in the x-direction,
i.e. we use the polarisation in Eq. (2.22) with Fy = 0. A further approximation is that
we neglect the oscillations at 3!0, which are so far away in the spectrum that they do not
influence the slowly varying envelope F. Thus, using PNL = x̂Px + c.c, where Px is given
by Eq. (2.22) in Eq. (2.8), and applying the slowly varying envelope approximation, we
obtain

 

�i
@

@z
+ [k(!0 � i

@

@t
)� k0] + k0f(r) +

1

2k0
r2
?)

!

F (r, t) =

3�(3)
xxxx

8c2
exp[�i!0t]

@2

@t2
(|F |2F exp[i!0t]) ⇠= �

3�(3)
xxxxk0

8n2
0

|F |2F (2.23)
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where we in the last equality have neglegted derivatives of the nonlinear term, and denoted
the refractve index at the carrier frequency with n0. Eq. (2.23) is therefore not appliccable
to the study of very short pulse propagation. However, for pulse durations larger than
10 ps in electronic Kerr-media, it represents a good description. In particular, Eq. (2.23)
is the standard description of the self-focusing phenomenon [2, 13, 14]. For shorter pulse
durations, or for slowly responding media, modifications with coupled equations and/or
additional terms are used, see e.g. [2]. Finally, we can expand the dispersion operator to
second order and write Eq. (2.23) as

i
@F

@z
= �k000

2

@2F

@t2
+

1

2k0
r2
?F + k0f(r) +

3�(3)
xxxxk0

8n2
0

|F |2F (2.24)

where we have transformed the variables to a retarded reference frame by the substitution
t ! t� zk00, z ! z, thereby removing the @F/@t term. This eqution will be our starting
point in the investigation of nonlinear optical beam propagation.

We end this section with a somewhat simpler “phenomenological” derivation of equation
(2.24). This is easily done by assuming the refractive index n to be intensity dependent
[14], i.e.

n(!, r, |F |2) = n(!) + n1(r) + n2|F |2 (2.25)

where n2 is the nonlinear Kerr-coe�cient. Note that n1 ⌧ n(!) and n2|F |2 ⌧ n(!).
Using this refractive index in the Helmholtz equation for the electric field, i.e.

r2E +
!2n2(!, r, |F |2)

c2
E = 0, (2.26)

where E = 1
2F exp[i(!0t� k0z)] + c.c, we obtain (after applying the same approximations

as above)

i
@F

@z
=

1

2k0
r2
?F � k000

2

@2F

@t2
+

k0

n0
(n1(r) + n2|F |2)F. (2.27)

By comparing with Eq. (2.24), we can express the function n1(r) and the nonlinear
refractive index coe�cient n2 as

n1(r) = n0f(r) n2 =
3

8n0
�(3)

xxxx (2.28)

We emphasize that Eq. (2.27) contains the same physics as Eq. (2.24), and the only
approximation involved are the assumption that the changes in the refractive index due
to the spatial modulation (e.g. a waveguide) n1 and the nonlinearity n2|F |2 are small.
This condition is fulfilled in most practical cases. Moreover, we can easily generalize the
formalism to hold for an arbitrary nonlinearity. This means that n2|F |2 can be replaced
with g(|F |2) where g is an arbitrary, su�ciently small, function. In the previous formalism
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Table 2.1: The Kerr-coe�cient for a few di↵erent materials.
Material n2 [m2/V 2] Reference
Solids:
Silicats and other glasses 4� 10⇥ 10�23 [15]
SiO2 1.2⇥ 10�22 [11]
GaAs 7⇥ 10�20 [16]
Ruby 1.6⇥ 10�23 [17]
Liquids:
Water 10�22 [16]
Chinese tea 3⇥ 10�15 [18]
Gases:
Air 10�24 [19]
Sodium vapor �6⇥ 10�17 [20]

with susceptibilities, this is equivalent with including higher (odd) order nonlinear terms.

The function f(r) is intended as a model of the waveguiding index profile, i.e. for a
circular fiber f = f(r) where r is the transverse radius. There are, however, no formal
objections against including the longitudinal coordinate in f , i.e. f(r, z), which could be
useful in models of fiber bendings, manufacturing defects, or other axial perturbations.
The only restriction is that the induced refractive index must be small to allow for the
weakly guided approximation.

The nonlinear index coe�cient n2, (m2V �2), sometimes called the Kerr-coe�cient, is a
basic material parameter in the investigations of nonlinear optical beam and pulse prop-
agation. In most optical materials n2 is very low, as indicated in table 2.1 below, where
measured values of n2 for a few materials are listed. We have invoked Chinese tea as an
example of an organic liquid. It is a well known feature of organical compounds/solutions
to have large Kerr-coe�cients. This may be qualitatively understood by considering the
fact that the induced polarisation is determined by the induced molecular dipole mo-
ments. Organic molecules are often large, and will therefore have large dipole moments
which result in large values of n2. The size of such molecules will, however, also increase
the nonlinear response time due to their mechanical momentum. This makes them, un-
fortunately, of little use in pulsed and fast optics, although interesting e↵ects may arise
due to the delayed response, see e.g. [2]. When it comes to self-focusing, which is a main
subject of this thesis, CW-beams are often considered, and organic materials could then
be of interest. A lot of research is done in the area of new nonlinear optical materials,
and there is certainly much to come.

Considering plasmas, the value of n2 depends dynamically on many parameters such as
temperature, plasma density, frequency etc. The most common approach is then to use
a separate equation to describe the nonlinear index, see e.g. [21].

Materials with positive values of n2 are often called focusing, because they give rise to
nonlinear self-focusing of intense beams, a subject that will be discussed in a later chapter.
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Negative values of the Kerr-koe�cient are not unusual, and such medias are referred to
as defocusing. Gases can often be defocusing, and Rubidium vapor is an example of a
defocusing medium, see Ref. [22]. The magnitude of the nonlinearity is usually of the
same order in defocusing media as in non-organic focusing media, but for gases there is
also a dependence on the particle density (i.e. the pressure).
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Chapter 3

The description of pulse propagation
in nonlinear optical fibers

3.1 Basic considerations

In this chapter, we will derive the equation governing nonlinear pulse propagation in opti-
cal fibers. This could be done with the method of the previous chapter as a starting point,
but we will describe a somewhat di↵erent derivation here. The reason for this is twofold:
Firstly, we utilize the coupled mode concept [1] in a way that is probably more accessible
to the “fiber-optics” community, and secondly, we point out that although the derivations
seem to di↵er from a mathematical point of view, the physical approximations are the
same. We will defer the discussion around the physics of the approximations to the final
section of this chapter, however. An important di↵erence from the previous derivation is
that we will formulate the field entirely in the frequency domain. Our derivation follows
previously published frequency-domain derivations [2, 3, 4]. For readers requiring an even
more rigorous derivation, we refer to the comprehensive work by Kodama and Hasegawa
[5], the comments on this work [6], and the derivation given by Newell and Maloney [7].

Consider the electromagnetic fields Ẽ, H̃ of the light in an optical fiber. These fields are
given by the source-free Maxwell’s equations, which in the frequency domain are:

r⇥ Ẽ = �i!µ0H̃

r⇥ H̃ = i!✏(r,!)Ẽ + i!P̃NL (3.1)

where ✏(r,!) models the refractive index profile and the material dispersion of the fiber,
and the tilde notation denotes Fourier transform. The fiber has an infinite set of linear
modes, given by the linear Maxwell’s equations, i.e. Eqs. (3.1) with P̃NL = 0, and we
denote the fundamental mode with (e,h). As will be shown in the next chapters, the
amount of power required for the nonlinearity to a↵ect the transverse mode profile is
several (five to six) orders of magnitudes larger than that required to observe nonlinear-
pulsed e↵ects in the picosecond regime. Hence P̃NL = 0 is a very good approximation
indeed. From Maxwell’s equations for the mode (e,h) and the total field (Ẽ, H̃), it is
straightforward to verify the relation
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r · (Ẽ⇥ h� e⇥ H̃) = i!P̃NL · e (3.2)

which is valid for any mode of the fiber.

We will now consider pulse propagation in the axial (ẑ) direction of the fiber, and for the
coming discussion, we must distinguish between the forward- and backward-going modes.
Those can be written

(
ef

hf

)

=

(
e?(r,!) + ẑez(r,!)
h?(r,!) + ẑhz(r,!)

)

exp(�i�(!)z) (3.3)

for the forward-going fundamental mode, and

(
eb

hb

)

=

(
e?(r,!)� ẑez(r,!)
�h?(r,!) + ẑhz(r,!)

)

exp(i�(!)z) (3.4)

for the backward-going fundamental mode. In these equations we have introduced the
propagation constant �(!), and the notation e?,h? and ez, hz for the components of the
fundamental mode. For clarity we neglect the linear attenuation (which is always present),
but this is easily included later as an imaginary part of the propagation constant. Before
we proceed, however, we briefly review the weakly guided approximation with respect to
the fiber modes.

3.2 Weakly guiding fiber modes

The modes of a dielectric optical waveguide are in general hybrid modes, possessing both
transversal and longitudinal components of the electric and magnetic fields. The simple
linearly polarised modes (the so called LP-modes) that are often used in the literature are
no real modes of the fiber, but “pseudo-modes” [8] for which the cross-sectional intensity
and the polarisation state changes during propagation. Despite this fact, the LP-modes
are often an accurate enough description, and we will see that they emerge as the lowest-
order approximation in weakly guiding fibers.

If the fiber is weakly guided, i.e. if the refractive index di↵erence of the fiber is small;
� = (ncore � nclad)/ncore ⌧ 1, then the mode formalism can be simplified considerably.
By expanding the modes in powers of the small parameter � it can be shown [1, 8] that

e? = e(0)
? + �e(1) + O(�2) (3.5)

ez = �1/2e(1/2)
z + O(�3/2) (3.6)

with similar relations for the magnetic field. We see that the longitudinal component of the
electric field is much smaller than the transversal. Since

p
� ⇠= 1�5% in typical fibers, the
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ẑ component of the electric field can be neglected in the lowest-order approximation. The
leading terms of the transverse field e(0)

? ,h(0)
? describe the TEM wave in a homogeneous

medium, which means that they are given by the scalar wave equation and related via

h(0)
? =

s
✏(!)

µ0
ẑ ⇥ e(0)

? ⌘ n(!)

Z0
ẑ ⇥ e(0)

? (3.7)

where Z0 ⇡ 120⇡ is the wave impedance of vacuum. Similarly, the propagation constant
can be expanded in powers of � as [1, 8]

�(!) = !
q

µ0✏(!) + O(�3/2) ⌘ !

c
n(!) + O(�3/2). (3.8)

To invoke the weakly guiding approximation therefore means that we neglect the higher-
order (in �) terms in the equations above. The fundamental mode is then given by

the e(0)
? field, which we simply can choose to be linearly polarised. This constitutes the

LP01 �mode of the fiber.

3.3 Frequency formulation of the field

We emphasize again that these linear modes are not a↵ected by the weak nonlinearity we
study here. Thus, we can assume that the total field of a wavepacket propagating in the
forward direction has the transverse mode profile of the linear mode, but we must allow
for a slowly varying envelope A:

(
Ẽ
H̃

)

=

(
A(!, z)e?(x, y,!) + ẑEz(r,!)
A(!, z)h?(x, y,!) + ẑHz(r,!)

)

exp(�i�(!)z) (3.9)

We aim to derive an equation for the slowly varying (along z) function A. This can be
found from Eq. (3.2), by introducing the total field from Eq. (3.9) and the backward
propagating mode from Eq. (3.4), which yields

r · (�2A(z,!)(e? ⇥ h?) + ẑ ⇥ v(r,!)) = i!P̃NL · eb. (3.10)

If instead the forward going mode had been used in Eq. (3.2), we would have obtained an
equation for the longitudinal field components. However, we are not interested in these
here. We need not be more specific about the vector v in Eq. (3.10), since the r · (ẑ⇥v)-
term vanishes after integrating over the transverse cross-section. Thus, the equation for
A becomes

@A(z,!)

@z
= �i

!

2

< P̃NL · ẽb >

< (ẽ? ⇥ h̃?) · ẑ >
exp(i�(!)z) (3.11)

where <> denotes integration over the transverse coordinates. At this stage we can invoke
the weakly guiding approximation which was elaborated above, and reduce Eq. (3.11) to

@A(z,!)

@z
= �i

!Z0

2n(!)

< P̃NL
? · e(0)

? >

< |e(0)
? |2 >

exp(i�(!)z). (3.12)
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Our next step is to choose a proper description for the electric field. This is a wavepacket
centered around the carrier frequency !0, which in the time domain can be expressed as

E(r, t) = exp[i(!0t� �(!0)z)]
1

2⇡
p̂
1

2

Z
ũ(z, ⌦)T (x, y,!0 + ⌦) exp[i⌦t]d⌦ + c.c. (3.13)

where ! = !0 +⌦, T is a scalar function describing the transverse mode profile and ũ the
field envelope. The polarisation state of the field is denoted by the unity vector p̂, and 
is a normalisation constant that we will specify below. Fourier transforming the electric
field yields

Ẽ(r,!) = p̂


2
ũ(z, ⌦)T (x, y,!) exp[�i�(!0)z] + c.c. (3.14)

By comparing this with the expression for the field in Eq. (3.9), we identify the transverse
mode as p̂T (x, y,!) = e?(x, y,!) and the envelope function as



2
ũ(⌦, z) = A(!0 + ⌦, z) exp[�i��(⌦)z] (3.15)

where �(!) = �(!0) + ��(⌦). Using these changes of variables, Eq. (3.12) becomes

@ũ(z, ⌦)

@z
= �iũ(z, ⌦)��(⌦)� i

!Z0

n(!)

< P̃NL · p̂T >

< T 2 >
exp(i�(!0)z). (3.16)

A complication with this frequency-domain expression for the field is the modal frequency
dependence in T, since the interpretation of the function u as the envelope of the electric
field becomes less obvious. However, this can be remedied by the transverse averaging. If
we interpret ũ(z, ⌦) as the square root of power contained in the fiber cross-section, the
normalisation constant  becomes

2(!) =
4Z0

n(!) < T 2 >
. (3.17)

It is physically more sensible to work with a global square root power than the local
electric field. In this context, the local electric field is not of much interest, since the
weakly guided approximation has already removed its finer structure.

3.4 The nonlinear susceptibility

According to the previous chapter, the lowest-order nonlinear susceptibility of a fiber is
�(3), and in its most general form it is a convolution with the time dependence of all
three ingoing fields. However, if we assume that we are far from medium resonances, the
convolution will act only on the field intensity [2]. Assuming a linearly polarised electric
field E in the x̂ direction, we can write the x̂ component P of the nonlinear polarisation
(c.f. previous chapter) as the convolution [2, 9, 10, 11]

PNL
x (r, t) = ✏0�

(3)
xxxx

1

2
E(r, t)

Z
g(t� t0)E2(r, t0)dt0 + c.c. (3.18)
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Figure 3.1: The Raman response function of silica fibers.

The function g(t) is the nonlinear response function, and it indicates how fast the medium
responds to an applied external field. In optical fibers, there are two dominant contri-
butions to the nonlinear polarisation, namely the electronic Kerr-e↵ect, and the Raman
e↵ect. The electronic Kerr-e↵ect is the polarisation of the electron cloud around the in-
dividual atoms, and it has an extremely fast respone time; of the order of femtoseconds.
We can therefore approximate the Kerr-part of g(t) with a delta function.

The Raman contribution to the nonlinear susceptibility in fused silica originates from
the interaction between the electric field and optical phonons, which are transversally
oscillating molecular vibration modes in the medium [12]. The Raman gain spectrum, i.e.
the Fourier transform of the Raman response, consists of several Lorentzian lines [13, 14],
but we can approximate this with the the most dominant line around 13.2 THz. In the
time domain, this corresponds to a response function of the form:

gR(t) ⇠ sin(t/t1) exp(t/t2). (3.19)

The constants have the measured values t1 = 12.2 (fs) and t2 = 32 (fs), [2, 13, 14]. The
measured Raman response of fused silica is shown in figure 3.1, and the approximation
of Eq. in (3.19) is shown in figure 3.2 below. Although the agreement is good in general,
there are several fine-structure details arising from other lines in the spectrum that are
beyond this simple model.

We can thus express the total response function as a sum of the respective Kerr- and the
Raman-responses,

g(t) = ↵1�(t) + ↵2gR(t) (3.20)

where the parameters ↵1 and ↵2 are dimensionless constants that will be determined later.
Since our electric fields are given in the frequency domain, we write the Fourier transform
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Figure 3.2: The Lorentzian approximation to the Raman gain gives this response function.

of the nonlinear polarisation as

P̃NL
x (r,!) = ✏0�

(3)
xxxx

1

2

1

(2⇡)2

Z Z
g̃(!1 � !2)⇥

Ẽ(r,! � !1 + !2)Ẽ(r,!1)Ẽ
⇤(r,!2)d!1d!2 + c.c. (3.21)

The next step is to insert the electrical field of Eq. (3.14) into this expression, neglect
the oscillating term exp(±i3!0t) which correspond to waves that cannot propagate in the
fiber [10], and perform the transverse integration:

< P̃NL
x (r,!)T (x, y,!) >= ✏0�

(3)
xxxx

1

(2⇡)2

3

16
exp[�i�(!0)z]⇥

Z Z
f̃(!1 � !2)ũ(z,! � !1 + !2)ũ(z,!1)ũ

⇤(z,!2)S(!,!1,!2)d!1d!2 + c.c. (3.22)

The function S comes from the transverse integration, and is defined by

S(!,!1,!2) =< T (x, y,! � !1 + !2)T (x, y,!1)T (x, y,!2)T (x, y,!) > ⇥
(! � !1 + !2)(!1)(!2). (3.23)

The fact that the function S appears in the integral is an additional di�culty that was
pointed out originally in Ref. [4]. Its physical origin is due to the fact that the modal dis-
persion of the fiber is a↵ected by the nonlinearity, whereas the material dispersion is not.
Previous approaches put S(!,!1,!2) ⇡ S(!,!,!) [2], or S(!,!1,!2) ⇡ S(!0,!0,�!0)
[3], and moved S outside the integral. These approximations are valid if the frequency
dependence of T (x, y,!) is small over the pulse and the Raman bandwidth, which in most
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cases is a fairly good approximation. A proper treatment must, however, recognize that
the integral gets its main contributions at !1 ⇡ �!2 ⇡ !0, since the functions u(!1)
and u⇤(!2) are wavepackets centered at !0 and �!0, respectively. Thus we can Taylor
expand S around this point in (!1,!2) space. Note, however, that since the nonlinearity
is small, the higher-order terms of this expansion constitute even smaller contributions to
the governing equation, and can therefore be neglected. Thus, we make the approxima-
tion S(!,!1,!2) ⇡ S(!,!0,�!0) and move S outside the integral. Finally, it should be
noted that the Raman gain in Eq. (3.21) has been reduced with one third,

f(t) = ↵�(t) +
2

3
↵1gR(t) ⌘ ↵�(t) + (1� ↵)fR(t) (3.24)

because one of the convolution integrals is approximately zero, see [2, 11]. This means
that it is only two thirds of the Raman energy transfer (as defined in Eq. (3.18)) that
is measured in a pump-probe configuration and that contributes to the nonlinear refrac-
tive index. We disregard this theoretical detail by normalising the function f so thatR1
0 f(t)dt = 1. Thus, f(t) becomes

f(t) = ↵�(t) + (1� ↵)
t21 + t22
t1t22

exp(�t/t2) sin(t/t1) (3.25)

and the constant ↵ now denotes the relative contributions of the Kerr- and Raman e↵ects
to the total susceptibility. The value of ↵ have been estimated to 0.82, see Refs. [14, 16].

We can now use the expression (3.21) for the nonlinear polarisation in Eq. (3.16) and
obtain

@ũ(z, ⌦)

@z
= �iũ(z, ⌦)��(⌦)� i

3

4n(!0)
�(3)

xxxx✏0Z
2
0!R(!)UNL (3.26)

where UNL and R(!) are given by

UNL =
Z Z

f̃(!1 � !2)ũ(z,! � !1 + !2)ũ(z,!1)ũ
⇤(z,!2)d!1d!2 (3.27)

R(!) =
(! � 2!0)

(!)n(!)

< T (! � 2!0)T (!)T 2(!0) >

< T 2(!) >< T 2(!0) >
. (3.28)

Eq. (3.26) is the governing equation for the power envelope in the fiber. After transform-
ing to the time domain it can be written as

i
@u(z, t)

@z
= [�(!0 � i

@

@t
)� �(!0)]u(z, t)

+�(1� ⌧shocki
@

@t
)u(z, t)

Z
f(t� t0)|u(z, t0)|2dt0 (3.29)

where
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� =
3

4n(!0)
�(3)

xxxx

!0

cAeff

Z0

n(!0)
⌘ N2

Aeff

!0

c
(3.30)

⌧shock =
1

!0
+

R0(!0)

R(!0)
(3.31)

and the e↵ective mode area is defined as

Aeff =
< T 2(x, y,!0) >2

< T 4(x, y,!0) >
. (3.32)

In deriving Eq. (3.29) we have expanded the factor in front of UNL to first order around
!0. The factor in the square bracket of Eq. (3.29) is the dispersion operator, which is
defined by its Taylor expansion. In Eq. (3.30) we have defined the nonlinear refractive
index with respect to power, N2 = 2n2Z0/n(!0), which is common in the literature. In
silica fibers its value is N2 = 3.2 · 10�16(W�1cm2). The reason for introducing the factor
⌧shock is that that term can give rise to an optical shock front, the so-called self-steepening
e↵ect [15]. The main contribution to ⌧shock comes from the !�1

0 -term, since R0(!0)/R(!0)
is negligible for wavelengths in the low-loss regime of the fiber[2]. Moreover, the shock-
term is significant only for pulse durations of the order of tens of femtoseconds, so we will
use ⌧shock

⇠= !�1
0 . This value of ⌧shock is reasonable also from a physical point of view,

because in that case Eq. (3.29) conserves the classical photon number i.e.

@

@z

Z
|ũ(!)|2d!

!
= 0 (3.33)

as proved in e.g. Ref. [2]. One cannot expect the optical energy to be conserved, since the
Raman process transfers photons from high to low frequencies. We conclude the derivation
by simplifying Eq. (3.29) to a form familiar to the “optical soliton community”, namely
a modified nonlinear Schrödinger equation. This is obtained by expanding the dispersion
operator to third order, and by approximating the Raman gain with its low-frequency
slope, which yields

i
@u

@z
= �i�00

@u

@t
� �000

2

@2u

@t2
+ �|u|2u

+ i
�0000

6

@3u

@t3| {z }
30D

��⌧Ru
@|u|2

@t| {z }
Raman

� i�

!0

@|u|2u
@t| {z }

shock

. (3.34)

This is the unperturbed nonlinear Schrödinger (NLS) equation (first line) with three ex-
tra terms (second line). These extra terms model the e↵ects of third-order dispersion
(3OD), Raman downshift, and self-steepening or optical shock formation. In a fiber,
these terms have di↵erent strengths in di↵erent parameter regimes. The unperturbed
NLS is a good model for pulse durations above 1 ps. However, the third-order disper-
sion term must be included for carrier wavelengths near the zero-dispersion wavelength,
independently of the pulse duration. The Raman term is important for shorter pulses,
of the order 1-0.05 ps. Using the gain of Eq. (3.24) the Raman coe�cient becomes
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⌧R = (1� ↵)2t21t2/(t
2
1 + t22) ⇠= 1.5 (fs). However, the approximate model for the response

does not model the initial slope of the Raman gain very well, since it aims at an overall
agreement with the entire Raman gain spectrum. Estimations from the measured Raman
gain curve show that the proper value is somewhat higher. However, there seem to be
little consensus of the correct value of ⌧R in the literature, and the values ⌧R = 3 (fs) [16],
⌧R = 5 (fs) [17] and ⌧R = 6 (fs) [18] have been used.

For even shorter pulses, below 50 fs, the shock term must be included, and the full Raman
spectrum be taken into account. It has been argued [2] that the full equation (3.29) is
a valid description down to pulse bandwidths of approximately one third of the carrier
frequency !0, which corresponds to pulse durations above 6 fs.

3.5 Validity of the basic approximations

Equation (3.29), and simplifications such as Eq. (3.34) are widely used in the nonlinear-
optics research. It is important to realize exactly what kind of approximations have lead
to these equations and their regime of validity. In chapters 2 and 3, we introduced two fun-
damental approximations in the derivations of the equations governing pulses and beams;
namely the weakly guiding approximation (WGA) and the slowly varying envelope approx-
imation (SVEA). The underlying physics of these approximations will be discussed below.

The interpretation of the WGA is, in the case of beams, that the refractive index variation
over the beam is weak. In this case, the refractive index has contributions from both the
nonlinearity and from a possible linear material variation; i.e. a dielectric waveguide. We
must therefore restrict the analysis to low beam amplitudes. Note, however, that this
does not exclude beams guided by the material or the nonlinearity, it only requires the
guiding to be weak. In the case of pulses in a fiber, the WGA was discussed in section
3.2. We concluded that if the fiber mode is weakly guided, then we can disregard from
longitudinal field components and consider LP-modes, i.e. scalar electric fields. The same
obviously holds for weakly guided nonlinear beams, since they are modes of their induced
(weak) waveguides.

The SVEA have been employed in two di↵erent ways in this work. In chapter two, we
derived a second-order wave equation from Maxwell’s equations. This second-order wave
equation sustains propagation of both forward- and backward-going waves. We simplified
this second-order equation to a first-order one by discarding the backward-moving waves.
However, a complication when omitting terms that sustain the backward wave is to drop
the higher derivatives in t and z in a consistent way. In fact, the envelope does not nec-
essarily have to be “slowly varying” as long as the backscattered light is negligible. In
chapter three, we derived the governing equation assuming a forward-propagating mode,
thus starting from a wave equation that was first-order in z. There was obviously no need
to invoke the SVEA, since the backward-waves was discarded from the start. The physics
of the seemingly di↵erent approaches of chapter two and three are therefore the same,
and hence we obtain similar equations.
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Furthermore, one may realize that the physical requirements for the WGA and the SVEA
are the same! Obviously, the backscattered light is negligibly small as long as the induced
refractive index in the material is small. This is exactly the same physical requirement
as for the WGA. Our equations are therefore valid in all cases where the induced nonlin-
ear index is small. This is also what is encountered in experiments, with one important
exception, however. That is the collapse phenomenon of 2-D self-focusing. Here the in-
duced refractive index becomes infinitely high, hence both the WGA and the SVEA breaks
down. In fact, direct numerical simulations of Maxwells equations in this case have shown
that the collapse gives rise to a large amount of backscattering [19, 20]. Thus, as a first
approach to describe the dynamics of the 2-D collapse with the subsequent filamentation,
one has to go beyond the SVEA, and allow for power loss through backscattering. These
issues are beyond the present thesis, however.
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Chapter 4

The nonlinear propagation of optical
beams

4.1 The governing equation

In chapter two, we derived the equation governing the slowly varying envelope F of the
electric field of an optical beam in a nonlinear medium. In terms of the nonlinear refractive
index it reads as Equation (2.27):
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where we have described the physical meaning of each term. The function f(x,y) is nonzero
only in optical waveguides, were it models the radial index profile. Media with no index
profile, i.e. in which f=0 shall be referred to as homogeneous or bulk media. In cylindrical,
bulk media and in the absence of dispersion, this model was originally suggested by Kelly
[36] 1965.

The properties of linear, dispersive beam propagation in homogeneous media are well
known, since the governing equation is similar to the extensively studied di↵usion equation
[2]. It is easily shown that an initial pulse at z=0 will broaden in two ways: spatially in the
x-y-plane due to di↵raction, and temporally in the comoving t-frame due to dispersion.
Thus, di↵raction in space and dispersion in time are equivalent phenomena, with the
di↵erence that we may have either sign of the dispersive term. However, it has been
shown in e.g. Ref. [3], that in the asymptotic limit as z ! 1, an arbitrary input pulse
will broaden independently of the sign of the dispersion. As an example we can derive an
exact linear solution, the “spreading Gaussian”
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x0y0t0q
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(4.2)
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which describes a Gaussian pulse-beam that broadens due to di↵raction and dispersion.
The e↵ect of the nonlinearity, which is important for larger amplitudes, will lead to an in-
duced waveguide and thus a counteraction of the di↵ractive broadening. The dynamics of
the dispersive broadening will, however, be strongly a↵ected by the sign of the dispersion.
The magnitude and sign of the dispersion is evaluated from the dispersion relation at the
carrier wavelength, and in many media it can take on either sign. Anomalous dispersion,
i.e. k000 < 0 corresponds to a positive sign in front of the time derivative in Eq. (4.1),
and it is in that case a matter of scaling in order to have complete symmetry between
the transverse spatial and the comoving temporal coordinates. It is then possible to have
self-trapping, i.e. a perfect balance between the linear brodening and the nonlinear com-
pression, in 1, 2 or 3 transverse dimensions [4]. This space-time symmetry requires that
the beam width x0 and the pulse duration t0 are the same in normalised units, i.e.:

x0 =
t0q
�k0k000

(4.3)

In typical glass waveguides
q
�k0k000 ⇠= 0.3(mm�1ps) [4]. Note that we cannot consider

arbitrary small k000 , since the next term ⇠ k0000 in the dispersion relation has been neglected.

In the nonlinear regime, the exact analytical results that are available for Eq. (4.1) are
rather limited. There is a trivial plane-wave solution that is independent of x,y and t:

F (z) = F0 exp[�i
k0n2

n0
|F0|2z] (4.4)

where F0 is an arbitrary (complex) field strength that is constant over the cross-section
and in time. If the phase-delays along z of this nonlinear wave and the linear Gaussian
of Eq. (4.2) are compared in the case of anomalous dispersion, we find that they have
di↵erent sign. The nonlinear solution has a negative phase-shift, and the linear pulse has
a positive. This indicates that linear e↵ects and nonlinear e↵ects will counteract each
other; and also that the phase velocities of linear and nonlinear waves di↵er with respect
to sign. In a defocusing medium, where n2 < 0, this does not hold, and the nonlinearity
is found to boost the spreading. Moreover, the nonlinear plane-wave (4.4) can be shown
to be unstable against transverse perturbations and will break into filaments when per-
turbed. This feature is known as modulation instability and will be discussed in chapter 5.

In the following, we will consider Eq. (4.1) in some di↵erent geometries and media. Since
the self-focusing dynamics is strongly dependent on the transverse dimensionality, we
treat each number of transverse dimensions separately.

4.2 Self-focusing in one transverse dimension - spa-
tial solitons

We consider firstly the propagation of an intense optical beam in a slab waveguide.
We assume a CW-beam or very weak dispersion so that the time derivative can be
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neglected. The waveguide is assumed to be guiding in the y-direction and infinite in
the x-direction, i.e. it has an index profile f(y). Thus, we have a planar waveguide in
the y-direction, and we assume that the transverse field can be separated according to
F (x, y, z) = F (x, z) exp[i2z]R(y), where R(y) is a linear mode of the waveguide corre-
sponding to the eigenvalue , i.e.
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and F(x,z) is governed by
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where, according to coupled mode theory, the constant ↵ =
R

R(y)4dy/
R

R(y)2dy is of
the order unity. For simplicity, if we assume a Gaussian mode profile which corresponds
to f(y) ⇠ �y2, i.e. a parabolic-index profile, we obtain ↵ = 1/2. Eq. (4.6) is the
Nonlinear Schrödinger (NLS) equation, which can be solved exactly by means of the
inverse scattering transform [5]. A deeper discussion around the properties of this equation
is given in chapter 6. In the present discussion it is enough to note that a crucial role in
the solution of the NLS equation is played by the soliton solution, i.e.
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0k0
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where the soliton width x0 is arbitrary. Numerically, it was established early [6] that the
soliton is very robust against perturbations. In fact, it was shown in Ref. [7] that the
soliton (4.7) arises out of a wide range of initial conditions. Since this soliton is a spatial
self-guided beam, it is often called a spatial soliton.

It is important to consider the validity of Eq. (4.6). The derivation of this equation is
based on the fact that the mode profile in the y-direction is una↵ected by the nonlin-
earity. This is valid only if there is enough asymmetry between the x- and y-axes of the
beam. There are two practical ways to achieve this. The derivation given above assumes
that the width in the y-direction is much smaller than the width in the x-direction, so
that the beam tends to di↵ract mostly in the y-direction, where it is guided. The weaker
di↵raction in the x-direction then requires less power for soliton formation. This is the
common way to generate solitons in slab waveguides [8, 9]. Note, however, that the NLS
equation (4.6) becomes invalid for higher powers, when the soliton width is of the same
order as the waveguide height [10]. The second way to create spatial solitons is to con-
sider a bulk medium, and use a beam which is strongly elliptic, with the major axis in
the y-direction. Then the di↵raction in the y-direction is negligible in comparison to the
di↵raction in the x-direction. However, this situation is modulationally unstable [11] in
the y-direction, and the beam will break into filaments. An ingenious way to get round
this problem has been suggested by Barthelemy et al. [12]. If two slightly crossed beams
are used, they create a transverse modulation, with a frequency higher than the upper
cut-o↵ for modulational instability. The purity of this experiment is, however, somewhat
reduced by the beams’ tendency to nonlinearly attract each other and deflect [13]. If the
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pulse dynamics is included in these spatial solitons, a pulse compression e↵ect is observed,
which have compressed 75 fs pulses to 19 fs [14].

A lot of research has been devoted to nonlinear beam propagation close to the intersection
of two di↵erent media, i.e. near a discontinuity of the refractive index [15]. The main
finding in these cases is two families of spatial solitons, corresponding to beams having
their main parts on each side of the boundary. The family of beams in the fast medium,
which has the lower refractive index, can be shown to be unstable, due to the tendency for
optical rays to move towards regions with high refractive index. More general cases have
also been analyzed; e.g. with three layers that di↵er in the linear or nonlinear parts of the
refractive index. In particular, waveguides with the dominating nonlinear contribution
in the cladding show bistability, i.e. there can be two or several modes at a given power
level. We refer to the reviews by Mihalache et al. [16] and by Stegeman et al. [17] for a
thorough treatment of nonlinear e↵ects in planar waveguides.

The dynamics of nonlinear planar beams are often studied within the framework of the
IST transform using a perturbation theory to allow for the medium inhomogeneities [15].
Variational methods are common in order to study the stationary modes and to deter-
mine their propagation constants, which in several cases is enough for the determination
of stability [18]. Nevertheless, important insight into the beam dynamics can be obtained
by generalising the variational method to treat the dynamic evolution of the beam pa-
rameters. This will be explained in the following section.

Finally we will consider some technical data for the stationary spatial soliton beams. The
power P (W) contained in a spatial soliton is given by

P =
n0w0

k2
0N2x0

w0 = (
Z

R2dy)2/
Z

R4dy (4.8)

where w0 is the guided width and N2 = n2Z0/n0 (m2W�1) is the nonlinear refractive
index with respect to power. Typical values of these parameters is, in a glass waveguide
[8],

N2 = 3.4⇥ 10�8(W�1µm2) w0 = 3µm

� =
2⇡

k0
= 0.62µm n0 = 1.53 (4.9)

which for a soliton width x0 = 15µm gives P = 230kW . This is five to six orders of mag-
nitude greater than the power required for the creation of a temporal soliton (see chapter
6), and it reflects the fact that the strength of dispersion is much less than the strength of
di↵raction for normal waveguide parameters. Consequently, a higher power is required to
overcome the di↵raction. In the earliest reported experiments of spatial solitons in waveg-
uides [9], the power level was reduced by two orders of magnitudes, because a liquid with
a relatively high nonlinear refractive index was used as the nonlinear medium. In order
to accomplish the required peak powers in a conventional glass waveguide, fs-pulses have
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to be used [8]. In that parameter regime, dispersion cannot be neglected as we have done
here, and moreover, the nonlinear Raman e↵ect must also be included. To my knowledge,
there is no analysis of nonlinear “ultrashort beam propagation” in which all these e↵ects
are taken into account.

There are many potential applications for nonlinear planar guided waves. However, it is
quite unpractical to have to generate so high powers and short pulses in order to observe
the nonlinear e↵ects. Therefore, materials with higher nonlinear coe�cients are attract-
ing strong interest; e.g. polymers and semiconductors may be promising alternatives to
the conventional glass materials. This research is simplified by the fact that loss is not a
critical design parameter, because the typical nonlinear length is of the order of centime-
ters for ps- and fs-pulses. A problem with these materials is, however, that the nonlinear
response may not be fast enough to allow for ultrafast operation.

4.3 The variational approach to the solution of non-
linear evolution equations

Since the governing equation of the field envelope is nonlinear, the conventional separa-
tion techniques using Fourier expansions are not appropriate. If we want to examine the
behaviour of a localised general input field u(x, y, t, 0), other methods must be used. Di-
rect numerical solutions are the most common way, but there is need also for approximate
analytical methods. For instance, in self-action problems with more than one transverse
dimension, the evolution equations are nonintegrable, and numerical schemes may be very
time consuming. In that context approximate analytical methods are of great value.

Most analytical methods are based on an assumption of the transverse structure of the
electric field, a trial function, which is then allowed to evolve along z. In the context of
nonlinear self-action, a useful choice is

F (r, z) = A(z)f(
r

a(z)
) exp[ib(z)r2 + i�(z)] (4.10)

where r denotes a transverse coordinate e.g. x, y, or
p

x2 + y2. The function f denotes
some pulse-shape, and A(z) and a(z) are the amplitude and width, respectively, of the
pulse. The phase is modelled with two functions; b(z) models a curved phase-front, and
�(z) is the longitudinal phase-delay. This description of the phase is cnsistent with the
linear spreading solution (4.2) as well as with the purely nonlinear self-phase modulated
solution (4.4). The purpose is now to find the real functions (A, a, b,�). Several analytical
methods have been suggested for this problem. The earliest one was the aberrationless
paraxial-ray approximation. In this method the trial function is inserted in the evolu-
tion equation, where the nonlinear refractive index is Taylor expanded in the transverse
direction, i.e. with respect to r. The two lowest-order terms in this expansions yield
two complex ordinary di↵erential equations from which the four sought functions can be
obtained. This approach was originally suggested by Wagner et al. [19], although that
work was restricted only to the functions A(z) and a(z). A generalisation to include the
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phase functions was later suggested by Akhmanov et al. [20]. A problem with this ap-
proach is that it is local, i.e. it exaggerates the importance of the field closest to the pulse
maximum, with a subsequent loss of accuracy for the global pulse dynamics.

The moment method, or virial theory [21, 22, 23] remedies this drawback by considering
the evolution of moments of the transverse coordinate, e.g. the second moment (RMS
width) < r2 >=

R
r2|F |2ds/

R
|F |2ds where

R
ds denotes transverse integration. However,

it is only possible in some special cases to find moments as an exact explicit function of
z; an important example is the RMS-width in 2-d self-focusing. This method thus made
it possible to demonstrate the limits of the paraxial-ray method, and the critical power
for self-focusing was found to be o↵ by a factor of four. The moment method has not yet
been generalised to include a proper phase description.

Another global approach is the variational method, which was originally used by Tzoar et
al. [24], and later by Anderson et al. [25]. The variational method utilizes a Lagrangian
L(F(r,z)), chosen to make the corresponding variational functional stationary, �

R
Ldsdz =

0, where F solves the evolution equation. Thus, the variational derivative �L/�F = 0 must
be equivalent with the evolution equation, and this defines the Lagrangian. Since the r-
dependence has been specified in the trial function F(r,z), and thereby in L(F), we can
carry out the transverse integration, < L >=

R
Lds and obtain a reduced variational

problem �
R

< L > dz = 0 involving only z as independent variable. The four unknown
functions are derived from the Euler-Lagragne equations

� < L > /�• = 0; (• = A, a, b,�). (4.11)

This method has the features of being global, yielding the same accuracy as the moment
method, and allowing for the phase functions to be determined. The accuracy of this
method can be tested in the case when the evolution equation is the exactly integrable
NLS-equation. It is found that the variational approach preserves the first four of the
invariants to the NLS equation [26].

One shortcoming of all these methods is that they cannot describe changes of pulse shape
during propagation, or pulse-splitting phenomena. This may seem as a serious drawback,
since in some cases parts of the initial pulse are dispersed during the inital stages of
propagation and the remaining energy is trapped as a stationary localised nonlinear wave,
a solitary wave [7, 27]. In fact, the problem of determining the solitary wave content of
an arbitrary initial condition is unsolved, apart from the NLS-case which is integrable.
The accuracy of the described variational method can be improved by introducing more
parameters to be optimised, but this will obviously require more calculations. Anyway,
for the study of pulse evolutions in nonintegrable systems, the variational method as
presented above is the most accurate analytical tool known today. We will consequently
employ it in the forthcoming analyses of nonlinear beam propagation.
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4.4 Self-focusing in two transverse dimensions

4.4.1 Self-trapping, collapse and exact solutions

Self-focusing in two transverse dimensions is physically relevant for e.g. cylindrical CW
beams, pulsed propagation in a slab waveguide or other cases with only two transverse
dimensions. The self-focusing phenomenon was investigated rather extensively during the
late sixties and early seventies, and we restrict ourselves to the most relevant works for
this thesis. A deeper discussion is given in the reviews by Shen [29] and Marburger [30].
The governing equation in the 2-d case is
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where we assume a bulk medium. The most commonly analyzed case is the propagation of
a cylindrically symmetric beam, and it is then convenient to use the cylindrical coordinates
(r, ✓) for which
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In bulk media, the stationary solution to Eq. (4.12) is found by the substitution F (r, z) =
R(r) exp[�i�z], which yields the eigenvalue problem

�R(r) =
1

2k0
r2
?R(r) +

k0n2

n0
|R(r)|2R(r). (4.14)

Note that the eigenvalue � > 0 because of the boundary condition R(r) ! 0 as r ! 1.
This eigenvalue problem was originally formulated and numerically solved by Chiao,
Garmire and Townes [28]. Haus [31] pointed out that the problem has an infinite number
of discrete modes, corresponding to several rings surrounding the central maximum. An
interesting fact, formulated by Akhmanov et al. [32] is that the power contained in the
N:th mode grows approximately like 2N2 � 1, for no apparent reason. Anderson et al.
[33] showed by use of the variational method that the shape of the fundamental mode is
close to sech, i.e. the fundamental soliton-shape. And indeed, although optical solitons
do not exist for the 2-d NLS, self-focusing and solitons are very closely related phenomena.

If R is assumed to be real, it has been shown [22] that Eq. (4.14) has no elliptically
shaped solutions, and it has been conjectured that only axisymmetric solutions exist.
Recently it was proven that any fundamental nonlinear mode in 2 transverse dimensions
must be circularly symmetric [34]. This does not rule out the possibility of having az-
imuthally dependent solutions, however. And in fact, allowing R to be complex, a set of
non-axisymmetric exact analytical solutions to Eq. (4.14) have been found in terms of
elliptical functions [35]. However, the physical relevance of these solutions, which depend
on the cylindrical angle ✓, are yet to be found. The angular dependence is ⇠ exp[i✓/3]
and thus the solution has discontinous phase jumps. Moreover, the power of these beams
is not finite, i.e.

R
r|R|2dr diverges.
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The dynamics of Eq. (4.12) was considered early by Kelly [36], and Talanov [37] who
found that beams with a power above a certain critical power Pc would collapse within
a certain distance, known as the self-focusing distance. For lower powers, di↵raction is
stronger than self-focusing, and lead to monotonic broadening of the pulse. Beams having
exactly the power Pc are self-trapped and propagates without focusing or broadening.
Note, however that the self-trapped state is unstable; a small deviation in power from Pc

leads to monotonic collapse or di↵raction. The critical power Pc varies for di↵erent initial
beam shapes, but the lowest value [22] corresponds to the self-trapped shape calculated
by Chiao et al. [28]. In our units, we can find this beam power to be

P =
2.92n0

k2
0N2

⇠= 1MW (4.15)

where we have used the material parameters of Eq. (4.9).

The 2-d NLS equation is a special case in the sense that the radial and longitudinal
dependences can be separated, and an exact, self-similar solution can be obtained for the
whole beam dynamics. This was originally noted by Suydam [22] and Glass [38], and it
follows from an additional symmetry property of the NLS-equation in 2-d that was found
by Talanov [39]. The similarity solution is assumed to be of the power-conserving form

F (r, z) = f(
r

a(z)
)a(z)�1 exp[iS(

r

a(z)
, z)] ⌘ f(⇢)

a(z)
exp[iS(⇢, z)]. (4.16)

If this is inserted in Eq. (4.12), we find the following equations for S and f:
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where
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0a(z)3a00(z) (4.19)

� = 2k0a(z)2�0(z). (4.20)

The co�cients ↵ and � must be independent of z if the separation ansatz is to be consis-
tent. Assuming the initial condition to be that of a plane wave, i.e. �(0) = a0(0) = 0, the
functions a(z) and �(z) become
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The localised solutions of the eigenvalue problem (4.18) relate the constants ↵, � to the
central amplitude f(0). Moreover, physical (localised) solutions must have ↵ � 0 [22],
which for a0(0) = 0 implies di↵racting solutions only. However, this does not rule out
collapsing solutions, because if a(z) = a0(0)z + a(0) and a0(o) < 0, then ↵ = 0 and we
can describe collapsing solutions in a self-similar manner. We will elaborate more on this
in the context of blow-up instabilities in the next chapter. The above also tells us that
the collapse of an initially plane wave with a0(0) = 0 cannot be described in a self-similar
fashion. In other words, the beam will change shape during the collapse. It was also
found in the early numerical computations, see e.g. [36], that the collapsing beam tends
to peak more in the center than in the wings. This means that there can be at least two,
possibly several, spatial scales that determine the collapse dynamics. Despite an immense
theoretical e↵ort [40], there is not yet a full understanding of the dynamics in the collapse
governed by the NLS equation in two transverse dimensions. We will discuss this further
in chapter 5.

Since the above is a scalar theory, it was pointed out early that vectorial e↵ects may
be important [41]. Self-trapped TE and TM-modes have also been numerically obtained
[42], and they are characterised by their ring-shape, i.e. that the field is zero at r=0.
We emphasize, however, that this is not in contradiction with the present scalar theory.
Since we can view a self-trapped beam as a mode of its induced waveguide, we have in the
weakly-guiding limit a consistent scalar theory [43], equivalent to the theory of weakly
guided modes in fibers. During the collapse process, however, the induced waveguide
becomes strong, and the scalar theory breaks down.

4.4.2 Self-focusing in bulk media (Paper A)

In Paper A, the variational method described earlier is used to find the dynamical evo-
lution of an intense circular beam in a Kerr-medium. The method is found to provide
very good quantitative agreement with numerical results. All the well-known results from
self-focusing theory are reproduced, e.g. that collapse occurs above a critical power Pc

and monotonic di↵raction takes place below this power. However, previously unknown
information about the longitudinal phase-shift was also obtained, and these analytical
predictions have recently been verified numerically [44, 45]. The result is in contrast to
another analytical approach, the paraxial-ray approximation, which is shown in paper A
to predict erroneous sign of the longitudinal phase-delay. We find that the correct sign
of the phase in presence of both di↵raction and nonlinearity is the same as for the pure
self-phase modulated plane wave, i.e. that given by Eq. (4.4). Consequently, the inclusion
of di↵raction leaves the phase dynamics qualitatively una↵ected, as is physically expected.

Paper A does also consider the propagation of a pulse in a non-dispersive self-focusing
medium, and a pulse compression e↵ect is predicted which we call “compression by ero-
sion”. The e↵ect arises from the fact that the wings of the pulse have lower power than
the center and di↵ract away more rapidly. Thus energy is removed, eroded, from the
wings, leaving a sharp central peak. A similar e↵ect was numerically predicted for the 1
dimensional self-focusing case; compare Figs. 3-4 of paper A with Figs. 4a-b of Ref. [46].
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4.4.3 Self-focusing in waveguides, (Papers B and C)

When considering the e↵ect of a nonlinearity in a linear waveguide, it is important to
realize that the beam will be guided by two contributions to the refractive index profile;
the linear guide and the nonlinearly induced guide. This means that the propagation
constant, the modal area and the shape of a linear mode of the guide will be altered in
the nonlinear regime. In optical fibers, the propagation constant is of great importance,
since it determines the dispersion characteristics of the fiber. The problem of how the
nonlinearity a↵ects the dispersion of the fibers has been adressed by Okamoto et al.
[47] and Sammut et al. [48]. It is found that significant modifications of the dispersion
characteristics requires very high powers (⇠ 100 kW), so that the refractive index profile is
severely altered. For low powers this is elegantly expressed in terms of the fiber parameter
V. This parameter is well known as the normalised frequency of the fiber, and defined as
k0a(n2

co � n2
cl), where a is the core radius. In the nonlinear regime, V simply generalises

to [49, 50, 51]

VNL =
Vlinq

1� P/Pc

. (4.23)

were Pc is the previously defined critical power for self-focusing. This illustrates the im-
portant fact that a weakly nonlinear guided wave has an equivalent linear wavegude mode.
Anyway, for powers below 1 kW, P/Pc < 0.001 and the nonlinear contribution to the fiber
dispersion is negligible.

The dynamic evolution of a CW-beam in a nonlinear parabolic-index waveguide is gov-
erned by the equation
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which is derived from Eq. (4.1) by using f = �gr2, where g is the graded-index parame-
ter. This model was originally considered by Bendow et al. [52]. In that paper equation
(4.24) was solved approximately by using the paraxial-ray method. It was found that for
low powers, a Gaussian beam stays in the waveguide, and oscillates during propagation.
Above the self-focusing power, however, the beam collapses, similarly to the behaviour in
bulk media. The collapse distance, however, is somewhat shorter in the waveguide. The
longitudinal phase-shift was not considered in this work.

In Paper B, we solve the same problem with the variational method. We reproduce the
above results more accurately, and we derive expressions for the phase behaviour of the
beam and the critcal power for self-focusing. The phase is again found to be qualitatively
di↵erent from the paraxial-ray predictions. We find, similarly to the bulk medium, that
the phase-shift is positive for low powers and negative for high powers. It vanishes at a
beam power of 2/3 the critical power, similarly to the result of the bulk media found in
paper A.

The properties of beams in nonlinear fibers are further examined in Paper C. The paper
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utilizes the same variational method as earlier to solve Eq. (4.24), but with an important
improvement. A super-Gaussian trial function is used to model the radial mode profile,
i.e.

F (r, z) = A exp
✓
�1

2
(
r

a
)2m + ibr2 + i�

◆
(4.25)

The inclusion of the parameter m enables us to answer the question “How is the shape of
the fundamental mode altered by the nonlinearity?”. It is shown for stationary profiles
that the super-Gaussian coe�cient m only depends on the incoming power relative to the
critical power for self-focusing. For dynamical propagation, that is when A, a, b, and
� are functions of z, we show that the equations for these functions receive only minor
modifications in the coe�cients. The qualitative behaviour is thus the same as in paper
B. In the case of stationary propagation, A, a, b, and � do not depend on z, and can
be expressed as functions of m. Two limits are found for m; the linear limit with zero
nonlinearity corresponds to the well-known Gaussian solution (m=1), and the strongly
nonlinear limit with no waveguiding (g=0) which is approximated with m=ln(2). Any
relative strengths between the waveguiding and nonlinear forces will correspond to a value
of m between ln(2) and 1. By this method we have managed to get a description of how
the shape of the stationary mode depends on the relative strength of the waveguiding and
the nonlinearity, respectively.

It is noteworthy that the equation governing the stationary shape of a beam in a parabolic-
index fiber, Eq. (4.24), is the same as the equation for the shape of the similarity solution
for nonlinear self-focusing in bulk media derived above, Eq. (4.18). Thus, the di↵erent
shapes of the stationary modes in a parabolic-index fiber are the same as the di↵erent
shapes of the di↵racting self-similar solutions of Eq. (4.18). This is a quite unexpected
feature of paper C which was not recognized in time for its publication. For a more
thorough discussion of this equivalence we refer to [53]. Recently the inverse relation was
pointed out. That is, the propagation of a beam in a parabolic-index fiber was transformed
to the propagation of a beam in a bulk Kerr-medium [54].

4.4.4 Self-focusing with a saturable nonlinearity (Paper D)

In the earlier analyses, we have shown that an optical beam propagating with su�cient
power in a Kerr-medium will collapse catastrophically. The singular collapse point is
unphysical, involving infinite electric field amplitude and zero width. Furthermore, the
governing equation does not provide any information about the beam properties beyond
the collapse distance. In order to reestablish the physical behaviour, i.e. to avoid infinite
electric fields, we assume the induced refractive index to saturate. The refractive index is
modelled as

n2 = n2
0 +

n0n2|F |2

1 + n0n2|F |2
n2

sat�n2
0

(4.26)

which means that for high amplitudes the index saturates at nsat. We do not linger on
the physical mechanism behind the saturation, but mereley note that it exists in several
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media [55, 56, 57]. From a physical point of view, we can qualitatively discuss beam
dynamics in such a medium. Since the index saturates at nsat, the beam cannot focus to
zero width. Instead, there is a minimum width below which the di↵raction “overtakes”
the waveguide defined by nsat and n0, see [60]. The governing equation for the beam
becomes
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Other functional forms of the saturation mechanism should not alter the qualitative be-
haviour. This kind of evolution equation, was originally suggested by Wagner et al. [19].
The analytical analysis in that paper used the paraxial-ray method, but did not consider
the phase dynamics of the solutions. Numerically, this equation was solved by Marburger
et al. 1968 [58], and it was shown that the collapse process was indeed terminated due
to the saturation. The moment method has also been applied to saturble media, and the
existence of a minimum beam radius was shown [59]. The stationary mode profiles to
Eq. (4.27) was solved numerically by Chen [60], and it was found that di↵erent degrees
of saturation gave di↵erent self-trapped shapes. Those could be well fitted with in turn
hyperbolic secant, Gaussian, and cosine-profiles for increasing degree of saturation [60].

In Paper D we adress these issues. The variational method is again our analytical tool.
We start with an analysis of the self-trapped mode profiles via a super-Gaussian ansatz.
This enables us to analytically explain the numerical results of Ref. [60]. We also explain
the physical reason for the di↵erent mode profiles in the di↵erent regimes of saturation.
The simplest way to explain this feature is to consider the di↵erent induced waveguides
in which the beam is self-guided. Absence of saturation is equivalent to the common
Kerr-self-trapping. The shape of this self-trapped mode is nearly hyperbolic secant, as
shown by Anderson et al. [33]. A low degree of saturation will yield an approximate
parabolic index waveguide which has a Gaussian eigenmode. A high degree of saturation
corresponds to a step-index guide. The reason for the accurate cosine-fit in this case is
that the eigenfunction for the step-index-guide is two joint Bessel-functions, which be-
haves like a cosine function near zero.

The above indicates that a Gaussian profile is a good approximation for the mode profile
in a saturable medium. Therefore we use the Gaussian as trial function when examining
the beam dynamics. In the limit of low powers it is found that the beam di↵racts mono-
tonically just like in a Kerr-medium (cf. paper A). For powers above the critical power
for self-focusing, however, the behaviour is more like that of a beam in a Kerr-fiber, with
oscillations of the width if the stationary conditions are not exactly fulfilled (cf. paper
B). This is also found when Eq. (4.27) is solved numerically [61]. Considering the be-
haviour of the on-axis phase-shift we find di↵erences as compared to the nonlinear fiber,
however. The phase-shift of a beam in the Kerr-fiber makes a leap at the nodes, where
the amplitude of the beam has a maximum (paper B, Fig. 2). In this nonlinearly induced
waveguide however, the phase-shift decays slower at the nodes (paper D, Fig. 12a), i.e.
the contrary behaviour. The reason for the di↵erence is that a saturable guided beam
behaves qualitatively like a linear beam in a fiber, and the beam dynamics in the strongly
saturated limit can be shown to be the very near that of a beam in a step-index fiber[43].
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The latter is indeed a well-known and widely studied problem.

The investigation of the phase of these beams may prove important in future devices based
on the interaction between nonlinearly guided beams. Nonlinear beams interact via the
induced refractive index, i.e. via the overlap of their tails. Like interacting solitons, they
will repel (attract) each other if they are out of (in) phase [62, 63]. In this context it is
crucial to know the phase of each beam, since it is the relative phase between the beams
that determine the sign of the interaction force.

4.5 Self-focusing in three transverse dimensions

The propagation of a pulsed beam is governed by Eq. (4.1), where all second order
derivatives are included. For cylindrical beams, we consider two di↵erent cases depending
on the sign of k000 , i.e. if we have normal or anomalous dispersion. In the case of anomalous
dispersion, we can have complete symmetry between the temporal and spatial coordinates,
and the governing equation becomes, in spherical symmetry:
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where ⇢2 = x2k2
0 + y2k2

0 � k0t2/k000 is the normalised spherical radius. It was noted very
early that this equation had stationary solutions [64, 65] of the form F = R(⇢) exp[�iz],
where R(⇢) is localised. Similarly to the case of the cylindrical self-trapped beam, these
spherical solutions are unstable to perturbations of the power and will either broaden
or collapse. A saturable nonlinearity was also early suggested to remedy the collapse
[64, 65]. When investigating the stability of the stationary solutions in the saturable case,
it was found that not all were stable, however. The stability criterion (see chapter 5) can
be formulated as @P/@ > 0 for stable propagation, where P is the integrated energy
P =

R
R(⇢)⇢2d⇢ [64].

In a nonlinear optics context, the equation (4.1) was suggested by Silberberg [4] in a bulk
media, and he termed the spherical solutions light-bullets. The solutions were later exam-
ined by Desaix et al. [66] using the variational approach, and expressions for the collapse
distance were given. The shape of the spherical light-bullet is in fact closer to Lorentzian
than sech, and this is associated with the fact that the Lorentzian is an exact solution
for the nonlinear self-trapping equation in four transverse dimensions [53, 67]. A way to
avoid the collapse and observe light-bullets in experiments can be to use a pump-probe
configuration, as suggested by Blagoeva et al. [68]. In this scheme, an intense pump
beam provides the necessary refractive index modulation for the probe to be self-trapped
in time and space.

In the case of normal dispersion, the relative sign between the dispersive and di↵ractive
terms di↵ers, and there is no space-time symmetry. Instead, the governing equation is of
the form
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where k000 is positive. This equation has been investigated numerically by several au-
thors [44, 69, 70]. One might suppose that the collapse in the radial direction should be
counteracted by the broadening in the temporal direction. This is also observed in some
parameter regimes [44]. It is possible to show that the RMS width of a field governed by
Eq. (4.29) broadens monotonically in time during propagation [69]. However, this does
not rule out the collapsing behaviour, and it is found that the collapse dynamics may
be quite complicated. An initial pulse breaks up into subpulses, each of which collapses
and compresses. A detailed understanding of this “fractal collapse” process has yet to be
given.
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Chapter 5

Stability of nonlinear optical waves

A very important property to consider for nonlinear guided waves is the question of sta-
bility. A nonlinear beam may possess many attractive properties, but if it is unstable
these may be of no practical use. There is a wide variety of instabilities that may occur in
nonlinear optics, and in this chapter we restrict ourselves to the most important ones in
the context of nonlinear guided beams and pulses. The interested reader is referred to e.g.
Refs. [1, 2, 3] for a more general treatment. In the present context, we define instability
as: A stationary beam or pulse is unstable when a weak perturbation can grow to destroy
its stationary intensity distribution. This is not a rigorous mathematical definition, but
nevertheless it will suit our purposes. The practical implications of this is that if we can
perturb a beam in such a way that the perturbation grows to significantly modify the
beam, it may be impossible to generate the beam in practice. We use “may”, because the
mathematical definition of stability can in some cases be too rigorous for practical appli-
cations; i.e. there are examples of beams which mathematically can be proven unstable,
but nevertheless are found experimentally. There can be at least two reasons for such a
result:
(i) The instability is not realized in the experiment, e.g. the kind of perturbation that
triggers the instability is not excited in the experimental situation.
(ii) The instability is triggered, but its growth rate is too slow to be important in the
length- and time scales of the experiment.

Another complication arises when numerical methods are used. There might be cases
when a beam is theoretically stable, but when the numerical discretisation induces some
kind of artificial instability. We will provide examples of this below. In general, however,
“experimental stability” is more di�cult to accomplish than both “theoretical” or “nu-
merical” stability. The perturbations and combinations of perturbations which arise in
experiments are often much more complex than the idealized situations which are con-
sidered in theory. However, it should be emphasized that optical fibers, being essentially
one-dimensional, allow comparatively controlled experiments in nonlinear dynamics to be
carried out, as compared to other areas of physics, e.g. fluid- or plasma physics. Fur-
thermore, an instability may not be of a purely negative character. We will see below
that there are applications where instabilities can be used as an advantage. In the fol-
lowing discussion, we divide the instabilities into di↵erent groups for simplicity. Firstly
we discuss instabilities of guided beams in homogeneous- and inhomogeneous media, re-
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spectively. Then we go on to study modulational- and resonant instabilities. It should be
emphasized that there is no well-defined borderline between the instabilities studied here.
On a deeper physical level they can often be shown to be related. In fact, Fermats prin-
ciple, which states that rays of light move towards regions of higher refractive index can
be used to explain the physics behind many of the instabilities studied here. Moreover,
we emphasize that the instabilities discussed in this chapter are not purely theoretical
concepts, but have been verified experimentally.

5.1 Stability of self-guided beams in bulk media

A stable stationary state can be defined as the state a beam reaches asymptotically after
long distance of propagation, or mathematically, in the limit z !1. Slight perturbations
of the initial conditions will not alter the fact that the beam approaches the stable state
when propagating. Therefore, perturbations around such a state will not grow, and the
beam is stable. The most familiar example of this kind of stability in nonlinear optics is
the fundamental soliton, governed by e.g. equation (4.6)
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The soliton (and higher order solitons) emerges as asymptotic solution of Eq. (5.1) [4].
Small perturbations in the initial conditions will be radiated away during the initial stages
of the propagation, and asymptotically for large z, a soliton will emerge. From the IST
theory for solving this equation, it is possible to deduce directly from the initial condition
what kind of solitons that will emerge, see chapter 6.

On the other hand, the 2-d self-trapping in a Kerr-medium, governed by the eigenvalue
problem (4.14)
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(cf. paper A and ch. 4.4) is an example of a stationary state which is not asymptotically
stable [5]. A beam cannot evolve into this self-trapped state, but the self-trapping has
to be excited initially. Furthermore, a slight perturbation in the amplitude of the self-
trapped beam will make it either broaden or collapse monotonically. This means that the
2-d self-trapping in Kerr-media is unstable against perturbations in beam power.

The collapse process inherent in the higher-dimensional NLS equations is interesting both
from a mathematical and a physical point of view, and it has recieved great attention
in the literature. In 2-d, the earliest studies appeared in the context of nonlinear optics
[5], whereas collapse in 3-d was investigated for the first time in the context of Langmuir
waves in plasmas [6]. It was recently recognized by Silberberg that the same equation
applies to pulsed light beams in dispersive media, [7]. For a thorough treatment on the
collapse process, we refer to the reviews by Berkshire and Gibbon [8] and by Rasmussen
and Rypdal [9]. Below, we will review some of the most important properties of the

54



collapse.

The governing equation for multidimensional nonlinear optical beams is given by e.g. Eq.
(2.27)
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2k0
r2
?F +

k0n2

n0
|F |2F (5.3)

where the dimensionality of r2
? can be D=1,2 or 3. It was shown in e.g. Ref. [9] that

collapse can only occur for D � 2. In the special case D = 2 the moment method (virial
theory) [6] yields the following equation for the RMS width < r2 >=

R
r2| |2rdr

d2 < r2 >

dz2
= 2

Z 1

k2
0

|r?F |2 � n2

n0
|F |4rdr = 2H = constant (5.4)

where we have defined the Hamiltonian H, which is independent of z [9, 10, 11]. Since
collapse corresponds to < r2 >= 0, it is in this particular case possible to deduce the
collapse from the initial condition. Obviously, a su�cient condition for collapse is H < 0.
In the case D=3, the right-hand side of Eq. (5.4) is not independent of z, and a similar
criterion is not possible. Moreover, the D = 2-case has an additional symmetry, Talanov’s
“lens transformation” [12] which enables a self-similar description of the collapse. This
solution was derived in chapter 4.4, eqs. (4.16-4.20), and from it we can construct an
exact blow-up solution to eq. (5.3) as

F (r, z) = a(z)�1R(
r

a(z)
) exp[i(�a0(0)k0r2

2a(z)
� �

2koa0(0)a(z)
] (5.5)

a(z) = a(0) + a0(0)z (5.6)

where R is the solution to the eigenvalue problem solved by Chiao et al. [13], i.e. Eq.
(5.2). � is the eigenvalue and a(0) > 0, a0(0) < 0 are real constants. It is worth em-
phasizing, however, that this self-similar solution only describes one particular blow-up
scenario. We can physically interpret this scenario as the singularity caused by focusing
the 2-d self-trapped beam to a point by using a thin lens. All other blow-up cases will
lead to non-self-similar evolutions, characterized by a change of shape and strong peaking
of the central parts of the beam. In particular, the blow-up in 3-d is always of this kind
[14]. Using the variational method [15], approximate collapse criteria can be found for
the 3-d case where the virial theory fails.

The collapsing singularity can be removed by allowing the refractive index to saturate.
The self-trapped beams in such media will then be governed by an equation which we can
write in normalised form as

� =
1

2r(D�1)

@

@r
(r(D�1)@ 

@r
) +

| |2 
1 + | |2 (5.7)

where the eigenvalue � > 0 is determined by the boundary condition  ! 0 as r ! 1.
This eigenvalue problem was investigated numerically by Vakhitov and Kolokolov 1973,
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[16] and the dispersion diagram showing the beam energy P (�) ⌘
R
| |2r(D�1)dr vs. the

eigenvalue � was constructed for the fundamental self-trapped states. Quite surprisingly,
a qualitative di↵erence between the cylindrical (D=2) and spherical (D=3) beams was
found. The spherical beam was found to have a local minimum at �0, i.e. P 0(�0) = 0,
whereas in the cylindrical case P 0(�) > 0 for all � (see e.g. Paper D, Fig.4). Moreover,
the stability of these fundamental self-guided modes was considered, and it was found
that the modes were stable provided P 0(�) > 0. This means that cylindrical self-trapped
beams in a saturable media are stable for all � > 0, but spherical self-trapped beams are
stable only for � > �0. Later, Kolokolov generalised this, and showed that P 0(�) < 0 is
a su�cient condition for instability of the fundamental self-guided mode, independently
of the nonlinearity. Physically, this is associated with Fermats principle, which states
that light rays move towards regions with higher refractive index. Similar results were
obtained more recently by Mitchell and Snyder [18], in which the stability criterion of the
fundamental mode of an arbitrary nonlinear waveguide were formulated. Note, however,
that there are cases when the stability cannot be deduced directly from the P (�)-plot.
As an example, consider the fundamental mode of the D-dimensional beam in a Kerr
medium. It was shown e.g. in Ref. [15] that

P (�) ⇠ �1�D/2 (5.8)

from which we can deduce instability for D=3, and possible stability for D=1. In the
cylindrically symmetrical case, D=2, P does not depend on � and we cannot deduce in-
stability from the P (�)-plot. However, we know by other means that the D=2-case is
unstable (see paper A), and that the D=1-case is stable, since it corresponds to the NLS-
soliton solution. In conclusion, we may note that the condition P 0(�) > 0 is a necessary,
but not su�cient stability criterion. It is obviously more di�cult to prove stability than
instability, since one has to prove stability to all possible perturbations. A discussion
around the concept of stability should therefore be related to a certain class of perturba-
tions.

5.2 Stability in nonlinear waveguides

Another way of causing stability of the di↵racting-collapsing situation of Kerr-self-focusing
in 2-d is to use a linear waveguide (see Paper B). This prevents the di↵raction but not the
collapse, so that beams are stably self-trapped below the critical power for self-focusing.
Above the critical power they collapse, as in the bulk medium. In paper B, we derive an
approximate solution for the width as function of z, and it is obvious that changes in power
below Pc only causes oscillations of the width, and not monotonic di↵raction/collapse.

A lot of research have been devoted to the stability of waves in nonlinear planar wave
guides, with nonlinearities in either the core or the cladding or both. The same stability
condition as above have been found, i.e. stability for P 0(�) > 0 [19] - [23]. Mitchell et
al. [18] have shown that this criterion is universally appliccable to all fundamental modes
of nonlinear waveguides. A controversy over the stability of a beam in a waveguide sur-
rounded by nonlinear material was recently settled in favour of the theory, and it was
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demonstrated that a previously observed instability was in fact a numerical artifact [24].
Concerning the more di�cult problem of the stability of higher-order modes, no simple
universal stability criterion has been obtained. It is most likely that this issue will have
to be analyzed on a case-by-case basis [25].

5.3 Modulational instability

The modulation instability (MI) is a well known phenomenon occurring in nonlinear
dispersive media. The phenomenon has been studied in such diverse areas as in plasma
physics [26], fluid mechanics [27] and, as here, in nonlinear optics, were it was originally
predicted by Bespalov and Talanov 1966 [28]. The concept arises from the fact that a
periodic perturbation, a modulation, on a stationary wave envelope in a nonlinear material
can exhibit exponential growth. It was not pointed out until the early eighties that the
phenomenon could arise in nonlinear optical fibers as well, governed by the NLS equation
[29, 30, 31]. Below, we will discuss MI separately in the contexts of beam propagation
and pulse propagation in fibers, respectively.

5.3.1 Filamentation of beams, MI in several dimensions

Starting out from Eq. (2.27) in normalised form, assuming anomalous dispersion and
space-time symmetry, we have for an arbitrary nonlinearity f,
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2
r2
? + f(| |2) (5.9)

where we can allow the transverse dimensionality to be D=1,2 or 3. It is easy to see that

 s = A exp[�if(|A|2)z], (5.10)

with A being a constant amplitude, is a stationary solution to Eq. (5.9). It is no restriction
to take A to be real. Perturbing this stationary solution, viz.

 = (A + ✏(x, y, t, z)) exp[�if(A2)z] (5.11)

where |✏(x, y, t, z)|⌧ A, and linearising in ✏ yields
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@z
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1

2
r2
?✏+ A2f 0(A2)(✏+ ✏⇤) (5.12)

where we have expanded the nonlinearity around the background amplitude. Now the
perturbation is assumed to be of the form

✏(x, y, t, z) = (a + ib)g(x, y, t) exp(�z) (5.13)

where a,b and � are real constants, and g(x, y, t) is an eigenfunction of the transverse
Laplacian, i.e. r2

?g = �2g. Inserting Eq. (5.13) into (5.12), and eliminating a and b,
we find that the growth rate � of the perturbation is given by
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We see that � is real and positive within two unstable sidebands, having “cut-o↵” at

 = ±2A
q

f 0(A2). This implies that the eigenfunctions of the tranverse Laplacian con-
stitute a class of unstable perturbations which grow exponentially. These eigenfunctions
are all of oscillatory nature, and the instability is therefore called modulational instabil-
ity. Noteworthy in the cases of cylindrical/spherical symmetry, is the existence of higher
order eigenfunctions of the transverse Laplacian, which also lead to instability. These are
periodic in the azimuthal direction, i.e. such perturbations break up the angular symme-
try. This kind of angular instability was observed experimentally very early [32, 33] and
identified as a probable cause for the filamentation of beams. In a Kerr-medium (f(x)=x),
the term f 0(A2)A2 is directly proportional to the intensity A2, and the upper limit of MI
will increase with the background intensity. In a defocusing medium, which has f(x)=-x,
Eq. (5.14) has no real roots, and it is therefore stable against modulations. If a saturable
medium is considered, e.g. f(x)=x/(1+x), we find that A2f 0(A2)! 0 when A!1, and
MI is supressed at high background intensities [34, 35].

Two important facts should be emphasized at this point. Although it is not physically
possible to have an infinitely wide background, MI can still be observed on a finite back-
ground, provided the background is wide enough for the unstable wavelengths. These are
of the same order as the width of the fundamental self-trapped beam of the background
amplitude. In other words, the tendency to create filaments out of a broad initial beam
is a manifestation of MI. The second important point is that not only constant back-
grounds, but also solutions that are broad enough in one direction are modulationally
unstable in that direction. For instance, the NLS in 2-d have soliton-like solutions of
the kind sech(ax + by), where a and b are arbitrary constants. In the (x,y)-plane, these
solutions are localised in the (a,b)-direction, but constant in the perpendicular (b,-a)-
direction. They are therefore modulationally unstable along this direction. This fact was
originally pointed out by Zakharov and Rubenchik 1974 [36]. Modulational instability
may seem disastrous, but in fact it can be used as an advantage. For instance, a self-
trapped CW-beam in a saturable medium will break up into pulses [34, 37], which makes
MI a convenient light-bullet generator, or, using the imaginative title of Ref. [34], an
“optical machine gun”.

5.3.2 MI in a temporally defocusing medium (Paper E)

As seen above, MI is strongly dependent on the relative sign between the dispersion /
di↵raction and the nonlinearity. In a bulk medium with normal dispersion, the di↵raction
and dispersion act with di↵erent signs with respect to the nonlinearity. An arbitrary input
beam would focus in space and defocus in time, and it is not obvious how MI will develop
in such media. Simulations reveal that spatial collapse can still occur, although the back-
ground broadens in time [38, 39]. The governing equation for a pulse in a homogeneous
Kerr-medium with normal (defocusing) dispersion is in normalised form
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The standard MI approach, as outlined above, can be applied to this equation. This was
done by Liou et al. [40], and the growth rate was found to be given by
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y � ⌦2)(4A2 � k2

x � k2
y + ⌦2) (5.16)

where kx, ky are the wavenumbers of the transverse modulations, ⌦ is the modulation
frequency in time, and A is the background amplitude. However, this result assumes
an infinite background. In fact, it can be shown that a localised background solution to
Eq. (5.15), which is present in experiments, must always expand in time. A more exact
treatment of MI in this kind of medium should therefore take this fact into account.

In Paper E we derive an approximate background solution to Eq. (5.15) which is assumed
to be constant in the x- and y-directions on which the perturbations can grow. This
background, which expands in time, has a self-similar character, i.e.
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where I, ⌧ , and ↵ can be expressed as functions of z. Asymptotically it is found that
the intensity I(z) decays as z�1, and as a first approach we consider perturbations in
the transverse spatial directions when the background amplitude decays as z�1. We find
that exponential growth is possible in the initial stages of the propagation, when the
background is still strong. After some distance, however, the background amplitude has
decreased so that the perturbation modes are no longer unstable, but become oscillatory.
Given a specific distance, it is also posible to find the wavenumber which corresponds to
the strongest perturbation. Finally an analysis of modulations both in time and in space
is carried out, and it is found that such a modulation also can exhibit exponential growth.
This means that one can have break-up in time due to the spatial instability, despite the
stability to pure temporal modulations. In other words, the spatial modulation triggers
the temporal modulational instability, a result which agrees with numerical simulations,
[38, 39].

5.3.3 MI in nonlinear optical fibers

In chapter 3, we derived the equation governing pulses in fibers as Eq. (3.29)
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where we have neglected the shock-term and the Raman response of the fiber. We will
demonstrate how the theory for MI can be applied to a fiber with arbitrary dispersive
properties, and we therefore keep the full expansion of the dispersion operator, i.e.
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Assuming a perturbed cw-field u(t, z) = (A + ✏(z, t)) exp(�iA2z), we can carry out the
same derivation as above. Writing ✏(z, t) = a cos(kz�⌦t) + ib sin(kz�⌦t), it is straight-
forward to obtain the dispersion relation k(⌦) for the perturbation as
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in which the summation should be done for n > 0. The perturbation exhibits exponential
growth if the perturbation wavenumber is complex, i.e. for the LHS of Eq. (5.20) negative.
Thus, the condition for the existence of unstable frequencies ⌦ can be written as

�2�A2 <
X

n even

(⌦)n

n!
�(n)

0 < 0. (5.21)

Several important features can be deduced from Eqs. (5.20-5.21).

(i) A necessary (but not su�cient) condition for instability is that at least one of the even

coe�cients �(2m)
0 is negative.

(ii) A su�cient (but not necessary) condition for instability is that the lowest order
coe�cient �

00
0 is negative. The physical implication of this is that the background wave

propagates in the regime of anomalous GVD.

(iii) The odd dispersive orders do not contribute to the onset of MI. Instead, the odd or-
ders, which yield the real part of k, contributes to the phase velocity of the perturbation.

The simplest example of modulational instability described by the above formulas is when
higher than second-order (group-velocity) dispersion contributions are negligible. We find
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2
(5.22)

from which it is obvious that �000 must be negative for instability. In other words, an
intense continous wave in the wavelength range of anomalus dispersion will be broken up
into a train of soliton-like pulses. The cut-o↵ frequencies for the unstable sidebands are

given by ⌦co = ±2A
q
��/�000 , and the maximum growth rate is obtained at

⌦max = ±A
q
�2�/�000 . (5.23)

This modulation frequency corresponds to the duration of the fundamental soliton with
amplitude A, and MI can therefore be seen as the tendency to create solitons out of a
long input pulse. These spectral properties of MI were noted in the early theoretical
studies [29, 30, 31]. Later on, higher-order dispersive e↵ects were incorporated. In agree-
ment with the above formulas, Vyshloukh et al. [41] showed that third-order dispersion
does not a↵ect the growth rate of the instability, and recently the e↵ects of fourth-order
dispersion were found to give rise to novel features of the MI, e.g. additional sidebands
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[42, 43, 44]. The higher order nonlinear terms of the NLS equation in fibers have also
been incorporated into the theory of MI. The self-steepening term was included by Shukla
et al. [45]. Potasek [46] added the Raman term, and Blow et al. [47] considered the full
model, including the entire Raman gain spectrum. This is important, since the Raman
gain severely modifies the MI gain spectrum.

The above theory is based on linear stability analysis. When the perturbation starts to
grow, the assumption of a small perturbation becomes invalid, and this theory breaks
down. The modulations cannot grow indefinetely, however, since depletion of the back-
ground will limit the growth. It should therefore be valuable to have a picture of the full
dynamics of MI. Numerically, this problem was treated by Yuen and Ferguson 1978 [48].
The dynamics of MI in the one-dimensional (integrable) NLS equation was demonstrated
to yield recurrence. This means that the inital growth of the modulation depletes the
background heavily, and then the reverse process takes place so that after a certain prop-
agation distance the system is back to its initial state. A similar phenomenon was earlier
observed by Fermi, Pasta and Ulam in the context of nonlinear lattice vibrations, and
it is commonly known as Fermi-Pasta-Ulam recurrence. Further progress was made by
Infeld 1981 [49], who analyzed the dynamic growth of two discrete sidebands surrounding
the carrier background. Analytical expressions for the oscillating (along z) amplitudes in
terms of elliptical functions can be obtained in this way. A similar method was recently
applied to optical fibers by Trillo et al. [50]. It has also been shown that two di↵erent kinds
of periodic evolutionary patterns exist for MI, which are separated by a homoclinic orbit
[51]. This orbit coincides with an exact aperiodic analytical solution found by Akhme-
diev et al. [52]. In fact, it has been shown that the inverse scattering transform, which
is valid only for localised input pulses, can be generalised to periodic initial conditions
[53]. Therefore, a wide class of exact analytical solutions for the MI problem of the NLS
equation exists [52, 54]. Recurrence phenomena have also been observed in the 2-d NLS
equations [55, 56], but then with an important di↵erence: The system does not return
exactly to the initial state, but to a point near this in phase space. This phenomenon is
termed quasi-, or pseudo-recurrence. Pseudo-recurrence can occur only in non-integrable
systems [53], and it is associated with the trajectories of strange-attractors in nonlinear
dynamical systems. It may be added that MI can occur also in coupled systems of NLS
equations, where it leads to break-up of continous waves of di↵erent frequencies [57] or
polarisation states [58] in nonlinear fibers. Those instabilities can arise also in the regime
of normal dispersion. Since coupled NLS equations are non-integrable in general, we may
only expect pseudo-recurrence for those instabilities.

There are several possible applications of the modulational instability. It was recognized
early that MI in fibers could be utilized as a means of generating high-repetition rate
pulse-trains [30]. This was later experimentally verified in experiments by Tai et al.
[59, 60] in which repetition-rates of 0.3 THz were reported. The modulational instability
have also been utilized in switching [61], and lasing [62] configurations.
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5.4 Resonant instabilities

In this section we restrict the treatment to perturbations of soliton pulses in optical fibers.
However, the criterion for instability (phase matching) that we use is of much more general
validity, and we will show how it can be used to explain the modulational instability as
well. For pulse propagation in an optical fiber, we derived in chapter (3) the nonlinear
Schrödinger (NLS) equation
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were we have assumed anomalous dispersion (�000 < 0) and left room for an arbitrary
perturbation operator P̂ , which can be linear or nonlinear. When P̂ can be neglected,
the NLS equation has the stable soliton solution
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where the pulse duration t0 can be chosen arbitrarily, and the nonlinear propagation
constant ksol is positive due to self-phase modulation. The stability of the soliton solution
was established very early [63], and can be viewed as being due to the fact that the soliton
exist in a regime in k-space that is forbidden for linear waves. Weak linear wave solutions
⇠ exp[i⌦t� klinz] of Eq.(5.24) obey the dispersion relation

klin(⌦) = �|�000 |
⌦2

2
(5.26)

so that klin < 0. It is well-known in the theory of wave interactions, that if energy
is to be transferred between two waves, they should be phase-matched, i.e. have the
same propagation constant k. In a quantum mechanical description, this corresponds to
momentum conservation in the four-photon mixing process. Obviously, if klin and ksol

have di↵erent signs, then solitons and linear waves cannot be phase-matched, and the
soliton cannot transfer energy to the linear waves. The soliton will therefore remain as a
nonlinearly trapped wave-packet. However, certain perturbations P̂ can open up a way
to phase-match the soliton with the linear waves, and the result will be that the soliton
loses energy by radiation. This is a resonant process in the sense that there is one (or
several) particularly unstable frequencies that will drain energy from the soliton, and
we therefore term these processes resonant instabilities. We will give two particularly
important examples of perturbations giving rise to resonant instabilities, namely higher-
order dispersion and periodic amplification.

5.4.1 Instabilities due to higher-order dispersion

Higher-order corrections to the dispersion operator can be of two kinds, depending on the
carrier wavelength and the dispersive properties of the fiber. If the carrier wavelength is
close to the zero-dispersion wavelength �0, then third-order dispersion (3OD) dominates,
and this is modelled in the NLS equation (5.24) with
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cf. Eq. (3.34). In most fibers �0000 > 0. However it is possible to draw fibers in which
the group velocity dispersion has a minimum, i.e. �0000 = 0, at a certain frequency, and
around that frequency the next higher-order dispersion contribution will be the fourth-
order dispersion (4OD). In the NLS equation (5.24) this corresponds to
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Obviously, the linear dispersion relation will be modified by the inclusion of higher order
dispersion e↵ects, so that
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The inclusion of (3OD) thus yields a linear propagation constant klin that can take on
either sign. Following the above discussion, the frequency ⌦uns that has the same propa-
gation constant as the soliton, ksol = klin(⌦uns), will be unstable which means that linear
waves are generated at this frequency. Since the group-velocity vg = d!/dk at the un-
stable frequency ⌦uns in general di↵ers from the group velocity of the soliton, energy will
be lost from the soliton by this radiation. To lowest order in the small dimensionless
parameters �0000 /|�000 | and �00000 /|�000 |, the unstable frequency is given by

⌦uns ⇡
3|�000 |
�0000

⌦uns ⇡ ±

vuut12|�000 |
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From these expressions we see that an unstable frequency always exists in the case of 3OD.
For 4OD, �00000 > 0 is required for instability, and in that case two frequencies, symmetri-
cally placed around the carrier, are unstable. The physical meaning of the requirement
�00000 > 0 is that two zero-dispersion frequencies exist around the carrier, so that the soliton
is situated in a spectral “well” of anomalous dispersion. We term this “positive” 4OD.
This, and “negative” 4OD are discussed in more detail in the next chapter and in papers
G-I of this thesis.

We can also estimate the amplitude of this radiation in a very simple manner. Since the
radiation is generated by the soliton at the frequency ⌦uns, it will obviously be propor-
tional to the spectral amplitude of the soliton at this frequency. The Fourier transform
of the soliton (5.25) is

ũs(z,!) = ⇡
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|�000 |
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2
) exp[�iksolz]. (5.31)

Note that the spectral amplitude of the soliton is independent of the arbitrary duration
t0. The radiation amplitude is now proportional to |ũs(z, ⌦uns)| which is
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Figure 5.1: The unstable frequency is defined by the requirement that the soliton wavenum-
ber and the linear wavenumber are equal. This is often approximated with klin = 0. The
soliton spectrum is included as the thin line for convenience.

|ũs(z, ⌦uns)| ⇡ 2⇡

s
|�000 |
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exp[�3⇡|�000 |t0
2�0000

] (5.32)

and we see that the radiation amplitude is exponentially small when ✏ = �0000 /|�000 |t0 is
small, i.e. when the main part of the soliton spectrum lies in the anomalous-dispersion
regime. The expression for 4OD is similar to this.

The fact that solitons perturbed by 3OD will radiate at a discrete frequency was demon-
strated 1986 in numerical simulations by Wai et al. [64]. They identified the resonant
frequency as given by Eq. (5.30), but did not identify the correct resonance condition,
ksol = klin which in fact makes the unstable frequency weakly dependent on the soliton
width t0, see Fig. (5.1) and Eq. (5.25). This condition was identified by Kuehl et al.
[65] and recently by Elgin [66]. The radiation due to 4OD was originally demonstrated in
paper G of this thesis, and we will discuss this in more detail in the next chapter.

We found form Eq. (5.32) that the radiation amplitude is proportional to exp[�1/✏],
where ✏ ⇠ �0000 /|�000 |t0 is a small dimensionless parameter. This function cannot be approx-
imated with a power series in ✏, and this fact makes calculations of the radiation amplitude
using conventional perturbation theories di�cult. Quite cumbersome perturbation meth-
ods that develop the perturbation series “beyond all orders” have been applied to this
problem [65, 67], but recently somewhat simpler approaches have been suggested [68, 69].
A further complication in the 3OD-case is the spectral recoil e↵ect. This follows from

64



the invariance of the spectral center-of-mass (momentum) of the perturbed NLS equa-
tion. Thus, if an unstable sideband grows in the normal-dispersion region, the soliton
will be pushed, “recoiled”, further into the anomalous region, i.e. away from the unstable
frequency. This decreases the radiation amplitude and stabilizes the soliton. A soliton
generated too close the zero-dispersion wavelength �0 will therefore stabilize itself through
this radiation process. A physically interesting fact is that this linear radiation is equiv-
alent with Cherenkov radiation, since the phase velocity of the soliton exceeds the phase
velocity of the linear waves [69]. The important problem of what kind of soliton that will
emerge from an arbitrary pulse launched close to �0 is yet unsolved, although important
results were obtained in simulations by Wai et al. [64, 70]. Experimental verification of
the above theoretical predictions for 3OD has been given by a number of authors, see e.g.
Gouveia-Neto et al. [71].

5.4.2 Instabilities due to periodic amplification

When soliton pulses are used in practical applications for long-distance telecommuni-
cations, the e↵ects of loss cannot be neglected. Therefore, the optical pulses must be
amplified periodically along the distance of propagation. The first numerical investiga-
tions of periodically amplified solitons was done in the mid-eighties by Hasegawa [72]
and Mollenauer et al. [73]. It was found that the stability of the soliton pulses was
strongly dependent on the amplification period. In particular, if the amplification period
is of the same order as the inverse soliton wavenumber, the soliton could lose power due
to resonance in a manner similar to that described above. We will consider two types
of amplification that are commonly applied: distributed amplification, and amplification
by means of lumped amplifiers. The former applies to distributed Erbium-doped fibers,
or Raman-pumped fibers. In such systems, the signal power varies approximately sinu-
soidally through each amplification period. As a simple model, we take

P̂dist = i cos(kampz) =
i

2
(exp(ikampz) + exp(�ikampz)) (5.33)

in Eq. (5.24). The amplification wavenumber is kamp = 2⇡/L where L is the amplifier
spacing. In a system using lumped amplifiers, we can approximate the gain with a train
of delta functions, spaced the distance L along the fiber, so that

P̂lump = �i� + i exp(�L)
1X

n=1

�(z � nL) = �i� + i exp(�L)
1X

n=�1
exp(inkampz) (5.34)

where � is the linear loss of the fiber, and the factor exp(�L) is necessary to give zero
net gain over each period. The above models of gain and loss in a communication system
obviously constitute periodic perturbations in z, with the characteristic wavenumbers
±kamp for distributed gain, and nkamp for lumped amplifiers. Those wavenumbers can
phase-match the soliton to linear waves via the phase-matching condition ksol±kamp = klin

for distributed gain, and ksol + nkamp = klin for the lumped amplifiers. Using klin from
equation (5.26) we find the unstable frequencies as
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⌦dist
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0

r
8
z0

L
� 1 (5.35)

⌦lump
uns = ±t�1

0

r
8n

z0

L
� 1 (5.36)

where we have introduced the soliton period z0 = ⇡t20
2|�00

0 | . These expressions for the unstable

frequencies are defined only when the square roots are real. A measure of the radiation
is obtained from the soliton’s spectral value at these frequencies, i.e.

udist
r ⇠ sech(

⇡

2

r
8
z0

L
� 1) (5.37)
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r
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z0

L
� 1) (5.38)

These expressions reproduce the qualitative features of the numerical calculations [74], i.e.
that the radiation grows indefinitely with L/z0 for lumped amplifiers, but decreases for
large L/z0 in the case of distributed gain. The reason for this is that lumped amplifiers
excite more unstable sidebands than distributed amplifiers. There is a strong resonance
at L = 8z0, since most of the spectral energy of the soliton lies at ⌦ = 0. We also observe
that for small values of L/z0, the unstable sidebands are far away from the soliton spec-
trum, and soliton propagation when the amplifier spacing is much less than the soliton
period is therefore stable. In fact, it has been shown by Hasegawa and Kodama [75] (see
also Ref. [76]) that if L ⌧ z0 the loss can virtually be neglected and the unperturbed,
renormalised NLS equation is a valid desription for pulse propagation in fibers. It seems
quite clear that a proper system has to operate in the region L/z0 ⌧ 8, although there
has been some controversy over the optimun choice of z0 in a properly designed system
[77, 76]. An interesting possibility that, to my knowledge, has not been investigated is
aperiodically spaced amplifiers. This would undoubtedly decrease the strength of the res-
onances, but it is unknown to what degree. The useful picture with the phase matching
condition ksol + kamp = klin was originally suggested by Gordon [78], and the unstable
frequencies given by Eq. (5.36) was derived by Kelly [79] and later by Elgin [66]. In
the case of distributed gain, Kaup [80] derived a perturbation- inverse scattering scheme
which enabled an analytical expression of the numerical features of Ref. [73].

5.4.3 Interpretation of the modulational instability as a reso-
nant process

Finally, we wish to point out the fact that the modulational instability can be explained
in terms of the above resonance condition. MI is the interaction between an intense pump
wave with amplitude A, which has the wavenumber kpump = �A2 and a weak probe at a
frequency ⌦uns. The dispersion relation for the probe is then

kprobe = �|�000 |
⌦2

2
+ 2�A2 (5.39)
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where the factor 2�A2 comes from the cross-phase modulation between the pump and the
probe. From the resonance condition kpump = kprobe(⌦uns) we find

⌦uns = ±A
q

2�/|�000 | (5.40)

which is equivalent to the expression (5.23) for the maximum-growth-rate frequency. This
means that MI can be viewed as a three-wave mixing (3WM) process that is phase-
matched by the self-phase modulation. This is particularly useful when analyzing the
dynamics and recurrence of MI, which can be done from the coupled 3WM equations [81].
From this theory several important features of MI can be related to well-known features of
3WM, e.g. parametric amplification or energy conversion between the harmonics and the
pump [82]. Another interesting application, suggested by Garth and Pask [83] was to use
the frequency dependence of the phase-matching condition to determine the dispersive
properties of the fiber, e.g. the zero-dispersion wavelength. Recently this teory was
extended to include the nonlinear coupling between the polarisation states of the fiber
[84].
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Chapter 6

Nonlinear pulse propagation in
optical fibers

6.1 Introduction - bright and dark soliton pulses

In chapter 3, we derived the equation governing the slowly varying envelope u(z,t) (W 1/2)
of a pulse in an optical fiber as Eq. (3.29), which can be approximated as
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where t is the retarded time, z the axial distance, !0 the carrier frequency and �, ⌧R
are positive constants that were defined in chapter 3. We have expanded the dispersion
operator to fourth order, since one important part of this thesis is to consider the e↵ect
of higher (i.e. third and fourth) order dispersion. The coe�cient � has been incorpo-
rated to account for linear loss (� < 0) or amplification (� > 0). The loss in a fiber is
typically ⇠ 0.2� 0.3(dB/km) for the wavelengths of interest here, which corresponds to
� ⇠= 2� 3⇥ 10�5(m�1). For fiber lengths less than 1 km this can be ignored. The terms
on the first line of Eq. (6.1) constitutes the Nonlinear Schrödinger (NLS) equation, and
was derived for fibers originally by Hasegawa and Tappert 1973 [1, 2]. The NLS equation
is a universal nonlinear propagation equation in the sense that it arises in many di↵er-
ent fields of physics, and it has the for nonlinear partial di↵erential equations unusual
and nice feature that it is integrable. This means that its initial-value problem can be
solved exactly. The only restriction is that the initial condition must be localised, i.e.R+1
�1 |u(0, t)|2dt must exist. In this chapter, we will discuss pulse propagation governed

by Eq. (6.1) which is a very good model for pulse propagation in silica fibers.

We will divide the discussion into two separate cases, depending on the sign of the group-
velocity dispersion �000 . These cases are commonly denoted normal (anomalous) dispersion
and corresponds to �000 > 0 (�000 < 0). In standard fibers, there is a zero-dispersion wave-
length �0

⇠= 1.3µm, at which �000 = 0. Below (above) this carrier wavelength lies the
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normal (anomalous) dispersion regime.

It is convenient to work with the NLS equation in normalized form, and we introduce the
“soliton normalizations” [3]

q = u

s
�

Ld

⌧ =
t

t0
⇠ =

z

Ld

⌘ z|�000 |
t20

(6.2)

where t0 is the input pulse width and Ld the dispersive length. In the case of anomalous
dispersion, the NLS equation in normalized units becomes
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We can expect this equation to have stationary pulse-shaped solutions, because the in-
duced refractive index is higher over the pulse centre, thus yielding a temporal “waveguid-
ing” e↵ect, (cf. spatial solitons) that counteracts the dispersive broadeing. The mathe-
matical theory for the solution of this equation, which demonstrates the inverse scattering
transform (IST) for the NLS, was given 1972 in an important paper by Zakharov and Sha-
bat [4]. They found that a crucial role is played by the soliton solution to eq. (6.3):

q(⇠, ⌧) = A sech(A(⌧ � V ⇠)) exp[�iV ⌧ + i
(V 2 � A2)⇠

2
], (6.4)

where A is an arbitrary soliton amplitude, and V is an arbitrary frequency shift. Note
that the soliton moves with the “velocity” V in the retarded reference frame due to this
shift. This reflects the fact that the NLS equation is invariant under the Galileian trans-
formation. The IST reveals that all localized solutions to the NLS equation consist of
solitons and dispersive radiation. Thus, asymptotically as z ! 1, the solution consists
of a discrete number of solitons only. Early numerical simulations [1] also demonstrated
the stable-attractor properties of the soliton-solution. The theory also shows that if N
solitons are present in the total field we have an “N-soliton” solution. This can be ei-
ther N well-separated soliton pulses, or if the pulses are clumped together, an oscillating
N-soliton structure, a breather. The oscillations of a higher-order soliton can be seen as
the beating between separate solitons with di↵erent wavenumber. Solitons are therefore
solutions that can be superposed. In particular, solitons can collide and emerge una↵ected
after the collision in spite of the fact that they are goverened by an equation for which
the linear superposition principle is not valid! This is only possible in the limited number
of integrable equations, e.g. the NLS-, KdV- or Sine-Gordon equations.

In the case of normal dispersion the normalized governing equation becomes

i
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@⇠
= �1

2

@2q

@⌧ 2
+ |q|2q. (6.5)

Here, the nonlinearity boosts the dispersive broadening of a pulse. However, if we con-
sider dark pulses, i.e. an intensity dip on a constant background level, we realize that
the nonlinearity can be viewed as a defocusing “guide” which counteracts the dispersive
broadening. Such dark pulse solutions of Eq. (6.5) are known as dark solitons, in contrast
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to the bright soliton (6.4) and were obtained for the first time by Zakharov and Shabat
[5], and independently by Hasegawa and Tappert [2]:

q(⇠, ⌧) = (iV + A tanh(A(⌧ � V ⇠))) exp[�i(A2 + V 2)⇠] (6.6)

where A is the amplitude and V the velocity of the dark soliton. The dark solitons have
similar stability properties as the bright ones, but they can be di�cult to generate ex-
perimentally because of the necessary phase modulation. Bright solitons in fibers were
observed for the first time by Mollenauer et al. 1980 [6], whereas dark solitons were exper-
imentally verified later, by several groups 1987-88 [7]. Dark solitons can be of two kinds,
“grey” or “black” depending on whether the dark minimum reaches zero or not. We
emphasize that dark solitons could prove a choice as information carriers in fibers, since
their mutual interaction is less than that of the bright solitons [8], and they can therefore
be more densely packed. However, since dark solitons is not a main topic of this thesis,
we will not discuss this any further. There are several fundamental di↵erences between
bright and dark solitons, and the interested reader is referred to the recent reviews by
Weiner [9] and Kivshar [10].

The nonlinear Schrödinger equations described above have several families of exact solu-
tions apart from the solitons, see e.g. [11, 12, 13]. However, the solitons are the only exact
localized solutions, and in this work we restrict ourselves to bright-pulse propagation in
optical fibers. Because of the qualitative di↵erence between the normal- and anomalous-
dispersion regimes, we study those cases separately below. The most important applica-
tions that we will consider are optical pulse compression in the normal dispersion regime,
and optical soliton communication systems in the anomalous dispersion regime.

6.2 Pulse propagation in normal dispersion

6.2.1 Pulse dynamics - the wave breaking phenomenon

Pulse propagation in the anomalous dispersion regime is characterized by temporal and
spectral broadening, due to the self-phase modulation e↵ect [14]. For fibers, the first
simulation and experiment of bright-pulse propagation in the normal dispersion regime
was presented by Nakatsuka et al. [15] 1981. This experiment, together with that of
Mollenauer et al. [6] for anomalous dispersion, demonstrated that the NLS equation is a
very good model for pulse propagation in low-loss fibers. Further work by e.g. Nelson et
al. [16] also proved excellent agreement between experiment and numerical results. The
theory for nonlinear pulse propagation in normally dispersive fibers is strongly connected
with the development of fiber-optical pulse compressors. It was demonstrated by Nakat-
suka, Grischkowsky and Balant 1981 [15, 17] that the spectrally broadened pulses from
a normal-dispersion fiber could be used in compression schemes. This will be discussed
further below.

The simulations [15]-[18] of the pulse propagation showed that the evolution of an initial
pulse of the form
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Figure 6.1: Simulation of Eq. (6.5) with q(0, ⌧) = 20 sech(⌧).

q(⇠ = 0, ⌧) = A sech(⌧) (6.7)

in Eq. (6.5), could be divided into two stages. The first stage is dominated by SPM,
and results in reshaping and broadening of the pulse into a roughly square-shaped pulse
with an almost linear chirp. During this stage the spectrum is broadened. The second
stage is essentially a linear dispersive spreading of the pulse, since the amplitude has
decreased and the nonlinear e↵ects are weak. This dispersion-dominated stage has an
almost constant evolution of the spectral intesity, which indicates the linear character of
this stage of propagation. Asymptotically, for large ⇠, the ringings gradually disappear,
and the temporal intensity distribution approaches a trapezium, see Fig. (6.1).

The transition between these di↵erent stages is characterized by strong oscillations in
the pulse wings and the development of spectral sidebands, a phenomenon called optical
wave breaking [18, 19], because of the similarities with the breaking of water waves. The
wave breaking arises in the transition region between the initial SPM-dominated and the
later dispersion dominated regions of evolution, and we will define the “wave breaking
distance” as the point along ⇠ where the oscillations first appear, i.e. where the pulse
envelope becomes nonmonotonic. The wave breaking phenomenon was experimentally
verified by Rothenberg and Grischkowsky 1989 [20, 21]. An analytical theory for wave
breaking was given recently by Anderson et al. [22], in which expressions for the wave
breaking distance for di↵erent pulse shapes were found. This theory also pointed out that
di↵erent pulse shapes may have di↵erent wave breaking distances. It is noteworthy that
the early simulations [15]-[18] only considered sech-shaped pulses as inital conditions in
Eq. (6.5). The shape of the input pulse is in fact an important parameter that may
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qualitatively alter the wave breaking dynamics [21]. It is shown in Fig (6.2) that the
wave breaking is less severe for Gaussian pulses, and almost absent for parabolic pulses.
The latter is the main point of paper F, discussed below. Another analytical approach
to wave breaking was recently suggested by Shvartsburg [23], and is based on changing
the dependent and independent variables of the wave breaking equations, thus obtaining
a set of linear equations which can be solved by standard methods. However, there are
some di�culties associated with formulating the initial conditions using this approach [24].

There is a rather limited number of analytical investigations of nonlinear pulse broadening
for normal dispersion, mainly due to the di�culties of modeling the reshaping of the pulse.
Meinel [25] used the inverse scattering theory and the invariants of the NLS equation to
relate the initial pulse to the width and chirp of the square pulse at the wavebreaking
distance. Another approach is to use the variational method, originally suggested for
pulse propagation in the anomalous regime [26]. In this method the pulse width and
chirp are modelled as

A(⇠)f(
⌧

a(⇠)
) exp[i⌧ 2b(⇠) + i�(⇠)] (6.8)

where f(⇢) is an appropriate shape, e.g. a Gaussian- or sech-function, and a(⇠) and b(⇠)
are the width and chirp, respectively, of the pulse. These functions can be calculated in
a straightforward manner [26]. Obviously, this method does not take into account the
change of shape that takes place. Nevertheless it provides a good overall description of
how the width and chirp evolves along ⇠. An exact way to obtain some information of the
asymptotic behaviour is to consider the invariants of the NLS equation. For Eq. (6.5),
the third invariant is (cf. next section)

I3 =
Z +1

�1
|@q
@⌧

|2 + |q|4d⌧ =
Z +1

�1
!2|q̃(!)|2d! +

Z +1

�1
|q|4d⌧. (6.9)

From this invariant we find the asymptotic spectral broadening of the input pulse q(0, ⌧) =
Asech(⌧) as

�!2(⇠ !1)

�!2(⇠ = 0)
⌘
R+1
�1 !2|q̃(⇠ !1,!)|2d!
R+1
�1 !2|q̃(⇠ = 0,!)|2d!

= 1 + 2A2 (6.10)

were we have used the fact that the integral over |q|4 vanishes as ⇠ ! 1, see [27]. The
result of Eq. (6.10) gives an estimation of the achievable compression ratio in an optimum
compressor, since the temporal duration of the transform-limited pulse is approximately
inversely proportional to its spectral width.

6.2.2 Wave-breaking-free pulses (paper F)

The theory of wavebreaking of Ref. [22] suggested that form-invariant, i.e. wave-breaking-
free pulses might exist. They could be found by the requirement that the chirp @(arg q)/@⌧
should be constant across the pulse. If not, then di↵erent parts of the pulse can overtake
other parts, with pulse deformation as a result. In paper F we consider the equation
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Figure 6.2: Evolution of (from top) sech, Gaussian and parabolic pulses showing that the
wave breaking oscillations are much smaller for the Gaussian, and almost absent for the
parabola. The inital amplitude correspond to A=5.
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@2q

@⌧ 2
+ �|q|2q. (6.11)

We show that if the chirp of the pulse shall be constant, then @2(arg q)/@⌧ 2 = 0, and the
initial pulse modulus A(t) = |q(0, t)| should be governed by

↵
1

A2

@2A

@⌧ 2
+ �A2 = c0 + c1⌧

2 (6.12)

where c0, c1 are arbitrary constants and we have assumed the initial pulse to be chirp-free.
From equation (6.12) we can recover several well-known limits. In the linear limit, � = 0,
the wavebreaking-free pulse is the Gaussian. Similarly, in the case of anomalous/normal
dispersion we find the wave-breaking-free pulses to be the bright/dark solitons. The limit
we then consider is the strongly nonlinear limit for normal dispersion. Then, we can
neglect the term proportional to ↵ in eq. (6.12) and find

�A2 = c0 + c1⌧
2 (6.13)

which implies that a parabolic pulse is approximately wave-breaking free. We also manage
to analytically describe the evolution of an initially parabolic pulse, and this description
is shown to agree very well with numerical results. Finally, we point out that a useful
application for such wave-breaking-free pulses should be in optical fiber-grating compres-
sors, which would obtain much better compression properties using pulses of an invariant
shape.

6.2.3 Pulse compression

As stated above, the analyses of nonlinear pulse propagation in normal dispersion are
closely related to the theory for optical pulse compressors. There are many important
applications for ultrashort (< 1ps) optical pulses, e.g. in spectroscopy and ultrafast mea-
surements, and it has therefore been a strong incentive in the development of optical
pulse compressors. The most common optical compression scheme is the fiber-grating
compressor, which consists of two parts. Firstly, the pulses are spectrally broadened by
propagation through a nonlinear medium with normal dispersion, and secondly, the ac-
quired linear chirp is removed by propagation through an anomalously dispersive delay
line. This method have been used in chirp radar systems since the early sixties, and it
was suggested for optics by Fisher et al. 1969 [28]. Numerical simulations of nonlinear
propagation in CS2 were carried out rather early [29], and shock formation and strong
asymmetry of the pulse was observed. The nonlinearity in CS2 has a rather long re-
sponse time (⇠ 2ps), which give rise to this asymmetry. It was realized in 1981 that
optical fibers in the normal dispersion region would be a useful medium, since it does
not have the delayed nonlinear response of e.g. CS2 [15]. For the second stage, a linear
delay line, anomalous dispersion is required, and it is not obvious how this could be ac-
complished in a simple manner. It was shown by Treacy 1969 [30], that a grating pair
provides anomalous dispersion, and his expressions for the delay function were later gen-
eralized to include higher-order dispersive e↵ects [31]. Other, proposed schemes for the
delay line include Gires-Tournois interferometers [32] and prism pairs [33]. In fact, it has
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been generally shown [34] that all types of refraction, irrespective of whether it occurs in
gratings or prisms, will give rise to anomalous dispersion. This e↵ect is somtimes called
“angular dispersion”, since the refraction angle is frequency dependent. In the earliest
experiments, however, grating pairs were used, and the compression scheme is therefore
commonly denoted “fiber-grating compression”.

Following the experiment of Nakatsuka et al. [15], several other groups presented ex-
perimental results, which in a competition-like manner demonstrated shorter and shorter
femtosecond pulse generation [35], down to 8 fs [36]. At the same time, Tomlinson et al.
[37] published a comprehensive theoretical analysis on fiber-grating compression, based
on numerical simulations. This showed that an optimum fiber length exists, which pro-
duces the shortest pulse for a given initial pulse. An extension to initially chirped pulses
showed only quantitative di↵erences from these results [38]. For longer fibers, the onset
of wavebreaking degrades the performance of the compressor, and we point out in paper
F that the optimum fiber length is nearly twice the wavebreaking distance, indicating
that the pulse can take a certain amount of wavebreaking before the compression starts
to deteriorate. An important limiting factor for fiber-grating compressors was identified
by Tomlinson and Knox [39] to be the third-order dispersion (3OD) in the delay line.
Indeed, in an experiment utilizing a delay line with no 3OD, compressed pulses as short
as 6 fs were obtained [40]. Such short pulses comprise only three optical cycles, and this
is still the record for short optical pulses.

It is also important to discuss the higher-order e↵ects of the fiber when studying the prop-
agation of high bandwidth-pulses. For instance, already a weak amount of third order
dispersion may create asymmetric pulses [41], similar to those observed in experiments
[21]. A particular feature of the experimentally obtained spectra after propagating pulses
through fibers is the spectral asymmetry [36]. One reason for this is that experiments use
wavelength scales, which asymmetrizes a symmetric frequency plot [39, 42]. This make
significant di↵erences when studying high-bandwidth pulses. This alone cannot explain
the amount of asymmetry observed, however. It was suggested that third-order dispersion
together with the nonlinear shock term could explain the asymmetry [42]. However, the
experimental values of 3OD is not large enough to account for the observed pulse shapes
[42]. Asymmetry of the initial pulse has also been suggested to account for the spectral
asymmetry [21, 43, 44]. A more likely explanation, however, is the Raman e↵ect, which
was neglected in Refs. [42, 43]. The Raman contribution to the nonlinearity is important
to include when studying high-bandwidth pulses like this [21, 45]. Models including 3OD
and the Raman nonlinearity have been found to give excellent agreement with experi-
ments [45, 46]. Noise have been incorporated in some simulations, but it does not seem
to qualitatively influence the compression properties [47].

Finally, we shall for completeness also mention the “soliton-compression” scheme [48]
that have been proposed for optical pulse compression. This method utilizes an optical
fiber in the anomalous dispersion regime, in which higher-order solitons (see below) are
generated. These solitons are very peaked at a certain point in their propagation cycle.
However, short pulses generated by this method su↵er from being placed on a broad
pedestal, which means that the compressed pulse is not of very good quality. For further
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discussions around soliton-, and fiber-grating compression schemes see e.g. the book by
Agrawal [49], and references therein.

6.3 Pulse propagation in the anomalous dispersion
regime

6.3.1 Properties of the nonlinear Schrödinger equation

In the anomalous dispersion regime, the nonlinearity and the dispersion counteract each
other. For pulse durations down to ⇠ 1 ps the evolution equation for the pulse envelope
is to a good description given by the NLS equation (6.3). Due to the integrability of this
equation, we can obtain directly from the inital condition the properties of the solitons
that will emerge asymptotically. This is done from a linear scattering problem, the so
called Zakharov-Shabat eigenvalue problem [4]:

i
@ 1

@⌧
+ q(⇠, ⌧) 2 = ⇣ 1 (6.14)

i
@ 2

@⌧
+ q⇤(⇠, ⌧) 1 = �⇣ 2. (6.15)

where  1,2 are complex functions, the so called Jost functions, and ⇣ is a complex eigen-
value. Zakharov and Shabat showed that the N eigenvalues ⇣ of this eigenvalue problem
remain constant if q(⇠, ⌧) evolves according to the NLS equation. Furthermore, the real
and imaginary parts of each eigenvalue correspond to the amplitude and the velocity of
a soliton (6.4) with A = 2Im(⇣) and V = 2Re(⇣). The phase and the absolute position
in time of the soliton, as well as the dispersive (non-soliton) part of q are also obtainable
from the data of the scattering problem, but we disregard this for the moment. The
important implication of the IST is that we can already from the initial condition q(0, ⌧),
derive the eigenvalues from Eqs. (6.14,6.15) and from these conclude what kind of soliton
will emerge for large values of ⇠.

The Zakharov-Shabat eigenvalue problem can be solved exactly in some simple cases,
which was done by Satsuma and Yajima 1974 [50]. For the initial condition q(0, ⌧) =
Asech(⌧), the emerging soliton is an N:th order soliton, where A = N + ✏, N is an integer
and |✏| < 1/2. In the case the initial pulse is given by (1+ ✏)sech(⌧), the emerging soliton
is

q(⇠, ⌧) = (1 + 2✏) sech((1 + 2✏)⌧) exp[�i⇠
(1 + 2✏)2

2
] (6.16)

For an arbitrarily shaped real initial pulse, it was shown by Kivshar [51] that the condition
for soliton creation is that

Z +1

�1
q(0, ⌧)d⌧ � ⇡/2. (6.17)
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which means that there is a critical area for soliton creation, and not a critical power
level. Therefore, solitons having all power levels |q(0, 0)|2, and energies

R
|q|2d⌧ exist. For

a given pulse duration and shape, however, the condition for creation gives the necessary
power to obtain a soliton, and this can be viewed as a critical power level.

The eigenvalue problem has also been investigated numerically, and analytically using the
WKB-method, to yield the soliton content of initially chirped pulses [52, 53]. These are
initial pulses of the form q(0, ⌧) = A sech(⌧) exp[ib⌧ 2]. The soliton content is found to
decrease with increasing chirp b, and above a critical value of b, no soliton is created. A
similar result is found when phase noise is added to the inital conditions [54]. Recently
a variational approach to the solution of the Z-S scattering problem was suggested [55],
which demonstrated reasonable agreement with numerical results for e.g. chirped initial
pulses.

It follows from its integrability [4] that the NLS equation has an infinite hierarchy of
invariants, i.e. quantities that are independent of ⇠. The first three invariants read

E =
Z +1

�1
|q|2d⌧ (6.18)
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@q⇤
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� q⇤

@q

@⌧
)d⌧ (6.19)

H =
Z +1

1
(|@q
@⌧

|2 � |q|4)d⌧ (6.20)

which can be physically interpreted as the invariance of energy, momentum, and Hamilton-
inan. Note that the momentum conservation is the conservation of the spectral “center-
of-mass”, i.e. M = �2i

R
!|q̃|2d!. Below, we will investigate soliton dynamics in a

convenient way by using the invariants, and in particular it is valuable to see how the
invariants are a↵ected by additional terms to the NLS equation. Thus, if we consider an
equation of the form
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@⇠
=

1

2

@2q

@⌧ 2
+ |q|2q + P̂ (6.21)

where P̂ is an arbitrary additional term of the NLS equation, the above invariants can be
written
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Before leaving this section, we will give a brief discussion of the experimental parameters
of optical solitons. Optical solitons became an experimental reality after the pioneering
experiment by Mollenauer et al. [6], which also proved the validity of the NLS equation
as a model for pulse propagation. This was further strengthened in a later experiment
which verified the periodic evolution of the higher-order solitons [56]. From the soliton
solution of Eq. (6.21) with P̂ = 0, and the transformation of Eq. (6.2), we can write the
fundamental soliton of duration t0 as

usol(z, t) =

vuut |�000 |
�t20

sech(
t

t0
) exp[�izksol]. (6.25)

where the soliton wavenumber ksol = |�000 |/2t20 = (2Ld)�1. It was shown in the early
works [50, 56] that the higher-order solitons oscillate with the soliton period z0, which is
commonly used in the literature as a measure of the characteristic nonlinear length. The
soliton period is related to the soliton wavenumber via 4ksol = ⇡z0 so that the fundamental
soliton “wavelength” �sol ⌘ 2⇡/ksol = 8z0. From Eq. (6.25) we can express the soliton
peak power P (W) and energy E (J) as

P = |usol(z, 0)|2 =
|�000 |
�t20

=
|�000 |Aeffc

N2!0t20
(6.26)

E = 2Pt0 =
2|�000 |
�t0

=
2|�000 |Aeffc

N2!0t0
. (6.27)

Typical parameters of a dispersion shifted fiber at the carrier wavelength �0 = 1.55(µm)
are

N2 = 3.2⇥ 10�8(W�1µm2) Aeff = 20(µm2)

�000 = �1.1(ps2km�1) !0 =
2⇡c

�0
= 1.2⇥ 1015(rad s�1) (6.28)

so that typical soliton parameters become

P = 0.12(W ) E = 0.24(pJ) z0 = 1.6(km) (6.29)

which shows that optical solitons are by no means an unrealistic concept.

In the optical soliton research of today, there is a strong consensus of the validity of
the NLS equation in fibers, and the main research e↵orts are aimed at investigations of
higher-order e↵ects on the solitons. Below, we will review the e↵ects of a few of the most
important perturbations of solitons in fibers. We will use the normalized units q(⇠, ⌧)
instead of the physical units u(z, t), thus avoiding obscuringly complicated expressions.
We will also briefly review the properties and limitations of optical soliton-based commu-
nication systems.
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6.3.2 Solitons in presence of amplification and loss

The most important property that has been neglected in the derivation of the NLS equa-
tion for optical pulses is the e↵ect of loss. However, since the invention of the low-loss fiber
[57], loss is significant only in very long fibers, of the order of kilometers. This means that
for devices using short fibers, e.g. fiber amplifiers, fiber switches, optical loop mirrors etc.,
the e↵ects of fiber loss can often be neglected. In the most common application, however,
when fibers are used for long-distance transmission, loss is always a limiting factor. Any
long-distance transmission using fibers is operated at a point where losses are significant.
Therefore, the e↵ect of loss on solitons is an important issue.

Mathematically, the e↵ect of linear loss (or gain) is modelled in the normalized NLS
equation as

i
@q(⇠, ⌧)

@⇠
=

1

2

@2q

@⌧ 2
+ |q|2q + i�q (6.30)

where the normalized loss coe�cient � = �Ld is negative (or positive). This implies that
the energy of the pulse is no longer invariant, and from Eq. (6.22) we find

dE

d⇠
= 2�E. (6.31)

We will first restrict this discussion to loss, i.e. � negative. Assuming that the loss is
weak, we introduce the fundamental soliton qsol = A sech(A⌧) exp[�i⇠A2/2] in equation
(6.31), and we find that the amplitude and width are adiabatically modified according to

A(⇠) = A0 exp[2�⇠]. (6.32)

where A0 is the initial amplitude. The total longitudinal phase-shift  tot of the perturbed
soliton is the accumulated value of every instantaneous ksol(⇠) = A2/2, which means that
according to WKB theory we can write

 tot =
Z ⇠

0

A(⇠0)2

2
d⇠0 =

A2
0

8�
(exp[4�⇠]� 1) (6.33)

and the total adiabatically evolving lossy “soliton” becomes

q(⇠, ⌧) = A0 exp[2�⇠] sech(A0 exp[2�⇠]⌧) exp[�i tot]. (6.34)

This is not a soliton in the rigorous theoretical meaning of the concept, but it is a very
good approximation of an adiabatically evolving soliton in presence of loss. This model
was devised by e.g. Lamb [58] and Hasegawa et al. [59], using a perturbative method
based on the IST-technique. Later Blow et al. [54] suggested the simpler WKB-approach
used above. There is one obvious problem with this model, however. It is clear that the
width of the pulse increases exponentially, in other words for large ⇠ increase faster than
linear dispersive broadening. Moreover, the amplitude decays as ⇠ exp[2�⇠], whereas the
amplitude of linear pulses decays slower, as ⇠ exp[�⇠]. Yet we have a nonlinearity that
should counteract the linear spreading. This apparent paradox is resolved by realizing that
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the above model is only valid for su�ciently small values of ⇠, for which the “exponential”
spreading is in fact slower than the “linear” spreading. For longer distances, the “adiabatic
soliton” (6.34) is no longer a valid approximation. Numerical investigations show [60]
that asymptotically, the pulse width broadens linearly, with a spreading rate lower than
that of a linearly spreading pulse. This rate is called the “asymptotic dispersion” of
nonlinear pulses [60, 61], and its value depends on the normalized loss coe�cient �.
The dependence can be found approximately [61] using the variational approach [26, 61]
to describe nonlinear pulse propagation. In particular, using this method the equation
governing the normalized pulse width y(⇠) is found as [61]

d2y

d⇠2
=

1

y3
� f exp[2�⇠]

y2
(6.35)

where f is a positive constant depending on the initial amplitude. In fact, this equation
describes very well the pulse dynamics in presence of either loss or amplification. Ob-
viously, for � < 0 (loss) the influence of the term ⇠ y�2 is small for high ⇠, and we
have approximately linear broadening. In the other case, when � > 0 the same term will
dominate and cause compression at a rate ⇠ exp[�⇠] accompanied by oscillations of the
pulse width [62]. These oscillations are connected with the oscillations of the higher-order
solitons. It is noteworthy that only a slight amount of radiation is found in simulations
of this kind of soliton amplification [62], provided � is small. It was also observed in
this work that there is a critical value of the gain coe�cient � ⇠ 0.6, below which the
first-order soliton absorbs nearly all energy, and above which higher-order solitons are
created. For instance, using � = 0.2 the fundamental soliton consists of 95% of the
total energy, whereas the rest is lost as radiation. Adiabatic amplification with a weak
gain could therefore be a simple and e�cient means by which to compress optical solitons.

In soliton communication systems the e↵ect of fiber loss must be compensated by periodi-
cally spaced amplifiers. As was shown in the previous chapter on instabilities, solitons will
radiate if the amplification period L is close to, or higher than the soliton “wavelength”
2⇡/ksol = 8z0 [63]. However, in the limit L⌧ z0 it is possible to rigorously prove that the
governing equation for pulses in fibers is the exact, lossless, renormalised NLS equation
[64, 65] and consequently, that optical solitons in such systems are very stable entities. On
the other hand, if the amplification period is close to 8z0, the soliton will emit dispersive
radiation, thereby increasing its width and its soliton period z0 to a point where L⌧ z0,
and stable propagation can occur. This is again an example of the remarkable kind of
self-stabilization that solitons may undertake, and it resembles the spectral-recoil scenario
in presence of third-order dispersion (see the discussion around the “spectral-recoil e↵ect”
in chapter 5.4.1).

6.3.3 Solitons in presence of higher-order dispersion

The dispersion in optical fibers has two main contributions in material and waveguide
dispersion. Both contributions can be modified in the fiber drawing process, although the
waveguide dispersion is more easy to modify by changing the index profile of the fiber. For
instance, the zero-dispersion wavelength can be pushed to higher wavelengths by modify-
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ing the index profile as is done in so called dispersion-shifted fibers [66]. It is also possible
to manufacture fibers in which the two contributions nearly cancel each other over a wide
spectral range [67]. For the present treatment, there is no point in separating these dif-
ferent contributions, and we will use a total dispersion relation for the fundamental fiber
mode which contains both the material and the waveguide contributions. Note, however,
that for high pulse powers (� 10kW ) in the fiber, the waveguide dispersion will change
due to self-focusing e↵ects, (see chapter 4.4.3). This is also the origin of the di�culties
associated with the function S (see Eq. (3.23)) in the derivation of the NLS-equation. A
proper description of femtosecond solitons which can have peak powers above kW must
take this e↵ect into account. However, to my knowledge no theoretical investigation in-
cluding the nonlinear contribution to the modal dispersion has been done, although some
approaches have been suggested [68].

The significance of third-order dispersion (3OD) depends on the amount of soliton energy
that lies in the normal-dispersion regime, which in practice depends on the pulse width
and the carrier wavelength. The e↵ects from 3OD are particularly important near the
zero-dispersion wavelength, and the governing equation is then

i
@q(⇠, ⌧)

@⇠
=

1

2

@2q

@⌧ 2
+ |q|2q + i✏

@3q

@⌧ 3
. (6.36)

where ✏ = �0000 /|�000 |t0. It is straightforward to show that the energy and momentum
invariants are still conserved with this additional term, and that the invariant Hamiltonian
can be rewritten as

H =
Z +1

1
|@q
@⌧

|2 � |q|4 + i2✏q
@3q⇤

@⌧ 3
d⌧ (6.37)

so that equation (6.36) has at least three conserved quantities. Using perturbation theory,
it is possible to find the lowest-order (in ✏) corrections to the soliton
q = A sech(A⌧) exp[�i⇠A2/2] as [59, 69]

qsol(⇠, ⌧) ⇠= A sech(Ay) exp[�i
A2

2
⇠ + i✏(2A2⌧ � 3 tanh(Ay))] (6.38)

where y = (⌧ + ✏A2⇠). Thus, the first-order corrections only a↵ect the phase and the ve-
locity of the soliton, leaving its amplitude, width, and shape unperturbed. Furthermore,
it has been shown numerically [70] that the condition for stationary pulses to exist in
presence of 3OD is A✏ < 0.04, which in physical terms means that the soliton should lie
mainly in the anomalous dispersion regime. The perturbation result (6.38) suggests that
the soliton acquires a velocity-shift, and consequently that it is spectrally shifted away
from the zero-GVD-frequency to a frequency with a new group-velocity. These features
were also found in the earliest numerical calculation of soliton dynamics near the zero-
dispersion frequency [71]. However, this picture cannot be complete. Only a spectral shift
of the soliton would counteract the conservation of the spectral center-of-mass, in particu-
lar as the perturbed soliton does not change its energy to lowest order in ✏. This paradox
was resolved in the numerical simulations by Wai et al. 1986 [72], in which the solitons
were shown to emit radiation. The physics behind this emission process was described in
chapter 5.4.1. The radiation, being an unstable sideband in the normal-dispersion regime,
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will exactly counterbalance the spectral shift of the soliton, so that the spectral center-of-
mass is indeed conserved. The problem remains why the solitons energy is not a↵ected to
lowest order in ✏ - it obviously emits radiation. This is due to the fact that the amplitude
of the radiation is exponentially small, and cannot be found by conventional perturbation
methods. Instead, cumbersome mathematical perturbation methods “beyond all orders”
have been applied [69, 73] to find the radiation amplitude. If a pulse is launched very
close to the zero-dispersion frequency, the scenario outlined above is more pronounced.
The pulse emits radiation and recoils into the anomalous dispersion regime, where it
eventually forms a soliton. The limit case of launching a pulse at the zero-dispersion
frequency gives rise to a splitting of the pulse into two parts - one dispersive part in the
normal dispersion regime, and one soliton-like part in the anomalous dispersion regime
[70, 74]. This is found also for randomly modulated initial pulses [75]. For a given fiber
length, it is possible to optimize the input pulse width and carrier wavelength in order
to obtain the minimum output pulse width [76, 77]. Although the problem of radiation
due to 3OD has been investigated extensively [78, 79], the numerical findings have not
yet recieved full analytical explanation. The variational method [80], has been used to
verify a numerically found relation [70] between the width and amplitude of the emerging
soliton. In particular, the problem of what kind of soliton that emerges from an arbitrary
pulse launched close to the zero-dispersion frequency is yet unsolved.

It was also found in the simulations that higher-order solitons will break up into indi-
vidual soliton pulses due to the presence of a weak 3OD [72, 81]. The reason for this
is easily understood from the fact that an N-soliton can consist of N solitons of di↵er-
ent amplitudes. The perturbative result (6.38) suggests that a soliton of amplitude A
will move with the velocity ✏A2. Consequently, an N=2 soliton in which the individual
solitons have di↵erent amplitudes will break up because the individual solitons obtain dif-
ferent velocities from the 3OD. For a recent review on solitons perturbed by 3OD, see [82].

6.3.4 Solitons under fourth-order dispersion (Papers G and H)

Solitons perturbed by fourth-order dispersion (4OD) has recieved very little attention.
The main reason is that the influence of 4OD is rather weak for experimentally convenient
(picosecond) pulse durations in the fibers of today. Future systems, however, are likely to
utilize shorter pulses, and for these the onset of 4OD might be an important e↵ect. In order
to purify the e↵ects of 4OD we assume that 3OD is absent. This is physically possible by
selecting the carrier frequency so as to correspond to maximum/minimum group-velocity
dispersion, see fig (6.3). For examples of fibers with 4OD, see Refs. [66, 83].

The equation for the pulse envelope in fibers with 4OD is
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+ |q|2q + ✏
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@⌧ 4
. (6.39)

where ✏ = �00000 /(24|�000 |t20). Numerically, 4OD was briefly analyzed in Ref. [62], and
qualitative di↵erences of the pulse propagation dynamics was observed depending on the
sign of ✏. The reason for this is related to the dispersive properties of the fiber, described
by the dispersion relation
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Figure 6.3: Positive (short-dashed) and negative (solid) 4OD in fibers correspond to a
curvature of the group-velocity dispersion.

klin(⌦) = �⌦2

2
+ ✏

⌦4

24
. (6.40)

The case of ✏ > 0 (positive 4OD), is studied in paper G. In such a fiber, we have
anomalous dispersion in the regime ⌦2 < 2/✏, and normal dispersion for frequencies
outside this interval, see fig (6.3). This means that a soliton launched in the spectral
“well” of anomalous dispersion will have tails extending into the normal dispersion regime,
and obviously radiate. In paper G we point out that the mechanism for this radiation
is similar to the radiation induced by 3OD, and we identify the unstable frequencies as

⌦uns
⇠= ± 1p

2✏
(6.41)

which is found to agree with numerical results. In fact, the expression (6.41) is the
lowest-order approximation of the exact resonance condition given by (see chapter 5.4.1)
ksol = klin. A soliton governed by Eq. (6.39) will therefore radiate symmetrically at the
frequencies (6.41) but since power is lost from the soliton, it will contract spectrally and
stabilize itself. It will not exhibit any spectral recoil because of the symmetry of the
problem, but remain trapped in the anomalous-dispersion well.

We also point out a remarkable fact obtained in paper G, namely that there exists an
exact, stationary, two-humped solution of eq. (6.39). However, this solution is unstable
and will decay into radiation when perturbed.
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The case of ✏ < 0 (negative 4OD), is considered in paper H. In this kind of fiber we have
anomalous dispersion for all frequencies, see fig (6.3). Pulses in such media will not nec-
essarily be unstable, but stationary, stable soliton-like states could exist. In paper H we
show that this is indeed the case. We derive an approximate variational description for an
entire family of stationary solutions. One particular member of this family has a sech2(⌧)
- shape, and can be given an exact analytic expression. We also demonstrate the stabil-
ity of these states, in the sense that an arbitrary input pulse evolves into the stationary
states in a similar way as a pulse evolves into the soliton-states of the unperturbed NLS
equation. When these pulses collide, we note that small amounts of dispersive radiation
emerges, and this indicates the non-integrability of Eq. (6.39). For nonmoving pulses,
i.e. pulses spectrally centered symmetrically on the dispersion maximum, we have found
some interesting features, e.g. breather-like solutions. Later research has also shown that
novel, stationary solitons having oscillating-decaying tails are also possible solutions of
eq. (6.39) [84]. Such soliton-like pulses could be useful for communication purposes, be-
cause two pulses could be asymptotically matched and joined together as a couple having
non-jittering features [84, 85].

6.3.5 Solitons in presence of the Raman nonlinearity

Stimulated Raman scattering (SRS), was one of the earliest investigated nonlinear optical
e↵ects [86]. Phenomenologically, it acts on intense optical waves in glasses by transferring
power from high to low frequencies [87]. It is an e↵ect having nonlinear characteristics, i.e.
it requires high powers to be observed. Moreover, silica fibers have a characteristic Raman
gain spectrum, which have been measured by e.g. Stolen et al. [45, 88, 89]. The width of
the gain spectrum is 13.2 Thz, which sets the scale over which the frequency conversion
takes place [89]. It is thus two criteria that have to be met in order to observe (SRS): (i)
The pump wave has to be intense enough, and (ii) the signal must lie within 13.2 THz
from the pump. Consequently, a short intense pulse having a bandwith comparable to 13.2
Thz will exhibit gain on the red side and loss on the blue side of the spectum. Too long
pulses are not spectrally wide enough to experience the Raman gain, and consequently
the e↵ect is not observed for picosecond pulses. For subpicosecond pulses, however, the
Raman e↵ect will give rise to observable spectral downshifts, an e↵ect that was observed
by Mitschke and Mollenauer [90], and explained by Gordon [91] 1986. The e↵ect was
demonstrated with respect to optical solitons and was coined “the soliton self-frequency
shift”. The term “intra-pulse Raman scattering” (IPRS) is also used to emphasize that
the frequency conversion takes place within the bandwidth of a single pulse.

In the time domain, the frequency downshift of a pulse gives rise to a uniform acceleration,
because the carrier frequency shifts linearly, thereby linearly increasing the group velocity
of the pulse. Mathematically we model the e↵ect of IPRS with an additional nonlinear
term in the NLS equation. Using equation (6.21) this can be expressed as [91]

P̂ = �⌘q@|q|
2

@⌧
(6.42)

where ⌘ = ⌧R/t0. The characteristic time scale for the Raman gain is given by the slope
of the Raman gain curve near zero, and a commonly used value in the literature is ⌧R = 6
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fs [92, 93]. In order to study the e↵ects of this additional nonlinear term on soliton
propagation, the most simple way is to use the invariants of the NLS equation. We use
the soliton (6.4) which is described by an amplitude A and a frequency shift V. Note that
a positive V in eq. (6.4) corresponds to a downshift in frequency. We can now obtain the
invariants E and M from eqs. (6.18, 6.19) as

E = 2A M = i4AV. (6.43)

Assuming the Raman term to be of perturbative character, which is true for pulse dura-
tions down to 100 fs, we use the equations of motion for the invariants (6.22,6.23) and
find

dA

d⇠
= 0 (6.44)

dV

d⇠
= ⌘

8

15
A4 (6.45)

so that the shifting rate of the frequency downshift V of the soliton is proportional to the
soliton amplitude (or inverse width) to fourth power. This result was obtained originally
by Gordon 1986 [91], and Kodama and Hasegawa 1987 [94]. The fourth power of the
soliton amplitude can be physically understood from the fact that the shift must scale
with the pulse intensity A2 and with the spectral width A. In addition the Raman gain
coe�cient also scales with the spectral width A [95], which gives the fourth-power scaling
of the downshift. It is possible to derive the first-order (in ⌘) perturbation to the NLS-
soliton, by considering the symmetries and the transformation properties of the governing
equation [96]. This correction shows a slight asymmetry of shape of the down-shifting
pulse.

An important consequence of the downshift formula (6.45) is that higher-order solitons
will break up due to the Raman e↵ect. This is observed in the experiments [90, 97] as
a spectral splitting of a high-intensity input pulse into its constituent solitons. Theoret-
ically, this was explained by Tai et al. 1988 [98], and the e↵ect is also observed in the
simulations of Afanasyev et al. [93]. For instance, the N=2 soliton q(0, ⌧) = 2 sech(⌧)
corresponds to two solitons with amplitudes 1 and 3 respectively. These will downshift
according to the rule above, so that the high-amplitude soliton will accelerate faster than
the low-amplitude soliton. It is not possible to directly use the shifting rule (6.44) to
study the separation between the two solitons, because of the momentum conservation.
Due to the Raman e↵ect, the momentum is not conserved, but it is nearly conserved,
since the Raman term is perturbative. This means that the high-amplitude soliton shifts
away roughly according to the A4-rule, but the low-amplitude soliton will recoil upwards
in frequency due to momentum conservation [98] and eventually start its shifting from
the recoiled position. The separation between the two solitons is therefore larger than one
would expect from a naive use of the shifting formula for each of the separate solitons.
An analytic theory that accounts for this is yet to be seen. Finally, it should be men-
tioned that a similar splitting is observed in soliton-interaction experiments [99, 100]. Two
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initially equal-amplitude, well-separated pulses interact and emerge as two pulses with dif-
ferent amplitudes after the interaction. This is related to the fact that the initial conditon
in the Z-S scattering problem corresponds to two di↵erent eigenvalues, i.e. two solitons
with di↵erent amplitudes that will separate from each other due to the self-frequency-shift.

A potentially useful application of the Raman e↵ect could be to use it together with the
modulational instability for the generation of pulse-trains [92]. It has also been shown
experimentally [101] and theoretically [102] that the Raman downshift is suppressed by
bandwidth-limited amplification.

6.3.6 Instabilities with 4OD and Raman downshift (Paper I)

Obviously, when ultrashort pulse-propagation is considered in fibers, it is important to
take the Raman contribution to the nonlinearity into acount. In conventional fibers, this
frequency dowshift corresponds to a wavelength upshift, which shifts the pulse further into
the anomalous dispersion regime. This causes the solitons to broaden, since the value of
the GVD, i.e. |�000 |, increases with the frequency downshift. However, it is possible to
draw fibers which have a second zero-dispersion wavelength above the conventional one
at 1.3µm [66]. Raman downshift in such fibers would cause solitons to compress adiabat-
ically, because the GVD now decreases with the downshift. In paper I we investigate
this e↵ect numerically and analytically. We find that the compression (and the Raman
downshift) is limited as the pulse comes close to the zero-dispersion frequency. This limi-
tation is caused by the generation of dispersive waves in the normal dispersion regime on
the other side of the zero-dispersion frequency. This process can be viewed as the conven-
tional resonant instability that arises for pulses close to the zero-dispersion wavelength,
see chapter 5.4.1.

Experimentally, this compression e↵ect was recently observed by Mamyshev et al. [103].
It was found that a 95 fs soliton was adiabatically compressed to 55 fs over a fiber length
of 65 m. This agrees very well with our numerical findings. We also point out that the
compression e↵ect is most e�cient for shallow dispersion curves, so that the GVD is slowly
changing. However, then the fiber length recquired to obtain the necessary downshift will
be very long, and fiber loss will limit the process. We predict optimal operation for 0.1-0.3
ps pulses, and typical compression factors of 2-3 can be expected.

6.3.7 Optical solitons in communication systems

The most important application for optical soliton pulses is in high bit-rate communi-
cation systems, in which solitons are the natural fundamental information bit. However
there are several system aspects that will influence and degrade the propagation of trains
of solitons in communication systems. These e↵ects are be briefly reviewed below.

Obviously a long-distance system needs periodically spaced amplifiers. This will put lim-
its on the soliton period, which must be larger than the amplifier spacing in order to
avoid resonant instabilities (see ch. 5.4.2). Moreover, the noise of each amplifier will give
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rise to a small jitter in the carrier frequency of the solitons, thereby changing the group
velocity and severely a↵ecting the arrival time of each pulse [104, 105]. This is known as
the Gordon-Haus e↵ect after the authors of Ref. [104], and it is a crucial e↵ect that has
to be accounted for in long-distance systems. Experiments carried out in 1991 showed
that Gordon-Haus jitter is a limiting factor over long distances, but soliton systems were
still able to produce 2.5 GBit/s over 14 Mm, [106]. A straightforward way to remedy
this jitter is to install modulators along the transmission line, that periodically reshapes
and retimes the pulse train. Using this technique, Nakazawa et al. [107] accomplished 10
Gbit/s over one million km. However, this kind of active reshaping of the pulses su↵ers
from the the same drawbacks as the conventional electronic regeneration, i.e. incompati-
bility with WDM (see below), complexity and high cost. Wavelength division multiplexing
(WDM) is another way of incresing the bit-rate of soliton systems. It means that several
frequency bands are used for solitons tranmission, and this technique was pioneered by
Olsson et al. [108] 1991.

Solitons, being nonlinear pulses, will interact with adjacent pulses in the pulse train, as
pointed out by e.g. Gordon [109], and Hermanson et al. [110]. It turns out that solitons
in (out of) phase will attract (repel) each other. The interaction force decreases exponen-
tially with the spacing between the pulses. However, a large spacing obviously limits the
available bit-rate. A useful way of decreasing the interaction is to give adjacent solitons a
slight di↵erence in amplitude [111], and thereby di↵erent wavenumbers. The consequence
will be that the relative phase between the solitons rotates during propagation, with a
strongly reduced interaction as the result. For a recent review on soliton interactions, see
Ref. [111].

Bandwidth-limited gain has been suggested [102, 112] as a remedy to many of the prob-
lems mentioned above. It turns out that many of the e↵ects that give rise to timing jitter
(e.g. Gordon-Haus jitter, soliton interaction jitter, Raman downshift) correspond to a
jitter in the carrier frequency of the pulse. Bandwidth limited amplification, or filtering
after the amplification, tends to stabilize jittering of the carrier frequency, and it will
therefore counteract the Gordon-Haus e↵ect [113] as well as soliton interactions [114]. An
alternative way, although not as e↵ective as filtering, in reducing the Gordon-Haus jitter
is by dispersion compensation after the transmission [115]. A problem with bandwidth-
limited gain is that there will be excess gain over a finite frequency interval. This will
cause noise in this interval to grow and interact with the soliton. In order to avoid this
problem, it has been suggested that the center frequency should move spectrally during
propagation [116]. Technically, this is simply realized by letting the mid-frequency of the
filters slide with propagation distance. Numerical simulations [116, 117] and experiments
[118] with such sliding filters have demonstrated 10 Gbit/s over 20 000 kilometers. Recent
theoretical studies indicate that 30 Gbit/s over transoceanic distances lies within reach
[119].

The di↵erent polarization states of a fiber is in most cases not taken into account, and the
scalar approximation for the electric field envelope is used. This would not be a problem if
it was not for imperfections of the fiber, which completely scrambles the polarization state
of linear waves. In particular, random perturbations in the birefringence of the fiber will
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lead to walk-o↵ between the di↵erent polarizations, and a subsequent pulse broadening.
This e↵ect is known as polarization mode dispersion (PMD) [120], and it is by several
researchers considered as a fundamental limit for linear pulse propagation [121]. Soliton
pulses, however, are found to be rather insensitive to PMD [121, 122]. The reason for this
is that the nonlinear induced refractive index keeps both polarization components of the
pulse together as one entity. This property may be an important advantage for solitons
over linear pulses in long-distance fiber-transmission.

Although solitons have been mostly considered for ultra-long distance propagation, they
can also be utilized for high bit-rates over shorter distances. As an example, it was re-
cently demonstrated by Nakazawa et al. [123], that 80 Gbit/s over 500 km is possible.
The limiting factors in these systems is the resonant amplifier instability together with
soliton interaction. In fact, the superiority of soliton systems is not self-evident for high
bit-rate/short-distance systems, because linear WDM systems at 17 ⇥ 20Gbit/s ⇠= 340
Gbit/s have been demonstrated over 150km [124].

6.3.8 Femtosecond pulse propagation - general considerations

Finally we will make a brief discussion of e↵ects which are important for subpicosecond
pulse propagations in fibers. Obviously, as we go down in pulse duration the e↵ects
of higher-order linear dispersion become significant. Especially near the zero-dispersion
wavelengths 3OD can not be neglected. The e↵ects of 4OD are important for pulses which
have so high a bandwidth that the curvature of the GVD versus frequency is significant
over the pulse. The significance of 4OD is therefore strongly dependent of the dispersion
properties of the fiber at the carrier wavelength.

The higher-order nonlinear e↵ects that must be taken into account is firstly the Raman
nonlinearity. As a first approximation, for pulse durations above ⇠ 100 fs, the first term
in the expansion of the Raman gain, i.e. eq. (6.42) is a fairly good approximation. For
shorter pulses, the entire Raman gain spectrum must be included, as was done e.g. in
Refs. [45, 68, 125, 126] and Paper I of this thesis.

For even shorter pulses, below 50 fs, the last term of Eq. (6.1) is important. This
term gives rise to self-steepening, or an optical shock-front of the pulse [127]. The self-
steepening, although predicted early [127], has not yet been experimentally observed.
This is mainly because of the extremely short pulse durations that is required for an
observation. Furthermore, it is not known whether a shock-front can be observed in the
presence of higher-order dispersion. For a recent treatment of optical self-steepening, see
Ref. [128] and references therein. It is, however doubtful, whether a treatment of self-
steepening without including the Raman nonlinearity is physically relevant in fibers.

Moreover, for high powers and subpicosecond pulses, the nonlinear contribution to the
modal dispersion must be included, as outlined above. Also backscattering of waves, i.e.
the inclusion of second derivatives in z, may be relevant for high powers. Stationary
soliton-like solutions for the NLS equation including several higher-order terms (e.g. 3OD
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and self-steepening) have been found [129]. However, these are possible only for one par-
ticular pulse duration, similarly to the exact solutions found in papers G and H. Since
the solution of paper H is one particular member of an entire family, one could expect
that similar families exist for the solutions of Ref. [129]. However this has not yet been
investigated in detail.

We end this section by noting that the theory for subpicosecond pulse propagation in
optical fibers is essentially based on extensions of the NLS equation. The most impor-
tant higher-order terms have been identified as higher-order dispersion and the Raman
nonlinearity, but for pulses substantially shorter than 100 fs, the above mentioned e↵ects
must also be included. Which one of these that are of greatest importance can only be
settled by comparisons with experiments. However, in experiments it is di�cult to isolate
only one e↵ect and it is most likely that combinations of several higher-order e↵ects will
determine the pulse dynamics.
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