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Department of Civil and Environmental Engineering 
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Steel and Timber Structures 
Chalmers University of Technology 

 

ABSTRACT 

Today, a greater part of the timber bridges built in Sweden are utilized as bridges for 
pedestrians and bicycles. As a step towards a more sustainable society and building 
industry, the use of concrete and steel needs to be reduced. A low-footprint alternative 
is sustainable harvested wood. Research on the behaviour of stress laminated timber 
decks (SLTD) for road traffic has been very extensive in, for example USA and 
Australia, but limited in Sweden. 

The aim of this project was to study some of the design guides that are proposed and 
used when designing timber bridges as a SLTD. Special attention has been put on 
studying the methods with, regards to deflection, for load application at the edge. It 
has also been to study the uplift behaviour in the supports of an orthotropic plate 
loaded at mid-span. Another part of the project has been to examine if elastic 
foundation theory can be used to approximate deflection in orthotropic plates like 
SLTD. Finally, it was also investigated if a failure mechanism could be predicted for 
edge loads in a SLTD.    

The aims were fulfilled using data from two tests. Firstly, a full scale test performed at 
SP Trätek was used. Secondly, downscaled tests were carried out on plates of LVL in 
the laboratory of the Division of Structural Engineering at Chalmers University of 
Technology, Göteborg.  

From the investigated hand calculation methods, it was found that Eurocode is the 
only method that gives results on the safe side for load applied at the edge. Relations 
between the uplift per applied load versus the length-width ratio was noticed.   

The elastic foundation theory rendered higher maximal deflections than the measured 
values and thus leading to a result more on the safe side. However, for practical 
implementation of the theory, more test data needs to be analysed. A possible failure 
mechanism was also derived using elastic foundation theory.   

Key words: stress laminated timber deck bridge, SLTD, orthotropic plate, beam on 
elastic foundation theory 
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SAMMANFATTNING 

Den största delen av träbroar som byggs i Sverige idag används som gång- och 
cykelbroar. Som ett steg mot ett mer hållbart samhälle och en mer hållbar 
byggnadsindustri finns det ett behov av att minska användningen av betong och stål. 
Ett alternativ till att bygga med stål och/eller betong är att bygga med trä, vilket är ett 
ur miljöhänsyn bra material. Forskning om broar som byggs som tvärspända träplattor 
och används för vägtrafik har varit mycket omfattande i länder som USA och 
Australien, men har varit begränsad i Sverige. 

Syftet med detta projekt var att studera några av de mest använda metoderna vid 
dimensionering av träbroar. Särskild uppmärksamhet har riktats till vilka 
nedböjningar metoderna ger vid kantlast. Studier av upplyfts beteende vid stöd har 
även genomförts för ortotropa plattor. En annan del av projektet har varit att 
undersöka om teorin om balk på elastiskt underlag kan användas för att approximera 
nedböjningar i en träplatta. Slutligen så har en undersökning gjorts för att se om en 
brottsmod går att förutspå för träplattor som utsätts för kantlast.   

Målen uppfylldes med hjälp av resultaten från två tester. Det ena från ett test utfört av 
SP Trätek och det andra från ett test som genomfördes av författarna på Chalmers 
Tekniska Högskola. 

Undersökningen av handberäkningsmetoderna visade att Eurocode är den enda 
metoden som ger resultat på den säkra sidan för kantlast. Relationen mellan upplyft 
per pålagd last mot längd- bredd förhållandena kunde noteras. 

Teorin om balk på elastiskt underlag gav högre maximala nedböjningar än de 
uppmätta värdena vilket ger ett resultat på den säkra sidan. För praktisk användning 
av teorin anser författarna att mer analys av testdata bör genomföras. En möjlig 
brottsmekanism kunde beräknas med hjälp av teorin om balk på elastiskt underlag. 

 

Nyckelord: tvärspänd träplatta, ortotropisk platta, teorin om balk på elastiskt underlag   



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2009:93 III

Contents 
ABSTRACT I 

SAMMANFATTNING II 

CONTENTS III 

PREFACE VII 

NOTATIONS IX 

1  INTRODUCTION 1 

1.1  Background 1 
1.1.1  Historical background 1 
1.1.2  Manufacturing process 2 
1.1.3  Mechanical behaviour 3 

1.2  Aim of the thesis 5 

1.3  Method and objectives 5 

1.4  Limitations 5 

1.5  Outline 6 

2  SP TEST 7 

2.1  Background 7 

2.2  Test 7 

2.3  Results from test 8 

3  HAND CALCULATION METHODS 9 

3.1  Ritters design guide 9 

3.2  Eurocode 5 14 

3.3  Crews design guide 16 

3.4  West Virginia University method 17 

3.5  Summary of hand calculation methods 18 

4  BEAM ON ELASTIC FOUNDATION 19 

4.1  Theory 19 
4.1.1  Guiding differential equation 19 
4.1.2  Finite element formulation 20 
4.1.3  Evaluation of the elastic foundation stiffness matrix 21 

4.2  Calculation methodology 23 

4.3  Verification of model 24 
4.3.1  Convergence 24 
4.3.2  Beam behaviour 24 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 IV

5  DOWNSCALED TESTS 25 

5.1  Background 25 

5.2  Test procedure 25 

5.3  Expected test results 28 
5.3.1  Support behaviour 28 
5.3.2  Effective width 28 

5.4  Test results 29 

6  EVALUATION 31 

6.1  Hand calculation methods 31 

6.2  Elastic foundation stiffness 32 

6.3  Failure load 35 

7  DISCUSSION 39 

7.1  Downscaled tests 39 

7.2  Hand calculation methods 39 

7.3  FE model 40 

7.4  Failure load 40 

7.5  Suggestions for further research 40 

8  REFERENCES 41 

8.1  Literature 41 

8.2  Verbal 41 

APPENDIX A1 – USED DEFLECTIONS FROM SP TEST 42 

APPENDIX A2 – PARAMETERS FROM THE SP TEST 43 

APPENDIX B1 – RITTER 45 

APPENDIX B2 – EUROCODE 5 48 

APPENDIX B3 – CREWS 50 

APPENDIX B4 – WEST VIRGINIA UNIVERSITY METHOD 52 

APPENDIX C1 – CONVERGENCE FOR NUMBER OF ELEMENTS 54 

APPENDIX C2 – BEHAVIOUR OF BEAM ON ELASTIC FOUNDATION 55 

APPENDIX D1 – CONVERGENCE FOR CREEP 59 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2009:93 V

APPENDIX D2 – COMPUTATIONS FOR MODULUS OF ELASTICITY 60 

APPENDIX D3 – PROCEDURE FOR TESTING OF LVL 63 

APPENDIX D4 – EXPECTED PLATE DEFLECTIONS 65 

APPENDIX D5 – RESULTS FROM PLATE BEHAVIOUR TEST 69 

APPENDIX E1 – RESULTS FROM PARAMETER STUDY 89 

 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 VI

  



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2009:93 VII

Preface 
In this study, experimental and numerical investigations of stress laminated timber 
bridges were performed. This was done by analysing downscaled tests on LVL-plates, 
brand “Kerto-Q” and a full scale test performed by SP Trätek. The results were 
compared to different hand calculation methods and the theory of a beam on elastic 
foundation. The theory was also used to investigate if a failure mechanism could be 
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help during the whole process with this thesis.  

An appreciated thanks to Lars “Lasse” Wahlström for all the help in the laboratory 
even though he was not part of our tests. 

Thanks to Robert Bengtsson and Mikael Widén who could serve as opponent group 
with a short notice.  
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”Knowledge and timber shouldn't be much used till they are 
seasoned” 

 

Oliver Wendell Holmes (1809 – 1894) 

 

 

"If the facts don't fit the theory, change the facts." 

 

Albert Einstein (1879-1955) 
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Notations 
In the notation table, all variables occurring in the report are listed alphabetically.  

Roman upper case letters  

B Width of specimen 
Cb Reduction factor for butt joints 
Dw Effective width 
Ei Young’s modulus in i-direction 
Fv,Ed Design shear force 
G In plane shear modulus 
Ii Second moment of inertia in i-direction 
L Effective bridge span 
Mi Bending moment in i-direction 
N Prestressing force 
P Load 
R2 Coefficient of determination 
S Section modulus, Elastic foundation stiffness 
SS Sum of squares 
Vi Shear force in i-direction 
 

Roman lower case letters 

a Deck plate system factor 
b Width of bridge 
bef Effective width according to Eurocode 
blam Width of laminate 
bw Wheel-width 
c Distance between pre-stressing rods 
fmd Dimensioning bending resistance 
fmk Characteristic bending resistance 
fvd Dimensioning shear resistance 
fvk Characteristic shear resistance 
h Height of specimen 
k Fictive spring stiffness 
kls Load distribution factor 
ksys System strength factor 
n Number of loaded laminates, Number of butt-joints 
q Distributed load 
t Thickness of specimen 
w Effective width for “elastic foundation beam”  
  

Greek letters 

α Parameter for torsional stiffness, Unknown values in shape matrix 
β Parameter for choice of transversal shear, Load distribution angle 
δ Deflection  
η Scale factor 
θ Stiffness ratio, Rotation angle 
μ Friction coefficient 
σi Stress   
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σf Minimum level of prestress 
σf-initial Initial prestress 
σp-min Long term stress caused by prestressing force 
τ Shear 
χje Combined shear and moment utilization ratio 
 

Signs and mathematical symbols 

˚ Degree 
% Percent 
∫ Integral 
[ ] Matrix/vector parentheses, Unit parenthesis 
cos, cosh Cosine, Hyperbolic cosine 
sin, sinh Sine, Hyperbolic sine 
di ith order derivate  
∑ Summation  
w(x) Deflection as a function of x 

 

Matrix notation letters 

a Deflection vector  
c Arbitrary vector 
f Force vector  
B Shape gradient vector 
K Stiffness matrix 
N Shape function vector 

 

Abbreviations 

AASHTO American Association of State Highway and Transportation Officials 
CALFEM   Computer Aided Learning of the Finite Element Method 
CEN        Commitée Europeen de Normalisation 
FE Finite Element 
G Giga- 
k kilo- 
l Length 
LVL Laminated Veneer Lumber 
m Meter 
m milli- 
M Mega- 
MOE Modulus of Elasticity 
MTO Ontario Ministry of Transportation  
N Newton 
OHBDC Ontario Highway Bridge Design Code 
SLS Serviceability Limit State  
SLTD Stress-Laminated Timber Deck 
SP Sveriges Tekniska Forskningsinstitut (Swedish Institute for Technical 

Research) 
ULS Ultimate Limit State 
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1 Introduction 
1.1 Background 
The environmental consciousness among the population is constantly increasing, 
along with the need for a more sustainable building industry. For countries that can 
produce their own timber, bridges that utilise much of this material has definitely a 
smaller environmental footprint compared to concrete and steel. A commonly used 
timber bridge type is the Stress Laminated Timber Deck (SLTD). The SLTD is 
constructed of wooden laminates that are placed next to each other and stressed 
together by steel rods, leading to a plate-wise behaviour instead of a beam-like 
behaviour. 

 

1.1.1 Historical background 

The idea of reinforced timber deck bridges was first developed in Ontario, Canada 
during the 1970’s. Many of the existing nail-laminated timber bridges in the area were 
heavily loaded due to intensified traffic load, leading to partition of the nailed 
laminates. The loss of force between the laminates caused fractures and separation in 
the asphalt layer, making the bridge more vulnerable to external loading. To 
temporarily solve the problem, engineers at Ontario Ministry of Transportation 
(MTO) used a pre-stressing technique that already had been tested in other 
applications of civil engineering. Steel rods together with anchor plates were mounted 
on both sides of the bridge deck and compressed together with pre-stressing rods, 
Figure 1.1.  

 

 

 

 

 

 

Figure 1.1  Parts for pre-stressing mounted on nail-laminated bridge, thus 
increasing the capacity of the structure. 
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Tests preformed after the mounting showed that the pre-stressing equipment not only 
recovered the original capacity of the bridge, but also increased it. To develop the 
method, MTO initiated cooperation with the Queen’s University in Ontario.  

The studies conducted at the University included tests of small stress laminated decks 
in laboratory and the results from these studies showed that the pre-stressed plate had 
orthotropic behaviour, i.e. different stiffness properties in the directions perpendicular 
and parallel to the grain. The studies also showed that the stiffness perpendicular to 
the grain, called the transverse stiffness, could be expressed as a constant fraction of 
the stiffness parallel to the grain, called longitudinal stiffness. In 1979, the first design 
procedure for stress laminated timber (SLT) decks was proposed and implemented in 
the Ontario Highway Bridge Design Code (OHBDC), Ritter (1990). 

 

1.1.2 Manufacturing process 

The design of stress laminated timber bridges built today differs from the original 
design used in Canada. Bridges in Sweden are often made with glulam beams which 
are pressed together with high-strength steel, thereby creating a lamination effect 
between the glulam, see Figure 1.2.  

 

 

 

Figure 1.2  Details on a stress laminated timber bridge. 
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Usually the bridges are assembled in a factory; this is common for smaller bridges. 
Due to restriction of transportation width, larger bridges have to be assembled on the 
site of construction. The on-site assembly can be done in two ways, either by 
assembling the structure directly on its final resting ground, or assemble it next to the 
constructions site, whereby the structure is lifted into its final position. The latter is a 
convenient method if there is a demand for little disturbance of the existing traffic. 

No glue is used between the laminates and one of the reasons for this is due to the 
high cost. In addition some of the bridges are assembled on site, and the Swedish 
regulations prohibit load carrying structures to be glued outside of a factory 
environment, Crocetti (2009). 

On modern stress laminated timber bridges, pre-stressing rods are integrated in the 
bridge body either in one or two layers. The pre-stressing force is transferred from the 
steel-rods to the timber with a nut and different plates. Upon assembly, the rods are 
stepwise stressed at different time intervals, thus allowing the creep effect in the wood 
to occur in a controlled way. After assembly on-site the bridge usually has a re-
stressing plan that prescribes re-stressing of the rods in a 10-20 years cycle. 

The pre-stressing force introduces a concentrated compressive stress perpendicular to 
the grain. This stress may cause a ductile failure which reduces the pre-stressing force, 
and as a consequence of this the overall performance of the deck is reduced. One way 
of treating this problem is to reinforce the deck at the anchor region by using full-
threaded screws as reinforcement. With reinforcement of compression perpendicular 
to the grain the anchor capacity can be increased as much as 80%. Another advantage 
of reinforcement with screws is that the loss of pre-stressing force over time is 
reduced, Formolo and Granström (2007). 

 

1.1.3 Mechanical behaviour 

The most important attribute of the stress laminated timber deck is its pre-stressing 
system. It enables the laminates to act as a solid timber deck with orthotropic 
behaviour, allowing greater distribution of loads, and leading to smaller deflections, 
see Figure 1.3. The orthotropic behaviour is realised through the compression-friction 
connection between the laminates, created by the pre-stressed force in the steel rods.  

By failure in SLS, the deck changes its properties but can still carry load. There are 
two major ways that the deck can fail in serviceability limit state, SLS. Firstly the 
shear force created by a vehicle may overcome the friction effect created by the pre-
stressing system, leading to a slip between the laminates, see Figure 1.4 A. Secondly 
the vehicle may create a bending moment in the plate, thereby inducing a de-
laminating effect, Figure 1.4 B. The forces created in these failure modes have to be 
overcome by the pre-stressing system. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 4

 

 

  

 

 

 

 

 

 

Figure 1.3   Load behaviour in simply supported beams, with no 
prestress (left) and with prestressing (right.). 

Figure 1.4 A) Top – Shear failure  

  B) Bottom – Moment failure 
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The governing equation for the failure modes is (with notations as in Figure 1.4): 

 ܰ ൌ max ሺଵ.ହכ௏೟
௧כఓ

, ଺כெ೟

௧మ
 ሻ       [Nmm-2] (1.1)  

 

where:  N  Pre-stressing force in SLS  

  Vt  Transversal shear force 

t  Thickness of the plate  

μ  Friction coefficient between the laminates 

Mt  Transversal bending moment  

 

1.2 Aim of the thesis 
The aim of this thesis is to investigate different hand calculation methods that are used 
for design of SLTD and to compare which one has the best deflection approximation 
for edge-load. Moreover, a study of the uplift-behaviour at supports when a SLTD is 
loaded in mid-span is shown. Continuing, it was also decided to check the hypothesis 
that deflection in a SLTD can be approximated using the theory of beam on elastic 
foundation. And finally, the last aim is to investigate a possible failure mechanism for 
a SLTD.  

 

1.3 Method and objectives 
Deflections from the different hand calculation methods were compared with results 
from a full scale test, hereby denoted as the SP test, and downscaled tests performed 
at Chalmers. The test data was also used to analyse the uplift behaviour for 
orthotropic plates.  

The theory of beam on elastic foundation was investigated numerically together with 
the experiment test results to find out how good the deflection approximations were. 
These were all studied in MATLAB, especially using the toolbox CALFEM. 

For the failure mechanism, values obtained from the elastic foundation theory were 
used together with the failure equation presented in Chapter 1, Section 1.1.3. 

 

1.4 Limitations 
Due to the range of each hand calculation method, the authors had to limit the extent 
to what was found of interest for the thesis. The studied hand calculation methods 
were chosen with respect to the amount of available literature. 

The FE model was only validated using edge-loads on simply supported one-span 
plates, mainly due to the amount of input data that was available for this load-case.  
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1.5 Outline 
To get a better overview of the thesis, a short description of the chapters is presented 
here. The outline follows the order of how the thesis work has been carried out. 

 

1. Introduction: The feature of the thesis is present. Background information 
together with aims and facts about the implementations of the aims is 
presented. 

2. SP Test: Information and relevant data from a full scale test performed by SP 
Trätek is presented.  

3. Hand Calculation Methods: The different hand calculation methods that are 
studied in this thesis are presented. 

4. Beam on Elastic Foundation: A presentation of the FE-implementation to the 
elastic foundation theory is presented and analysed. It also contains a 
calculation methodology together with a convergence study.  

5. Downscaled Tests: Experiments performed on LVL plates was carried out at 
Chalmers. These plates represented a downscaled SLTD and test procedures 
together with results from the test are presented.  

6. Evaluation: The different hand-calculation methods, the elastic foundation 
theory and the failure load that have been studied in this thesis are evaluated. 
The evaluation is based on data from the SP test and the downscaled tests.  

7. Discussion: Discussion and conclusions are presented together with 
recommendations for further research.  

8. References: A summary of the literature used in the thesis are listed in 
alphabetic order. 

9. Appendices: The major results from the tests and calculations are presented. 
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2 SP Test 
2.1 Background 
In August 2008, SP Trätek performed a full scale test of an SLTD bridge on behalf of 
Martinsons Träbroar AB. The test was performed to check the deck strength when 
loaded with a concentrated force placed on the longitudinal edge, see Picture 2.1, SP 
Trätek (2008). The intent of the test was also to test the strength when loaded in the 
centre of the deck, but since the deck failed at the edge-test, this was not possible. 

 

Picture 2.1 Test of full scale bridge. Force plate mounted at edge in mid-span, top-
centre of picture (Courtesy of Martinsons Träbroar). 

 

2.2 Test 
The tested bridge had the dimensions 10600 x 5350 x 495 mm (l x w x h) and the deck 
was simply supported with a free span of 10 m. To measure the deflection of the deck, 
eleven measurement devices were placed on the deck, three at each support and five 
in the middle of the span. The deck was loaded cyclically with five loadings for each 
increase of applied load between 100 kN up to 500 kN. When the applied load got 
close to 600 kN a failure in the deck appeared, SP Trätek (2008). For the measured 
deflections with applied load around 100 kN, 20 data points were given in five 
different measure-points. The data from the measure-point that gave the largest 
deflections are presented as the darker points in Figure 2.1.  
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Figure 2.1 Measured deflections from different load series. The darker points are 
the measured deflections for different load series and the lighter point 
is the one used in the analysis.  

The value that was chosen to be analysed is the value of the brighter point, which is a 
mean value from both the applied load and measured deflection. Data was also given 
for higher loads and the analysis procedure was done for applied loads around 200 
and 300 kN. These results are presented in Appendix A1 together with the data from 
the other measure-points that were chosen to be analysed.  

 

2.3 Results from test 
The analysis of the test data showed that the point load caused an upwards deflection 
on the unloaded side, leading to a twist-like behaviour. This positive deflection was 
also measurable at the supports, leading to a smaller load-carrying area, thus leading 
to higher concentrated stresses, SP Trätek (2008). However, this was neglected. 
Dimensions and parameters of the deck are presented in Appendix A2.  
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3 Hand Calculation Methods 
When designing a SLTD there are different hand calculation methods that can be 
used. Which method that is used partly depends on where in the world the bridge 
should be built, due to the fact that different countries have different regulations 
which the methods take into account. A common calculation method, which has been 
the most commonly used in Sweden, is Ritter’s design guide. This method was 
developed by Michael A. Ritter in 1990. In addition to Ritter’s design guide, EC5 also 
proposes a design method for SLTD. Another method that is commonly used, mostly 
in Australia, was developed by Keith Crews in 2002, while the West Virginia 
University method was developed in USA in 1993, Dahl (2002). All the methods that 
are studied in this thesis are simplified analyses where the deck is designed as a fictive 
beam, see Figure 3.1. The difference in the above mentioned methods is how to find 
the effective width, Dw, of the fictive beam. However, Eurocode uses the notation bef 
for the effective width. Hereby follows a summary of the different models, where 
special attention has been put on the differences in the effective width. 

 

Figure 3.1  Effective width visualized. 

 

3.1 Ritters design guide 
In the 1990 Michael A. Ritter presented his design guide for SLTD. When designing 
according to Ritters guide there are some general design criterion that you have to 
fulfil, Ritter (1990). 

- The deck should be constructed from sawn lumber laminations and have the 
typical design of a SLTD 

- The deck width is constant 

- The deck thickness is constant and not less than 178 mm (8 inches) 

- The deck is rectangular in plane, or skewed by less than 20° 

- All supports should be continuous across the deck width 
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- The presence of butt joints should be limited to a maximum of one joint for 
any four adjacent laminations within a distance of 1220 mm (4 feet) in the 
longitudinal direction 

Design loads are based on AASHTO1 loading requirements. For timber bridges it is 
allowed to increase the design stresses by 33% for overloads. In addition to this you 
calculate with load distribution factor kls that increase the bending stiffness with 30% 
or 50% depending on lumber grade. These values come from the lumbers possibility 
to redistribute from weak lamellas to stronger. The calculation model has been 
verified for quality graded timber from Douglas Fir-Larch, Hem-Fir, Red Pine and 
Eastern White Pine, Ritter (1990). 

AASHTO does not specify any demand regarding live load deflection. Instead it is up 
to the engineer to put up reasonable demands for every single bridge, based on 
specific design circumstances. However, Ritter highly recommends that the designer 
follows the guide lines, regarding maximum deflection, given for other timber 
bridges, Ritter (1990). 

Designing a SLTD according to Ritter is basically done in two parts. The first part is 
designing the deck for bending, shear and deflection as if it was a beam. The second 
part in the design procedure is designing the pre-stressing system. Both design 
procedures use graphs that are based on variable relationships developed by analytic 
modelling, verified by tests performed by M. Ritter, Ritter (1990). 

The design procedure that follows is a shortening from Ritter´s design procedure: 

 

1. Define the deck geometry and design loads. The geometry concerns bridge 
span, width and number of traffic lanes. The effective bridge span L is defined 
as the distance between centre to centre of two supports. Both the span length, 
L, and the width, b, is given in millimetre. 

2.  Choose of timber class. This gives the designer the maximum allowable value 
for the bending moment fmk and E-modulus is thereby known. 

3. Preliminary design of butt joints. The presence of butt joints creates 
discontinuity in the deck. To compensate for this the reduction factor CB is 
used. CB is involved in different deck properties such as the effective deck 
section modulus, S, and the effective deck moment of inertia, I. 

4. Compute values for the transverse bending modulus of elasticity, E90, and the 
in-plane shear modulus, G. In Ritter’s design guide the following two 
expressions are given to compute E90 and G: 

ଽ଴ܧ  ൌ 0,013 כ  ଴     [Nmm-2] (3.1)ܧ

ܩ  ൌ 0,03 כ  ଴      [Nmm-2] (3.2)ܧ

                                                 
1 American Association of State Highway and Transportation Officials  
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It should been taken into account that the expressions are only valid for the 
Douglas Fir-Larch, Hem Fir, Red Pine and Eastern White Pine. 

5. The maximum moment M0 from live load caused by one wheel line of the 
design vehicle is found from beam analysis. If the deck is continuous over 
several supports the deck is calculated as continuous beams. 

6. Determine wheel load distribution width, Dw, from diagram produced by 
Ritter, see Figure 3.2. SLTD are designed as beams and Dw is then the 
effective width of that fictive beam. Dw is dependent on the two parameters α 
and θ which are computed as: 

ߙ  ൌ ଶீכ

ඥாబכ஼ಳכாవబ
     [-]  (3.3) 

ߠ  ൌ ௕

ଶכ௅
כ ቂாబכ஼ಳ

ாవబ
ቃ
଴,ଶହ

     [-]  (3.4) 

 

where:  α  Parameter for the torsional stiffness of the deck 

θ  Ratio between the deck stiffness in longitudinal and 
transversal direction  

CB Coefficient regarding butt joints 

E0, E90 E-modulus in longitudinal and transversal direction 
respectively 

G In-plane shear modulus of elasticity 

b, L Dimensions of width and  span of the deck 

 

 

 

  

Figure 3.2   Graph used to determine Dw for a single lane bridge, Ritter 
(1990) and modified by Dahl (2002). 
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7. Estimate deck thickness and compute deck-section properties. Ritter gives 
some recommended values for the thickness, t, depending on span length and 
number of traffic lanes. The thickness is estimated so that the designer is able 
to compute the effective deck section modulus, S, and the effective deck 
moment of inertia, I: 

 ܵ ൌ ஼ಳכ஽ೢכ௧మ

଺
      [mm3]  (3.5) 

ܫ  ൌ ஼ಳכ஽ೢכ௧య

ଵଶ
      [mm4]  (3.6) 

 

where:   t  Deck thickness 

 

8. Compute the design bending moment, Mγ, acting on the deck by adding the 
bending moment due to dead weight, Mg, to the bending moment due to live 
load, M0. 

9. Compute maximum bending stresses in the deck by dividing the design 
moment by S, the effective deck sectional modulus, Ritter (1990). 

ఊߪ  ൌ
ெം

ௌ
൑ ௠݂ௗ כ ݇௟௦    [Nmm-2] (3.7) 

 

where:  kls Load distribution factor 

 

10. Live load deflection is computed according to elastic analysis of a beam. Since 
the orthotropic behaviour of the deck results in a wider distribution width for 
deflection than for bending, the effective deck moment of inertia, I, could be 
increased by 33% for the design in Serviceability Limit State (SLS). AASHTO 
does not give any guidelines for maximum deflection but Ritter recommend 
that for a SLTD with asphalt layer should be limited to L/360.  

11. To avoid sagging caused by dead load deflection the deck should be cambered 
at least 2 times, and preferably 3 times, the amount of dead load deflection.  

12. The level of prestress for SLTD must be determined for two conditions, in 
service and at installation. The amount of prestress in service state represents 
the minimum compressive prestress level for adequate performance. At 
installation the level of prestress is the amount that needs to be introduced to 
the deck at time of prestressing, to be able meet the demand in service state. 

The amount of prestress depends on the size of transverse bending moment 
and transverse shear from applied load. Values for both transverse bending 
moment, M90, and transverse shear, V90, are found in Figure 3.3. For M90 
values α and θ are used and for the transverse shear, β is used. 

ߚ  ൌ ߨ כ ቀ௕
௅
ቁ כ ට

ாబכ஼ಳ
ଶீכబ

    [-]  (3.8) 

Both diagrams are developed for a wheel load of 71 kN. When other loads are 
used, the designer should multiply this load with the load ratio. Minimum 
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level of prestress, σf, is found as the maximum of Equation 3.9 and Equation 
3.10, but not less than 0.276 Nmm-2, Ritter (1990): 

௙ߪ  ൒
଺כெవబ

௧మ
     [Nmm-2] (3.9) 

௙ߪ  ൒
ଷ

ଶ
כ ௏వబ
௧כఓ

     [Nmm-2] (3.10) 

where:  σf Minimum prestressing-force 

t Deck thickness  

M90 Magnitude of transverse bending moment per unit  

length  

V90 Magnitude of transverse shear force per unit length  

µ Friction coefficient (0,35 for surfaced, 0,45 for rough-
sawn or surfaced on one side) 

 

Because of the loss of prestressing-force over time, the initial prestressing,  

σf-initial, should be 150% larger than the computed prestressing-force. 

௙ି௜௡௜௧௜௔௟ߪ ൌ 2,5 כ  ௙    [Nmm-2] (3.11)ߪ

 
Figure 3.3  Graphs used to determine  MT (M90) and VT (V90), Ritter 

(1990) and modified by  Dahl (2002). 
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3.2 Eurocode 5 
The general recommendations in Eurocode2 when designing SLTD is to use one of the 
following three analysis methods: 

- Orthotropic plate theory 

- Grid-modelling of the deck 

- A simplified method suggested in Eurocode 

In the analysis, it was chosen to use the simplified method, since the analysis 
procedure have some similarities to Ritter´s design guide. The greatest similarity 
between the two methods is that both use a fictional width, given in Eurocode as bef 
(compare to Ritters width Dw). The use of the fictional width allows the load to 
distribute to the middle plane of the deck, thus making the stresses smaller and 
thereby allowing smaller dimensions on the bridge. To obtain bef, the following 
equations are used: 

 ܾ௪,௠௜ௗௗ௟௘ ൌ ܾ௪ ൅ ݄/2 כ sin ሺߚሻ    [m]  (3.12) 

ܾ௘௙ ൌ ܾ௪,௠௜ௗௗ௟௘ ൅ ܽ     [m]  (3.13) 

 

The notations used are visualized in Figure 3.4. The load distribution angle, β, is a 
material constant whose values differ according to Table 3.1. The constant a is 
dependent on what deck plate system that is used, see Table 3.2, Eurocode (2004). 

   

 

 

 

                                                 
2 Eurocode 1995-2: 2004, hereby referred to as “Eurocode (2004)” or “Eurocode” 

Figure 3.4  Load distribution under a contact surface with the width bw. 
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Table 3.1  Dispersion angle, β, for various materials. 

 

Table 3.2  Width, a, for various deck plate systems. 

 

The effective width, bef is then used as a width of an equivalent beam, allowing the 
design of the glulam used in the SLTD. 

To verify the design, checks on bending moment and shear forces in the fictive beam 
needs to be preformed according to following: 

௠݂,ௗ,ௗ௘௖௞ ൌ ݇௦௬௦ כ ௠݂,ௗ,௟௔௠    [Nmm-2] (3.14) 

௩݂,ௗ,ௗ௘௖௞ ൌ ݇௦௬௦ כ ௩݂,ௗ,௟௔௠    [Nmm-2] (3.15) 

 

where:  fm,d,lam   Bending strength of the lamination material 

fv,d,lam    Shear strength of the lamination material  

ksys    System strength factor as can be read from Figure 3.5 

 

To calculate number of loaded laminations, the following equations are suggested, 
Eurocode (2004): 

݊ ൌ
௕೐೑
௕೗ೌ೘

       [-]  (3.16) 

where:   blam    Width of the lamination material 

 The deck strengths are then checked against the design moments and shear. 

 

Materials used on bridge Dispersion angle β 

Pavement 45˚ 

Laminated timber deck bridges  

‐ In direction of the grain  45˚ 

‐ Perpendicular to the grain  15˚ 

Deck plate system  a [m] 

Nail laminated deck plate 0.1 

Stress-laminated or glue laminated  0.2 

Cross-laminated timber 0.5 
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To avoid laminar slip, Eurocode also recommends that the following requirement is 
fulfilled: 

௩,ாௗܨ ൑ ௗߤ כ ௣,௠௜௡ߪ כ ݄    [Nmm-1] (3.17) 

 

where:   Fv,Ed    Design shear force per unit length 

μd    Design friction coefficient 

σp,min   Long-term stress caused by the prestressing force  

h  Height of deck 

 

Eurocode recommends that the long term residual stress σp,min should be greater than 
0.35 Nmm-2, provided that the initial pre-stress is at least 1.0 Nmm-2, Eurocode 
(2004).  

 

3.3 Crews design guide 
Designing a SLTD deck according to Crews model is to design the deck with 
equivalent beam analysis. The beam can be either simply supported or continuous 
over several spans, depending on support conditions. To be able to design the deck as 
a beam the designer needs to find the effective width of the fictive beam. This 
effective width, Dw, varies depending on whether the designer would like to compute 
deflections (SLS) or longitudinal flexural capacity (ULS) for the deck. The equivalent 
beam is the part of the orthotropic deck that is supposed to carry the load, Crews 
(2002). 

In comparison with Ritter, Crews model is a bit more straightforward. This is since 
the only material parameter involved in the computation of the effective width is E0. 

Figure 3.5  The system strength factor ksys and its dependence of loaded 
laminations, Eurocode 1995-1-1:2004, clause 6.6. 
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The transverse modulus of elasticity E90 and the in-plane shear modulus ܩ are already 
included in the model.  

Distribution width, Dw, for a single lane bridge and a two lane bridge respectively is 
calculated as: 

௪ܦ  ൌ ൤ቀ ாబ
ଵ଴ ଴଴଴

ቁ
଴,ହ
൅  ௅

ଶହ
 ൅ 0,45൨ כ  ஻  [m]  (3.18)ܥ

௪ܦ  ൌ ൤ቀ ாబ
ଵ଼ ଴଴଴

ቁ
଴,ସ଴

൅  ௅
ଷ଴
 ൅ 0,45൨ כ  ஻  [m]  (3.19)ܥ

 

where:  ܧ଴ Longitudinal modulus of elasticity 

 Effective design span ܮ  

   ஻ Butt joint modification factorܥ  

஻ܥ   ൌ  
ቀ೙షభ

೙
ቁ

଴,଻ହ
൒ 1,0  For hardwood  [-]  (3.20) 

஻ܥ   ൌ  
ቀ೙షభ

೙
ቁ
బ,ఱ

଴,଼ହ
൒ 1,0  For Australian pine [-]  (3.21) 

 

where:  n Number of butt joints transverse the deck in the range of 

1200 mm in longitudinal direction. 

 

These expressions are based on a prestress of 1.0 Nmm-2 which is the assumed 
serviceability prestress in Australia. The recommended initial pre-stressing forces in 
Australia are 1.2 to 1.5 Nmm-2 for hardwood and 1.0 to 1.3 Nmm-2 for softwood, 
Crews (2002). 

From this part, the design of bending moment and shear force is done in the same 
manner as according to the method proposed by Ritter and is therefore not presented, 
Crews (2002). 

 

3.4 West Virginia University method 
Like Ritter and Crews the University of West Virginia has developed a design 
procedure for stress-laminated timber decks. The design procedure in many ways 
corresponds to Ritter’s design guide which is described in Chapter 3.1. The most 
obvious differences are described below, Dahl (2002): 

௪ܦ  ൌ ሾܾ௪ ൅ 2 כ ሿݐ כ  ஻    [mm]  (3.22)ܥ

 

where:  bw Total wheel width    

  t Thickness of the cross-section   

  CB Butt joint factor as described by Crews in Chapter 3.3 
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The method assumes a 45° distribution over the whole cross-section in transverse 
direction. For deflection caused by a concentrated force the designer can assume an 
increase in load distribution by 15%. So when designing against deflection it is 
possible to use 1,15*Dw as distribution width, Dahl (2002). 

For a single line bridge the maximum moment and shear force, per unit length, in 
transverse direction is calculated as: 

ଽ଴ܯ  ൌ
ଵ,ହସכெబ

ଵ଴଴଴כ஼ಳ
భ/ర כ

௕ೢ
ଶכ௅

     [Nmm/mm] (3.23) 

 ଽܸ଴ ൌ
௉ೢ

ଵ଴଴଴
כ ቀ10,4 െ ௕ೢ

ଶכ௅
ቁ    [Nmm-1] (3.24) 

 

where:  M0 Moment in longitudinal direction caused by a single wheel set 

  L Span width 

  Pw Maximum load from one wheel  

 

Like Crews the calculations from this point follows Ritter and are therefore not 
presented, Dahl (2002). 

 

3.5 Summary of hand calculation methods 
As described in the introduction to Chapter 3 one of the biggest differences between 
the methods is how to achieve the effective width. This effective width affects the 
calculated deflections to a great extent. For the SP test described in Chapter 2, 
calculations for the deflections were computed for every method described in this 
thesis and these calculations are presented in Appendix B1-B4 respectively.  
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4 Beam on Elastic Foundation 
An approach when designing a SLTD could be to approximate the deflection of the 
cross-section in a section of the plate according to the theory of beam on elastic 
foundation, Marklund K.A. (1997). Having a simple method of approximating the 
deflection behaviour could make the design process faster and easier. This would also 
mean that it would be possible to determine internal forces without using a plate-
theory. The cross-section would in this case be assumed as a beam which should have 
the length lbeam and an effective width, w, see Figure 4.1.  

 

  

 

 

4.1 Theory 

4.1.1 Guiding differential equation 

The elastic foundation theory is often used in civil engineering applications such as 
plates and beams on soil where the structure of the soil can be modelled as a 
foundation of elastic springs. For the case of a beam on elastic foundation, the 
following differential equation for deflection, y, is used, Bing Y.Ting et al (1983): 

Figure 4.1 Top) Section of SLT deck that acts as the imagined beam on elastic 
foundation  

  
Bottom) Schematic figure of section A-A from top figure 
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ܫܧ כ ௗర௬

ௗ௫ర
൅ ݇ כ ݕ ൌ   (4.1)       ݍ

 

where:   k  Modulus of sub grade reaction 

EI The beams flexural rigidity 

q  The transversal load acting on the beam.  

 

4.1.2 Finite element formulation 

To be able to compare the theory of elastic foundation to the measured deflections 
from the SP-test, a FE-model was established. The derivation of the FE-expression 
was made without any consideration of axial forces and assuming that the beam rests 
on Winkler foundation, i.e. a foundation that has a linear relationship between the 
force on the foundation and the deflection. As a first step, Equation 4.1 was multiplied 
with a weight function, v(x), and integrated over the domain as suggested in Ottosen 
& Petersson (1993), leading to the following expression: 

׬ ݒ ௗమெ

ௗ௫మ
௕
௔ ݔ݀ െ ׬ ݔ݀ ݕ݇

௕
௔ ൅ ׬ ݔ݀ ݍݒ ൌ 0

௕
௔       (4.2) 

Integration by parts of the first expression in Equation 4.2 and using that dM/dx = V, 
we obtain: 

׬
ௗ௩

ௗ௫
 ௗெ
ௗ௫
ݔ݀ ܯ  ൌ    ሾܸݒሿ௔௕ െ ׬ ݔ݀ ݕ݇

௕
௔

௕
௔ ൅ ׬ ݔ݀ ݍݒ

௕
௔      (4.3) 

By integrating the left hand side, the following expression is defined: 

׬
ௗమ௩

ௗ௫మ
ݔ݀ ܯ

௕
௔ ൅ ׬ ݔ݀ ݕ݇

௕
௔ ൌ ሾௗ௩

ௗ௫ 
ሿ௔௕ܯ െ ሾܸݒሿ௔௕ ൅ ׬ ݔ݀ ݍݒ

௕
௔     (4.4) 

Where M and V are the natural boundary conditions. The expression obtained is the 
weak form of the equilibrium equation, and to obtain the strong form the following 
approximation for the deflection is introduced: 

ݕ ൌ  (4.5)        ܉ۼ

where:  

ۼ ൌ ሾ  ଵܰ  ଶܰ  ڮ  ௡ܰሿ      ܉ ൌ ൦

ଵݑ
ଶݑ
ڭ
௡ݑ

൪     (4.6) 

  

 

From Equation 4.5 it can be shown that: 

ௗమ ௬

ௗ௫మ
ൌ where  ۰ , ܉۰ ൌ ௗమۼ

ௗ௫మ
      (4.7) 

The next step is to adopt the Galerkin expression for the weight function: 

ݒ ൌ   (4.8)        ܋ۼ

This means: 

ௗ௩

ௗ௫
ൌ ்ࢉ ௗࡺ

೅

ௗ௫
;  ௗ

మ௩

ௗ௫మ
ൌ    (4.9)       ࢀ࡮்ܿ
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Observing that the weight function is arbitrary and thereby concluding that c also is 
arbitrary, Equation 4.4 is rewritten as: 

்܋ ቀ׬ ݔ݀ܯ۰் ൅ ׬ ்݇ۼ
௕
௔ ܉ۼ െ

௕
௔ ሾௗۼ

ௗ௫

்
ሿ௔௕ܯ ൅ ሾ்ܸۼሿ௔௕ െ ׬ ݔ݀ ݍ்ۼ

௕
௔ ቁ ൌ 0  (4.10) 

The arbitrary property of c makes it possible to back this function out of the equation, 
and with the constant flexural rigidity we introduce: 

ܯ ൌ െܫܧ כ  (4.11)        ܉۰

leading to the final FE formulation defined as: 

ቀ׬ ۰் כ ܫܧ כ ݔ۰݀ ൅ ׬ ۼ ்݇ۼ
௕
௔

௕
௔ ቁݔ݀ ܉ ൌ ሾ்ܸۼሿ௔௕ െ ሾௗۼ

ௗ௫

்
ሿ௔௕ܯ ൅ ׬ ݔ݀ ݍ்ۼ

௕
௔   

          (4.12) 

or: 

൫ࡷ ൅ ࢇ൯ࢍ࢔࢏࢘࢖࢙ࡷ ൌ  (4.13)        ࢌ

where: 

ࡷ ൌ ׬ ۰் כ ܫܧ כ ݔ݀ ۰
࢈
ࢇ        (4.14) 

ࢍ࢔࢏࢘࢖࢙ࡷ ൌ ׬ ݔ݀ ۼ ்݇ۼ
࢈
ࢇ        (4.15) 

ࢌ ൌ ሾ்ܸۼሿ௔௕ െ ሾௗۼ
ௗ௫

்
ሿ௔௕ܯ ൅ ׬ ݔ݀ ݍ்ۼ

௕
௔      (4.16) 

 

4.1.3 Evaluation of the elastic foundation stiffness matrix 

In order to solve the FE equation, an approximation of the deflection is required. For 
infinitely small beam elements, inner deflection will be given by an arbitrary rigid-
body motion superposed by an arbitrary constant curvature. This means that the 
approximation of the deflection must be able to represent both an arbitrary rigid-body 
motion as well as an arbitrary constant curvature, often referred to as the 
completeness requirements.   

The approximation also has to fulfil the compatibility requirements, i.e. the 
approximation w must vary continuously and with continuous slopes over the element 
boundaries.  

The following equation is used to approximate the deflection: 

ݕ ൌ ଵߙ  ൅ ݔଶߙ ൅ ଶݔଷߙ ൅  ଷ      (4.17)ݔସߙ

To determine the α-values, the selected beam element must possess four unknown, 
which are chosen as u1, u2, u3 and u4, where u1 and u3 are the deflection of the nodes in 
y-direction and u2 and u4 are the counter-clockwise slopes in the nodes, as in Figure 
4.2.  
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Applying the C-matrix method suggested by Ottosen and Petersson (1993) the 
element shape functions will be expressed as: 

ࡺ ൌ ሾ ଵܰ
௘  ଶܰ

௘  ଷܰ
௘  ସܰ

௘ ሿ        (4.18) 

where: 

ଵܰ
௘ ൌ 1 െ 3 ௫మ

௅మ
൅ 2 ௫య

௅య
        (4.19) 

ଶܰ
௘ ൌ ݔ ቀ1 െ 2 ௫

௅
൅ ௫మ

௅మ
ቁ       (4.20) 

ଷܰ
௘ ൌ   ௫

మ

௅మ
ቀ3 െ 2 ௫

௅
ቁ        (4.21) 

ସܰ
௘ ൌ   ௫

మ

௅
ቀ௫
௅
െ 1ቁ        (4.22) 

In the first step of developing the foundation stiffness matrix, Kspring, it is assumed that 
the stiffness properties of the fictive springs do not vary along the beams axis. 
Thereby it is possible to move the spring stiffness constant, k [Nmm-2], outside of the 
integral expression. From the element shape functions, the stiffness contribution to the 
beam from the elastic foundation can together with Equation 4.18 be expressed as: 

ࢍ࢔࢏࢘࢖࢙ࡷ ൌ ׬ ݔ݀ ۼ ்݇ۼ
࢈
ࢇ ൌ 

݇ ׬ ݔ݀ ۼ்ۼ ൌ ݇ ׬

ۏ
ێ
ێ
ۍ ଵܰ

௘
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௘
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௘

ଵܰ
௘

ଷܰ
௘

ଵܰ
௘

ସܰ
௘

ଵܰ
௘

ଵܰ
௘

ଶܰ
௘

ଶܰ
௘

ଶܰ
௘

ଷܰ
௘

ଶܰ
௘

ସܰ
௘

ଶܰ
௘

ଵܰ
௘

ଷܰ
௘

ଶܰ
௘

ଷܰ
௘

ଷܰ
௘

ଷܰ
௘

ସܰ
௘

ଷܰ
௘

ଵܰ
௘

ସܰ
௘

ଶܰ
௘  ସܰ

௘

ଷܰ
௘

ସܰ
௘

ସܰ
௘

ସܰ
௘ ے
ۑ
ۑ
ې

௕
௔  

࢈
ࢇ  (4.23)  ݔ݀

 

 

After integrating the expression, the elastic foundation stiffness matrix is given by: 

  

Figure 4.2  Simple beam element and the selected degrees of 
freedom. 
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ࢍ࢔࢏࢘࢖࢙ࡷ ൌ
௅כ௞

ସଶ଴
቎

156 
ܮ22
54

െ13ܮ

ܮ22
ଶܮ4
ܮ13
െ3ܮଶ

54
ܮ13
156 
െ22ܮ

െ13ܮ
െ3ܮଶ
െ22ܮ
ଶܮ4

቏    (4.24) 

 

4.2 Calculation methodology 
The FE-calculations, which were performed in MATLAB, were created using the 
finite element toolbox CALFEM. To find a reliable model that was somewhat 
consistent with physical relationships, the following steps were performed, in 
chronological order:  

1. The establishment of a MATLAB FE-model, where the deflections of a beam 
on elastic foundation could be calculated. The CALFEM routine beam2w.m 
was primarily used.  

2. A convergence-study was performed on the model to be able to find a 
conforming number of elements for the model. 

3. The behaviour of the model was then verified by a Swedish handbook for 
Civil Engineering, BYGG1 (1961).  

4. The model was then analysed using only dead-weight where the main purpose 
was to get a better understanding of how the different parameters controlled 
the beams deflection behaviour. The self-weight used in the model were 
chosen from Structural Timber Design to Eurocode 5 (2007).  

5. The next step was to introduce a load on the beam, to find out how the beam 
would react. 

6. The MATLAB routine fminsearch.m was then used to vary the effective 
width w, and the elastic foundation stiffness, k. 

7. The routine fminsearch.m was set to try to minimize the changes of the 
measured deflections and the calculated ones, using the coefficient of 
determination, R2. For the coefficient of determination, fi were the modelled 
values and yi were the observed values. The regression sum of squares was 
calculated as: 

 ܵܵ௥௘௚ ൌ ∑ ൫ ௜݂ െ ݂ҧ௜൯
ଶ

௜       (4.25) 
And the sum of squared errors was calculated as: 

 ܵܵ௘௥௥ ൌ ∑ ሺݕ௜ െ ௜݂ሻଶ௜       (4.26) 

The coefficient of determination was then calculated as:   

             ܴଶ ൌ
ௌௌೝ೐೒
ௌௌ೟೚೟

ൌ
ௌௌೝ೐೒

ௌௌ೐ೝೝା ௌௌೝ೐೒
      (4.27) 

For a good match between calculated deflections and measured ones, the value 
of R2 should be close to 1. The routine fminsearch.m was set to minimize the 
function 1- R2, thus leading to a minimum of deflection difference. 

8. After establishing a good FE model with comforting values on the elastic 
foundation stiffness in SLS, the model was used to try to predict the failure 
mode. This was done by searching exponents x and y that satisfies:  

  ቀఛಶ
ఛೃ
ቁ
௫
൅ ቀఙಶ

ఙೃ
ቁ
௬
൑ 1.0      (4.28) 
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where:  τE Shear stress effect  

τR Shear stress resistance  

x Exponent, > 0, for the shear stress utilization  

σE Bending stress effect caused by bending moment 

σR Bending stress resistance 

y Exponent, > 0, for the bending stress utilization 

  

This was done by choosing exponents so that the failure in the model appeared 
in the same area as the failure from the SP test. The internal stresses were 
obtained from the CALLFEM routine beam2ws.m. 

 

4.3 Verification of model 

4.3.1 Convergence  

The convergence was tested using the change of mean moment and the change of max 
shear force with increasing number of elements, see Appendix C1. The study was 
performed on a plate with the dimensions according to the bridge tested by SP and 
with an elastic foundation stiffness of 6995 kN/m2. The load was placed in the middle 
of the plate and had a magnitude of 100 kN. After the analysis according to Appendix 
C1, it was decided to use approximately 150 elements in the FE analysis. 

 

4.3.2 Beam behaviour 

To get familiar with the behaviour of a beam on elastic foundation, a series of 
calculations were executed with different load combinations and stiffness properties. 
The moment distribution from the analysis was then controlled against BYGG1 to get 
a confirmation that the model behaved as expected. Examples of the behaviour of the 
beam can be found in Appendix C2. 
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5 Downscaled Tests 
5.1 Background 
The support behaviour results from the SP test were somewhat surprising. When the 
deck was loaded with a point load at the edge in the middle span, as in Figure 5.1, the 
positive deflection at the supports was larger than expected. This behaviour could 
result in sway of the structure, something that is not often taken into account when 
designing supports for SLTD bridges with small widths (Crocetti 2009). 

 

 

 

 

Because of this, it was decided to carry out additional downscaled tests at Chalmers to 
verify and document the behaviour of an orthotropic plate, and especially examine: 

 The support behaviour when loaded with point load 
 How well the test data could be approximated by the theory of beam on elastic 

foundation 

The outcome from this test was to better understand the behaviour of a plate and to be 
able to verify that the effective width actually is a good approximation when 
designing SLTD.  

 

5.2 Test procedure 
The test was performed on plates of LVL, brand “Kerto-Q”, a material that also 
possesses orthotropic properties. However, the correlation between the stiffness 
properties is larger than for a SLTD. The test was performed on five different plates 
with different sizes, this especially to observe the differences in sway behaviour. 
Before the test started, estimation was done of how large the load-plate would need to 
be to avoid local compression of the wood. This was done by estimating the highest 
loads that were to affect the plates and thereafter calculating which area that would be 
necessary to not exceed the compression resistance in the specimen, which was 
obtained from Moelven (2009). The plate that was used and the load-anchoring screw 
can be seen in Picture 5.1. 

Figure 5.1  Behaviour of the tested specimen, in exaggerated scale. 
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Picture 5.1 Load plate with dimensions 0.1 x 0.1 x 0.02 m3, and anchor screw.   

The first test performed was a convergence study for creep to be able to see after how 
long time the deflections should be measured. This was done by loading one plate and 
get the initial deflection, then measurements were done every tenth second during the 
first minute, 20 seconds during the second minute, twice during the third minute and 
then once every minute for another 16 minutes. The convergence study showed that 
the deformation after five minutes was 0.26% larger than after 10 seconds, whereby it 
was decided to measure the deflections five minutes after load application. 
Measurements were also done when the plate was unloaded to see how large the 
remaining deformations were. Results from the convergence study are shown in 
Figure 5.2, for the measured deflections see Appendix D1. The measurements showed 
that there were remaining deformations in the plate, which was not expected. 
However, this remaining deformation is probably due to disturbance of the 
measurement equipment when unloading, which was a critical moment in this test.  

 

 

Figure 5.2 Relative viscoelastic creeps. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 500 1000 1500 2000

R
e
la
ti
ve
 d
e
fl
e
ct
io
n
 [
m
m
]

Time [s]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 27

Another constant of great importance for the test was to compute the modulus of 
elasticity, MOE, for the tested plates. This was done by adding two line loads, 100 
mm from the middle of the plate, and measure the deflection caused by these loads. 
This was done both for the longitudinal and transversal direction. When the 
deflections were known, Ex and Ey could be calculated according to BYGG1 (1961) 
and verified by Timber Engineering STEP1 (1995), these results are presented in 
Table 5.1, where a comparison of the values suggested by Moelven (2009) is 
presented. For calculations of MOE, see Appendix D2.  

 

Table 5.1 Values of modulus of elasticity 

  Ex [GPa]  Ey [GPa] 

BYGG1  11.887  2.051 

STEP1  11.361  2.612 

Moelven  10.500  ‐ 

 

The handbook from Moelven (2009) did not give any suggestions for the transversal 
modulus of elasticity, Ey. As can be seen, the calculated values were higher than then 
the manufactures values, while the correlations between the calculated values were 
acceptable. For any further calculations regarding LVL, the values calculated 
according to BYGG1 were used. Figure 5.3 shows the placement of the line loads and 
Picture 5.2 shows practical implementation. 

 

 

Figure 5.3  Placement of line loads for computing MOE. 
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Picture 5.2 Line loads for computing MOE. 

When the creep time and MOE was computed, the test could be performed. Each plate 
was tested in a similar way. The test procedure, load placement/ magnitudes and 
placement of deflection detectors can be found in Appendix D3. 

5.3 Expected test results 

5.3.1 Support behaviour 

The results from the test were not expected to differ much from the SP test, 
concerning uplift at the support. However, it was hard to approximate to what extent 
the plate would get uplift. 

 

5.3.2 Effective width 

The hand calculation methods used to design SLTD-bridges is partly based on the 
relationship between the stiffness properties in longitudinal and transversal direction. 
This fact together with the large difference in dimensions between the plates that the 
methods are designed for and the test plates, the behaviour of the test specimen was 
hard to estimate. To verify if the hand calculation methods were good approximations 
compared to the test results, it was decided to use the calculated deflections divided 
by the measured ones as a verification factor and this is further presented in Chapter 
6.1. Since the hand calculation methods are adapted to bridges of full size, the 
calculated distribution width had to be downscaled with a factor η. This factor was 
based on the relation between a bridge with a length of 15 m and the length of the test 
plates which were only 2 m. For the calculated deflections, see Appendix D4.  
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5.4 Test results 
The plates that were tested showed the same behaviour as the SLTD tested by SP, 
concerning the uplift at the supports. It could easily be seen with the naked eye that 
the plate lifted from the support at the corners, which is shown in Picture 5.3. Results 
from the plate with dimensions L x B = 2 x 1.8 m2, is shown in Figure 5.4 and Figure 
5.5 for applied load at the edge and in the middle respectively. For the other results 
from the plate behaviour test, see Appendix D5.  

 

 

Picture 5.3 Uplift at support when loaded at the edge of the plate. 

 

 

Figure 5.4  Deflections in mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 1.8 m2. Applied load P=1.303 kN at the edge of 
the plate. 

‐20

‐15

‐10

‐5

0

5

0 500 1000 1500 2000

D
ef
le
ct
io
n
 [
m
m
]

Width of plate [mm]

Simply

Fixed



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 30

 

Figure 5.5 Deflections in the mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 1.8 m2. Applied load P=1.303 kN in the middle 
of the plate. 

 

Another thing of interest is the relation between uplift at the corner of the 
supports/applied load, δ/P, versus the length/width, L/B, relation, which is presented 
in Figure 5.6 for edge load and Figure 5.7 for load in the middle of the plate. As can 
be seen, the plates are more prone to get uplift for a length/width relation around one 
than for the other relations. 

 

 

Figure 5.6  Uplift/load versus length/width for applied load at the edge of the 
plate. 

 

 

Figure 5.7 Uplift/load versus length/width for applied load in the middle of the 
plate.    
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6 Evaluation  
6.1 Hand calculation methods 
To be able to evaluate the different hand calculation methods described in this thesis it 
was decided to compare them with the results from both the SP test and the 
downscaled tests. This was done by comparing calculated deflections with the 
measured deflections for the different cases. Figure 6.1 shows the results from the 
hand calculation methods, described in Chapter 3, compared to the SP test, as well as 
the effective width. It can be seen in Figure 6.1 that the effective width is not the only 
thing that affects the deflection. For example, in the case of designing with Crews 
design guide, the effective width has a very high value, while the ratio between the 
calculated deflections and the measured ones are relatively small. One important thing 
is if the designer could increase the second moment of inertia, I, when designing for 
deflections, which is suggested in Ritter’s design guide and in the method suggested 
from West Virginia University. Another thing of great importance is how close to the 
edge the models allow the designer to place the load. In the test performed by SP the 
load was placed 0.335 m from the edge, which is something that only Eurocode takes 
into account. Finally the deck tested at SP had a prestress of 0.4 Nmm-2 and for 
example Crews model do not allow prestress to be smaller than 0.5 Nmm-2. This 
could explain why this model gives a higher deflection compared to the other models. 

 

 

Figure 6.1 Calculated Dw and relation between calculated deflection and 
measured deflection for the SP test, applied load 100 kN. 

 

A similar comparison as the one done for the full scale test was done for the tested 
LVL plates. Figure 6.2 shows the same relations as Figure 6.1 but for the downscaled 
test. The studied plate in this case was the plate with L x B = 2 x 0.3 m2 and the 
applied load 0.46 kN placed at the edge of the plate. What can be seen when studying 
Figure 6.1 and Figure 6.2 is that the relations concerning calculated 
deflection/measured deflection is not the same. One of the reasons for this is that the 
relation between Ex and Ey is not the same for a SLTD and the tested plates. Another 
reason is that the hand calculation methods are not designed for downscaled tests, 
which was something that had to be taken into account when calculating the 
deflection for the downscaled tests. The author’s way of treating this by scaling the 
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effective width was maybe not the best approach when treating downscaled bridges. 
Another matter of great importance is to what extent the different dimensions of the 
deck affect the effective width. A more proper way of scaling the plates would be to 
have different scale factors for different methods, dependent on which parameter 
affecting Dw the most. 

 

 

Figure 6.2 Calculated Dw and relation between calculated deflection and 
measured deflection for a downscaled test, applied load 0.46 kN. 

 

6.2 Elastic foundation stiffness 
The data points that were to be investigated were compared to the results obtained 
from the CALFEM routine mentioned in Chapter 4. The idea was to see if the beam 
on elastic foundation could get the same deflections as the deflection from the SP- and 
downscale-tests. This would be done by varying the stiffness properties of the beam. 
After being confident that the FE-model gave accurate results, the measured results 
from the LVL downscaled tests and from the SP-test were compared. The width of the 
beam was fixed according to: 

ݓ  ൌ ௟௢௔ௗ ௣௟௔௧௘ݓ ൅ ݄௧௘௦௧ ௦௣௘௖௜௠௘௡      [m]  (6.1) 

 

A visualization of how the deflection varied with different values of the foundation 
stiffness can be seen in Figure 6.3. 

 

Figure 6.3 Visualisation of the search function in the MATLAB routine fminsearch.m. The 
applied load is 100 kN, at x=0.355 m and the width of the beam is 0.695m.The 
foundation stiffness is increased from 170 kN/m2to7171 kN/m2, leading to a 
maximal deflection of 0.0194 m. 
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For the case in Figure 6.3, the start-value on the elastic foundation stiffness were 170 
kN/m2, leading to a maximal deflection of 0.47 m, and the end-value were 7171 
kN/m2 leading to a maximal deflection of 0.0194 m. The red deflection curve is the 
calculated optimal one with a coefficient of determination value of 84.6%. 

As a step of confirming that the foundation stiffness of the different test specimens 
was correct, a simplified way of calculating the stiffness was applied. For a fictive 
simply supported beam with a width of Dw that is charged with a point-load, the 
deflection can be calculated as: 

ߜ  ൌ ௉௅య

ସாכ஽ೢ כ௛య
      [m]  (6.2) 

 

where:            P  Load on beam  

            L  Length of the span 

            E  Beams longitudinal modulus of elasticity 

            Dw Width of fictive beam 

            h Height of beam 

 

The general expression for the stiffness of one fictive spring is: 

 ݇ௌ ൌ
௉

ఋ
       [Nmm-1] (6.3) 

 

where:            P  Load on beam  

            δ  Deflection under the point-load 

 

When combining Equation 6.2 and Equation 6.3, the expression for the spring 
stiffness can be obtained as: 

 ݇ௌ ൌ
ସாכ஽ೢ כ௛య

௅య
      [Nmm-1] (6.4) 

 

To be able to utilise the spring stiffness for an elastic foundation, Equation 6.4 must 
be divided over the width of the beam resting on these fictive springs. In this case, the 
notation w has been used as width of the beam, leading to the expression for the 
elastic foundation stiffness: 

 ܵ ൌ   ௞ೄ
௪
ൌ ସாכ஽ೢ כ௛య

௅యכ ௪
      [Nmm-2] (6.5) 

 

To compare the elastic foundation stiffness obtained from the FE analysis and the 
value obtained from Equation 6.5, the value Dw was calculated by integration of the 
deflection curves from the FE analysis and using the simplified method as indicated in 
Equation 6.6: 

௪ܦ  ൌ ∑ ௡ݔሻ݀ݔሺݓ׬
௜ୀଵ כ ௠௔௫ߜ

ିଵ ൌ   ஺

ఋ೘ೌೣ
  [m]  (6.6) 
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where:        n Number of roots that satisfies w(x) = 0  

w(x) Function that describes deflection  

                   A     Total area between the deflection curve and a zero-vector 

  δmax Maximal deflection 

 

Example 6.1 

Length of plate L = 10m 

Width of plate B = 5m 

Longitudinal modulus of elasticity E = 11 GPa 

Height of plate h = 0.495 m 

Effective width of plate Dw = 1 m 

Width of fictive beam on elastic foundation w = 0.5 m 

 

Spring stiffness: 

࢑ ൌ
૝ࡱ כ  ࢝ࡰ כ ૜ࢎ

૜ࡸ
ൌ
૝ כ ૚૚ כ ૚૙ૢ כ ૚ כ ૙. ૝ૢ૞૜

૚૙૜
ൌ   ૞૜૜૟. ૟ 

ࡺ࢑
࢓

 

 

Elastic foundation stiffness: 

ࡿ ൌ
૝ࡱ כ  ࢝ࡰ כ ૜ࢎ

૜ࡸ כ ࢝
ൌ
૝ כ ૚૚ כ ૚૙ૢ כ ૚ כ ૙. ૝ૢ૞૜

૚૙૜ כ ૙. ૞
ൌ ૚૙૟ૠ૜. ૜ 

ࡺ࢑
 ૛࢓

 

The results from the FE analysis can be found in Table 6.1. The last column shows 
how well the elastic foundation from the hand calculation method agrees with the one 
from the FE-analysis. 
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Table 6.1 Results from FE-analysis 

L [m]  B [m]  P [kN]  w [m]  SFE [Nmm‐2]  R2 
[%] 

DW [m]  S/SFE [‐] 

10  5  98.63  0.695  7.35  83.7 0.848  0.966 

10  5  198.34  0.695  7.31  84.3 0.915  1.048 

10  5  298.39  0.695  7.19  86  1.023  1.191 

2  1.8  1.3  0.133  0.39  86  0.237  0.96 

2  0.9  1.3  0.133  0.35  90  0.252  1.16 

2  0.6  0.87  0.133  0.36  75.4 0.217  0.97 

2  0.3  0.46  0.133  0.28  58.3 0.122  0.69 

1.4  1.8  1.3  0.133  0.11  91.7 0.257  1.14 

 

6.3 Failure load 
After having established a comforting FE model of the elastic foundation theory, an 
attempt was made of trying to explain the failure mechanism in the SP test by 
analysing the shear and moment distribution over the beam on elastic foundation. The 
term “failure” in this chapter is as described in Chapter 1, Section 1.1.3, i.e. SLS 
failure, where the deck changes its properties but still have load carrying capacity.  

An example of the shear and moment distribution from the SP test can be seen in 
Figure 6.4. 
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Figure 6.4 Deflection, shear and moment distribution for a beam on elastic 
foundation. S = 7.25 Nmm-2, w = 0.695 m, Load = 833 kN/m distributed 
on 0.6 m 

In the SP test, slip failure was registered around 0.6 m from the loaded edge when the 
load got close to 600 kN. Since the force distributions in the longitudinal direction 
were hard to approximate, a parameter study was made to see if there were some 
correlation between the load distribution length, ldist, and the exponents of the failure 
equation. Similar to Equation 4.28, the failure could mathematically be described as:   

 ቀఛಶ
ఛೃ
ቁ
௫
൅ ቀఙಶ

ఙೃ
ቁ
௬
ൌ  ߯௝௘ ൑ 1.0      (6.7) 

      

where:  ߬ா ൌ
ଵ.ହכ ௏

௟೏೔ೞ೟כ௛
 

 ாߪ ൌ
଺כெ

௟೏೔ೞ೟כ௛మ
  

 ோߪ ൌ
ே

௖כ௛
  

߬ா ൌ  ோߪ כ    ߤ

V Shear force   

ldist Distribution length for stresses in longitudinal direction  

h Height of deck 

M Moment  

N Prestressing force 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 37

c Distance between prestressing rods 

μ Coefficient of friction 

 

When applying Equation 6.7 to the shear and moment-distribution from the elastic 
foundation FE-analysis, it was found that failure appeared in the same area as in the 
SP test for the exponent-relation: 

ݕ  د 0.5 כ  (6.8) [-]          ݔ

 

With this relation, the principal behaviour of the combined stress utilization can be 
seen in Figure 6.5. This exponent-relation suppresses the contribution from the shear 
stress utilization, while the bending stress utilization is magnified. Like in the failure 
from SP, the beam has sufficient resistance for the 500 kN load, but suffers failure, 
i.e. χje ≥ 1 for the applied load of 600 kN.  

 

 

Figure 6.5 Combined stress utilization for a load distribution length of 8 m, 
x=2.00 and y=0.2. 
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A part of the parameter study can be found in Table 6.2 shows the value of x, y and χje 
for different ldist. For values of ldist below 5 m, the relation between σE and σR in 
Equation 6.8 reaches one and there exists no exponents that satisfy the equation. 
Further results for different relations between x and y are presented in Appendix E1.   

 

Table 6.2  Values from parameter study. 

ldist [m]  x [‐]  y [‐]  Χje (500 kN)  Χje (600 kN) 

10  1.60  0.160  0.94  1.02 

9  1.75  0.175  0.93  1.02 

8  2.00  0.200  0.92  1.02 

7  2.35  0.235  0.91  1.03 

6  2.90  0.290  0.89  1.05 

5  4.43  0.443  0.81  1.06 
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7 Discussion 
7.1 Downscaled tests 
The results from the downscaled tests could be somewhat misleading, especially in 
the creep behaviour test where it seems that a relative large deflection remains after 
unloading. This behaviour is surprising, since the loads on the plate were not of the 
magnitude to create remaining deformations in the test specimen. A possible 
explanation for the remaining deflection from the test could be that there were some 
disturbances in the measure equipment when loading and unloading. Another 
possibility for the remaining deflection is if the loaded screw were displaced in the 
plate, as seen in Figure 7.1. This might have led to that the plate was prevented to get 
to its ordinary state when we thought it was unloaded. A factor that had an important 
role in the test results was if the loading procedure was totally centric, i.e. if the load 
actually were acting in the true centre of the plates span.  

 

Figure 7.1 Misplaced load-application in load-carrying screw 

 

7.2 Hand calculation methods 
The different hand calculation methods described in this thesis are a good way of 
designing SLTD in SLS. The different methods give suggestions for how to calculate 
Dw, and changes in these calculations partly depends on different regulations in 
different countries. One thing that the methods do not take into account is the uplift at 
the corner of the supports which has been noticed both by the SP test and our 
downscaled tests. The uplift in our tests showed to be worst for the plate with L/B 
close to one. However this uplift is not a big problem when designing SLTD since the 
covering layers will keep the corners in place and this might be one reason for why no 
methods takes this into account. Another reason for why uplift is not a big issue in 
SLS is that the uplift is greatest for large point-loads applied at the edge of the plate. 
This is an extreme load case and is something that only takes place in tests. 

When comparing the hand calculation methods to the different tests there was a clear 
difference in what maximum deflection one could expect. This deflection differs in a 
great extent and one important thing is how close to the edge the designer is allowed 
to place the load. What could be seen in both the test from SP and the test performed 
at Chalmers was that when designing with Eurocode the calculated deflections were 
on the safe side. This is due to the fact that Eurocode allows the designer to place the 
load closer to the edge than the other methods discussed in this thesis. 
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The scale factor, η, affected the calculated deflections for the downscaled test. As 
mentioned in Chapter 6.1, a better way of treating this would be to have different 
scale factors for different methods. For example, in the method from West Virginia 
University the thickness of the plate affect the distribution width and thereby the 
deflection. With the used scale factor, that only takes the length of the plate into 
account, the distribution width is lower than it would have been if the scale factor also 
would have been dependent of the thickness of the plate. 

 

7.3 FE model 
The CALFEM routines beam2w.m and beam2ws.m has proven to be a reasonable 
good method of predicting deflections, shear forces and moments in the SLS for 
SLTD bridges. However, the deflections are on the safe side, thus leading to higher 
deflections and internal forces. According to the results from the FE analysis, the best 
way of predicting the elastic foundation stiffness for a SLTD loaded with edge-load 
would be to estimate the effective width, Dw according to Eurocode and then calculate 
the elastic foundation stiffness according to Equation 6.4. The authors of this thesis 
thinks that this correlation is due to the fact that Eurocode takes into account the effect 
of high loads close to the edge in the span. 

For the downscaled test plates the results contained some consistency for the larger 
plates, but gave unsatisfying results for the smallest plate. 

Due to the limitation of this thesis, discussions of how well the approximation would 
be for a beam with point-load in the centre cannot be made. For a practical use of the 
elastic foundation theory, more full scale test data would be needed to analyse.  

 

7.4 Failure load 
To establish a good model of the failure load, consideration of how the stress 
distributes in the transversal direction probably needs to be taken into account. The 
distributed lengths, ldist, from Chapter 6, Section 6.3 would probably be smaller if the 
stresses are allowed to distribute in both directions.  

 

7.5 Suggestions for further research 
 Modify the elastic foundation model against more full-scale tests 

 Examine the failure load in ABAQUS 

 Use different ldist for the shear and moment utilization  
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Appendix A1 – Used deflections from SP test 
 

 

Figure A.1  Measured deflections from different load series around 200 kN.  

 

Figure A.2  Measured deflections from different load series around 300 kN.  

Table A.1 Measured deflections used for analysis of elastic foundation stiffness. 

Measure point [m] ‐ Deflection [mm]    

Load [kN]  0,143  0,523  1,477  2,518  4,689 

98,6362  13,453  11,4645  6,602 3,102 ‐1,394

198,3392  27,232  23,068  12,96467 5,677333 ‐3,71067

298,3852  42,01133  35,25733  19,116 7,574 ‐7,27533

 

 

 

25,5

26

26,5

27

27,5

28

28,5

29

194 195 196 197 198 199 200 201

D
ef
le
ct
io
n
 [m

m
]

Load [kN]

39,5

40

40,5

41

41,5

42

42,5

43

43,5

44

44,5

294 295 296 297 298 299 300 301

D
ef
le
ct
io
n
 [m

m
]

Load [kN]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 43

Appendix A2 – Parameters from the SP test 

Dimensions and parameters of the bridge

Dimensions

lspan 10m Length of bridge

wbridge 5035mm Width of bridge

wglulam 95mm Width of glulam beam

hglulam 495mm Height of glulam beam

x 0 0.01m lspan 

y 0 0.01m wbridge 

Crossectional units

Ixbeam

wglulam hglulam
3



12
9.602 10

4
 m

4


Iybeam

hglulam wglulam
3



12
3.537 10

5
 m

4


Wxbeam

wglulam hglulam
2



6
3.88 10

3
 m

3


Wybeam

wglulam
2

hglulam

6
7.446 10

4
 m

3


Modification factors

Size effect

kh min
600mm

hglulam









0.1

1.1








1.019

Load duration and service class

kmod 0.9

System effect

ksys 1.1

Deformation coefficent

kdef 2.0

Partial coefficent for material properties

Mglulam 1.3  
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Defining units in Mathcad 

Nmm N mm

kNm kNm

Stregth and stiffness properties, combined glulam 

 spruce 380
kg

m
3

g 3.727
kN

m
3



Characteristic values

Bending strength

fmgk 28
N

mm
2

28MPa

Tension strength

ft0gk 16.5
N

mm
2

16.5MPa

ft90gk 0.4
N

mm
2

0.4MPa

Compression stregth

fc0gk 24
N

mm
2

24MPa

fc90gk 2.7
N

mm
2

2.7MPa

Shear stregth

fvgk 2.7
N

mm
2

2.7MPa

Modulus of elasticity

E0mean 12.0
kN

mm
2

12GPa

Shear modulus

Ggmean 0.72
kN

mm
2

0.72GPa

Dimensioning values

Bending strength

fmgdb

kh kmod ksys fmgk

Mglulam

21.737MPa

fvgdb

kmod ksys fvgk

Mglulam

2.056MPa
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Appendix B1 – Ritter 

Ritters Design guide

Reference:Z:\Skolan\Exjobb\Till Storegate\MathCad\Dimensioner och parametrar på bron.xmcd(R)

Loads acting on the deck

Ptest
100

200









kN Loads for comparison with SP test

According to Ritter Design guide, the following points have been calculated.

1) Input data from Appendix A2

bdeck wbridge bdeck 5.035m Width of deck

lspan 10m Lenght of span

hglulam 0.495m Height of deck

E0mean 1.2 10
4

 MPa

2) Timber class GL28c 

fmgdb 21.737MPa

E0mean 12 GPa

3) CB - Coefficient for butt joints

CB 1.0 No butt joints

4) Stifness properties 

E0 E0mean

E90 0.013 E0 156 MPa

G0 0.03 E0 360 MPa According to Ritter

5) Maximal pointload moment 

M0

Ptest lspan

4

250

500









kNm
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6) Effective width Dw


2 G0

E0 CB E90
0.526

Parameter for the Decks torsional stiffness


bdeck

2 lspan

E0 CB

E90









0.25

 0.746 Relation between the deck stiffness in longitudinal
and transversal direction

From diagram according to Ritter (1990),
and modified by Dahl (2002).Dw 1800mm

7) Deck section modulus and effective deck moment inertia

I CB

Dw hglulam
3

12
 0.018m

4


S CB

Dw hglulam
2



6
 0.074 m

3

8) Design moment

qd  spruce Dw hglulam

My M0 qd

lspan
2

4


116.35

366.35









kNm

9) Bending strenght check

y fmgdb Cls

Cls 1.3

y

My

S

1.583

4.984









MPa

fmgdb Cls 28.258MPa

10) Deflection w from uniform load and point load

wtot wlim

Iw

Dw hglulam
3

12

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wbend_pointload

Ptest lspan
3

48 E0mean 1.33 Iw
 Increase I for deflection

calculations

wbend_uniform

5 qd lspan
4

384 E0mean 1.33 Iw


shear_amplification_point 1 1.2
E0mean

G0









hglulam

lspan









2












1.098

shear_amplification_uniform 1 0.96
E0mean

G0









hglulam

lspan









2












1.078

wtotfin wbend_pointload shear_amplification_point

wbend_uniform shear_amplification_uniform


9.484

17.362









mm

wlim

lspan

360
27.778mm

wbend_pointload
7.175

14.35









mm
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Appendix B2 – Eurocode 5 
 

Eurocode 

Reference:Z:\Skolan\Exjobb\Till Storegate\MathCad\Dimensioner och parametrar på bron.xmcd(R)

Input data from Appendix A2

bdeck wbridge bdeck 5.035m Width of deck

lspan 10m Lenght of span

hglulam 0.495m Height of deck

E0mean 12 GPa

Loads acting on the deck

Ptest
100

200









kN Loads to compare with SP test

Effective width

bw 0.6m Width of wheel

 15deg Dispersion angle, according to Table 3.1

a 0.3m

bw_middle bw hglulam sin ( ) 0.728m

bef bw_middle a

bef 1.028m

Deck strenght

blam wglulam

n
bef

blam
10.822

ksys 1.1

fm_d_lam fmgdb

fv_d_lam fvgdb
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fm_d_deck ksys fm_d_lam 23.911MPa

fv_d_deck ksys fv_d_lam 2.262MPa

Action effects 

qd  spruce bef hglulam 1.896
kN

m


I bef

hglulam
3

12


RA

Ptest

2
qd

lspan

2


Mmax RA

lspan

2
 qd

lspan
2

4


250

500









kNm Design moment

wbend

Ptest lspan
3



48 E0mean I

16.707

33.414









mm Deflection due to applied loads
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Appendix B3 – Crews 

Crews 

Reference:Z:\Skolan\Exjobb\Till Storegate\MathCad\Dimensioner och parametrar p å bron.xmcd

Defining units in Mathcad

kNm kN m

Input data from Appendix A2

bdeck wbridge bdeck 5.035m Width of deck

lspan 10m Lenght of span

hglulam 0.495m Height of deck

E0mean 12 GPa

Loads acting on the deck

Ptest
100

200









kN Loads to compare with SP test

Distribution width

Dw1

E0

10000









0.50
lspan

25
 0.45







CB for a single lane bridge

Dw2

E0

18000









0.40
lspan

30
 0.45







CB for a two lane bridge

Where:

E0 E0mean 12 GPa

CB_hardwood

n 1

n






0.75
1.0

where n is number of buttjoints

CB_australian.pine

n 1

n






0.85
1.0
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Since we have glulam and therefore there is no effect of butt joints, CB=1.0

CB 1.0

Dw1

E0

10000MPa









0.50
lspan

25 m
 0.45







CB

Dw2

E0

18000MPa









0.40
lspan

30 m
 0.45







CB

Dw

Dw1

Dw2







m
1.945

1.634









m

Dw Dw1 m Since we have a single line bridge

Dw 1.945m Calculated distrubution width accordi
to Crews

Second moment of inertia, I, and deflection, w.

I
CB Dw hglulam

3


12
0.02 m

4


w
Ptest lspan

3


48 E0 I


w
8.829

17.659









mm
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Appendix B4 – West Virginia University method 

West Virginia University method

Reference:Z:\Skolan\Exjobb\Till Storegate\MathCad\Dimensioner och parametrar på bron.xmcd

Reference:Z:\Skolan\Exjobb\Till Storegate\MathCad\Gammalt\Crews.xmcd

Defining units in Mathcad

kNm kN m

Nmm N mm

Nm N m

Loads acting on the deck

Ptest
100

200









kN Loads to compare with SP test

Input data from Appendix A2

bdeck wbridge bdeck 5.035m Width of deck

lspan 10m Lenght of span

hglulam 0.495m Height of deck

E0mean 12 GPa

Distribution width

Dw bf 2 t  CB

bf 600mm wheel width

CB 1 No effects of butt joints

Dw bf 2 hglulam  CB

Dw 1.59m calculated distribution width according 
to W.V.U method

Second moment of inertia, I, and deflection, w.

I
Dw hglulam

3


12
0.016m

4

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w
Ptest lspan

3


48 E0 1.15 I


w
9.394

18.788









mm

Where I is increased with 15% because of deflection calculations
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Appendix C1 – Convergence for number of elements 

 

Figure C.1 Convergence, mean shear force versus number of elements. 

 

Figure C.2 Convergence, mean moment versus number of elements. 
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Appendix C2 – Behaviour of beam on elastic 
foundation 

 

Figure C.3 Influence-lines for moment in beam on elastic foundation, Figure from 
BYGG1 p.648 

k
48 Ex Ix

ldeck
3


x

l0 2l0

4
Ey Iy

k

lspan

l0 2

M P l0  2

 

 

CASE 1, 1000 N. 

 

P 1000 h 0.495
Ex 12 10

9


lspan 5 w 1 ldeck 10
Ey 0.02 Ex

Iy
w h

3

12


Ix
h

3

12
 k

48 Ex Ix

ldeck
3


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Figure C.4 Top right. Influence-lines for moment in beam on elastic foundation 
with values for the calculations to the left.           
Bottom. Y-axis: Moment distribution from CALFEM, X-axis: width of 
plate. 

 

 

 

 

  

l0

4
Ey Iy

k
0.803

x 0.5


x

l0 2
0.44 lspan

l0 2
4.401

 0.275

Mx P l0  2 312.46

x 1


x

l0 2
0.88 lspan

l0 2
4.401

 0.32

Mx P l0  2 363.59
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CASE 2, 1300 N. 

Ex 11.88710
9

 P 1300 h 0.033

Ey 0.173 Ex lspan 1.8 w 1 ldeck 2
Iy

w h
3

12


Ix
h

3

12
 k

48 Ex Ix

ldeck
3



l0

4
Ey Iy

k
0.412

x 0.5


x

l0 2
0.858 lspan

l0 2
3.089

 0.32

Mx P l0  2 242.428

x 1


x

l0 2
1.716 lspan

l0 2
3.089

 0.177

Mx P l0  2 134.093

 

Figure C.5 Top right. Influence-lines for moment in beam on elastic foundation 
with values for the calculations to the left.           
Bottom. Y-axis: Moment distribution from CALFEM, X-axis: width of 
plate. 
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CASE 3, 480 N. 

Ex 11.88710
9

 P 480 h 0.033

Ey 0.173 Ex lspan 0.3 w 1 ldeck 2
Iy

w h
3

12


Ix
h

3

12
 k

48 Ex Ix

ldeck
3



l0

4
Ey Iy

k
0.412

x 0.1


x

l0 2
0.172 lspan

l0 2
0.515

 0.075

Mx P l0  2 20.979

x 0.2


x

l0 2
0.343 lspan

l0 2
0.515

 0.035

Mx P l0  2 9.79

 

Figure C.6 Top right. Influence-lines for moment in beam on elastic foundation 
with values for the calculations to the left.           
Bottom. Y-axis: Moment distribution from CALFEM, X-axis: width of 
plate. 
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Appendix D1 – Convergence for creep   
 

Table D.1 Convergence for creep with loading and unloading. 

Loading Unloading

[min] 
Time 
[sec] def [mm] 

Time 
[sec] def [mm]

  10 14,486 1210 0,696 
  20 14,546 1220 0,676 
  30 14,59 1230 0,666 
  40 14,621 1240 0,652 
  50 14,647 1250 0,648 
1 60 14,667 1260 0,642 
  80 14,7 1280 0,632 
  100 14,725 1300 0,623 
2 120 14,747 1320 0,616 
  150 14,775 1350 0,608 
3 180 14,797 1380 0,601 
4 240 14,834 1440 0,589 
5 300 14,864 1500 0,58 
6 360 14,888 1560 0,572 
7 420 14,91 1620 0,567 
8 480 14,928 1680 0,561 
9 540 14,945 1740 0,557 
10 600 14,961 1800 0,553 
11 660 14,976 1860 0,55 
12 720 14,989 1920 0,546 
13 780 15 1980 0,544 
14 840 15,012 2040 0,542 
15 900 15,022 2100 0,539 
16 960 15,032 2160 0,537 
17 1020 15,042 2220 0,535 
18 1080 15,051 2280 0,533 
19 1140 15,061 2340 0,531 
20 1200 15,068 2400 0,53 
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Appendix D2 – Computations for modulus of 
elasticity 
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ytot E y1_midspan E y2_midspan E ytot1 1.005mm

Ex

y1_midspan_E y2_midspan_E

ytot1
11.887GPa

l 1.8m h 0.033m
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 Caclulated E, according to STEP1 
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Appendix D3 – Procedure for testing of LVL 
 

Dimensions of tested plates L x B = 2 x (0.3, 0.6, 0.9, 1.8) and 1.4 x 1.8 m2. 

Applied load, P= 0.46, 0.872, 1.302, 1.744 and 1.310 kN. 

Procedure: 
1. Place first plate on supports 
2. Load with P at Lc1 as can be seen in Figure D1 
3. Deformations are measured after five minutes 
4. Unload, remaining deformations are noted five minutes after unloading 
5. Remove transducers at position 9, 10, 11 and change the boundary conditions 

so that the plate is no longer free for uplift, for boundary conditions see 
Picture D1 and D2 

6. Change from LC1 to LC2 and redo the same procedure as for LC1  
7. Redo step 1-7 for the next plate 

 

Figure D.1 Load placement and measure points for the simply supported plates. 
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Picture D.1 Support conditions when simply supported. 

 

 

Picture D.2 Support conditions when fixed. 
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Appendix D4 – Expected plate deflections 

Expected plate deflection according to different hand-calculation
methods 

Reference:Z:\Skolan\Exjobb\Till Storegate\MOE from experiment.xmcd

ORIGIN 1

Dimensions and indata for the test

E0 Ex 11.887GPa
From Appendix D2, according to our test

E90 Ey 2.051 GPa

G0 600
N

mm
2

 From manufactures, Table 2.7 Kerto Teknisk
handbok from Moelven

Dimensions of plates

lspan 2m Length of span

bdeck

1800

900

600

300











mm Width of plates

t 33mm Thickness of plates

Loads

P

2.5 45 44.4 43.9 42( )kg

2.5 44.4 43.9 42( )kg

2.5 42 44.4( )kg

2.5 44.4( )kg











g

1.744

1.302

0.872

0.46











kN

Parameters that will be used in calculations

CB 1.0 No effects from butt joints

lbridge 15m Length of bridge that our scale tests are based on.


lbridge

lspan
7.5 Factor that the calculated effective width should be

scaled with 
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Expected deflections according to the different hand calculation methods

Ritter 

britter  bdeck

13.5

6.75

4.5

2.25











m Width of sclaed bridge

Effective width


2 G0

E0 CB E90
0.243


britter

2 lbridge

E0 CB

E90









0.25



0.698

0.349

0.233

0.116













a - Parameter for the Decks torsional stiffness

? - Relation between the deck stiffness in longitudinal and transversal direction

Dw_ritter 1800mm From diagram according to Ritter (1990),
and modified by Dahl (2002).

Dw

Dw_ritter


0.24m Scaled width with respect to scale factor

Second moment of inertia, I, and deflection, w.

Iw

Dw t
3



12
7.187 10

7
 m

4


wRitter

P
4

lspan
3



48 E0 1.33 Iw
6.746 mm For the load P=0.46 kN

Where I is increased due to deflection calculations.

Eurocode 5

Effective width

bw 0.6m Width of wheel

 45deg Dispursion angle according to EN 1995-2:2004 (E),
Table 5.2  
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a 0.5m For cross laminated timber according to EN
1995-2:2004 (E), Table 5.3

bw_middle bw  t sin ( ) 0.775m

Dw_EC5 bw_middle a

Dw_EC5 1.275m

Dw

Dw_EC5


0.17m Scaled width with respect to scale factor

Second moment of inertia, I, and deflection, w.

I
Dw t

3


12
5.091 10

7
 m

4


wEC5

P
4

lspan
3



48 E0 I
12.667mm For the load P=0.46 kN

Crews 

Distribution width

Dw

E0

10000









0.50
L

25
 0.45







CB for a single lane bridge

Dw_crews

E0

10000MPa









0.50
lbridge

25 m
 0.45







CB 1 m

Dw_crews 2.14m

Dw

Dw_crews


0.285m Scaled width with respect to scale factor

Second moment of inertia, I, and deflection, w.

I
CB Dw t

3


12
8.546 10

7
 m

4

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wCrews

P
4

lspan
3



48 E0 I
7.546 mm For the load P=0.46 kN

West Virginia University

Distribution width

Dw bf 2 t  CB

bf

bw


0.08 m Scaled wheel width with respect to scale factor

Dw_W.V.U bf 2 t  CB

Dw_W.V.U 0.146m calculated distribution width according to W.V.U meth

Dw Dw_W.V.U 0.146m

Second moment of inertia, I, and deflection, w.

I
Dw t

3

12
4.372 10

7
 m

4


wW.V.U

P
4

lspan
3



48 E0 1.15 I
12.825mm For the load P=0.46 kN
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Appendix D5 – Results from plate behaviour test 
This section gives results from our tests performed on LVL plates with different 
dimensions and applied loads. All plates have the same thickness, 33mm. 

 

Figure D.2 Deflections for simply supported plate with dimensions L x B = 2 x 1.8 
m2. Applied load P=1.303 kN in the middle of the plate. 

 

Figure D.3 Deflections for fixed plate with dimensions L x B = 2 x 1.8 m2. Applied 
load P=1.303 kN in the middle of the plate. 
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Table D.2  Measured deflections for the plate with dimensions L x B = 2 x 1.8                                     
  m2. Applied load P=1.303 kN in the centre of the plate (measure               
  point 3). Simply supported and fixed respectively. 

LC1, 
simply mm Measure point Deflection

Midspan 0 1 -1,43 

  450 2 -3,37 

  900 3 -5,33 

  1350 4 -3,36 

  1800 5 -1,38 

Quarter span 0 6 -1,1 

  900 7 -3,34 

  1800 8 -0,83 

Support span 0 9 -0,04 

  900 10 -0,09 

  1800 11 0,21 

LC1, fixed mm Measure point Deflection

Midspan 0 1 -1,4 

  450 2 -3,28 

  900 3 -5,14 

  1350 4 -3,24 

  1800 5 -1,37 

Quarter span 0 6 -1,07 

  900 7 -3,24 

  1800 8 -0,89 

Support span 0 9 -0,09 

  900 10 -0,1 

  1800 11 0,02 
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Figure D.5 Deflections for simply supported plate with dimensions L x B = 2 x 1.8 
m2. Applied load P=1.303 kN at the edge of the plate. 

 

Figure D.6 Deflections for fixed plate with dimensions L x B = 2 x 1.8 m2. Applied 
load P=1.303 kN at the edge of the plate.  
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Table D.3  Measured deflections for the plate with dimensions L x B = 2 x 1.8   
  m2. Applied load P=1.303 kN at the edge of the plate (measure point   
  1). Simply supported and fixed respectively. 

LC2, simply mm Measure point Deflection

Midspan 0 1 -15,31 

  450 2 -6,14 

  900 3 -1,27 

  1350 4 0,82 

  1800 5 2,07 

Quarter span 0 6 -9,98 

  900 7 -0,78 

  1800 8 2,66 

Support span 0 9 -0,6 

  900 10 -0,02 

  1800 11 2,42 

LC2, fixed mm Measure point Deflection

Midspan 0 1 -14,864 

  450 2 -5,99 

  900 3 -1,424 

  1350 4 0,28 

  1800 5 1,006 

Quarter span 0 6 -9,11 

  900 7 -0,86 

  1800 8 0,74 

Support span 0 9 -0,39 

  900 10 -0,06 

  1800 11 0,06 
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Figure D.8 Deflections for simply supported plate with dimensions L x B = 2 x 0.9 
m2. Applied load P=1.303 kN in the middle of the plate. 

 

Figure D.9 Deflections for fixed plate with dimensions L x B = 2 x 0.9 m2. Applied 
load P=1.303 kN in the middle of the plate. 

 

Figure D.10 Deflections in the mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 0.9 m2. Applied load P=1.303 kN in the middle 
of the plate. 
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Table D.4  Measured deflections for the plate with dimensions L x B = 2 x 0.9    
  m2. Applied load P=1.303 kN in the centre of the plate (measure    
  point 3). Simply supported and fixed respectively. 

LC1, simply mm Measure point Deflection

Midspan 0 1 -6,28 

  225 2 -6,73 

  450 3 -7,31 

  675 4 -6,69 

  900 5 -6,06 

Quarter span 0 6 -4,36 

  450 7 -4,78 

  900 8 -4,44 

Support span 0 9 0 

  450 10 -0,22 

  900 11 -0,32 

LC1, fixed mm Measure point Deflection

Midspan 0 1 -6,08 

  225 2 -6,52 

  450 3 -7,08 

  675 4 -6,38 

  900 5 -5,83 

Quarter span 0 6 -4,26 

  450 7 -4,61 

  900 8 -4,24 

Support span 0 9 -0,14 

  450 10 -0,22 

  900 11 -0,17 
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Figure D.11 Deflections for simply supported plate with dimensions L x B = 2 x 0.9 
m2. Applied load P=1.303 kN at the edge of the plate. 

 

Figure D.12 Deflections for fixed plate with dimensions L x B = 2 x 0.9 m2. Applied 
load P=1.303 kN at the edge of the plate. 

 

Figure D.13 Deflections in mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 0.9 m2. Applied load P=1.303 kN at the edge of 
the plate. 
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Table D.5  Measured deflections for the plate with dimensions L x B = 2 x 0.9  
  m2. Applied load P=1.303 kN at the edge of the plate (measure point   
  1). Simply supported and fixed respectively. 

LC2, simply mm Measure point Deflection

Midspan 0 1 -16,9 

  225 2 -10,92 

  450 3 -5,42 

  675 4 -1,12 

  900 5 2,8 

Quarter span 0 6 -11,29 

  450 7 -4 

  900 8 2,71 

Support span 0 9 -0,47 

  450 10 -0,08 

  900 11 2,92 

LC2, fixed mm Measure point Deflection

Midspan 0 1 -15,837 

  225 2 -9,63 

  450 3 -5,945 

  675 4 -2,41 

  900 5 0,752 

Quarter span 0 6 -10,4 

  450 7 -3,33 

  900 8 0,51 

Support span 0 9 -0,39 

  450 10 -0,22 

  900 11 0,04 
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Figure D.14 Deflections for simply supported plate with dimensions L x B = 2 x 0.6 
m2. Applied load P=0.872 kN in the middle of the plate. 

 

Figure D.15 Deflections for fixed plate with dimensions L x B = 2 x 0.6 m2. Applied 
load P=0.872 kN in the middle of the plate. 

 

Figure D.16 Deflections in the mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 0.6 m2. Applied load P=0.872 kN in the middle 
of the plate. 
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Table D.6  Measured deflections for the plate with dimensions L x B = 2 x 0.6   
  m2. Applied load P=0.872 kN in the centre of the plate (measure     
  point 3). Simply supported and fixed respectively. 

LC1, simply mm Measure point Deflection

Midspan 0 1 -6,79 

  150 2 -6,83 

  300 3 -6,94 

  450 4 -6,52 

  600 5 -6,38 

Quarter span 0 6 -4,8 

  300 7 -4,64 

  600 8 -4,6 

Support span 0 9 -0,18 

  300 10 -0,27 

  600 11 -0,29 

LC1, fixed mm Measure point Deflection

Midspan 0 1 -6,66 

  150 2 -6,69 

  300 3 -6,8 

  450 4 -6,37 

  600 5 -6,25 

Quarter span 0 6 -4,66 

  300 7 -5,49 

  600 8 -4,43 

Support span 0 9 -0,2 

  300 10 -0,28 

  600 11 -0,27 
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Figure D.17 Deflections for simply supported plate with dimensions L x B = 2 x 0.6 
m2. Applied load P=0.872 kN at the edge of the plate. 

 

Figure D.18 Deflections for fixed plate with dimensions L x B = 2 x 0.6 m2. Applied 
load P=0.872 kN at the edge of the plate. 

 

Figure D.19 Deflections in mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 0.6 m2. Applied load P=0.872 kN at the edge of 
the plate. 
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Table D.7  Measured deflections for the plate with dimensions L x B = 2 x 0.6   
  m2. Applied load P=0.872 kN at the edge of the plate (measure point                              
  1). Simply supported and fixed respectively. 

LC2, simply mm Measure point Deflection

Midspan 0 1 -12,52 

  150 2 -7,44 

  300 3 -6,73 

  450 4 -3,73 

  600 5 -1,38 

Quarter span 0 6 -7,4 

  300 7 -4,6 

  600 8 -1 

Support span 0 9 -0,34 

  300 10 -0,27 

  600 11 0,69 

LC2, fixed mm Measure point Deflection

Midspan 0 1 -11,945 

  150 2 -9,17 

  300 3 -6,728 

  450 4 -4,06 

  600 5 -1,99 

Quarter span 0 6 -7,92 

  300 7 -3,63 

  600 8 -1,55 

Support span 0 9 -0,28 

  300 10 0 

  600 11 0,04 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 81

 

Figure D.20 Deflections for simply supported plate with dimensions L x B = 2 x 0.3 
m2. Applied load P=0.460 kN in the middle of the plate. 

 

Figure D.21 Deflections for fixed plate with dimensions L x B = 2 x 0.3 m2. Applied 
load P=0.460 kN in the middle of the plate. 

 

Figure D.22 Deflections in the mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 0.3 m2. Applied load P=0.460 kN in the middle 
of the plate. 
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Table D.8  Measured deflections for the plate with dimensions L x B = 2 x 0.3  
  m2. Applied load P=0.460 kN in the centre of the plate (measure     
  point 3). Simply supported and fixed respectively. 

LC1, simply mm Measure point Deflection

Midspan 0 1 -6,55 

  75 2 -6,57 

  150 3 -6,84 

  225 4 -6,66 

  300 5 -6,57 

Quarter span 0 6 -4,52 

  150 7 -4,5 

  300 8 -4,48 

Support span 0 9 -0,03 

  150 10 -0,08 

  300 11 -0,12 

LC1, fixed mm Measure point Deflection

Midspan 0 1 -6,48 

  75 2 -6,48 

  150 3 -6,57 

  225 4 -6,52 

  300 5 -6,45 

Quarter span 0 6 -4,54 

  150 7 -4,36 

  300 8 -4,31 

Support span 0 9 -0,09 

  150 10 0,08 

  300 11 -0,13 
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Figure D.23 Deflections for simply supported plate with dimensions L x B = 2 x 0.3 
m2. Applied load P=0.460 kN at the edge of the plate. 

 

Figure D.24 Deflections for fixed plate with dimensions L x B = 2 x 0.3 m2. Applied 
load P=0.460 kN at the edge of the plate. 

 

Figure D.25 Deflections in mid span for simply supported and fixed plate, with 
dimensions L x B = 2 x 0.3 m2. Applied load P=0.460 kN at the edge of 
the plate. 
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Table D.9  Measured deflections for the plate with dimensions L x B = 2 x 0.3  
  m2. Applied load P=0.460 kN at the edge of the plate (measure point  
  1). Simply supported and fixed respectively. 

LC2, simply mm Measure point Deflection

Midspan 0 1 -8,65 

  75 2 -7,76 

  150 3 -6,4 

  225 4 -5,74 

  300 5 -5,06 

Quarter span 0 6 -5,41 

  150 7 -4,41 

  300 8 -3,45 

Support span 0 9 -0,05 

  150 10 -0,22 

  300 11 0,14 

LC2, fixed mm Measure point Deflection

Midspan 0 1 -8,028 

  75 2 -7,12 

  150 3 -6,335 

  225 4 -5,68 

  300 5 -5,027 

Quarter span 0 6 -5,23 

  150 7 -4,34 

  300 8 -3,42 

Support span 0 9 -0,07 

  150 10 -0,08 

  300 11 -0,08 
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Figure D.26 Deflections for simply supported plate with dimensions L x B = 1.4 x 1.8 
m2. Applied load P=1.310 kN in the middle of the plate. 

 

Figure D.27 Deflections for fixed plate with dimensions L x B = 1.4 x 1.8 m2. Applied 
load P=1.310 kN in the middle of the plate. 

 

Figure D.28 Deflections in the mid span for simply supported and fixed plate, with 
dimensions L x B = 1.4 x 1.8 m2. Applied load P=1.310 kN in the middle 
of the plate. 

‐3

‐2,5

‐2

‐1,5

‐1

‐0,5

0

0,5

0 500 1000 1500 2000

D
e
fl
e
ct
io
n
 [
m
m
]

Width of plate [mm]

Centre load, simply supported B=1800

Mispan

Quarterspan

Supportspan

‐3

‐2,5

‐2

‐1,5

‐1

‐0,5

0

0,5

0 500 1000 1500 2000

D
e
fl
e
ct
io
n
 [
m
m
]

Width of plate [mm]

Centre load, fixed. B=1800

Mispan

Quarterspan

‐3

‐2,5

‐2

‐1,5

‐1

‐0,5

0

0,5

0 500 1000 1500 2000

D
e
fl
e
ct
io
n
 [
m
m
]

Width of plate [mm]

Midspan, centre load

Simply

Fixed



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:93 86

Table D.10  Measured deflections for the plate with dimensions L x B = 1.4 x 1.8 
  m2. Applied load P=1.310 kN in the centre of the plate (measure    
  point 3). Simply supported and fixed respectively. 

LC1, simply mm Measure point Deflection

Midspan 0 1 -0,059 

  450 2 -1,14 

  900 3 -2,686 

  1350 4 -1,19 

  1800 5 0,035 

Quarter span 0 6 -0,04 

  900 7 -1,73 

  1800 8 -0,08 

Support span 0 9 0,01 

  900 10 -0,13 

  1800 11 0 

LC1, fixed mm Measure point Deflection

Midspan 0 1 0,008 

  450 2 -1,06 

  900 3 -2,474 

  1350 4 -0,38 

  1800 5 0,022 

Quarter span 0 6 -0,01 

  900 7 -1,56 

  1800 8 0,03 
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Figure D.29 Deflections for simply supported plate with dimensions L x B = 1.4 x 1.8 
m2. Applied load P=1.310 kN at the edge of the plate. 

 

Figure D.30 Deflections for fixed plate with dimensions L x B = 1.4 x 1.8 m2. Applied 
load P=1.310 kN at the edge of the plate. 

 

Figure D.31 Deflections in mid span for simply supported and fixed plate, with 
dimensions L x B = 1.4 x 1.8 m2. Applied load P=1.310 kN at the edge 
of the plate. 
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Table D.11 Measured deflections for the plate with dimensions L x B = 1.4 x 1.8 
  m2. Applied load P=1.310 kN at the edge of the plate (measure point 
  1). Simply supported and fixed respectively. 

LC2, simply mm Measure point Deflection

Midspan 0 1 -7,611 

  450 2 -1,85 

  900 3 0,064 

  1350 4 0,51 

  1800 5 0,719 

Quarter span 0 6 -4,96 

  900 7 0,08 

  1800 8 0,89 

Support span 0 9 -0,45 

  900 10 0 

  1800 11 1,04 

LC2, fixed mm Measure point Deflection

Midspan 0 1 -7,012 

  450 2 -1,75 

  900 3 -0,096 

  1350 4 0,13 

  1800 5 0,119 

Quarter span 0 6 -4,5 

  900 7 -0,04 

  1800 8 0,1 
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Appendix E1 – Results from parameter study 
In Table E.1-E.3 results from the parameter are presented where the relations between 
x and y varies for the different tables. 

 

Table E.1   Values from parameter study 

ldist [m] x [-] y [-] Χje (500 kN) Χje (600 kN)

10 1.99 0.1 0.96 1.02

9 2.24 0.112 0.94 1.02 

8 2.56 0.128 0.93 1.02 

7 2.94 0.147 0.93 1.03 

6 3.74 0.187 0.91 1.05 

5 5.8 0.29 0.84 1.06 
 

Table E.2   Values from parameter study 

ldist [m] x [-] y [-] Χje (500 kN) Χje (600 kN)

10 1.2 0.24 0.93 1.03

9 1.33 0.26 0.92 1.03 

8 1.52 0.30 0.9 1.03 

7 1.75 0.35 0.9 1.04 

6 2.20 0.44 0.87 1.05 

5 3.20 0.64 0.8 1.08 

 

Table E.3   Values from parameter study 

ldist [m] x [-] y [-] Χje (500 kN) Χje (600 kN)

10 0.7 0.35 0.92 1.02

9 0.89 0.445 0.91 1.02 

8 1.00 0.5 0.9 1.03 

7 1.16 0.58 0.89 1.04 

6 1.43 0.715 0.86 1.05 

5 2.05 1.025 0.79 1.06 
 


