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1 Abstract

In this thesis, fast collision detection algorithms on the Graphics
Processing Unit (GPU) and CPU are implemented and performance
is evaluated. Many collision detection algorithms are surveyed and
discussed and choices of algorithms chosen are motivated.

In this thesis, fast large scale pruning of tens of thousands of po-
tential collisions are made in interactive frame rates. Also exact
collision detection algorithms are implemented to find intersection
and distance between pair of objects.

Keywords: collision detection, broad-phase, narrow-phase, mid-
phase, algorithms, GPU, geometric algorithms

2 Sammanfattning

I detta examensarbete implementeras snabba
kollisionsdetekterings-algoritmer för både grafik processor
enheten (GPU) och CPU, för att sedan evaluera prestandan. Många
kollisionsdetekterings-algoritmer undersöktes och diskuterades
och val av algoritmer är motiverade.

I detta examensarbete utförs storskalig gallring av tio-tusentals po-
tentiella kollisioner i interaktiva bildfrekvenser. Dessutom im-
plementeras exakt kollisionsdetektering för att hitta skärning och
avstånd mellan par av objekt.

3 Introduction

The purpose of collision detection is to detect collisions between
objects in a virtual environment. The field is well-used in areas
such as games where objects interact with each other and collisions
between 3D objects have to be detected in order to make a realistic
and convincing simulation.

Because collision detection algorithms are run during the whole
simulation and other parts such as: physical response and render-
ing, which also requires much computational time, collision detec-
tion algorithms have to be fast. Because new graphics hardware
have enabled the programmer to write programs that can be run on
the graphics hardware’s multi-core processors, collision detection
algorithms can be parallelized to achieve more speed-up.

Collision detection systems can be divided into three major phases:
Broad-phase collision detection, mid-phase collision detection, and
narrow-phase collision detection. Each phase’s purpose is briefly
explained in upcoming subsections without going into details about
what algorithms are used.

3.1 Broad-phase Collision Detection

The main purpose of this phase is to do a coarse level prune of
objects that cannot collide in the virtual environment. Objects in
the virtual environment are enclosed with bounding volumes which
simplifies intersection testing. Then the bounding volumes of the
objects are tested against each other to see whether they intersect
or not. If the bounding volumes do not intersect, one can know for
sure that a collision did not occur. If the bounding volumes intersect
each other, a finer level of collision detection is needed. The end-
result of this phase is a set of potentially colliding objects in the
virtual environment.

3.2 Mid-phase Collision Detection

In this phase a set of potential colliding objects are received and a
finer level of intersection tests are made. Depending on the com-

plexity of the objects, there might be a hierarchy of bounding vol-
umes which need to be tested for intersection. If the objects in the
virtual environment are simple objects (like convex objects with
low tessellation), a hierarchy of bounding volumes is not needed
and this phase can be omitted. If instead the objects are complex
(like non-convex and/or highly tessellated), a hierarchy of bound-
ing volumes is needed. If the latter case holds, each potentially col-
liding pair is tested for intersection against their respective bound-
ing volume hierarchy. As result, pairs of potentially colliding pairs
(which are bounding volumes intersecting each other) are produced.

3.3 Narrow-phase Collision Detection

When potentially colliding objects reach this level, exact collision
detection is done on the geometry of each pair. As an end-result
the system reports that a collision has occurred, or a collision has
not occurred between the pair of objects. If there is a collision and
the collision detection system is part of a physics engine system,
narrow-phase also has to report the colliding pairs together with the
contact points. This will then be used in the collision response part
to calculate contact forces (small impulses) to determine physically
correct movement of the objects. The collision response part is
not within the scope of this report. For further detail see: [Mirtich
1996] and [Eberly 2003].

4 Scope

Because collision detection is a large research field, it is infeasible
to cover all major parts within this field. Also due to a tight time
frame, choices have to be made on what parts are to be excluded.
Parts that are not within the scope of this thesis are: Mid-phase col-
lision detection, continuous collision detection, and collision detec-
tion of deformable objects.

5 Previous Work

5.1 Broad-phase Collision Detection

5.1.1 Spatial Data Structures

Octrees In an octree (in 3D) or quadtree (in 2D) (explained in
[Akenine-Möller et al. 2008], [Ericson 2005], and [van den Bergen
2004]), space is recursively subdivided forming hierarchy of AABB
boxes. The union of this hierarchy forms a large AABB enclosing
the environment. An octree is created by first forming a minimum
AABB (the root of the hierarchy) enclosing the environment. The
AABB of the root is further subdivided in the xy-, yz-, and xz-plane
giving 8 AABB children. This is repeated until some stopping cri-
teria are reached. An example of stopping criteria can be that a cer-
tain depth of the tree is reached or the current AABB have less than
a certain amount of primitives. Notice that the union of children
forms their parent node. An octree is different from a hierarchical
grid (see next section) in the sense that a hierarchical grid do not
need to have an AABB which encloses the whole environment. In
other words an octree has a root node.

If the scene to be subdivided is a static scene, top-down octree cre-
ation is most straight forward [Ericson 2005]. If this is the case, all
primitives are divided into eight children cells and this is then re-
peated until a stopping criterion is met. If a primitive straddles into
several cells, it can be divided or duplicated into the cells it inter-
sects. In the case when objects are straddling cells and inserted to
intersecting cells, an array of primitives are maintained and refer-
enced from a node to avoid duplicating objects and consume more
memory [Ericson 2005]. If instead primitives are to be divided,
they have to reference their original primitives in the same array.



In the case when the scene is dynamic, inserting objects to cells it
intersects will lead to complicated updating of the octree as the ob-
jects are moving to other cells or starting to straddle other cells. A
solution to this is to insert objects into cells that can fully contain
the object. By doing this, the update is simplified, but the disadvan-
tage is that objects straddling cells can be added to a cell that is too
large, and lead to less good collision culling. A solution to this is to
use a loose octree instead.

Another variation of the octree (which consider the fact that objects
straddling between AABBs will be in a level where the AABBs
is large enough for these objects), are the loose octree by Ulrich
in [DeLoura 2000]. The loose octree relaxes the condition that the
cells do not overlap each other. In loose octrees a cell is some factor
larger than the minimum AABB of a normal octree. By extending
the extents of a cell, objects can now be inserted to a deeper level
and therefore lead to better collision culling. The disadvantage is
that some more cells have to be checked if an object overlaps the
common loose regions. Another advantage is that insertion depth
can be calculated when the cell is extended with a factor of 2, lead-
ing to fast insertions and deletions.

Hierarchical Grids Before a description of the ideas of hierar-
chical grids are made; let us discuss the non-hierarchical grids (uni-
form grids) and its advantages and disadvantages. Uniform grids
are a subdivision method to divide space into a grid with cells. All
cells are equally large. By dividing an environment into a grid and
categorizing objects into cells using their world space coordinates,
collision detection is only performed on objects that are located in
the same cell.

Often (but not necessarily needed), objects are enclosed in bound-
ing volumes (BVs), such as bounding spheres or axis-aligned
bounding boxes. The reason is that intersection testing will be sim-
plified. If a pair of BVs are in the same cell and their BV inter-
sects each other, the underlying objects are passed to narrow-phase
collision detection algorithms (see section 5.2) to do more exact
collision detection.

There are several ways to determine which cells an object should
belong to. If a sphere is used as BV, the center of the sphere deter-
mines which cell the object should belong to. If an AABB is used
as BV, one of the end-points can be used. By just using one point to
determine which cell an object should belong to does not consume
as much memory as to add the object to a cell whenever it inter-
sects another cell. If the radius or extents are not saved (due to little
memory), neighbouring cells’ objects also have to be checked. This
method is preferred when there is little memory. Another method
is to store an object in cells that its BV intersects. This consumes
more memory compared to the first method mentioned, but there is
no need to check neighbouring cells.

The problem of uniform grids is to choose an appropriate grid size,
if there are objects of varying sizes. A finer grid (smaller cells) will
give good collision culling for smaller objects but larger objects will
straddle many cells and updates will take more time. If the grid is
very coarse, many small objects can be in the same cell leading to
more BV tests.

There are several ways to represent grids. [Ericson 2005] has a
good presentation of methods. One way is to represent the grid as
an array of lists. Objects mapping to the same array position is in-
serted to a list. Insertion of an object into a list can be made O(1)
if objects are added to the head of the list. Deletion is O(n) (n is
the total amount of objects) if object do not have a reference to the
list, and O(1) if such reference exists to the list (double-linked list
to be more precise). The disadvantage of this method is that if the
grid has very high resolution (many cells), much memory is needed

to represent the grid. Another better way is to use a hash table.
By using a hash function to map an object to an array position, the
constraint of having a finitely large world is relaxed. The problem
is that collisions of array elements can occur, meaning objects be-
longing to different cells are mapped to the same array position.
This is solved by using separate chaining [Drake 2005]. The hash
table will then store a map inside each array position, where the
key is the cell position and value is a double-linked list. Another
method exist called open addressing [Drake 2005]. Also insertion
of an object will be slightly more complicated. First an array po-
sition is computed by using the hash function and this takes O(1).
Then the map must be accessed to search for a matching key. This
search takes O(l) if a linear search of keys are performed to find
a matching cell position, or O(log l) (using binary search) if the
map is sorted, where l is number of keys. Then the object is deleted
from the double-linked list in O(n) or O(1) as mentioned before.
The advantage of using hash tables are that there is no fixed amount
of cells in an environment because a cell will be hashed to an array
position. Another advantage is that this method uses less memory.
A disadvantage might be the choice of a bad hash function, leading
to many collisions.

When objects are moving in the environment, they can go from one
cell to another or start to straddle between cells, updates are then
needed. In the case when a point from a BV is used to determine
a cell to insert into, and this point has moved to another cell, a
removal in the corresponding double-linked list has to be made.
This will take O(1) if the object has a reference to the list element.
This list element must then be unlinked from the list. The point
is then inserted to a new cell and the list element is linked to an
existing or new list. In the case of using the whole BV to determine
the cells intersected, there is a possibility that this BV straddles
another cell during update. If this is the case, a new list element
must be created and inserted to the correct cell’s list. This method
of updating is useful when the objects are static, leading to small
amounts of list updates, removals and insertions. In the case when
many objects are moving it is better to clear all cells and rehash all
objects. This is a better choice because if many objects are moving,
the number of list operations will be increased.

As mentioned before, uniform grids have problems handling an en-
vironment with objects of varying sizes. For that purpose, hier-
archical grids are a better choice. A hierarchical grid consists of
several levels of grids with different resolution. Going from a level
iwith cell size c, to a level i+1 will double the cell size to 2c. So the
lowest level has the smallest cell size and the next level’s cell size is
twice as large, and so on. In [Ericson 2005], objects are inserted to
a level where the cell size is large enough to contain the BV of the
object, and into a cell where the point of a BV is contained within.
Therefore insertion starts in the lowest level and continues up until
a level with large enough cell size is found. The lowest level’s cell
size is as large as the smallest objects of the environment. Because
the object is only inserted to a cell that contains the BV’s point,
neighbouring cells must be checked for intersection with this BV,
because the BV can straddle into other cells. In 3D the maximum
number of cells to be checked against are eight. See figure 1 for
a clarification on how the grid is traversed when finding potential
intersections.

Brian Mirtich In [Mirtich 1997], described two different methods to
hash objects, which were used in the dynamics simulator impulse
[Mirtich 1996]. The first method presented, inserts a BV to cells
that intersects the object and into a level where the BV can be con-
tained in a cell. See figure 2. Comparing figure 2 to figure 1 one
can see that fewer cells are checked, but more time must be spent
to determine intersection of a BV to cells, to insert the object to
correct cells.



Figure 1: One-dimensional hierarchical grid with BV center points
inserted to a level where BV fits the cell size. The red cells are the
cells needed to be checked to find intersections to C.

Figure 2: One-dimensional hierarchical grid with a BV is inserted
to a level where the BV intersects a cell and is large enough to be
contained in it. The red cells are the cells needed to be checked to
find intersections to C.

In the second method, an object’s BV is inserted to a level k where
cells can contain the BV plus to all higher levels where a cell at
level k + 1 encloses a cell directly above it at level k. Two objects,
A and B are close to each other if they share a common cell and
the maximum of the lowest level of A and B are shared by both
A and B. A reference to the lowest cell level can be stored for an
object to speed up lookup. See figure 3 for an explanation. This
method reduces the number of cells checked to find close pairs, but
consumes more memory because a pair data-structure must be used
to track a counter for pairs of objects. Also work has to be done
to update the hash table when objects are moving because now, not
only one level needs to be updated for an object, but also the levels
above it. The pair tracking data-structure also needs to be updated,
decrementing the object pair counter when a BV moves to another
cell. Mirtich showed that this method spends fewer cycles than
the previous method (around 6-7 times less). The scenes for the
performed test are from [Mirtich 1996].

In [Le Grand 2007], uniform grids are parallelized and bounding
spheres are the used bounding volume. The grids/cells are set to be
larger than the largest bounding volume. Because of this constraint
an object can intersect a maximum of eight cells in 3D. Another
consequence of this is that the maximum amount of array elements
needed to store cell intersections are calculated as 8*N in 3D, where
N is the number of objects. This array is referred as cell-id in the
article and it stores an id telling which cells a specific object in-
tersects. Each object is then processed in parallel to determine the

Figure 3: One-dimensional hierarchical grid with BVs inserted to
all cells large enough to contain this BV and to higher levels. The
red cells are the cells needed to be checked to find intersections to
C.

cells they intersects and writes that to the corresponding array po-
sition along with an object id. If an object intersects less than eight
cells, invalid array elements are marked as 0xFFFFFFFF (all bits of
a 32 bit word set to one).

Each object also has some control bits used in the end of the al-
gorithm to process objects in cells not neighbouring each other to
ensure no redundant tests. The newly created cell-id array is then
sorted and same cell-ids are grouped together. After this, the sorted
cell-id array needs to be inspected to look for cell-id transitions, so
one can know where to start collision tests.

The algorithm requires setting some hard constraints on the proper-
ties of the objects such that they intersect a maximum of eight cells
in 3D. The algorithm is very useful and fast when dealing with sim-
ulations where the scene consists of objects with uniform size. An
extension to the method would be to support objects that can in-
tersect an arbitrary amount of cells by having a pre-pass function
to count the number of cells each object intersects and then per-
forming a prefix sum [Blelloch 1990] to determine starting offsets
for each object to write the cells it is intersecting [Kalojanov and
Slusallek 2009]. Another remark is that one thread processes ob-
jects belonging to same collision cell and thus work load distribu-
tion can be very uneven for scenes where many objects belong to
the same cell, whereas other cells contain only a few objects.

Binary Space Partitioning Tree A BSP-tree, first introduced in
[Fuchs et al. 1980], is a more general tree compared to previous
mentioned trees, because partitioning planes can be arbitrarily de-
fined. Kd-trees are a special case of BSP-trees, in which partition-
ing planes are axis aligned planes. As the name says, a BSP-tree
partitions space into two halves: a positive and negative half-space
(the BSP-tree is a binary tree).

There are several ways to choose a partitioning plane. One way is
to have a predefined set of planes to choose from. Another way is to
choose a plane aligned to the coordinate axis (kd-tree), or picking
planes from faces of an object, also called a polygon aligned BSP-
tree or auto-partitioning [Ericson 2005]. Planes can also be picked
arbitrarily (called general or arbitrary BSP-tree). Another method
to pick good partitioning planes is presented in [Naylor 1993].

In [Fuchs et al. 1983] the BSP-tree is used to cull away polygons
of an object which are not visible to the viewer, and the described
BSP-tree is a node-storing BSP-tree [Ericson 2005], where parti-
tioning planes are planes coinciding with a polygon of an object. In
a node-storing BSP-tree, every internal node stores a polygon (im-
plicitly defines a plane by polygons normal and translation). The
tree is created by randomly picking a polygon as an internal node
and then test each polygon of the object against this newly picked
polygon, and assign polygons to a left and a right sub-tree depend-
ing on if a polygon is on the positive half-space of the plane or in the
negative half-space of the plane. Polygons coinciding with the di-
viding plane are on the same node and polygons straddling a plane
are divided. This process is repeated for newly created sub-trees
until some stopping criteria, like tree depth or a certain amount of
primitives left.

Another variant of the BSP-tree and more useful for collision de-
tection is the leaf-storing BSP-tree [Ericson 2005]. This type of
BSP-tree stores polygons in the leaves of the tree and internal nodes
are arbitrary planes or polygons from objects. If a polygon aligned
variant is chosen, polygons should be marked so they are not chosen
again when picking a plane as an internal node. Collision queries
are done by traversing the BSP tree with a query to determine which
half-space the query belongs to and do this down to leaf level and
then test the polygons in the leaf. If the query straddles internal
node, both sub-trees must be traversed.



Yet another useful BSP-tree variant described in [Ericson 2005],
is the solid-leaf BSP-tree. A half-space of a dividing plane tells
whether it is part of the object or outside of the objects. By in-
tersecting all half-spaces which are part of the objects, the original
object will be formed. Only the leaf nodes store the information of
whether the half-space is outside of the object or inside. Choosing
a partition plan can be arbitrary or polygon aligned, but it is im-
portant that all polygons of an object are chosen as a partitioning
plane.

A collision query of a point on a BSP-tree is very simple. The
point is tested against the root node first to determine the half-space
to continue on. This is repeated recursively until a leaf node is
reached. Now the point is inside the object if the leaf node rep-
resents the inside of an object, and outside if the node represents
outside of object. If a point is on the plane, both sub-trees are tra-
versed recursively and if leaf nodes are different, the point is on the
boundary. Otherwise it is inside or outside the object.

Continuous collision detection of a point on a BSP-tree can also
be done between frames. If it turns out that in frame n the point
is outside an object, but in frame n + 1, it is inside the object, a
bounded line have been formed from frame n to n + 1. Now time
of impact can be determined by finding a point on this bounded line,
which intersects the boundary of a partitioning plane.

Collision detection of a bounding volume P on a BSP-tree can also
be done. The process which is described in [Melax 2000], is sim-
ilar to the point-BSP-tree query. By forming the Minkowski sum
(addition) (see section 5.2.3) of P and the BSP-tree, P will be re-
duced to a point p and the previous method can be used to detect a
collision. Because the Minkowski sum is an addition of all points
from P with all points on all partitioning planes of the BSP-tree,
the BSP-tree planes have to be shifted in the normal direction of the
planes with a width of the bounding volume (for example: The ra-
dius if the bounding volume is a sphere). Mentally the Minkowski
sum can be seen as sweeping P on planes of the BSP-tree. Just
shifting the planes of the BSP-tree is not enough because this will
include too much space (can be seen mentally that the sweep of P is
not the same as shifting the planes in the normal direction), so bevel
planes have to be added. In [Melax 2000], bevel planes are added
to neighbouring planes if the outer angle is greater than 90 degrees.
This reduces the error but does not completely remove it.

In [Luque et al. 2005], a semi adjusting BSP-tree is proposed to
handle dynamic objects in a scene. Partitioning planes are chosen
from a predefined set of planes and each of them are evaluated with
a goodness criteria and the best one is picked as partitioning plane.
The goodness criteria depend on 3 factors (taken from [Luque et al.
2005], where p is a partitioning plane):

• population(p): Number of objects tested against partitioner p.

• balance(p): number of objects in the positive half-space and
negative half-space. The ratio of the smaller one over the
larger one.

• redundancy(p): number of objects straddling partitioner p.

These criteria can easily be determined by maintaining a sorted list
of objects for a partitioner p. Also a set of operators on these
BSP-trees are proposed, which are applied in a certain order dur-
ing update of the tree. The proposed operators are: split, shift-split,
merge, balance, and swap. The split operator determines a plane
to split objects into two half-spaces. Given a candidate normal the
split is orthogonal to the normal and this plane is located where the
redundancy is the lowest and the balance the best. The split is ap-
plied when a population of a node becomes larger than a threshold.
The shift-split operator is the same as split operator, but a parti-
tioning plane is just shifted along its parent node’s normal with a

constant and a plane that satisfies the goodness criteria is chosen.
The merge operator removes a partitioner and merges the list of a
leaf node with an internal node. This is done when objects leaves
one half-space, in which a half-space becomes empty or falls be-
low a threshold. The balance operator shifts a partitioning plane
along a direction which satisfies the goodness criteria (especially
balance criteria). The swap operator removes a partitioner that is
unbalanced and uses one of its sub-trees (the one with highest pop-
ulation) as new root and inserts objects from the other half space
which belonged to the removed partitioner.

These operators are scheduled by a scheduler, which calculates the
number of operators that should be applied, and the rest is deferred
to next update of the tree. Update of the BSP-tree is not done every
time an object changes position but it is done in some regular inter-
val and the scheduler schedules and defers operators to be applied
in this update and other operators to be applied later on.

5.1.2 Sweep and Prune

Sweep and Prune or Sweep and sort [Lin 1993] and [Witkin et al.
2001], is anO(nlog2n+k) algorithm in worst case and anO(n+k)
algorithm when frame to frame coherency is exploited [Lin 1993],
where n is the number of objects and k is the number of pairs over-
lapping. Different kinds of bounding volumes can be used, but the
most used ones are bounding spheres and AABBs. Spheres are suit-
able because one can easily find extreme points along a sweeping
axis. The same applies for AABBs when any of x-,y-, or z-axis is
the sweeping axis. Variable size AABB can also be used but a fixed
size AABB is preferred. A method to create variable size AABBs
is proposed in [Lin 1993], by using the Lin-Canny Algorithm 5.2.1
to search for six vertices on a convex polyhedron (the convex hull
must be used if polyhedron is non-convex), which gives the short-
est distance to six boundary walls (set to maximum and minimum
values in each axis). Because polyhedron is convex, frame to frame
coherency can be exploited by using the max (or min) vertex from
previous frame (for the interested axis), as a starting vertex for the
distance calculation. The same method can be applied to other algo-
rithms such as the GJK algorithm 5.2.3, the V-Clip algorithm 5.2.1
or any other shortest distance algorithm. Another way to find max
(or min) vertex is to use hill climbing 5.2.3 on the max (or min)
vertex for an axis from a previous frame to start a search for a new
max (or min) vertex in current frame. This method also exploits the
frame to frame coherency.

In [Akenine-Möller et al. 2008], it is said that a fixed size AABB
used for the sweep and prune algorithm gives better performance
than a variable size AABB, so focus will be on this kind of AABBs
when describing the idea of the algorithm. The reason for this,
is that the amount of swapping needed during the sort of AABBs
(due to objects can rotate and a Non-fixed size AABB have to be
recomputed) are reduced.

By using a bounding volume that is aligned in the x-, y-, and z-
axis it is sufficient to detect interval overlaps in these three axes to
deduce a bounding volume overlap. To deduce that no overlap had
occurred it suffices to find that intervals of two bounding volumes
do not overlap in one of the axis. By solving the one dimensional
interval overlap problem for all three axes one can find overlapping
pairs of AABBs.

The idea of the sweep and prune algorithm is the following: Con-
sider an AABB to be bounded in the interval [bi, ei] for one of the
three axes, where bi and ei are the endpoints of an interval be-
longing to the i:th AABB and 0 ≤ i < n. Given n objects and
2n endpoints, these endpoints are sorted in ascending order. The
sorted list (or array) is then traversed (swept) and collision pairs are
found. When a bi endpoint is received while traversing the list, the



corresponding AABB is inserted to an active collision list. If ei is
received, the i:th AABB is removed from the list of active colli-
sions. Let us say that a bi is received and the i:th AABB is in the
active collision list. Now a bj is received, where i 6= j, then the j:th
AABB is added the active collision list. As long as a beginning end-
point is received when traversing the swept list, the corresponding
AABB overlaps all AABBs in the active collision list.

In an environment where small movements exist for objects, frame
to frame coherency can be exploited. Because of this, changes of
intervals are small so the swept list is almost sorted. By using in-
sertion sort to a nearly sorted list, the expected sorting time can be
reduced to O(n).

By keeping track of a bookmarking flag for interval pairs in each
frame, the frame to frame coherency is exploited. Whenever in-
sertion sort swaps place of two endpoints the corresponding flag is
toggled.

Implementation details are discussed in [Ericson 2005] and
[van den Bergen 2004]. The sweep and prune algorithm can be in-
tegrated with uniform grids to speed up the algorithm [Tracy et al.
2009]. The authors analyzed the algorithm and came to the con-
clusion that the swapping behaviour of the algorithm is the factor
affecting the performance the most. By using uniform grids to di-
vide space into cells and apply the sweep and prune algorithm in
these cells, the clustering behaviour can be reduced. The authors
also suggest a new data structure to maintain collisions: The Seg-
mented Interval List. This list is a hybrid of the array based method
and the list based method (explained in [Ericson 2005]). The struc-
ture maintains an array that contains chunks. Chunks are double
linked lists. Each chunk has an array of intervals and a set of check-
points. A checkpoint contains intervals that spans over this chunk
but this chunk do not contain any of the endpoints of an interval.
Checkpoints are references to an object’s ID, where it’s minima is
on the same chunk or one chunk to the left and the maxima is in
a chunk to the right. This proposed method and combination with
uniform grids speeds up the algorithm in a scene with many objects
and relatively small amount of them are moving. This proposed
extension of sweep and prune with uniform grids, where cells of
a grid is independent of another cell, makes the algorithm a good
candidate for parallelization.

5.1.3 Combining Spatial Subdivision with Sweep and Prune
on GPU

As mentioned in previous section combining these two algorithms
is a good candidate for parallelization. In more recent research [Liu
et al. 2010] it has been done on the GPU. The main differences
compared to [Tracy et al. 2009] is the fact that instead of launch-
ing the sweep and prune algorithm on every cell, which can give
a very uneven work load distribution between thread, sweep and
prune is deferred until the end after performing a two level spatial
subdivision along other than the best sweeping axis of sweep and
prune.

The work uses Principal Component Analysis [Jolliffe 2002] to de-
termine the best sweeping axis and the scene is then subdivide with
planes parallel to this best sweeping axis. A first level of subdi-
vision is performed and objects are mapped to cells. An object
that straddles between cells forms a new cell containing this object
along with other objects straddling this newly created cell. Each
cell is then given a unique id. The cells are then shifted along the
best sweeping axis to ensure that objects in different cells will not
be processed by parallel sweep and prune. This shifting operation
reduces the clustering behaviour mentioned earlier, plus it reduces
the swapping behaviour of an insertion sort if incremental updates
are made.

A second level subdivision is also performed for every first level
cell to further cull away objects. An object is assigned a bit-string
that indicates which cells it intersects and by bit-wise ANDing these
bit-strings between two objects, one can easily determine if two
objects share the same second level subdivision cell.

The main algorithm is the parallelized sweep and prune algorithm.
The algorithm itself is not changed very drastically. The difference
is that instead of an insertion sort, a fast radix sort (such as [Satish
et al. 2009] [Merrill and Grimshaw 2010]) is used to sort the in-
tervals. Another difference is that only the starting points of the
intervals are sorted. So if a key-value sort is used, the keys will
be all the starting points, and as value all the ending points. Then
for each sorted key, the corresponding value is picked which marks
where the ending point is. Next, keys after the current key is picked
and compared to the current value (the end-point), and an over-
lap has occurred whenever the starting point is smaller than current
ending point. See pseudo code 1 below or [Liu et al. 2010] for a
clarification.

Algorithm 1 The parallel sweep and prune algorithm. BV stands
for bounding volume.

Input: Objects: O : {O1, O2, ..., On}, Oi has a starting point si
and an ending point ei
Input: Overlapping pairs set: S. (Pre-condition: S = ∅)
Output: overlap set: S, containing pairs of BVs intersecting
radix sort with < key, value >:< si, ei >, 1 ≤ i ≤ n
do in parallel:
for each si, 1 ≤ i ≤ n,
while sj ≤ ei, i < j do

if BVi intersects BVj then
S = S ∪ {Oi, Oj}

end if
end while
end for each

The report also discusses a work load distribution heuristic to even
out the workload of threads. In some scenes, performing sweep
and prune for some objects might involve a larger amount of poten-
tially colliding objects to test against. By assigning more threads
to objects that might have more potentially colliding tests, the un-
even work load can be reduced. The amount of threads assigned
to an object is determined by its size. The larger an object is, the
more likely it will have more potentially colliding tests, because it
is more likely that objects are within the sweeping interval of this
larger object. So the larger the object is, the more thread it gets
assigned.

5.2 Narrow-phase Collision Detection

There exist many different kinds of narrow-phase collision detec-
tion algorithms. Examples are: Triangle-triangle intersection al-
gorithms, feature-based algorithms, separating axis algorithms and
simplex based algorithms.

The surveyed algorithms are very fast and can exploit the frame to
frame coherence that can exist between objects. Triangle-triangle
intersection tests can also be used, but using it without a bound-
ing volume hierarchy is very time consuming, requiring O(n2)
triangle-triangle tests, where n are the number of triangles in the
scene. Also in this thesis, mid-phase collision detection is not sur-
veyed, so tirangle-triangle intersection tests are left out in this sec-
tion.
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Figure 4: Convex polygon with a feature f and a point p, located
inside the voronoi region vr(f) of f (p ∈ vr(f)). Vertex f is the
closest feature to p.

5.2.1 Feature-based Algorithms

Here two algorithms will be presented to detect collisions: The Lin-
Canny algorithm [Lin 1993] [Cohen et al. 1994] and the V-Clip al-
gorithm [Mirtich 1998]. A similarity for these two algorithms is
that they consider the features of a convex polyhedron, which is
the vertices, edges and faces that build up the polyhedron. They
also use voronoi regions to determine whether two features are the
closest feature pair. Because these algorithms use features from
two convex polyhedra to determine the shortest distance, they are
restricted to convex polyhedral objects (objects consisting of ver-
tices, edges and faces). So both the Lin-Canny algorithm and the
V-Clip algorithm do not support implicit surfaces (surfaces that are
defined by parameters. For example x2 + y2 + z2 = 1 is a sphere
centered at the origin with radius 1), which the GJK algorithm (see
section 5.2.3) does. An advantage is that the algorithms are really
fast and by exploiting frame to frame coherency an almost constant
running time can be reached for both algorithms, according to [Lin
1993] (Lin-Canny algorithm) and [Mirtich 1998] (V-Clip).

The Lin-Canny algorithm As mentioned before the Lin-Canny
algorithm, which is included in the collision detection library I-
COLLIDE [Cohen et al. 1995] is a feature-based algorithm. The
Lin-Canny algorithm uses voronoi regions to determine closest fea-
ture pairs of two convex polyhedra. See figure 4 for a clarification.
As seen from the figure: A point p is inside a voronoi region vr(f)
of the feature f . This vertex feature f , is the closest feature for
the point p. Calculating the distance is then trivial. To find the
closest feature between two convex polyhedra, six cases have to be
considered (where V stands for a vertex, E for an edge, and F for
a face): VA − VB , VA − EB , VA − FB , EA − EB , EA − FB

and FA − FB . The notations are from [Lin 1993], and the closest
feature pair of convex polyhedron A and B are desired. Let vr(f)
denote the voronoi region for a feature f .

Case VA−VB: If VA is inside vr(VB) and VB is inside vr(VA), VA

and VB are the closest feature pair. If VA is not inside vr(VB), a
new pair of features are tested. In this cases, VA is tested with EB ,
where EB is the violated constraint from vr(VB).

Case VA−EB: Two conditions must hold here: VA must be inside
vr(EB), and if that is the case a closest point p in EB is calcu-
lated. If p is inside vr(VA) then VA−EB is the closest feature pair.
Otherwise update with a new pair of features.

Case VA−FB: This case is similar to VA−EB except now we are
dealing with a face FB . VA is tested against the voronoi regions of

FB . If VA is within the voronoi regions of the face, a closest point
on FB is determined and this point has to be inside vr(VA). If VA

violates any voronoi region constraints, the corresponding violated
constraint’s feature (an edge) is picked as next feature. One also
has to consider the case where VA can be inside B or on the other
side (not intersecting B) of B. The algorithm has to check that VA

is not inside B. If VA is inside B, a linear search (in the number of
features of B) is performed to find the closest feature f to VA, and
continues from there.

Case EA − EB: Closest point PA on EA and closest point PB on
EB are found. If PA is inside vr(EB) and PB is inside vr(EA) then
EA − EB are the closest feature pair. If this is not the case, one of
the edges will choose one of its neighbouring features (a face or an
edge).

Case EA − FB: Two cases can occur. If EA is parallel to FB then
three conditions must hold for EA − FB to be the closest feature
pair:

• EA must intersect vr(FB).

• F ′Bs face-normal must lie between E′As neighbouring faces’
normal.

• EA must lie above FB .

If EA and FB are not parallel, then one endpoint of EA will be
closer to the face. In that case, VA (which is one of E′As endpoints)
is tested against the face (the VA − FB case). Otherwise EA is
tested against the closest edge EB of FB .

Case FA − FB: If FA and FB are parallel, an overlap check is
performed using the edges of FA and FB . If they are parallel and
the projection of one face down on the other face overlaps, and both
faces are above each other relative to their normal, then FA−FB is
the closest feature pair. If they are parallel but the projection does
not overlap each other a liner search on the closest pair of edges
from FA and FB are performed and those features will continue
the algorithm. If the faces are not parallel, an edge or vertex of FA

that is contained in FB is returned as potential closest feature. If it
is an edge the EA − FB case is performed and if a vertex the case
VA−FB is performed. If those cases succeed a closest feature pair
is found. If this is not the case, the closest edges are found and the
algorithm continues.

The analysis in [Lin 1993] states that the algorithm will converge
in O(NA · NB) at most, where NA and NB is the number of fea-
tures for object A and object B respectively. Lin also states that
empirically, the algorithm’s running time is not worse than constant
time. To further increase speed, coherency is exploited: The clos-
est feature pair from the previous frame is used as initialization for
the current frame. Considering this, the algorithm converges in al-
most constant time. Because the running time is almost constant in
scenes where coherency is high, one good application of the algo-
rithm will be within the field of animation, where abrupt changes
of a polyhedron are very unlikely.

The above description of the algorithm just describes the general
idea. For more details see [Lin 1993].

In [Ponamgi et al. 1995], an extension to the original algorithm is
made, which adds the support of detecting penetrations between
polyhedra. The idea is to create so called pseudo internal voronoi
regions, which are regions internal to the polyhedron. These regions
are then used to detect whether a penetration has occurred between
two polyhedra. The pseudo internal voronoi regions are created by
first finding the weighted average of all vertices (the centroid), and
then planes are created by extending edges toward the centroid of
the polyhedron.



Collision detection between polyhedra now extends to checking
these pseudo internal voronoi regions. If a candidate feature fails
the constraint for being above a face, then the internal voronoi re-
gions of the face are checked. If these constraints hold, we now
know that the candidate feature is inside the polyhedron, meaning
a penetration has occurred. If any of the constraints for the pseudo
internal voronoi regions fails, the algorithm progresses as normal.

An alternative to the Lin-Canny algorithm is Brian Mirtich’s V-Clip
algorithm [Mirtich 1998]. It is similar in the sense that it also uses
voronoi regions to find the shortest distance. A major difference is
that the V-Clip algorithm performs clipping against voronoi regions
to obtain better robustness in degeneracy cases. Mirtich also com-
pared the V-Clip algorithm against the Lin-Canny algorithm and
Cameron’s enhanced GJK (see section 5.2.3 and [Cameron 1997]
for Cameron’s enhanced GJK), and showed that the V-Clip algo-
rithm is faster and more robust. Mirtich also claims that the Lin-
Canny algorithm cannot handle the case when polyhedron A and B
are initialized in an already intersected state. The Lin-Canny algo-
rithm will then cycle forever.

As mentioned before for the Lin-Canny algorithm, coherence can
also be exploited by V-Clip to get an almost constant running time.

5.2.2 Separating Axis Algorithms

Separating Axis Theorem The separating axis theorem (SAT)
algorithm described in [Gottschalk et al. 1996], is an algorithm to
find a separating axis for two convex polyhedra. If such an axis
exists, then the polyhedra do not intersect with each other. Possible
separating axis for polyhedron A and polyhedron B are: A face-
normal of A, a face-normal of B and the cross product of an edge
from A and B. To see whether a potential separating axis d is a
separating axis, A’s and B’s support vertex on direction d are first
found. A support vertex SV of A in a direction d is defined as:

SV (d,A) = max{d · (x− o) : x ∈ A} (1)

where o is the origin. To check whether d is a separating axis,
intervals IA = [IAmin , IAmax ] = [SV (−d,A), SV (d,A)] and
IB = [IBmin , IBmax ] = [SV (−d,B), SV (d,B)] are found. The
direction d is a separating axis if:

IAmax < IBmin or IAmin > IBmax (2)

Time complexity of the SAT algorithm is O(NA(HA + HB) +
NB(HA +HB) + EAEB(HA +HB)), where NA is the number
of face-normals for A, NB is the number of face-normals for B,
EA is the number of edges for A and EB is number of edges for
EB . HA and HB is the time it takes to find the extreme intervals
for a direction. If a linear search of vertices in A and B are done,
thenHA andHB areNA respectiveNB . One can construct a BSP-
tree to speed up the search of extreme vertices [Eberly 2003]. If
this is done then the search will be reduced to the height of A’s
respective B’s tree. In the case of a BSP-tree HA = log2(NA) and
HB = log2(NB). The given time complexity is the worst case,
where no separating axis is found and intersection is detected. As
mentioned before temporal coherency is exploited to get a speedup:
The separating axis from last frame is used for the current frame.

Separating Vector Algorithm The separating Vector (CWSV)
algorithm [Chung 1996] [Chung and Wang 1996a] by Chung and
Wang, is very similar to the SAT algorithm. The CWSV algorithm
tries to find a separating axis between polyhedron P and Q just like
the SAT algorithm, but the way to find a separating axis vector is

different. In the initial phase an arbitrary vector Si is chosen and
equation 1 is used to determine the support vertices pi ∈ P in the
direction Si and qi ∈ Q in the direction −Si. Then Si is a separat-
ing axis if:

Si · (qi − pi) > 0 (3)

If equation 3 holds, then a separating axis is found. If equation 3
does not hold then a new direction Si+1 have to be determined. Let
ri = (qi − pi)/||qi − pi|| . Then Si+1 is defined as:

Si+1 = Si − 2(ri · Si)ri (4)

In other words Si+1 is the reflected vector of Si+1, given the nor-
mal vector r⊥i . See figure 5 for clarification.

The algorithm stops when the origin O is contained in the
Minkowski sum (see section 5.2.3) M = Q+ (−P ), which means
that a collision has occurred. Let m ∈ M and the vector w is a
separating axis if:

m · w ≥ 0 (5)

is true. The vector w cannot be found if a collision has oc-
curred. This can be seen geometrically: let ri = mi/||mi|| =
(qi − pi)/||qi − pi||, where 0 ≤ i ≤ k (k can be seen as a maxi-
mum threshold of iterations). All ri will then lie on the unit sphere.
If all ri can be divided by a plane (which is passing through the
origin), such that all ris are in one side of the plane, then no in-
tersection has occurred. If i = k and a plane cannot be found then
collision has occurred.

As mentioned before, the separating axis from the previous frame
is cached and reused. Also last support vertices are cached and
used as a starting point of search, when new support vertices for
Si+1 are needed. Because of convexity a local search is suffi-
cient according to Chung and Wang. They also say that using
temporal and geometric coherency, an expected constant running
time is reached. According to them, the worst time complexity is:
O((log(n) + log(m) + k) ∗ k) where n and m is the number of
vertices for each polyhedron and k is the number of iterations per-
formed.

In [van den Bergen 1999a], Bergen claims that the proof of conver-
gence is incorrect for the CWSV algorithm in [Chung 1996] and in
[Chung and Wang 1996a]. Bergen showed that calculating a new
Si+1 may not give an axis closer to a separating axis:

Si+1 · w ≥ Si · w (6)

for a separating axis vectorw. What equation 6 says is: For the next
iteration, the new potentially separating axis vector Si+1 is a better
or an equally good vector as the previous one. In [van den Bergen
2004] he also claims that the CWSV algorithm performs better than
the ISA-GJK algorithm (see section 5.2.3) on an average, but the
ISA-GJK algorithm has a tighter worst case bound compared to the
CWSV algorithm.

The CWSV algorithm is part of the collision detection library
Q-COLLIDE (Quick Collision Detection Library) [Chung 1996]
[Chung and Wang 1996a] [Chung and Wang 1996b].
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Figure 5: Si is reflected on normal vector r⊥i to get Si+1, which is a separating axis.

5.2.3 Simplex Based Algorithms

In this section, a simplex based algorithm and its improvements
are described. The algorithm described is the GJK algorithm. The
GJK algorithm is called a simplex based algorithm because it uses
simplices inside a convex polytope to determine a shortest distance
or finding a separating axis.

The GJK algorithm The Gilbert-Johnson-Keerthi distance algo-
rithm (GJK) is a versatile algorithm that can be used to compute
the shortest distance between two convex polytopes and it can also
be modified to determine a separating axis. The GJK algorithm
can also be used for implicit surfaces like cones, cylinders and
spheres (see [van den Bergen 2004] and [van den Bergen 1999a]).
The GJK algorithm can also be combined with the EPA algorithm
(Expanding-Polytope Algorithm) to determine penetration depth
[van den Bergen 2004], which is useful by a collision response part
of a physics engine. The GJK algorithm is used in the open-source
physics engine Bullet (Bullet homepage) and in the collision detec-
tion library SOLID (Software Library for Interference Detection:
SOLID homepage).

A general description of the algorithm will now be given. For the
mathematics see [Gilbert et al. April 1988]. The algorithm deter-
mines the shortest distance between two convex objects A and B by
forming the Minkowski sum M = A+ (−B):

M = {a− b : a ∈ A, b ∈ B} (7)

Then the shortest distance is found from the origin to M. An inter-
section has occurred if the origin is contained in M. The Minkowski
sum can be seen as reflecting B to get -B and then -B’s reference
point is swept along A’s surface. See figure 6. Notice that the dis-
tance (d) in upper left figure is the same as the distance in the lower
figure.

As with the SAT algorithm, the GJK algorithm needs to find a point,
which has the property:

SC(v) ∈ C such that v · SC(v) = max{x · v : x ∈ C} (8)

given that v is a direction vector. Support mapping of the
Minkowski sum for object A and B are defined as (for convex ob-
jects):

SA−B(v) = SA(v)− SB(−v) (9)

The support point (or vertex) for a polytope is defined as:

SA(v) ∈ vert(A), v ·SA(v) = max{x ·v : x ∈ vert(A)} (10)

See figure 7 for an execution of the algorithm on an example. A re-
mark is that the simplices that can be formed in 2D are: 0-simplex
(point), 1-simplex (bounded line) and 2-simplex (triangle). In 3D,
the simplices are the same as for the 2D case, plus the 3-simplex
(tetrahedron). The main idea is to search for a shortest distance on
simplices, and because of convexity the algorithm will converge to
a point on M , which has the shortest distance to the origin. This
distance is the same as the shortest distance from A to B. See al-
gorithm 2 (taken from [Van den Bergen 1999b]) to compute the
shortest distance. In algorithm 2, conv(S) is the convex hull of the
set S and v(S) is the vector from O to the closest point on simplex
S.

The difference ||v|| − µ is a threshold to deal with floating point
imprecision. In line 9 of algorithm 2, the set (W∪{w}) will contain
at most d+1 vertices from M (triangle in 2D and tetrahedron in 3D).

In line 11 of algorithm 2, one have to find a vector v from O to
the convex hull of the union of W (vertices forming simplex) and
a new support point w. This part of the algorithm is called the
distance sub-algorithm in [Johnson 1987] and [Gilbert et al. April
1988]. This problem can be solved algebraically or geometrically.
In [Gilbert et al. April 1988], it is solved algebraically by solving
a system of linear equations. The idea is that the vector from the

http://bulletphysics.org/wordpress/
http://www.dtecta.com/


Algorithm 2 GJK

1: W ← ∅
2: v← arbitrary point in M
3: µ← 0
4: close_enough← false
5: while not close_enough and v 6= 0 do
6: w← SM (−v)
7: δ ← v · w/||v||
8: µ← max(µ, δ)
9: close_enough← ||v|| − µ ≤ ε

10: if not close_enough then
11: v← v(conv(W ∪ {w}))
12: W ← smallest X ⊆ (W ∪ {w}) such that v ∈ conv(X)

13: end if
14: end while
15: return ||v||

origin to p is perpendicular to the affine hull of X . This defines a
system of linear equations, which is solved to obtain p. This p can
then be expressed with barycentric coordinates of the simplices. If
these coordinates do not sum up to one, p will not be on the con-
vex hull of simplices. Trying to solve the problem geometrically
requires the use of voronoi regions (see section 5.2.1 and [Ericson
2005]) to find a feature on the simplex that gives the shortest dis-
tance.

In [Gilbert et al. April 1988], searching for a support point for a
given direction is a linear search of vertices from A and B giving a
linear complexity. In sections 5.2.3 and 5.2.3 this can be improved.
This improvement together with improvements from 5.2.3 and 5.2.3
will give an empirically almost constant running time.

Enhanced the GJK algorithm Further improvements of the GJK
algorithm can be made. In [Cameron 1997] [Van den Bergen
1999b], improvements are presented.

Hill climbing can used for convex polyhedron to speed up support
point searching: The support point from the last iteration, together
with its neighbouring vertices are tested against a new direction to
look for a new support point. If no neighbouring vertices are better
than this vertex a support point is found. If conversely, some neigh-
bouring vertices gives a better result compared to this vertex, the
neighbouring vertex that gives the best result (among other neigh-
bours) is chosen as the best support point for this iteration. In the
worst case, the algorithm has to search through all vertices, but this
is very unlikely in practice.

Another improvement is to reduce the number of valid subsets of
W when looking for X . Because one knows that the new subset
X will contain w, the number of subsets to search for are reduced
[Van den Bergen 1999b].

ISA-GJK Bergen in [Van den Bergen 1999b] presented yet an-
other improvement of the GJK algorithm: The Incremental Sepa-
rating Axis-GJK (ISA-GJK) algorithm. The algorithm is modified
to look for a separating axis instead of calculating the shortest dis-
tance. See algorithm 3, which is a restatement from the report.

The test on line 5 for algorithm 3 is a separating axis if it holds
(which means that the origin is not contained in M).

As with the SAT algorithm, the Lin-Canny algorithm, the V-Clip
algorithm and the Chung-Wang Separating vector algorithm, tem-
poral coherency can be exploited to get an almost constant running

Algorithm 3 ISA-GJK

1: v← arbitrary vector
2: W ← ∅
3: repeat
4: w← SM (−v)
5: if v · w > 0 then
6: return false
7: end if
8: v← v(conv(W ∪ {w}))
9: W ← smallest X ⊆ (W ∪ {w}) such that v ∈ conv(X)

10: until v = 0
11: return true

time [Van den Bergen 1999b]. As with the SAT algorithm, the sep-
arating axis from previous frame can be used for the current frame
as an initialization of the vector v. This version is faster because
the length of v is no longer needed, removing a square-root calcu-
lation. Bergen performed experiments on the performance of the
ISA-GJK algorithm, compared to the Lin-Canny algorithm and the
ISA-GJK algorithm was roughly five times faster. Also the ISA-
GJK algorithm detected a collision which the Lin-Canny algorithm
missed.

5.3 Non-convex Collision Detection

Algorithms presented above considered objects to be convex. In a
simulation, objects can also be non-convex. An object O is non-
convex if there exist a point p on a bounded line a(1 − t) + tb,
where a, b ∈ O and t ∈ {0, 1}, such that p ∩O = ∅.

A method to make a collision detection system that support non-
convex objects, are to decompose the objects into convex parts and
run algorithms suggested in 5.2 to do a more exact collision detec-
tion of the convex parts. Below are some algorithms that do this.

Convex decomposition of non-convex objects One method to
make collision detection support non-convex objects is to decom-
pose the object into convex parts. By doing that, collision detection
will be between convex parts, and algorithms presented in 5.2 will
still work.

Another approach is to use bounding volume hierarchies to enclose
primitives of the polyhedron down to primitive level. Each leaf
node will consist of a primitive (in this case a triangle), which is
convex.

A method used in [Quinlan 1994] uses a hierarchy of bounding
spheres to decompose a non-convex polyhedron into convex parts.
The method uses the divide and conquer paradigm to build the hier-
archy. The algorithm starts by enclosing every triangle into bound-
ing spheres. These spheres will be the leaves of the bounding sphere
hierarchy. After doing this, two sets of spheres are created. The
sets are created by using the local coordinate system of the poly-
hedron and find the mean of the longest axis and then divide the
spheres into two parts, using the centers of the spheres. The algo-
rithm recursively divides spheres into two smaller sets containing
spheres, until one sphere is left. Then the algorithm creates a par-
ent node (bounding sphere that encloses the two sets) and do this
recursively. The root node will be a sphere containing all leaves of
the tree and an internal node is a sphere that entirely encloses its
children. The same can be applied to other bounding volumes to
create hierarchies.

Another approach is presented in [Ponamgi et al. 1995]. Here a
polyhedron can be divided into: Hull features, concavity features
and boundary features. A feature is part of a hull feature set if the
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Figure 6: Upper left: A and B are separated from each other. Upper right: -B is swept on A. Lower: The Minkowski sum A-B is formed and
the shortest distance is d (same as upper left figure).

Figure 8: Red part is the ’cap’ of the concave polygon. Blue parts
are the features belonging to the concavity and black parts together
with the red part are the features on the convex hull. The green
vertices belong to the boundary feature set.

feature also exists in the features of the convex hull of the polyhe-
dron. A feature is part of a concavity feature set if it is not part of
the convex hull. Vertices and edges that are in the border of hull
features and concavity features is part of the boundary feature set.
To distinguish which parts of the convex hull that belongs to the
polyhedron, and which parts that are only part of the convex hull
and not part of the polyhedron, so called "caps" are created.

The idea is similar to the previous approach but the main difference
is that the convex hull of an object is determined and then ’caps’
are created to distinguish where the polyhedron is concave. The
cap can be seen as an area on the convex hull where the convex hull
is not part of the polyhedron. See figure 8.

To detect collisions on the concavity feature sets, a hierarchy of axis
aligned bounding boxes are created. Now if a penetration of the
convex hull is detected, then a collision has occurred, but if instead,
an intersection of a cap is detected, further checking has to be made.
In this case the AABB hierarchy is traversed, and at each level of
the hierarchy, a hierarchical sweep and prune (see section 5.1.2 for
sweep and prune) is used to detect which AABBs are intersecting.
As an end result pairs of potentially colliding primitives are tested

for exact collision detection by using for example the extended Lin-
Canny algorithm (see section 5.2.1)

6 Results and Discussion

The algorithms were implemented on an AMD X2 5600+ CPU, 4
GB memory, with Windows 7 64-bit, Visual Studio 2008, and on
an NVIDIA GeForce GTX 470 GPU using CUDA.

6.1 Broad-phase Collision Detection

The chosen algorithm is a spatial subdivision with sweep and prune
to cull away objects.

6.1.1 Implementation Details

The spatial subdivision part is similar to [Le Grand 2007]. The main
difference is that in this thesis, support for arbitrary sized objects is
added similar to [Kalojanov and Slusallek 2009] by performing a
pre-pass to count the number of cells an AABB (chosen as bound-
ing volume) intersects and then perform a prefix sum to determine
the offset for threads to start writing AABB cell intersections. Also,
the best sweeping axis is chosen along x-,y-, or z-axis by calculat-
ing the variance of the AABB centers and pick the axis with highest
variance as best sweeping axis. This calculation can be neglected if
one has prior knowledge of the scene, such that the objects are uni-
formly distributed in the scene and moves randomly. If this is the
case it is better to randomly pick one of the three coordinate axes
as best sweeping axis.

In this thesis, only one level of subdivision is performed. This is
simple enough and works well. The parallel sweep and prune algo-
rithm from [Liu et al. 2010] is called on the best sweeping axis, so
subdivision will be performed only on the other two axes, leading
to a 2D spatial subdivision. Each AABB is then processed to deter-
mine which cells it intersects and writes that to an array, which will
be sorted. After performing the radix sort, objects intersecting the
same cells will be grouped together and one has to perform paral-
lel sweep and prune on them. Before the parallel sweep and prune
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algorithm is invoked, one has to invalidate cells that only contain
one AABB. After this, all objects are shifted along the best sweep-
ing axis. The amount shifted is determined by the size of the scene
along the best sweeping axis multiplied with the cell id to ensure
complete separation between cells.

In this thesis, an upper bound on maximum number of collision
pairs that a specific AABB can have is determined. This upper
bound is derived from the number of AABBs there are in a cell.
By knowing this, the number of maximum potential collisions in
that cell is determined by a geometric sum. This worst case upper
bound guarantees the generality of the algorithm, but does not work
so well in practice because this worst case upper bound is never to
be reached. With the limited amount of memory on the graphics
hardware and for larger scenes, there is not enough memory to al-
locate for such an array. Instead one can set a more empirical value
on the number of maximum collisions that one AABB can have.

After the shifting, parallel sweep and prune is performed and ob-
jects that are shown to intersect along best sweeping axis are further
tested for intersection in the other two axes (looking for a separat-
ing axis). If intersection has occurred, the AABB pairs are written
to a collision pair array. This array is then used by the ISA-GJK
algorithm to perform more exact collision detection.

Spatial subdivision and the parallel sweep and prune were imple-
mented using the Thrust library [Hoberock and Bell 2010]. In an
earlier implementation, an own prefix sum and radix sort algorithm
were implemented (based on [Sengupta et al. 2008] and [Satish
et al. 2009] along with the fast broad-phase algorithm, but profil-
ing showed that the radix sort was the bottleneck of the application,
so a change to the Thrust library was made due to the fact that
Thrust has Duane Merrill’s fast radix sort algorithm [Merrill and
Grimshaw 2010]. Thrust is a good library to implement algorithms
fast, but makes it hard to know which kernel calls actually invoke
the code that oneself has written.

6.2 Narrow-phase Collision Detection

The chosen algorithms were GJK and ISA-GJK. The Lin-Canny al-
gorithm is not chosen because Mirtich in [Mirtich 1998] showed
that it was slower than the V-Clip algorithm. Also in [Van den
Bergen 1999b] Bergen showed that the ISA-GJK algorithm was five
times faster than the Lin-Canny algorithm. So the V-Clip algorithm
is a better alternative than the Lin-Canny algorithm. The Chung-
Wang Separation Vector algorithm is also a good candidate and very
fast. It was shown in [van den Bergen 2004] that the Chung-Wang
Separating Vector algorithm was faster than the ISA-GJK algorithm
on average, but the ISA-GJK algorithm has a tighter worst case
bound. So the ISA-GJK algorithm is preferred when considering
this. The SAT algorithm is not chosen because it performs poorly
for highly tessellated objects, because of the increased amount of
potentially separating axes. In worst case all these axes have to
be checked. Also the GJK algorithm and the ISA-GJK algorithm
have support for general convex objects. Considering this the GJK
algorithm and the ISA-GJK algorithm are a better choice than the
V-Clip algorithm (which only works on polyhedra).

6.2.1 Implementation Details

There are several ways to implement the ISA-GJK and GJK al-
gorithms. Instead of doing as in [Van den Bergen 1999b], one can
start by sampling four different directions to get four support points,
forming a tetrahedron. This is done before entering the loop. It
should not be a big performance difference by choosing one or the
other.

Hill climbing is used to speed up the search for a support point. In

Figure 9: Example where a support point search given a direction
d can fail. For example when starting from C and picking D as
the next best vertex, D can pick C again and this can be repeated,
and one can get an infinite loop. In this case a constraint can be
added, saying that one cannot visit a vertex that has already been
visited. In the 2D case this will work out, but in 3D this can lead to
closing into a vertex, making it impossible to pick a neighbouring
vertex because they were chosen already in some previous iteration.
In this case the algorithm fails. If an artificial neighbour is added,
which is not coplanar to any neighbour, this problem can be solved
and finding a support point can also be speeded up.

[Van den Bergen 1999b], hill climbing integrated into the Dobkin-
Kirkpatrick hierarchy [Dobkin and Kirkpatrick 1990], obtain an ex-
pected worst case support point search of O(log(n)). In [Ericson
2005], hill climbing can be speeded up by adding artificial neigh-
bours. Artificial neighbours also remove the possibility of getting
an infinite loop when looking for a support point (see figure 9 for an
explanation). Using hill climbing with artificial neighbours might
be slower for highly tessellated convex polyhedron, but more time-
saving to implement.

Another important remark considers the simplex solver in the GJK
algorithm. Bergen uses Johnson’s distance algorithm which sets up
a system of linear equations and solves it by using Cramer’s rule,
getting a point on the simplex giving the shortest distance to the
origin. Bergen claims that this is the most robust way of solving the
shortest distance problem from the origin to a point on a simplex
set. In [Ericson 2005], a voronoi simplex solver is used instead. By
looking at the voronoi regions of the simplex set one can determine
which feature will give the shortest distance to the origin. This
method has the advantage that one will see the problem in a geo-
metric way, simplifying coding and debugging. Bergen’s method
might be faster but is harder to understand.

Another remark is on the implementation details of the voronoi
simplex solver, mentioned in [Ericson 2005]. Ericson checks all
voronoi regions, but this is actually not needed. In [Van den Bergen
1999b], theorem 2 states that the newly added support point for this
iteration, will be in simplex setX . Therefore this newly added sup-
port point must be needed for the shortest distance calculation in the
next iteration of the algorithm. This reduces the number of voronoi
regions tests needed to look for. In the case of a tetrahedron, [Eric-
son 2005] will result in fourteen voronoi region checks (4 vertices,
4 faces, and 6 edges) but using theorem 2 from [Van den Bergen
1999b], this will be reduced to seven region checks (1 vertex, 3
faces, and 3 edges), half of the regions.

In this thesis, the better voronoi simplex solver (using theorem 2
from [Van den Bergen 1999b]) is implemented.

The GJK algorithm and the ISA-GJK algorithm can also be imple-
mented on the GPU. Because the GJK algorithm relies heavily on
support point search in every iteration and maintaining a neighbour-
ing map to perform hill climbing on, it is hard to make an efficient
implementation for the GPU. Also the ISA-GJK algorithm and the
GJK algorithm are inherently serial algorithms, so parallelizing it



is not a trivial task. There are methods to do this. The biggest con-
cern is whether the convex objects fits the GPU’s on-chip shared
memory. If it does, support mapping can be implemented by per-
forming a dot product on all vertices with a direction and then store
it on shared memory and then perform an on-chip max-prefix sum
calculation to find a support vertex. If the convex object does not fit
in shared memory, one have perform a prefix sum after writing the
result of the dot product into the slower device memory.

Another method to port the GJK algorithm to the GPU is to create
a cube map of a convex object and then sample from it [Sathe and
Lake 2006]. The method uses the texture memory of the GPU to
sample for a support vertex. The cube map is created by having
six textures, one for each face of the cube. This cube can be seen
as a virtual AABB. This method only works for rigid objects. The
virtual AABB encloses the object in such a way that the object can
have any orientation. Each face of the cube map is divided into
cells. If the texture is of resolution s x t, there will be s cells along
one axis and t cells along the other axis. These cells are mapped to
a texture. When all cells for six virtual AABBs are created, rays are
shot from the center of the object to the center of these cells, and the
hit-point on the object is calculated and stored in the six textures.

The texture memory is cached and reads with locality are fast.
When a support vertex for a given direction is desired, the given
direction is mapped to one of the cube map’s face, and a corre-
sponding texel is looked up.

An important remark of this method compared to a serial imple-
mentation, is that it is approximate. It is approximate because it
shoots rays from the center of the polyhedron to a cell, and if the
grid size has to low resolution, some faces of the polyhedron will
be missed.

The ISA-GJK algorithm is chosen as the narrow-phase collision
detection algorithm because it requires less iterations in practice
compared to the GJK algorithm [Van den Bergen 1999b] (due to
the case of early termination when a separating axis is found). The
GJK algorithm is the preferred algorithm when there is a collision
response part after narrow-phase collision detection, because the
GJK algorithm can be used to determine contact point(s).

6.3 Experiment

In this section, the whole collision detection system is benchmarked
on scenes consisting of different amount of objects. The scene con-
sists of a certain amount of convex objects and they are uniformly
distributed and are assigned a random velocity vector. The num-
ber of cells are chosen to be d N

64000
e, which is from [Liu et al.

2010] and works well for this scene. The scene consist of triangu-
lated spheres with low tessellation (80 triangles), which does not
affect the broad-phase collision detection algorithm’s performance
because in the broad-phase only AABBs are considered. Figure 10
shows the timing when cell size varies with the number of objects
versus fixed cell size.

The choice of cell size is not trivial. The broad-phase does not
perform so well with to small cell sizes. As seen from 10, a cell
size that varies with the amount of objects in the scene, gives better
performance. The fixed cell size version of the benchmark used a
cell size of three in x-,y-, and z-axis and objects are triangulated
spheres with a radius of one. The fixed cell size does not depend
on the number of objects in the scene. With this setting all AABBs
can intersect a maximum of four cells. The faster timing graph
has a cell size that varies depending on the number of objects in
the scene and as shown from the graph the varying cell size con-
figuration is faster than the fixed cell size. A reason for this, is
the increased number of objects that straddles between cells for the

smaller cell size. When objects straddle between cells, they must be
duplicated when workspace shifting is performed to ensure that col-
lisions are not missed. More clearly: An object straddling between
cells has a world space coordinate and when workspace shifting is
performed this AABB must be shifted with different values along
the best sweep axis, which will create two or more AABBs which
are actually enclosing the same object.

Next, the narrow-phase collision detection algorithm ISA-GJK is
benchmarked. In this thesis a narrow-phase collision detection al-
gorithm is called for potentially colliding pairs (which the broad-
phase collision detection algorithm finds), so it suffices to test the
performance for one pair of object. Figure 11 shows timing of the
ISA-GJK algorithm when hill climbing is enabled and disabled. It
is clearly shown in the figure that hill climbing speeds up the al-
gorithm a lot. When no hill climbing is performed a linear search
on the number of vertices is performed and as triangle count rises,
the ISA-GJK algorithm takes more time to find a support vertex.
The reason that the intersected state takes more time than the non-
intersecting state is because of more iterations of the while loop
(see algorithm 3).

Timing for the whole system can be seen in figure 13. One can see
that the parallel part scales well, but ISA-GJK does not. This is
due to the increased amount of potentially colliding pairs that the
broad-phase returns (see figure 12).

7 Conclusion

In this thesis, a two-phase collision detection pipeline is imple-
mented and benchmarked. Fast large-scale collision culling of tens
of thousands of objects are achieved by executing parallel algo-
rithms on the GPU. Also fast exact collision detection algorithms
are implemented on the CPU to find a separating axis between two
convex objects.

8 Future Work

The implemented broad-phase algorithm is a simplified version of
the one discussed in [Liu et al. 2010], so adding methods from that
report will be interesting, just to see how much of an improvement
one can get. In this thesis the Thrust library is used to enhance
productivity. Thrust is an excellent library for this purpose, but
sometimes it feels inflexible. There are no possibilities to fine-tune
the code. For example: Launch configurations cannot be changed
and support for CUDA streams and asynchronous CUDA functions
are currently not supported. So future work will remove the depen-
dency to Thrust and replace it with own written code.

For the narrow-phase, an improvement of support vertex search can
be made. Instead of simple hill climbing, one can implement a
Dobkin-Kirkpatrick hierarchy [Dobkin and Kirkpatrick 1990] inte-
grated with hill climbing to further speed up support vertex search-
ing. Another improvement would be to add artificial neighbours to
avoid termination problems when performing hill climbing.

Also implementing the GJK algorithm on the GPU can make an
improvement to the collision detection pipeline, because less data
needs to be transferred back to the CPU.

A big improvement would be to add mid-phase collision detection
to the collision detection pipeline, or more specifically adding a
parallel bounding volume hierarchy [Lauterbach et al. 2009] . By
adding such a phase, support for deformable meshes follows. It is
then unclear, whether the GJK algorithm is a good candidate for
the narrow-phase, because at the bottom level of the hierarchy will
be triangles, so a good narrow-phase algorithm candidate would be
a fast triangle-triangle intersection/distance test. This choice boils
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down to whether the GJK algorithm is faster than more specialized
triangle-triangle algorithms when primitives are triangles instead of
whole convex objects.
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