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Abstract 

Due to various economic, political and environmental reasons, the introduction of electric vehicles 

(EVs) into the streets is probable. Their introduction will require extra facilities such as the charging 

stations. In order for EVs to be able to penetrate the market their recharging/ refueling time should be 

comparable to conventional once. This results in charging stations supplying hundreds of amps to 

EV batteries. The usual trend in charging EV batteries is that the BMS (Battery Management Sys-

tem) gives various orders and information signals and the charger acts as a slave in the system. But 

this could result in a dangerous situation if the BMS happens to fail for some reason. Thus in this re-

port a supervisory algorithm is investigated. It is based on modeling the important characteristic of 

the battery and then identifying suitable model parameters. Then these models are effectively used 

during decision making in the battery charging process.  

The results of this report show that: 

� Model based approach to supervision of battery fast charging provides a satisfactory result 

� Battery voltage monitoring through prediction could be used to avoid overvoltage on battery ter-
minals. While SOC models could be used to predict the SOC steps ahead but its use is not that 
important. Similarly temperature prediction in normal situation is less important as the rate of 
change of temperature in very low. But temperature prediction could be valuable when the rate of 
temperature rise is high for some reason.  

� Temperature and state of charge models can effectively be used to validate the corresponding 
readings from the BMS.  

� At the present state the algorithm is relatively prone to noise levels in the working environment 
which could be improved in future works. 
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1 INTRODUCTION 

1.1 Purpose 

Owing to different political, economic and environmental reasons the introduction of 

electric vehicles (EVs) into the streets is unavoidable. Parallel to their introduction the in-

frastructure that supports them needs considerable attention. One of the main components 

of this infrastructure besides the grid is the charging station.  

In order for EVs to be considered as an alternative their refueling/recharging time should 

match or be near to their IC engine counter parts. This demands fast charging stations 

which provide, depending on the vehicle type, hundreds of amps to vehicle batteries. Ta-

ble 1.1 below shows the power requirements in different fast charging approaches for dif-

ferent vehicle types. 

Table 1.1 different fast charging power requirements [1] 

Type of Charg-

ing 

Charging 

duration 

Charges 

up to 

(SOC) 

Charger Power Level. kW 

   Heavy 

Duty  

SUV/Sedan Small Sedan 

Fast Charge 10 minutes 100%  500  250  125 

Rapid Charge.  15 minutes 60% 250  125  60 

Quick Charge.  60 minutes 70%  75  35  20 

Plug-In Hybrid.  30 Minutes  40   20    10 

As can be seen from the table the power demand is very high which needs special consid-

eration both in charging system and in safety issues. To this end, there are a couple of 

companies working on charging infrastructure. Table 1.2 provides the ratings of the 

charging station a few of these companies are providing (taken from their respective 

sites). 
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Table 1.2 charging station ratings as provided by their respective providers 

Company AC charging output DC charging 

ABB - 50-250KW 

Aerovironment 208VAC to 240VAC @ 30A 30-250KW @480V 3-ph lines 

Aker wade 16A, 32A and 63A 36 kW and 50 kW 

Coulomb Technologies 230V/16A(level I)  

230V/32A (3 phase)(Level II) 

- 

Elektromotive 240V/20Amps - 

 

The usual trend in off-board battery chargers, however, is a master-slave approach where 

the BMS demands a current and the charger supplies the current. The BMS has of course 

better knowledge and information about the battery, than for instance an off-board charg-

er. However if the BMS happens to malfunction for any reason, considering the sensitivi-

ty of the batteries to overcharging, there will be a disaster that nobody wants to undertake.   

Thus the purpose of this thesis is adding intelligence to the battery chargers which insures 

safe charging even if the BMS happens to malfunction.  It will also act as a supervisory 

system to warn or avoid accidents. These tasks require  

� A tangible  way of finding if the BMS is working inappropriately 

� An internal algorithm that calculates the safe charging current and the duration of 

charging if the BMS is not working properly.  

� Also the supervisory algorithm needs to interact with the converter controller; 

hence it is important to understand how it works. Thus some discussion on the 

converter is included. 

 

1.2 Scope 

This report describes the modeling and identification the battery system based on which a 

supervisory algorithm is developed. The supervisory algorithm developed for the battery 

charging system works only under the assumptions described thought the report in differ-

ent places.  

 

1.3 Structure 

The report has the following structure: 

Section 1: Introduction (this section) describes the purpose and scope for this report.  

In section 2 a brief discussion of the battery types which could be used in EVs as well as 

plug in hybrid vehicles (PHEVs) are provided. The main concern there is  
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� How large batteries are required for each vehicle type? 

� What is the state of art batteries for EVs?  

� What is their characteristic in terms of charging? What is the charging strategy 

recommended by their respective manufacturers? 

� Which are the charge monitoring techniques that are recommended for each bat-

tery type? 

Answering these questions will clear the way for decisions to be taken in the algorithm to 

be developed! 

The core of any algorithm development is decision making. The approach used in this 

thesis for decision making is model based approach. Thus in section 3 various models 

which facilitate decision making are discussed. These include: 

� Simplified battery model for  predicting  battery terminal voltage  steps ahead 

� State of charge reading validating and predicting model 

� Temperature reading validating and predicting model  

These models will, however, be committed to their responsibility only when they are 

equipped with the correct parameters. Otherwise only general information is available 

about batteries. This information is far way behind to equip the model parameters with 

correct values beforehand.  Hence section 4 is devoted to an investigation of identification 

algorithms which will be executed on line for each battery to be charged. The identifica-

tion algorithm used in the thesis is bounded Levenberg-Marquardt method. 

Section 5 is added for sake of understanding how the converter is working in order to 

have a clear idea how it may affect the proposed algorithm. Hence, there a typical battery 

charger circuit is discussed; some analysis of a three phase AC/DC converter and buck-

boost DC/DC converter is provided. 

Section 6 describes  

� The charge monitoring algorithm  

� The assumptions in selection of the  algorithm  

� Implementation issues related with algorithm 

Section 7 provides the result and analysis of the proposed algorithm in Matlab simulation 

Section 8 provides the conclusion the report. 

Section 9 lists future works that could be done based on this work. 

Section 10 is appendix 

Section 11 references specifies source material and further reading. 
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2 BATTERY TECHNOLOGIES 

 

When we consider an intelligent charger, or charging in general, understanding the cha-

racteristic of the batteries to be charged is indispensable. Knowing the capacity of the bat-

teries to be charged also needs considerable attention.  However there are comparatively 

only few such cars on the road. Thus finding any tangible information on this topic is not 

easy. Thus we need to find an alternative solution. To that end there are three most noti-

ceable bodies working on EV related issues. These are USABC1, EPRI2 and MIT3.  Ac-

cordingly these bodies have specifications on the battery requirements for different xEVs 

type as shown in Fel! Hittar inte referenskälla.. Based on this it is possible to evaluate 

currently available battery types for possible xEV use. Of course, the same is provided by 

them.  

Table 2.1 Battery goals for different PHEVs [2] 

Vehicle as-

sumption 

units USABC MIT EPRI 

PHEV PHEV EV[7] PHEV PHEV PHEV EVs[3] 

CD
4
 range miles 10 40  30 20 60  

CD Operation  All 

electric 

All 

electric 

 blended All 

electric 

All 

electric 

 

Depth of dis-

charge (DoD) 

percent 70% 70% 80% 70% 80% 80%  

Body type  Cross.

SUV 

Mid. 

car 

 Mid. car Mid. 

car 

Mid. 

car 

 

Battery goals 

Peak power kW 50 46  44 54 99 75-100 

Peak power 

density (2sec 

pulse) 

kW/kg 830 380 300(30 

sec) 

730 340 330 300-400 

Total energy 

capacity 

kWh 6 17 40 8 6 18 25-40 

energy density kWh/kg 100 140 150(@ 

C/3 dis-

charge 

rate) 

130 40 60 100-140 

  

                                                           
1
 U.S. Advanced Battery Consortium (USABC) 

2
 Electric Power Research Institute  

3
 Sloan Automotive Laboratory at  MIT 

4
 Charge depletion 
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From the table, EPRI’s analysis suggests the performance goals for an all-electric PHEV-

20 is achievable by current NiMH technology, the goals of the USABC and MIT are 

beyond even current Li-Ion technology capabilities. In any case, it is clear that lead acid, 

nickel-Cadmium (Ni-Cd) and sodium-nickel chloride (ZEBRA) technologies are not like-

ly to achieve goals for even the less ambitious PHEVs. In contrast, Li-Ion battery tech-

nologies hold promise for achieving much higher power and energy density goals [2]. 

Thus, it appears that while NiMH could be used for lower performance PHEV designs 

(e.g. blended operation with lower CD range); only a chemistry with the energy and pow-

er density capabilities of Li-Ion can meet USABC goals for PHEVs with all-electric 

range [2]. Thus in this thesis focus is given only to Li-ion and NiMH batteries. In the fol-

lowing sections we will briefly look at the state of the art NiMH and Li-ion batteries and 

charging related issues. 

 

2.1 Nickel-Metal Hydride cell (NiMH) 

Compared to other battery chemistries, the primary advantage of NiMH is its proven lon-

gevity in calendar and cycle life, and overall history of safety. However, the primary 

drawbacks of NiMH are limitations in energy and power density, and low prospects for 

future cost reductions. As it has reached its maturity there is little room left for improve-

ment in power and energy density or cost. Thus NiMH batteries could play an interim role 

in less demanding blended-mode designs, but it seems likely that falling Li-Ion battery 

prices may preclude even this role [2]. 

2.1.1 State of the art NiMH batteries 

As with any battery type, NiMH batteries are either energy or power optimized. Most of 

high power NiMH batteries are intended for application in full and moderate to mild 

HEVs [3]. They are not our concern here and we will focus on high energy and medium 

energy/power NiMH batteries. Table 2.2 provides state of the art high energy and medium 

energy/power NiMH batteries.  

Table 2.2 Characteristics of currently available NiMH batteries (high energy and medium 

energy/power design cells and modules) [3] 

manufacturer SAFT COBASYS VARTA 

Cell capacity(Ah) 1005 855 436 456 256 

Module voltage(V) 12 12 12 5(4.8) 5(4.8) 

Specific energy(Wh/kg) 69 60 45 50 35 

Specific power(W/Kg) 1607 2007(250)8 6057 400 7007 

                                                           
5
 High energy design 

6
 Medium energy/power design 

7
 At 80% DOD 

8
 At 50% DOD 
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The high energy NiMH battery design of COBASYS has specific energy and specific 

power characteristics which do not meet the requirements shown in Fel! Hittar inte refe-

renskälla. for a midsize EV.  

The medium energy/power designs of COBASYS and VARTA were developed to have 

much higher specific power levels, now meeting PHEV specific power requirements. 

Their specific energies of around 45 Wh/kg are close to meeting minimum requirements 

for PHEVs, implying only small (COBASYS) or modest (VARTA) weight penalties for 

PHEV batteries of the required storage capacities.  

Data detail on SAFT’s product sheet indicates a high probability for substantially longer 

cycle life. After 1500 discharges, battery storage capacity is shown to have declined by 

less than 2%, and the internal resistance (essentially the inverse of specific power) in-

creased by only 15% [3]. 

 

2.1.2 Charging performance 

 

Figure 2-1 shows how voltage, temperature and pressure vary as charging progresses. The 

voltage spike up on initial charging then continues to rise gradually through charging until 

full charge is achieved. Then as the cell reaches overcharge, the voltage peaks and then 

gradually trends down.  

Since the charge process is exothermic, heat is being released throughout charging giving 

a positive slope to the temperature curve. When the cell reaches overcharge, where the 

bulk of the electrical energy input to the cell is converted to heat, the cell temperature in-

creases dramatically. 

Cell pressure, which increases somewhat during the charge process, also rises dramatical-

ly in overcharge as greater quantities of gas are generated at the C rate than the cell can 

recombine. Without a safety vent, uncontrolled charging at this rate could result in physi-

cal damage to the cell [4]. 
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The charging performance of a NiMH cell is affected by charging temperature and rate. 

Specifically charge acceptance in NiMH cell decreases monotonically with rising temper-

ature. It begins below 20°C and continues through the upper limits of normal cell opera-

tion [5]. More over the voltage profile moves down for higher charging temperature. 

 

2.1.3 Charging methods 

Unlike, the lead acid battery where voltage level is closely monitored, here current level 

should be controlled. Whereas the voltage level, or change in voltage level or temperature 

are used as a feedback signals.  

The preferred charging method for NiMH batteries is fast charging. Fast charging is pre-

ferred since it reduces crystalline formation. Moreover, fast-charge rates serve to accen-

tuate the slope changes used to trigger both the temperature and voltage-related charge 

terminations [4].  

Depending on the battery type, fast charge restores almost all of the discharged capacity. 

However for some this phase is followed by an intermediate timed charge which com-

pletes the charge and restores the full capacity.   The fast charge (with currents in the 1C 

range) is typically switched to the intermediate charge using a temperature sensing tech-

nique, which triggers at the onset of overcharge. The intermediate charge normally con-

sists of a 0.1C charge for a timed duration selected based on battery pack configuration.  

But some time if the battery is excessively discharged allowing a high current may make 

it impossible to sufficiently restore the battery capacity.  In this case the battery is first 

trickle charged at the rate of 0.2C~0.3C to the appropriate voltage level (usually 0.8V per 

cell) [5]. Then it is followed by the same charging steps described above. 

20 40 80 100 60 

SOC (%) 

In
cr

ea
si

n
g

 

Figure 2-1 NiMH cell charging characteristic [4] 

Voltage 

pressure 
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Because of the sensitivity of cell life to overcharge history and the greater subtlety of 

some of the overcharge transitions, charge termination redundancy in charger design is 

recommended. This applies to both built-in redundant charge control techniques and fail-

safe charge termination techniques such as thermal fusing [4]. 

2.1.3.1 Overcharge Detection 

Primary charge control schemes typically depend on sensing either the dramatic rise in 

cell temperature or the peak in voltage. Charge control based on temperature sensing is 

the most reliable approach to determining appropriate amounts of charge for the nickel-

metal hydride cell [4]. Temperature-based techniques are thus recommended over vol-

tage-sensing control techniques for the primary charge control mechanism. 

Some overcharge of the battery is vital to ensure that all cells are fully charged and ba-

lanced, but maintenance of full charge currents for extended periods once the cell has 

reached full charge can reduce life. 

 

2.1.3.1.1 Temperature-Based Charge Control 

Use of charge control based on the temperature rise accompanying the transition of the 

cell to overcharge is generally recommended because of its reliability (when compared to 

voltage peak sensing techniques) in sensing overcharge. The exothermic nature of the 

nickel-metal hydride charge process results in increasing temperature throughout the 

charging process. There are three ways we can use temperature sensing for overcharge de-

tection [4]: 

� Based on absolute temperature rise: this approach is subjected to change with 

weather condition and is not reliable. Thus this approach should only be used as a 

fail-safe strategy to avoid destructive heating in case of failure of the primary 

switching strategy. 

� Based on relative temperature rise: this is the simple form of temperature based 

switching where the battery temperature increment, say 200c, from the start of 

charging is monitored. The chosen ∆T has to account for both normal temperature 

gain during charge and the spike at overcharge. Selection of the proper tempera-

ture increment can be greatly influenced by the environment surrounding the cell. 

� Based on slope change in temperature profile: charge switching based on the 

change in slope of the temperature profile eliminates much of the influence of the 

external environment and can be a very effective technique for early detection of 

overcharge.   

2.1.3.1.2 Voltage-Based Charge Control 

Voltage –based charge control can only be used as backups to temperature-based control. 

This is due to the fact that the voltage peak typically occurs later in the overcharge 

process, the voltage overcharge is not as distinct as that seen with temperature and the 

voltage behavior may change with cycling.   



Chalmers University of Technology 
Model Based Approach to Supervision of Fast Charging 

9 

 

Shemsedin Nursebo  August 30 2010 

Similar to the temperature based control, the voltage-based control cab be approached in 

three ways [4]: 

� Based on absolute maximum (~1.8V/cell): is relatively imprecise. 

� Based absolute voltage rise: can be useful if the initial charging state is known. 

� Based on change in voltage profile: can provide detection of early entry to over-

charge region. 

Moreover, since the voltage does peak during overcharge, switching on the voltage de-

crease (5 to 10mV/cell) is feasible. This eliminates the concerns faced in both voltage and 

temperature increment methods about determining the increment that ensures charge re-

turn without excessive overcharge. 

2.1.3.2 Environmental Influences on Charging Strategy [4] 

The discussions above are most pertinent for devices operating in the room-ambient 

range.  The following subsection provides the general information in extreme temperature 

environment under the batteries operating range.  

 

 

2.1.3.2.1 High Temperature (40 to 55
0
c) 

At higher temperatures, the charge acceptance of nickel-based batteries is drastically re-

duced. Charging of nickel-metal hydride cells in high-temperature environments requires 

careful attention for two reasons: (1) the selection of set points, for both temperature and 

voltage-sensing systems, can be affected if the cells are already at elevated temperatures 

prior to starting charge; and (2) charge duration may have to be extended due to the 

charge acceptance inefficiencies. 

2.1.3.2.2 Low Temperature 

The charge time increases at lower temperatures so charge durations must be carefully 

considered to provide adequate low-temperature charging while avoiding excessive 

charge at normal temperatures. Charge rates must also be reduced at low temperatures. 

An upper limit of 0.1C is recommended below 15°C. Charging below 0°C is not advisa-

ble. 

As a concluding remark here is that unlike lead acid batteries where it is enough to moni-

tor voltage only, charging NiMH is a complex monitoring process where voltage and 

temperature feedback signals play a major role.  

 

2.2 Li-Ion battery technology 

 

In contrast to NiMH, Li-Ion technology has the potential to meet the requirements of a 

broader variety of PHEVs and EVs. Lithium is said to be very attractive for high energy 
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batteries due to its lightweight nature and potential for high voltage, allowing Li-Ion bat-

teries to have higher power and energy density than NiMH batteries. Also a reduction in 

Li-Ion cost relative to NiMH is anticipated [2]. However, Li-Ion batteries face drawbacks 

in longevity and safety which still need to be addressed for automotive applications.  

2.2.1 State of the art Li-ion batteries 

 

Unlike “NiMH”, which specifies particular battery chemistry, the term “Li-Ion” refers to 

a family of battery chemistries, each of which has its own characteristics with respect to 

the categories of energy, power, cost, lifetime, and safety. Specific battery chemistries are 

typically named according to the material used for the positive electrode (cathode), al-

though the negative electrode (anode) material can also be a distinguishing factor. 

Table provides state of the art Li-ion batteries which are likely to be used for xEVs appli-

cation. 

Table 2.3 the performance characteristics of lithium-ion cells of different chemistries 

from various battery developers [6] 

manufac-

turer 

Technology type Ah Voltage  

range 

Wh/Kg 

(@300W/k

g) 

(W/Kg)90%eff 

50% SOC 

charging 

tempera-

ture 

K2 Iron phosphate 2.4 3.65-2 86 667  

EIG Iron phosphate 10.5 3.65-2 83 708  

A123 Iron phosphate 2.1 3.6-2.5 88 1146 -30~600c 

Lishen Iron phosphate 10.2 3.65-2 82 161 0~450c 

EIG Graphite/NiCoMnO2 18 4.2-3.0 140 895  

GAIA Graphite/LiNiCoO2 42 4.1-3.0 94 174@70%S

OC) 

0~400c 

Quallion Graphite/Mn spinel 1.8 4.2-3 144 491(@60%S

OC) 

 

2.3 4.2-3.0 170 379(@ 

60%SOC) 

 

Altairnano Lithium Titanate 11 2.8-1.5 70 684 -40~550c 

52 2.8-1.5 57 340  

EIG Lithium Titanate 12 2.7-1.5 43 584  
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2.2.2 Charging method 

In general Li-ion, batteries are charged using constant current/constant voltage. But the 

charge rate and the voltage limit differ for different batteries from different manufacturer 

as shown in the Table 2.3 above.   

 As for the charge rate it can vary from 0.3C to 6C or more depending on the model type. 

A typical constant current/constant voltage (CC/CV) is shown in Figure 2-2.  

 

 

Figure 2-2 a typical constant current/constant voltage charging of Li-Ion battery [8] 

2.2.2.1 Effect of temperature on charging performance 

In general Li-ion batteries exhibit a good charge acceptance in wide temperature range. 

But the actual charging temperature range differs with in different battery chemistries as 

shown in Table 2.3 above.   Some of the points mentioned in the discussion of NiMH bat-

teries concerning temperature in relation to monitoring equally apply here. 

2.3 Summary on batteries  

Finally as a concluding remark to this section, battery type most likely to be used for EVs 

and high range PHEVs is Li-ion battery while NiMH could be used for lower perfor-

mance PHEV designs.  

From the charger point of view the range of battery capacities that are likely to be charged 

is between (6-40 kWh) or more. The charging current depends on the battery type and ca-

pacity. The fast charging strategy most likely to be used is constant current/constant vol-

tage. Charge monitoring is done by using voltage and temperature. While change in tem-

perature slope could be used to trigger charge termination in NiMH, this is not the case in 

Li-ions. Moreover, since in fast charging strategy batteries are not charged fully this may 

not be necessary at all. However temperature increase and absolute temperature limits can 

be used to insure safe charging. Charge termination will be facilitated by SOC measure-

ment from the BMS.  
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3 REVIEW OF BATTERY MODELS 

The charging process can be facilitated if the battery system is well defined and unders-

tood. For this reason it is essential that the battery is modeled into a system whose physi-

cal response can be simulated and analyzed. Thus in this section different battery models 

discussed in literatures are reviewed and suitable models for the job at hand are selected. 

The modeling is approached in two ways: electrical modeling and thermal Modeling. 

Much of the discussion is devoted to electrical modeling while a brief discussion is given 

on thermal modeling towards the end.  

3.1 Modeling tips  

 In order to better understand modeling, it necessary that we have some basic understand-

ing of the underlying processes. In this subsection some basics of the underlying process 

are discussed. 

3.1.1 Charge, discharge, recovery, resistive effect 

In every battery, there are two electrodes: positive and negative. Each electrode, in gener-

al, involves an electronic (metallic) and an ionic conductor in contact. At the surface of 

separation between the metal and the solution there exists a difference in electrical poten-

tial, called the electrode potential. The electromotive force (e.m.f.) of the cell is then 

equal to the algebraic sum of the two electrode potentials.  

In equilibrium (no load), the species are uniformly distributed in the electrolyte. Once the 

external flow of electrons is established, the electrochemical reaction results in reduction 

of the number of species near the electrode. Thus, a nonzero concentration gradient is 

created across the electrolyte. If a load is switched off, then the concentration near the 

electrode surface will start to increase, or recover, due to diffusion, and eventually, the 

concentration gradient will become zero again. In other words, electro-active species will 

become uniformly distributed in the electrolyte, but their concentration level will be 

smaller than the initial value. The above processes help us understand where open circuit 

voltage dependence on SOC comes from. It also explains the increase in resistance at 

higher discharge rate.   

 More resistive effect is encountered due to finite conductivities of electrodes, electrolyte, 

and separators, from concentration gradients of ionic species near the electrodes and from 

limited reaction rates (kinetics) at the electrode surfaces [9].  

Once the concentration of near the cathode drops below a certain level, the cathode reac-

tion can no longer be sustained. Similarly, once the concentration of near the anode drops 

below a certain level, the anode reaction can no longer be sustained.  

3.1.2 Capacitive effects 

Generally, mass transfer arises either from differences in electrical or chemical potential, 

or from the movement of a volume element of the solution. The transfer of charge across 

the electrode surface causes a charge separation. The excess of charge on the electrode 
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surface is counterbalanced by the accumulation of ions, of opposite charge, on the solu-

tion side of the interface. The layer across which this charge separation occurs is called 

the electrical double layer, and is extremely thin compared with the width of the electro-

lyte and electrodes [10]. 

In its simplest form the double layer is described by the Helmholtz model, which de-

scribes the double layer as a parallel plate capacitor with a small plate separation (see 

Figure 3-1). This layer is referred to as the Helmholtz layer and can be described by a 

constant capacitance Cdl. These differences are only expected close to the electrode sur-

face, since we assume electro-neutrality in the bulk of the solution.  

More capacitive effect is introduced due to pure electrical polarization and from diffusion 

limited space charges (pseudo-capacitance). Both double layer capacitance and diffusion 

capacitance (pseudo capacitance) influence the transient response of the battery, especial-

ly when the rates of reactions are high [9]. 

 

 

Figure 3-1 Electrical double layer as a parallel plate capacitor with capacitance Cdl; the 

electrode is assumed to be positively charged [9] 

3.2 Battery Model Revision 

 

The main aim of this section is to highlight the complexities involved in battery modeling 

and based on this study conclude on a recommended battery model for the supervision 

outlined before.  

There are a wide range of battery models out there in various literatures. These battery 

models can be categorized in the following groups:- 

� Electrochemical or physical battery models 

� Electrical models 

� Mathematical models 

- + 

+ 

+ 

+ 

- 

- 

- 

- + 

Cdl 

�� �� 

Electrode Electrolyte 

Helmholtz layer 
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3.2.1 Electrochemical or physical battery models 

Electrochemical models are the most accurate and mainly used to optimize the physical 

design aspects of batteries, characterize the fundamental mechanisms of power genera-

tion. They can relate battery design parameters with macroscopic (e.g., battery voltage 

and current) and microscopic (e.g., concentration distribution) information. However, 

they are complex and time consuming because they involve a system of coupled time-

variant spatial partial differential equations a solution for which requires days of simula-

tion time, complex numerical algorithms, and battery-specific information that is difficult 

to obtain, because of the proprietary nature of the technology [11]. Thus they will not be 

discussed here. 

 

3.2.2 Mathematical models  

Mathematical models use stochastic approaches or empirical equations which can predict 

runtime, efficiency, and capacity. However, these models are inaccurate (5-20% error) 

and have no direct relation between model parameters and the I-V characteristics of batte-

ries. As a result, they have limited value in circuit simulation software [11]. The simplest 

and popular one is Peukert’s law.   

3.2.2.1 Peukert’s law 

The simplest model for predicting battery lifetimes that takes into account part of the non-

linear properties of the battery is Peukert’s law. It captures the non-linear relationship be-

tween the lifetime of the battery and the rate of discharge, but without modeling the re-

covery effect [12]. According to Peukert’s law, the battery lifetime (L) can be approx-

imated by: 

L � a/I
  
3-1 

 

Where I is the discharge current, and ‘a’ and ‘b’ are constants which are obtained from 

experiments. Ideally, ‘a’ would be equal to the battery capacity and b would be equal to 1. 

However, in practice ‘a’ has a value close to the battery’s capacity, and ‘b’ is a number 

greater than one. For most batteries the value of b lies between 1.2 and 1.7 [12]. 

The Peukert relationship can be written to relate the discharge current at one discharge 

rate to another combination of current and discharge rate: 

C1=C2 (I2/I1)
 (n-1) 

Where 

� C = capacity of the battery 

� Subscripts 1 and 2 refer different discharge-rate states 

Peukert’s formula shows an average error of 14% and a maximum error of 43%. Peu-

kert’s formula works well for light loads, but the errors will become very large at heavy 

loads [12]. 
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Another more complex model for life time determining is the R V W’s analytical battery 

model [13]. However its discussion here is unnecessary as far as our aim is concerned.   

  

3.2.3 Electrical models 

For electrical engineers, electrical models are more intuitive, useful, and easy to handle, 

especially when they can be used in circuit simulators and alongside application circuits. 

This group uses a combination of capacitors, resistors and voltage sources or current 

sources to model behavior of a battery.  A wide variety of them have been proposed in 

various literatures for one or more battery chemistries.  Only a few of them are discussed 

below: 

The simplest model is composed of a voltage source and an internal resistance as shown 

in Figure 3-2 

 

Vt can be obtained from the open circuit measurement and Rint can be obtained from both 

the open circuit measurement and one extra measurement with load connected at the ter-

minal when the battery is fully charged. This model does not take into account the varying 

characteristic of the internal impedance of the battery with the varying state of charge. 

In [14] an improved representation, which takes the variation of Rint with SOC in to ac-

count, is used while the constant voltage source is kept as it is.  

R�
� � R�S�               
3-2 

 

Where  

� S � 1 � ∑ ��
���  , state of charge(SOC) 

� Ro is the initial internal resistance Rint with the battery fully charged. This value 

varies as the battery ages. 

� C10 is the ten-hour capacity (Ah) at the reference temperature. This value also va-

ries as the battery ages. 

E 

Rint 

Vt 

Figure 3-2  Simplest battery model 
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� k is a coefficient that is a function of the discharge rate 

 

In [11] a model capable of predicting runtime and I-V characteristic is provided. This 

model has been verified to work for both NiMH and Li-Ion cells [11]. The equivalent cir-

cuit is given as below 

 

Figure 3-3 a generic runtime battery model [11] 

 

On the left, a capacitor (Cb) and a current-controlled current source, model the capacity, 

SOC, and runtime of the battery. The RC network simulates the transient response. To 

bridge the SOC to open-circuit voltage, a voltage-controlled voltage source is used. 

Usable capacity 

The usable capacity, which is represented by Cb, declines as cycle number, discharge cur-

rent, and/or storage time (self-discharge) increases, and/or as temperature decreases. The 

voltage across Cb varies between 0 and 1 depending on SOC. Thus voltage across Cb 

represents SOC of the battery. 

Self-discharge resistor RSd is used to characterize the self-discharge energy loss when bat-

teries are stored for a long time. Theoretically, RSd is a function of SOC, temperature, and, 

frequently, cycle number. Practically, it can be simplified as a large resistor, or even ig-

nored [11].  

Open circuit voltage  

The nonlinear relation between the open-circuit voltage (VOC) and SOC is important to 

be included in the model. Thus, voltage-controlled voltage source VOC (VSOC) is used to 

represent this relation. The open circuit voltage is normally measured as the steady-state 

open circuit terminal voltage at various SOC points. However, for each SOC point, this 

measurement can take days as the different processes inside the cell have longer time con-

stant [11]. 
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Transient response  

In a step load current event, the battery voltage responds slowly. Its response curve usual-

ly includes instantaneous and curve-dependant voltage drops. Therefore, the transient re-

sponse is characterized by the two parallel RC branches in Figure 3-3 above. The series 

resistor Rint is responsible for the instantaneous voltage drop of the step response. RTran-

sient_s, CTransient_s, RTransient_L, and CTransient_L are responsible for short- and long-time con-

stants of the step response. Using two RC time constants, instead of one or three, is the 

best tradeoff between accuracy and complexity because two RC time constants keep er-

rors to within 1 mV for all voltage curve fittings [11]. 

Model extraction [11] 

Theoretically, all the parameters in the proposed model are multivariable functions of 

SOC, current, temperature, and cycle number. These functions make the model extraction 

complex and the test process long. However, within certain error tolerance, some parame-

ters can be simplified to be independent or linear functions of some variables for specific 

batteries. Thus the different parameters can be made only SOC dependent and give over-

all good result provided that it is in isothermal environment.  This was of course done for 

Li-polymer cell and may not hold for lead acid or other battery chemistries. As some bat-

tery chemistries depend significantly on discharge and charge rate. 

The model extraction is done by curve fitting the behavior (V vs. SOC) of the battery 

which is the most representative of the group. All the extracted RC parameters are ap-

proximately constant over 20%–100% SOC and change exponentially within 0%–20% 

SOC caused by the electrochemical reaction inside the battery. Just to have some insight 

into the problem, the following equations are the curve fit results for different parameters 

of the Li-polymer cell used in [11]. 

VOC (SOC) = −1.031e−35SOC + 3.685 + 0.2156SOC − 0.1178SOC2 + 0.3201SOC3  

R Series (SOC) = 0.1562e−24.37SOC + 0.07446  

R Transient S (SOC) = 0.3208e−29.14SOC + 0.04669  

C Transient S (SOC) = −752.9e−13.51SOC + 703.6  

R Transient L (SOC) = 6.603e−155.2SOC + 0.04984  

 C Transient L(SOC) = −6056e−27.12SOC + 4475.  

3-3 

 

In reference [15] an extension of [11] is provided where the transient response is com-

posed of three time constants in seconds, minutes, hours; also a rate factor is included to 

model the effect of discharge rate. 

Ref. [9] presents a model based on curve fitting experimentally available voltage vs. SOD 

curve for various temperature and current level. The battery output voltage can be calcu-

lated due to the battery open circuit voltage, voltage drop resulting from the battery 

equivalent internal impedance and the temperature correction of the battery potential. Ac-

cordingly, the battery output voltage may be expressed as  
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Vbat =VOC - ibat * Zeq + ∆E(T) 

3-4 

In reference [16] a model having the form in Figure 3-4 is proposed 

 

Figure 3-4  non linear battery model [16] 

 

E � E� � K� QQ � q�  Ae#$% 

3-5 

Where: 

& � '(')  

*+,)) � - � �.&� 

/0123405525 � &6. 

E = no-load voltage (V) 

E0 = battery constant voltage (V) 

K = polarization voltage (V) 

 

A = exponential zone amplitude (V) 

B = exponential zone time constant inverse (Ah)
 −1

 

Vbatt = battery voltage (V) 

R = internal resistance (Ω) 

i = battery current (A) 

Q = battery capacity (Ah) 

q= current charge level in battery (Ah) 

Model assumptions: 

� The internal resistance is supposed constant during the charge and discharge 

cycles and does not vary with the amplitude of the current. 

+ 

_ 

78
�it 

E � E� � K� QQ � it�  Ae#$.�� 
 

E 

Controlled 
voltage 
source 

Internal Resistance 

Vbat 

+ 

_ 

Ibat 
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� The model’s parameters are deduced from the discharge characteristics and as-

sumed to be the same for charging. 

� The capacity of the battery does not change with the amplitude of the current (No 

Peukert effect). 

� The temperature does not affect the model’s behavior. 

� The self-discharge of the battery is not represented. 

� The battery has no memory effect 

Model limitations: 

� The minimum no-load battery voltage is 0 V and the maximum battery voltage is 

not limited. 

� The minimum capacity of the battery is 0 Ah and the maximum capacity is not li-

mited. Therefore, the maxi-mum SOC can be greater than 100% if the battery is 

overcharged. 

What is good about this modeling approach is the model parameters can easily be ex-

tracted from the manufacturers’ datasheet. The interested reader can refer to [16] for 

model parameter extraction procedure.  

This is actually the model which is used in Matlab to represent the battery and is available 

in SimPowerSystems toolbox. Since there are no interface to real battery this model has 

been used as a battery in analyzing the algorithm.  

While (3-5) gives the steady state open circuit voltage for a given state of charge, it does 

not model the transient behavior of the battery. Thus, in the Matlab, the equations below 

(3-6 & 3-7) are used to include the transient behavior of batteries. Moreover different 

models are used for charging and discharging as well as for different battery chemistries 

such as Li-ion, lead acid and NiMH/NiCd batteries. The equations below show only the 

charging model for Li-ion and NiMH. More information is available on the Matlab help 

file for the battery model.  

The charging mode for Li-ion is  

E � E� � K < Q0.1Q  q> i? � K < QQ � q> q  Ae#$% 

3-6 

 

And for NiMH is 

E � E� � K < Q0.1Q  |q|> i? � K < QQ � q> q  Laplace#D Eexp�s�sel�s� . 1sH  
3-7 

Where i? the low frequency current dynamics found by lowpass Tiltering i 
                        And i<0 for charging 
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As a general conclusion on battery model revision, the battery models are usually opti-

mized for a given application. For example the one in [16] is optimized for HEV, or func-

tion  such as determining life time [12 & 13], or available capacity. There are others 

which can be used to determine V-I characteristic. But what is common for all is that the 

accuracy of the model depends on the detail knowledge of the battery chemistry, which is 

normally only available to battery manufacturers. 

3.3 Electrical Models used in the optimization algorithm 

The discussion above indicates that most models in literature are interested in capturing 

the whole V-I characteristic of the battery i.e. from lowest SOC to highest. Even for a 

given battery type it is difficult, if not impossible, to find a single equation which works 

at different temperature and state of health (SOH). 

Consequently, it is very difficult and time consuming for an on-line implementation. But 

what we can do, based on our prior information about batteries is   

Use the current and voltage measurement to build a model which can predict the voltage 

of the battery steps ahead. 

Use the simple knowledge we have about sate of charge and current relation to validate 

the reading from the BMS; and if the measurements are found to be accurate, use it to 

predict SOC steps ahead. 

As long as our aim is safe and reliable charging it works perfectly. Thus what follows is 

the discussion of two simple models for tasks just described. 

3.3.1 Model for voltage prediction 

 

Of course we do not need a model that predicts the voltage–current relation for the whole 

range of SOC. However, what we need is a model that can predict the battery terminal 

voltage accurately a minute or so ahead. This is enough as the model parameters are up-

dated every 10 sec or so by the optimization algorithm. Moreover the model should not be 

battery chemistry specific. 

Thus based on this understanding and the discussions we have in battery model revision 

the following circuit is well suited for the job at hand. 
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Figure 3-5 simple battery circuit model 

 

Here: 

� Rint -internal resistance: takes care of the instantaneous voltage boost whenever a 

current step is applied. Its value for a given battery cell is usually in a mOhm 

range. 

� RtCt-RC circuit branch: will be responsible for the transient responses occurring in 

a battery with time constants in a minute range. It exact value differs from battery 

to battery. Considering the low Value resistance involved in RC branch the capa-

citance Ct is in kF (kilo farad range). 

� The voltage over Cb: can be taken as the open circuit voltage of the battery. How-

ever it is not exactly the open circuit voltage as longer dynamics of the battery is 

included in it.  Actually it doesn’t matter as long as we can accurately predict the 

terminal voltage of the battery 10 sec or so ahead.  

There is no one value range for capacitance Cb; it is value greatly varies even for 

single battery because it is not related to any single physical process in the above 

model.  But generally its starting value in the optimization algorithm in section IV 

can be made way above Ct. 

In the model formulation, we need to know the initial voltage of the different capacitors. 

Considering the model formulation above it is reasonable to assume the voltage on tran-

sient RC branch to be zero and the voltage over Cb to be equal to the open circuit voltage 

of the battery. That is just before charging starts. 

The model equations in state space form are given as: 

Vx1Wx2W Y � VVW csVW cbY � [�1/RtCs 00 0] [x1x2]  V1/Cs1/CbY Iin  Ke 
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y � v0 � _1 1` [x1x2]  _R�`Iin  e               
3-8 

Where  

� e is stands for any error that results from measurement and modeling 

� K is the Kalman gain 

 

3.3.2 Model for SOC measurement validation and prediction 

If the SOC measurement from BMS is taken at different time as charging progresses, it is 

possible to calculate the capacity of the battery and any columbic inefficiency associated 

with it using the following simple relation. 

abcdae � fgh ihj8   
3-9 

And in discrete form 

       bcdklD � bcdk  fe�gh ihj8  
3-10 

Where  f is the coulumbic efTiciency 

               gh the battery capcitm 

               e� the samping time 

Once the model parameters are identified they can be used to validate the next SOC read-

ing. Once the SOC reading is found to be consistent the model can be used to predict the 

SOC steps ahead. 

 

3.4 Battery Thermal models  

When consider of thermal model we have to able to answer the following questions: 

How much does the temperature rise for a given charging current and a given cooling 

power? What does the trajectory of this temperature rise looks like. This answer to this 

question is determinant in understanding and validating the temperature reading from the 

BMS. Moreover we need to include a thermal model in our simulation to take into ac-

count the temperature rise during the charging process.  

How is the charge acceptance affected for a given charging current at different tempera-

ture? This is the same as asking, how much does the capacity of the battery vary with 

temperature?  
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For a given state of charge, how much does the open circuit voltage of the battery vary 

with temperature?  

The last two questions required only to build our simulation model. That is once we have 

decided how much the temperature rise is for a given charging current we need to know 

how this affects charge acceptance of the battery and the battery terminal voltage. This is 

how ultimately the battery thermal model is included. If we know how much the tempera-

ture rises and but if it does not affect the characteristic of the battery. There is no need to 

include the thermal model.  Reference [9] provides a way on how this can be answered 

from manufacturers’ data sheet.    

The next subsection discusses the answer for the first question and the subsequent section 

will answer the rest.  

3.4.1 Battery thermal model for predicting temperature rise 

Conservation of energy for a battery cell with lumped thermal capacity balances accumu-

lation, convective heat dissipation, and heat generation terms as [17] 

a�ndop�ae � qrb�p � ps�  tuv  uw  uxyr  
3-11 

Where  

� ρ density 

� cp specific heat capacity  

� T cell temperature 

� h the heat transfer coefficient for forced convection from each cell,  

� As  is the cell surface area exposed to the convective cooling medium (typically 

air) 

� T∞ is the free stream temperature of the cooling medium. 

� A electrode plate area (cm2) 

� qc ohmic heat generation rate due to contact resistance (W) 

� qj ohmic (joule) heat generation rate of solid and electrolyte phases(W) 

� qr heat generation rate of electrochemical reaction (W) 

The above equation however does not suit our problem as it contains battery specific pa-

rameters.  It also considers the change in heat capacity and density of the battery with 

temperature [18].  An alternative is to ignore the change in heat capacity and density with 

temperature and have the following circuit friendly approach for thermal model [9]. 

zgo a�p�ae � {|}~�8  � �8v|
}8v  qrb�p � ps�     

3-12 



Chalmers University of Technology 
Model Based Approach to Supervision of Fast Charging 

24 

 

Shemsedin Nursebo  August 30 2010 

However, we have no idea what value h and ‘As’ would be for a given vehicle. Thus it is 

reasonable to assume ‘hAs’ to be constant for a given charging period; where, off course, 

‘As’ is constant and then we assume constant cooling power.   

∑ ����
���   is composed off voltage transients having time constants of different duration. 

Thus, to simplify calculation, we can assume it to be constant based the following reason-

ing.  

Voltage transients with long time constants vary slowly and they can be considered con-

stant compared to the 10 seconds time window chosen for the algorithm 

Voltage transients with short time constants can be assumed constant as they will reach a 

constant value after an initial transient. 

The calculation results for Vtr and Rtr are less critical in giving the thermal generation 

equivalent of the transient voltage drops. 

Once again for constant charging current  {|}~�8 is also constant for reasonably longer pe-

riod of time. Consequently, (3-12) can be reduced to 

� apae  �p � �    
3-13 

Where  

� P represents any thermal generation or cooling system and initial thermal state, as 

represented by T∞.   

Now, (3-13) can be solved as: 

p � p0�����ae�  �t1 � �����ae�y, a � ��    � �  ��     
3-14 

Thus given a short period of time, it is expected the temperature measurements have to fit 

to this equation.  Once the model parameters that fit to a given measurement data are 

identified, the same model can be used for validating the subsequent data up to a given 

time like 10sec. This time span could be chosen based on our understanding of parameter 

variation and the computational power of the DSP.  

3.4.2 Modeling effect of temperature on charge acceptance and open circuit voltage 

When the temperature of a battery rises it affects the battery capacity and the open circuit 

voltage.  Generally for lithium ion batteries charge acceptance increase with temperature 

[9]  while for NIMH [4] the charge acceptance is optimum at room temperature and de-

crease more with decrease in temperature than with increase. As for the open circuit vol-

tage at a given SOC, it increases for Li-ion batteries with increase in temperature. How-

ever, NiMH batteries have higher voltage at room temperature and decreases with tem-

perature both ways; but relatively the decrease with increase in temperature is negligible.  
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It is apparent that the two chemistries have different characteristic and will result in a dif-

ferent models. Since this model is required only for simulation, we have provided the 

modeling for Li-ion batteries only.  

According to [9] two parameters are enough to model the two temperature effects: tem-

perature factor β (T) and the temperature-dependent potential-correction term ∆E (T).  

When these two terms are included the SOC equation from (3-9) and open circuit voltage 

are adjusted as follows.  abcdae � f��p�gh ihj8 

3-15 

� � �����g, {�  ∆��p� 

3-16 

Where  

� E0 is the open circuit voltage at reference temperature for reference discharge rate  

� Cb and η are the capacity and columbic efficiency of the battery at reference tem-

perature. Note that, in Matlab battery model mentioned above Cb and η doesn’t 

change with discharge rate. 

� β(T) is the factor responsible for the change in charge acceptance due to tempera-

ture. It is one at reference temperature 

The way this two parameters are calculated in reference [9] results in a piecewise linear 

curves. 

Finally in our overall simulation model the following are true 

� The battery capacity and columbic efficiency doesn’t vary with discharge rate 

� The open circuit voltage varies both with temperature and discharge rate 

� The charge acceptance or capacity of the battery varies with temperature 
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4 BATTERY SYSTEM IDENTIFICATION  

4.1 Introduction 

There are different types of systems: linear, nonlinear, time invariant, time varying. These 

systems can be modeled in different model types: transfer function models, state space … 

etc.  Nonlinear systems have specialized model types such as Wiener and Hammerstein, 

and neural network models [19].  

However modeling is not the subject this chapter, it is mentioned here only to stress the 

link between the model type and the identification procedure we use. Battery system 

modeling is provided in chapter three. In this chapter our mission is to identify model pa-

rameters.  

Model parameter identification can be approached in different ways depending system 

model type. The most popular identification methods in literature are prediction error me-

thod and sub space identification method. While the former is usually used for transfer 

function models the later is used for state space models. However the basic principle is 

the same in either case: minimizing the prediction error.  Moreover in each method there 

are various ways to solve the problem; hence various algorithms are developed by differ-

ent authors and can be found in [19, 20, 21, 22, 23].  

Generally, these methods are used for black box identification. Black box identification 

refers to an identification procedure where the detailed knowledge of the system is not re-

quired. The system model is built from input output data alone. Knowledge of the system 

order will be appreciated but not necessary. Whenever this knowledge is not available, 

there are ready made identification tools, like Matlab identification toolbox, which can 

decide the best model order and the model parameters based input-output data provided.  

However in black box identification there is no relation between identified parameters and 

the system.  Besides, there is no single solution to the problem. This is clearly visible in 

state space models where the similarity transform will result in the same input-output re-

lation with different state values and model parameters. The same is provided below in  

(4-1& 4-2): 

���e� � r����e�  ����e�   
m�e� � g����e�  ���e� 

4-1 

r� � prp#D                       �� � p�                                        g� � gp#D  
4-2 

The concept of system identification mentioned above is an offline one. However it is al-

so possible to find their online counterparts which are well adapted to online where the 

computation complexity should be reduced. They are usually discussed in literature under 

recursive Identification methods [22, 24, 25] 

In this thesis, however, a different approach than highlighted above is followed. This is 

because 
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Considerable information about the system (battery system) has already been gathered. 

The model parameters are required to provide some meaningful information about the 

battery, such as the internal resistance of the battery, capacity of the battery  

As opposed to recursive identification methods there is no need to update model parame-

ters during each sampling interval. 

The approach used in this report is usually stated as white box identification in literature. 

The subsequent sections will provide detailed information about this identification proce-

dure.  

 

4.2  System Identification based on Optimization approach 

There are a wide variety of optimization algorithms, also known as non-linear least square 

methods, which could be possible choices for the job at hand. They are generally iterative 

processes. Some of them are: Gauss-Newton, Levenberg-Marquardt (LM) and Powell’s 

Dog led method [26]. These non-linear least square methods are instrumental in finding 

the minima of a given nonlinear function. In optimization problems this function is 

known as objective or cost function.   

So how does this relate to our problem? Well, given a model, our problem is finding the 

parameters of the model that result in the minimum error between the observed and pre-

dicted data. Thus the error function between the observed and predicted data will be our 

objective function. To clarify this Idea more the following subsection provide how the ob-

jective functions are developed for each model discussed in section III. 

4.2.1 Model Objective functions 

Objective function for battery voltage prediction 

We have specified in section III that the model in Figure 3-5, provided that it has the cor-

rect parameter values, can correctly predict the battery voltage in the time range we are 

working on. The same battery model in Figure 3-5 can be represented by the following 

system of equation (refer to (3-8)). 

V�1W�2W Y � V�W db�W d�Y � [�D 00 0] [�1�2]  V�|��Y i{� 

m�D�ek|�� � ��ek� � _1 1` [�1�2]  _��`i{��ek�  
4-3 

 

Now the question remains how we can get the correct parameter for each battery model. 

For this we have two tools. One is best initial guess for each parameter as it is highlighted 

in section III. The second tool is the voltage measurement we have from the BMS or the 

sensors in charger itself. The philosophy is that the calculated voltage using battery cur-

rent as input to the model should be equal to the measured voltage. Of course the initial 

parameter values are too erroneous to result in a correct voltage prediction. Thu we need a 

way to reduce this error between the measured out voltage and predicted output voltage. 
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That is we have to minimize our objective function. Mathematically our objective func-

tion is 

�D��� �  mD�ek� � m�D�ek|�� 

4-4 

Where  mD�ek� is the measured voltage and m�D�ek|�� is the predicted voltage as shown in 

(4-3). 

The same reasoning applies for other model objective functions and they are given in (4-5  

and 4-6). While the objective function for the first two cases relay on input-output relation 

but the objective function for the temperature monitoring is different. It is based on know-

ing the present value of temperature and predicting its future value based on the thermal 

model of the battery. 

Objective function for soc monitoring (refer to (3-10)) 

m�|�ek|�� � bcdk � bcd�  �De��| � ihj8�e~�
k

~ �
 

                                                                 �|��� �  m|�ek� � m�|�ek|��                                                  

4-5 

However since this is a linear model we will use simple linear solvers to identify the pa-

rameters and there is no need to go for iterative ones. Moreover, from numerical point of 

view there is no way to distinguish the two model parameters therefore we will fix the ef-

ficiency at 100% as we calculate for the capacity of the battery.  

Objective function for Thermal model (refer to (3-14)) 

m���ek|�� � pk � p0������Dek�  �|t1 � ������Dek�y 

  ����� �  m��ek� � m���ek|�� 

4-6 

Since one input-output data can’t give us any better result than our original parameters 

thus we need a couple of data to work with. The larger the data the better but it is also 

computational intensive. Besides for time varying systems like battery the older data are 

less important. Thus choice of sampling time and sample data length should take these 

things into account. One way or another, at the end the objective function is a vector with 

length equal to the sample data length selected. 

Once we know what our objective function looks like the next question is ‘how we set 

about to minimize our objective function?’ The next section discusses this issue. 

4.2.2 Model Parameter Identification Routine  

Now that the objective functions are discussed along with approximate initial parameter 

values we are left with how to adjust the parameter values. They have to be adjusted so as 

to result in the parameters values which minimize our objective function. Mathematically 
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given our objective function f: Rn ¡  }¢ £{eq z ¤ �, where n is number of unknown 

model parameters and m sample data length, we want to minimize ||f(θ) ||. In nonlinear 

methods mentioned above this minimization is done by minimizing the square of the ob-

jective function as given below: 

�? � �¥¦z{�§¨©���ª, 
4-7 

 

Where  

©��� � 12 ���~����| � 12
¢

~ D
||����||| � 12 ����«���� 

4-8 

 

The index i represents a given sampling time  

Adjusting the initial parameter values require to make a step vector h on the parameter 

vector θ such that the following holds 

©��  q� ¬ ©��� 

That is the each step taken should result in a decent direction. The main purpose of a giv-

en nonlinear least method is thus finding h that result in reduction of the objective func-

tion faster. Mainly, that is where the different nonlinear least square methods differ.  

Thus, in this thesis, the Levenberg-Marquardt method is used. For it combines the benefit 

of both the steepest decent and the Gauss-Newton method. The steepest decent is good 

when the solution is far from the final solution while the Gauss-Newton method works 

well when we are in the neighborhood of the solution.  In the next section we see some 

important points related to the Levenberg-Marquardt method. But before that we need to 

clarify two important terms which are common in nonlinear square methods and without 

which we can’t move an inch. 

Jacobean, ­ ® }¢¯�, is a matrix containing the derivative of the original objective func-

tion with respect to each unknown parameters along its row and for each index i: 

 

�­����~w � °�~°�w ��� 

4-9 

Gradient, g, the derivative of the square of objective function (see Eq. 4-8) by each un-

known model parameter as: 
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¦ � ©±��� �
²³
³³́

°©°�D ���
µ°©°�� ���¶·

··̧ � ­���«���� 

4-10 

 

4.2.3 The Levenberg-Marquardt (LM) method 

In the previous section it is stressed that the main difference between different nonlinear 

square methods is the way h is calculated. In LM this step h is given as [26] 

�­«­  ¹i�q�¢ � �¦      £{eq        ¦ � ­«� ��a ¹ ¤ 0 

Where  

hlm= is the step h to be taken in the LM method 

J is the Jacobean of the objective function 

I is an identity matrix 

µ is the damping term 

g is the gradient 

4-11 

 

Now we can manipulate the damping term µ to switch between steepest decent and gauss-

Newton method depending on how far we are from the final solution.  For large values of 

µ we get  

q�¢ � �¦¹ � �©±���¹  

4-12 

This is a short step in the steepest descent direction. This is good if the current iterate is 

far from the solution. If µ is very small, then 

q�¢ � �¦­«­ 

4-13 

This is the gauss-Newton step and is good if we are close to the final solution as men-

tioned above.    

Now the question remains: How do we select the initial value of µ? How do we know 

how far from the final solution we are? And then how is µ it updated? How is the iteration 

stopped? Since these issues are more mathematically involved, interested reader can refer 

to appendix A. However, the following sections are understandable without these answers 

in mind. 
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4.2.4 A Secant Version of the LM Method 

In (4-99) the Jacobean is calculated using the derivative of the cost function with respect 

to each model parameters. This approach requires a function vector where the row mem-

bers are the derivative of the cost function with respect to each model parameters. During 

the work it is found that providing this function vector for each model and whenever a 

model changed is time consuming; specially for state space model. However a numerical 

approximation of the derivatives provides as satisfactory result as the actual derivate.  

Moreover a single function handles the Jacobean calculation for all model involved given 

the cost function for each model. The secant version of LM is, thus, a version of LM me-

thod where the derivates in Jacobean is approximated numerically by finite difference ap-

proximation as: 

  

�­����~w � °�~°�w ��� º �~t�  »�wy � �~���
»  

4-14 

Where ‘�w’ is the unit vector in the jth coordinate direction and  » is an appropriately small 

real number.  

 

4.2.5 Constrained optimization 

 

What is common for all nonlinear optimization algorithms is that they are relatively 

prone, depending on the parameter set up of the cost function, to initial model parameters. 

This will sometimes result in unacceptable values. For example, during simulation, it is 

observed that, depending on the initial values given, the resulting model parameter con-

tain negative values. This parameters being capacitances and resistances, it is not accepta-

ble.  

Moreover there can be several local minima for the objective function. And depending on 

where the initial parameter values are, the solution will have different values. Therefore 

for better result it is an utmost importance that the approximate values of the parameters 

are known. In addition, if the bounds of these parameters are specified, better results will 

be attained.  

There are various approaches to solving constrained optimization problems. One way of 

doing it is by using penalty function or another way can be saturating the parameter when 

the limit is reach. But these methods are found to be not helpful. Yet another way could 

be defining the parameter in square root or log, however this is not tried.  

However in this thesis it is found that the ‘lsqlin’ Matlab optimization tool along with Le-

venberg-Marquardt (LM) method, discussed above, works well. 
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4.2.5.1 The ‘lsqlin’ optimization tool 

 

The’ lsqlin’ function solves the problem of the form in (4-15) with the given bounds. 

However we are only interested at the simple bound that is lb ¼ x ¼ ub 

 

min½
12¾|C. x � d|¾|

|   such that ¿ A. x ¼ b,Aeq. x � beq,lb ¼ x ¼ ub À  
4-15 

Called as (Since we are not interested in the terms in bracket, we skip them) 

� �  ÁbuÁ{��g, a, _ `, _ `, _ `, _`, Á�, ��, �0, c�e{c�b�   
 

Where  

C is a data matrix  

X0  is vector of parameter whose value is to be calculated 

d  is a data vector 

More insight into these parameters is given in the following subsection. 

 

 

4.2.5.2 Levenberg-Marquardt (LM) method and ‘lsqlin’ 

 

The trick in combining the two (LM and ‘lsqlin’) is modifying the way hlm is calculated. 

(4-11) can be rewritten as: 

�JÃJ  δ|I�hÅÆ � �JÃf , where  δ| � µ    
4-16 

This can equally be defined as [27]: 

min½
12 ÈÉ[ JδI] q�¢ � [ f0]ÉÈ

|
|     

4-17 

                             

Now it is easy to ’lsqlin’ function, as it is clear from the formulation (C= [ JδI], x=hlm, 

d=[ f0] ). Yet another trick is bounding the step hlm. The bounds for hlm can be adapted 

from [27]: 
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�Á� ¬  �Ê   q�¢   ¬ ���   
4-18 

Since the actual computation results in  

q�¢ � �ÁbuÁ{��… �  

�Á� ¬  �Ê �  q�¢   ¬ ��� 

�Ê � ��� ¬    q�¢   ¬ �Ê � �Á� 

                                                                              4-19 

Now what is changed? Well, in the unbounded LM method we used to calculated hlm us-

ing (4-11) where there is no limit on the actual hlm calculated. However now we are calcu-

lating hlm using the ‘lsqlin’ with upper and lower bound as necessary. But the rest includ-

ing Jacobean calculation, µ selection and updating, iteration stopping mechanisms are in-

tact as in LM method.  

This finalizes the solution for the optimization problem and the resulting parameters are 

strictly bounded.  

 

 

4.3 Auxiliary input to the identification algorithm 

Executing the optimization algorithm during each sample interval is costly as well as un-

necessary. Considering the potential variability of the battery parameters and computa-

tional complexity of the routine, the optimization routine will be executed after every 

10sec. However, due to modeling inadequacy and measurement noises, there will be er-

rors between measured and predicted values in the mean time. To keep the model up to 

date and reliable we have to take advantage of the data from each sampling interval. This 

could successfully be done by using Kalman filter. Then what is Kalman filter? 

4.3.1 Kalman filter 

The Kalman filter is a set of mathematical equations that provides an efficient computa-

tional (recursive) means to estimate the state of a process, in a way that minimizes the 

mean of the squared error [28]. 

The Kalman filter addresses the general problem of trying to estimate the state  � ® Ì� of 

a discrete-time controlled process that is governed by the linear stochastic difference equ-

ation 

�k � r�k#D  ��k#D  £k#D 

4-20 

With measurement Í ® Ì¢ that is  

Ík � g �k  �k 

4-21 

In our case 
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Ík � mÊ � ��k 

The random variables £k ��a �k and represent the system disturbance additive vector 

and model disturbance additive vector respectively [20]. They are assumed to be indepen-

dent (of each other), white, and with normal probability distributions: 

��£� � Î�0, �� 

���� � Î�0, }� 

4-22 

Where Q and R are their respective covariance matrices, whose values are chosen based 

on our knowledge of the system. 

4.3.2 Kalman filter calculation 

As highlighted above during each sampling interval we need to get the best estimation of 

the states. These states will provide the basis for the correct prediction of the terminal vol-

tage (see (4-21)). Now how is this accomplished?  

In setting up the solution for the Kalman filter, we begin with the goal of finding an equa-

tion that computes an a posteriori state estimate ��  as a linear combination of a priori state 

estimate and a weighted difference between an actual measurement Ík and a measurement 

prediction  g��# as shown below in (4-23) 

�� � ��#  Ï�Ík �  g��#� 

4-23 

The priori state estimate is the state estimated at time step k-1 as 

 

��#k � r��k#D  ��k#D 

4-24 

The actual derivation of the Kalman gain ‘K’ is beyond the scope of this report; interested 

reader can consult [28]. A typical expression for Kalman gain calculation is given in 

(4-25) [20, 28] 

Ï � �k#g«
g�k#g«  } 

4-25 

The overall recursive implementation of Kalman filter is given in Figure 4-1 below [20, 

28] 
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i�{e{�Á{b�e{c��e � 0�  �� � }  �� 

Ík � mÊ � ��k 

Form A, B, C, and D from current 
parameters and prepare 

Measurement 
Input 

��#k � r��k#D  ��k#D 
Predict state: 

 

Ïk � �k#g«
g�k#g«  }  

�k# � r�k#Dr«  � 

Calculate error covariance and 
Kalman gain 

 

�� � ��#  Ïk�Ík �  g��#� 
Correct state prediction 

 

�k � _i � Ïkga`�k# 

Update error covariance matrix 
 

Figure 4-1 the recursive Kalman filter implementation 
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5 THE CONVERTER  

In this section issues related to the converter are discussed. Since the aim the thesis is not 

to design a converter, here only a general information and operating characteristic will be 

presented.  Interested reader can refer to the corresponding references for issues related to 

designing the converter and the control system. 

5.1 Topology 

There are a wide variety of converter topologies which could be used for battery charger 

application. To begin with the battery charger for EVs has two parts: the AC/DC and DC 

/DC converters. Mainly in the AC/DC side we have a variety of options to choose from; 

ranging from single phase [29] to three phases [30-34]. On the other hand the three phase 

converters can also be soft switched [30, 32] or hard switched [30, 31, 34]; or two levels 

[30, 31, 34] or three level [32, 33]. 

Choice of the best converter is a tradeoff between overall costs, efficiency, and quality of 

charging as well as the simplicity of the control circuit. However, the power level re-

quirement for fast charging demands a three phase power source.  

In this report, the battery charger shown in Figure 5-1 will be investigated [31]. 

 

Figure 5-1 the charger power circuit Simulink diagram 

The charger circuit consists of a hard switched three phase AC/DC converter preceded by 

LCL filters, and followed by a DC/DC two quadrant buck/boost converter with LCL fil-

ters. LCL filters chosen for their better filtering performance and lower inductance re-

quirement compared to first order filter (L-filter) [31]. 

The charger which is going to be investigated has the ratings or operating conditions 

shown in Table 5.1. 
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Table 5.1charger rating 

parameter symbol rating 

Rated power S 50KVA 

Grid voltage  ULL 400V±10% 

Grid frequency f 50±5% 

Battery voltage Vbat 96 to 600 

Charging current Ibat ±150A 

Dc link voltage Vdc 700V 

Switching frequency fsw 5kHz 

 

 

5.2 Converter Parameter Values 

 Given the operating conditions as in Table 5.1, let us now focus on the values of the dif-

ferent components.  The AC/DC converter has the values given in Table 5.2 for compo-

nents involved. The LCL parameters are selected based on the procedure described in 

[37]. Valuable information on setting the DC link voltage can be found in [36] and [41]  

provides a simple expression on selecting the value of the DC link capacitor. 

Table 5.2 AC/DC converter component values 

Parameter  Value  

DC link voltage - 

Inductor (L2) 250µH 

Inductor (L1) 500µH 

Capacitor(C) 33µF 

Capacitor(Cdc) 6800µF 

Damping resistor(Rd) 0.75Ω 

Equivalent resistance 

of the inductors 

1mΩ 

 

Figure 5-2 shows the DC/DC Buck-Boost converter used in the charger. The correspond-

ing component values are given in Table 5.3. The equivalent resistance has not been cal-

culated; it is just chosen, its actual value could be different. The LCL filters for the 

DC/DC converter are selected following the same procedure as in [41]. 
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Figure 5-2  DC/DC buck-boost converter 

 

 

 

 

Table 5.3 component values/Ratings for DC/DC converter 

Parameter value 

C 33µF 

L1 3.3mH 

L2 120µH 

fres 2.55KHz 

Equivalent resistance of 

the inductors(R1,R2) 

1mΩ 
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5.3 The Control system 

5.3.1 Control of AC/DC VSC 

 

There are various literatures dealing with control of front end voltage source converter 

(VSC) [31, 34, 38, 39,40]. Some of them [31, 38, 39] discuss VSC control with LCL fil-

ter.  Here the simple control strategy which makes use of the usual PI controls in syn-

chronous frame is adopted [34, 38,40]. The synchronous frame is often used to obtain fast 

current control dynamic response [37].  

Moreover the dq-coordinate can be aligned either to the grid voltage (ULL) or to the vol-

tage over the capacitor bank (Uc). Here we are dealing with a control system where the 

dq-coordinate is aligned to Uc. The approach used to make sure the required reactive 

power is drawn from the grid is discussed at the end of this section. 

The overall control diagram of the AC/DC voltage source converter (VSC) is shown in 

Figure 5-3. 

To get the reference angle the three phase voltage over the capacitor bank are used. They 

are first transformed from 3 phase to stationary coordinate (alpha-beta). Then they are low 

pass filtered at cutoff frequency of 50Hz twice to filter out noise. After which they are 

normalized to get the cosine and sine of the transformation angle; mind you, they are 

shifted 90 degrees while filtering.   

As mentioned above, the controller is a cascaded PI controller. The values of proportional 

and integral gain for the current controller and voltage regulator are given in Table 5.4 

and Table 5.5 respectively. The controller also includes active damping resistor (Ra), de-

coupling, feed forward, saturation blocks and anti- windup terms. The active damping re-

sistor is used to rule out the uncertainty in equivalent resistance of the inner inductor (L1). 

The appropriate manipulation of the PI output to accommodate the converter gain is also 

provided. 

Here the modulation technique used is pulse width modulation (PWM) with triangular 

carrier wave. 
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Table 5.4 Parameter values in the current control loop 

parameter value 

Carrier wave amplitude(Vc) 1 

Active damping resistor (Ra) 0.03Ω 

Proportional gain(Kp) 2.5 

Integral gain(Ki) 
           155 

 

Sampling time(Ts) 1e-4 

Converter gain(G) 350 

Uc I1 L2 L1 
   

   
   

 G
R

ID
 

Cosθ 
sinθ 

Id ref 

Iq ref 

αβ=>dq 

3ph=>dq 

Id & Iq re-
gulator 

Compensations 
& and PMW gene-

ration 

Udc-
regulator 

3ph=> αβ 

LPF(fc=50Hz) 

LPF(fc=50Hz) 

Normalization 

Figure 5-3 the overall diagram the VSC system 
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Table 5.5 Voltage regulator parameters 

parameter value 

Proportion gain(Kp) 10 

Integral gain(Ki) 500 

 

 

5.4 Control of the DC/DC converter 

The overall control layout of the DC/DC converter is shown in Fel! Hittar inte referens-

källa. and it is a cascaded PI controller as in the AC/DC case above. Similarly, the feed 

forward loop trough Ra is included to remove uncertainties due to the resistance R1. Oth-

er feed forward terms as shown in Fel! Hittar inte referenskälla. are also used. Not 

shown are the saturation blocks and the anti-windup loops. Some parameter, like the sam-

pling time and switching frequency, are similar the AC/DC converter case. Here even 

though the modulation technique is PMW the carrier wave is saw tooth.  

The proportional and integral gain values for the three PI controllers shown in Fel! Hittar 

inte referenskälla. are given in Table 5.6. 
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Figure 5-4 General block diagram the DC/DC converter control loop 
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Table 5.6 DC/DC converter controller parameters 

parameter value 

Carrier wave amplitude(Vc)                1 

KpD              16.5 

KID              155 

KpF              0.25 

KIF              5 

KpH              0.75 

KIH              3 

Ra 0.03 

 

5.5 Results and analysis 

The charger is intended to work on a constant DC link voltage of 700v while the battery 

voltage and current varies considerably. We have to also make sure that unacceptable vol-

tage overshoots does not occur in the system. And the current drawn from the grid should 

be maintained below within the rating of the various components. Most importantly, the 

current delivered to the battery should be limited to the charge acceptance level of the bat-

tery as demanded by the BMS (battery management system).  

The simulation is set up under the assumption, the DC link capacitor is pre-charged to the 

DC link voltage and the filter capacitors are pre-charged to the battery voltage.  Pre-

charging of the capacitors is important as will be discussed later.  In the first 0.1 sec the 

controller locks in with the AC side filter capacitor voltage to generate the reference an-

gle. Then the charger starts to provide power for the battery as set by the reference cur-

rent. The battery model (Li-ion) available in Matlab SimPowerSystems toolbox is used 

for the analysis.    

5.5.1 Low pass filter of the battery reference current 

 

In attempt to run smoothly the two control circuits (the AC/DC and DC/DC converter 

control circuits) the battery reference current is low pass filtered.  This step is crucial for 

the required performance of the battery charger to be met. This is due to the fact that the 

two control circuits are designed separately and it happened so that one control circuit is 

either slower or faster than the other. When this happens there will be over voltage or un-

der voltage on the DC link. This results in overshoot on the grid and battery current. The 

larger the step change the worse the problem is; noticeably in the beginning. Figures 

(Figure 5-6,Figure 5-7, Figure 5-8) below show what happens.  
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As can be seen it is a disastrous situation for both the battery and the grid current, espe-

cially in the beginning. For the same step changes in battery reference current (100A) at 

0.1sec and 0.5 the circuit works much worse in the beginning. Except for the small over-

shoots in the Dc link voltage, however, the circuit works well in the remaining part of the 

simulation.  

 

Figure 5-5 Battery current reference used for the simulation 

  

 

Figure 5-6 The DC link response for step changes in battery reference current 
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Figure 5-7 Response Synchronous d component current 

   

 

Figure 5-8 battery current response for step changes in reference current 
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Figure 5-9 the DC link response for step changes in battery reference current 

 

From the figure above we can see that the controller has managed to maintain the DC link 

voltage almost constant while the battery draws highly variable current. This is just the 
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Figure 5-10 Response Synchronous d component current 
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Figure 5-11 Battery voltage response for step changes in input voltage 

 

Figure 5-12 battery current response for step changes in reference current 
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current when the DC link voltage is initially 300V. Here one should note that the control-

ler circuit is not activated it is just the diode rectifier which is charging the capacitor. It 

can be seen that the current drawn from the grid is huge and the same current flows 

through the capacitor.  This may even damage circuit components involved; even though 

it is for short period of time. 

 

Figure 5-13 Start up Grid Current with Low DC link voltage 
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Figure 5-14 Overshoot in battery current 
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is connected to appropriate terminals of the DC/DC converter where, similar to the pre-

vious case, it is synchronized with the filter capacitor, then charging starts. 

 

Figure 5-15 Comparison of Current from the Grid 

 

 

 

 

Figure 5-16 Comparison of Current from the Grid 
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It can be clearly seen the first approach is better in limiting the current in the beginning 

and results in less distorted waveforms. However, when charging starts there is an over-

shoot, if the step current is of high value, as in the simulation.    

 

Figure 5-17 Charging the DC link Capacitor 
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Figure 5-18 synchronous frame current 
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Figure 5-19 Filter Capacitor and battery voltage 
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Here we see that when the battery is connected to the filter capacitor there is a current 

flow (at time 0.7(I) and 1.01(II)) from the battery to the filter capacitor owing to the vol-

tage difference existing there. This phase is assisted by a damping resistor in both ap-

proaches. Comparatively this current is low magnitude and highly damped. Both ap-

proaches almost result in the same performance. 

In the meantime, whenever the DC link voltage is not at its set value, it is vital that we 

low pass the Step from the measured Dc link voltage value to the set level to lower the 

overshoot that could occur.  

At the end, which approach to use is dependent on the suitability of the implementation 

and the cost of the components to be used. The first approach requires a three phase series 

resistors and one three phase by pass breaker while one DC breaker and one IGBT and a 

resistor are enough for the second approach. The rest component requirements are similar.  
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capacitor voltage (Uc) and converter side current (I1) is exploited. This is written as fol-

lows- considering steady state 

 

 

i|Ò � iDÒ 

i|Ó � iDÓ  ÔgÕxÒ 

5-1 

The philosophy is the ratio of synchronous frame grid current and synchronous frame grid 

voltage should be equal. To maintain equality in the ratios the equation above is used 

without the need to measure the grid current.  The Simulink diagram of the implementa-

tion is provided below. 

 

Figure 5-20 Simulink diagram for Iqref generating 

A low pass filter is used to remove the high frequency ac component which inherent in 

the measured signals.  

The approach is more pronounced when low power is drawn from the grid where the 

reactive power is higher at zero q-reference current.  The following simulation result 

shows the same when the power drawn from the grid is 10Kw. In the simulation after the 

charging is started in the first 0.2 sec the q-reference is set to zero then the above algo-

rithm takes over.   

From the simulation the algorithm is good as producing the reference current. The reac-

tive power drawn from the grid decreases but it does not assure zero reactive power. This 

is due to the approximation inherent in the above equation. 
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Figure 5-21 Synchronous frame q current 

 

 

 

Figure 5-22 Reactive Power from the grid 
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6 THE SOLUTION: THE CHARGE SUPERVISORY ALGORITHM (CSA) 

As mentioned in the introduction, the main aim of the thesis is to insure safe and reliable 

charging in case the BMS malfunctions. In another way the work in thesis enables the 

charging system to be aware of what is going on. It enables the charging system to take 

decision on whether the BMS working properly or not, if not, it will take over the charg-

ing process all in all and ensure safe charging. 

Thus this section, taking inputs from previous sections, describes how this is accom-

plished. However, due to versatility xEV battery system, it was necessary to make some 

simplifying assumptions. Hence the section starts by stating these simplifying assump-

tions. It also explains how practical these assumptions are. 

6.1 Assumptions made in the algorithm 

Assumption I: this assumption deals with the maximum allowable battery terminal vol-

tage. That is, there is standardized maximum voltage limit for all batteries used in xEVs. 

Or the maximum voltage limit for each vehicle type is available from the BMS.  

Reasons for the assumption: To avoid damage to the battery the voltage limit of the bat-

tery should not be violated. However, in battery charging, especially fast charging envi-

ronment it is possible for battery voltage to reach the limit while the battery is not fully 

charged. If an off board battery charger should participate in supervision of the battery it 

is important that it should have this knowledge. Moreover it is impossible for the off 

board battery charger to decide this limit in any way if it is not provided. 

Practicality of the assumption: Almost every equipment has standard working voltage 

but EV Batteries due to the early stages in development, standard voltages are not yet de-

cided. Thus it is possible for standard voltage limits to be set for xEV batteries. When this 

is not available, it is possible to make this information available from the BMS. Such in-

formation is already available in the so called intelligent batteries [43, 45]; however it is 

not clear if they are there in all xEV batteries. 

Assumption II: This assumption comes into play to validate the charging current de-

manded by the BMS. That is, the current demanded by the BMS is correct unless it results 

in abnormal temperature increase; like if it is found that the temperature will hit the limit 

in a short period of time. Also if the BMS should demand comparatively low current, an 

appropriate current will be provided keeping in check the temperature increase.  

Reasons for the assumption: this is a must assumption based on the information available 

to the author presently. As such there is no information available to relate the battery ca-

pacity or internal resistance to specific current revel. Someone may raise the question 

‘How then are the manufacturers determining the charging capability of a given battery?’ 

well manufactures do specify the current rating or current capability of a battery based on: 

� Electrochemical characteristic consideration: such as the battery electrolyte con-

centration, electrode geometry and many other microscopic considerations. Dif-
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ferent values are given for short term and long term ratings of a battery. This ap-

pears in manufacturer’s datasheet as a pulse current of specified duration or conti-

nuous current.  

� Practical consideration: such as how long should the battery be used? For example 

you can use a battery rated 10A for 15A provided that it conforms to condition 1 

above, but it will have shorter cycle life. Moreover the limit for cycle life also de-

pends how we interpret it. For example the usual trend is the battery is at the end 

of life it is 80% of the original capacity. And of course there is no a mathematical 

relation which some body can use to relate cycle life with a charge or discharge 

current.  

Batteries are optimized for energy or power, and they could be different chemistry. Even 

if they are assumed to be ,say, energy optimized and are specific chemistry, say Li-ion, 

there is no information available to the author on how to determine the charging current 

of the battery on the basis of information that could be available online while charging.  

However there could be another way into the problem by monitoring the charging effi-

ciency; considering the inefficiency due to voltage drop over the internal resistance alone. 

Consumer electronics battery charging typically results in charging efficiency of 99.9% 

[44]; usually slow charging. However it clear that fast charging will be less efficient. But 

presently there is no information to the author what the limiting efficiency on fast charg-

ing is. 

Practicality of the assumption: Even though this assumption does not result in optimum 

charging, as optimality depends on how we specify it as described earlier, it does insure a 

safe charging strategy.  

Assumption III: this assumption is concerned with thermal related issues. Here the as-

sumption is that there is same maximum charging temperature limit for all batteries or 

they are available from the BMS. And all temperature rises while charging should be li-

mited below certain value; and this is the same for all battery types. 

Reasons for the assumption: almost all batteries for xEVs release heat during charging 

process. Depending on the heat released and the cooling system, this results in tempera-

ture rise. All xEV batteries do have a maximum charging temperature, if this limit should 

be violated, the battery performance will deteriorate. However not only should we consid-

er the temperature limit, but also the temperature increment during charging as discussed 

in section 2. This temperature limit and increments could vary from battery to battery. 

Unless we are supported by ‘assumption III’ it is not possible to determine them in any-

way.  

Practicality of the assumption: as mentioned above the temperature limits do vary from 

battery to battery. As long as our concern is safe charging if we could take the safest tem-

perature limit. That is, among available battery types we take lowest temperature limit 

available. For example for Li-ion batteries investigated in this report this temperature lim-

it is 400C (refer to Table 2.3 the performance characteristics of lithium-ion cells of differ-

ent chemistries from various battery developers [6]Table 2.3).  Moreover it is possible 

that this information is available from the BMS as in intelligent batteries [43, 45]. 
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Assumption IV: this assumption has already been mentioned on section three in relation 

thermal modeling. Here we only mention the assumption for the sake of completeness. It 

is assumed that thermal generation less cooling system is constant i.e. the net heat genera-

tion is constant. 

Assumption V: this of course could be considered more of an approach. Presently most 

manufacturers recommend constant current/constant voltage (CC/CV) charging. However 

there could be also another better way of charging the battery as in [46]. But in this thesis 

CC/CV is charging strategy is followed. That is CC/CV from the BMS for all vehicles are 

assumed.  

Now based on these simplifying assumptions, the different optimization routines will be 

discussed. 

6.2 Implementation 

The overall supervisory algorithm has six main routines. These are 

� Model Parameter Identification Routine (MPIR):-this includes every process and 

procedure involved in the parameter identification, state adjustment though Kal-

man filter and so on. This is discussed in section four. 

� Battery Voltage Monitoring Routine(BVMR) 

� SOC Monitoring Routine(SOCMR) 

� Temperature Monitoring Routine(TMR) 

� Minimum Current Generating Routine(MCGR) 

� Reference current Generating Routine(RCGR) 

The last five routines are discussed below. Before that Figure 6-1 gives the clear picture 

on how the overall structure works and how the different routines interact to each other.  
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As can be seen on Figure 6-1 the overall aim of the routine is calculating safe value for 

reference current or issue warning. The system gets input about the battery current (Ib), 

voltage (Vb), temperature (T0), SOC, current reference (Iref_in) from the BMS. Using 

this data the supervisory algorithms executes the different routines shown in the flow 

chart (see Figure 6-1) each time step. However within each routine some computation 

demanding executions are done after predetermined sample intervals. These will be men-

tioned in corresponding sections. 

6.2.1 State of charge Monitoring routine 

As discussed earlier in section four, we have to rely on the BMS to get information about 

the SOC of the battery. However these readings should be validated to check if, for some 

reason, the BMS is malfunctioning. If they are found to be valid they are used for charge 

monitoring purpose. 

 Figure 6-2 shows the SOC reading validation and monitoring routine. The routine starts 

by initializing the different status report values. It also gets most recent current and SOC 

reading from the data buffer and model information from the MPIR. It calculates the error 

between the model predicted values and the reading. Then the necessary decisions are 

taken as given in the flow chart.  

Figure 6-1 the overall charge supervisory algorithm 
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The actual implementation is not exactly as it appears. SOC reading validation routine is 

done only every 5 sec while the rest are done each sampling interval where the sampling 

interval is 0.2 sec.  

6.2.2 Battery Voltage Monitoring Routine (BVMR) 

This routine is entitled to make sure the maximum voltage of the battery is not violated. 

The following flowchart in Figure 6-33 provides an over view of how this routine 

Figure 6-2 SOC reading validation routine 
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works

 

 

The input to this routine is the battery model and current state from the optimization rou-

tine and the current reference from the BMS. It predicts the voltage steps ahead and if the 

predicted voltage is found to be equal to or greater than the limit voltage and the maxi-

mum soc level is not attained in the meantime, the current which results in the mid vol-

tage between the current battery voltage and the maximum voltage is calculated. This cur-

rent is taken as a reference.  Otherwise the same reference current as given by the BMS is 

taken as reference current in this routine.  Finally this current level is passed to MPIR for 
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Figure 6-3 flow chart for battery voltage monitoring routine 
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further decision making. Moreover some more issues like what if the BMS changes the 

current reference a bit later is also included which is not shown in the flow chart. 

6.2.3 Temperature Monitoring Routine 

 

The overall temperature monitoring routine is shown in Fel! Hittar inte referenskälla.. 

The basic procedure for validation is the same as SOC reading validation routine, the dif-

ference is only the inputs i.e. the model and the data (temperature). The temperature is 

predicted steps ahead and if it is going to be on or above the limit the reference current is 

halved, provided the reference current is not changed from the previous step (not shown 

in the flow chart). The routine also considers the BMS reference current reduction if it 

happens in the next steps which are not shown as well.   
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6.2.4 Minimum Current Generating Routine (MCGR) 

This routine intended to give the minimum current incase the BMS provides very low 

current reference for some reason. This current value is calculated based on the time it 

takes to charge the battery to the desired level. Figure 6-6 shows the flow chart for 

MCRG routine. 
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Figure 6-4 Temperature Monitoring Routine 
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6.2.5 Reference current Generating Routine (RCGR) 

This routine takes current references from different routines above makes the appropriate 

decision on current reference based on the available status information. 
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Figure 6-6 MCGR routine flow chart 
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The above flow chart clearly depicts how the right current reference is chosen. In the fig-

ure ‘Iref_in’ is the reference current from the BMS and the rest signals come from the re-

spective routine shown in the Figure 6-7. 
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Figure 6-7 Reference Current Generation Routine 

Iref1, Iref2, 
Iref3, Iref_in 

TMR 

BVMR 

SOCMR 

Iref1,Vmax_S 
 

Iref2, T0max_S, 
T0_Rs 
 

Soc_Rs, Soc_prs  
 

Sources of different signals 

 

MCGR 

BMS 

Iref3 

Iref_in 



Chalmers University of Technology 
Model Based Approach to Supervision of Fast Charging 

66 

 

Shemsedin Nursebo  August 30 2010 

7 RESULTS AND ANALYSIS 

This section provides an analysis of the different routines discussed in section 6 creating 

some scenarios. The aim of this section then is to show the performance of the routines 

and how well coordinated their response is. However, before that the following subsection 

provides how the simulation is setup. 

7.1 Simulation set up 

Figure 7-1 shows the Matlab model of the simulation 

 

Figure 7-1 Matlab model of the simulation setup 

There are four main blocks shown in fig 7-1, 

� The battery model (Magenta) 

� The thermal model (Light blue blocks) 

� The controlled current source (Red) 

� The Optimization block (Orange) 
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7.1.1 Simulation model for battery including thermal model 

The battery model used is the model that comes with Matlab in SimPowerSystems tool-

box. This model is implemented using the model highlighted at the end of section 3.2.3; 

but it does not include thermal model. Thus there is a need to include thermal model.  

At the end of section 3 we have discussed thermal related issues of a battery. Here we 

have applied the same principle to include thermal model to the given battery model. Here 

is how it is done: the block in Figure 7-2 calculates the temperature rise for a given charg-

ing current. Given the initial temperature of the battery, the change in temperature is cal-

culated. Some representative model parameters are given in Table 7.1.  

 

 

Figure 7-2 Simulink model for calculating the temperature rise in a battery during 

charging 

 

Table 7.1 Thermal model parameter values 

Parameter definition Value 

h (W m-2 K-1) The heat transfer coefficient for forced con-

vection 

5 

A(m2) Battery surface area exposed to the convec-

tive cooling medium (typically air) 

2.0755  

M(Kg) Mass of the battery 250 [7] 
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Parameter definition Value 

Volume(m3) Volume of the battery 0.15 [7] 

Cp(KJ Kg-1K-1) Specific capacity of the battery 1.0118 Fel! Hittar 

inte referenskälla. 

T0(0C) Initial battery temperature 25 

Tair(0C) Ambient temperature 25 

 

The heat transfer coefficient is something which is dependent on the battery cooling sys-

tem and there is no information to the author what the typical value is. But here its value 

is chosen to have the effect that is required. The mass and volume of the battery is taken 

from [7] (USABC battery goals for EVs). And If we take one of the Li-ion batteries in 

Table 2.3 (say the one in [48]) and dimension it according to EV requirements in [7], then 

we get the surface area of the battery exposed to air approximately as in Table 7.1. It is 

assumed that the ambient temperature is 250C and the battery temperature initially is the 

same as the ambient temperature. One can assume whatever initial battery temperature as 

long as it is in the operating range of the battery. The specific heat capacity of lithium ion 

battery is taken from reference Fel! Hittar inte referenskälla. which is the specific heat 

capacity for a typical Li-ion polymer battery used for EV application.  

However these are just representative parameters for fictitious battery and not actual bat-

tery; such information is hard to find for a given battery. Moreover what is needed to see 

is if the temperature monitoring system predicts future temperature correctly and how it 

reacts whenever triggering events occur. In that respect the given parameters fulfill the 

objective of the simulation.  

As it is specified in section 3, to simplify things, it is assumed that the change in charge 

acceptance and open circuit voltage are linearly related to the change in temperature. The 

change in open circuit voltage (see eq. 3-16) is evaluated as shown in Figure 7-3.  

 

 

Figure 7-3 Modeling effect of temperature on battery voltage 

Here the gain is taken by linearizing the curve given for temperature-dependent potential-

correction term in Ref [9]. 

The input to optimization algorithm is ‘Vb_th’ which is considered as the measured bat-

tery terminal voltage. 
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The change in charge acceptance (see eq. 3-15) is incorporated by manipulating the cur-

rent flowing into battery (see Figure 7-4).  

 

Figure 7-4 Modeling effect of temperature on charge acceptance 

Here once again the gain term is taken from reference [9] in similar procedure as men-

tioned above. 

From Figure 7-4 Modeling effect of temperature on charge acceptance, for a given refer-

ence current ‘Iref_out’ the rate of change of SOC will be different depending on the tem-

perature of the battery. It is achieved by manipulating the actual current flowing into the 

battery. However what the optimization algorithm knows is that the current flowing into 

the battery is the same as the reference current provided by itself in the previous routine.  

The approach used in the simulation set up to model the change in charge acceptance is 

not completely genuine as there will a difference between the current that is assumed to 

flow into the battery and what actually flows. Even though this properly models the 

change in charge acceptance it could affect the current-voltage (V-I) relation of the mod-

el.  The proper modeling would have been a allowing all current to flow in and then ma-

nipulating the capacity of the battery depending on the change in temperature. It is used 

here this way as there is no way to manipulate the capacity once the simulation is started 

with given simulation set up. But since the temperature change is very slow it has neglig-

ible effect on the V-I relationship of the battery. 

7.1.2 The converter simulation model 

Using the actual converter model in the simulation is very computation intensive and time 

consuming. In section 5 we have discussed the converter and it is seen that, except for 

starting process, it can be considered as a controlled current source.  Therefore all of the 

simulation results provided below use a simple controlled current source as shown in Fig-

ure 7-1. It is controlled by the reference current provided by the optimization block. 

7.1.3 The optimization routine 

Finally the optimization routine includes all model identification and decision making 

processes discussed in section 4. It is implemented In S-function. 

7.2 Results and Analysis 

7.2.1 Identification  

Before looking at the results, let us ask our self the question: ‘what do we want to see in 

identification?’  One answer is the identified parameters must be able to predict correctly. 
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The other is the identified parameter values should be nearly constant for time invariant 

models, or slowly varying for time varying models. Here we have a battery model with 

time varying characteristic. But the thermal model and the SOC models are nearly con-

stant. This can easily be understood from the way the model is formulated and is setup for 

simulation.  Let us see first their prediction capability. 

 

7.2.1.1 Identified model prediction capability 

Model for terminal voltage prediction  

Figure 7-5 shows the prediction performance of the V-I relationship Battery model. It can 

easily be seen that the prediction performance very good. The prediction is started once 

the optimization routine has collected enough data to optimize the battery model parame-

ters. In this simulation the time it takes is 5 sec with sampling interval of 0.2sec. That is 

the minimum data length used for optimization is 25 sample data.  

 

Figure 7-5 measured and predicted voltage 

 

Model for State of charge prediction 

Similarly Figure 7-6 shows the prediction performance of the SOC model. 
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Figure 7-6 Measured and predicted SOC 

Model for temperature prediction 

If the exact parameter values as in Table 7.1 are used, the thermal constant of the battery 

will be around 6hr and 45 min; this is usually the case for battery thermal time constants. 

However, the simulation will not show any visible result for thermal behavior of batteries 

and predicting the temperature after 10 sec or even 10 minutes will give no benefit as the 

temperature change is very small. Thus for batteries working under normal condition such 

prediction is not necessary and the battery thermal model can be approximated by linear 

model which then can be used for validating the temperature reading. However if some-

thing goes wrong and if the temperature starts to increase rapidly, assuming this tempera-

ture rise follows the model developed in section 3, the same model can be used to take ac-

tion in time. Therefore to simulate such effects and to see more clearly the prediction ca-

pability of the temperature monitoring routines the specific heat capacity of the battery is 

reduced to 100. The following figure shows the same. The remaining simulation results 

on temperature monitoring use the same value. 
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Figure 7-7 Measured and Predicted Temperature 

In all of the figures above we see one fact: they all show good performance in predict-

ing 10 sec ahead. 

Before concluding this subsection let us see the effect of the converter on the predic-

tion performance of the different models. Figure 7-8 shows prediction performance of 

the different models when they work with the actual converter circuit instead of the 

controlled current source. It can be seen that the performance is not compromised and 

the decision to replace it with controlled current source is validated. 
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Figure 7-8 prediction performance of the different models when working with the 

charging circuit 

 

7.2.1.2 Identified parameter consistency 

� Parameters for voltage current relation: 
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seen in parameter which have less effect on V-I relation in time range we are 

working in, that is Cb. The rest are comparatively constant. This is enough as far 

as our aim is concerned. We only need to be able to predict the voltage correctly 

that is all. Moreover there are no real capacitors or resistors in a battery to whose 

value we can check. 
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Figure 7-9 battery V-I model parameters 

 

Figure 7-10 Battery V-I model parameters (continued) 
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battery Cb. Moreover since this is a linear model, linear solver is used to optimize 

the parameter. 

 

Figure 7-11 SOC model parameters 

 

� Parameters for temperature monitoring 

 

 

Figure 7-12 Thermal Model Parameters 

From the above figures the overall impression is the parameters are well identified. Be-
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7.2.2 SOC Validation and monitoring 

The first task of this routine is validating the SOC measurement values. It uses the error 

between model-predicted values and measurement values to accomplish its task. The error 

threshold is selected based on our expectation of the noise level. However the prediction 

performance is only good at much lower noise levels. Here it has to be noted that the time 

range we are working in affects the noise rejection capability of the routine. In longer 

time ranges, it easier to see how the SOC trajectory is moving better than in shorter time 

ranges. ´ 

To see the noise rejection capability of the routine a white noise is added to the measured 

SOC level. Then error for various noise power levels calculated and the prediction capa-

bility of the routine is checked. Based on the way the error is calculated in the routine an 

error value beyond 0.1% indicates that the routine is not appropriately predicting. The fol-

lowing figure shows the different signals for error level of around 1% (left) and 0.1% 

(right). 

 

Figure 7-13 state of charge prediction 

From the figure in the left it can be seen that in a sample data taken for 5 sec or 10 sec it 

is difficult to anticipate the trajectory of the SOC but in longer time ranges it could be 

done. Therefore for better noise rejection capability of the routine, besides using filters, it 

is recommended to increase the time window which is used by the routine.  

The rest of the routines task is providing the status signals therefore it discussed in the 

next subsections by creating scenarios. 
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7.2.3 Terminal voltage monitoring 

This routine is responsible for keeping in check of the battery voltage limit. For the model 

we working with the voltage limit is 385V.  

Scenario I: SOC measurement is correct and the voltage limit reaches while the BMS 

does not take action (the BMS malfunctions)! 

 

Figure 7-14 voltage monitoring, Scenario I 

Scenario II:  SOC measurement is correct and the voltage limit reaches while the BMS 

does take action! 
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Figure 7-15 voltage monitoring, Scenario II 

Scenario III:  SOC measurement is correct and the voltage limit reaches while the BMS 

does take action but it is a bit late! 

 

Figure 7-16 voltage monitoring, Scenario III 
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linear model with one parameter could work as accurately as the nonlinear model; and 

even better, since we have to optimize only one parameter. 

On the other hand, as far as validation is concerned we can decide the error threshold 

based on our expectation of the noise level there, and use Kalman filter to get better tem-

perature readings. 

 

 

Figure 7-17 Temperature Reading Validation 

Now let us see how the routine reacts when temperature limit is reached. The temperature 

limit is 450C. We take the battery and ambient temperature to be initially at 420C to re-
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Figure 7-18 Temperature monitoring, Scenario I 
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Figure 7-19 Temperature monitoring, Scenario II 
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Figure 7-20 Temperature monitoring, Scenario III 
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7.2.5 Minimum current Generation Routine 

 

Figure 7-21 Minimum Current calculation 
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Figure 7-22 Voltage limit and end of Charging 
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8 CONCLUSIONS 

 

In this thesis a charge supervisory algorithm has been developed for an off-board battery 

charger. Unlike many off-board battery chargers, a charger which is equipped with this 

algorithm will be able to take some crucial decisions independent of the BMS whenever it 

is necessary. This results in safe and reliable charging process. 

The algorithm uses three important models to facilitate its decision making:  

� Battery  V-I characteristic model 

� Battery SOC model 

� Battery thermal model 

The model parameters are identified using the data collected during the charging process.  

The identification process uses for nonlinear models the LM method and linear solvers for 

linear models. In case of nonlinear models, it is found that using constrained optimization 

provides a better result in terms of prediction performance and consistency of the parame-

ters. The optimization routine is executed after a specified time of interval. Executing the 

routine every sample interval is both computationally intensive and unnecessary as only 

slow parameter variation is expected. However for better accuracy we have to make use 

of each sampled data. This is accomplished through the use of the recursive Kalman filter 

which is executed during each sampling interval. This will counteract errors that occur 

due to modeling and measurement. 

On the other hand before accepting the new optimized parameters the error of the objec-

tive function is checked and if it is above a given threshold the old parameters are main-

tained until the next routine.  The convergence problem occurs when the collected data 

are not well conditioned. 

The supervisory algorithm works well provided that the simplifying assumptions given in 

section 6 holds true. These assumptions are necessary due to the versatility of the battery 

system and without those assumptions it is difficult to carry out the objective of the thesis.  

All in all, the algorithm is composed of six main routines which carry out specific tasks 

and communicate to each other through parameters and status information. These routines 

are 

� Model Identification routine (MIR) 

� Battery Voltage Monitoring Routine(BVMR) 

� SOC Monitoring Routine(SOCMR) 

� Temperature Monitoring Routine(TMR) 

� Minimum Current Generating Routine(MCGR) 

� Reference current Generating Routine(RCGR) 
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MIR is the routine which optimizes the model parameters as mentioned above. BVMR 

takes care of the battery voltage limit. It ensures in no time during the charging process 

the battery voltage limit is violated. It predicts the future value of battery voltage based on 

the current states and battery V-I model. A Kalman filter is used to get correct current 

states which will result in a correct future battery voltage prediction. During the work it is 

found that the accurate parameter tuning of the Kalman filter is very important to get sa-

tisfactory battery voltage prediction.  

SOCMR checks the SOC readings for correctness or consistency and predicts the future 

value of SOC if they are found to be correct. Then it provides information to other rou-

tines about the present and future status of the SOC.  The SOCMR checks the readings for 

correctness based the error between model predicted value and measured value. If the er-

ror is found to be above a given threshold the SOC readings are said be incorrect. The er-

ror threshold is selected based on our expectation of the noise level which the algorithm is 

expected to encounter.  

However the SOC prediction could be corrupted in an environment where the noise level 

could be considered reasonable. This happens if the time window during which the algo-

rithm is working on is short or the rate of change of SOC is relatively slow. Thus there are 

two possible solutions in dealing with this problem. Filters and longer time windows 

could be used to suppress noises.  On the other hand predicting SOC unlike battery vol-

tage and temperature is less important. Thus it can be avoided without having any effect 

on the performance of the overall algorithm. Hence the most important task of this routine 

is checking if the readings are correct or not and providing the present status of the SOC 

to other routines. 

TMR is entitled to make sure that the temperature readings are correct and predict the 

temperature a specific time ahead to avoid any possibility of reaching temperature limit. If 

it is found that the temperature limit will be reached after a given time, then the charging 

current is reduced in time to reduce the temperature rise.  

Unlike other models, due to the scarcity of the information on this part, thermal modeling 

seems to be over simplified. Similar to the SOC prediction, temperature prediction is con-

siderably affected by noise. Similar solutions as for the SOC prediction can apply. How-

ever unlike SOC prediction, temperature prediction is important.  

On the other hand, in the simulation the thermal time constant of the battery appears to be 

low, this is because we want to see the prediction capability and the various events more 

clearly as mentioned above. However the actual time constant is much longer. And this 

would have been in favor of going for longer time window to get better noise rejection. 

However, the rate of rise of temperature is usually very low; the noise might make it dif-

ficult to predict the temperature trajectory. In that respect, temperature prediction is more 

important whenever something goes wrong in the battery system the rate rise of the tem-

perature is noticeable. This could be that the charging current is too high or any other rea-

sons that could result in rapid temperature rise in the battery system. However, in normal 

situations it is enough to validate the readings in which case a linear model with one pa-

rameter is preferable as it will have better numerical stability and less computational bur-

den. 
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MCGR is responsible to for deciding the minimum current that should be delivered to the 

battery at normal conditions. This routine along with other routines make sure that the 

charging time will not be unreasonably long. It ensures that all batteries will be charged to 

the required level in the time frame of fast charging. In this report the time taken is 30 

minutes. This time could be decreased as more information on charging capability of ac-

tual EV batteries is known. 

Finally the RCGR chooses the appropriate reference current from the reference currents 

generated by the routines mentioned above based on the status information supplied by 

them. 
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9 FUTURE WORK 

Various future works based on improving this work or using the same concept to apply it 

for other similar areas could be proposed. To improve this work and to make it practical 

the following things need to be done. 

Carry out Laboratory experiments to understand and decide 

� Effect of measurement noise on the algorithm; both in parameter identification, 

and validation and prediction 

� The best prediction horizon, sample time and sample length 

� The exact thermal time constant of the battery and the nature of temperature rise. 

The routines could be improved and additional features could be added if more practical 

problems that face the BMS are known. Most of the problems discussed in this thesis are 

hypothetical, such as incorrect measurements values form the BMS, occurrence of low 

current references from the BMS. Of course these problems could occur but there is no 

practical information on them. 

It will also be possible to fix the maximum current for a given battery if the worst case 

charging efficiency of Batteries are known; where the inefficiency is due to the voltage 

drop on the internal resistance. Or provided that a minimum charging time exists, we can 

fix the maximum charging current for a particular battery.  

In this thesis the optimization routine is executed every 10 sec interval but it is possible to 

execute it only when the error in the objective function is above a certain value say 1e-2. 

This could result in a more computationally efficient approach. 

Concerning applying the same principle in other areas, for example, for a single battery as 

in a BMS, actual, meaningful parameters could be determined experimentally and varia-

tion in specific parameter can be attributed to specific condition. For example, cold crank-

ing, capacity fading etc. Thus the online optimization algorithm could play an important 

role in this area. This same principle is used in [10] and [20] for lead acid battery. 
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10 APPENDIX  

       Appendix A: The LM method  

A.1A.1A.1A.1  How is the initial µ value selected? How is not know in the solution is far from or near to 

the final solution? Then how is µ updated? 

According to [26], the initial value µ0 is 

¹0 � Ö ? z��~×�~~���Ø    
10-1 

Where 

  �~~��� � a{�¦�r� � ­����« ? ­�����        
10-2 

Where τ can be any value between 1 and 1e-6 depending on how far the initial parameter 

values are from the final value. For good initial guess it is 1e-6 [26]. 

After each iteration µ is updated as follows: 

Given f(x+h) as in Fel! Hittar inte referenskälla., where in this case q � q�¢ 

© ��  q�¢� º Ù�q� � 1
2 ? Á�q�¢�«Á�q�¢� 

Ù�q�¢� � 1
2 ? �«�  q�¢«­«�  1

2 q�¢«­«­q�¢ 

� ©���  q�¢«­«�  1
2 q�¢«­«­q�¢ 

10-3 

The updating is controlled by the gain ratio which gives us an indication to how far from 

the final solution we are. This is given by: 

Ú � ©��� � © ��  qÁz�
Ù�0� � Ù �qÁz�  

10-4 

From 4-11 and 10-3 

Ù�0� � Ù �qÁz� � 1
2 q�¢«�¹qÁz � ¦� 

10-5 

If Ú is small (may be even negative), then L (hlm) is a poor approximation, and we should 

increase µ with the two fold aim of getting closer to the steepest descent direction and re-

ducing the step length. In [26] the following is algorithm is used  

{� Ú Û 0, ¹ � ¹ ? z�� Ü1
3 , 1 � �2Ú � 1��Þ ; � � 2 
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A.2A.2A.2A.2 Any Iterative process needs stopping criteria. Then what are the stopping criteria 

for this process?  

Well, there are three stopping criteria [26] based on different requirements on involved 

parameters. 

The global minimizer should reflect that F’(x*) =g(x*) =0, therefore it is required that the 

maximum in norm of g i.e. ||g||∞ should as low as a given low value ε1  

¾|¦|¾
∞

¬ àD          
10-7 

Another relevant Criterion is to stop if the change in x is small 

¾|���£ � �|¾ ¼ à|t¾|�|¾  à|y       
10-8 

The final stopping criterion is the number of maximum iteration 

Ê ¤ Êz��                     
10-9 

More information can be found at reference [26] and its Matlab implementation can be 

downloaded from the author’s website http://www2.imm.dtu.dk/~hbn/Software/. 
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APPENDIX B: MATLAB FILE DOCUMENTATION: THE INTELLIGENT CHARGER 

TOOLBOX 

All in all this is just a rough introduction to the role of individual functions defined in dif-

ferent M- files, for the actual implementation and further information consult the model 

files and M-files where the function is defined. 

The overall Matlab files can be grouped into two categories 

Those involved in with the converters only; without the supervisory algorithm(Converter 

related files) 

Those which deal with the charging circuit along with the supervisory algorithm (SA)(SA 

related files) 

Let us see them one by one. 

B.1B.1B.1B.1 Converter Related Files 

The user can use this simulation files to study the different characteristic of the converter 

circuit.  The files are only ‘mdl’ Matlab files, the different parameter values used in them 

are defined in file > model properties > call backs > InitFcn.  The files include 

Buck_Boost.mdl:- which is the simulation model of the Buck-Boost converter along with 

its control circuit. 

VSC_BuckBoost_Approach_I.mdl:- this is a simulation model of the whole charger cir-

cuit including the VSC, Buck boost converter and their control system. In this simulation 

model the starting mechanism mentioned as approach I in section 5 is used  

VSC_BuckBoost_Approach_II.mdl:- is similar to the above model but the starting me-

chanism described as approach II in section 5 is implemented in this model 

 

B.2B.2B.2B.2 SA Related Files 

These files simulate and can be used to study the performance of the SA algorithm. These 

contain both ‘mdl’ and M- Matlab files. These files are comparatively numerous. We 

have two ‘mdl’ files from where the simulation is launched:  

Intelligent_Charger_CCS.mdl:-Here the controlled current source is used in place of the 

charging circuit 

Intelligent_Charger_Buck_Boost.mdl:- In here the buck-boost DC/DC converter is used 

to simulate the charging circuit.   

From the mdl files the OptMF () S-function is launched. 

 

B.3B.3B.3B.3 The Main Optimization Function (Optmf () Function)  

B.3.1 General 
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This is an S-function from which the different routines are called and coordinated. It sam-

ples the measured data at user specified sample interval and stores user specified sample 

length data. The measured data includes battery current, voltage, temperature and SOC. 

This data will be used for building the different models and making decisions whenever 

necessary. It also accepts information and requests related to the battery. The information 

includes the maximum voltage and temperature, and the start signal while the request is 

the amount of charging current it should provide. It outputs the optimum reference current 

to the battery and the different information signals to the user. This information signals 

include the model parameters for each model, the predicted battery voltage, temperature 

and SOC level. 

 

Inside the S-function 

The main tasks carried out inside the S-function are  

Initialization 

This initialization can be seen in two ways: 

S-function initialization: - this includes determining the number of inputs, output and state 

variables. This is done in ‘mdlInitializeSizes’ which usually the case in S-functions. 

Simulation variable initialization: this includes initializing model and other parameters. 

This initialization is done inside mdlUpdate function. The model parameter initialization 

is carried out by calling prepare_data() function.  

Model Parameter Optimization 

This part is responsible for calculating the model parameters and is executed at an interval 

which is set by the user. Different set of functions are involved in parameter identification 

of each model.  

Functions involved in parameter identification of V-I battery model:  

A good approximate value of the internal resistance could easily be found whenever a 

step in current occurs. Using this value, the rest of parameter identification can be done 

using SMarquardt_M() function. 

The ‘SMarquardt_M.m’ M-file: - this function is taken from 

http://www2.imm.dtu.dk/~hbn/Software/ is slightly adapted to problem at hand. A call to 

SMarquardt_M(), provided that enough data is gathered, will optimize the parameter of 

the battery V-I model. This function gets the measured data, a vector which contains algo-

rithm related values and the initial values of the battery V-I model parameters. The model 

parameters are passed as structure of matrices. This function uses the help of the follow-

ing functions to carry out its duty. 

The ‘extract.m’ since the actual optimization works in parameter vectors rather than ma-

trixes. Thus ‘extract.m’ extracts parameter vectors that need to be optimized from the ma-

trix passed to SMarquardt_M (). 
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The ‘subopt_M.m’ M-file: - this is where the objective function for V-I battery model is 

defined. 

‘update_mat.m’ once the parameters are optimized, the original matrices of the model are 

updated using the update_mat () function.   

Functions involved in parameter identification of SOC of the battery model: 

The ‘soc_par.m’ M-file: - a call to soc_par () with appropriate inputs will optimize the 

SOC model parameters of the battery.  

Functions involved in parameter identification of thermal model of the battery: 

The ‘Tdq_par.m’ M-file: - a call to Tdq_par() with appropriate inputs will optimize the 

thermal model parameters of the battery. The following two functions are called within 

this function to carry out the task. 

temp_es(), found in temp_es M-file, is the function where the objective function for this 

model is defined.  

SMarquardt, found in SMarquardt M-file, uses the objective function along with other da-

ta and algorithm related inputs to solve the problem of optimizing the model parameters. 

i) Battery Voltage Monitoring 

 This part uses Kalman filter to adjust the current states in the model, predicts the battery 

voltage, and calculates the suitable reference current whenever the predicted voltage is 

found to be above the voltage limit.  

For predicting the future state there by the future battery voltage it uses the function pre-

dict_st() found in predict_st.m M-file.  

To calculate the suitable reference current whenever the predicted voltage goes above the 

limit it uses the function cal_Iin() found in cal_Iin.m M-file. 

ii) State Of Charge Monitoring 

 This part of the S-function takes care of SOC related issues; checking the correctness of 

the SOC provided, predicting the future value, providing the status information to other 

routines. This all is accomplished by calling the function soc_routine(). Inside the 

soc_routine function soc_check() is called to calculate  the error between the measured 

and predicted SOC values which then can be used to validate the reading. 

iii) Battery Temperature Monitoring  

Here a call to temp_routine() function is made to carry out all the tasks necessary for tem-

perature monitoring. Inside the routine temp_es() is called to calculate the error in the ob-

jective function which then can be used to validate the temperature readings.  

The remaining part of the mdlUpdate function contains calculates the minimum current 

for a given battery as described in section 6 and produces the appropriate reference cur-

rent to the converter. Finally the different parameters computed are prepared to be output-

ted. The outputting is done by mdloutputs function which is usual the case in S-functions. 
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