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Abstract
Noise regulations for aircraft that fly over populated areas are becom-

ing continuously stricter. This in combination with increasing compu-

tational capabilities has boosted interest in aeroacoustic computations

in the aerospace industry. New numerical methods that are able to pre-

dict noise will play a major role in future aircraft and engine designs,

and validation and possibly improvements of these new methods are

needed for results with satisfying accuracy.

This thesis shows how nonlinear blade row interaction computa-

tions that focus on aeroacoustics can be made in an accurate and effi-

cient way. It is shown how the computations of a succession of blade

rows with non-matching blade count can be made more efficient by uti-

lizing the chorochronic periodicity.

The tonal acoustic response from a stator vane with rotor wake im-

pingement is calculated with the chorochronic method and compared to

a linear method, and the results are in good agreement. The harmonic

balance technique was also tested for tone noise predictions and shows

a good potential to be a more efficient tool than using standard time

stepping for obtaining periodic solutions. The Newton-GMRESmethod

is shown to be a suitable algorithm for obtaining convergence and for

better performance of the harmonic balance computations.

Broadband noise predictions from rotor wake impingement on sta-

tors are calculated with a hybrid RANS/LES method and chorochronic

buffer zones. The noise is evaluated with a FWH surface integral

method.

Keywords: Computational Aeroacoustics, CAA, Computational Fluid

Dynamics, CFD, Hybrid RANS/LES, Acoustic analogies, Ffowcs-Williams

& Hawkings, FWH, Rotor-Stator interaction, Fan-Noise, Tone, Broad-

band, Chorochronic periodicity, Time lag, Nonlinear, Harmonic Bal-

ance Technique, Time Spectral, Newton-GMRES, Buffer layer, Sponge,

Counter-Rotating Propfan, Oscillating sphere
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in Linköping. The Swedish National Infrastructure for Computing

(SNIC) is acknowledged for granting access to HPC2N and NSC.

I would like to thank my supervisor Lars-Erik Eriksson for all his

guidance and help through these years working toward a Ph.D. Many
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Nomenclature

Latin symbols

a amplitude

b constant in low-pass filter

c speed of sound

Cp specific heat at constant pressure

Cε1 constant in the k-epsilon turbulence model

Cε2 constant in the k-epsilon turbulence model

Cµ constant in the k-epsilon turbulence model

Dtl coefficients in time spectral derivative

e internal energy

Fj Cartesian components of flux vector

f frequency

G time stepping routine

H source vector

H̄m Hessenberg matrix

J Jacobian matrix

Jm Bessel functions of first kind

k stator BPF index, turbulent kinetic energy

kx wave number

lt turbulent length scale

m circumferential mode number, number of Krylov vectors

M Mach number

Mr Mach number relative to observer

M Mach number vector

Nb number of blades

Nh number of harmonics

Ntl number of time levels

n rotor BPF index

ni Cartesian component of wall normal vector

n wall normal vector

p pressure

Pk turbulent production term

Pr laminar Prandtl number
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Prt turbulent Prandtl number

Q state vector in flow equations on conservative form

Q characteristic number

q state vector in flow equations on primitive form

R annular shell radius

r radial coordinate, residual, distance from source to observer

s shape parameter

S∗ spectral time derivative source term

Sij strain rate tensor

t time

T temperature, period

T transformation matrix

ui Cartesian components of velocity vector

vi Krylov vectors, Cartesian component of velocity vector

vn wall normal component of velocity vector

v velocity vector

W characteristic variables

x state vector containing all DOF

x0 start vector containing all DOF

xi Cartesian coordinate vector component

x observer position

xs integration point on surface / in volume

Ym Bessel functions of second kind

Greek symbols

α angle between observer and wall normal vector

δij Kronecker delta

ǫ damping factor

ε dissipation of turbulent kinetic energy, small number

κ characteristic number

λ wavelength, residual smoothing constant

µ laminar dynamic viscosity, radial mode number

µt turbulent eddy viscosity

Ω angular velocity, rotor shaft speed

ω angular frequency (ω = 2πf)
Φ Fourier coefficients of state vector

φ Fourier coefficients of the primitive variables in cylindrical

coordinate system

Π complex amplitude of pressure

ρ density

σ hub-to-tip ratio

σk constant in the k-epsilon turbulence model

σε constant in the k-epsilon turbulence model
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τ pseudo time, residence time

τij viscous stress tensor

θ circumferential coordinate

Subscripts

0 total condition

θ circumferential component

l time level index

r radial component

t turbulent quantity

x axial component

∞ surrounding state

Superscripts
′ fluctuating component

− ensemble averaged quantity

∼ Favre-filtered ensemble averaged quantity

̂ Fourier representation

N number of time steps

p time step index

Abbreviations

BPF blade passing frequency

BPR bypass ratio

CAA computational aeroacoustics

CC combustion chamber

CFD computational fluid dynamics

CFL Courant-Friedrich-Lewy

DNS direct numerical simulation

DOF degrees of freedom

FPR fan pressure ratio

FWH Ffowcs-Williams & Hawkings

GMRES generalized minimal residual method

LES large eddy simulation

LNSE linearized Navier-Stokes equations

MPI message passing interface

OGV outlet guide vane

RANS Reynolds-averaged Navier-Stokes
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Chapter 1

Introduction

1.1 Motivation

T
URBOMACHINERY NOISE is a common disturbing phenomenon to

which people are exposed almost everywhere in modern society.

Turbomachinery is defined as a machine that transfers energy from

a rotor to a fluid and vice versa. In everyday life, this would be your

vacuum cleaner, hairdryer, the fan in your computer etc. It is in the na-

ture of something that rotates and pushes on a fluid to generate noise.

The exception may be a slowly rotating rotor that operates in a uni-

form flow field, where the flow on the rotor blades surfaces is laminar,

and where there are no objects downstream of the rotor that are af-

fected by the nonuniform flow field caused by the rotor itself. No noise

is generated in that case, but this is unfortunately not the case in most

practical applications. Most turbomachines operate in environments

where the rotors are surrounded by objects that disturb the flow and

where turbulence exists in the flow upstream of the rotor and is cre-

ated by the rotor. The surfaces of the machine that face the fluid will

therefore experience unsteady flow fields in terms of turbulence, large

scale velocity fluctuations or pressure fluctuations, which in turn gen-

erate noise. This work focuses on flow induced noise that is generated

by aircraft engines, although the methods described here can also be

applied to other turbomachines.

As more and more transports are carried out by aircraft, and as

the areas around airports become more and more populated, the noise

pollution caused by air traffic becomes an increasing problem. As a

result of this, regulations1 have been proposed by the International

Civil Aviation Organization (ICAO) for how much community noise can

be acceptable around airports. In combination with local restrictions

1Volume I of Annex 16 to the Convention on International Civil Aviation
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at airports with heavy traffic, this has made noise an important issue

for aircraft and engine manufacturers. Noise must now be considered

early in the design process of new aircrafts and engines to ensure that

acceptable levels are met without costly redesigns at late stages. A key

element in accomplishing this is accurate and efficient prediction tools.

In addition to reducing noise, future aircraft must also be more fuel

efficient in order to minimize the overall negative environmental im-

pact. One important factor in the commonly used turbofan engine, de-

picted in figure 1.1, is the propulsion efficiency, which can be increased

by reducing the fan pressure ratio (FPR). More air has to pass through

the fan to achieve the same amount of thrust when the FPR is reduced,

and this is done by increasing the diameter of the fan, hence increas-

ing the bypass ratio (BPR). Increasing fan diameter has been a main

trend since the introduction of jet engines in commercial aviation. As

the diameter increases, so does the drag from the nacelle. An up-to-

date question is whether the turbofan can be replaced by one without

a nacelle, i.e. an unducted fan/propfan. The diameter can then be in-

creased even more and the FPR further reduced without increasing

nacelle drag. There is no longer a protective shroud around the blades

though, and because of this there will be higher structural demands

on the blades for safety reasons. The main concern, however, is noise

since the shroud can no longer be used to suppress it.

Fan
OGV

Compressors Turbines
CC

Bypass jet

Core jet

Nacelle

Figure 1.1: Basic components of a turbofan engine.
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CHAPTER 1. INTRODUCTION

In commercial air transportation the crucial operating points in

terms of noise are take-off and approach, since the distance between

the source and populated areas is relatively short. At cruise conditions,

the distance to the ground is far enough for the noise to attenuate as

long as the aircraft is operating at a subsonic speed. What may be

of concern during cruise is the cabin noise, even though not regulated,

since passenger comfort is an important marketing issue, although this

has mainly been a problem for propeller-powered airplanes. The flow-

induced noise sources that are present when an aircraft is in operation

can be divided into two main categories: airframe noise and engine

noise. The first category includes noise generated by the aircraft fuse-

lage and the trailing edge noise of the wings. The first category also

includes the noise produced by the flow around landing gears and high

lift devices. These noise sources may contribute as much as the engines

to the community noise during near ground operation. The second cat-

egory includes jet noise, core noise and turbomachinery noise. The jet

noise is caused by the turbulent mixing process in the jet behind the

engine and is highly dependent on the velocity of the jet. The jet ve-

locity is reduced when the FPR is reduced and the move towards more

efficient engines thus also leads to a reduction in jet noise. The core

noise is generated by the combustion process inside the engine and

may under certain circumstances, e.g. engine idle, be the dominant

noise source.

The main source of turbomachinery noise in an aircraft engine is

the fan. It typically operates with a supersonic tip Mach number dur-

ing take-off and a subsonic tip Mach number during approach. The

noise characteristics will be very different in these two operating con-

ditions due to a rotor-locked shock wave system that forms around the

blades at supersonic relative blade velocities. The shock waves couple

to the duct in a nonlinear fashion. This will be very sensitive to small

blade to blade differences and radiate from the inlet as multiple pure

tones or “buzz saw” noise (Hubbard, 1994). The rotor alone will also

create noise of a broadband character, mainly from the trailing edges

of the blades, at both subsonic and supersonic tip speeds. Outlet guide

vanes (OGVs) are placed in the bypass duct to recover the energy of the

swirl in the flow downstream of the rotor. The unsteady aerodynamic

interaction between the fan and the OGVs is another important source

of turbomachinery noise and is the main focus of this thesis. The rotor

wakes that are generated from the boundary layer on the rotor blades,

i.e. the rotor’s trace in the flow downstream of the rotor, will impinge

on the stators as shown in figure 1.2 and create unsteady pressure

fluctuations on the vanes that produce noise of both a broadband and

3
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a tonal character. The broadband part of the noise is generated by the

turbulence in the wake and the tonal part is produced by the periodic-

ity of the rotor wakes and the stators. It is the blade passing frequency

(BPF) that is the fundamental frequency of a rotor-stator interaction, if

turbulence and other unsteady secondary flow features are neglected,

and the tonal noise will consist of the BPF and its harmonics. This is

the key to simplifying calculations of tone noise; the following chapters

will explain how it is done. The thesis also includes a priori broad-

band noise predictions where the aim is to resolve the “medium” scale

turbulence in the rotor wake and to model the small scales.

Figure 1.2: Rotor-stator configuration. The flow goes from left to right and

the arrow indicates that the rotor spins counter-clockwise. The shadowed

lines show the approximate instantaneous rotor wake position at mid ra-

dius, and the wakes spin at the same speed and direction as the rotor.

The goal of the work in this thesis is to make efficient and accu-

rate aeroacoustic predictions of rotor-stator interactions. This goal is

broken down into three main objectives:

1.1.1 Thesis Objectives

Explore and utilize a few promising methods for efficient and ac-

curate numerical predictions of nonlinear aerodynamic blade row

4



CHAPTER 1. INTRODUCTION

interactions. Focus on aeroacoustics and general methods for blade

rows with non-matching blade count. This includes finding appro-

priate methods for both tone and broadband noise predictions.

Apply suitable methods for reducing reflections at the inflow and

outflow boundaries of the computational domain. The flow path

will be cut and computations will be made on truncated domains.

Acoustic and vorticity waves must be able to leave the domain

and be absorbed by the boundary condition. Unsteady waves may

also be artificially damped before they reach the inflow or outflow

boundaries as a means for avoiding spurious reflections at the

boundary.

Investigate the use of acoustic analogies for improving the qual-

ity and efficiency of the noise predictions. The computational cost

can be reduced by making the unsteady aerodynamic computa-

tion on a truncated domain and then integrate the noise sources

to the farfield by using an acoustic analogy.

1.2 Rotor-Stator Interactions

The interaction between a set of two blade rows follows the theory de-

veloped by Tyler & Sofrin (1962):

m = nNb,rotor + kNb,stator (1.1)

where
n = 1, 2, 3...
k = ... − 1, 0, 1...

(1.2)

This equation gives information about what kind of deterministic flow

disturbances can be created from the interaction between a set of two

blade rows, with Nrotor number of rotor blades and Nstator number of

stator vanes. The disturbances are divided into circumferential modes

(or spinning modes), m; an example of a circumferential mode with
m = 8 is shown in figure 1.3. The spinning modes created from the
rotor alone are m = nNrotor and the flow is periodic and stationary

in the rotor frame of reference if turbulent fluctuations are averaged.

When these modes, e.g. rotor wakes, interact with the stator vanes, all

combinations of modes according to eq. (1.1) are created. The sign of

m determine the direction in which each mode spins. The frequency of
these modes in the stator frame of reference is determined by:

ωn = nNb,rotor

(
Ωrotor − Ωstator

)
(1.3)

5
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where n = 1 gives the rotor BPF and higher values yield multiples of it.
The frequency controls the speed at which the modes spin because one

circumferential wave length must pass a fixed point during one period.

Modes with higher values of m must therefore spin more slowly for the
same frequency. This is important when acoustic modes are considered,

because all combinations ofm will not propagate in a duct. This will be
discussed in the next section.

Ω

t

Figure 1.3: Spinning lobed pattern with circumferential mode numberm = 8
inside an annular duct. The angular velocity, Ω, of the pattern and the value
of m determine the frequency of the mode and vice versa.

1.3 Acoustic Duct Modes

1.3.1 Thin Annular Duct

Pressure modes from a rotor-stator interaction in a thin annular duct

can be represented as spinning modes of the form

p (x, θ, t) =
∑

n

∑

k

Πn,ke
iωnte−imθe−ikxmx (1.4)

in the stator frame of reference if radial variations are neglected. Coef-

ficients Πn,k are complex numbers specifying the amplitude and phase

for each mode. The circumferential mode number,m, is calculated from
eq. (1.1) and the frequency is calculated as in eq. (1.3). The axial wave

number can be calculated as

kxm
=

m

R

√
(Mθ

m)2 − 1 (1.5)

6



CHAPTER 1. INTRODUCTION

if there is no mean flow in the duct. Variable R is the annular duct
radius andMθ

m is the Mach number of the mode pattern in the circum-

ferential direction, calculated as

Mθ
m =

Rωn

mc
(1.6)

where c is the speed of sound. An acoustic mode must spin with a cir-
cumferential Mach number that is equal to or larger than unity in or-

der to propagate and eventually radiate to the surroundings. The mode

will otherwise decay exponentially in the axial direction since the ax-

ial wave number becomes complex. Propagating and non-propagating

modes are called cut-on and cut-off modes, respectively. Another way

of looking at it is that, for a given frequency, the acoustic mode must

have enough space in the circumferential direction for at least the mode

number times the wave length, mλ, in order to propagate.
For a given stage, it is the combinations of n and k yielding the low-

est values of m that gives the cut-on modes. Thus in designs for low
tone noise, the number of stator vanes is usually much higher than

the number of rotor blades. In this way, cut-on modes of fundamental

frequency, which contain the most energy, are avoided. On the other

hand, the broadband noise usually increases with an increased num-

ber of stators. One solution is to have fewer vanes, to accept some “low”

frequency cut-on acoustic modes and then to have tuned liners (noise

suppressors) in the duct to damp them before they radiate to the sur-

roundings.

1.3.2 General Annular Duct

Another way to reduce noise is to modify the radial variations of the

acoustic spinning modes inside a duct of finite height. All circumferen-

tial modes can be decomposed into radial modes and different modes

can be excited by modifying the shape of the vane, e.g. lean or sweep.

Each radial mode has its own propagation criteria and a quieter design

can be obtained by shifting as much energy as possible to radial modes

that are cut-off. The theory behind radial modes was well described by

Tyler & Sofrin (1962). A short summary follows here.

The pressure modes generated by a rotor-stator interaction in a duct

with axial flow, i.e. no swirl, can be represented as

p (x, r, θ, t) =
∑

n

∑

k

∑

µ

Πn,k,µe
iωnte−imθe−ikxµxEσ

mµ

(
κσ

mµr
)

(1.7)

when radial variations are included and where

Eσ
mµ

(
κσ

mµr
)

= Jm

(
κσ

mµr
)

+ Qσ
mµYm

(
κσ

mµr
)

(1.8)
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is the characteristic function to the solution of the wave equation inside

the duct. It consists of the sum of the Bessel function of the first kind,

Jm, and the weighted Bessel function of the second kind, Ym. The shape

of the characteristic function will depend on both the circumferential

and radial mode index as well as with the hub-to-tip ratio:

σ =
Rhub

Rshroud
(1.9)

If the fluid is at rest, i.e. there is no mean flow, the axial wave number

for a radial mode can be formulated as

kxµ
=

m

Rshroud

√

(Mθ
m (Rshroud))

2 −
(

κ∗σ
mµ

m

)2

(1.10)

where Mθ
m (rshroud) is the circumferential Mach number of the mode at

the shroud wall. To find out whether or not a mode is propagating, i.e. a

real or imaginary wave number, it is necessary to find the characteristic

numbers

κ∗σ
mµ =

{
κσ

mµr = Rshroudκ
σ
mµ

r

Rshroud
= κ∗σ

mµr
∗

}
= Rshroudκ

σ
mµ (1.11)

and Qσ
mµ from the eigenvalue problem

J
′

m

(
κ∗σ

mµ

)
+ Qσ

mµY
′

m

(
κ∗σ

mµ

)
= 0

J
′

m

(
σκ∗σ

mµ

)
+ Qσ

mµY
′

m

(
σκ∗σ

mµ

)
= 0

(1.12)

where the primes denote differentiation with respect to argument. While

the equation for the axial wave number in the three dimensional case,

eq. (1.10), is a bit more difficult to interpret than the two dimensional

equation (1.5), the result is similar. The criteria necessary for a radial

mode, mµ, to propagate is that the tip circumferential Mach number
of the pattern must still be supersonic, although the exact limit de-

pends on m, µ and σ. The radial modes in a nonuniform mean flow or a
swirling flow must be found numerically, and it is then impractical to

use Bessel functions to describe the radial variations (Verdon, 2001).

1.4 Computational Aeroacoustics

Aeroacoustic noise can be calculated from first principles by direct nu-

merical simulations (DNS) of the compressible Navier-Stokes equa-

tions. This was done for jet noise by e.g. Freund (2001) for a relatively

low Reynolds number. The equations are then discretized in time and

8
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space and all turbulence structures must be resolved by the computa-

tional mesh. The sound waves also need to be resolved, but the wave

lengths of these are usually larger than the size of the eddies. For high

Reynolds number flow, as in a full scale aircraft engine, the compu-

tational cost of making DNS is too high with today’s computers, and

models for the small scale turbulence are needed to allow for the use

of a coarser mesh. Two different approaches are used in this thesis,

where the first aims to model all turbulent fluctuations and the second

aims only to model the turbulent fluctuations that are not resolved by

the mesh. The first approach will be used to calculate the determin-

istic/tone noise from the aerodynamic interaction of a rotor-stator con-

figuration, i.e. the Tyler & Sofrin interaction modes, while the second

approach is used to capture some of the turbulent/broadband noise.
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Chapter 2

Methodology

2.1 Computational Fluid Dynamics

T
HIS thesis presents some methods for simulation of rotor-stator in-

teractions. The main tool is a compressible computational fluid dy-

namics (compressible CFD) code developed by Eriksson (1995). The

code solves the Navier-Stokes equations, which describe the flow of

a fluid including pressure waves, both in a stationary and a rotating

frame of reference. The code is suitable for aeroacoustic calculations,

CAA, since it is compressible, as long as all sound sources and pressure

waves of interest are captured by the computational mesh.

2.1.1 Unsteady RANS

The Unsteady Favre-filtered Reynolds-averaged Navier-Stokes (URANS)

equations in conservative form with a realizable k-epsilon turbulence

model can be written in compact form as

∂Q

∂t
+

∂Fj

∂xj

= H (2.1)

where the state vector in conservative form is

Q =





ρ
ρũi

ρẽ0

ρk̃
ρε̃




(2.2)

Here ρ is the ensemble averaged density, and ũi, ẽ0, k̃ and ε̃ are the
Favre-filtered velocity vector, total internal energy, turbulence kinetic

11
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energy and turbulence dissipation respectively. The flux vector can be

written as

Fj =





ρũj

ρũiũj + pδij − τij

ρẽ0ũj + pũj − Cp

((
µ

Pr
+ µt

Prt

)
∂T̃
∂xj

)
− ũiτij

ρk̃ũj −
(
µ + µt

σk

)
∂k̃
∂xj

ρε̃ũj −
(
µ + µt

σε

)
∂ε̃
∂xj





(2.3)

where p is the ensemble averaged pressure, τij is the viscous stress

tensor, Cp is the specific heat at constant pressure, µ and µt are lam-

inar and turbulence viscosity, Pr and Prt are laminar and turbulence

Prandtl number, T̃ is the Favre-filtered temperature, and σk and σε are

constants in the k-epsilon turbulence model. The viscous stress tensor

is approximated with a Boussinesq assumption as

τij = (µ + µt)

(
2S̃ij −

2

3

∂ũk

∂xk
δij

)
− 2

3
ρk̃δij (2.4)

where S̃ij is the Favre-filtered strain rate tensor defined as

S̃ij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
(2.5)

The source vector is defined as

H =





0
0
0

Pk − ρε̃
(Cε1Pk − Cε2ρε̃) ε̃

k̃




(2.6)

where Pk is the turbulence production term, and Cε1 and Cε2 are con-

stants in the k-epsilon turbulence model. The turbulence production

term is approximated as

Pk =

(
µt

(
2S̃ij −

2

3

∂ũk

∂xk

δij

)
− 2

3
ρk̃δij

)
∂ũi

∂xj

(2.7)

Finally, the turbulence viscosity is calculated with a realizability con-

straint as

µt = min



Cµρ
k̃2

ε̃
,

0.4ρk̃√
S̃ijS̃ij



 (2.8)
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Table 2.1: Constants in the k-epsilon turbulence model

Cµ Cε1 Cε2 σk σε Prt

0.09 1.44 1.92 1.0 1.3 0.9

where Cµ is a constant in the k-epsilon turbulence model. The vari-

ous constants in the turbulence model are listed in table 2.1. These

equations are solved, assuming a calorically perfect gas, using a finite

volume solver based on the G3D family of codes developed by Eriks-

son (1995). The discretization of the domain is done with a boundary-

fitted, curvilinear, non-orthogonal multi-block mesh, and the fluxes are

reconstructed with either a standard third-order upwind scheme or

a low dissipation third-order upwind scheme for the convective part

and a second-order centered difference scheme for the diffusive part.

Upwinding is done to make sure that the scheme is stable and it is

made on the characteristic variables to ensure that the extra numer-

ical dissipation is as small as possible. The solution is updated with

a three-stage Runge-Kutta technique. The solver is parallelized using

MPI libraries to enable multi-processor computations. Details on the

solver and the MPI implementation are given in Eriksson (1995); An-

dersson (2005); Stridh (2006). It is assumed in Papers I,II,IV,V and VI

that there is a scale separation between the predicted unsteady effects

and turbulent fluctuations, and a limit on the length scale is therefore

introduced. This limit is further reduced in Paper III to allow for tur-

bulent fluctuations that are resolved by the mesh to evolve without too

much influence from the turbulence model. This is often called a hybrid

RANS/LES method and is described in the next section.

2.1.2 Hybrid RANS/LES

Hybrid methods can be used if detailed information about the large

scale turbulent fluctuations is of interest, and these eddies should then

be resolved by the mesh. It is important to use a scheme with low dissi-

pation to make sure that as small eddies as possible are resolved by the

mesh. A low dissipation third-order upwind scheme is used in Paper

III. This is a fourth-order scheme with minimal amount of upwinding

to make the scheme stable (Eriksson, 1995; Andersson, 2005).

The turbulence length scale in the k-epsilon model is at the same

time limited to about 20% of a typical cell size. It can be shown that

the turbulence model then works as a Smagorinsky subgrid scale LES
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model everywhere except close to solid walls, where the increased res-

olution results in a local URANS model. Yan et al. (2005) did similar

work for a k-omega model. The k-epsilon model is derived as follows:

The turbulence viscosity is defined as

µt = Cµρ
k̃2

ε̃
(2.9)

without the realizability constraint. The turbulence length scale is de-

fined as

lt = C3/4
µ

k̃3/2

ε̃
(2.10)

Taking only the turbulence part of the viscous stress tensor from eq.

(2.4) gives:

τ
(t)
ij = µt

(
2S̃ij −

2

3

∂ũk

∂xk
δij

)
− 2

3
ρk̃δij (2.11)

Since the stress tensor is symmetric, the turbulence production term

can be written as

Pk = τ
(t)
ij

∂ũi

∂xj
=

{
τ

(t)
ij =

Symmetric

}
= τ

(t)
ij S̃ij (2.12)

If compressibility effects are moderate, we may approximate the stress

tensor as

τ
(t)
ij = 2µtS̃ij (2.13)

which gives:

Pk = 2µtS̃ijS̃ij (2.14)

It is safe to assume equilibrium conditions for subgrid scale turbulence,

which means that the turbulence production is

Pk = ρ ε̃ (2.15)

The dissipation can then be written as

ε̃ =
2 µt

ρ
S̃ijS̃ij (2.16)

The turbulence dissipation wants to stay at the lowest possible value

when there is an active upper limit on the length scale. This is difficult

to prove, but numerical experiments show that this is the case and,

together with eq. (2.10), this gives:

ε̃ = C3/4
µ

k̃3/2

lt,max

(2.17)
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Combining eq. (2.16) with eq. (2.17) gives:

C3/4
µ

k̃3/2

lt,max
=

2 µt

ρ
S̃ijS̃ij (2.18)

Using eq. (2.17) µt can be expressed as follows:

µt = Cµ ρ
k̃2

ε̃
= lt,max C1/4

µ ρ
√

k̃ (2.19)

Equations (2.18) and (2.19) give:

C3/4
µ

k̃3/2

lt,max

=
2 lt,max C

1/4
µ ρ

√
k̃

ρ
S̃ijS̃ij (2.20)

Rearranging this equation gives an expression for the turbulence ki-

netic energy:

k̃ =
2√
Cµ

l2t,max S̃ijS̃ij (2.21)

Combining eq. (2.19) with eq. (2.21) gives an expression for the turbu-

lence viscosity:

µt =
√

2 ρ l2t,max

√
S̃ijS̃ij (2.22)

Replacing µt in eq. (2.16) with the expression in eq. (2.22) gives:

ε̃ = 2
√

2 l2t,max

(
S̃ijS̃ij

)3/2

(2.23)

This should be compared with a Smagorinsky model (incompressible

version):

µt = ρ (CS∆f)2
√

2 S̃ijS̃ij (2.24)

where CS is between 0.065 and 0.25 depending on flow and ∆f is the
filter length scale. By comparing the expressions for µt, eq. (2.22) and

(2.24), the following relation can be obtained:

lt,max = CS∆f (2.25)

The filter length scale, ∆f , is usually set to some cell size ∆f ≈ ∆x.
Typically, lt,max ≈ 0.1∆x − 0.2∆x, but 0.2∆x is preferred here. Note
again that lt,max is in the hybrid RANS/LES calculations set to a global

value so that the increased resolution close to walls results in a local

URANS model.
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Rotor

Stator

Periodic b.c.

Rotor-Stator Interface

Figure 2.1: A schematic drawing of the computational domains in a rotor-

stator computation. The rotor domain is solved in a rotating frame of ref-

erence and a rotor-stator interface is used between the rotating and the

stationary domain. Periodic boundary conditions are used at the pitchwise

boundaries.

2.2 Rotor-Stator Computations

The periodicity in a blade row is often utilized to make the computa-

tional domain smaller, i.e. to decrease computational load. This means

that the domain for which the flow is solved will contain only one or

a few of the rotor blades and one or a few of the stator vanes. Peri-

odic boundary conditions are used in the blade to blade and vane to

vane directions. The flow around the rotor is usually solved in a rotat-

ing frame of reference, and some kind of interface is needed between

the rotor domain and the stator domain to transfer the information

from the rotating to the stationary frame of reference. A schematic of

a rotor-stator computation with one blade per blade row is shown in

figure 2.1.

The most commonly used rotor-stator interface is the mixing-plane

interface that averages the flow properties in the circumferential di-

rection. It should be noted that by using this type of approach, all

unsteady interactions are lost. This is still used in aerodynamic de-

sign calculations since the time it takes to make a steady computation

compared to an unsteady is often at least one order of magnitude less

and the unsteady interactions are not as important for aerodynamic

design. In aeroacoustics, however, capturing the unsteady interactions

is of great importance. Another method is the frozen-rotor approach,

where the rotor flow is transformed to the stator frame of reference and

the rotor wake is kept, but not rotating. Again, the unsteady interac-

tion is lost since this is also a steady computation.
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If the number of blades and vanes is the same, then the domains

have the same size in the circumferential direction, and a sliding grid

interface can be used to capture the unsteady rotor-stator interaction.

The flow variables are interpolated and converted from the rotor to the

stator frame of reference over the interface, and the rotating side is

moved at each time step, see for instance Stridh & Eriksson (2005).

The number of blades and vanes are important factors in noise gen-

eration, and it is thus important to keep this ratio in any aeroacous-

tic computation. In a modern high BPR engine, the number of blades

and vanes in the fan stage is seldom the same, and standard periodic

boundary conditions and a standard sliding grid interface can thus not

be used with only one blade and one vane in each domain. Take as

an example a fan stage with eight rotor blades and 12 stator vanes.

Let the spinning lobe pattern in figure 2.2 be the first harmonic of the

rotor wakes. It will spin at the same speed as the rotor, and it needs

to be preserved when it enters the stator domain. As shown in figure

2.2, one stator domain will not contain the entire wave length of the

mode. The stator domain must contain three vanes, and the rotor do-

main needs to contain two blades in this example in order to make it

possible to make aeroacoustic simulations with standard periodic b.c.

and a standard sliding grid interface. If one of the numbers is a prime

number, the only alternative in this standard fashion is to make a 360o

computation.

Figure 2.2: Spinning lobed pattern inside a duct with circumferential mode

number m=8, divided into 12 domains
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A full 360o computation is of course very expensive. A way to get

around this is to utilize the chorochronic periodicity, also known as

the shape correction method (Gerolymos et al., 2002; Li & He, 2001,

2002; Lebrun & Favre, 2004; Schnell, 2004). This is a time accurate

method, and the time history at the periodic boundaries is sampled and

saved and then time lagged. The interface between the rotating and the

stationary domain utilizes eq. (1.1) to evaluate which circumferential

modes should be passed over to the other domain. This tool is mainly

used for solving the deterministic interactions (Papers I, II, IV, V) but

it has also been used for simulations of turbulent fluctuations in a rotor

wake as they impinge on stators (Paper III). This method is unstable

since there is a delay between the time at which the information is

sampled at the periodic boundaries and when it is used at the other

side, because of the time lag. More details on the chorochronic method

and how it can be made stable will be given in the next section (2.2.1).

There are also frequency domain linearized Navier-Stokes equa-

tions (LNSE) solvers that can solve for the rotor wake impingement

on the stators, but not fully coupled. The time lag is then replaced by

a phase shift in the frequency domain, and all perturbations on top

of a mean flow solution are assumed to be linear. This is not a valid

assumption for pressure waves with large amplitude but can still be

an effective tool for predicting tonal noise from wake impingement on

stators. An existing linearized solver that has been validated against

independent data is used as a reference in Paper I and Paper II. For

more details on this solver, see Baralon et al. (2005).

Another method is the time inclining technique, where the equa-

tions are changed so that the computational domain is inclined in time

when moving in the circumferential direction. In this way there is no

need to make a time shift over the periodic boundary, since the time

shift is done gradually inside the domain (e.g. Giles, 1988a). The main

drawbacks of this method are that the time incline can not be too steep

because of stability problems and that the viscous terms are not treated

correctly.

The harmonic balance technique can also be used for solving non-

linear unsteady deterministic rotor-stator interactions, see for instance

Hall et al. (2002); Gopinath et al. (2007). The solver then solves for a

discrete number of time levels over a period that is used to represent

the harmonic content in the flow. This method requires more memory

since a copy of the conservative variables has to be saved for each time

level. However, the time history at the periodic boundaries is available

without any delay which is an advantage of this method compared to

the chorochronic time accurate method. The harmonic balance tech-
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nique is used in Paper V and is described in more detail in section 2.4.

2.2.1 Chorochronic Periodicity

Chorochronic periodicity occurs when two blade rows with different

blade count and different angular velocities interact. All blades in a

blade row experience the same periodic flow but at different times. The

name refers to a space (choros) and time (chronos) periodicity (Geroly-

mos et al., 2002). Boundary conditions that utilize this periodicity are

also given the prefix chorochronic, such as chorochronic periodic b. c.

and chorochronic rotor-stator interface. The unsteady interacting flow

in two blade rows with arbitrary blade counts can then be analyzed in

a single-passage computation, i.e. a one blade per blade row computa-

tion.

The idea of using chorochronic periodicity to simplify blade row in-

teraction computations is not new and there are many different method-

ologies for how to do it. The information have to be time lagged at the

periodic boundaries before it is used on the other side. One way of doing

this is to save information at the periodic boundaries for each time step

directly and later use it at the other side, i.e. “direct store”, described

by e.g. Erdos et al. (1977); Koya & Kotake (1985). The method used

in this thesis is to save the information at the periodic boundaries in

finite Fourier series and evaluate them on the other side at a different

time. This simplifies the storing of information, and the Fourier series

can be continuously updated. This is known as a chorochronic method

or a shape correction method and has been used for different blade row

interaction studies, see for instance Gerolymos et al. (2002); Li & He

(2001, 2002); Lebrun & Favre (2004); Schnell (2004).

The chorochronic periodic boundary condition has been shown to

be unstable unless sufficient numerical damping is introduced, e.g. Li

& He (2001, 2002); Schnell (2004). A good way to ensure that enough

damping is introduced is to adopt temporal damping, and not introduce

any extra spatial dissipation, as for example done by Schnell (2004),

that uses some kind of filter on the Fourier coefficients. It is unclear

exactly what the other authors that have used time lagged boundary

conditions have done, but the numerical scheme itself might have had

enough dissipation in some cases. A method that introduces extra spa-

tial dissipation was used in Paper I, and it was shown not to be suitable

for aeroacoustic calculations. Another method that damps out non-

periodic flow close to the boundaries was used in Papers II-V and it

gave good results for rotor-wake/stator interaction cases.

The Fourier coefficients are updated using a moving average tech-
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nique similar to the one used by Gerolymos et al. (2002). The averaging

algorithm can be derived from the definition of how a Fourier coeffi-

cient is calculated by integration over one period. In the stator blade

row, that is:

Φn =
1

T

∫ t

t−T

Q(t′)e−iωnt′dt′ (2.26)

where Φn is the nth harmonic Fourier coefficients to the state vector,

Q. The fundamental period, T , is the inverse of the BPF and it is cal-
culated from the difference in angular velocity between the two blade

rows and the number of blades in the rotor frame of reference as

T =
2π

Nb,rotor|Ωrotor − Ωstator|
(2.27)

The angular frequency, ωn, of each harmonic is calculated as

ωn = nNb,rotor

(
Ωrotor − Ωstator

)
(2.28)

The time derivatives of Fourier coefficients can be calculated from the

integration bounds of eq. (2.26).

dΦn

dt
=

1

T

[
Q(t)e−iωnt − Q(t − T )e−iωn(t−T )

]
(2.29)

The state of the flow one period back in time can be approximated by

evaluating the Fourier series as

Q(t − T ) ≈ Q̂(t) =
∑

n

Φneiωnt (2.30)

This can be used to find an approximate value of the Fourier coefficient

derivative:
dΦn

dt
=

1

T

[
Q(t) −

∑

l

Φle
iωlt

]
e−iωnt (2.31)

The method described above is used in the area close to the periodic

boundary in order to get a Fourier representation of the flow. The coef-

ficients are evaluated at a different time to obtain the time lagged state

that corresponds to the state on the other side of the periodic bound-

ary. In Papers II-V, the Fourier coefficients are also used to damp out

non-periodic flow phenomena that will contaminate the flow and even-

tually make the solution diverge if nothing else is done to handle it.

The Fourier coefficients are then evaluated again, at the current time

in the area where the sampling occurred, and compared to the state
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there in order to calculate a temporal damping term. The damping

term is added to the state vector derivative as a source term as follows:

dQ

dt
= · · · − ǫ

[
Q(t) − Q̂(t)

]
(2.32)

The optimal value of the damping factor, ǫ, depends on the specific case.
If the value is too low, there will be unphysical behavior close to the

boundary, and pressure modes that should not be there will start to

form and eventually make the solution diverge. There can be unphysi-

cal behavior for a little lower than an optimum value but the computa-

tion might still be stable and, if the value is too high, the convergence

time to reach a periodic solution increases to almost infinity. The opti-

mummight be to start with a low value and then gradually increase it,

since it takes some time for the unphysical pressure modes to grow to

an unhealthy size. The convective information in a wake, i.e. entropy

and vorticity, is then allowed to be sampled without being damped out

at the beginning of the simulation and, in the later stage, the pressure

is allowed to adjust to the wake impingement with enough damping

and prevent excitation of unphysical behavior.

2.2.2 Chorochronic Buffer Zone

In Paper III, a method based on hybrid RANS/LES and chorochronic

buffer zones is used to obtain the low to medium frequency broadband

noise from the rotor wake impingement on stators. The chorochronic

buffer zone is a combination of a time lagged periodic boundary con-

dition and a temporally damped region in the vicinity of it. The tem-

poral damping in the buffer region is the same as the damping that is

used to make the periodic b.c. with time lag stable (eq. 2.32), but here

the damping is used in a larger region. Figure 2.3 shows a schematic

of a computational domain for a hybrid RANS/LES calculation with

chorochronic buffer zones.

The rotor is omitted in this type of calculation, but the rotor wake

is specified at the inlet to the stator domain as an unsteady boundary

condition. Isotropic synthetic fluctuations are added to the inlet bound-

ary condition to trigger the equations into turbulent mode. The stator

domain consists of three stator vanes to allow for some turbulent vari-

ations in the flow without too much influence from the periodic bound-

aries with buffer zones. The chorochronic buffer zones filter the flow

from stochastic fluctuations, and the periodic boundary condition with

time lag transfers the deterministic periodic variations in the flow to

the other side. The pressure fluctuations on the center vane are sam-

pled and used as a source for noise evaluation. Section 2.7 explains
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Deterministic + stochastic perturbations

Buffer zone with tempor
al damping

Buffer zone with temporal damping

Chorochronic b.c. applied to deterministic perturbations

Rotor wakes

Figure 2.3: Schematic of a computational domain for a hybrid RANS/LES

calculation with chorochronic buffer zones

how this works.

2.2.3 Chorochronic Rotor-Stator Interface

In Papers IV and V, a general Fourier-based interface that analyzes

the modal content in the flow according to eq. (1.1) was used which is

similar to the technique used by Gerolymos et al. (2002). A flow varia-

tion in the circumferential direction that is stationary in one frame of

reference, with an angular velocity of Ω1, will be unsteady in another

frame of reference, with an angular velocity of Ω2 6= Ω1. The modes that

are passed on to the other frame of reference will therefore be shifted

in frequency. The following theory holds for any pair of rotating blade

rows but, for reasons of clarity, the two domains are labeled rotor and

stator in the derivation.
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The spinning interaction modes, mn,k, are calculated from the the-

ory of Tyler & Sofrin (1962).

mn,k = nNb,rotor + kNb,stator (2.33)

The angular frequencies of the modes in the stator frame of reference

depend only on the rotor harmonics, n, and are calculated as

ωn = nNb,rotor

(
Ωrotor − Ωstator

)
(2.34)

The fundamental period should be a positive value and is calculated in

the stator frame of reference as

Trotor =
2π

Nb,rotor|Ωrotor − Ωstator|
(2.35)

The angular frequencies and the fundamental period of the modes in

the rotor frame of reference are calculated by eq. (2.36-2.37), i.e. the

frequency depends only on the stator harmonics, k, and the stator BPF.

ωk = kNb,stator

(
Ωstator − Ωrotor

)
(2.36)

Tstator =
2π

Nb,stator|Ωstator − Ωrotor|
(2.37)

Time Fourier series representations of the flow in the area close to the

interface are updated as in eq. (2.31), but for the primitive variables,

q, in a cylindrical coordinate system:

dφstator
n (θ)

dt
=

1

Trotor

[
q(t, θ) −

∑

l

φstator
l (θ)eiωlt

]
e−iωnt (2.38)

dφrotor
k (θ)

dt
=

1

Tstator

[
q(t, θ) −

∑

l

φrotor
l (θ)eiωlt

]
e−iωkt (2.39)

where

q =





ρ
ũx

ũr

ũθ

p

k̃
ε̃





(2.40)

Sampling is done on both sides of the interface to get a complete repre-

sentation of the flow information in both time and space. The following
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derivation is made for a constant radius section of the interface, and

the time and space Fourier coefficients of the modes, mn,k, are calcu-

lated by integrating the time Fourier coefficients to each sector in the

circumferential direction as

φn,k =
Nb,stator

2π

∫ 2π
Nb,stator

0

φstator
n (θ)eimn,kθdθ (2.41)

φn,k =
Nb,rotor

2π

∫ 2π
Nb,rotor

0

φrotor
k (θ)eimn,kθdθ (2.42)

These modes can now be passed on to any rotating frame of reference

by a shift in frequency. The frequency according to eq. (2.34) is used in

the stator frame of reference. The evaluation is made by a summation

over all the Fourier modes:

q̂stator(t, θ) =
∑

n

∑

k

φn,ke
iωnte−imn,kθ (2.43)

The angular frequency according to eq. (2.36) should be used when this

state is transferred to the rotor side of the interface:

q̂rotor(t, θ) =
∑

n

∑

k

φn,ke
iωkte−imn,kθ (2.44)

Note that it is assumed in eqns. (2.43-2.44) that both positive and

negative frequencies are used, i.e.

n = ... − 1, 0, 1...
k = ... − 1, 0, 1...

(2.45)

Some simplifications can be made by only calculating coefficients for

positive frequencies and then using the complex conjugates to obtain

the full matrix of Fourier coefficients to the modes:

φ−n,−k = φ∗
n,k (2.46)

2.3 Inflow/Outflow Boundary Conditions

Inflow and outflow boundaries are needed in CFD simulations when

the computational domain is smaller than the physical flow domain.

This is often a necessity since it is usually not possible to always model

everything at the same time. Further, the computational domain should

be made as small as possible to make the most efficient use of the CFD
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tool, and the flow path will be cut in between stages in a turboma-

chine for instance when different components are analyzed separately.

Typical subsonic boundary conditions for the inviscid part of compress-

ible flow are to specify total pressure, total temperature and a direc-

tion vector at an inlet (normal velocity component is extrapolated) and

static pressure at an outlet (density and velocity vector are extrapo-

lated). These examples are straightforward to implement in the code

and easy to understand since these properties can often be measured

easily. Problems arise when unsteady simulations are desired, such as

aeroacoustics, because a sound wave that propagates towards a pres-

sure outlet boundary condition will be 100% reflected. This is an arti-

ficial reflection and it will contaminate the flow. Further, if a vorticity

wave exits through a pressure outlet, acoustic waves will be created

that also contaminate the solution. Acoustic waves may also reach the

inlet boundary and, even though the reflection in a total pressure inlet

boundary condition is not 100%, it is still too much. Much work has

been done on making inflow and outflow boundaries absorbing, and

e.g. Colonius (2004) wrote a substantial review of the subject. There

are mainly two different approaches for making boundaries absorbing

that are used either separately or in combination. The first one is to

artificially treat the boundary so that it absorbs waves. The second is

to have a damping zone in the vicinity of the boundary that artificially

damps unsteady waves, i.e. a buffer layer.

All boundary conditions in the code are specified by a ghost cell tech-

nique, i.e. two imaginary cell layers outside of the boundary are cre-

ated and the state is specified there to obtain the desired function at

the boundary. The same scheme that is used in the interior can then

be used over the boundary as well.

2.3.1 Absorbing Boundary Conditions

Early work with absorbing boundaries was done by Engquist & Majda

(1977) and Hedstrom (1979). Giles (1988b, 1990) later made significant

contributions. The inviscid part of the Navier-Stokes equations, i.e. the

Euler equations, is essential in constructing absorbing boundary con-

ditions, and the equations are linearized so that perturbations on top

of a reference state are considered. Different types of boundary con-

ditions are obtained by assuming different flow behaviors and a more

general boundary condition usually means greater complexity. Also, if

for instance duct modes are considered, a perfectly absorbing bound-

ary condition needs to know which modes approach the boundary, and

the flow needs to be analyzed at the entire boundary to be able to spec-
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ify the condition at one point on the boundary. This means that the

boundary condition is nonlocal in contrast to more simple but perhaps

not perfectly absorbing local boundary conditions that can be specified

by local information.

Two-dimensional

A 2D absorbing boundary condition for 2D nonlinear flow was devel-

oped by Chassaing & Gerolymos (2007). This approach has been ex-

tended for 3D flow inside a duct to make a boundary condition that

absorbs axial and circumferential characteristics. It was used in Pa-

pers IV and V and is derived from the assumption of flow inside a thin

shell annulus at radius R where radial variations are neglected and
the reference state is assumed to be:






ρ = ρref

ux = uref
x

ur = 0

uθ = uref
θ

p = pref

(2.47)

The fluctuating component is assumed to vary as






ρ′ = ρ′(x, θ, t)
u′

x = u′
x(x, θ, t)

u′
r = u′

r(x, θ, t)
u′

θ = u′
θ(x, θ, t)

p′ = p′(x, θ, t)

(2.48)

The linearized Euler equations in a cylindrical coordinate system can

then be written as






∂ρ′

∂t
+ uref

x
∂ρ′

∂x
+ uref

θ
1
R

∂ρ′

∂θ
+ ρref

[
∂u′

x

∂x
+

∂u′

θ

∂θ

]
= −ρref

u′

r

R
∂u′

x

∂t
+ uref

x
∂u′

x

∂x
+ uref

θ
1
R

∂u′

x

∂θ
+ 1

ρref

∂p′

∂x
= 0

∂u′

r

∂t
+ uref

x
∂u′

r

∂x
+ uref

θ
1
R

∂u′

r

∂θ
=

2uref
θ

R
u′

θ
∂u′

θ

∂t
+ uref

x
∂u′

θ

∂x
+ uref

θ
1
R

∂u′

θ

∂θ
+ 1

ρref

1
R

∂p′

∂θ
= −uref

θ

R
u′

r

∂p′

∂t
+ uref

x
∂p′

∂x
+ uref

θ
1
R

∂p′

∂θ
+ ρrefc

2
ref

[
∂u′

x

∂x
+

∂u′

θ

∂θ

]
= −ρref c2

ref

R
u′

r

(2.49)

If the lower-order terms are neglected, the equations reduce to

∂q′

∂t
+ Aref

∂q′

∂x
+ Cref

1

R

∂q′

∂θ
= 0 (2.50)
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where

q′ =





ρ′

u′
x

u′
r

u′
θ

p′




(2.51)

and

Aref =





uref
x ρref 0 0 0
0 uref

x 0 0 1/ρref

0 0 uref
x 0 0

0 0 0 uref
x 0

0 ρrefc
2
ref 0 0 uref

x




(2.52)

and

Cref =





uref
θ 0 0 ρref 0

0 uref
θ 0 0 0

0 0 uref
θ 0 0

0 0 0 uref
θ 1/ρref

0 0 0 ρrefc
2
ref uref

θ




(2.53)

The flow inside the duct is assumed to contain spinning modes with no

radial variations, and solutions of the form

q′ = φ eiωte−imθeikxx (2.54)

can be assumed. Combining this assumption with eq. (2.50) gives:

iωφ − i
m

R
Crefφ − ikxArefφ = 0 (2.55)

that can be rewritten as[
kxAref +

m

R
Cref − ωI

]
φ = 0 (2.56)

which is equal to




(kxu
ref
x + m

R
uref

θ − ω) kxρref 0

0 (kxu
ref
x + m

R
uref

θ − ω) 0

0 0 (kxu
ref
x + m

R
uref

θ − ω)
0 0 0
0 kxρrefc

2
ref 0

m
R

ρref 0
0 kx

ρref

0 0

(kxu
ref
x + m

R
uref

θ − ω) m
Rρref

m
R

ρrefc
2
ref (kxu

ref
x + m

R
uref

θ − ω)




φ = 0

(2.57)
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Setting the determinant of the matrix equal to zero gives two equa-

tions; The first is (
ω − kxu

ref
x − m

R
uref

θ

)3

= 0 (2.58)

The second is
(
ω − kxu

ref
x − m

R
uref

θ

)2

= c2
ref

(
k2

x +
m2

R2

)
(2.59)

The first equation has three roots and the latter has two roots. Both ω
andm are known if the interaction modes of a rotor stator computation
are considered. The equations (2.58) and (2.59) can be solved for kx

with a fixed ω and a fixed m and roots 1,2 and 3 are:

kx,1 = kx,2 = kx,3 =
ω − m

R
uref

θ

uref
x

(2.60)

These roots are always real numbers, and they correspond to the wave

numbers of the characteristic variables, i.e. the entropy wave and the

two vorticity waves. The wave numbers for the acoustic waves are roots

4 and 5 from the equation:

k2
x +

2uref
x

(
ω − m

R
uref

θ

)

(
c2
ref − uref

x
2
) kx +

(
c2
ref − uref

θ

2
)

m2

R2 + 2uref
θ ω m

R
− ω2

(
c2
ref − uref

x
2
) = 0

(2.61)

These roots are either real or complex and they correspond to either

cut-on or cut-off acoustic modes. The transformation matrix, T , that
transforms the characteristic variables to the primitive as

q′ = T W (2.62)

and the primitive to the characteristic as

W = T −1q′ (2.63)

is also needed. The columns of T are the eigenvectors of the character-
istic variables and can be written as

T =





1 0 0
ρref

cref

ρref

cref

0
−m

R
q

k2

x,2+
m2

R2

0
−crefkx,4

kx,4uref
x + m

R
uref

θ
−ω

−crefkx,5

kx,5uref
x + m

R
uref

θ
−ω

0 0 1 0 0

0
kx,2

q

k2

x,2+
m2

R2

0
−cref

m
R

kx,4uref
x + m

R
uref

θ
−ω

−cref
m
R

kx,5uref
x + m

R
uref

θ
−ω

0 0 0 ρrefcref ρrefcref





(2.64)
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and its inverse is given by:

T −1 =





1 0 0 0 −1
c2
ref

0
−m

R
q

k2

x,2+
m2

R2

0
kx,2

q

k2

x,2+
m2

R2

−m
R

ρref uref
x

q

k2

x,2uref
x + m2

R2

0 0 1 0 0

0
kx,2F4F5

crefF45F2
0

m
R

F4F5

crefF45F2

“

kx,2kx,5+
m2

R2

”

F4

ρref crefF45F2

0
−kx,2F4F5

crefF45F2
0

−m
R

F4F5

crefF45F2

−
“

kx,2kx,4+
m2

R2

”

F5

ρref crefF45F2





(2.65)

where





F2 = m2

R2 uref
x − kx,2

m
R

uref
θ + kx,2ω =

(
k2

x,2 + m2

R2

)
uref

x

F4 = kx,4u
ref
x + m

R
uref

θ − ω

F5 = kx,5u
ref
x + m

R
uref

θ − ω
F45 = kx,4 − kx,5

(2.66)

These matrices are used to extrapolate the waves that leave the do-

main at the inflow or outflow boundary. The group velocity, ∂ω/∂k, is
used to determine the direction in which the information goes; it can

be calculated from equations (2.60) and (2.61). The group velocity for

roots 1,2 and 3 is
∂ω

∂kx,1
=

∂ω

∂kx,2
=

∂ω

∂kx,3
= uref

x (2.67)

and the group velocities for roots 4 and 5 are:






∂ω
∂kx,4

= uref
x +

c2
ref

kx,4

ω−uref
x kx,4−

m
R

uref
θ

∂ω
∂kx,5

= uref
x +

c2
ref

kx,5

ω−uref
x kx,5−

m
R

uref
θ

(2.68)

The sign of the imaginary part of the wave number is used instead of

the group velocity if an acoustic mode is cut-off, i.e. a check on the

direction of the damping.

The machinery behind this boundary condition is very similar to the

machinery behind the chorochronic rotor-stator interface described in

section 2.2.3. The state close to the boundary is sampled into Fourier

coefficients and the time and space Fourier coefficients for each mode

are calculated. These coefficients are then decomposed into the charac-

teristic variables according to the above recipe, and the outgoing char-

acteristics are extrapolated to the ghost cells outside the boundary. As
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pointed out in Papers IV and V, problems arise when a cut-on mode is

close to cut-off and vice versa. A real 3D duct mode is either cut-on or

cut-off but, according to the 2D characteristic analysis, a circumferen-

tial mode can be cut-on at a large radius and cut-off close to the hub.

The 2D analysis fails at the radial location where the transition occurs.

One solution to the problem is to exclude the modes that are cut-off or

close to cut-off from being extrapolated to ghost cells, as was done in

Paper V.

One-dimensional

If the mode number is equal to zero, transformation matrices T and
T −1 reduce to

T =





1 0 0
ρref

cref

ρref

cref

0 0 0 1 −1
0 0 1 0 0
0 1 0 0 0
0 0 0 ρrefcref ρrefcref




(2.69)

and

T −1 =





1 0 0 0 −1
c2
ref

0 0 0 1 0
0 0 1 0 0
0 1

2
0 0 1

2ρref cref

0 −1
2

0 0 1
2ρref cref




(2.70)

and the group velocities becomes:





∂ω
∂kx,1

= ∂ω
∂kx,2

= ∂ω
∂kx,3

= uref
x

∂ω
∂kx,4

= uref
x + cref

∂ω
∂kx,5

= uref
x − cref

(2.71)

This is a 1D absorbing boundary condition in the axial direction, and

it can be made local, i.e. not dependent on Fourier sampling and mode

decomposition, by assuming that the reference state is the actual in-

stantaneous state at each point on the boundary. This type of boundary

condition is usually generalized to absorb waves normal to the bound-

ary and has as such been used in all papers on which this thesis is

based.

2.3.2 Buffer Layer

A region close to an inflow or an outflow boundary may be artificially

treated to damp unsteady fluctuations. This can improve the perfor-
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mance of an absorbing boundary condition or can replace it when used

together with a more simple boundary condition. Buffer layers have

been called by various names in the literature, e.g. sponge layer or exit

zone, but the main idea is the same, namely to add an additional term

to the governing equations that damps unsteady flow. This particu-

lar method was first proposed by Colonius et al. (1993) and has later

been analyzed by e.g. Richards et al. (2004) and Bodony (2006). The

additional term can be written as

dQ

dt
= · · · − ǫ (x)

[
Q − 〈Q〉

]
(2.72)

where ǫ is a damping factor and 〈·〉 implies a time average. Both con-
stant and varying values of the damping factor have been tested. A

function based on an arcus tangent has been used in the buffer layers

with a varying value of ǫ. It can be written as

ǫ (x)

ǫmax
=

1 − ǫmin

ǫmax

2 atan (πs)
atan

(
2πs

(x − xstart)

(xb.c. − xstart)
− πs

)
+

1

2

(
1 +

ǫmin

ǫmax

)
(2.73)

where ǫmax and ǫmin are the maximum and minimum damping respec-

tively, s is a shape parameter, xstart is the axial position at which the

buffer layer starts and xb.c. is the axial position of the inflow or outflow

boundary. The reason for using this kind of function is to avoid high

gradients at the beginning and at the end of the buffer layer in order to

avoid reflections. Figure 2.4 shows this function for three values of the

shape parameter; it can be seen that high values of s give a step-like
function while low values give a linear-like function.

The time average, 〈Q〉, is calculated by using a low-pass filter that
continuously updates a reference state, i.e. the time average of the flow.

The reference state is updated every time step as

〈Q〉p = b 〈Q〉p−1 + (1 − b) Qp (2.74)

where b is a constant that determines the cutoff frequency of the filter.
This constant can be set to:

b = 1 − ωc ∆t (2.75)

where ωc is the cutoff frequency and ∆t is the time step size. An ap-
proximately similar expression is

b ≈ 1 − 1

Nave
(2.76)

whereNave is the number of time steps over which the averaging should

be made.
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Figure 2.4: Damping function for three values of s; s = 0.5, 1, 2. Maximum
damping ǫmax = 1, minimum damping ǫmin = 0.1, axial start position xstart =
0 and position of the boundary xb.c. = 1. High values of s give a step-like

function and low values a linear-like function.

The value of ǫ can be estimated by the residence time of an unsteady
flow perturbation inside the buffer layer as it propagates towards the

boundary as

ǫ ≈ 1

τ
(2.77)

where τ is the residence time. The value of ǫmax for the cases with

a varying damping factor has been set to about two times that of eq.

(2.77).

Grid stretching was used in Paper VI as a method for dissipating

unsteady waves. This is a simple approach that does not require any

additional terms in the governing equations. A drawback of this ap-

proach is that waves with different length scales are not equally penal-

ized.

2.4 Harmonic Balance Technique

The harmonic balance technique can be used to solve nonlinear time

periodic flows. This is a time spectral method and is used in Paper V

and compared to the time accurate method with chorochronic boundary

conditions. A summary of what can be found in literature, e.g. Hall
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et al. (2002); Gopinath et al. (2007), on the derivation of this technique

is given in the following paragraph.

The period of the unsteady flow must be known and the solution

will be approximated by a finite Fourier series with Nh number of har-

monics.

Q(t) ≈
Nh∑

n=−Nh

Φneiωnt (2.78)

The time derivative can be calculated from the Fourier coefficients as

∂Q

∂t
=

Nh∑

n=−Nh

iωnφne
iωnt (2.79)

The time period is divided into a discreet number of time levels as

Ntl = 2Nh + 1 (2.80)

A new state vector, Q∗, with the solution at each time level is con-

structed.

Q∗ =
[
Qt1 , Qt2 , ... , QtNtl

]
(2.81)

The Fourier coefficients to the solution can easily be obtained from the

time levels of the state vector, Q∗.

φn =
1

Ntl

Ntl∑

l=1

Qtle
−iωntl (2.82)

An expression for the time derivative at any time, t, can be obtained by
combining equations (2.79) and (2.82).

∂Q

∂t
=

Nh∑

n=−Nh

iωn
1

Ntl

Ntl∑

l=1

Qtle
−iωntleiωnt (2.83)

Rearranging this equation gives

∂Q

∂t
=

Ntl∑

l=1

Qtl

1

Ntl

Nh∑

n=−Nh

iωne
iωn(t−tl) (2.84)

The second summation in eq. (2.84) does not depend on the state vec-

tor and can be seen as coefficients in a linear combination of the time

levels. The coefficients are defined as

Dtl (t) =
1

Ntl

Nh∑

n=−Nh

iωne
iωn(t−tl) (2.85)
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Using this, the time derivative can then be written as

∂Q

∂t
=

Ntl∑

l=1

Qtl Dtl (t) (2.86)

The time derivative of the state vector, Q∗, can now be computed as

S∗ =
∂Q∗

∂t
=

Ntl∑

l=1

[Qtl Dtl (t1) , Qtl Dtl (t2) , ... , Qtl Dtl (tNtl
)] (2.87)

where the coefficients in eq. (2.85) are evaluated at the time levels of

the state vector. A new governing equation for the state vector, Q∗, can

be written as
∂Q∗

∂τ
+ S∗ +

∂F∗
j

∂xj

= H∗ (2.88)

where the solution is updated by using a pseudo time, τ , and the true
time derivative is treated as a source term, S∗. The fluxes, F∗

j , and

source terms, H∗, are the same as in a standard URANS solver. They

are evaluated at the time levels of the solution as

F∗
j =

[
Fj|t1 , Fj|t2 , ... ,Fj|tNtl

]
(2.89)

H∗ =
[
H|t1 , H|t2 , ... ,H|tNtl

]
(2.90)

The coefficients in eq. (2.85) can be computed outside of the loop over

each cell in the domain and the computational effort is negligible. The

total time necessary to compute the time derivative source term is also

small compared to the flux calculations. The computational time to

reach convergence to a periodic solution can be reduced a great deal

with this technique compared to standard time stepping methods. The

main reason for this is that the same methods that are used to speed

up convergence in steady state calculations, e.g. local time stepping,

can be used with the harmonic balance technique. However, tests have

shown that convergence is not always guaranteed, as discussed in Pa-

per V, and it was a slow process in the cases that did converge. There

was a slowly growing instability in one of the test cases that contami-

nated the solution after a while, and convergence was not reached. This

instability was suppressed by the Newton-GMRES algorithm that was

implemented in the solver after Paper V was published. The Newton-

GMRES technique also reduced the time to reach convergence for the

cases without instabilities and it is described in section 2.5.

There may also be truncation errors at the higher frequencies that

are included in the spectral treatment. The solution to this has been to

add a few extra frequencies to those that are of main interest.
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The Fourier based boundary conditions, e.g. periodic with time lag

and rotor-stator interface, do not need the sampling routine to update

the Fourier coefficients when the harmonic balance technique is used

since the entire period is available in the new state vector, Q∗. The

Fourier coefficients at the boundaries are calculated directly from the

state vector. The reference state in the buffer layer is also calculated

directly from the state vector as a mean value of all time levels instead

of using a low-pass filter as done when standard time stepping is used.

2.5 Newton-GMRES

The generalized minimal residual method (GMRES), proposed by Saad

& Schultz (1986), is an iterative method for solving linear systems.

The method is based on the Arnoldi process for constructing an orthog-

onal basis of Krylov subspaces and it was later combined with an in-

exact Newton method to form the Newton-GMRES method, that can

be applied to nonlinear problems, by e.g. Brown & Saad (1994). One

main advantage of this method is that the Jacobian matrix, J , is never
needed explicitly, only J times a vector, v. The Newton-GMRESmethod
can find a solution, x∗, to:

F (x) = 0 (2.91)

where F is a nonlinear function and x is a vector field. The algorithm
can be summarized by the following steps:

1. Choose an initial guess, x0, and the number of Krylov vectors, m.

2. Arnoldi process:

• Compute:
r0 = F (x0) (2.92)

β = ‖r0‖ (2.93)

• Define the first Krylov vector as

v1 =
r0

β
(2.94)

• For i = 1, m do:

(a) Compute w = F ′(x0)vi

(b) For j = 1, i do:
hj,i = 〈w, vj〉 (2.95)

w = w − hj,ivj (2.96)

where 〈·, ·〉 denotes scalar product.
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(c) Compute:

hi+1,i = ‖w‖ (2.97)

vi+1 =
w

hi+1,i

(2.98)

3. Define H̄m to be the upper Hessenberg matrix with (m + 1) × (m)
elements and where the nonzero entries are the coefficients hj,i that

are calculated in the Arnoldi process:

H̄m =





h1,1 h1,2

h2,1 h2,2

h3,2

... h1,m

..
.

...
0 hm−1,m hm,m

hm+1,m





(2.99)

Define Vm ≡ [v1, v2, ... , vm].

• Find the vector ym which minimizes:

∥∥βe1 − H̄my
∥∥ (2.100)

where e1 = [1, 0, ... , 0]T .

• Compute a new solution vector:

x0 = x0 + Vmym (2.101)

4. Stop if x0 is a good enough approximation to a root of (2.91), other-

wise go back to 2.

This is how the Newton-GMRES method was implemented in this

thesis. It is almost the same as how Brown & Saad (1994) describe it

except that they have a varying number of Krylov vectors and a check-

ing routine to indicate whether another vector should be added inside

the Arnoldi process.

In the case of CFD applications, the Newton-GMRES method can

for instance be used to find a stationary solution. If for example

ẋ = F (x) (2.102)

eq. (2.91) gives the stationary solution. On the other hand, it is not

practical to use F (x) directly. It is better to use the time stepping, or
pseudo time stepping, routines in the CFD code. If

xp+N = G(xp) (2.103)
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1

+1

+1

−1

−1

x0

vi ε 1
εG(x)

G(x) G(x0)

G(x0 + εvi)

1
ε

[
G(x0 + εvi) − G(x0)

]

≈ G ′(xo)vi

G ′(x0)vi − vi = F ′(xo)vi

Figure 2.5: Process of finding the derivatives in the GMRES routine

where xp = x(tp) and N is a number of time steps, then the stationary
solution is obtained when xp+N = xp = x, i.e. when

G (x) = x (2.104)

Vector x should contain all the degrees of freedom (DOF) of the problem
and function F can be rewritten as

F (x) = G (x) − x (2.105)

and r0 is then calculated as

r0 = G (x0) − x0 (2.106)

The Arnoldi process also needs F ′(x0) times a vector vi. This can be

calculated and approximated as

F ′ (x0) vi = G ′ (x0) vi − vi ≈
1

ε

[
G (x0 + εvi) − G (x0)

]
− vi (2.107)

where ε is a small number. Figure 2.5 shows this equation as a flowchart.
The DOF for a 3D unsteady RANS computation with a two-equation

turbulence model that is solved with the harmonic balance technique is

7× (number of cells)×Ntl. This is the dimension of vectors x, x0, r0, vi, w
and, as the number of Krylov vectors is increased, the Newton-GMRES

algorithm requires more memory. The Krylov vectors are therefore

stored on disk even though the number of vectors used in this thesis

were not that many; three vectors give good performance.

The sum of x0 + εvi may sometimes result in negative values for the

turbulence variables and should therefore be limited to proper values
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before the solver is started. Weights are also applied in the scalar prod-

uct, eq. (2.95), and in the vector norms, eq. (2.93) and (2.97), that are

the volume of the cell times a number depending on which variable is

represented. The weights for the turbulence variables was set to zero

in this thesis since it gave the best performance.

2.6 Implicit Residual Smoothing

The CFL number can be increased and convergence to a steady state

solution accelerated by smoothing the residuals implicitly. The time

derivatives in each cell, i.e. the residuals, are smoothed at each stage

in the Runge-Kutta cycle by an approximate factorization technique so

that smoothing is applied on cell tubes in one direction at a time for

each block of the mesh. The smoothing operator can then be seen as a

diffusion problem in one dimension as

∂u

∂t
= ǫ

∂2u

∂x2
(2.108)

where ǫ is a constant and u is an arbitrary variable. Applying central
difference and backward Euler gives

1

∆t

(
up+1

j − up
j

)
=

ǫ

∆x2

(
up+1

j−1 − 2up+1
j + up+1

j+1

)
(2.109)

where p is the time step index and j is the cell index. By replacing ǫ∆t
∆x2

with λ and u with a residual u̇, this equation can be written as

−λ u̇j−1 + (1 + 2λ) u̇j − λ u̇j+1 = u̇old
j (2.110)

The value of λ now determines the amount of smoothing on the residual
u̇. A matrix operator for each cell tube can be written as

A =





1 + λ −λ
−λ 1 + 2λ −λ

−λ 1 + 2λ −λ
0

...
0




(2.111)

if a zero gradient (Neumann) boundary condition is applied at both

ends. This equation is applied to the cell tubes in all three directions of

each block for all derivatives of the conservative variables in the state

vector. Smoothing is first applied in the I direction, the result from this

operation is smoothed in the J direction and the result from both these
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operations is finally smoothed in the K direction. This approximate

factorization procedure for the state vector derivative can be written

as

• I direction smoothing. Loop over J and K and perform:

−λ Q̇∗
I−1,J,K + (1 + 2λ) Q̇∗

I,J,K − λ Q̇∗
I+1,J,K = Q̇org

I,J,K (2.112)

• J direction smoothing. Loop over I and K and perform:

−λ Q̇∗∗
I,J−1,K + (1 + 2λ) Q̇∗∗

I,J,K − λ Q̇∗∗
I,J+1,K = Q̇∗

I,J,K (2.113)

• K direction smoothing. Loop over I and J and perform:

−λ Q̇new
I,J,K−1 + (1 + 2λ) Q̇new

I,J,K − λ Q̇new
I,J,K+1 = Q̇∗∗

I,J,K (2.114)

The new time derivative, Q̇new, is then used to update the solution.

Using this approach, the CFL number can be increased by a factor of

about
√

1 + 4λ as shown by e.g. Turkel et al. (1991). They also present
a method for how to modify λ in cells with high aspect ratios. How-
ever, a constant value of λ ≈ 1 and CFL ≈ 2 was used in this thesis.
All time levels were smoothed separately in the time spectral compu-

tations. Smoothing in time was also tested, but this made even the

most simple computations unstable if the Newton-GMRES algorithm

was not used. These computations converged when Newton-GMRES

was used but with a penalty on performance.

There were some problems with smoothing of the turbulence vari-

ables. Stable computations were obtained by using limiters both before

and after the smoothing step, but some unphysical behavior could still

be identified. The solution used in this thesis is to exclude the tur-

bulence variables from the smoothing and use a separate, lower, CFL

number for them. Another solution may be to use a partial implicit

treatment of the turbulence model to make it more robust, such as for

instance Zhao (1997) does.

2.7 Acoustic Analogies

Equations for sound propagation are used to evaluate the noise at a

distance away from the source region. This can be used to save com-

putational time since the mesh in the CFD computation does not have

to be extended far out into the surroundings even if the noise is to be

evaluated there. The noise sources are instead identified and an inte-

gral equation is solved to obtain the noise at an observer location. It is
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assumed that the wave equation is valid in the region from the source

to the observer, and this is usually a good approximation.

There are mainly two approaches for obtaining the noise at ob-

server locations in the far-field regions. The first, named after Kirch-

hoff (1883), is a surface integral method where the noise sources are

contained by a closed surface as in figure 2.6. The pressure, and deriva-

tives of it, at the surface, ∂Γ, is integrated and the noise can be ob-
tained at an arbitrary location outside the surface. It is important that

the surface lies outside of the hydrodynamic region of the flow because

the wave equation must be valid for all the pressure disturbances that

reach the surface.

n

x

xs r

∂Γ

Γ

α

Figure 2.6: Kirchoff’s surface integral method for calculation of noise at an

observer, x

The other approach is to take the noise sources into account directly.

It started with Lighthill (1952), who combined the nonlinear flow equa-

tions with linear theory of acoustics and identified the stress tensor, Tij ,

named after him, as a source of noise:

Tij = ρu′
iu

′
j + (p′ − c2

∞ρ′)δij − τij (2.115)

The Lighthill stress tensor can be seen as the turbulence source, and

it acts as a quadrupole. Curle (1955) later extended the theory to ac-

count for solid surfaces in the turbulent flow, i.e. dipole sources, and

Ffowcs Williams & Hawkings (1969) made the theory applicable also

for moving solid surfaces and added the monopole source. Figure 2.7

shows the set-up for a FWH calculation.

The FWH method was used in Papers III and VI, and the original

formulation includes both a volume integral and surface integrals and

can be written as

p′ (x, t) = 1
4π

∂2

∂xi∂xj

t
Γ

[
Tij

r|1−Mr|

]

ret
dV

− 1
4π

∂
∂xi

v
∂Γ

[
p′ni

r|1−Mr|

]

ret
dS

+ 1
4π

∂
∂t

v
∂Γ

[
ρ∞vjnj

r|1−Mr|

]

ret
dS

(2.116)
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n
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x

xs r

∂Γ

Γ

α

Moving solid object

Figure 2.7: FWH method for calculation of noise at an observer, x.

where [·]ret means that the inside should be evaluated at a retarded

time, t − r
c∞
, i.e. the emission time. The three terms on the right hand

side represent the quadrupole sources, dipole sources and monopole

sources, respectively. The variable r is the distance from the integra-
tion point to the observer:

r = |x − xs| (2.117)

The Mach number relative to the observer is written as

Mr = M · (x − xs)

r
(2.118)

where

M =
v

c∞
(2.119)

Problems with accuracy may arise if eq. (2.116) is solved numerically.

This is mainly because derivations in space must be done at the ob-

server location. Brentner & Farassat (2003) made several reformu-

lations of the FWH equation to make it more suitable for numerical

implementation. Their “Formulation 1” was used in this thesis and is

given by

p′ (x, t) =
1

4πc∞

∂

∂t

{

∂Γ

[
p′cos(α) + ρ∞c∞vn

r|1 − Mr|

]

ret

dS +
1

4π

{

∂Γ

[
p′cos(α)

r2|1 − Mr|

]

ret

dS

(2.120)

The quadrupole term is neglected and there is only a time derivative

in the equation, i.e. no derivations in space. The velocity of the surface

in the normal direction is calculated as

vn = v · n (2.121)

and

cos(α) =
(x − xs) · n

r
(2.122)
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is a measure of the surface element direction towards the observer.

Equation (2.120) is implemented as a source-time-dominant algo-

rithm. This means that the time when the surface pressure was sam-

pled is used as a reference time instead of the retarded time at the ob-

server. The time when the emission from a surface element will reach

the observer is calculated as t + r
c∞
and the contribution is then inter-

polated to two positions in the observer pressure signal. A validation

test case for the FWH implementation is included in Appendix A.

The paper by Brentner & Farassat (2003) also has a permeable sur-

face formulation of the FWH equation that can be used like the Kirch-

hoff method. The advantage of the permeable FWH formulation is that

it is not as sensitive to hydrodynamic pressure fluctuations and the

surface integral can thus be located closer to the sound source.
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Chapter 3

Summary of Papers

T
HIS chapter gives a short summary of the work done and the results

reported in the six papers on which this thesis is based.

3.1 Paper I

3.1.1 Motivation and Background

Paper I presents the results of a simulation of the rotor wake response

on a stator vane in a fan stage. Two different techniques are used

to predict the acoustic response: one time domain nonlinear URANS

methodwith chorochronic periodic b.c. and one frequency domain LNSE

method.

3.1.2 Work and Results

The fan stage has a rotor stator vane count ratio of about 1:1.56. A fre-

quency domain LNSE solver that has been validated against indepen-

dent data is used as a reference. There were some problems with what

seemed to be reflections in the buffer layer in the nonlinear URANS

simulations. Also, the nonlinear solution was obtained with a coarser

mesh and the results were thus not as good as those of the reference

computation.

3.1.3 Comments

The purpose of Paper I was to evaluate the time lagged periodic bound-

ary condition (chorochronic periodicity). When a time shift is done in

the periodic boundary condition using Fourier coefficients, something
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that stabilizes the computation in time is needed. The method cho-

sen in Paper I was to make the periodic boundaries absorbing. This

was shown later to be a bad choice, since it produces a non-negligible

amount of extra spatial dissipation. It is also questioned whether this

method had anything to do with the reflections seen in the simulation.

Nonetheless, for simple test cases, the method in Paper I seemed to

work well, while it produces poor results for more realistic cases.

3.2 Paper II

3.2.1 Motivation and Background

Paper II gives a presentation of the same simulation as in Paper I with

some changes in the time lagged periodic boundary condition.

3.2.2 Work and Results

The same fan stage as in Paper I and the same reference solution are

used, but here both the nonlinear solution and the reference linear so-

lution were obtained with the same mesh. The chorochronic periodic

boundary condition was stabilized with a temporal damping term, in-

stead of as in Paper I, with a method that produces extra spatial dissi-

pation.

3.2.3 Comments

The results reported in Paper II are much better than those in Paper

I, but there are still differences in sound generation compared to the

linear solver. These can be referred to differences in the wake develop-

ment and the physics captured between LNSE and URANS. The mean

flow and the turbulence quantities are frozen in the LNSE simulation,

but everything is solved together in the URANS computation, allow-

ing the wake to interact with both the mean flow and the turbulence

quantities. The wake changes somewhat during the short path from

the inlet to the stator vane. This has an impact on the amplitude of the

pressure modes downstream of the stator.

The URANS simulation was done with both three and six harmonics

in the chorochronic periodic boundary condition and also with domains

that included both one and two stator vanes. There were no significant

differences between these simulations.
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3.3 Paper III

3.3.1 Motivation and Background

Paper III gives a presentation of the results of a simulation of a tur-

bulent rotor wake response on a stator vane in a fan stage. A hy-

brid RANS/LES method was used and the inlet wake was triggered

into turbulent mode by adding synthetic fluctuations. Both the tone

noise and the low to medium frequency broadband noise can be cap-

tured with this method by using at least three stator vane passages

and chorochronic periodic boundary conditions with buffer zones. This

method saves computational time compared to a full 360◦ computation,

which may be the only alternative.

3.3.2 Work and Results

Two different cases were compared where the reference case fan stage

has a rotor stator vane count ratio of 2:3 and the other is a low tone

noise case with a rotor stator vane count ratio of about 1:1.56. The ref-

erence case was simulated with standard periodic boundary conditions

while the low tone noise case was computed with chorochronic bound-

ary conditions and buffer zones. The results show that the synthetic

turbulent fluctuations added at the inlet quickly adapt to the mean

wake and make it turbulent. As expected, the tone noise changes with

the change in blade count ratio. The low frequency broadband noise is

also different between the two cases, but the medium to high frequency

is not.

3.3.3 Comments

The purpose of the work reported in Paper III was to evaluate the time

lagged periodic boundary condition (chorochronic periodicity) together

with chorochronic buffer zones mainly for broadband noise simula-

tions. The number of samples was somewhat low in the results but the

computations were continued after the paper was published so that a

total of 990 samples was obtained for each case (compared to 660 in

Paper III). A third case was also computed where the rotor stator vane

count ratio is 2:3 but the chorochronic b.c. with buffer zones was used.

There is then no time lag in the periodic boundary, but the b.c. together

with the buffer zones filter the flow from stochastic perturbations in the

area close to the periodic boundaries. The results shown in figure 3.1

are treated in the same way as in Paper III, i.e. a FWH integration

is performed for the tone and broadband source separately, and the
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broadband part is filtered in third octave bands. It can be seen that the

chorochronic buffer zone has an effect on the low frequency broadband

noise when comparing the two cases with a rotor stator blade count ra-

tio of 2:3. The two cases with chorochronic buffer zones (CB) allow for a

more direct comparison of a small change in the blade count ratio, and

it can be seen that this has almost no effect on the broadband noise.
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Figure 3.1: Power spectrum of FWH evaluation for tone and broadband

noise. The case with a rotor stator vane count ratio of 2:3 is calculated both

with standard periodic b.c. (SP) and with chorochronic periodic b.c. and

chorochronic buffer zones (CB).
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3.4 Paper IV

3.4.1 Motivation and Background

Paper IV presents a method for using buffer layers at the inlet of a ro-

tor wake/stator computation to reduce spurious reflections of acoustic

waves at the inlet boundary. The unsteady rotor wake is specified at

the inlet to the stator domain, and this prohibits the use of a standard

buffer layer technique since it would dissipate the wake that is sup-

posed to impinge on the stators. On the other hand, the deterministic

part of the rotor wake is stationary in the rotor frame of reference, and

by having an inlet zone that rotates with the rotor wake, a standard

buffer layer technique can be used in the rotating inlet zone without

destroying the wake. A 1D absorbing boundary condition was used as

a reference, but a more advanced 2D absorbing b.c. was also tested and

compared to the inlet buffer layer technique.

3.4.2 Work and Results

The same 3D test case used in Papers I-III was used in Paper IV as a

reference; named case I. A part of the inlet was modified to fit the rotor

pitch, case II, and this zone was solved in a rotating frame of reference

both with and without a buffer layer. The different boundary conditions

were then evaluated with a 3D mode analysis tool that can measure to

what extent an approaching wave is reflected. Table 3.1 lists the cases

that were computed in Paper IV.

Table 3.1: Specification of cases in Paper IV. Case I and case II is solved

without a rotating inlet zone and with a rotating inlet zone, respectively.

Case I a 1D absorbing inlet

Case I b 2D absorbing inlet

Case II a 1D absorbing inlet with inlet buffer layer

Case II b 1D absorbing inlet without inlet buffer layer

There were problems with the 2D absorbing boundary condition.

The reason was found to be a mode that, according to 2D analysis,

went from being cut-on to being cut-off inside the duct. This made

the 2D absorbing b.c. somewhat unstable. The entire flow field was

disturbed by this, and the results with the 2D b.c. were therefore not

good.
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3.4.3 Comments

A somewhat surprising result was that the 1D absorbing boundary con-

dition performed much better in the rotating frame of reference than in

the stator frame of reference. A case with a rotating inlet zone without

a buffer layer was simulated and compared to the reference case with-

out a rotating inlet zone. The same 1D absorbing boundary condition

was used in both these cases, but the 1D absorbing b.c. in the rotating

frame of reference absorbed a larger portion of the approaching waves

in five out of six cut-on modes analyzed. The reason for this can be

argued to be that the rotor wake is stationary at the inlet boundary in

the rotating frame of reference and the only unsteadiness is the acous-

tic modes. This seems to have a beneficial effect on the 1D analysis at

the boundary.

A solution to the instability in the 2D absorbing boundary condition

is to exclude modes that are cut-off or close to cut-off in the boundary

condition. Results of this kind of simulation are presented in Paper V.

3.5 Paper V

3.5.1 Motivation and Background

This paper is a continuation of Paper IV and investigates whether a

varying value of the damping factor in the buffer layer can improve ab-

sorption. The 2D absorbing boundary condition is modified to exclude

cut-off and close to cut-off modes. The harmonic balance technique is

also tested as a tool for tone noise predictions.

3.5.2 Work and Results

Case I a in Papers IV and V is exactly the same, i.e. has the same re-

sults. Case I b in Paper IV is the same as Case I b in Paper V except for

the modification in the 2D absorbing boundary condition. The results

with the 2D absorbing b.c. were greatly improved in Paper V as com-

pared to those in Paper IV. Case II b in Paper IV is exactly the same

as Case II a in Paper V, i.e. the results are the same. Case II b and c

in Paper V are exactly the same cases, but Case II b is solved with a

standard time stepping procedure and Case II c is solved with the har-

monic balance technique. These two cases also have varying values of

the damping factor in the buffer layer, which improved the absorption

for all modes except the one with the largest wave length compared to

case II a. The results in Case II b and c, i.e. standard time stepping and
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the harmonic balance technique, were generally very similar. Table 3.2

lists the cases that were computed in Paper V.

Table 3.2: Specification of cases in Paper V. Case I and case II is solved with-

out a rotating inlet zone and with a rotating inlet zone, respectively.

Case I a 1D absorbing inlet.

Case I b 2D absorbing inlet.

Case II a 1D absorbing inlet without inlet buffer layer.

Case II b 1D absorbing inlet with inlet buffer layer.

Case II c 1D absorbing inlet with inlet buffer layer solved

with the harmonic balance technique.

3.5.3 Comments

The total length of the inlet buffer layer was a little too short for some

of the cut-on pressure modes, and the length was not increased when

a varying value of the damping factor was introduced in Paper V. This

may explain why there were more reflections in two of the cut-on modes

when a varying value of the damping factor was used, i.e. comparing

the results of case II a in Paper IV and the results of case II b in Paper

V. The other four cut-on modes were better absorbed with a varying

value of the damping factor compared to a constant.

A case without a rotating inlet zone was simulated with the har-

monic balance technique. However, this case did not converge because

of a slowly growing pressure mode close to the inlet hub. The Newton-

GMRESmethod was used in this case after Paper V was published; the

method suppressed the instability in the solver, and converged results

were obtained for this case as well. These results were generally in a

good agreement with the results from using standard time stepping.

Case II c has also been solved using the Newton-GMRESmethod af-

ter Paper V was published. The residuals reached to a lower level when

this method was used. Figure 3.2 shows pressure modes between the

inlet and the stator of case II c together with results using the Newton-

GMRES method. Results with three, four and five harmonics within

the time spectral treatment are also shown in figure 3.2. It can be seen

that there is a small difference between case II c and the correspond-

ing case solved with the Newton-GMRES method, mainly in the first

BPF. Truncation errors can be seen in the third BPF in the case solved

with three harmonics in the time spectral treatment but the cases with

four, five and six harmonics, solved with the Newton-GMRES method,
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Figure 3.2: Cut-on pressure modes between inlet and stator. All cases are

solved with the harmonic balance technique. Four of the cases use the

Newton-GMRES method and are solved with three, four, five and six har-

monics respectively within the time spectral treatment. The results of case

II c presented here are the same as the results of case II c in Paper V, i.e.

solved without the Newton-GMRES method.
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are in good agreement. It should be noted that only three harmonics

of the rotor wake are specified at the inlet and anything that appear in

harmonic four, five and six are due to nonlinear effects.

3.6 Paper VI

3.6.1 Motivation and Background

The purpose of Paper VI was to develop a performance model / pre-

liminary design tool for counter-rotating propfans and to then compare

it with a more detailed CFD analysis. The CFD computation was also

used to predict the noise from the propellers via a FWH surface integral

method. The aim was to validate these models against open literature

data on the counter-rotating propellers developed in the 1980s.

3.6.2 Work and Results

The GE36 F7-A7 propellers were designed/created according to open

literature data, and the performance model matched the design targets

and the test results very well. On the other hand, the CFD results

predicted a much higher thrust and a lower efficiency than both the

preliminary design tool predictions and the test results. The reason

for this difference is that the pitch angle settings in the tests were

modified from the settings specified in the design report (GE36 Design

and System Engineering, 1987) to fit the design goals. A few iterations

were done with the pitch angle settings in the preliminary design tool

to fit the CFD results, and it seems that, while the trends are predicted

correctly, the exact pitch angle setting is not.

The only noise measurements found in the literature for the chosen

operating point were measurements of the first BPF. The agreement

was generally very good, but the first BPF unfortunately does not in-

clude any interaction noise in this case. A steady and an unsteady

CFD simulations were both made, and the interaction noise was then

identified as the difference in noise between the two simulations. The

obtained amount of interaction noise looks reasonable but was not ver-

ified against measurements.

3.6.3 Comments

The exact pitch angle settings used in the experiments were not found

in the open literature and thus a truer comparison of CFD and exper-

iments could not be made. The initial aim was to make a few design
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iterations, e.g. other pitch angle settings, and to compute other operat-

ing points with CFD as well. This was not done however owing to time

limitations.

Many shocks were present in the solution, and the applicability of

the FWH method used can be questioned. A better approach may be

to use a permeable FWH formulation and a closed surface outside the

blades. It can be argued that there will be less interaction noise if the

nonlinear effects are treated in a more correct way. A validation case is

included in Appendix A and the results points towards an overpredic-

tion of sound from the FWH surface pressure integration method when

the flow becomes nonlinear.



Chapter 4

Concluding Remarks

T
HE TONAL ACOUSTIC RESPONSE from rotor wake interactions with

stators using chorochronic periodicity and unsteady CFD was vali-

dated against a linearized Navier-Stokes equations solver method.

The chorochronic periodic boundary condition was also used in com-

bination with a chorochronic buffer zone for predictions of broadband

noise for the rotor wake interaction with stators. A method based on

Hybrid RANS/LES was then used to obtain the “medium” frequency

broadband noise, i.e. from about 1000 to 6000 Hz.

A chorochronic interface was also developed and validated against

a sliding grid interface. The chorochronic interface was used to make it

possible to use an inlet buffer layer for rotor wake/stator computations.

A 2D absorbing boundary condition was implemented and tested in

a 3D computation. The performance was evaluated using a 3D modal

decomposition tool.

The harmonic balance technique was also tested for tone noise pre-

dictions. This is a time spectral method that was verified against the

standard time stepping technique, and it was also combined with

chorochronic boundary conditions and interface.

4.1 Work done and experiences

A summary of the work done and experiences of the methods used in

this thesis is given in the following paragraphs.

4.1.1 Chorochronic Periodicity

The implementation of a Fourier-based time-lagged periodic bound-

ary condition is done by continuously updating finite Fourier se-

ries in the area close to the boundary and then evaluating the
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series on the other side at a different time corresponding to the

pitch-to-pitch time lag.

Stability can be obtained by introducing extra numerical damping

in the area close to the periodic boundary.

Temporal damping, which uses the Fourier coefficients to damp out

non-periodic flow phenomena, can be used to stabilize computa-

tions without introducing extra spatial dissipation.

The model has been validated by comparing results obtained from

simulations with standard periodic boundary conditions and re-

sults from a LNSE method previously validated against indepen-

dent data.

4.1.2 Chorochronic Buffer Zone

The temporal damping used to make the chorochronic periodic

boundary condition stable can also be used in Hybrid RANS/ LES

computations to damp stochastic perturbations close to the peri-

odic boundaries.

At least three stator vane passages are discretized, and chorochronic

buffer zones are used in the area close to the pitchwise boundaries

together with chorochronic periodic boundary conditions.

The rotor wake is specified at the inlet and synthetic turbulent fluc-

tuations are added to trigger the flow into turbulent mode.

The center vane is relatively unaffected by the filtering at the pitch-

wise boundaries, and the pressure fluctuations on it can be used

as a source for both tone and broadband noise.

4.1.3 Chorochronic Rotor-Stator Interface

A general Fourier-based interface was implemented. It is not re-

stricted to computations with the same domain size in the tangen-

tial direction, as is needed when a standard sliding grid interface

is used.

Time Fourier series of the flow close to the interface are calculated

using a moving average technique.

Time and space Fourier series of the modal content of the flow close

to the interface are calculated by integrating the time Fourier se-

ries in space.
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The modal content of the flow, i.e. the time and space Fourier coeffi-

cients, on one side of the interface is passed on to the other frame

of reference and evaluated with a shift in frequency.

Validation of the interface was done by comparisons with simula-

tions obtained with a standard sliding grid interface.

4.1.4 2D Absorbing Boundary Conditions

The modal content of the flow close to the boundary is obtained in

the same way as in the chorochronic rotor-stator interface.

The axial and circumferential characteristics are calculated and

extrapolated to ghost cells by using the associated wave numbers.

The 2D analysis is restricted to modes that are not too close to the

transition from cut-on to cut-off or vice versa.

Stability can be obtained by excluding modes that are cut-off or close

to cut-off from being extrapolated.

4.1.5 Buffer Layer

Unsteady flow is damped by the buffer layer through an additional

source term in the governing equations.

A low-pass filter is used to update a reference state that is used in

the damping term.

A function based on arcus tangent was used to alter the amount of

damping in order to avoid high gradients in the beginning and at

the end of the buffer layer.

A buffer layer at the inlet of a rotor wake/stator computation can be

used if a part of the inlet rotates with the wake.

4.1.6 Hybrid RANS/LES

Turbulent fluctuations that are resolved by the mesh can be com-

puted by using a hybrid RANS/LES method where only the unre-

solved turbulence is modeled.

The k-epsilon model is used in this thesis and the length scale is

limited to about 20% of a typical cell size. The turbulence model
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then works as a Smagorinsky subgrid scale LES model every-

where except close to solid walls where the increased resolution

results in a local URANS model.

4.1.7 Harmonic Balance Technique

Nonlinear periodic flows can be solved with the harmonic balance

technique, which makes it suitable for rotor-stator interaction

computations.

The state vector contains the solution at a discrete number of time

levels that represent the periodic content in the flow.

A time spectral derivative is calculated from the solutions at differ-

ent time levels and added as a source term to the governing equa-

tions.

A pseudo time technique is used to update the solution and iterate

towards convergence.

A few extra frequencies may be added in the spectral treatment to

avoid truncation errors in the frequencies that are of main inter-

est.

Fourier based boundary conditions are easy to implement since

there is no need for sampling to update the coefficients. The co-

efficients are calculated directly from the different time levels in

the state vector.

4.1.8 Newton-GMRES

Convergence can be improved by using the Newton-GMRES

method to iterate towards steady state.

Krylov vectors are obtained using an Arnoldi process. The derivative

times a Krylov vector is approximated by using the time stepping

routine in the CFD code.

The rate of convergence was greatly improved for the harmonic bal-

ance computations done in this thesis.

A slow instability was identified in one of the harmonic balance test

cases. It was later suppressed by the Newton-GMRES method.
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4.1.9 Implicit Residual Smoothing

The rate of convergence towards steady state can be improved by

smoothing the residuals implicitly and increasing the CFL num-

ber.

Implicit residual smoothing was used with the harmonic balance

technique; each time level should then be smoothed separately.

Smoothing of the turbulence variables was shown to be a bit prob-

lematic. The solution was to exclude them from the smoothing

operation and use a separate CFL number.

4.1.10 FWH Sound Propagation

Acoustic analogies can be used when the sound is to be evaluated at

a distance from the source. It is usually much cheaper to use an

analogy instead of extending the mesh into the farfield.

A FWH method that includes monopole and dipole sources was used

in this thesis. The surface pressure of vanes, blades, hub and

shroud are used as sources.

The implementation was made with a formulation of the FWH equa-

tion that does not have derivations in space for better accuracy

and performance.

The permeable FWH formulation, which uses a permeable surface

that can be placed around the sources, is probably a better choice

when strong shocks are present in the solution.

4.2 Final recommendations

After a lot of theoretical and technical discussions we have reached

the end of the main part of this thesis. I would like to share my per-

sonal view on how things should be done to those who plan to work

on this subject in the future. My recommendation for nonlinear tone

noise predictions is to use the harmonic balance technique before us-

ing standard time stepping. The harmonic balance technique is a much

more efficient tool when acceleration techniques such as the Newton-

GMRES method and implicit residual smoothing are used, and no ex-

tra numerical damping is needed in the periodic boundary with time

lag. The extra numerical damping, in the periodic boundary with time
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lag, may need to be tuned for each new case when standard time step-

ping is used. However, the harmonic balance technique is not an option

for broadband noise predictions. The amount of frequencies that needs

to be included in the spectral treatment would be too many to be ef-

ficiently handled, using this method at its current state. The hybrid

RANS/LES method, using standard time stepping, is a promising can-

didate for broadband noise predictions and full 360o computations can

be avoided by using chorochronic buffer zones.

Deciding boundary conditions is another interesting issue, espe-

cially if the rotor is omitted in the calculation and the rotor wake spec-

ified at the inlet to the stator domain. A rotating inlet zone, where the

rotor wake is stationary, can be added in tone noise predictions and it

can improve the performance of simple boundary conditions. A stan-

dard buffer layer technique can also be added in the rotating inlet zone

that can improve the total absorption of waves even more. I recommend

this approach before using more complex types of boundary conditions,

i.e. 2D or 3D absorbing b.c., for nonlinear cases. However, the rotat-

ing inlet zone at its current state can not be used in broadband noise

predictions using hybrid RANS/LES. Stochastic perturbations should

exist in the flow that may not fit the Tyler & Sofrin interaction modes

and these can thus not be transferred by the Fourier based rotor-stator

interface. Maybe the rotor must be included somehow in broadband

noise predictions to be able to absorb waves that propagate upstream

correctly; a buffer layer can be used upstream of the rotor.

The acoustic analogies provide some very powerful tools in certain

situations. I have only used the “solid surface” FWH formulation and

I think it performs surprisingly well in the validation test case, even

when the flow becomes a bit nonlinear; see Appendix A. A similar study

with the permeable FWH formulation would be interesting to see.
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Appendix A

Oscillating Sphere Validation

Test Case

T
HE IMPLEMENTATION of “formulation 1” of the FWH method given

by Brentner & Farassat (2003) is validated by computing the sound

generated by an oscillating sphere. A 2D axisymmetric Euler solver is

modified so that it can be used in an oscillating frame of reference. The

surface of the sphere is created by a half circle around the origin with

101 mesh points and a radius of 1 meter. The outer bound is also a half

circle at a radius of 30 meters, and the axis line is meshed with 1451

equidistant mesh points. The sphere oscillates along the axis, and a

zoom-in on the sphere in the 2D mesh is shown in figure A.1.

The solver is used in a time accurate mode, and the number of time

steps is set to a high enough value so that a periodic solution is ob-

tained. Seven different cases are calculated in this manner, and the

specifications for each case are shown in table A.1. The frequency and

ambient conditions are kept constant, and the amplitude of the oscilla-

tion is varied. The maximum velocity of the sphere will vary with the

amplitude; it is also tabulated. All cases were simulated for 15 periods

before the sampling started, and all cases except case 7 converged to a

periodic solution in that time. Case 7 is quite extreme, and separation

occurred at the surface of the sphere, which made this case harder to

converge. The somewhat non-periodic solution is nevertheless used in

the comparison with FWH.

Instantaneous contours of static pressure for case 4 are shown in

figure A.2 along with the observer locations, where the CFD solution

is compared to the FWH integration. Point “c” is chosen so that the

relative velocity between the sphere and this location is subsonic even

for case 7.

The surface pressure in the 2D solution is sampled 50 times over

one period and then interpolated to a 3D surface mesh shown in figure
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Figure A.1: 2D axi-symmetric mesh of a sphere. The radius of the sphere is

one meter.

A.3. The 3D surface mesh and surface pressure from the 2D axisym-

metric solution are then used in the FWH code to obtain the pressure

fluctuations at the observer locations in figure A.2. The FWH integra-

tion must be done over a few periods since erroneous data are produced

in the beginning and at the end of the observer pressure signal due to

incomplete data at both ends. This happens since different surface el-

ements contribute to different observer time steps in the source-time-

dominant implementation.

The fluctuating static pressure for all cases at points “a”, “b” and “c”

is shown in figure A.4, A.5 and A.6 respectively. It can be seen that the

agreement is almost exact for cases 1 and 2 and there are only small

variations in amplitude for cases 3 and 4. The differences are larger

for case 5 mainly due to a shock that is present in the CFD results

but not in the FWH evaluation. The FWH prediction is quite good at

point “a” for cases 6 and 7 but the CFD results are overpredicted at

points “b” and “c”. Some discrepancies are expected since there are

nonlinear effects that are captured by the CFD computation but not

by the FWH prediction, i.e. nonlinear propagation of pressure waves

and unsteady shock wave interaction. Figure A.7 shows instantaneous

pressure contours for case 6, and it can be seen that shocks are present

in the entire domain. A more suitable way to predict the noise for cases
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Table A.1: Specification of cases for the oscillating sphere validation test

case

Case f [Hz] a [m] |v|max [m/s] c∞ [m/s] ρ∞ [kg/m3]
1 54.59 0.002915 1.0 343.0 1.21

2 54.59 0.02915 10.0 343.0 1.21

3 54.59 0.1458 50.0 343.0 1.21

4 54.59 0.2915 100.0 343.0 1.21

5 54.59 0.5831 200.0 343.0 1.21

6 54.59 1.0 343.0 343.0 1.21

7 54.59 1.458 500.0 343.0 1.21

a b c

Figure A.2: Instantaneous contours of static pressure for case 4. The sphere

is oscillating around (0, 0) and the observer positions a, b and c are located
at (4, 20), (10, 20) and (16, 20) respectively.

6 and 7 would be to use another formulation of the FWH equation that

can handle nonlinear effects in a better way or to use the permeable

surface formulation and place the integration surface outside of the

heavy nonlinear region close to the sphere.
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Figure A.3: 3D surface mesh of a sphere. The radius of the sphere is one

meter.
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Figure A.4: Pressure fluctuations for cases 1-7 at point “a” in figure A.2 for

both the FWH prediction and CFD data
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Figure A.5: Pressure fluctuations for cases 1-7 at point “b” in figure A.2 for

both the FWH prediction and CFD data
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Figure A.6: Pressure fluctuations for cases 1-7 at point “c” in figure A.2 for

both the FWH prediction and CFD data
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Figure A.7: Instantaneous contours of static pressure for case 6. Shocks are

formed around the sphere that propagates in the entire domain.
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