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Abstract

Int. J. Heat Fluid Flow, Vol. 32, pp. 652-669 (2011), doi:10.1016/j.ijheatfluidflow.2011.02.001

A low Reynolds number (LRN) formulation based on the Partially Averaged

Navier-Stokes (PANS) modelling method is presented, which incorporates

improved asymptotic representation in near-wall turbulence modelling. The

effect of near-wall viscous damping can thus be better accounted for in simula-

tions of wall-bounded turbulent flows. The proposed LRN PANS model uses

an LRN k−ε model as the base model and introduces directly its model func-

tions into the PANS formulation. As a result, the inappropriate wall-limiting

behavior inherent in the original PANS model is corrected. An interesting

feature of the PANS model is that the turbulent Prandtl numbers in the k

and ε equations are modified compared to the base model. It is found that
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this modification has a significant effect on the modelled turbulence. The

proposed LRN PANS model is scrutinized in computations of decaying grid

turbulence, turbulent channel flow and periodic hill flow, of which the latter

has been computed at two different Reynolds numbers of Re = 10 600 and

37 000. In comparison with available DNS, LES or experimental data, the

LRN PANS model produces improved predictions over the standard PANS

model, particularly in the near-wall region and for resolved turbulence statis-

tics. Furthermore, the LRN PANS model gives similar or better results – at

a reduced CPU time – as compared to the Dynamic Smagorinsky model.

1. Introduction

The PANS model was developed with an intention to smoothly simulate

turbulent flows using a hierarchic rank of modelling approaches from RANS

to Direct Numerical Simulation (DNS). The model was derived from a parent

RANS k − ε model based on the ratio between modelled and total turbu-

lence quantities. Its formulation is closely related to two parameters: the

unresolved-to-total ratio of turbulence kinetic energy (fk) and of its dissipa-

tion (fε) (Girimaji, 2005). The resulting PANS model equations hold the

same form as in the parent RANS k − ε model but the model coefficients

are different. It is thus easy to implement the model in an existing RANS

solver, where only the model coefficients need to be changed in relation to

2



the choices of fk and fε.

With fk = 1.0, for example, the PANS model will render a RANS so-

lution. Provided that a sufficiently fine grid is used to resolve all turbulent

scales, on the other hand, setting fk = 0 will remove all modelling and give a

DNS solution. Setting a value between 0 and 1 for fk, the PANS model may

produce partially-resolved turbulent structures and leaving the un-resolved

part modelled. With a successively refined grid and a correspondingly re-

duced value of fk, the resolved turbulence energy increases with decreasing

modelling effects. On a LES-comparable grid, the PANS model behaves in

a manner similar to an SGS model, yet being distinct from typical LES in,

most noticeably, that the flow decomposition is based on turbulence energy

content rather than explicit wave-number cutoff (Girimaji, 2006).

The PANS model has been evaluated in typical turbulent separating flows.

Girimaji (2006) applied the PANS model to flows past a square cylinder and

over a surface-mounted cube. The model was further investigated by Girimaji

and Lavin (2006) in simulations of a turbulent square jet, demonstrating

reasonable capabilities in capturing jet physics. Basu et al. (2007) employed

the PANS model to a cavity flow with varying values of fk as a function of

local grid spacing and turbulent length scale. Frendi et al. (2007) compared

three modelling approaches (DES, URANS and PANS) and showed that the

PANS model gives promising predictions for a turbulent flow over a backward
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facing step. In simulations of the flow past a square cylinder, Song and

Park (2009) investigated the determination of parameter fk and proposed an

equation to evaluate this parameter. It was demonstrated that, for separated

turbulent flows, the PANS approach is able to yield accurate predictions on

a relatively coarse grid. The influence of the PANS parameter fε was also

investigated, and it was shown that the range of resolved scales decreases with

decreasing fε (Frendi et al., 2007). Basara et al. (2009) combined the ζ − f

model with the PANS model and applied it to the flow around the Ahmed

body. A model similar to the PANS model is the PITM model (Schiestel and

Dejoan, 2005).

The derivation of the original PANS model is stemmed from the standard

RANS k−ε model (Girimaji, 2005, 2006), which has its roots in the context of

modelling high Reynolds number turbulence. As noted by its developer (Gir-

imaji, 2006), the PANS model will inevitably inherit much of physics from its

parent RANS closure. It is well known that the standard k − ε model in the

context of RANS modelling cannot be integrated directly to the wall surface

because of its incorrect near-wall asymptotic behavior. This drawback is in-

herited by the resulting PANS model equations. In simulations of flows over

a bluff body, the effect of near-wall asymptotic properties of the turbulence

model may be insignificant. For attached boundary layer flows, however, ap-

propriate modelling of near-wall turbulence may become essential to render
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an accurate representation of overall flow physics. One of the major purposes

of the present paper is to develop a Low-Reynolds Number (LRN) variant of

the PANS model so that it is feasible to apply the LRN PANS model to both

attached and separated turbulent flows with improved near-wall behavior in

the modelling. Another purpose is to investigate the effect of the turbulent

Prandtl numbers in the k and ε equations, σk and σε. A unique feature of

the PANS model is the modification of σk and σε compared to the RANS k

and ε equations. They are both multiplied by f 2
k/fε. This modification is

found to have a strong effect on the modeled turbulence.

An LRN formulation of a turbulence model accounts for both viscous

and wall-damping effects in the wall layer. It should enable proper modelling

performance when the model is integrated to the wall surface. LRN RANS

models usually employ empirical damping functions in the model equations,

which ensure that viscous stresses take over turbulent Reynolds stresses at

low Reynolds numbers and in the viscous sublayer adjacent to solid walls.

There are a number of LRN RANS models, of which many are based on the

k − ε models, see e.g. Jones and Launder (1972); Hoffmann (1975); Chien

(1982); Nagano and Tagawa (1990). Abe et al. (1994) (hereafter called the

AKN model) further improved the LRN k− ε model by Nagano and Tagawa

(1990), using the Kolmogorov velocity scale, uε ≡ (νε)1/4, in the damping

function. The AKN model was validated in simulations of turbulent flows in
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a channel and over a backward step. Hsieh and Chang (1996) applied the

AKN model to pipe expansion flow with satisfactory results. Of the existing

LRN k − ε models, the AKN model has shown reasonable performance in

modelling different flows.

The present work proposes an LRN variant of the PANS model using the

LRN AKN k−ε model as the base model. The derivation of the LRN PANS

formulation is similar to the original PANS model (or the “standard PANS

model”), but the model coefficients are adapted to the LRN effect in order to

account for near-wall turbulence. The behavior of the proposed model is ex-

amined in simulations of decaying grid turbulence, fully developed turbulent

flows in a clean channel and in a channel with hills mounted periodically on

the bottom wall. The hill flow has been computed at two different Reynolds

numbers, Re = 10 600 and 37 000, respectively. The LRN PANS model has

been compared with the standard PANS model in these computations, as

well as with LES using the Dynamic Smagorinsky model. The proposed

LRN model has shown overall improved wall-limiting behaviors in the wall

layer in comparison with the standard PANS model.

In what follows, we first present the modelling formulation in Section

2. In Section 3 the numerical methods used in the computations are briefly

described, including an introduction to the test cases and computational set-

up. The results are then presented and discussed in Section 4, and conclusions
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are drawn in Section 5.

2. Modelling formulation

The PANS method uses the so-called “partial averaging” concept, which

corresponds to a filtering operation for a portion of the fluctuating scales

(Girimaji, 2006). The “partial-averaging” operation is assumed to be con-

stant preserving and to commute with spatial and temporal differentiation.

For an instantaneous flow variable, F , we use f̄ to denote the partially-

averaged part, namely f̄ = P(F ), where P denotes the partial-averaging

operator. We consider incompressible flows. Applying the partial averaging

to the governing equations gives

∂ūi

∂xi

= 0 (1)

∂ūi

∂t
+

∂(ūiūj)

∂xj

= −
1

ρ

∂p̄

∂xi

+
∂

∂xj

(

ν
∂ūi

∂xj

− τij

)

(2)

where τij is the central second moment resulting from the partial averaging

for the nonlinear terms, that is τij = (P(UiUj)− ūiūj), where Ui indicates in-

stantaneous velocity components. This term is similar to the Reynolds stress

tensor resulting from the Reynolds averaging in RANS or to the subgrid-scale

(SGS) stress tensor after the spatial filtering in LES. For simplicity, we also

use the terminology of Reynolds stresses for the term τij in Eq. 2.

To close the system of the partially-averaged Navier-Stokes equations, as

in RANS and LES, a model is needed for τij . Girimaji (2006) proposed using
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the conventional eddy viscosity concept so that τij = −2νus̄ij, where s̄ij is the

strain-rate tensor of the computed flow and νu is the PANS eddy viscosity.

In order to formulate the PANS eddy viscosity, Girimaji (2006) defined

another two quantities, the partially-averaged turbulent kinetic energy, ku

and its dissipation rate εu, so that νu = Cµk2
u/εu. In the derivation of the

transport equations for ku and εu, two parameters, fk and fε, have been intro-

duced, relating the unresolved to the resolved fluctuating scales. Parameter

fk defines the ratio of unresolved (partially-averaged) turbulent kinetic en-

ergy (ku) to the total kinetic energy (k), and fε is the ratio between the

unresolved (εu) and the total (ε) dissipation rates. These give

k =
ku

fk
and ε =

εu

fε
(3)

The extent of the resolved part is now determined by fk and fε. In his PANS

derivation, Girimaji (2005, 2006) employed the standard k − ε model as the

base model. The resulting model is thus termed here the Standard PANS

model.

Below, we re-formulate the PANS model based on an LRN k − ε model

in order to attain improved near-wall asymptotic behavior. Incorporating

empirical damping functions, an LRN k − ε RANS model can often be cast

in a general form, of which the k-equation can be written as

∂k

∂t
+

∂(kŪj)

∂xj
=

∂

∂xj

[(

ν +
νt

σk

)

∂k

∂xj

]

+ Pk − ε (4)
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and the ε-equation is given by

∂ε

∂t
+

∂(εŪj)

∂xj
=

∂

∂xj

[(

ν +
νt

σε

)

∂ε

∂xj

]

+ Cε1f1Pk
ε

k
− Cε2f2

ε2

k
(5)

where Pk is the production term of turbulent kinetic energy

Pk = νt

(

∂Ūi

∂xj
+

∂Ūj

∂xi

)

∂Ūi

∂xj
(6)

In a low Reynolds number RANS k − ε model, the RANS eddy viscosity, νt,

often takes the following form.

νt = Cµfµ
k2

ε
(7)

It should be noted that the RANS mean velocity field is denoted by Ūi in

these equations. As indicated by Girimaji (2005), one should have Ūi = 〈ūi〉,

with the angular brackets indicating the time-averaged flow quantities.

Using the same damping function, fµ, as for the LRN model, the PANS

turbulent viscosity, νu, in the LRN PANS model is defined in terms of ku and

εu, viz.

νu = Cµfµ
k2

u

εu
(8)

Introducing Eq. 3 into the relation for the RANS turbulent eddy viscosity,

νt, Eq. 7, gives the following relation.

νt =
fε

f 2
k

νu (9)

In the derivation of the ku and εu equations for the LRN PANS model,

the same procedure has been invoked as for the standard PANS paradigm
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(Girimaji, 2005, 2006). Parameters fk and fε have also been assumed to

be constants. Without repeating all the details of the PANS formulation,

as discussed in Girimaji (2006), we directly write the resulting transport

equation for ku in the LRN PANS model, which takes the same form as in

the standard PANS model. This gives

∂ku

∂t
+

∂(kuūj)

∂xj
=

∂

∂xj

[(

ν +
νu

σku

)

∂ku

∂xj

]

+ Pu − εu

σku = σk
f 2

k

fε

(10)

where the production term, Pu, is expressed in terms of the PANS eddy

viscosity, νu, and the strain rate of PANS-resolved flow field, viz.

Pu = νu

(

∂ūi

∂xj
+

∂ūj

∂xi

)

∂ūi

∂xj
(11)

Note that, in deriving Eq. 10, a relation of Pu − εu = fk(Pk − ε) is implied

(Girimaji, 2005). With ε = εu/fε, this relation can be re-written as

Pk =
1

fk
(Pu − εu) +

εu

fε
(12)

Equation 12 has been exploited to derive the εu-equation in the PANS model.

With an LRN model as the base model, the ε equation invokes model func-

tions, f1 and f2, in the production and destruction terms, which are kept in

the model coefficient for the resulting εu equation. This led to the following

10



expression.

∂εu

∂t
+

∂(εuūj)

∂xj

= fε

[

∂ε

∂t
+

∂(εūj)

∂xj

]

= fε

{

∂

∂xj

[(

ν +
νt

σε

)

∂ε

∂xj

]

+ Cε1f1Pk
ε

k
− Cε2f2

ε2

k

} (13)

The diffusion term is re-written using Eq. 3

fε

{

∂

∂xj

[(

ν +
νt

σε

)

∂ε

∂xj

]}

=
∂

∂xj

[(

ν +
νt

σε

)

∂εu

∂xj

]

=
∂

∂xj

[(

ν +
νu

σεu

)

∂εu

∂xj

]

σεu =
σεf

2
k

fε

(14)

In the same way, the production and destruction terms are re-formulated as

(using Eqs. 3 and 12)

fε

{

Cε1f1Pk
ε

k
− Cε2f2

ε2

k

}

= Cε1f1

εufk

ku

(

1

fk
(Pu − εu) +

εu

fε

)

− Cε2f2

ε2
ufk

fεku

= Cε1f1

εu

ku
Pu − Cε1f1

ε2
u

ku
+ Cε1f1

ε2
ufk

kufε
− Cε2f2

ε2
ufk

fεku
(15)

= Cε1f1

εu

ku

Pu − C∗

ε2

ε2
u

ku

where

C∗

ε2 = Cε1f1 +
fk

fε
(Cε2f2 − Cε1f1) (16)

The εu equation in the LRN PANS model now takes the following form

∂εu

∂t
+

∂(εuūj)

∂xj
=

∂

∂xj

[(

ν +
νu

σεu

)

∂εu

∂xj

]

+ Cε1f1Pu
εu

ku
− C∗

ε2

ε2
u

ku

(17)

where σεu is given in Eq. 14
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It should be noted that, in deriving Eq. 10 and Eq. 17, the additional term

related to (ūj − Ūj) has been neglected, as was done by Girimaji (2006).

The PANS equation for ku, Eq. 10, was derived by multiplying the RANS

equation for k by fk which was assumed to be constant in space and in time.

By referring to Eqs. 9 and 10, the turbulent diffusion term was obtained as

fk
∂

∂xj

(

νt

σk

∂k

∂xj

)

=
∂

∂xj

(

νt

σk

∂ku

∂xj

)

(18a)

=
∂

∂xj

(

νu

σku

∂ku

∂xj

)

(18b)

The expression on the right-hand side of Eq. 18(a) suggests that the turbulent

transport for the PANS-modelled turbulent kinetic energy, ku, is actually

formulated in terms of the RANS turbulent viscosity from the base model.

This is different from the turbulent diffusion in subgrid scale (SGS) modelling

of LES with a one-equation ksgs model, which reads

∂

∂xj

(

νsgs

σk

∂ksgs

∂xj

)

(19)

In Eq. 19 the SGS turbulent viscosity is invoked for the transport of ksgs,

whereas on the right-hand side of Eq. 18(a) the total (i.e. the RANS) tur-

bulent viscosity has been used for ku. Equation 18(a) shows that, when

used as an SGS model, the modelled turbulent diffusion in the PANS for-

mulation is a factor of (σku/σk)
−1 = fε/f

2
k larger than in one-equation SGS

models, comparing Eqs. 19, to 10 and 18(b). With fε = 1 and fk = 0.4,

for example, this factor is larger than six. The modification of the diffusion
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coefficients, σku and σεu, is a unique property of the PANS model. In the

PITM model (Schiestel and Dejoan, 2005), for example, the sink term in the

ε equation is modified, but not the diffusion term. The effect of the diffusion

coefficients, σku and σεu, in the ku and εu equations will be investigated in

the present work.

Equations 8, 10 and 17 form the proposed PANS formulation based on

an LRN RANS k − ε model. Obviously, to bring the formulation into an

LRN PANS model, many existing LRN k−ε models in the context of RANS

and being cast in line with the general form as given in Eqs. 4-7, can be

considered. In the present work, we have adopted the Abe-Kondoh-Nagano

LRN k − ε model (Abe et al., 1994) (the LRN AKN model) as the base

model. The LRN PANS model constants thus take the following values

Cε1 = 1.5, Cε2 = 1.9, σk = 1.4, σε = 1.4, Cµ = 0.09 (20)

With f1 = 1, the other two model functions, fµ and f2, hold the same forms in

the LRN PANS model as for the AKN LRN model. They read, respectively,

fµ =

[

1 − exp
(

−
y∗

14

)

]2
{

1 +
5

R
3/4

t

exp

[

−
( Rt

200

)2
]

}

(21)

f2 =

[

1 − exp
(

−
y∗

3.1

)

]2 {

1 − 0.3exp

[

−
( Rt

6.5

)2
]}

(22)

The variables, Rt and y∗, are now defined in terms of ku and εu for the LRN
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PANS model, namely,

Rt =
k2

u

νεu

and y∗ =
Uεy

ν
with Uε = (εuν)1/4 (23)

The model coefficients in the proposed model are different from these

in the standard PANS model (Girimaji, 2006). The introduction of the

damping functions has indeed enabled the resulting LRN PANS model to

have improved asymptotic properties when integrated to a wall surface. Ap-

proaching the wall surface, the LRN PANS model suggests that fµ ∝ y−1.

Consequently, the modelled turbulent quantities hold uv ∝ y3, ku ∝ y2,

εu ∝ y0 and νu ∝ y3 in the vicinity of the wall surface, as desired. It is thus

expected that the resulting LRN PANS model will improve the near-wall rep-

resentation of modelled turbulence and, as a result, the near-wall turbulence

should also be better resolved, as compared with the standard PANS model.

3. Computational set-up

An incompressible, finite volume code was used (Davidson and Peng,

2003). The second-order central differencing scheme was used for spatial

discretization of all terms except the convection terms in the ku and εu equa-

tions, for which a hybrid central/upwind scheme was employed. The tempo-

ral advancement was approximated using the second-order Crank-Nicolson

scheme. The numerical procedure was based on an implicit, fractional step
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technique with a multigrid pressure Poisson solver (Emvin, 1997) and a non-

staggered grid arrangement.

The proposed model was examined in computations of three different

flow problems. For reference, the standard PANS model and the Dynamic

Smagorinsky model were also employed in the computations.

In order to highlight any possible effect on the resolved spectral behavior

due to the introduced low-Reynolds number modifications, decaying homoge-

neous, isotropic turbulence (DHIT) is first computed. DHIT is a typical test

case for SGS turbulence models. The computational domain is a cubic box

with dimensions of 2π×2π×2π. Two meshes are used, one with 32×32×32

cells and another with 64 × 64 × 64 cells. Periodic boundary conditions are

prescribed at all boundaries. The time step is 5 · 10−3.

The second test case is a fully-developed turbulent channel flow. Note

that previous PANS simulations have usually been conducted for bluff-body

flows. The test case is selected to highlight the feasibility of the PANS model

in computations of attached boundary layer flows, particularly, the mod-

elling behavior in representing near-wall turbulence. The Reynolds number

is Reτ = 950, based on the friction velocity, uτ , and half of the channel height,

δ = ymax/2. The computational domain has the dimensions of xmax = 3.2,

ymax = 2.0 and zmax = 1.6. A 64×80×64 mesh has been used in the stream-

wise (x), wall-normal (y) and spanwise (z) directions, respectively. Table
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1 summarizes the computational parameters for the channel flow computa-

tions. DNS data was taken from the work by Hoyas and Jimenez (2008).

Reτ ∆y+ ∆x+ ∆z+ ∆t

950 0.62 − 103 47.50 23.75 6.25 × 10−4

Table 1: Spatial resolution and time step in computations of turbulent channel flow

The third and fourth test cases concern flow separation in a channel with

periodic hills mounted on the bottom wall in the streamwise direction. The

periodic hill flow is characterized by turbulent flow separation, recirculation,

reattachment and flow acceleration. The geometry and mesh of the hill

flow are shown in Fig. 1. The computational domain starts from one hill

crest and extends to the next, separated by a distance of L = 9h. The

upper and lower sides are bounded by flat plane and curved wall surfaces,

respectively. The extension in the spanwise direction is zmax = 4.5h. This

flow has been computed for two different Reynolds numbers, Re = 10 600

and 37 000. The Reynolds number is based on the hill height, h, and the

bulk velocity, Ub, above the hill crest. For Re = 37 000, the computational

mesh consists of Nx×Ny ×Nz = 160×160×60 cells in the streamwise, wall-

normal and spanwise directions, respectively. For Re = 10 600 every second

grid line is omitted in the wall-normal direction and the number of cells in
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x
y

H

h

L = 9h

Figure 1: Schematic of the hill flow configuration and computational grid in a 2D slice.

The grid was plotted with every other line. h = 1.0, H = 2.035h, L = 9h, zmax = 4.5h.

the spanwise direction is reduced by almost 50%, giving a computational

mesh with Nx × Ny × Nz = 160 × 80 × 32 cells. The time step was set to

∆t = 6.0 × 10−3. After 20 flow-through times, statistical analysis was made

over a time period of a further 20 flow-through times. The results were also

averaged in space over the spanwise direction.

For all computations of wall-bounded flows, no-slip conditions were spec-

ified on the walls for the velocity components. The values of ku and εu on the

wall surface were set by ku,w = 0 and εu,w = 2νku,1/y
2
1, respectively, where

ku,1 is the value of ku at the first near-wall node with a wall distance of y1.

Periodic boundary conditions were imposed on the streamwise and spanwise

boundaries.
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4. Results and discussion

This section presents the computations with the LRN PANS model for

DHIT, channel flow and periodic hill flow in comparison with the standard

PANS model and the Dynamic Smagorinsky model of Germano et al. (1991).

The main purpose is to verify the performance of the proposed LRN PANS

model in turbulence-resolving simulations for both attached and separated

turbulent flows. The results are compared to available DNS, LES or experi-

mental data.

By the definition of fk and fε, it is obvious that these two parameters

should vary with the grid resolution in correspondence to the resolved kinetic

energy and dissipation rate. As proposed by Girimaji (2005), nonetheless,

we have set fε ≡ 1 in all the computations. For the same grid resolution,

different values of fk are then tested to observe the effect of this parameter

on the modelling.

4.1. Decaying homogeneous, isotropic turbulence

The simulations for this test case are compared with the experiment by

Comte-Bellot and Corrsin (1971). In the experiment the turbulence spectra

were measured at three downstream locations corresponding to the times

tU0/M = 42, 98 and 171. The initial velocity is obtained by inverse Fourier

transformation using the experimental spectrum at tU0/M = 42. At time
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tU0/M = 171 the spectra resulting from the simulations are compared the

experimental spectrum. The initial velocity field is generated by a widely

used computer program from the group of Prof. Strelets in St. Petersburg.

Initial boundary conditions must also be given for ku and εu in PANS

computations. In Menter and Egorov (2010) they computed the initial ku

and εu fields by solving the steady ku and εu transport equations using the

frozen initial velocity field. It was noted however that ku and εu (and νu)

go to infinity (Menter and Egorov, 2010). The same problem is encountered

with the PANS model in our computations.

In the present work another approach is chosen to prescribe initial con-

ditions for ku and εu. Using the initial velocity field, the resolved turbulence

energy, kres = 0.5〈u′

iu
′

i〉 (〈.〉 denotes space averaging over the entire domain),

is computed and the initial modelled turbulence is set as ku = fkkres. The

initial SGS length scale, ℓsgs, is estimated from the Smagorinsky model as

ℓsgs = Cs∆ where Cs = 0.1 and ∆ is the grid spacing. The initial modelled

dissipation is then approximated from εu = C
3/4
µ k

3/2
u /ℓsgs. Since the flow

does not involve any wall boundaries and the wall distance is thus set to be

infinite, the first part in the the damping functions, fµ in Eq. 21 and f2 in

Eq. 22, becomes one, respectively. Consequently, fµ and f2 play a role in the

modelling only as function of the turbulent Reynolds number, Rt. Obviously,

f2 approaches to 1.0 at fairly small values of Rt. For example, f2 takes its
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instantaneous smallest value of 0.995 (with Rt ≈ 13) at tU0/M = 171 for the

fine mesh with fk = 0.2. The second part of fµ yields larger values than 1.0.

In the parent RANS LRN model, this part in fµ was designed to entail a cor-

rect near-wall asymptotic relation of fµ → 1/y (as y → 0) for wall-bounded

flows (Abe et al., 1994). Away from the wall, fµ should be limited by 1.0 in

computations of any turbulent shear flows. In consistence with this, we have

thus set fµ = 1.0 in the DHIT computations.

Figure 2 presents the predicted spectra on the two meshes at the compu-

tational time t = 2, which corresponds to tU0/M = 171 in the experiment.

Predictions using four different values of fk are presented, namely fk = 0.2,

0.4, 0.6 and 0.8. As can be seen, the value of fk hardly imposes any in-

fluence for low wavenumbers (κ < 6). For higher wavenumbers, large fk

values give more dissipation, as expected. The effect of fk becomes even

more significant at increasing wavenumbers when the grid is refined from 323

to 643. fk = 0.6 gives good agreement with the experiment on the coarse

grid, whereas a reduced value of fk renders too little dissipation. On the fine

mesh, both fk = 0.2 and 0.4 give reasonable agreement with the experiment.

The observation is consistent with the fundamental argumentation in PANS

modelling, namely, the ratio of modelled-to-total turbulence energy, fk, is

related to the grid resolution. For comparison, the result computed by the

Dynamic Smagorinsky model is also included in Figure 2, which gives good
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Figure 2: DHIT using the LRN PANS model and the Dynamic Smagorinsky model. Re-

solved turbulence energy spectra. : fk = 0.2; : fk = 0.4; : fk = 0.6; �:

fk = 0.8; H: Dynamic Smagorinsky model; ◦: Experiments by Comte-Bellot and Corrsin

(1971).

agreement on the coarse mesh but is slightly more dissipative on the fine

mesh at large wavenumbers.

Figures 3 and 4 present the resolved (kres) and the modelled (ku) kinetic

energy versus time. With increasing fk, as expected, ku increases and kres

decreases. As shown in the predicted spectra, the dissipation is not sufficient

for fk = 0.2. This has also been reflected by a relatively slow decay of the

resolved turbulent kinetic energy (Fig. 3).

4.2. Turbulent channel flow (Reτ = 950)

The following values were tested for fk in the simulation of channel flow,

namely, fk = 0.1, 0.3, 0.4, 0.5, 0.6 and 1.0. As expected, the smaller the
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Figure 3: DHIT using the LRN PANS model and the Dynamic Smagorinsky model. Re-

solved turbulence energy decaying with time., kres = 0.5〈u′

iu
′

i〉. : fk = 0.2; :

fk = 0.4; : fk = 0.6; �: fk = 0.8.
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Figure 4: DHIT using the LRN PANS model and the Dynamic Smagorinsky model. Mod-

elled turbulence energy decaying with time. : fk = 0.2; : fk = 0.4; : fk = 0.6;

�: fk = 0.8.

value of fk is, the smaller becomes the effect of the model on the resolved

flow. With the current grid for the channel flow (Table 1), it was found
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that for fk ≤ 0.3, the model plays an insignificant role in the simulation, i.e.

νu ≃ 0. In the following discussion, only results computed with fk = 0.4,

0.5 and 1.0 are presented. Note that with fk = 1.0, both the standard and

the LRN PANS models should return to their respective base models in the

context of RANS modelling.

Figure 5 compares the mean streamwise velocities, computed using the

standard PANS model and the proposed LRN PANS model with the DNS

data by Hoyas and Jimenez (2008). For fk = 1.0, the computations give

steady RANS solutions. The LRN PANS model returns to the AKN LRN k−

ε model, while the standard PANS model becomes identical to the standard

k− ε model. This has indeed been reflected in the predictions, as illustrated

in Fig. 5 for fk = 1.0. The poor prediction by the standard k − ε model is

not surprising, since the model has been integrated to the wall surface on a

low Reynolds number grid.

The velocity profiles using fk = 0.4 and fk = 0.5 are also shown in Fig. 5.

The standard PANS model with fk = 0.5 has produced an overall erroneous

velocity distribution from the viscous sublayer to the logarithmic layer, but

the prediction in the central part is closer to the DNS data. The LRN PANS

model is able to give a generally improved tendency of the profile, in spite of

an over-prediction in the logarithmic layer. The improvement is particularly

obvious in the viscous sublayer, due to the correct asymptotic properties
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Figure 5: Turbulent channel flows at Reτ = 950: distributions of streamwise velocity.

: LRN PANS model; : standard PANS model; ◦: DNS data (Hoyas and Jimenez,

2008).

inherent in the LRN PANS formulation. Using fk = 0.4, the standard PANS

and the LRN PANS models have produced very similar results that are in

reasonable agreement with the DNS data.

As shown in Fig. 5, the results are fairly sensitive to the value of fk. A

value of fk = 0.5 gives worse agreement with DNS data than fk = 0.4. The

reason is that the modelled turbulent viscosity, νu, increases by a factor of

about two when fk is increased from 0.4 to 0.5. This is further illustrated in

Fig. 6, where the modelled turbulent viscosity, νu, is presented. As expected,

νu increases for increasing fk. It is noted here that a similar sensitivity to

fk was also observed in the computation of hill flow. With the LRN PANS

model, the turbulent viscosity reaches approximately 3.5 and 7 in the center
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of the channel for fk = 0.4 and fk = 0.5, respectively. The LRN PANS model

gives very small values of 〈νu〉/ν in the near-wall region (it is close to zero in

the viscous sublayer for both fk = 0.4 and fk = 0.5, see Fig. 6(b)).
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Figure 6: Modelled turbulent eddy viscosity, 〈νu〉/ν. LRN PANS, fk = 0.4; :

LRN PANS, fk = 0.5; : PANS, fk = 0.4; : PANS, fk = 0.5.

Using fk = 0.4 gives the best predictions for both the standard and the

LRN PANS models. To highlight the modelling performance for near-wall

turbulence in channel flow computations, the results computed with fk = 0.4

are presented below for the resolved turbulence statistics. Note that, as

shown in Table 1, the grid is fairly fine and it is suitable for wall-resolved

LES. It is thus expected that the PANS formulation, with both the standard

and the LRN models, should produce LES-comparable predictions.

Figure 7(a) compares the resolved turbulent normal stresses to DNS data.

It is shown that the resolved turbulent fluctuations computed with the LRN
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PANS model are in reasonable agreement with DNS data. In general, the

LRN model shows better performance than the standard model. This is

particularly true in the vicinity of the wall surface, namely, over the viscous

sublayer for y+ ≤ 10. Figure 7(b) shows fk computed from the predicted

resolved and modelled turbulence kinetic energy. It is seen that, due to the

LRN modifications, the predicted fk is much smaller than the prescribed one,

mainly because ku in the near-wall viscous sublayer is dampened as it should.
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Figure 7: Turbulent channel flow at Reτ = 950: Turbulent normal stresses with fk = 0.4.

: LRN PANS model; : standard PANS model; ◦: DNS data (Hoyas and Jimenez,

2008).

Figure 8(a) shows the resolved Reynolds shear stress, −〈u′v′〉, with fk =

0.4 in comparison with DNS data. The turbulent shear stress obtained with

the standard PANS model in the viscous sublayer and up to y+ ≈ 50 is
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smaller than that predicted with the LRN model. This is closely associated

to large values of the modelled eddy viscosity and modelled shear stress (see

Fig. 8(b)) by the standard PANS model in the near-wall region. The results,

as illustrated in Figs. 7(a) and 8(a), show that the LRN formulation has

indeed introduced better wall-limiting behavior into the modelling compared

with the standard PANS model. It is also demonstrated that correct near-

wall asymptotic modelling improves the predictions of the resolved turbulent

Reynolds stresses and turbulent kinetic energy.
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Figure 8: Turbulent channel flow at Reτ = 950: Turbulent shear stress with fk = 0.4.

: LRN PANS model; : standard PANS model; ◦: DNS data (Hoyas and Jimenez,

2008).

The PANS modelling represents the effect of the unresolved part on the

resolved turbulence. In both the standard and the LRN PANS models, fk

(with fε ≡ 1.0) is the only parameter that differentiates the PANS formu-

lations from their respective RANS base models. It is thus interesting to
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explore the effect of fk on the budget of the modelled turbulence transport

equation. This is shown in Fig. 9 for the equation of the modelled turbu-

lent kinetic energy, ku, for channel flow at Reτ = 950. Figures 9(a) and (b)

present the ku budget for the standard PANS and the LRN PANS models

for fk = 1.0 and the budget of k for DNS data is shown in Fig. 9(c). As

compared to the standard k − ε model, the improvement achieved by the

AKN LRN model is apparent in comparison with the DNS data. Very close

to the wall surface, both the dissipation term and the molecular diffusion

term have been over-estimated with the standard PANS model in Fig. 9(a)

and under-predicted by the LRN PANS model in Fig. 9(b). This may largely

be attributed to the boundary condition of εu on the wall surface, which has

been approximated in the computations from the balance of the two terms

in the vicinity of the wall surface.

As an example, the ku budgets with fk = 0.4, where both the standard

and LRN PANS models have produced the best predictions, are plotted in

Fig. 10. The values of budget terms are in the near-wall region much lower

with the LRN PANS model than with the standard PANS, see Figs. 10(a)

and (b). The reason to the small production term in Fig. 10(b) is the small

turbulent viscosity, νu, see Fig. 6(b) (it is very small for y+ ≤ 20), which has

been mainly caused by the damping functions, fµ and f2. The incorporation

of f2 into the sink term in the εu equation has modified the C∗

ε2 coefficient,
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Figure 9: Turbulent channel flows at Reτ = 950: Budget for the ku equation with fk = 1.0.

see Eq. 16, rendering large values of εu and hence small ku and νu. Because

of the small νu, the production with the LRN PANS model is significantly

reduced in this region, whereas it reaches its maximum with the standard

PANS model. As a consequence, the locations of the peak values for both

the production and the dissipation terms have with the LRN PANS model

moved out of the buffer region. The reduction in the production of the LRN
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PANS model has entailed reduced viscous and turbulent diffusion terms.

Nevertheless, in the outer region, the budgets of the standard PANS and

LRN PANS are very similar, see Figs. 10(a) and 10(d). Here, both models

have indicated a balance between the modelled production and dissipation,

implying that local equilibrium holds approximately in both PANS models.
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Figure 10: Turbulent channel flows at Reτ = 950: Budget for the ku equation with

fk = 0.4.
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We have so far explored in channel flow simulations the performance of the

proposed LRN PANS model in comparison with the standard PANS model.

With the present grid resolution (see Table 1), both PANS models have ac-

tually enabled LES-like performance. It is desired that the PANS modelling

in the simulation should present turbulence-resolving capabilities equivalent

to SGS modelling in LES. It is then interesting to compare the LRN PANS

model with one of the best available SGS models, namely, the Dynamic

Smagorinsky model. Figure 11 presents a comparison of the time-averaged

streamwise velocity and the resolved velocity fluctuations obtained, respec-

tively, with the Dynamic Smagorinsky model and the LRN PANS model. As

seen, the LRN PANS (with fk = 0.4) gives slightly better agreement with

DNS data than the Dynamic SGS model. This suggests that the proposed

LRN PANS model has indeed enabled LES-like performance on an LES grid.

It should be mentioned, moreover, that the required CPU time is actually

somewhat lower for the LRN PANS model than for the dynamic model that

has invoked additional test-filtering operations to compute the model coeffi-

cient.

4.3. Periodic hill flow (Re = 10 600)

The periodic hill flow was computed to verify PANS performance in mod-

elling turbulent flow separation and reattachment. For this test case, the

simulation is compared with an accurate wall-resolved LES (Fröhlich et al.,
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Figure 11: Turbulent channel flow at Reτ = 950: mean velocity and resolved turbulent

velocity fluctuations. : LRN PANS model; : Dynamic Smagorinsky model; ◦:

DNS data (Hoyas and Jimenez, 2008).

2005). It is noted here that the present grid, 160 × 80 × 32 cells in a do-

main of 9h×3.035h×4.5h, is much coarser than the wall-resolved LES mesh

using 196 × 128 × 186 cells in a domain of 9h × 3.035h × 9h. The mean

flow and the resolved turbulence statistics presented below were obtained by

time-averaging and spatial-averaging over the spanwise direction.

With the same mesh, a number of computations were made using various

values of fk, with fk = 0.4, 0.5, 0.6, 0.8 and 1.0, in order to explore the

effect of fk. In comparison with the LES result, it was found that the PANS

computation with fk = 0.4, using either the standard or the LRN model, pro-

duced the best prediction of the separation bubble on the lee side of the hill

in terms of the locations of both the separation and the reattachment. The
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Figure 12: Turbulent periodic hill flow, Re = 10 600: streamlines of time-averaged flow

from PANS computations in comparison with wall-resolved LES data (Fröhlich et al.,

2005).

streamlines of the time-averaged flow from PANS computations are shown

in Fig. 12, in comparison with the LES solution (Fröhlich et al., 2005). The

LES result indicates that the flow is separated at xs = 0.2h shortly after the

hill crest and is reattached at xr = 4.7h after the hill foot. The recirculation

bubble extends over almost 50% of the domain in the streamwise direction.

As shown, both models produced reasonable predictions of the mean flow.

The locations of flow separation and reattachment, xs and xr, respectively,

are plotted in Fig. 13 (a) and (b) as function of fk. As seen, the LRN PANS

model produces accurate predictions of xs and xr with fk = 0.4, whereas

the standard PANS model shows a somewhat earlier flow separation and the

reattachment is slightly delayed. With increasing values of fk, the location
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Figure 13: Periodic hill flow, Re = 10 600: Locations of separation and reattachment, xs

and xr, versus parameter fk used in PANS computations. Standard PANS gives xs ≈ 0.18

and xr ≈ 5.0, and LRN PANS gives xs ≈ 0.2 and xr ≈ 4.7 with fk = 0.4, compared to the

LES data xLES
s = 0.2 and xLES

r = 4.7. △: LRN PANS; �: standard PANS; : LES

data.

of flow separation is shifted downwards along the lee-side of the hill, and

the reattachment location is first delayed and then moves back toward the

hill foot. With fk = 1.0, both models produce incorrectly overall attached

flow over the hill and between the hills, namely, xs = xr = 0, as shown in

Fig. 13. It should be noted that, for fk = 1.0, both models return to their

respective RANS base models, giving steady solutions based on the standard

k − ε model and the AKN LRN k − ε model.

We present below only the computations obtained with fk = 0.4, for

which both the standard and the LRN models have produced the best pre-
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dictions. Figure 14(a) displays the y+ values of the wall-adjacent nodes and

the friction coefficient along the bottom wall. Most of the wall-adjacent nodes

are located at y+ ≈ 1.0 or below, except for some points around the hill crest

having relatively large values of y+ but, in general, within y+ < 3. The value

of y+ increases along the windward side of the hill due to an increase in the

wall shear stress. The friction coefficient distributions on the lower wall are

presented in Fig.14(b). The reverse flow in the separation bubble on the lee

side of the hill is shown with negative values of Cf . Owing to a slightly more

extended separation bubble, the standard model produces a somewhat more

extensive reverse flow. Downstream of the reattachment, the recovery of the

boundary layer flow is deterred by the presence of the next hill, where the

friction coefficient shifts toward zero at the foot and then rises rapidly on the

windward hill side due to flow acceleration.

To observe the capability of PANS modelling in resolving turbulent flows,

the distributions of the mean flow and resolved turbulence statistics are com-

pared in the following. The profiles were extracted at locations of x = 0.05h,

2.0h, 6.0h and 8.0h, respectively. The mean velocity components, 〈ū〉 and

〈v̄〉, in the streamwise and vertical directions, respectively, as well as the

resolved turbulent Reynolds stresses are compared with the LES data by

Fröhlich et al. (2005). The first position, x = 0.05h, is located immediately

after the hill crest, which may help to highlight any possible influence of the
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Figure 14: Periodic hill flow, Re = 10 600: Near-wall grid spacing and friction coefficient

along the bottom wall. : LRN PANS model; : standard PANS model; :

Wall-resolved LES data.

upstream flow prior to the separation onset. The second location, x = 2.0h,

in the center of the recirculation bubble, is particularly interesting, since this

position includes a free shear layer above the bubble, a reverse flow over the

lower wall and a boundary layer on the top wall. After the reattachment,

the profile at x = 6.0h may highlight the flow recovery in the channel before

reaching the windward side of the next hill. At x = 8.0h, the flow accelerates

due to the contraction on the windward portion of the hill.

The mean velocity profiles are presented in Fig. 15 in comparison with

the LES data. It is shown that both the standard and the LRN PANS

models have produced very reasonable predictions, but some relatively large

discrepancies are observed in the prediction by the standard model. Near
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Figure 15: Periodic hill flow, Re = 10,600: Comparison of mean velocities. : LRN

PANS model; : standard PANS model; : Wall-resolved LES data.

the lower wall, as well as in the free shear layer (at x = 2.0h), the standard

PANS has somewhat over-predicted the magnitude of 〈ū〉. The results are

consistent to the Cf distribution shown in Fig. 14(b).

Figure 16 presents the distributions of the resolved Reynolds stresses

in comparison with the LES data. It is shown that, at x = 0.05h before
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the separation occurs, the proposed LRN PANS model gives good predic-

tion for the streamwise velocity fluctuations near the wall (the same for the

spanwise velocity fluctuations, not shown here), whereas the standard model

over-predicts the near-wall peaks of 〈u′u′〉. In the recirculation region (at

x = 2.0h), the resolved streamwise fluctuation is over-estimated around the

peak at y/h ≈ 1, especially by the standard PANS model. The LRN model

presents better predictions of 〈u′u′〉 over the recirculation bubble at x = 2.0h.

After the reattachment of the separation bubble, at x = 6.0h and x = 8.0h,

the LRN model produces generally better or similar predictions, as com-

pared to the standard PANS model. For 〈u′u′〉, the proposed LRN model

has shown improved turbulence-resolving capabilities in the attached bound-

ary layer near the top and bottom walls and even in the near-wall reverse

flow of the recirculation region (e.g. at x = 2.0h). For the resolved tur-

bulent shear stress, 〈u′v′〉, the improvement over the standard PANS model

in the predictions by the LRN model is also promising, particularly in the

recirculation region and in the free shear layer. Near the top wall, 〈u′v′〉 is

under-predicted. Although not shown here, it is indicated that, when the

modelled part is included, the total turbulent shear stress in the wall layer

agrees much better with the LES data.

The time-averaged PANS-modelled turbulent viscosities are shown in

Fig. 17. Both models show very similar tendencies of change in the distribu-
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Figure 16: Periodic hill flow, Re = 10 600: Profiles of resolved Reynolds stresses. :

LRN PANS model; : standard PANS model; : Wall-resolved LES data.

tions of νu. Nonetheless, the standard PANS model produces larger values

of eddy viscosities than the LRN PANS model, in general by more than 40%

in off-wall regions. This is similar to that observed in turbulent channel flow

computations (see Fig.6), as a consequence of the LRN formulation.
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Figure 17: Periodic hill flow, Re = 10 600: PANS-modelled turbulent viscosity. : LRN

PANS model; : Standard PANS model.

4.4. Effect of turbulent Prandtl numbers in the LRN PANS model

One of the major purposes with the development of PANS modelling

was to enable the model to produce turbulence-resolving predictions, as a

modelling approach compromised between RANS and LES. There have been

other models developed for similar purposes, such as the PITM (Schiestel and

Dejoan, 2005). In addition to modifying the sink term in the εu equation, the

PANS modelling has further re-formulated the turbulent Prandtl numbers,

σku and σεu, in the resulting ku and εu equations, respectively, as given in

Eqs. 14, 10 and 17. In order to investigate the influence of the turbulent

Prandtl numbers in PANS modelling, we have carried out simulations with

the LRN PANS model without modifying σku and σεu, taking the values from

the LRN RANS base model by setting σku = σk and σεu = σε. We denote
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this model LRN PANS−σ. In both LRN PANS models we have set fε = 1.0

and fk = 0.4, which means that the modelled turbulent diffusion for ku and

εu in the LRN PANS model is larger than that in the LRN PANS−σ model

by a factor of f−2

k ≃ 6.

For channel flow using the grid resolution in Table 1, the influence of

σku and σεu is shown in Fig. 18. The LRN PANS−σ model has produced

a turbulent viscosity that is about 35% larger than the LRN PANS model,

resulting in a slightly larger mean velocity in the buffer layer and in the

logarithmic region. The increased turbulent viscosity by the LRN PANS−σ

model has been caused by its reduced turbulent diffusion for both ku and εu as

compared to the LRN PANS model. Although not shown, it is indicated here

that the resolved Reynolds stresses by the two models are almost identical.

The predicted velocity profile with no model, i.e. by DNS on a coarse grid,

has also been included for comparison. As shown in Fig. 18(a), the result

obtained with no model is surprisingly good, in some respects actually better

than those with the PANS models and with the Dynamic Smagorinsky model

in Fig. 11(a). However, a close inspection of the velocity profile reveals that,

with no model, the slope is incorrect in the logarithmic layer. Similar results

were also found in Davidson (2009) where, on the same mesh, simulation with

no model (i.e. DNS) gave very good agreement with DNS data at Reτ = 500.

For the computation of hill flow at Re = 10 600, Fig. 19 presents a
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Figure 18: Turbulent channel flow at Reτ = 950: mean velocity and turbulent viscosity.

: LRN PANS model; : LRN PANS−σ model; : Coarse DNS (no model); ◦:

DNS data (Hoyas and Jimenez, 2008).

comparison of the velocity profiles predicted by the Dynamic Smagorinsky

model and by the LRN PANS−σ model. Both models have produced sim-

ilar results that are in good agreement with wall-resolved LES. Referring

to Fig. 15, moreover, the velocity profiles obtained with the LRN PANS−σ

model are very similar to those obtained with the LRN PANS model. How-

ever, when comparing the resolved Reynolds stresses in Figs. 16 and 20, the

resolved stresses predicted with the LRN PANS−σ model are much smaller

than with the LRN PANS model. This is due to the fact that the mod-

elled turbulent viscosity is much larger with the LRN PANS−σ model than

with the LRN PANS model, as illustrated respectively in Figs. 21 and 17.

This can be attributed to the large value of modelled turbulent diffusion in
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Figure 19: Periodic hill flow, Re = 10 600: Comparison of mean velocities. : LRN

PANS−σ model; : Dynamic Smagorinsky model; : Wall-resolved LES data.

the LRN PANS model, which, as mentioned above and as compared to the

LRN PANS−σ model, have induced more extensive diffusion of ku and εu.

In the present hill flow the largest values of ku and εu occur in the shear

layer on the lee-side of the hill. With the LRN PANS model these peaks

are strongly smoothed by turbulent diffusion, whereas they prevail with the
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LRN PANS−σ model. It was found that the peaks of both ku and εu are

approximately five times larger with the LRN PANS−σ model compared

to the LRN PANS model and, consequently, the peak turbulent viscosities

are approximately five times larger than with the LRN PANS−σ model (see

Figs. 17 and 21). The Dynamic Smagorinsky model, on the other hand,

has shown a rather different behavior in resolving turbulent fluctuations and

shear stresses. On the hill crest (x = 0.05h) and at the location where

the separation bubble exists, the dynamic model under-estimates 〈u′u′〉, but

gives very good predictions of the resolved turbulent shear stress, 〈u′v′〉, as

shown in Fig. 20. The modelled SGS eddy viscosity given by the Dynamic

Smagorinsky model is much smaller than the LRN PANS−σ model (Fig.21),

and is about a half of, or less than, that by the LRN PANS model (Fig.17).

The large turbulent viscosities obtained with the LRN PANS−σ model

give rise to large values of modelled turbulent stresses. Figure 22 presents

the total shear stresses, namely, the sum of the resolved and modelled shear

stresses. Comparing with Fig. 20, it can be seen that the modelled shear

stress has made a significant contribution to the total shear stresses.

4.5. Periodic hill flow (Re = 37 000)

The LRN PANS−σ model has also been applied to the same hill flow

as above but with a higher Reynolds number of Re = 37 000. The predic-

tions are compared with experiments in Rapp (2008) and Rapp and Manhart
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Figure 20: Periodic hill flow, Re = 10 600: Profiles of resolved Reynolds stresses. :

LRN PANS−σ model; : Dynamic Smagorinsky model; : Wall-resolved LES data.

(2011), as well as with the computation using the Dynamic Smagorinsky

model.

Figure 23 presents the mean velocity profiles. The mean streamwise ve-

locity predicted by the LRN PANS−σ model is in better agreement with
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Figure 21: Periodic hill flow, Re = 10 600: Modelled turbulent viscosities. : LRN

PANS−σ model. : Dynamic Smagorinsky model.
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Figure 22: Periodic hill flow, Re = 10 600: Profiles of total (i.e. resolved and modelled)

turbulent Reynolds shear stresses. : LRN PANS−σ model; : Dynamic Smagorinsky

model; : Wall-resolved LES data.

the experimental data than the dynamic model. However, at the positions

between x/h = 2 and 6 (not shown), the LRN PANS−σ model predicts

46



a relatively extended separation bubble compared to both experiments and

to the Dynamic Smagorinsky model. This has led to a somewhat slower

flow recovery after the reattachment, as shown in Fig. 23(c). The Dynamic

Smagorinsky model gives a somewhat more accurate prediction of the sep-

aration bubble, which may partly be explained by the fact that the model

has under-predicted the near-wall velocity peak on the hill crest prior to the

separation onset, see Fig. 23(a). This has caused a less intensive flow re-

circulation region, as indicated by the relatively weak reverse flow shown in

Fig. 23(b). In general, the LRN PANS−σ and the Dynamic Smagorinsky

model predict the mean flow equally well. Although not shown, it is noted

here that the LRN PANS−σ model has produced somewhat closer agreement

with the experimental data, as compared with the LRN PANS model for this

test case.

The resolved turbulent shear stresses by the LRN PANS−σ model are

presented in Fig. 24 in comparison with the experimental data and with the

prediction computed by the Dynamic Smagorinsky model. As shown, the

results by both models are in reasonable agreement with experimental data,

except at x/h = 2 where the resolved shear stress has been sensibly under-

predicted by the LRN PANS−σ model. Similar to the results for Re = 10 600,

due to large values of the modelled turbulent viscosity, the modelled shear

stresses with the LRN PANS−σ model has accounted for a larger part of
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Figure 23: Periodic hill flow, Re = 37 000: Comparison of mean velocities. : LRN

PANS−σ model; : Dynamic Smagorinsky model; : Experimental data.

the total shear stresses than with the Dynamic Smagorinsky model. This

is illustrated in Fig. 25 for the total shear stresses and in Fig. 26 for the

modelled νu. It is interesting to note that the modelled turbulent viscosity is

smaller at this high Reynolds number compared to Re = 10 600 (see Fig. 21).

With the Dynamic Smagorinsky model, this is attributed to the fact that the
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grid cell size is smaller for Re = 37 000 compared to Re = 10 600. Although

the grid cell size does not appear explicitly in the PANS formulation, the

LRN PANS−σ model has also responded to the finer grid resolution.
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Figure 24: Periodic hill flow, Re = 37 000: Profiles of resolved Reynolds shear stresses.

: LRN PANS−σ model; : Dynamic Smagorinsky model; : Experimental data.

5. Conclusions

A low-Reynolds-number PANS formulation is proposed in order to im-

prove the near-wall modelling behavior of the original (standard) PANS

model. A general LRN form of k − ε model has been taken as the RANS

parent model in the derivation, incorporating viscous and wall-damping ef-

fects in the model coefficients. The resulting formulation can thus lead to

different LRN PANS variants, upon the choice of the LRN k− ε base model.

In the present work, the AKN LRN model was taken as the platform in the
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Figure 25: Periodic hill flow, Re = 37 000: Profiles of total (i.e. resolved and modelled)

turbulent Reynolds shear stresses. : LRN PANS−σ model; : Dynamic Smagorinsky

model; : Experimental data.
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Figure 26: Periodic hill flow, Re = 37 000: Modelled turbulent viscosities. : LRN

PANS−σ model. : Dynamic Smagorinsky model.

verification of the LRN PANS modelling performance, in which two damp-

ing functions were introduced. Computations were made for, respectively, a

50



decaying homogeneous, isotropic turbulence, the turbulent channel flow at

Reτ = 950, and the periodic hill flow at two different Reynolds numbers at

Re = 10 600 and Re = 37 000. For comparison, predictions obtained by the

Dynamic Smagorinsky model, have also been included.

One of the main purposes has been to investigate the capabilities of

the proposed model in predicting both attached and separated flows, when

adopted as a turbulence-resolving modelling approach. With the same grid

resolution for the different test cases considered, the effect of the PANS mod-

elling parameter, fk, as well as of the PANS turbulent Prandtl number, σku

and σεu, was also investigated. The results, computed by both the original

and the proposed LRN PANS models, have been compared with available

DNS, LES or experimental data.

In the computation of DHIT it is shown that the LRN modification im-

poses insignificant effects, giving a 0.5% reduction of the destruction term

of εu for the smallest fk (= 0.2) at the fine mesh. Different fk values were

evaluated on two grids (323 and 643). It was found, as expected, that a re-

fined grid requires a reduced value of fk to get the best prediction of energy

spectra. When fk is chosen appropriately (fk = 0.6 on the 323 grid and

fk = 0.2−0.4 on the 643 grid), the LRN PANS is able to produce predictions

that are similar to, or better than, the Dynamic Smagorinsky model.

For the channel flow computations on an LES grid, the LRN PANS model

51



is able to produce improved predictions for both the mean flow velocity and

the resolved turbulence statistics, as compared to the original PANS model.

The model also demonstrates a reasonable response to the change of param-

eter fk. In contrast to the inappropriate wall-limiting behavior inherent in

the original PANS model, the LRN formulation introduces correct asymptotic

properties in the modelled turbulence quantities, which have consequently en-

abled improved predictions of resolved turbulence statistics in the wall layer.

The LRN PANS model is able to give improved predictions, as compared to

the Dynamic Smagorinsky SGS model.

The function of the PANS method is well demonstrated for the hill flow.

Both the standard and the LRN PANS models produce good predictions

for the mean flow and the resolved turbulent quantities. Nonetheless, the

improvement resulting from the LRN formulation is sensible and, as intended,

this formulation has rendered generally better predictions in near-wall regions

than the standard PANS model.

It is noted that the PANS formulation modifies the turbulent diffusion

terms in the ku and the εu equations, by multiplying a factor of fεf
−2

k to

the turbulent Prandtl numbers, namely, σku = σkf
2
k/fε and σεu = σεf

2
k/fε.

Investigation was conducted in the hill flow computation using σku = σk

and σεu = σε (denoted the LRN PANS−σ model) in comparison with the

LRN PANS model with σku = σkf
2
k/fε, σεu = σεf

2
k/fε and fk = 0.4. It
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was found that the LRN PANS−σ model increases the peaks in ku and εu

by approximately a factor of five compared to the LRN PANS model and,

correspondingly, increases the turbulent viscosity and the modelled Reynolds

stresses. The difference in the mean flows predicted by the two models was

small. Along with the modelling of sink term in the ε equation, the option of

modifying the turbulent diffusion terms in the modelled turbulence equations

is interesting in exploration of turbulence-resolving modelling approaches.

In comparison with LES using the Dynamic Smagorinsky model, the

LRN PANS model yields similar or somewhat better results in all three wall-

bounded flows computed in the present work. Furthermore, it was observed

that the required CPU time is slightly less for the LRN PANS model com-

pared to the Dynamic Smagorinsky model. Moreover, the former model

is numerically more feasible than the latter which invokes additional test-

filtering operations and usually ad-hoc local averaging and/or clipping in the

dynamic determination of the model coefficient, particularly when dealing

with flows in complex geometries using unstructured grids.

In previous validations and applications, the PANS method has shown

encouraging performance for an appreciable range of different flows. Being

an engineering modelling approach, this method is based on a unique physical

argumentation in deriving its formulation that is different from conventional

DES and hybrid models. In searching for improved model-based turbulence-
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resolving approaches, PANS has provided an alternative way, by which a

number of available (and relatively robust) RANS models can be readily

tested in the framework of the PANS formulation.

As compared to many existing SGS models in LES, the LRN PANS for-

mulation does not invoke the grid cell size, and can thus avoid any ad-hoc

determination of the subgrid scale in the model when a stretching/skewing

grid is invoked. With this feature, similar to RANS computations, the LRN

PANS model may potentially reach a grid-independent solution with succes-

sively refined grid at a constant value of fk. This feature can help to get

rid of unphysical effect of grid arrangement, as being present in some exist-

ing turbulence-resolving methods which use the local cell size to justify the

RANS-LES switching.

Of the emerging turbulence-resolving modelling approaches, the PANS

method is relatively new. Needless to say, much investigation on some of

the above and other aspects has to be conducted for further verification

and improvement of the modelling. This is however out of the scope of the

current work. Using the turbulence-resolving capabilities, the LRN PANS

model will in future work be further developed as a zonal method coupled

with RANS. The model is presently being used in an embedded LES formu-

lation (Davidson and Peng, 2011). The LRN PANS model offers an elegant

way of switching from RANS to LES by setting the value of parameter from
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fk = 1 to an appropriately small value of fk.
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