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Department of Applied Mechanics
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Abstract
The air flow through a generator has been numerically investigated

with different rotor and stator designs to give a better understanding

of the flow for cooling purposes. A simple rotor design has been chosen

to start with, and modified through a set of changes, where stepwise

modifications have been imposed to the design of the rotor and the sta-

tor. The flow properties for all cases have been compared to each other

to see the effect of each parameter change on the flow inside the ma-

chine.

The flow is predicted with the OpenFOAM solverMRFSimpleFOAM ,
which uses the Frozen Rotor concept. This means that there is no ac-

tual mesh movement in this study, but instead, the rotating regions in

the domain are provided with source terms that account for rotation.

The choice of the turbulence model for solving the air flow in the

generator was based on a study of the turbulence models and validation

test cases. All incompressible RAS turbulence models in OpenFOAM-

1.5.x were studied and the implementations were compared to the orig-

inal models. Many of the mentioned turbulence models were tested on

a backward-facing step test case. The numerical results were compared

to the experimental data and the most appropriate turbulence model

was chosen. Details on turbulence model studies are discussed in Ap-

pendix A. A laminar Couette flow between two concentric cylinders was

run and the numerical velocity and pressure distributions between the

cylinders were compared to the analytical resutls. More details on the

validation test cases are found in Appendix B.

Keywords: CFD, Generator, OpenFOAM, Launder-Sharma k-ε ,Mul-
tipleReferenceFrame
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Nomenclature

Latin symbols

Cε1 constant in k − ε turbulence model
Cε2 constant in k − ε turbulence model
Cµ constant in k − ε turbulence model
D extra source term in k equation of low-Re turbulence models
E extra source term in ε equation of low-Re turbulence models
f1 damping function in ε equation of low-Re turbulence models
f2 damping function in ε equation of low-Re turbulence models
fµ damping function in νt formulation of low-Re turbulence

models

k turbulent kinetic energy

p pressure

Pk turbulent production term

q
√

k
Sij strain rate tensor

u∗ friction velocity

Ui,j ≡ ∂Ui

∂xj
velocity derivative

ui Cartesian components of velocity vector

xi Cartesian coordinate vector component

Greek symbols

δij Kronecker delta

ε dissipation of turbulent kinetic energy

κ = 0.41 von-Karman constant

µ laminar dynamic viscosity

µt dynamic turbulent viscosity

ν kinematic viscosity

νt kinematic turbulent viscosity

ω specific dissipation, rotational speed of the rotor

ωm rotational speed of the reference frame

Ωij rotation tensor

ρ density

σk constant in k-epsilon turbulence model
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σε constant in k-epsilon turbulence model

τij shear stress tensor

ζ dissipation of q

x
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Chapter 1

Introduction

A
LMOST half of the total electric power generation in Sweden comes

from the hydroelectic power plants. Obviously any modifications

and improvements to these systems would lead to considerable con-

tributions to the total electric energy produced in the country. As any

other complicated system, a hydroelectric power plant comprises a large

number of different components, any of which should be carefully de-

signed and optimized with respect to the working conditions to yield

the highest possible efficiency at the normal working conditions.

In this work, the focus is on electric generators and the cooling air

flow within them. A generator is a device which generates electricity

through magnetic induction into its coils. The generator is made up

of two main components: a rotor and a stator. The rotor is the rotat-

ing part of the generator, which holds a number of large electromag-

netic poles. The stator is the stationary part, which is composed of a

large number of electric conductors, called windings. When the rotor

rotates, the motion of its magnetic field induces an alternating electric

current in the stator windings. A transformer is then used to increase

the voltage which leads to a decreased current with the same power,

(Power = V oltage×Current). The electricity is then transmitted to the
network.

The process of conversion of the mechanical energy into electricity

includes losses due to

1) Electrical resistance in the generator components, which comes

up when there is an electric current passing through a resistance.

2) Magnetic field, which exerts force on the magnetic particles in

the generator and causes molecular friction.

3) Mechanical losses, due to ventilation of the generator and friction

between different parts.

The losses rise the temperature of the components, which leads to

a change in the material properties. This includes electric resistances

1
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and conductivities, which are temperature dependent. A working tem-

perature beyond the prescribed values may result in deteriorated per-

formance and lower efficiency of the generator in converting the energy

to electricity. Also, the material strengths of certain components, such

as insulations, are affected by temperature, causing a reduction in life

time. All this means that the heat generated by the energy conversion

process in the generators should be removed in order to keep the ma-

chine near its best operational point. Usually the heat in a generator

is removed by means of convection. A number of cooling channels are

provided in the stator body to allow for the passage of air to cool down

the stator windings. The rotor acts as a fan, which builds up a pres-

sure difference that pushes the air through the stator channels. Figure

1.1 shows the different parts of an axially cooled generator. In an axi-

ally cooled generator, the air flows axially into the machine and passes

through the space between the rotor poles and into the stator channels.

The stator channels are extended radially through the stator.

Figure 1.1: The simplified generator geometry used in the present work.

Left: the complete model. Center: the rotor. Right: the stator. Transparency

has been used to visualize the interior of the geometry.

The aim of this work is to numerically study the air flow in an ax-

ially cooled generator. Heat transfer is not included in the present

study. The focus is instead on different geometrical attributes of the

generator, and its effect on the flow distribution. There is also a fo-

cus on the choice of numerical methods and model, which is necessary

before including the heat transfer.

In this report, first the different generator configurations are de-

scribed and the numerical results for the cases are presented. Then

the conclusions are drawn and future work is discussed. In Appendix

A modeling methods are discussed. The Discussions concern different

incompressible RAS turbulence models, wall treatment methods and

a number of numerical methods in OpenFOAM OpenFOAM-1.5.x as

well as the Frozen Rotor concept and methods for computing forces and

2



CHAPTER 1. INTRODUCTION

torques on the rotor. In Appendix B the validation test cases, the back-

ward facing step and the Couette flow, are presented and discussed.

3
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Chapter 2

Cases and Results

A
S Figure 1.1 shows, the rotor in the present study has 12 poles. The

stator body contains a number of air passages, called stator chan-

nels, which allow for the flow of the cooling air through the generator.

The stator channels are separated in the tangential direction by small

baffles, which are used as supports to separate the stator plates. A

stator winding passes through each channel between the baffles. The

stator channels are shown in Figure 2.1. The channels are provided in

4 axial rows. Each row contains 108 channels. With 108 stator chan-

nels in each row, each pole can be associated with 9 channels in the

circumferential direction. Thus, one can simplify the problem by mod-

eling only 1 pole with 9 corresponding channels in each row, i.e. only a

1/12 sector with periodic boundaries. Also, since the geometry is axially
symmetric, the computaional domain can be further reduced by consid-

ering only the upper part and utilizing a symmetry boundary condition

at the symmetry plane.

Figure 2.1: A close-up view of the stator channels

5
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Figure 2.2 shows the computational domain by visualizing all the

boundaries except the periodic boundaries of one of the studied cases,

and a cross-section of the pole and the nine stator channels with their

coils and baffles.

Figure 2.2: Left: Computational domain of a case where the 1/12 periodic
sector and symmetry plane can be seen. The front and back boundaries

(not shown) are periodic. Right: Rotor pole and stator cooling channels.

The rotor is moving clockwise when seen from above

The flow is driven by the pressure build-up caused by the rotation

of the rotor and interaction of the air flow with the rotor and the stator

walls. Noticing the movement of the rotor relative to the stator, the flow

should be pulsating and unsteady. In the present work, however, the

simulations have been performed using the steady-state Frozen Rotor

concept. In the Frozen Rotor concept the computational domain and

the corresponding mesh are not rotating, but instead source terms for

the rotation have been added to the governing equations in the rotating

region. This is described in detail in the Appendix A.

The computaional domain is generated without inlets and outlets.

The reason for this choice is discussed in the following sections. It is,

thus, the rotation of the rotor which drives the flow and, therefore, the

volume flow through the machine is determined by the solution, rather

than by a prescribed value at the inlet.

The turbulence is modeled utilizing the low-Re Launder sharma

turbulence model. The use of a low-Re turbulence model is justified

by the relatively small Reynolds number in the stator channels. It is

benefitial with a fine mesh to capture the sharp gradients, especially in

the near-wall regions where the modeled wall shear stresses are quite

sensitive to the mesh quality. A high-Re turbulence model would lead

6



CHAPTER 2. CASES AND RESULTS

to a mesh that is too coarse to resolve many of the flow features. This

is described in more details in Appendix A.

2.1 Cases

The geometry is a simplified version of a small generator at Uppsala

University in Sweden. A simple pole design was selected and then

modified in several steps to resemble the real geometry at the end. The

generator cases include modifications to the rotor pole and the stator.

There are 7 different rotor pole designs. Each pole design is assigned a

number (from 1 to 7). Except for the pole design 1, each pole design is

based on the previous pole design with geometric modifications. Thable

2.1 shows the pole designs and the respective modifications to them.

Pole design Remarks and Modifications

1 Base pole geometry with radial pole sides

2 Reduced areas A1 and A2 and non-radial sides

3 Added wedge shaped pole supports in between the poles

4 Curved front part of the poles

5 Curved edges on top of the poles

6 More curvature on top of the poles

7 Flattened top-front part of the poles

Table 2.1: Different rotor pole designs and the respective modifications.

Every modified rotor geometry has been simulated with three dif-

ferent layouts: a base case (C# cases), a case with a baffle on top of the
stator (C#S cases), and a case with a combination of a stator baffle and
a rotor fan blade between the poles (C#F cases). In all cases the sta-
tor inner diameter is 0.365m and the rotor rotational speed is 500rpm.
A1 is the cross-sectional area between the poles in the computational

domain. A2 is the cross-sectional area of the air gap between the ro-

tor and the stator in the computational domain. Figure 2.3 shows the

schematic views of A1 and A2 as the shaded areas between the rotor

and stator.

A parametric study of the effect of different parts of the geometry

on the flow has been performed. In every step the flow in the modified

geometry was simulated to study the effect of the geometrical changes

on the flow. Table 2.2 shows all the different cases that have been

studied in the present work.

7
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C# C#S C#F A1(m
2) A2(m

2) Pole modifications

C1 C1S C1F 0.0033 0.0028 None

C2 C2S C2F 0.0029 0.0017 Sides, Radius

C3 C3S C3F 0.0029 0.0017 Pole supports

C4 C4S C4F 0.0029 0.0017 Curved front

C5 C5S C5F 0.0029 0.0017 Curved edges

C6 C6S C6F 0.0029 0.0017 More curved edges

C7 C7S C7F 0.0028 0.0017 Flattened top-front

Table 2.2: Different rotor and stator designs. A1 is the cross-sectional area

between the poles in the computational domain, A2 is the cross-sectional

area of the air gap between the rotor and the stator in the computational

domain.

8
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Figure 2.3: The schematic views of areas A1 and A2

2.2 Volume Flow Distributions

The distribution of volume flow between the channels are shown in

Figure 2.4. The upper diagrams show the upper channel row, and the

lower diagrams show the lower channel row. The vertical axis shows

the volume flow of each channel. The horizontal axis shows the channel

numbers, which are in accordance with the numbering shown in Figure

2.2, meaning that the rotor is rotating from channel 9 towards channel

1. The vertical dotted lines show the tangential position of the pole

edges in relation to the stator channels.

As Figure 2.4 suggests, the use of a stator baffle above the rotor

(C#S) increases the volume flow through the machine. This is due to
the higher pressure build-up inside the machine.

Generally, the addition of fan blades to the rotor increases the vol-

ume flow even more. This is however not true in the case C7F . That
case shows unsteady characteristics and does not converge as easily as

the other cases, and it thus needs further investigation. The increase

in volume flow due to the inclusion of fan blades can again be justified

by a higher pressure build-up in the generator. A larger pressure dif-

ference between the inside and the outside of the machine leads to a

larger volume flow.

Figure 2.5 shows the relative distribution of the volume flow be-

tween the channels for all cases. The small rectangles show the chan-

nels in two rows and the large rectangle shows the pole edges. The

9
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Figure 2.4: Distribution of the volume flows in the stator channels. Top: the

upper row, bottom: the lower row. From left to right: C1, C2, C3, C4, C5, C6

and C7 variations. Channel numberings according to Figure 2.2

vertical axis shows the channel volume flow normalized with the total

volume flow of each case. The zero- volume flow lines are shown by the

horizontal dotted lines along the center of the channels. Notice that

cases C1, C7 and C7F have purely negative flows in some channels
and also a more uneven distribution of volume flows.

Table 2.3 shows the rotor pole designs as well as the volume flow

in the computational domain, and the average air flow velocity at the

minimum cross sectional area of the stator channels. This local velocity

is computed by dividing the volume flow through the computational

domain by the minimum cross-sectional area of the stator channels.

The minimum cross-sectional area of a single stator channel, near the

stator coils, is Am ≈ 8.29 × 10−5(m2). It should be noted that each case
has its own volume flow, V̇f , which is obtained by the solution. Since a

total number of 18 stator channels are included in the computational

domain, the velocity is given by

vm =
V̇f

18 × Am
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Figure 2.5: Relative volume flow distribution between all channels. Channel

numbering according to Figure 2.2

2.3 Rotor Axial Power

Table 2.4 shows the axial power required to rotate the rotor. As de-

scribed in Appendix A, the axial power of the rotor is divided into two

parts: a part to overcome the moments from pressure forces, Ėp, and a

part to overcome the moments from viscous forces, Ėv, i.e.

Ėrotor = Ėp + Ėv

As Table 2.4 suggests, the contribution from viscous forces is much

smaller than that of the pressure forces. Large separation regions lead

to large pressure drops on the rotor pole surfaces which exert large

forces on the pole in the direction opposite to the motion of the rotor.

The use of a stator baffle leads to a reduction in Ėp and generally a

small reduction in Ėv. However, the values for Ėv are both small do not

change significantly, which makes it difficult to draw conclusions about

them. The use of fan blades strongly increases Ėp but still reduces Ėv

(This does not apply to case C7F ). The increase in Ėp with the use of fan

blades can be justified by the larger volume flow through the generator.

The amount of air flowing through the machine is larger and the fan

11
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C1 C2 C3 C4 C5 C6 C7

C# V̇f 0.0027 0.0042 0.0033 0.0034 0.0050 0.0041 0.0030

vm 1.8 2.8 2.2 2.3 3.4 2.7 2.0

C#S V̇f 0.0079 0.0055 0.0049 0.0051 0.0074 0.0083 0.0069

vm 5.3 3.7 3.3 3.4 5.0 5.6 4.6

C#F V̇f 0.0168 0.0158 0.0137 0.0155 0.0157 0.0154 0.0029

vm 11.3 10.1 9.2 10.4 10.5 10.3 2.0

Table 2.3: Rotor pole design, volume flow and average stator channel flow

velocity. V̇f (m3

s
): The volume flow rate through the computational domain,

vm(m
s
): Average velocity at the minimum channel cross-sectional area

C1 C2 C3 C4 C5 C6 C7

C# Ėp 4.45 2.42 2.24 2.27 4.04 3.73 3.97

Ėv 0.30 0.34 0.34 0.32 0.28 0.23 0.05

C#S Ėp 3.62 2.29 1.94 1.98 2.82 3.25 3.27

Ėv 0.25 0.31 0.28 0.28 0.26 0.26 0.04

C#F Ėp 7.07 7.59 6.00 6.01 5.97 6.30 2.10

Ėv 0.24 0.11 0.19 0.22 0.23 0.25 0.15

Table 2.4: Rotor axial power for all cases. Ėp(W ): The axial power required

on the rotor to overcome the pressure moments. Ėv(W ): The axial power
required on the rotor to overcome the frictional moments.

12
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blades should give rotation to the flow, which means that more power

is needed to rotate the rotor. Also, large separation areas behind the

blades lead to a large pressure loss in those regions.

The reduction in Ėv can be justified by taking into account that us-

ing fan blades helps pushing more air in the desired direction within

the machine. This means that the recirculations in the viscinity of the

pole are minimized and, thus, friction between the air and the pole is

also reduced. In case C7F a reduction in Ėp can be observed, which can

be justified with the very low volume flow in the machine. At the same

time, an increase in Ėv is noticed. This can be related to the frictional

forces which are more intense in the backflow regions. A high relative

velocity between the flowing air and the rotating pole leads to large

frictional losses, without adding to the volume flow passing through

the machine.

2.4 Flow Structure

The unit vectors of the velocity between the rotor poles (the cyclic

boundaries in the computational domain, c.f. Figure 2.2) are shown in

Table 2.5. The use of unit vectors makes the flow behaviour more clear

in this case, where there is a large difference in velocity magnitudes.

The contours of zero axial velocity are marked by thin curves.

Ideally, the velocity vectors should not point upwards in the com-

putational domain (upper half of the generator). This means that the

flow at the inlet to the machine should always be inwards and that all

the fluid should flow directly through the channels. This way the air

is heated up by the hot surfaces of the machine and removes the heat

by flowing directly outwards. In reality this does not happen, since a

number of flow recirculations will appear, based on the design of rotor

and stator, as well as the rotational speed of the rotor. The recircula-

tion of the cooling air in the machine causes the air to get warmer as it

stays a longer time in contact with the hot surfaces, which reduces the

temperature difference between the surfaces and the cooling air. This

impairs the convective cooling of the machine.

In all cases, there is a region near the stator inner wall which has

upward velocity vectors. This is not desirable according to the descrip-

tions above. Also, it makes it difficult to define and use appropriate in-

let boundary conditions (at the inlet to the machine) which can suit the

flow characteristics. This justifies the use of stator baffles which pro-

hibit the outward flow at the inlet to the machine. Obviously, adding

a baffle on top of the rotor-stator space forces the velocity vectors to be

directed downwards. This is based on the negative pressure gradients

13
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C# C#S C#F

C1

C2

C3

C4

C5

C6

C7

Table 2.5: Velocity unit vectors in a plane between two poles (the periodic

boundary, c.f. Figure 2.2).
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at the new inlet to the machine, which is stronger than in the base

cases.

The fan blades cause an even stronger pressure build-up within the

machine, which drives the flow more inwards in the presence of a sta-

tor baffle. This helps minimizing the upward flow near the stator inner

wall. The cases with a stator baffle show an obvious separation bub-

ble at the tip of the stator baffle. The separation happens because the

fluid flows normal to the baffle at the inlet. However, the separation

zone gets smaller in size when the fan blades are introduced. This is

because the flow rates are higher with use of fan blades, which is again

caused by larger pressure gradients in the domain.

The cases with stator baffles show less strong upwards velocities

above the rotor poles, again caused by the pressure build-up in the

machine, which strengthens the inward flow inside the machine. The

fan blades help to almost remove the upward-velocity regions through

generating an even higher pressure in the region which pushes even

more flow through the stator channels. The correspondingly higher

volume flows clarifies this. This does not apply to case C7F .

2.5 Flow in the Channels

Tables 2.6 and 2.7 show the recirculation zones in the upper and the

lower stator channels respectively. The shaded areas show the regions

with negative radial velocity. The visualization is made in a plane in

the middle of the channel heights.

Cases without fan blades show large recirculation regions to the

right side of the stator windings, when seen from inside. The cases in-

cluding fan blades show considerably smaller recirculation areas com-

pared to other cases, and that is mainly visible just behind, or to a

small extent, to the right side of the windings. This does not apply

to case C7F , in which the flow in both the upper and lower channel
rows is associated with strong recirculations. This means that in cases

without a fan blade, the air is pushed into the channels from one side

of the stator windings. This is caused by the relatively high pressure

difference between inside and outside of the channels. In the air gap

between rotor and stator, separation occurs just to the right side of

the stator windings (when seen from inside) and makes a low pressure

region there. The low pressure region draws the air from the high pres-

sure region inside the channels, which is undesirable. In cases with fan

blades (except C7F ), however, the air enters the channels mostly from
both sides of the stator windings. This is caused by the larger pressure

build-up inside the machine and leads to a higher flow rate. For cases

15
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C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.6: Flow in the middle of the upper channel row: The shaded areas

show regions with negative radial velocity.
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C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.7: Flow in the middle of the lower channel row: The shaded areas

show regions with negative radial velocity.
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C1, C7 and C7F the flow in some channels has purely negative radial
velocities. This means that the fluid flows from the channel into the

machine, which is undersirable.

2.6 Velocity Components Just Above the Ro-

tor Poles

In table 2.8-2.10 the velocity components are analyzed in a plane just

above the rotor poles. A distance of 0.2mm is chosen between the con-
tours and the pole upper surface.

Table 2.8 shows the axial velocity component just above the rotor

poles. A positive signs means that the axial velocity component is di-

rected upwards. In certain cases a region of upward axial velocities are

visible, which is not desirable as one would ideally expect inward axial

velocities at this location. As Table 2.8 suggests, except for the cases

C7S and C7F , the use of stator baffles, as well as the combination of the
stator baffles and fan blades on top of the rotor poles, helps decreasing

the upward axial velocities and increasing the downward axial veloci-

ties in the region between the rotor and the stator. This means that the

air flow inside the machine generaglly increases with the use of stator

baffles and fan blades. This is, however, not the case for the C7S and
C7F .

Table 2.9 shows the tangential velocity components just above the

rotor poles. According to the right-hand rule with rotational axis point-

ing outward from the pictures, a negative sign means that the rotation

takes place clockwise, which in this case means upwards in the pic-

tures. Adding a baffle to the stator reduces the average tangential

velocity. However, adding fan blades helps recovering the high value of

the tangential velocity through supplying kinetic energy to the air. For

each pole design the highest tangential velocity is achieved with a fan

blade. Rounded pole edges leads to larger tangential components just

above the rotor. Case C7F again shows an unusual distribution of tan-
gential velocities. As the velocity components are shown just above the

rotor pole, one would expect the velocities to more or less follow those

of the pole at each diameter. This is, however, obviously not the case

for C7F which has strong positive tangential velocities in some regions.
This may indicate that there are strong recirculations.

Table 2.10 shows the radial velocity component just above the ro-

tor poles. A positive sign means that the velocity is directed radially

outwards. In the air gap between the rotor and stator in the cases with-

out a fan blade, there is a region with negative radial velocities, which
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C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.8: Axial velocity just above the rotor poles (m/s)

C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.9: Tangential velocity just above the rotor poles (m/s)
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shows a recirculation between the poles. In the cases with a fan blade,

however, the recirculation area is located in between two adjacent fan

blades.

C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.10: Radial velocity just above the rotor poles (m/s)

2.7 Relative Tangential Velocity in the Pole

Gap

The tangential velocity relative to the rotor pole is shown in Table 2.11.

The relative component is taken on a plane normal to the axis of ro-

taion and at a height in the middle of the stator channels. The relative

velocity component is computed through the relation

utangential,relative = utangential − ωr

where ωr is the tangential velocity of the pole at radius r. Table
2.11 suggests that the tangential velocity in the middle of the stator

channels is more or less following the pole tangential velocity, with

small differences in certain regions. Near the stator wall the tangential

velocity decreases as the fluid gets close to the walls.
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C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.11: Relative tangential velocity, between the stator channels (m/s)

2.8 Pressure Distributions on the Rotor Poles

Tables 2.12, 2.13, 2.14 and 2.15 show the contours of the quantity

(
p−pref

ρ
) on the pole top, pole pressure side, pole suction side and pole

front. The quantity p refers to the static pressure at each point, while
pref is the static pressure at a reference cell. The reference cell is lo-

cated just at the top-outer edge of the domain. The reference point

is, thus, located outside the stator and is identical for all cases. The

quantity ρ is the air density.

Accirding to the tables 2.12-2.14, near the rotor body there is a re-

gion with relatively lower (
p−pref

ρ
) values. This means that the static

pressure is low in that region, which causes the air to be sucked stronger

into the machine and gives a larger inward velocity.

The quantity (
p−pref

ρ
) gives a reasonable picture of how the volume

flow should be distributed in the channels. In cases with smaller vari-

ations in pstat, and thus smaller variations on (
p−pref

ρ
), less differences

between the volume flow distributions in the channels is noticed. A

good example in this case is the base cases without the stator baffles.

On the other hand, in cases with larger variations in pstat the volume

flow is less evenly distributed and the differences between the flow in

different channels can be seen. This particularly applies for the cases
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C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.12: Contours of relative static pressure divided by density, (
p−pref

ρ
)

[m2/s2], on the pole top

C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.13: Contours of relative static pressure divided by density, (
p−pref

ρ
)

[m2/s2], on the pole pressure side
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C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.14: Contours of relative static pressure divided by density, (
p−pref

ρ
)

[m2/s2], on the pole suction side

C1 C2 C3 C4 C5 C6 C7

C1S C2S C3S C4S C5S C6S C7S

C1F C2F C3F C4F C5F C6F C7F

Table 2.15: Contours of relative static pressure divided by density, (
p−pref

ρ
)

[m2/s2], on the pole front
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with fan blades.
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Chapter 3

Concluding Remarks and

Future Work

D
IFFERENT rotor pole and stator geometries of a generator were

tested with the purpose of investigating the air flow through the

machine. The numerical results obtained using OpenFOAM were com-

pared to each other. According to the computational results, addition of

baffles at the inlet of the stator helps increasing the volume flow within

the machine and removes the outward velocities at the inlet. Further-

more, adding fan blades on top of the rotor poles generally increases

the volume flow inside the machine. This, however, is not the case for

the last geometric modification.

The air flow separates in the stator channels. However, addition of

the baffle to the stator inlet together with fan blades on top of the rotor

pole generally helps to minimize the separation zone. This is, again,

not the case for the last geometric modification.

The axial power needed by the rotor is shown to decrease by using

the stator blades. However, adding fan blades to the rotor poles leads to

an increased rotor axial power. The last geometric modification, how-

ever, is an exempt to this.

Experimental data are needed to validate the computational results

with. In the continuation of the present work, experiments will be per-

formed on the real generator to measure the velocity and pressure dis-

tributions at the inlet and the outlet of the machine. The experimental

results will then be compared to the computations to examine the qual-

ity of the computations.

The current computations were performed using the frozen-rotor

concept (See Appendix A). This means that the cases are run quasi-

steady. The solution quality would be higher with unsteady computa-

tions. Thus, the future focus of the work will be on running transient

cases with rotating mesh.
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Different incompressible RAS turbulence models in OpenFOAM-

1.5.x were studied and the implementations were compared to the orig-

inal models. The implementation of some models or model coefficients

differ from the original models to a certain degree. This is described

in Appendix A. In Appendix B, two validation test cases are described:

a backward facing step test case and a laminar Couette flow test case.

In the former test case, almost all turbulence models described in Ap-

pendix A were tested on a backward facing step to compare the numer-

ical results of the turbulence models implemented in OpenFOAM-1.5.x

with experimental data on the same test case, and to select the most

appropriate turbulence model for the computation of air flow in the

generator. The results suggest that the RNGkEpsilon and Launder-

SharmaKE turbulence models show the best level of consistency with

the experimental data. Finally, a laminar Couette flow test case was

run between two concentric cylinders and the numerical velocity and

pressure distributions between the cylinders were compared to the an-

alytical results. The results proved to be very much alike. More discus-

sions on validation test cases are found in Appendix B.
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Appendix A

Modeling

T
HE air flow in an electric generator is rather complex and the veloci-

ties involved are in the turbulent flow regime. Therefore, a suitable

set of equations, discretization schemes and turbulence models should

be chosen to predict the flow. In the present work, the steady-state

Reynolds-Averaged Navier-Stokes equations are solved using the finite

volume method and the Frozen Rotor approach. The OpenFOAM-1.5.x

CFD toolbox is used for the simulations. A block-structured mesh is

generated by the built-in blockMesh mesh generator, andm4 parametriza-

tion. The convective terms in the momentum and turbulence equations

are discretized using the first-order upwind scheme. In this work, the

choice of turbulence model has been limited to steady RANS models.

In order to select the most suitable turbulence model to simulate the

generator case, a number of RANS turbulence models in OpenFOAM

have been validated in the backward facing step test case. Further, to

verify that OpenFOAM correctly predicts the build-up of the pressure

due to the rotation, the laminar flow in a concentric cylinder test case

has been studied. In the following sections the numerical methods are

first described, followed by the validations for the two test cases.

A.1 Turbulence Models

Generally, RANS turbulence models are divided into two main groups,

the ones integrating up to the wall (low-Re) and those with wall func-

tions (high-Re). The former group solves the equations up to the wall

surface and thus needs a very fine mesh near the walls to be able to

capture the large gradients in that region. The mesh sizes in the near-

wall region should satisfy the general requirement of y+ ≈ 1 every-
where. This requires very fine cells, a large memory usage and long

simulation times. It is thus of interest to model the near-wall gradi-
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ents, rather than solving them. This is done by introducing the so-

called wall functions. In this method, the center of the first cell in the

viscinity of the wall should be located in the overlap region of the wall

boundary layer (30 < Y + < 100) and thus the wall shear stresses are
computed through the logarithmic law. In this way, the fine mesh in

the boundary layer region will be replaced by a coarse one and thus the

gradients near the walls are modelled in a single cell. The computa-

tional memory and time will be saved tremendously with this method.

The low-Re turbulence models include extra source terms and damp-

ing functions to correctly model the near-wall behaviour. Typically, two

functions f1 and f2 are added to the ε equation, function fµ is added to

the modeling of νt and source terms D and E are added to the k and ε
equations respectively.

In the following sections all of the incompressible RANS turbulence

models in OpenFOAM-1.5.x are described briefly. Each description

states if the model is high-Re or low-Re shows the mathematical no-

tation, and the way it is implemented in OpenFOAM-1.5.x. First a

brief description of OpenFOAM notations is discussed.

A.1.1 Mathematical Notation in OpenFOAM

In the descriptions of the turbulence models of OpenFOAM-1.5.x in the

following sections, it is also described how the equations are imple-

mented in the code. Table A.1 is provided to relate the mathematical

and OpenFOAM (code) notations for some of the most important oper-

ators in this context. Further description of OpenFOAM operators can

be found in the OpenFOAM programmers guide.

The implementation of the material derivative is here described us-

ing the convection of the turbulent kinetic energy, k, as an example.
The material derivative is expressed as

Dk

Dt
=

∂k

∂t
+ U · ∇k

The last term can be re-written as

U · ∇k = ∇ · (Uk) − (∇ · U)k

The last term in this equation is zero in an incompressible formulation

(∇ · U = 0). However, during convergence it is non-zero, and the term
is sometimes kept to improve the convergence rate [1]. Looking at the

actual implementation in OpenFOAM, this expression is written as

fvm::div(phi_,k_)-fvm::Sp(fvc::div(phi_),k)
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The nomenclature fvm::means that both terms will be introduced
in the coefficient matrix. The first term will use the control volume

face flux (phi_) to calculate the divergence of Uk, using Gauss the-
orem (looping over the control volume faces). The second term will

explicitly (fvc::) calculate the divergence of U , again using the Gauss
theorem, and introducing the term in the coefficient matrix (fvm ::) by
a multiplicatuib by k through the source term implementation (Sp).

Description Mathematical expression OpenFOAM expression

Deviatoric component devT 1 dev(T)
Divergence ∇ · χ div(chi)

Double inner product a : b 2 a && b
Gradient ∇φ grad(phi)

Identity tensor δij I
Inner product a · b a & b
Laplacian ∇ · Γ∇φ laplacian(gamma,phi)

Magnitude squared |a|2 magSqr(a)
Rotation tensor Ωij skew(fvc::grad(U))
Skew tensor skewT skew(T)
Strain tensor Sij symm(fvc::grad(U))

Symmetric tensor symmT symm(T)
Trace trT tr(T)

Transpose T T T.T()
2 ∗ SymmT twoSymm(T)
|∇∇φ|2 magSqrGradGrad(phi)

Table A.1: OpenFOAM mathematical notations

1Deviatoric Component of a tensor T :
dev(T ) = T − 1

3
tr(T )I

2The ”Double Inner Product” of the two second rank tensors a and b. It is a scalar
which is computed through aijbij , as:

s =





a11b11 + a12b12 + a13b13

+a21b21 + a22b22 + a23b23

+a31b31 + a32b32 + a33b33
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A.1.2 kEpsilon

The kEpsilon model is the standard high-Re k−εmodel with wall func-
tions [2]. It is implemented in OpenFOAM as

∂k

∂t
+ ∇ · (Uk) − (∇ · U)k −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) − (∇ · U)ε −∇ · Dε,eff∇ε = Cε1

ε

k
G − Cε2

ε2

k

G Dk,eff Dε,eff αε νt Cε1 Cε2 Cµ

νt2|Sij|2 ν + νt ν + αενt 0.76923 Cµ
k2

ε
1.44 1.92 0.09

The appropriate turbulence boundary conditions at the walls are

∂k/∂n̂|wall = 0 and ∂ε/∂n̂|wall = 0, where n̂ is the unit vector normal to
the wall.

The k and ε equations in the original model [2] are written as

Dk

Dt
=

∂

∂xj

[
(ν +

νt

σk

)
∂k

∂xj

]
+ Pk − ε

Dε

Dt
=

∂

∂xj

[
(ν +

νt

σε
)

∂ε

∂xj

]
+ Cε1

ε

k
Pk − Cε2

ε2

k

νt Pk S Sij Cε1 Cε2 Cµ σk σε

Cµ
k2

ε
νtS

2
√

2SijSij
1
2
[Ui,j + Uj,i] 1.44 1.92 0.09 1 1.3

A.1.3 RNGkEpsilon

The RNGkEpsilon model is variant of the k−εmodel, which is based on
the ”Re-Normalization Groups” method [3]. It is also a high-Re model

using wall functions. Using the RNG method, the Navier-Stokes equa-

tions are renormalized to be able to deal with smaller scale effects.

In the standard k − ε model the eddy viscosity is based on a single
turbulent length scale, while in reality all scales of motion affect the

turbulent diffusion. The model is implemented in OpenFOAM as

∂k

∂t
+ ∇ · (Uk) −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) −∇ · Dε,eff∇ε = (Cε1 − R)

ε

k
G − Cε2

ε2

k
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R η S2 Dk,eff Dε,eff G

η
1−
“

η
η0

”

1+βη3

√
S2

k
ε

2|Sij|2 ν + αkνt ν + αενt νtS2

αk αε Cµ Cε1 Cε2 β
1.39 1.39 0.0845 1.42 1.68 0.012

νt has the same formulation as in hte kEpsilon model. The appro-

priate turbulence boundary conditions at the walls are ∂k/∂n̂|wall = 0
and ∂ε/∂n̂|wall = 0, where n̂ is the unit vector normal to the wall.
In the original model [3], the k-equation is the same as in the stan-

dard k−εmodel, while the production term in the ε equation is modified
according to

Dε

Dt
=

∂

∂xj

[
(ν +

νt

σε

)
∂ε

∂xj

]
+ C∗

ε1

ε

k
Pk − Cε2

ε2

k

C∗
ε1 η η0 β Cε1 Cε2 Cµ σk σε

Cε1 −
[

η(1− η
η0

)

1+βη3

]
Sk/ε 4.38 0.015 1.42 1.68 0.085 0.7179 0.7179

Pk, νt, S and Sij follow the same formulations as in the standard k − ε
model.

A.1.4 realizableKE

The realizableKE model is the high-Re realizable k− εmodel with wall
functions [4]. A turbulence model is realizable if the normal stresses

remain positive, that is u
′2
i ≥ 0 for all i. The model is implemented in

OpenFOAM as

∂k

∂t
+ ∇ · (Uk) − (∇ · U)k −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) − (∇ · U).ε −∇ · Dε,eff∇ε = Cε1|S|ε − Cε2

ε2

k +
√

νε
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Cε1 η |S| S2 W

max(0.43,
(

η
η+5

)
) |S|k/ε

√
S2 2|dev(Sij)|2 2

√
2
(

(S·S):S
|S|S2

)

Cµ As φ∗ G(
1

A0+As( kU∗

ε )

) √
6 cos φ∗ 1

3
cos−1

(
min(max(

√
6W,−1), 1)

)
νtS2

U∗ A0 Cε2 αk αε√
S2

2
+ |Ωij |2 4.0 1.9 1 0.833

νt, Dk,eff and Dε,eff have the same formulations as in the RNGkEp-

silon model. The appropriate turbulence boundary conditions at the

walls are ∂k/∂n̂|wall = 0 and ∂ε/∂n̂|wall = 0, where n̂ is the unit vector
normal to the wall.

In the original model [4], the k equation is the same as in the stan-
dard k − ε model, while the ε equation is written as

Dε

Dt
=

∂

∂xj

[
(ν +

νt

σε
)

∂ε

∂xj

]
+ Cε1Sε − Cε2

ε2

k +
√

νε

Cε1 Cµ As

max(0.43,
(

η
η+5

)
)

(
1

A0+As(kU∗

ε )

) √
6 cos φ

φ S S̃ W
1
3
cos−1(

√
6W )

√
2SijSij

√
SijSij

(
SijSjkSki

S̃3

)

U∗ Ω̃ij Ωij√
SijSij + Ω̃ijΩ̃ij Ωij − 2εijkωk Ωij − εijkωk

A0 Cε2 σk σε

4.0 1.9 1 1.2

Here Ωij is the mean rate of rotation tensor viewed in a rotating

reference frame with an angular velocity ωk. Notice that the rotation of

the reference system is NOT included in OpenFOAM. The quantities

Pk, νt, Sij and η follow the same formulations as in the RNG k−εmodel.

A.1.5 kOmegaSST

The kOmegaSST model is the high-Re k−ω SST model with wall func-
tions [5]. The model uses the k−ω model in the regions of the boundary
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layer and switches to the k − ε model elsewhere. The OpenFOAM im-
plementation of the model reads

∂k

∂t
+ ∇ · (Uk) − (∇ · U)k −∇ · Dk,eff(F1)∇k = min (G, Cε1β

∗kω) − β∗ωk

∂ω

∂t
+ ∇ · (Uω) − (∇ · U)ω −∇ · Dω,eff (F1)∇ω = γ(F1)2S

2 − β(F1)ω
2 + (1 − F1)CDkω

F1(CDkω)

tanh

[[
min(min(max(

√
k

β∗ωy
, 500ν

y2ω
), ( 4ρσω2k

max(CDkω ,1−10)y2 ), 10)
]4]

F2

tanh

[[
min(max( 2

√
k

β∗ωy
, 500ν

y2ω
), 100)

]2]

CDkω G S2 νt β∗

2αω2
∇k+∇ω

ω
νt2S2 |Sij|2

(
a1k

max(a1ω,
√

S2F2)

)
0.09

αk1 αk2 αω1 αω2 γ1 γ2

0.85034 1.0 0.5 0.85616 0.5532 0.4403

β1 β2 Cε1 Cε2 κ a1

0.0750 0.0828 10 1.92 0.41 10

Dk,eff(F1) Dω,eff(F1)
ν + αk(F1)νt ν + αω(F1)νt

The appropriate turbulence boundary conditions at the walls are

∂k/∂n̂|wall = 0 and ∂ω/∂n̂|wall = 0, where n̂ is the unit vector normal
to the wall. The model coefficients are found by means of the blending

function F1, which is equal to 1 in the near-wall regions and 0 in the
outer part of the boundary layer. In this way, a model coefficient φ is a
function of the variable F1 and is found through the relation

φ(F1) = φ1F1 + φ2(1 − F1)

Here φ1 and φ2 are the coefficients for the k−ω and k−ǫmodels respec-
tively.

The original model [5] reads

Dk

Dt
= min(Pk, Cε1ε) − β∗kω +

∂

∂xj

[
(ν +

νt

σk

)
∂k

∂xj

]

Dω

Dt
=

γ

νt
Pk − βω2 +

∂

∂xj

[
(ν +

νt

σω
)
∂ω

∂xj

]
+ 2(1 − F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
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F1 F2

tanh

[[
min(max(

√
k

β∗ωy
, 500ν

y2ω
), ( 4ρσω2k

CDkωy2 )
]4]

tanh

[[
max( 2

√
k

β∗ωy
, 500ν

y2ω
)
]2]

CDkω νt Pk

max(2ρσω2
1
ω

∂k
∂xj

∂ω
∂xj

, 10−10)
(

a1k
max(a1ω,SF2)

)
τij

∂Ui

∂xj

σk1 σk2 σω1 σω2 γ1 γ2

1.176 1.000 2.000 1.168 0.5532 0.4403

β1 β2 β∗ κ a1 Cε1

0.0750 0.0828 0.09 0.41 10 10

Here ε = β∗kω and the quantities Pk, S, and Sij follow the same formu-

lations as standard k − ε model.

A.1.6 NonlinearKEShih

The NonlinearKEShih model is the high-Re non-linear Shih k−εmodel
with wall functions [6], also known as the Realizable Reynolds Stress

Algebraic Equation (RRSAE) model. The OpenFOAM implementation

reads

∂k

∂t
+ ∇ · (Uk) −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) −∇ · Dε,eff∇ε = Cε1

ε

k
G − Cε2

ε2

k

Tij

symm
[

k3

ε2

[
Cτ1

fη
((Ui,k · Uk,j + Uk,i · Uj,k)) + Cτ2

fη
((Ui,k · Uj,k)) + Cτ3

fη
(Uk,i · Uk,j)

]]

G fη S2 νt Cµ

Cµ
k2

ε
S2 − (Tij : Ui,j) A2 + η3 Sij : Ui,j Cµ

(
k2

ε

) (
2/3

A1+η+αξξ

)

η ξ αε αk αξ
k
ε

√
2|Ui,j + Uj,i|2 k

ε

√
2|Ui,j − Uj,i|2 0.76923 1 0.9

Cτ1 Cτ2 Cτ3 A1 A2

−4 13 −2 1.25 1000

Cε1, Cε2, Dk,eff and Dε,eff are the same as in RNGkEpsilon model.

The appropriate turbulence boundary conditions at the walls are ∂k/∂n̂|wall =
0 and ∂ε/∂n̂|wall = 0, where n̂ is the unit vector normal to the wall.
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The k and ε equations in the original model [6] follow the same for-
mulations as the standard k − ε model. The production term is found
through Pk = τijUi,j , while the shear stress formulation, τij includes

non-linear terms as [6]

τij

ρ
= νt (Ui,j + Uj,i) + Tij −

2

3
kδij

Tij =
k3

(A2 + η3)ε2
[Cτ1(Ui,kUk,j + Uj,kUk,i −

2

3
Πδij)]

+Cτ2(Ui,kUj,k −
1

3
Π̃δij) + Cτ3(Uk,iUk,j −

1

3
Π̃δij)]

νt Cµ η Π Π̃

Cµ

(
k2

ε

) (
2/3

A1+η+γξ

)
k
ε
S Uk,iUi,k Uk,iUk,i

S ξ Ω Ω∗
ij γ√

2SijSij

(
kΩ
ε

) (
2Ω∗

ijΩ
∗
ij

)1/2
(Ui,j − Uj,i) /2 + 4εmjiωm 0.9

Cτ1 Cτ2 Cτ3 A1 A2

−4 13 −2 1.25 1000

Here ωm is the rotation rate of the reference frame which is NOT in-

cluded in OpenFOAM. Other definitions and coefficients are the same

as the standard k − ε model.

A.1.7 LienCubicKE

The LienCubicKE model is the high-Re k− εmodel with wall functions
developed by Lien et. al. [7]. The model includes third-order terms

to account for the streamline curvature effects. The implementation

of this model in the code follows the same formulation as the Non-

linearKEShih model, with inclusion of higher order terms (C4) in the
non-linear stress tensor, (Tij), as well as an extra term, (C5µ), in com-
putation of Cµ. The appropriate turbulence boundary conditions at the

walls are ∂k/∂n̂|wall = 0 and ∂ε/∂n̂|wall = 0, where n̂ is the unit vector
normal to the wall.
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Tij

symm
[

k3

ε2

[
Cτ1

fη
((Ui,k · Uk,j + Uk,i · Uj,k)) + Cτ2

fη
((Ui,k · Uj,k)) + Cτ3

fη
(Uk,i · Uk,j)

]
+ C4

]

C4

−20k4

ε3 C3
µ [(Ui,k · Uk,j) · Ui,j + (Ui,k · Uj,k) · Ui,j − (Uk,i · Uk,j) · Uj,i − (Uk,i · Uj,k) · Uj,i]

Cτ1 Cτ2 Cτ3 νt C5µ

−4 13 −2 Cµ

(
k2

ε

)
+ C5µ −2C3

µ

(
k4

ε3

)
(|Ui,j + Uj,i|2 − |Ui,j − Uj,i|2)

Other parameters and definitions are the same as in Nonlinear-

KEShih model.

The original model is based on the standard k − ε model, and a
relation between stresses and strains as [7]

u′
iu

′
j

k
=

2

3
δij −

νT

k
Sij + C1

νT

ε

[
SikSkj −

1

3
δijSklSkl

]

+C2
νT

ε
[ΩikSkj + ΩjkSki] + C3

νT

ε

[
ΩikΩjk −

1

3
δijΩklΩkl

]

+C4
νT k

ε2
(SkiΩlj + SkjΩli)Skl + C5

νT k

ε2
(SklSkl − ΩklΩkl)Sij

Cµ C1 C2 C3 C4 C5
2/3

1.25+S+0.9Ω
3/4

1000+S3

15/4
1000+S3

19/4
1000+S3 −10C2

µ −2C2
µ

A1 A2 S Ω Sij Ωij νT

1.25 1000 k
ε

√
1
2
SijSij

k
ε

√
1
2
ΩijΩij

∂ui

∂xj
+

∂uj

∂xi

∂ui

∂xj
− ∂uj

∂xi
Cµ

k2

ε

A.1.8 QZeta

The QZeta model is the two-equation Q − ζ low-Re turbulence model
developed by Gibson and Dafa’Alla’ [8]. The model uses the square

root of the turbulent kinetic energy, q =
√

k, and its rate of dissipation,
ζ = ε̃/2q, where ε̃ is the isotropic dissipation rate ε̃ = ε − 2ν(∂

√
k/∂xj).

The implementation of the model in OpenFOAM reads

∂q

∂t
+ ∇ · (Uq) −∇ · Dq,eff∇q = G − ζ

∂ζ

∂t
+ ∇ · (Uζ) −∇ · Dζ,eff∇ζ = (2Cε1 − 1)G

ζ

q
− (2Cε2 − 1)f2

ζ2

q
+ E
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q ζ νt G E Rt f2√
k

(
ε
2q

)
Cµfµ

(
k2

ε

)
νt(2|Sij |2)

2q

(
νtν
q

)
|∇(∇U)|2

(
qk
2νζ

)
1 − 0.3e(−R2

t)

Dq,eff Dζ,eff Cε1 Cε2 Cµ αq αζ

ν + αqνt ν + αζνt 1.44 1.92 0.09 1 0.76923

The model works for both isotropic and anisotropic turbulence, and

the coefficient fµ is then found through

fµ =

{
e

(−2.5+Rt/20)

(1+Rt/130)3 for anisotropic model

e
−6

(1+Rt/50) (1 + 3e−Rt/10) for isotropic model

The appropriate turbulence boundary conditions at the walls are

∂q/∂n̂|wall = 0 and ∂ζ/∂n̂|wall = 0, where n̂ is the unit vector normal to
the wall.

The original model for the isotropic turbulence reads [8]

Dq

Dt
=

∂

∂xj

((
ν +

νt

σq

)
∂q

∂xj

)
+ Q − ζ

Dζ

Dt
=

∂

∂xj

((
ν +

νt

σζ

)
∂ζ

∂xj

)
+

ζ

q
(Cζ1fζ1Q − Cζ2fζ2ζ) + Ψ

Q = P
2q

Ψ γt Reτ

γt
∂Ui

∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)
2νγt

(
∂2Ui

∂xk∂xm

)(
∂2Ui

∂xk∂xm

)
Cµfµ

4

(
q2

ζ

) (
q3

2νζ

)

Cζ1fζ1 Cζ2fζ2 fε1 fε2

2Cε1fε1 − 1 2Cε2fε2 − 1 1.0 1 − 0.3e(−Re2
τ)

fµ νt σq σζ

e

“

−6.0
(1+Reτ /50)2

” [
1 + 3e−

Reτ
10

]
2qγt ≡ Cµfµ

q3

2ζ
1 1.3

The model constants Cε1, Cε2 and Cµ are the same as in the original

k − ε model.

A.1.9 LaunderSharmaKE

The LaunderSharmaKE model is the low-Re k − ε model developed by
Launder and Sharma [9]. The model is implemented in OpenFOAM as
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∂k

∂t
+ ∇ · (Uk) −∇ · Dk,eff∇k = G − (ε̃ + D)

∂ε̃

∂t
+ ∇ · (Uε̃) −∇ · Dε,eff∇ε̃ = Cε1G

ε̃

k
− Cε2f2

ε̃2

k
+ E

νt E D fµ f2

Cµfµ
k2

ε̃
2ννt|∇∇U |2 2ν|∇

√
k|2 e

 

−3.4

(1+ k2
50νε̃ )2

!

1 − 0.3e
−min

„

“

k2

νε̃

”2
,50

«

Other coefficients are identical to the kEpsilon model. For OpenFOAM-

1.5.x users it is worth noting that epsilon in the time directories is the
same as ε̃ (i.e. not ε). The appropriate turbulence boundary conditions
at the walls are kwall = 0 and ε̃wall = 0.
The original model reads [9]

Dk

Dt
=

∂

∂xj

[(
ν +

νt

σk

)
∂k

∂xj

]
+ Pk − ε̃ − D

Dε̃

Dt
=

∂

∂xj

[(
ν +

νt

σε

)
∂ε̃

∂xj

]
+ Cε1f1

ε̃

k
Pk − Cε2f2

ε̃2

k
+ E

ε̃ D E fµ f1 f2

ε − D 2ν
(

∂
√

k
∂xj

)2

2ννt

(
∂2Ui

∂xj∂xk

)2

e

„

−3.4
(1+RT /50)2

«

1 1 − 0.3e(−R2
T )

RT cµ cε1 cε2 σk σε(
k2

νε̃

)
0.09 1.44 0.92 1.0 1.22

A.1.10 LamBremhorstKE

The LamBremhorstKEmodel is the low-Re Lam-Bremhorst k−εmodel
[10]. The implementation in OpenFOAM reads

∂k

∂t
+ ∇ · (Uk) −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) −∇ · Dε,eff∇ε = Cε1f1G

ε

k
− Cε2f2

ε2

k

Other coefficients are the same as in the kEpsilon model. The ap-

propriate turbulence boundary conditions at the walls are kwall = 0 and
∂ε/∂n̂|wall = 0, where n̂ is the unit vector normal to the wall.
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G νt Rt fµ

νt2|Sij|2 Cµfµ

(
k2

ε

) (
k2

νε

) (
1 − e−0.0165

√
k y

ν

)2 (
1 + 20.5

Rt

)

The k and ε equations, as well as the νt formulation of the original

model follow those of the Launder-Sharma k − ε model. The model
coefficients are [10]

fµ f1 f2 Ren Ret[
1 − e(−0.0165Ren)

]2 (
1 + 20.5

Ret

)
1 +

(
0.05
fµ

)3

1 − e−Re2
t

(√
kYn

ν

) (
k2

νε

)

Where Yn is the distance to the nearest wall. Other model coeffi-

cients are the same as in the standard k − ε model.

A.1.11 LienLeschzinerLowRe

The LienLeschzinerLowRe model is the low-Re k − ε model developed
by Lien and Leschziner [11]. The model is implemented in OpenFOAM

as

∂k

∂t
+ ∇ · (Uk) −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) −∇ · Dε,eff∇ε = Cε1G

ε

k
+ Cε2f2C

0.75
µ k0.5 e−Aµy∗2

κy(1 − e−Aεy∗)
ε − Cε2f2

ε2

k

y∗ νt fµ S2 Am(√
k

ν

)
y Cµfµ

(
k2

ε

) (
1−e(−Amy∗)

1−e(−Aεy∗)

)
Sij : Ui,j 0.016

f2 Rt G Aε Aµ

1 − 0.3e(−R2
t)

(
k2

νε

)
Cµfµ

(
k2

ε

)
S2 0.263 0.00222

The definitions of Cµ, αk, αε, Cε1, Cε2, Dk,eff and Dε,eff are the same

as in the kEpsilon model. The appropriate turbulence boundary condi-

tions at the walls are kwall = 0 and ∂ε/∂n̂|wall = 0, where n̂ is the unit
vector normal to the wall.

The original model [11] reads
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Dk

Dt
=

∂

∂xi

[(
ν +

νt

σk

)
∂k

∂xi

]
+ Pk − ε

Dε

Dt
=

∂

∂xi

[(
ν +

νt

σε

)
∂ε

∂xi

]
+ Cε1f1

ε

k
Pk − Cε2f2

ε2

k

fµ f1 f2 νt

1−e(−0.016y∗)

(1−e−0.263y∗)
1 +

P ′

k

Pk
1 − 0.3e−R2

T Cµfµ

(
k2

ε

)

y∗ RT P ′
k

y
(√

k
ν

)
k2

νε

(
1.92[1−0.3e(−R2

T )]k3/2

3.53y[1−e(−0.263y∗)]

)
e−0.00222y∗2

C1ε , C2ε, Cµ, σk, σε, S and Sij are the same as in the standard k − ε
model.

A.1.12 LienCubicKELowRe

The LienCubicKELowRe model is the low-Re variant of the LienCu-

bicKE k − ε model [12]. The model is implemented in OpenFOAM as

∂k

∂t
+ ∇ · (Uk) −∇ · Dk,eff∇k = G − ε

∂ε

∂t
+ ∇ · (Uε) −∇ · Dε∇ε = Cε1G

ε

k
+

Cε2f2C
0.75
µ k0.5

κy (1 − e−Aεy∗)
.e−Aµy∗2

ε − Cε2f2
ε2

k

where the non-linear stress tensor, Tij is computed through

Tij = symm[
k3

ε2
[
Cτ1

fη

((Ui,k · Uk,j + Uk,i · Uj,k)) +
Cτ2

fη

((Ui,k · Uj,k))

+
Cτ3

fη

(Uk,i · Uk,j)] − 20
k4

ε3
C3

µ((Ui,k · Uk,j) · Ui,j + (Ui,k · Uj,k) · Ui,j

−(Uk,i · Uk,j) · Uj,i − (Uk,i · Uj,k) · Uj,i) + min(C5µ, 0)Ui,k]

The definitions of G, Cµ, αk, αε, Cε1, Cε2, Dk,eff , Dε,eff , Cτ1, Cτ2, Cτ3,

η, ξ, C5µ and fη are the same as in LienCubicKE model. The appro-

priate turbulence boundary conditions at the walls are kwall = 0 and
∂ε/∂n̂|wall = 0, where n̂ is the unit vector normal to the wall.
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νt f2

Cµ

[
1−e(−Amy∗)

1−e(−Aεy∗)

]
k2

ε
+ max(0, C5µ) 1 − 0.3e(−R2

t)

Rt y∗ Am Aµ Aε(
k2

νε

) (√
k

ν

)
y 0.016 0.00222 0.263

The transport equation for ε in the original model [12] is the same
as in the Lien-Leschziner k − ε model. The transport equation for the
Reynolds stresses read

u′
iu

′
j

k
=

2

3
δij −

νT

k
Sij + C1

νT

ε

[
SikSkj −

1

3
δijSklSkl

]

+C2
νT

ε
[ΩikSkj + ΩjkSki] + C3

νT

ε

[
ΩikΩjk −

1

3
δijΩklΩkl

]

+C4
νT k

ε2
(SkiΩlj + SkjΩli)Skl + C5

νT k

ε2
(SklSkl − ΩklΩkl)Sij

C1 C2 C3 C4 C5
3/4

1000+S3

15/4
1000+S3

19/4
1000+S3 −10C2

µ −2C2
µ

S Ω Sij Ωij νT

k
ε

√
1
2
SijSij

k
ε

√
1
2
ΩijΩij

∂ui

∂xj
+

∂uj

∂xi

∂ui

∂xj
− ∂uj

∂xi
fµCµ

k2

ε

fµ y∗ f1 f2(
1 − e−0.0198y∗

) (
1 + 5.29

y∗

)
y
√

k
ν

1 +
P

′

k

Pk
1 − 0.3−R2

T

P
′

k RT Cµ

1.33
(
1 − 0.3−R2

T

)(
Pk + 2ν k

y2

)
e−0.00375y∗2 k2

νε
2/3

1.25+S+0.9Ω

The model coefficients Cε1, Cε2 and Cµ are the same as standard k−ε
model.

A.1.13 LRR

The LRRmodel is the high-Re Reynolds Stress Transport Model (RSTM)

developed by Launder, Reece and Rodi with wall functions [13]. The

model solves transport equations of the Reynolds stresses, uiuj, and

the turbulence dissipation rate, ε. The turbulent kinetic energy, k, is

then found through k =
√

u2
i + u2

j + u2
k. The model is implemented in

OpenFOAM as
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∂R

∂t
+ ∇ · (UR) − (∇ · U)R −∇ · (DR,eff∇R) + (Clrr,1

ε

k
R) =

P − 2

3
(1 − Clrr,1)Iε − Clrr,2dev(P )

∂ε

∂t
+ ∇ · (Uε) − (∇ · U)ε −∇ · (Dε,eff∇ε) = Cε1G

ε

k
− Cε2

ε2

k

P R G k DR,eff

−2symm(R · Ui,j) uiuj
1
2
|tr(P )| 1

2
tr(R) ν + αRνt

αR νt Clrr,1 Clrr,2 Cs

1 Cµ

(
k2

ε

)
1.8 0.6 0.25

The definitions of Cµ, αε, Cε1, Cε2 and Dε,eff are the same as in the

kEpsilon model. The appropriate turbulence boundary conditions at

the walls are ∂R/∂n̂|wall = 0 and ∂ε/∂n̂|wall = 0, where n̂ is the unit
vector normal to the wall.

The original model is developed as a low-Re model and thus includes

near wall corrections in the uiuj equations. The transport equations in

the original model read [13]

D(uiuj)

Dt
= −

[
ujuk

∂Ui

∂xk
+ uiuk

∂Uj

∂xk

]
− 2

3
δijε

−Cε1
ε

k
(uiuj −

2

3
δijk) + (φij + φji)2 + (φij + φji)w

+Cs
∂

∂xk

k

ε

[
uiul

∂ujuk

∂xl

+ ujul
∂ukui

∂xl

+ ukul
∂uiuj

∂xl

]

Dε

Dt
= Cε

∂

∂xk

(
k

ε
ukul

∂ε

∂xl

)
− Cε1

εuiuk

k

∂Ui

∂xk

− Cε2
ε2

k

(φij + φji)w P
[
0.125 ε

k
(uiuj − 2

3
kδij) + 0.015(Pij − Dij)

] (
k

3
2

εx2

)
−2uiuj

∂Ui

∂xj

(φij + φji)2 Pij Dij

−γ(Pij − 2
3
Pδij) −

[
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

]
−
[
uiuk

∂Uk

∂xj
+ ujuk

∂Uk

∂xi

]

Here P is the production rate and x2 is the normal distance of the cell to

the surface. The coefficientsCε1 and Cε2 are the same as in the standard

k − ε model.
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A.1.14 LaunderGibsonRSTM

The LaunderGibsonRSTMmodel is the Reynolds Stress Transport Model

with wall-reflection terms developed by Launder and Gibson [14]. The

model is implemented in OpenFOAM as

∂R

∂t
+ ∇ · (UR) − (∇ · U)R −∇ · (DR,eff∇R) + (Clg,1

ε

k
R) =

P +
2

3
(Clg,1 − 1)Iε − Clg,2dev(P ) + reflectionwall

∂ε

∂t
+ ∇ · (Uε) − (∇ · U)ε −∇ · (Dε,eff∇ε) = Cε1G

ε

k
− Cε2

ε2

k

reflectionwall

symm(I(yn · reflect) · yn − 1.5(yn(reflect · yn) + (yn · reflect)yn))
(

C0.75
µ k1.5

κyε

)

reflect P
C1,ref

ε
k
R − C2,refClg,2dev(P ) −2symm(R · Ui,j)

G k Clg,1 Clg,2 C1,ref C2,ref Cε αR
1
2
|tr(P )| 1

2
tr(R) 1.8 0.6 0.5 0.3 0.15 1.22

Cµ, αε, Cε1, Cε2, DR,eff and Dε,eff are the same as in the LRR model.

The turbulence boundary conditions at the walls are kwall = 0 and
∂ε/∂n̂|wall = 0.
The original model [14] reads

D(u
′

iu
′

j)

Dt
= D

u
′

iu
′

j

+ Pij + Φij −
2

3
δijε

Dε

Dt
= Dε +

ε

k
(0.5Cε1Pkk − Cε2ε)
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φij φij,1 φij,2

φij,1 + φij+2 + φ′
ij,1 + φ′

ij,2 −Cε1
ε
k

(
u

′

iu
′

j − 2
3
δijk

)
−Cε2

(
Pij − 1

3
δijP

)

φ′
ij,1 Pij

C ′
ε1

ε
k

(
u

′

ku
′

mnknmδij − 3
2
u

′

ku
′

inknj − 3
2
u

′

ku
′

jnkni

)
f −

(
u

′

ju
′

k
∂ui

∂xk
+ u

′

iu
′

k
∂uj

∂xk

)

φ′
ij,2 φ̃ij

C ′
ε2

(
φ̃kmnknmδij − 3

2
φ̃iknknj − 3

2
φ̃jknkni

)
f Pij − 1

3
δijPkk

D
u
′

iu
′

j

Dε f

∂
∂xk

(
Cs

ku
′

ku
′

l

ε

∂u
′

iu
′

j

∂xl

)
∂

∂xk

(
Cε

ku
′

ku
′

l

ε
∂ε
∂xl

) (
C0.75

µ k1.5

κyε

)

Cε1 Cε2 C
′

1 C
′

2 Cs Cε

1.8 0.6 0.5 0.18 0.22 0.18

Cµ, Cε1 and Cε2 are the same as in the standard k − ε model.

A.1.15 SpalartAllmaras

The SpalartAllmaras model is the 1-equation mixing-length model de-

veloped for external flows by Spalart and Allmaras [15]. The model

solves a transport equation for the turbulent viscosity, ν̃ (Spalart-Allmaras
variable). The implementation of this model in OpenFOAM is done as

dν̃

dt
+∇· (Uν̃)− (∇·U)ν̃ −∇· (Dν̃,eff∇ν̃)−ανCb2|∇ν̃|2 = Cb1S̃ν̃ −Cw1fw

ν̃2

d2

S̃ g r

fv3

√
2|Ω| + fv2

(
ν̃

(κd)2

)
r + Cω2(r

6 − r) min
((

ν̃
S̃κ2d2

)
, 10
)

fv1 fv2 fv3 fω(
χ3

χ3+C3
v1

)
1 − χ

1+χfv1

(
1+χfv1

Cv2

)(
3(1+χ/Cv2+(χ/Cv2)2)

(1+χ/Cv2)3

)
g
[

1+C6
ω3

g6+C6
ω3

] 1
6

νt χ ft2 Cb1 Cb2

ν̃fv1

(
ν̃
ν

)
Ct3e

−ct4χ2
0.1355 0.622

Dν̃,eff Cω1 Cω2 Cω3 αν

ν + αν ν̃
(Cb1)
(κ2)

+ αν(1 + Cb2) 0.3 2 3/2

κ Cv1 Cv2 Ct3 Ct4

0.41 7.1 5 1.1 2
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Here d is the distance to the closest surface. The appropriate boundary
condition at the walls is ν̃wall = 0.
The original model [15] calculates the turbulent viscosity through

Dν̃

Dt
= Cb1(1−ft2)S̃ν̃−

[
cω1fω − cb1

κ2
ft2

]( ν̃

d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]

S̃ fv2 fv3 σ

fv3Ω +
(

ν̃
κ2d2

)
fv2

[
1

(χ/cv2)3

] (
(1+χfv1)(1−fv2)

χ

)
2/3

Other coefficients are the same as those implemented in OpenFOAM.

A.2 Wall Functions

Wall functions are used when the centers of the wall-adjacent cells

are in the overlap region of the boundary layer, i.e. within the range

30 < Y + < 100. There are different wall function implementations for
different turbulence models in OpenFOAM, which are described in the

following sub-sections.

A.2.1 Linear k − εModels

Before applying the production term, G, in the k and ε equations, it is
modified in the wall-adjacent cells according to

G = (νtw + νw) abs(
∂U

∂n
|wall)C

0.25
µ

(√
k

κy

)

Further, before solving the equations, the dissipation, ε, is fixed in the
wall-adjacent cells according to

ε = C0.75
µ

(
k1.5

κy

)

νw y+

ν C0.25
µ y

(√
k

νw

)
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y is the distance from the wall. After computing k, ε and νt, the turbu-

lent viscosity of the wall-adjacent cells is modified according to

νtw = νw

(
y+κ

log(Ey+) − 1

)
(A.1)

For the very fine cells near the wall, where y+ < y+
lam, the production

term and the turbulent viscosity for the wall-adjacent cells become G =
0 and νt.

A.2.2 Non-linear k − εModels

For non-linear k − ε models an extra non-linear term is added to the
generation term

G = (νtw + νw) abs(
∂U

∂n
|wall)C

0.25
µ

(√
k

κy

)
− (Tij : Ui,j)

Cµ is a local variable in each cell, which is found in the descriptions of

the non-linear turbulence models.

A.2.3 The kOmegaSST Model

The wall function formulation in the kOmegaSST model follows the
same principles as those mentioned above, with the only difference be-

ing the frequency ω, which is computed instead of dissipation rate, ε

G = (νtw + νw) abs(
∂U

∂n
|wall)C

0.25
µ

(√
k

κy

)

ω =

√
k

C0.25
µ κy

Other definitions are the same as in other models.
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A.3 Numerical Methods

Three different numerical schemes are used in the computations: cen-

tral differencing (CD), upwind differencing (UD) and Gamma. Figure
A.1 shows three nodes U , C and D, in which the values of the gen-
eral parameters φU , φC and φD are present. All interpolations must be

based on the quantities which exist in the nodes. The velocity at face

f is Uf . The goal of the numerical schemes is to find an appropriate

estimation for the value φf at face f . In the following subsections each
numerical scheme will be discussed briefly.

Figure A.1: Cells U , C and D, as well as face f .

A.3.1 Central Differencing, CD

In the central differencing method, a linear interpolation of the values

φC and φD at two adjacent nodes C and D is exploited to estimate the
value φf at the face f . The method is mathematically described as

φf = fxφC + (1 − fx)φD (A.2)

fx =
δx1

δx1 + δx2

The central differencing scheme is a second-order accurate scheme.

A.3.2 Upwind Differencing, UD

In the upwind scheme, the value φf on the face f is estimated as

φf =

{
φC if Uf > 0
φD otherwise

The upwind scheme is first order accurate.
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A.3.3 Gamma Differencing

The Gamma scheme is a blend of CD and UD [16]. The model has a
constant βm which can vary between 0.1 and 0.5. The blending factor γ
and the normalized cell value φC are defined as{

γ = φ̃C

βm

φ̃C = φC−φU

φD−φU

The Gamma scheme works then based on the values of γ and φC

φf =





φC if φ̃C ≤ 0 or φ̃C ≥ 1

fxφC + (1 − fx)φD if βm ≥ φ̃C ≥ 1

(1 − γ(1 − fx))φC + γ(1 − fx)φD if 0 ≥ φ̃C ≥ βm

The Gamma scheme is second order accurate.
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A.4 Frozen Rotor

The flow in the generator is simulated using the Frozen Rotor ap-

proach. This approach is based on a multiple reference frame method

in which an inertial region and a rotating region are specified. The two

regions are separated from each other by an axi-symmetric interface

[17]. The rotating region is provided with extra source terms which

account for the rotation. The rotor and the stator, thus, have a fixed

position during the computaions. The Navier-Stokes and continuity

equations are based on convection of the absolute velocity ~uI and are

given by

∂~uI

∂t
+ ∇ · ( ~uR ⊗ ~uI) + ~Ω × ~uI = −∇(p/ρ) + ν∇ · ∇( ~uI)

∇ · ~uI = 0

Here ~uR is the velocity relative to the reference frame and ~Ω is the
rotation vector of the reference frame.

A.5 Forces and Torques on the Rotor

The rotor rotates in a viscous fluid. This means that in order to keep

the rotational motion at a constant rotational speed, a certain torque

should be applied to the rotor. The rotor torque should balance the

torques exerted by the frictional forces and pressure forces on the rotor

body, i.e.

~Trotor = ~Tfriction + ~Tpressure

The torque from frictional forces, ~Tfriction, is caused by the friction

between the fluid and the solid body of the rotor, while the pressure

torque, ~Tpressure, is caused by the pressure acting normal to the rotor

surface. The torque required to keep the rotation at a constant speed

for each case can be used as a measure to determine the ventilation

losses in the generator.

The forces and torques on the rotor are computed according to
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~Fpressure =
∑

rotorfaces

(p ~Aface)

~Ffriction =
∑

rotorfaces

( ~Aface · τviscous)

~Mpressure =
∑

rotorfaces

( ~Xface × (p ~Aface))

~Mfriction =
∑

rotorfaces

( ~Xface × ( ~Aface · τviscous))

Here ~Fpressure is the total pressure force, ~Ffriction is the total fric-

tional force, ~Mpressure is the axial torque (or moment) exerted by the

pressure forces, and ~Mfriction is the axial torque (or moment) exerted

by the frictional forces on the rotor, where all quantities are computed

and summed on all rotor faces (or any arbitrary patch).

p is the static pressure on the faces and ~Xface is the position vec-

tor, from the center of rotation and ending at the face center. ~Aface is

the normal area vector of each boundary face and τviscous is the viscous

stress tensor.
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Test Cases and Validation

B.1 Turbulence Model Validation Test Case

To make sure that the turbulence models in OpenFOAM correctly pre-

dict the important flow characteristics, such as boundary layer build up

near the walls and recirculation in separation zones, they have been

validated using experimental data. The backward facing step case,

studied by Fessler et. al. [18] was chosen as a relevant case.The compu-

tational mesh wasmade using the OpenFOAMbuilt-in mesh generator,

blockMesh, following the geometry in Figure B.1.

Figure B.1: Backward-facing step geometry. Here h = 40mm and H = 26.7mm

The inlet velocity Uin = 9.3(m/s) gives a fully developed flow at the
middle of the inlet channel (at ∼ 30h from the inlet), with a centerline
velocity of 10.5 (m/s). This corresponds to a Reynolds number of about

1.3 × 104, based on the half channel height.
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B.2 Case specifications

Almost all turbulence models described in Appendix A have been tested

on the backward-facing step case. Different turbulence models and nu-

merical schemes as well as a set of different grids have been tested, as

shown in Table B.1. The aim of the study was to compare the per-

formance of different turbulence models to select the most suitable

ones. Also, a few different numerical schemes were tested on the kEp-

silon model to examine its sensitivity to the numerical schemes. Fi-

nally, a grid study was performed on three turbulence models, kEp-

silon, kOmegaSST and LaunderSharmaKE models to verify how grid-

dependent the models are. It should be noted that despite similar ge-

ometries, the meshes are not similar in all cases. While the kEpsilon,

realizableKE, RNGkEpsilon, NonlinearKEShih, SpalartAllmaras, UD-

kEpsilon, CDkEpsilon and UDTurbulencekEpsilon cases share the same

meshes, the other cases have different meshes to get y+ values in the

correct range. There is no y+ value reported for the SpalartAllmaras

case, since it is not reported by the code.
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Case name Turbulence model Convection scheme Average

Velocity Turbulence y+

kEpsilon k − ε Gamma Gamma ≈ 61
RNGkEpsilon RNG k − ε Gamma Gamma ≈ 61
realizableKE realizable k − ε Gamma Gamma ≈ 61
kOmegaSST k − ω SST Gamma Gamma ≈ 61
LienCubicKE Lien-Cubic k − ε Gamma Gamma ≈ 67

NonlinearKEShih Non-Linear Shih k − ε Gamma Gamma ≈ 67
LRR Launder-Reece-Rodi RSTM Gamma Gamma ≈ 65

LaunderGibsonRSTM Launder-Gibson RSTM Gamma Gamma ≈ 61
LaunderSharmaKE Launder-Sharma k − ε Gamma Upwind ≈ 3
LamBremhorstKE Lam-Bremhorst k − ε Gamma Gamma ≈ 6
SpalartAllmaras Spalart-Allmaras Gamma Gamma [−]
CDkEpsilon k − ε Central Gamma ≈ 61
UDkEpsilon k − ε Upwind Gamma ≈ 61

UDturbulencekEpsilon k − ε Gamma Upwind ≈ 61
lowy+kEpsilon k − ε Gamma Gamma ≈ 26
highy+kEpsilon k − ε Gamma Gamma ≈ 122
lowy+kOmegaSST k − ω SST Gamma Gamma ≈ 26
highy+kOmegaSST k − ω SST Gamma Gamma ≈ 122

lowy+LaunderSharmaKE Launder-Sharma k − ε Gamma Upwind ≈ 1
highy+LaunderSharmaKE Launder-Sharma k − ε Gamma Upwind ≈ 10

Table B.1: Case specifications
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B.3 Results

The results are validated and analyzed with respect to normalized ve-

locity profiles, U/Ucl, turbulent kinetic energy, k, wall shear stress, τwall

and y+ values respectively.

B.3.1 Normalized velocity profiles, U/Ucl

The velocity profiles at different sections are divided by the centerline

velocity, Ucl, and the results have been compared to each other and

experimental data. Figures B.2 and B.3 show the results for different

run setups.

As the results suggest, the best prediction of the normalized veloc-

ity profiles by the high Reynolds number models is provided by the

RNGkEpsilon model. The worst results are found by the Nonlinear-

KEShih and LienCubicKE models. The other high Reynolds number

models, including kOmegaSST, show a relatively good correspondance

with the experimental data. The Reynolds stress models generally

show a good accuracy. Among the low-Re models, the LaunderShar-

maKE model shows the best consistency with the experimental data,

compared to the LamBremhorstKE model which does not seem to give

acceptable results in spite of acceptable y+ values. Different convection

schemes for the velocity and turbulence show a negligible difference in

the profiles. A grid study has been performed on two high-Re models,

namely kEpsilon and kOmegaSST models. kOmegaSST models yields

impaired results with a too fine grid (y+ value less than 30). The kEp-
silon model, however, proves not to be affected by the grid resolution

changes. The LaunderSharmaKE model is unaffected by the y+ range

tested in this study. However, the y+ values should be kept below 11

to make sure that the model works properly. Higher y+ values lead to

very impaired results for this model.
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Figure B.2: Velocity profiles at different sections. Top: High-Re k− ε turbulence models. Middle: Low-Re k− ε Turbulence
models. Bottom: Other turbulence models
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B.3.2 Turbulent kinetic energy, k

The turbulent kinetic energy is computed at different sections and com-

pared to the experimental results in Figures B.4 and B.5. Note that in

the experimental results the w′ component of the velocity has been as-
sumed to be of the same order of magnitude as the v′ component. The
turbulent kinetic energy is then computed through

k =
√

u′2 + v′2 + w′2

An investigation of the results for the turbulent kinetic energy, k,
shows that all high-Re models perform rather well even in the recircu-

lation region. The RNGkEpsilon model shows the best consistency with

the experiments while again the NonlinearKEShih and LienCubicKE

models give the worst results. The LaunderSharmaKE low-Re model

gives almost the same accuracy as the high Reynolds number models

while the results of the LamBremhorstKE model do not agree at all

with the experiments. In the recirculation region, the best numerical

scheme for the kEpsilon model is the upwind velocity and the Gamma

turbulence. This is probably a coincidence, since it has been shown

in many studies that second-order schemes are required to get good

results in complex flows. Finally, the grid dependency test suggests

that the kEpsilon and LaunderSharmaKE models show very alike re-

sults within the range of tested y+ values, while the kOmegaSSTmodel

shows stronger grid-dependent characteristics. The k values for the
SpalartAllmaras model have not been shown, since the model does not

compute turbulent kinetic energy.
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Figure B.4: Turbulent kinetic energy at different sections. Top: High-Re k − ε turbulence models. Middle: Low-Re
LaunderSharmaKE model. Bottom: Low-Re LamBremhorstKE model
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Figure B.5: Turbulent kinetic energy at different sections. Top: Other turbulence models. Middle: k − ε with Different
numerical schemes. Bottom: Different mesh resolutions.
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B.3.3 y+ value

Figures B.7 and B.7 show the distribution of y+ values for all cases.

The k−εmodels, other than NonlinearKEShih and LienCubicKE, show
more or less exactly the same y+ values. The choice of different numer-

ical schemes for the solvers does not have a noticeable impact on the

y+ values for the same grid. The last figure in this set shows the y+

values for the grid tests. The local y+ values are generally not in the

recommended range, which together with velocity distributions, turbu-

lent kinetic energy and wall shear stress distributions gives a measure

on how sensitive each model is to the grid resolution.
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Figure B.6: y+ distribution on the walls. Top: High-Re k − ε turbulence mod-
els. Middle: Low-Re k − ε Turbulence models.
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Figure B.7: y+ distribution on the walls. Top: Other turbulence models.

Middle: k − ε with Different numerical schemes. Bottom: Different mesh
resolutions.
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B.3.4 Wall Shear Stress, τwall

Figures B.8, B.9and B.10 show the distribution of the shear stress on

the walls. A comparison of different models show that except Non-

linearKEShih, LienCubicKE, LamBremhorstKE and LRR, other tur-

bulence models show more or less the same values for the wall shear

stress. It should, however, be noted that the SpalartAllmaras model

gives slightly higher values than the other models. Experimentally

measured shear stresses at the wall are not available but are needed

to validate the computational results. The results also suggest that the

choice of different numerical schemes and grid resolution (except for

the Lowy+kOmegaSST model) does not affect the simulation results of

τwall considerably.
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Figure B.8: τwall distributions: High-Re k − ε turbulence models.
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Figure B.9: τwall distributions. Top: Low-Re k−ε Turbulencemodels. Bottom:
Other high-Re turbulence models.
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Figure B.10: τwall distributions. Top: k− εwith Different numerical schemes.
Bottom: Different mesh resolutions.
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B.3.5 Choice of Turbulence Model for the Genera-

tor

An important region in the backward facing step case is the recircula-

tion region after the step. This region is particularly of high interest in

this work since there are many similar seperations present in genera-

tors. As it is apparent from the figures, the results of the RNGkEpsilon

and LaunderSharmaKE models are very well consistent with the ex-

perimental results. However, the small height of the stator channels

does not allow the use of a wall function mesh and utilization of a high-

Re turbulence model within an acceptable y+ range. This would lead to

a very coarse grid in the channels, with only two cell layers in the ver-

tical direction, and would impair the quality of the results. Therefore,

the RNGkEpsilon model was not appropriate to use in the generator

cases and instead, the LaunderSharmaKE model was chosen to per-

form the computations.

B.4 Concentric Cylinders

The flow in the generator is driven by the pressure build-up due to the

rotation of the air in the space between the rotor poles and the stator.

To verify that OpenFOAM is able to predict this behaviour correctly, a

laminar Couette flow [19] test case has been studied. The test case con-

sists of two concentric, infinitely long cylinders where the inner cylin-

der rotates and the outer cylinder is at rest. This creates a laminar

flow in the space between the cylinders. The analytical pressure dis-

tribution between the inner radius, ri, and the outer radius, ro is given

by

p(r) = p(ri) +
ρΩi

2ri
4

(ro
2 − ri

2)2

[−ro
4

2

1

r2
− 2ro

2ln(
r

ri
) +

r2

2
+

ro
4 − ri

4

2ri
2

]

The corresponding theoretical velocity distribution reads

Vθ(r) = Ωiri

(
ro

r
− r

ro

)

(
ro

ri
− ri

ro

)

Here Ωi is the rotational speed of the inner cylinder. Figure B.11

shows that the numerical pressure and velocity distributions coincide

well with their corresponding analytical solutions.
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Figure B.11: Comparison of the numerical and theoretical velocity (Top)

and pressure (Bottom) distributions for the laminar Couette flow.
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