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On the symbol error probability of regular polytopes
Erik Agrell and Magnus Karlsson

Abstract—An exact expression is derived for the symbol error
probability when the vertices of the four-dimensional 24-cell are
used for digital transmission in Gaussian noise. Corresponding
expressions for other regular convex polytopes are summarized.
Numerically stable versions of these error probabilities are also
obtained.

Index Terms—Convex polytopes, modulation, symbol error
rate, Voronoi cell, 24-cell.

I. I NTRODUCTION

T HE 24-CELL is a regular convex polytope (RCP) with
24 facets and 24 vertices in four dimensions. Its vertices

were considered as a signal constellation for digital modulation
already in 1977 [1]. The symbol error probability (SEP) of this
modulation format was approximated by a union bound in [1]
and the bit error probability was estimated by simulation in[2].
The constellation was considered for satellite communications
in [2], [3] and has recently received renewed interest in fiber-
optical communications [4], [5]. This new interest was moti-
vated by the rapid progress in coherent detection, which makes
it possible to transmit data in both polarizations simultaneously
and thus to employ four-dimensional constellations [6]. In
this paper, we calculate its exact SEP over the additive white
Gaussian noise (AWGN) channel, which has not been done
before.

We put the result into context by briefly summarizing what
is known about signal constellations constructed from the
vertices of other RCPs inn dimensions. An RCP is a convex
polytope with the maximum degree of symmetry; its facets and
vertices all look the same, and the facets are in turn RCPs.
Therefore, all symbols have the same energy and the same
conditional error probability, which is tractable at leastfrom
a theoretical viewpoint [7]. A drawback is that the number
of vertices M of an RCP is usually not a power of two,
but such constellations can nevertheless be used in digital
communications if a block of bits is mapped to more than
one symbol [8], [9], in coded modulation [10], or to reduce
the peak power in orthogonal frequency-division modulation
systems [11]. Furthermore, in a data communication scenario,
some levels beyond a power of two are useful for framing
and control purposes; indeed, 3- and 5-level modulations are
already applied in standards for Fast Ethernet and Gigabit
Ethernet [12, pp. 285–289].

The SEP of RCPs can be approximated by sphere packing
[7], random coding [7], simplex packing [13], and union
bounds [14, Sec. 3.2.7]. To obtain an exact expression for the
SEP, one needs to integrate ann-dimensional Gaussian density,
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TABLE I
PARAMETERS OFALL RCPS.

RCP n M A d/
√

Es Gb (dB) S

M -polygon 2 M 2 2 sin π

M

dodecahedron 3 20 3
√

5−1
√

3
–2.59 1.44

icosahedron 3 12 5
q

2 − 2
√

5
–0.04 1.19

24-cell 4 24 8 1 0.59 1.15

120-cell 4 600 4 3−
√

5

2
√

2
–7.73 2.31

600-cell 4 120 12
√

5−1

2
–1.81 1.73

n-cube n 2n n 2
√

n
0 1

n-crosspolytope n 2n 2(n − 1)
√

2

n-simplex n n + 1 n
q

2 + 2

n

centered at an arbitrary RCP vertex, over the Voronoi cell of
this vertex. For a given RCP, the Voronoi cells are unbounded
n-dimensional pyramids with apex at the origin, whose(n−1)-
dimensional base cells are the facets of thedual polytope.1

Thus, the exact SEP is in general ann-dimensional integral,
but as we shall see, it can in most cases be simplified into
a one-dimensional integral, thanks to the inherent symmetries
of RCPs.

There exist infinitely many RCPs in dimensionn = 2,
five for n = 3, six for n = 4, and three forn ≥ 5 [17,
p. 412]. For most of these constellations, the corresponding
SEP is known, but at high signal-to-noise ratios, the published
expressions often consist of the difference between two almost
equal entities, which makes them numerically unstable. We
therefore derive equivalent expressions that lend themselves
better to numerical evaluation.

II. POWER AND SPECTRAL EFFICIENCY

We define the signal-to-noise ratiosγ = Es/N0 and γb =
Eb/N0, whereEs is the symbol energy,Eb = Es/ log

2
M is

the bit energy,M is the number of levels, andN0/2 is the
double-sided spectral density of the AWGN. For modulation
using the vertices of any RCP, the SEPP can be upperbounded
by theunion bound

P ≤ AQ





√

d2

2Es
γ



 , (1)

whereQ(x) ,
∫∞

x
f(x)dx, f(x) is the normalized Gaussian

probability density functionf(x) , (1/
√

2π) exp(−x2/2), d
is the minimum Euclidean distance between pairs of vertices,

1This integral is different from integrating a Gaussian density over the RCP
itself, which has an application in lattice coding [15, Ch. 3], [16].



2 IEEE TRANSACTIONS ONINFORMATION THEORY, to appear, 2011.

(a) Generic RCPs forn = 3: simplex (tetrahedron), cube, and crosspolytope
(octahedron)

(b) Other RCPs forn = 3: dodecahedron and icosahedron

Fig. 1. The five Platonian solids.

andA is the number of such pairs involving a given vertex.2

The bound is an accurate approximation at medium to highγ
and it is asymptotically exact. We define thepower efficiency
as Gb = d2/(4Eb), which is the reduction of bit energyEb

that a particular constellation admits, compared with binary
phase-shift keying (BPSK) modulation, to attain the same,
asymptotically low, SEP. Furthermore, thespectral efficiency
S = log2 M/n is the reduction of bandwidth that a particular
constellation admits, compared with BPSK, with the same bit
rate and pulse shape.

The parametersM , A, andd of all RCPs are given in Tab. I,
adapted from [18, pp. 292–295]3, along withGb andS.

III. G ENERIC RCPS

Three types of generic RCPs exist for alln ≥ 2, illustrated
in Fig. 1 (a) forn = 3. First, then-cube can be defined as the
vertex set(±1, . . . ,±1), with all 2n sign combinations. When
used for modulation, this constellation results in independent
BPSK modulation in alln dimensions. It specializes into a
square and cube forn = 2 and n = 3, resp. Second, then-
crosspolytope (or orthoplex), whose2n vertices can be taken
as all permutations of(±1, 0, . . . , 0), is the geometric dual of
the n-cube and corresponds to biorthogonal modulation. It is
also a square forn = 2 but an octahedron forn = 3. The
third type is the self-dualn-simplex, which is an equilateral
triangle for n = 2 and a regular tetrahedron forn = 3. Its
n + 1 vertices can be taken as(1 − α, . . . , 1 − α) and all
permutations of(α − n, 1, . . . , 1), whereα =

√
n + 1 and all

vectors have lengthn [19].4

The SEP of these three RCPs are given by the following
theorem, where two expressions are given for each SEP;

2The inequality does however not hold for irregular polytopes, for which
in general not only the closest neighbors contribute to the Voronoi cell.

3The parameters were calculated fromN0, N1, andφ in [18] asM = N0,
A = 2N1/N0, andd/

√
Es = 2 sinφ.

4α = −
√

n + 1 gives another, equally valid, representation. Thesen-
dimensional coordinate representations are more useful for transmission than
the standard representation [20], which requiresn + 1 coordinates.

one that is suitable for analysis and another for numerical
evaluation. Expressions related to our (5) and (7), but less
reliable at very highγ, were given in [21].

Theorem 1:The SEPs of then-cube Pc, n-crosspolytope
Pcp, andn-simplexPs are

Pc = 1 −
[

1 − Q

(

√

2γ

n

)]n

(2)

= Q

(

√

2γ

n

)

n−1
∑

i=0

(

n

i + 1

)

[

−Q

(

√

2γ

n

)]i

, (3)

Pcp = 1 − 1√
2π

∫ ∞

0

(1 − 2Q(x))n−1 exp

(

− (x −√
2γ)2

2

)

dx

(4)

= Q(
√

2γ) +
2√
π

∫ ∞

0

Q(x) exp

(

− (x −√
2γ)2

2

)

·
n−2
∑

i=0

(

n − 1

i + 1

)

(−2Q(x))idx, (5)

Ps = 1 − 1√
2π

∫ ∞

−∞
(1 − Q(x))n

· exp



−1

2

(

x −
√

2γ(n + 1)

n

)2


 dx (6)

=
1√
2π

∫ ∞

−∞
Q(x) exp



−1

2

(

x −
√

2γ(n + 1)

n

)2




·
n−1
∑

i=0

(

n

i + 1

)

(−Q(x))idx. (7)

Proof: Transmission over then-cube is equivalent to
transmitting a block ofn bits over independent BPSK chan-
nels, which yields (2). Expressions (4) and (6) were derived
from [14, eqs. (4.102) and (4.116)] via the substitutions
q = x/

√
2 − √

γ and q = x/
√

2 −
√

γ(1 + 1/n), resp.
Expressions (3), (5), and (7) follow after expanding(1−Q(·))n

by the binomial theorem and integrating out the constant term.

We note that the generic RCPs, together with the 24-cell, are
special cases of permutation modulation [20]. Other geometric
properties of the three generic RCPs were calculated in [22].

IV. T WO-DIMENSIONAL RCPS

In two dimensions, RCPs are polygons, which exist with
an arbitrary number of verticesM ≥ 3. Using such a
constellation for transmission corresponds toM -ary phase
shift keying (M -PSK). The following expression, which was
given in [23], is both simple and stable.

Theorem 2:The SEP of theM -polygonPPSK is

PPSK =
1

π

∫ π−π/M

0

exp

[

−γ

(

sin(π/M)

sin z

)2
]

dz.

The SEP for selected values ofM is plotted in Fig. 2 (a).
As expected,M = 4 has the same asymptotic performance
as BPSK. The onlyM -PSK format with a power efficiency
higher than 0 dB is 3-PSK, as shown already in [24].

erikagrell
Text Box
Erratum: The numerator "2" before the integral in (5) should be "\sqrt{2}"

erikagrell
Polygonal Line
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V. THREE-DIMENSIONAL RCPS

In three dimensions, there exist five RCPs, called thePla-
tonian solids,see Fig. 1. In addition to the above-mentioned
cube, octahedron, and tetrahedron, there are the icosahedron
and the dodecahedron, with 12 and 20 vertices, respectively,
which are duals of each other. Their exact SEPs are not known,
but their union bounds follow from (1) and Table I. The results
are shown in Fig. 2 (b). The tetrahedron (3-simplex) has the
highest power efficiency of the three-dimensional RCPs [5].

VI. FOUR-DIMENSIONAL RCPS

Coxeter remarked that a “peculiarity of four-dimensional
space is the occurrence of the 24-cell. . . , having no analogue
above or below” [18, p. 289]. The 24-cell is a four-dimensional
self-dual RCP with 24 vertices. It is the only RCP, in any
dimension, that is both more power efficient and more spec-
trally efficient than then-cube (BPSK modulation). Curiously
enough, the power and spectral efficiencies of the 24-cell are
equal,d2/(4Eb) = log2 M/n = (3 + log2 3)/4 = 1.15.

The 24-cell can be described in several ways depending
on its orientation. The vertices can be taken as the union of
(±1,±1,±1,±1), with all possible combinations of signs, and
Π(±2, 0, 0, 0), whereΠ(·) means the set of all permutations
of the given elements. In other words, the 24-cell is the convex
hull of the union of the 4-cube and the 4-crosspolytope, scaled
to the same circumscribed radius and properly aligned. This
description, although geometrically appealing, does not seem
to easily admit an exact computation of the SEP.

Rotating the constellation, the vertices of the 24-cell canbe
described as the set

X , Π(±1,±1, 0, 0),

with all possible permutations and signs, which proves that
the 24-cell is a form of permutation modulation [20]. With
this representation, we are able to calculate the SEP of the
24-cell. The result is again presented in the form of two
expressions, where the first is analytically simpler and the
second numerically useful even at highγ values.

Theorem 3:The SEP of the 24-cell is

P24 = 1 −
√

2

π

∫ ∞

0

exp

(

− (x −√
γ)2

2

)

· (1 − 2Q(x))2Q(x −√
γ)dx (8)

= Q(
√

γ)(2 − Q(
√

γ)) +

√

32

π

∫ ∞

0

exp

(

− (x −√
γ)2

2

)

· Q(x)(1 − Q(x))Q(x −√
γ)dx. (9)

Proof: A signal vector X
√

Es/2, where X is ran-
domly taken fromX with equal probabilities, is transmitted
over a discrete-time AWGN channel with varianceN0/2.
The received vector isX

√

Es/2 + Z
√

N0/2, whereZ =
(Z1, Z2, Z3, Z4) is a vector of independent, zero-mean, unit-
variance, Gaussian random variables. To simplify the analysis,
the received vector is rescaled by a factor

√

Es/2. Thus, the
maximum likelihood detector shall find the vector inX being
closest toX + Z/

√
γ in the Euclidean sense.

Because the signal vectors are equally probable and sym-
metrically located, we assume, without loss of generality,that
the transmitted vector isx1 , (1, 1, 0, 0). The SEP can now
be expressed as

P24 = Pr{x1 +
1√
γ

Z /∈ ΩX (x1)}, (10)

whereΩX (u) for any u ∈ R
4 is the Voronoi cell5

ΩX (u) , {y ∈ R
4 | ‖y − u‖ ≤ ‖y − x‖, x ∈ X}. (11)

In order to integrate the four-dimensional noise over the
Voronoi cell, we need to find a compact coordinate represen-
tation for this cell. To this end, we first partitionX into the
subsets

X1 , {(1, 1, 0, 0)},
X2 , {(0, 1, 0,±1), (0, 1,±1, 0), (1, 0, 0,±1), (1, 0,±1, 0)},
X3 , {(−1, 1, 0, 0), (1,−1, 0, 0)},
X4 , {(0, 0,±1,±1)},
X5 , {(0,−1, 0,±1), (0,−1,±1, 0),

(−1, 0, 0,±1), (−1, 0,±1, 0)},
X6 , {(−1,−1, 0, 0)}.

With these definitions,

X =
6
⋃

i=1

Xi,

ΩX (u) =

6
⋂

i=1

ΩXi
(u), for any u ∈ R

4. (12)

Applying (11) to the subsetX2 yields

ΩX2
(x1)

= {y ∈ R
4 | ‖y − x1‖2 ≤ ‖y − x‖2, x ∈ X2}

= {y ∈ R
4 | 〈y, x1 − x〉 ≥ 0, x ∈ X2}

= {y ∈ R
4 | y1 ≥ |y4|, y1 ≥ |y3|, y2 ≥ |y4|, y2 ≥ |y3|}

= {y ∈ R
4 | min{y1, y2} ≥ max{|y3|, |y4|}}, (13)

wherey = (y1, y2, y3, y4) and〈·, ·〉 denotes the inner product.
The Voronoi cells ofx1 with respect to the subsetsX3, . . . ,X6

can be calculated by the same method. Omitting the details,
the results are

ΩX3
(x1) = {y ∈ R

4 | min{y1, y2} ≥ 0} (14)

ΩX4
(x1) = {y ∈ R

4 | y1 + y2 ≥ |y3| + |y4|} (15)

ΩX5
(x1) = {y ∈ R

4 | y1 + y2 + min{y1, y2}
≥ max{|y3|, |y4|}} (16)

ΩX6
(x1) = {y ∈ R

4 | y1 + y2 ≥ 0}. (17)

Comparing (13) with (14) yieldsΩX2
(x1) ⊆ ΩX3

(x1), be-
causemin{y1, y2} ≥ max{|y3|, |y4|} ⇒ min{y1, y2} ≥ 0.
Similarly, comparing (13) with each of (15)–(17) shows that

5In our notation, the definition is valid also whenu /∈ X , which will be
utilized in (12)–(17).
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ΩX2
(x1) ⊆ ΩXi

(x1) for i = 4, 5, 6. Now using these results
in (12) yields

ΩX (x1) = ΩX2
(x1). (18)

We can now finish the SEP calculation. From (10), (13),
and (18),

P24 = 1 − Pr

{

x1 +
1√
γ

Z ∈ ΩX2
(x1)

}

= 1 − Pr

{

min

{

1 +
Z1√

γ
, 1 +

Z2√
γ

}

≥ max

{ |Z3|√
γ

,
|Z4|√

γ

}}

= 1 − Pr{√γ + min{Z1, Z2} ≥ max{|Z3|, |Z4|}}
= 1 − Pr{Z1 ≤ Z2,

√
γ + min{Z1, Z2} ≥ max{|Z3|, |Z4|}}

− Pr{Z1 > Z2,
√

γ + min{Z1, Z2} ≥ max{|Z3|, |Z4|}}.
By symmetry, the last two probabilities are equal; thus,

P24 = 1 − 2 Pr{Z1 ≤ Z2,√
γ + min{Z1, Z2} ≥ max{|Z3|, |Z4|}}

= 1 − 2 Pr{Z1 ≤ Z2,
√

γ + Z1 ≥ |Z3|,
√

γ + Z1 ≥ |Z4|}.
Finally, we marginalize the probability overZ1 = z1 to obtain

P24 = 1 − 2

∫ ∞

−√
γ

f(z1)

· Pr{Z2 ≥ z1, |Z3| ≤
√

γ + z1, |Z4| ≤
√

γ + z1}dz1

= 1 − 2

∫ ∞

−√
γ

f(z1)Q(z1)(1 − 2Q(
√

γ + z1))
2dz1 (19)

= 1 − 2

∫ ∞

0

f(z −√
γ)Q(z −√

γ)(1 − 2Q(z))2dz,

wheref(·) was defined in Sec. II, which completes the proof
of (8).

To prove (9), we first note that for anyx ∈ R,

Q2(x) = Pr{Z1 ≥ x, Z2 ≥ x}
= 2 Pr{Z2 ≥ Z1 ≥ x}

= 2

∫ ∞

x

f(z1)Q(z1)dz1. (20)

Expanding (19) with the help of (20) yields

P24 = 1 − 2

∫ ∞

−√
γ

f(z1)Q(z1)

· (1 − 4Q(
√

γ + z1) + 4Q2(
√

γ + z1))dz1

= 1 − Q2(−√
γ) + 2

∫ ∞

−√
γ

f(z1)Q(z1)

· (4Q(
√

γ + z1) − 4Q2(
√

γ + z1))dz1

= 1 − (1 − Q(
√

γ))2 + 8

∫ ∞

−√
γ

f(z1)Q(z1)

· Q(
√

γ + z1)(1 − Q(
√

γ + z1))dz1

= Q(
√

γ)(2 − Q(
√

γ))

+ 8

∫ ∞

0

f(z −√
γ)Q(z −√

γ)Q(z)(1 − Q(z))dz,

which completes the proof of (9).
The SEP of all four-dimensional RCPs is shown in

Fig. 2 (c). It can be observed thatn = 4 is the lowest

dimension for which the crosspolytope has the highest power
efficiency of all RCPs. In addition to the 24-cell and the three
generic polytopes, there are RCPs with 120 and 600 vertices in
four dimensions. Miyazaki made an artistic effort to visualize
these polytopes [25, Ch. 14], which are each other’s duals.
Their power efficiencies are low, similarly to the two largest
RCPs in three dimensions.

VII. H IGHER-DIMENSIONAL RCPS

In dimensionsn ≥ 5, there are no RCPs apart from the three
generic types. For medium and highγb, the crosspolytope is
always better than the simplex, and the simplex is better than
the cube. Their SEP performances are shown in Fig. 2 (d) for
the five-dimensional case.

As the dimension increases, the power efficiency gap be-
tween the simplex and the cube increases monotonically.
However, the gap between the crosspolytope and the simplex,
which based on Tab. I and the definition ofGb can be
expressed as

Gb,cp

Gb,s
=

n log2(2n)

(n + 1) log2(n + 1)
, (21)

increases until it reaches a maximum forn = 24, where
the crosspolytope is 0.62 dB better. Thereafter the gap de-
creases again and approaches 0 dB in very high dimensions.
Extendingn to real numbers, the maximum of (21) occurs
for n ≈ 24.066, which is quite close to 24. Whether this is
a pure coincidence or more deeply related to other unique
properties of 24-dimensional geometry, such as the existence
of the Leech lattice, is not known.
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[4] H. Bülow, “Polarization QAM modulation (POL-QAM) for coherent
detection schemes,” inProc. Optical Fiber Communication and National
Fiber Optic Engineers Conference, San Diego, CA, Mar. 2009, paper
OWG2.

[5] E. Agrell and M. Karlsson, “Power-efficient modulation formats in
coherent transmission systems,”J. Lightw. Technol., vol. 27, no. 22,
pp. 5115–5126, Nov. 2009.

[6] E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection
in optical fiber systems,”Optics Express, vol. 16, no. 2, pp. 753–791,
Jan. 2008, (erratum, vol. 16, no. 26, p. 21943, Dec. 2008).

[7] C. E. Shannon, “Probability of error for optimal codes ina Gaussian
channel,”Bell Syst. Tech. J., vol. 38, no. 3, pp. 611–656, May 1959.

[8] N. Ekanayake and T. T. Tjhung, “On ternary phase-shift keyed signal-
ing,” IEEE Trans. Inf. Theory, vol. IT-28, no. 4, pp. 658–660, July 1982.

[9] G. D. Forney, Jr., “Multidimensional constellations—Part I: Introduction,
figures of merit, and generalized cross constellations,”IEEE J. Sel. Areas
Commun., vol. 7, no. 6, pp. 877–892, Aug. 1989.

[10] M. Tanahashi and H. Ochiai, “A multilevel coded modulation approach
for hexagonal signal constellation,”IEEE Trans. Wireless Commun.,
vol. 8, no. 10, pp. 4993–4997, Oct. 2009.

[11] S. H. Han, J. M. Cioffi, and J. H. Lee, “Tone injection withhexagonal
constellation for peak-to-average power ratio reduction in OFDM,” IEEE
Commun. Lett., vol. 10, no. 9, pp. 646–648, Sept. 2006.



IEEE TRANSACTIONS ON INFORMATION THEORY, to appear, 2011. 5

0 5 10 15 20
10-12

10-10

10-8

10-6

10-4

0.01

1

γb

P

M
=

3

M
=

4

M
=

8

M
=

1
6

(a) n = 2

0 5 10 15 20
10-12

10-10

10-8

10-6

10-4

0.01

1

tetrahedron

octahedron

cube

icosahedron
dodecahedron

γb

P

(b) n = 3

0 5 10 15 20
10-12

10-10

10-8

10-6

10-4

0.01

1

crosspolytope

simplex

cell

cube

cell

cell

γb

P

4-

4-

4-

24-
120-

600-

(c) n = 4

0 5 10 15 20
10-12

10-10

10-8

10-6

10-4

0.01

1

crosspolytope
sim

plex

cube

γb

P

5-

5-

5-

(d) n = 5

Fig. 2. The SEP of RCPs in various dimensionsn. Except for the icosahedron, dodecahedron, 600-cell, and 120-cell, whose SEPs are approximated by the
union bound, all SEPs are exact. The SEP of BPSK is shown as a reference in all diagrams (dashed line).

[12] A. S. Tanenbaum,Computer Networks, 4th ed. Upper Saddle River,
NJ: Pearson, 2003.

[13] A. G. Burr, “Performance limits for block-coded modulation,” IEE Proc.
Part I, vol. 136, no. 4, pp. 267–275, Aug. 1989.

[14] M. K. Simon, S. M. Hinedi, and W. C. Lindsey,Digital Communication
Techniques. Englewood Cliffs, NY: Prentice Hall, 1995.

[15] J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups,
3rd ed. New York, NY: Springer-Verlag, 1999.

[16] E. Viterbo and E. Biglieri, “Computing the Voronoi cellof a lattice: The
diamond-cutting algorithm,”IEEE Trans. Inf. Theory, vol. 42, no. 1, pp.
161–171, Jan. 1996.
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