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On the symbol error probability of regular polytopes

Erik Agrell and Magnus Karlsson

L . TABLE |
Abstract—An exact expression is derived for the symbol error PARAMETERS OFALL RCPs.
probability when the vertices of the four-dimensional 24-ell are
used for digital transmission in Gaussian noise. Correspating RCP n M A d/vVEs Gp(dB) S
expressions for other regular convex polytopes are summazéed. .
Numerically stable versions of these error probabilities ae also ~ M-Polygon 2 M 2 2sin 37
obtained. dodecahedron 3 20 3 Sl 259 144
Index Terms—Convex polytopes, modulation, symbol error  jcosanhedron 3 12 5 2_ 2 _004 1.19
rate, Voronoi cell, 24-cell. Vs
24-cell 4 24 8 1 059  1.15
y 3-/5 _
| INTRODUCTION 120-cell 4 600 4 \2/5 7.73 231
o 5-1 -
HE 24-CELL is a regular convex polytope (RCP) with 220! 4120 12 P 1er 173
24 facets and 24 vertices in four dimensions. Its verticeg-cube no2v n = 0 1
were considered as a signal constellation for digital matiloth  ;,-crosspolytope n~ 2n 2(n — 1) V2
already in 1977 [1]. The symbol error probability (SEP) déth b2

. . . . -simplex n n+1l n
modulation format was approximated by a union bound in [1fZ P

and the bit error probability was estimated by simulatiof®in
The constellation was considered for satellite commuitnat
in [2], [3] and has recently received renewed interest inrfibecentered at an arbitrary RCP vertex, over the Voronoi cell of
optical communications [4], [5]. This new interest was motithis vertex. For a given RCP, the Voronoi cells are unbounded
vated by the rapid progress in coherent detection, whichemak:-dimensional pyramids with apex at the origin, whose-1)-
it possible to transmit data in both polarizations simuausly dimensional base cells are the facets of thml polytope!
and thus to employ four-dimensional constellations [6]. Ifihus, the exact SEP is in general ardimensional integral,
this paper, we calculate its exact SEP over the additiveevhliut as we shall see, it can in most cases be simplified into
Gaussian noise (AWGN) channel, which has not been doaemne-dimensional integral, thanks to the inherent symesetr
before. of RCPs.

We put the result into context by briefly summarizing what There exist infinitely many RCPs in dimension = 2,
is known about signal constellations constructed from thiwe for n = 3, six for n = 4, and three forn > 5 [17,
vertices of other RCPs in dimensions. An RCP is a convexp. 412]. For most of these constellations, the correspandin
polytope with the maximum degree of symmetry; its facets ar8EP is known, but at high signal-to-noise ratios, the ptblis
vertices all look the same, and the facets are in turn RCRxpressions often consist of the difference between twastim
Therefore, all symbols have the same energy and the saeggal entities, which makes them numerically unstable. We
conditional error probability, which is tractable at leiim therefore derive equivalent expressions that lend themsel
a theoretical viewpoint [7]. A drawback is that the numbdretter to numerical evaluation.
of vertices M of an RCP is usually not a power of two,
but such constellations can nevertheless be used in digital II. POWER AND SPECTRAL EFFICIENCY
communications if a block of bits is mapped to more than

i : We define the signal-to-noise ratias= Es/Ny and -, =
one symbol [8], [9], in coded modulation [10], or to reduc%b/NO’ where s is the symbol energy, :ES/ log, M is

the peak power in orthogonal frequency-division modumtiqhe bit energy,M is the number of levels, andly/2 is the

systems [11]. Furthermore, in a data communication scenaq p|e_sided spectral density of the AWGN. For modulation

some levels beyond a power of two are useful for framinggi, the vertices of any RCP, the SER:an be upperbounded
and control purposes; indeed, 3- and 5-level modulatioas aHy the union bound

already applied in standards for Fast Ethernet and Gigabit

Ethernet [12, pp. 285-289]. d2
The SEP of RCPs can be approximated by sphere packing P<AQ 557> (1)
[7], random coding [7], simplex packing [13], and union s

bounds [14, Sec. 3.2.7]. To obtain an exact expression or mhereQ(m) 2 foo F(x)de, f(z) is the normalized Gaussian
SEP, one needs to integraterawlimensional Gaussian densny’probability densﬁty functionf(z) 2 (1/v/2r) exp(—a2/2), d
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is with the Dept. of Microtechnology and Nanoscience, ClenUniv. of 1This integral is different from integrating a Gaussian dgnsver the RCP
Technology, SE-41296 Goteborg, Sweden. itself, which has an application in lattice coding [15, Ch. [36].
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one that is suitable for analysis and another for numerical
evaluation. Expressions related to our (5) and (7), but less
reliable at very highy, were given in [21].

Theorem 1:The SEPs of thex-cube P, n-crosspolytope
Pep, andn-simplex Ps are

n
(a) Generic RCPs fon = 3: simplex (tetrahedron), cube, and crosspolytope 27
(octahedron) Po=1—|1-Q — (2)
n

B < %)2(111) —Q <\/§>] )
Pp=1- \/% /000(1 —2Q(z))" exp <M> dx

(4)
(b) Other RCPs fom = 3: dodecahedron and icosahedron \/5 0 xr — 27 2
o)+ = [T awen (-0
Fig. 1. The five Platonian solids. n—o 1
n-— i
3 ( + 1)(2@@)) dz, 5)
i—o \! Erratum: The numerator

and A is the number of such pairs involving a given verfex. 1 oo "2" pefore the integral in (5)
The bound is an accurate approximation at medium to high Ps =1 — N / 1=Q@)"  ¢rould be "\sqrt{2}"
and it is asymptotically exact. We define thewer efficiency e

as Gp = d?/(4Ey), which is the reduction of bit energi, 1 2v(n+1) ’
that a particular constellation admits, compared with hjina CXP T\ TN T, dz (6)
phase-shift keying (BPSK) modulation, to attain the same,
asymptotically_low, SEP. Fgrthermore, t_E;pectraI efficie_ncy 1 oo 1 27 (n + 1)
S =log, M/n is the reduction of bandwidth that a particular = \/—2_7r/ Q(z) exp \* N
constellation admits, compared with BPSK, with the same bit e
rate and pulse shape. -l .

The parameters/, A, andd of all RCPs are given in Tab. I, - Z ( 1) (—Q(z))"du. (7
adapted from [18, pp. 292-2F5jlong withG}, and S. i M

Proof: Transmission over thei-cube is equivalent to
IIl. GENERICRCPs transmitting a block of: bits over independent BPSK chan-

) ) i nels, which yields (2). Expressions (4) and (6) were derived
Three types of generic RCPs exist for all> 2, illustrated from [14, eqs. (4.102) and (4.116)] via the substitutions
in Fig. 1 (a) forn = 3. First, then-cube can be defined as the, _ _
> e = He q = x/\/_—ﬂ and g = ac/\/_— Vv +1/n), resp.

vertex set(+1, ... ; +1), Wlth all 2 sign comblngtlops. When Expressions (3), (5), and (7) follow after expanding Q(-))"
used for modulation, this constellation results in indef@1t 1\, yhe hinomial theorem and integrating out the constam ter
BPSK modulation in alln dimensions. It specializes into a 0
square and cube for = 2 andn = 3, resp. Second, the- We note that the generic RCPs, together with the 24-cell, are
crosspolytope (or orthoplex), whoge vertices can be taken gnecig| cases of permutation modulation [20]. Other gedmet

as all permutations of+1,0,...,0), is the geometric dual of ,roperties of the three generic RCPs were calculated in [22]
the n-cube and corresponds to biorthogonal modulation. It is

also a square fon, = 2 but an octahedron fon = 3. The IV. TWO-DIMENSIONAL RCPs
third type is the self-duak-simplex, which is an equilateral |, 4o dimensions, RCPs are polygons, which exist with
triangle forn = 2 and a regular tetrahedron for = 3. Its 5, arbitrary number of verticed/ > 3. Using such a

n + 1 vertices can be taken &3 — «a,...,1 — o) and all cgngteliation for transmission corresponds Aé-ary phase
permutations ofa —n, 1, e 1), wherea = vn+ 1 and all - ghift keying (1/-PSK). The following expression, which was
vectors have length [19]. given in [23], is both simple and stable.

The SEP of these three RCPs are given by the following Thegrem 2:The SEP of theM/-polygon Posk is
theorem, where two expressions are given for each SEP;

1M sin(m/M)\°
Py . . . . Ppsk = — EXp | =Y\ —————— dz.
The inequality does however not hold for irregular poly®ptr which T Jo sin 2
in general not only the closest neighbors contribute to thehoi cell.
3The parameters were calculated frdv, N1, and¢ in [18] as M = Ny, The SEP for selected values of is plotted in Fig. 2 (a).
A = 2N1/No, andd//Es = 2sin . As expected M = 4 has the same asymptotic performance
4a = —+/n+ 1 gives another, equally valid, representation. These P M ymp P

dimensional coordinate representations are more usefitosmission than a_s BPSK. The On_lyM'PSK format with a pow_er efficiency
the standard representation [20], which requines 1 coordinates. higher than 0 dB is 3-PSK, as shown already in [24].
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V. THREE-DIMENSIONAL RCPs Because the signal vectors are equally probable and sym-
metrically located, we assume, without loss of generatitgt

In three dimensions, there exist five RCPs, called Rlse 0 itted tor is 2 (1.1.0.0). The SEP
tonian solids,see Fig. 1. In addition to the above-mentionecg;Ie ransmitted vector is; = (1,1,0,0). The can how
e expressed as

cube, octahedron, and tetrahedron, there are the icosahe
and the dodecahedron, with 12 and 20 vertices, respectively
which are duals of each other. Their exact SEPs are not known,
but their union bounds follow from (1) and Table I. The result
are shown in Fig. 2 (b). The tetrahedron (3-simplex) has tHéereQx (u) for anyu € R* is the Voronoi cefl

highest power efficiency of the three-dimensional RCPs [5]. Qe(w) 2 [y R |y —ul <|ly—a|,zcx}. (11)

Poy = Pr{x, + %Z ¢ Qx(x1)}, (10)

VI. FOUR-DIMENSIONAL RCPs In order to integrate the four-dimensional noise over the

) I . . oronoi cell, we need to find a compact coordinate represen-
Coxeter remarked that a “peculiarity of four-dimensional .. : . . P

X . ation for this cell. To this end, we first partitiot’ into the
space is the occurrence of the 24-cell..., having no anelogsu

above or below” [18, p. 289]. The 24-cell is a four-dimensibn >° 2SS
self-dual RCP with 24 vertices. It is the only RCP, in anyy, £ {(1,1,0,0)},
dimension, that is both more power efficient and more spec; »
trally efficient than thex-cube (BPSK modulation). Curiously 9\’/2 ={(0,1,0,£1),(0,1,£1,0),(1,0,0,£1), (1,0, £1,0)},
enough, the power and spectral efficiencies of the 24-cell arts = {(—1,1,0,0), (1, -1,0,0)},
equal,d?/(4Ep) = logy M/n = (3 + log, 3) /4 = 1.15. Xy 2 {(0,0,£1,+1)},
T_he 2_4—ce||_can be desprlbed in several ways depgndlrl% 2 0(0,-1,0,41), (0, —1,+1,0),
on its orientation. The vertices can be taken as the union o
(£1,+1, +1, £1), with all possible combinations of signs, and (=1,0,0,%£1), (=1,0,£1,0)},
I1(+2,0,0,0), whereII(-) means the set of all permutationsXs = {(—1,—1,0,0)}.
of the given elements. In other words, the 24-cell is the egnv o
hull of the union of the 4-cube and the 4-crosspolytope estalVith these definitions,
to the same circumscribed radius and properly aligned. This
description, although geometrically appealing, does eetrs X
to easily admit an exact computation of the SEP.
Rotating the constellation, the vertices of the 24-cell lban
described as the set Qx(u)

Xi7

|
CC!

1

<.
Il

Qu, (u), for anyu € R*. (12)

I

=1

A
& S I(£1,+1,0,0), Applying (11) to the subset’ yields

with all possible permutations and signs, which proves thatQ (1)
the 24-cell is a form of permutation modulation [20]. With Aaisl

this representation, we are able to calculate the SEP of the = {yeR | [ly —ai|? < [ly — z[*, € X2}
24-cell. The result is again presented in the form of two = {ycR*|(y,z; —x) >0,z € X}

expressions, vyhere the first is ana_lytically simpler and the _ {y € R* | y1 > yal,v1 > |ysl vz > lyal, vz > |ys|}
second numerically useful even at highvalues.

Theorem 3:The SEP of the 24-cell is = {y € R* [ min{yy, y2} = max{|yal, lya[}}, (13)
5 [oo (@ — \/7)? wherey = (y1,y2,ys, y4) and(, -) denotes the inner product.
Py=1- \/;/ exp (—f) The Voronoi cells ofe; with respect to the subsets;, ..., X
o, can be calculated by the same method. Omitting the details,
(1 -2Q(2)°Q(z — v7)dz ®)  the results are
32 [~ (z = V7)*
=Q(V7)(2-QW\Y)) + 7A exp (—% Qux,(z1) = {y € R* | min{y1, 2} > 0} (14)
LQ(x)(1 — Q(x)Q(x — \/7)da 9) Qu, (1) ={y €R* [y1 +y2 > [ys| + [sal}  (15)
Quy(z1) ={y € R* | y1 + yo + min{y1, y2}

Proof: A signal vector X /Es/2, where X is ran- > max{|ys], [ya]}} (16)
domly taken fromX with equal probabilities, is transmitted o Sl
over a discrete-time AWGN channel with variancé, /2. Qg (w1) ={y € R* [y1 +y2 = 0}. (17)
The received v_ector |sX\/ES/_2 + Z+/Ny/2, where Z = _Comparing (13) with (14) yield$2x, (z1) C Qu, (21), be-
(Z1, Zo, Zs, Z4) is a vector of independent, zero-mean, un"&ausemin{yl,yg} > max{[ys|, |ya]} = min{y1,ys} > 0.

variance, Gaussian random variables. To simplify the a@igly Similarly. comparing (13) with each of (15)—(17) shows that
the received vector is rescaled by a factgiFs/2. Thus, the Y. paring (13) (15)-(17)

maximum likelihood detector shall find the vectordnbeing sy our notation, the definition is valid also whan ¢ , which will be
closest toX + Z/,/v in the Euclidean sense. utilized in (12)—(17).
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Qux,(x1) C Qx,(x1) for i = 4,5,6. Now using these results dimension for which the crosspolytope has the highest power

in (12) yields

Qx(ml) :sz(azl). (18)

efficiency of all RCPs. In addition to the 24-cell and the ¢re
generic polytopes, there are RCPs with 120 and 600 vertices i
four dimensions. Miyazaki made an artistic effort to viszel

We can now finish the SEP calculation. From (10), (13these polytopes [25, Ch. 14], which are each other’s duals.

and (18),

1
Pos=1 —Pr{ml 4+ —Z € Qy ($1)}
VA ’

o 22412
=1-Pr{y7y +min{Z;, Zo} > max{|Zs|,|Za[}}

=1—-Pr{Z < Zy, /vy +min{Zy, Zo} > max{|Zs|,|Z4|}}
—Pr{Z > Zy,\/y + min{Z:, Zo} > max{|Z3|, | Za|}}.
By symmetry, the last two probabilities are equal; thus,
Poy=1-2Pr{Z, < Zy,
VA + min{Zy, Z,} > max{| Zs|, | Za|}}
=1-2Pr{Z) < Zo,\/Y + Z1 > | Z3|, /7 + Z1 > | Z4]}.

Finally, we marginalize the probability ovef; = z; to obtain

2421—2/_O;f(21)

“Pr{Zy > 21,|Z3] < /v + 21,124 <Y+ z}dz
1 2/ FEDQED) (1= 2Q( 7 + 21))%d= (19)
Al

12 [ i QG — A - 2Q(:)) =,

0

Their power efficiencies are low, similarly to the two larges
RCPs in three dimensions.

VIl. HIGHER-DIMENSIONAL RCPs

In dimensions: > 5, there are no RCPs apart from the three
generic types. For medium and high, the crosspolytope is
always better than the simplex, and the simplex is better tha
the cube. Their SEP performances are shown in Fig. 2 (d) for
the five-dimensional case.

As the dimension increases, the power efficiency gap be-
tween the simplex and the cube increases monotonically.
However, the gap between the crosspolytope and the simplex,
which based on Tab. | and the definition 6f, can be
expressed as

Gh,cp _ nlog,(2n)
Gps (n+1)logy(n+1)’

increases until it reaches a maximum for = 24, where

the crosspolytope is 0.62 dB better. Thereafter the gap de-
creases again and approaches 0 dB in very high dimensions.
Extendingn to real numbers, the maximum of (21) occurs
for n ~ 24.066, which is quite close to 24. Whether this is

a pure coincidence or more deeply related to other unique
properties of 24-dimensional geometry, such as the existen
of the Leech lattice, is not known.

(21)

where f(-) was defined in Sec. Il, which completes the proof

of (8).
To prove (9), we first note that for any € R,

Q*(z) =Pr{Zy > 2,2, > z}
= QPT{ZQ Z Zl Z x}

_ 2/00 F(20)Q(21)dzn.
Expanding (19) with the help of (20) yields
Poy=1-— 2/00 f(z1)Q(z1)
—V7
(1 - 4Q(VA + 21) +4Q* (VA + 21))dz
—1- Q- +2/ Q)
(4Q(\/_+ z1) — 4Q (V7 + 21))dz
=1-(1-@ Jr8/ J(z1)Q(z1)

QWY +=)(1— (\/_-l—zl))dzl
= QW2 -QH))
; [z =v7)Q(z — v7)Q(2)(1 — Q(2))dz,

which completes the proof of (9). O

(20)

+ 8

The SEP of all four-dimensional RCPs is shown n[n 1

Fig. 2 (c). It can be observed that = 4 is the lowest
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