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Abstract 
 

Wireless Sensor Networks have become a core component in much diverse 

application range which extends from just a forest temperature monitoring 

to monitoring in many power plants. With this increased dependency on 

WSN and its association to current internet, hardened security primitives are 

required to ensure the correct behaviour of sensor nodes on its own and as a 

whole network. Public-Key Cryptography was considered too expensive for 

WSN but it all changed due to the advancements in software and hardware 

prototypes. 

 

In this thesis different pubic key cryptographic approaches have been 

analysed, that can be used with Contiki. Contiki is a new but popular 

operating system used in WSN. Using public key cryptography in wireless 

sensor networks has its own negative aspects like more energy utilization, 

requirement of more RAM and ROM space. To investigate the feasibility of 

public key cryptography, different cryptographic libraries were analysed, 

out of them two libraries, LibtomCrypt & Relic were selected for 

evaluation. After a methodical review and code reduction these libraries 

were ported to Contiki, the code reduction was carried out to minimize the 

use of different resources by these libraries while running on top of Contiki. 

For evaluation of these libraries with Contiki, MSB430 mote and simulation 

based Tmote Sky is used. Results have shown that public key cryptography 

is possible, and fewer efforts are required to use it with Contiki. Factors like 

processor speed and RAM size lead to better results in case of such 

integrations. It is also observed that use of many mathematical 

optimizations provided with these algorithms can significantly help in 

performance increase.  
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Chapter 1 

Introduction 
 
In this chapter the basic description about the master’s thesis project “Asymmetric-Key 
Cryptography for Contiki” is presented. This includes project overview, scope, limitations and 
basic details about implementation technique used throughout this thesis. 
 

1.1. Background 
 

Wireless Sensor Networks are nowadays becoming a regular component in our daily life for 
ease of many operations. It can be seen that they are now deployed in nearly every field of 
computer science research. Many areas in science and technology are adapting to use 
wireless sensor networks for analysis of data. This includes its usage in large areas as well in 
small vicinities for a real time gathering of data. Due to these advancements in the use of 
WSN, more and more critical and sensitive operations of industry and military are becoming 
part of sensor networks.  With such high dependency of large WSN for a complete picture of 
any sort of operation, security becomes a major concern.  If some intruder can access the 
data and/or tamper with it, then it can result in any undesirable results.  
 
Security has been a major concern in all modern communications. Now with the increasing 
use of wireless sensor networks in many real time applications for data gathering, security 
has become a vital ingredient and its continual need in this technology is emerging as a big 
concern. Embedded Systems like WSN need specailly designed & written operating systems 
due to their limited resources. There are some famous OS specially written with WSN in 
perspective, these include TinyOS [1], Contiki [2] and MANTIS [3]. Contiki is a new operating 
system as compared to most of the others operating systems in this field. During its six years 
of development it has become the second major operating system by the contribution of 
large community of developers. Due to the use of C language for its development, many 

advanced and light components are now becoming part of it such as uIPv4 [4] & uIPv6 [5] 

network stacks.  
 
Although the speed of development in Contiki is very rapid and up-to-date, but it still lacks 
the use of security primitives for secure communication between sensor nodes. Till now 
there is only one Security architecture “ContikiSec” [6] proposed for this operating system. 
ContikiSec has presented a very detailed analysis with regard to use of different symmetric 
ciphers and their effect on scarce resources of sensor nodes. A framework is presented in 
ContikiSec which can be used by Contiki to communicate securely using different security 
primitive requirements.   
 
The symmetric cipher based security cannot be used alone as it cannot solve some security 
problems like inability to handle node compromise and time synchronization issues.These 
issues are resolved by use of two major security primitives, key management and 
authentication. The major reason for not promoting such additions in Contiki till now, is its 
extensive use of resources mostly battery power and volatile memory. However with 
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growing use of Contiki in WSN such requirements need more attention now. Once Contiki is 
able to integrate ContikiSec along with key management and authentication, then it can 
harden the security of data communication between sensor nodes. 
 

1.2. Objectives 
 

The main objective of this thesis work is to explore the feasibility of public-key cryptography 
implemetation in Contiki. This includes the integration of public key based cryptographic 
operaions along with regular desig of Contiki. It should be able to provide a proof of concept 
for embedding additional security parameters in security layer of Contik, which can be a part 
of its future designs. 
 
The proposed solution should be able to provide developers and administrators about the 
details and suggestions, relevant to addition of  security primitives from asymmetric 
cryptography. The resultant solutions should be tested on some sensor network for their 
concreteness in order to access for their future deployment. There should be a discussion 
with sound results about the consequences if such integration is adopted by Contiki. All 
complications associated in any integration should be listed and explained in detail.  
 

1.3. Problem Description 
 

Once these objectives are analyzed, some questions become very prominent, these can be 
then formulated into problems. By solving these problems project goals can be acheived. 
 
Security: Is it required to have such security features to be added into Contiki? What kind of 
scenario will require such usage? 
 
Implementation: Is it possible to implement such advanced cryptographic functions for 
Contiki? Can such implementation be power efficient at reasonable cost of resources? How 
Contiki will cope with such integration with reference to its share of resources? 
 

1.4. Limitations 
 

a. The only platform available for this project is based on 16-bit RISC MSP430 [7] 
processor. It cannot be tested on any 8-bit or 32-bit sensor nodes due to non-
availability. However it is assured that this work will be applicable on all other 
platforms as well. 

b. The implementations used in this project are not specifically designed for MSB430 [8] 
or Tmote Sky. One of these libraries has assembly code for MSP430 based processors 
but it is not yet released in free version. 

c. Manually optimizing cryptographic code is a complex process and it requires in-depth 
knowledge of programming and mathematics involved. Only GCC [9] based compiler 
optimizations were used in this project. 

d. The hardness of any cryptographic protocol is based on a strong pseudorandom 
number generator. To reduce the load on Contiki system built-in random function is 
used. 
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e. In this project an important limitation is unavailability and no support of debugger. 
Contiki has developed a debugger called MSPSim [10] for Tmote Sky [11] but it is not 
available for MSB430 at this time. 

f. The performance of programs is only evaluated on two platforms. Firstly on real 
MSB430 sensor node and secondly Cooja simulated Tmote Sky. 

g. Network utilization and bandwidth related issues were not focused in this project. 
The main task is to analyze cryptographic operations on a single sensor node. 

 

 

1.5. Method 
 

The project work is organized in several steps. It started from theoretical studies of Contiki 
and cryptographic algorithms. A search for suitable cryptographic libraries present in open 
source community was also started in parallel. As many things were new and under 
development in case of Contiki, therefore scope was reviewed and redesigned after 
acquiring many intermediate goals. Similarly theoretical studies were reused in the 
intermediate and final stage of the project for verification and review respectively. 
Implementation phase consisted of the following steps. 

1) Understanding whole library and thorough analysis of PK cryptographic parts 
included in it. 

2) Take out minimum code and test it for suitable usage. 
3) Port the program to Contiki (Cooja [12], MSB430). 
4) Redesign program to remove any additional functionality or resource usage. 

 

The above stated algorithm was used for both cryptographic libraries as well as for 
mathematical portions, that are used with them. Once it was assured that the code is now in 
most optimal form then different tests were performed for detail analysis. In final stage 
these results were analyzed and compared for performance merits suitable expecially for 
Contiki. This included suggestions and improvements for a balanced cryptosystem intended 
for Contiki. 
 

 

1.6. Structure 
 

This report is organized in such a way that the reader will understand every detail which can 
help to understand efficiently about subsequent chapters. Next chapter describes the basic 
details about wireless sensor networks, their growth and different security frameworks. In 
addition security properties required in diverse scenarios of WSN and attacks are explored. 
After this an overview of public key cryptography techniques that are commonly used is 
provided. Till this point reader has acquired all necessary information required to 
understand this project, then all the details and outcomes of the project are presented. In 
chapter 5 all the relevant information and analysis about libraries that are used or reviewed 
for this project are provided. In Chapter 6 measurement methodology used to evaluate and 
analyze security primitives are elaborated. The results and the motivation behind such 
results are included in Chapter 7. After the complete analysis a clear picture about the public 
key cryptography recommendations suitable for Contiki are documented in Chapter 8. Finally 
Chapter 9 includes conclusion and some future work recommendations. 
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Chapter 2 

Background 
 
2.1. Wireless Sensor Networks (WSN) 
 

Wireless sensor networks consist of small nodes also called motes that monitor physical or 
environmental conditions around them such as temperature, sound, vibration etc , process 
data, and communicate through wireless links [13].  A wireless sensor network (WSN) 
generally consists of a basestation (or “gateway”), which holds the ability to communicate 
with a number of wireless sensors present nearby by use of a radio link. Once the data is 
collected by some intermediate node, it is then compressed, and transmitted to the gateway 
directly or, if not directly connected then uses other wireless sensor nodes to forward data 
to the gateway. Once this data reaches the base-station then it is presented to the system by 
the gateway connection [14]. 
Wireless Sensor Networks are widely used these days and are very popular in research for 
use of embedded systems in our daily life. WSN’s are used in applications involving 
monitoring, tracking, or controlling such as habitat monitoring, robotic toys, battlefield 
monitoring, packet insertion [15], traffic monitoring, object tracking and nuclear reactor 
control. 
 

2.2. Security Principles for WSN: 
 

The basic security primitives required for wireless sensor networks are listed below [16]. 

Data Confidentiality: 

In WSN, data confidentiality is very important because it ensures that only authorized nodes 
can get access to the data. The basic purpose of confidentiality is to ensure that data 
transferred from one node to other node is not understandable from any intermediate node 
or unauthorized parties. This is acheived by use of symmetric key cryptography. The sender 
node and receiver node use a predefined secret key, or negotiate for a shared secret key. 
The data is then encrypted/decrypted by use of such key. 

Data Authentication: 

It is important in WSN to ensure that the data is originated from the right source, in other 
words an intruder cannot insert false messages or data into the network. Asymmetric 
cryptography has the ability to create signatures, which can only be generated by a sender 
by use of some special information. In order to acheive this property signatures are prepared 
and used by sender. The receiver verifies the signature and hence confirms that the data is 
sent from the authorized node. 
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Data Integrity: 

Data integrity ensures that the data is not altered by unauthorized parties during 
transmission. It can be acheived by use of message integrity code (MIC) or a checksum added 
to each packet. MIC can detect message altering caused by accidental transmission errors as 
well as malicious altering. Checksum on the other hand can only detect accidental 
transmission errors. 

 Data freshness: 

The messages transmitted should not repeat at receiving end, likewise a node should not 
receive two identical messages in certain time range. The main goal is to ensure that data is 
recent, fresh and, it is not used by any intruder who wants to learn some symmetric key used 
in the communication. There are two kinds of freshness techniques. Weak Freshness is 
typically achieved by use of partial message ordering, but without delay information. While 
strong freshness is achieved by use of complete ordering and delay estimation. 

Availability: 

The whole system or even a single node in a WSN should be available, and capable to 
provide its services when-ever required. When modifications are applied to WSN, then it can 
affect the availibility of the node to a great extent. It can be said that when security proprties 
are applied to WSN then it doesn’t only effects the operations of the network, but it is also 
important that the availability of the whole network should be preserved as well. 
 

2.3. Security Threats in WSN 
 

In WSN, traditional security techniques cannot be applied directly. WSNs are growing rapidly 
in many aspects, therefore security mechanism for WSN should be updated as well. WSN 
operates in outdoor environment where they are unattended, so security should be 
considered in the design phase [17]. Security in WSN can be categorized into two types, 
operational and information security. Operational security means that the network should 
be able to provide services even if some of its components fail or become compromised. 
Information security means that the network should not disclose any secret information, 
plus it should guarantee integrity and authenticity of the messages. Security is a critical 
requirement for WSN, the data and node should be protected against attacks like 
eavesdropping, tempering, DOS attack [15] etc. When designing a security model for WSN, 
all these type of attacks should be considered and security should be defined on different 
layers to ensure high degree to reliability. 
 
 

2.4. WSN Adversary 
 

An adversary is a person or another entity that attempts to cause harm to the network. The 
reason to do such can vary from just a denial of service attack to larger extent of 
unauthorized access to the WSN, resulting in loss of many security properties related to 
important data [18]. 
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There are two general types of adversary attacks on any network. 
 

a) Active adversary technique involves with the tampering to data while it is being under 
process in the network. This includes deletion, alteration and addition to the data. This result 
in violation of core security primitive’s like data integrity, confidentiality and authentication. 

b) Passive attacks only monitor the communication link and listens to every piece of 
information that passes through. After this the adversary use different techniques in offline 
mode, to either decrypt a saved encrypted data or moves to active mode to guess secret key. 
Here the main aim of adversary is to attack the confidentiality thus he can view the original 
data from encrypted data. 

 

In WSN the adversary classifications are broadened to four more classes. 
i) Mote-Class Attacker: Such adversary has access to a few nodes which have capabilities 

similar to the nodes that are deployed in the network.  
ii) Laptop-Class Attacker: This type of adversary has access to a much powerful device like 

laptop as compared to sensor nodes. This provides gain to the adversary as he has access 
to larger resources at his disposal, and hence he can use larger set of techniques for his 
purpose.  

iii) Insider: In some cases adversary is able to compromise or capture some internal nodes 
therefore he can become a part of network easily. Once it is done then he can exploit 
whole network for his own purpose. 

iv) Outsider: Such adversary has no special access to this network. 

 

 

2.5. Types of attacks 
 

In this section an overview about some simple and common attacks on different layers is 
presented. 

Physical Layer  

Jamming. Jamming is a type of physical layer attack in which the radio frequencies of WSN 
are disturbed by use of interference. This can result in altering some important radio 
parameters like collision rate, bad frame rate and RSSI level [19]. 
 
Tampering. In such attack the node is physically compromised. This is mostly done by 
capturing a node from the WSN field. The attacker can collect all information from the node 
and try to recover beneficial infromation. An advanced attacker can recover, reprogram and 
redeploy it in the field to attack the whole WSN [20]. 

 Data-link Layer  

Collision. The packets can be disrupted by altering the transmission octet, this can result in 
checksum mismatch or back-off in some mac protocols.  Attacker listens on the 
communcation medium and try to guess the expected time of message transmission. Then 
he notices the time and send a message at the same time when a proper message is started. 
So these two messages collide in the wirelss medium and results in an incorrect message for 
the receiver. 
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Exhaustion. The batteries of sensor nodes can be exhausted if the network face continuous 
collisions and back-off in MAC protocols. This results in degradation of avaialability on a large 
scale in the WSN. 

 

Network Layer  

Selective forwarding. Certain malicious nodes can refuse to forward some messages and just 
drop them. This can result in delay and bandwidth degradation in the whole WSN. 
 
Sinkhole. In such attack the routing information can be altered in different nodes connected 
to the compromised node. An adversary attracts a node and provides it with wrong routing 
information. Senosor nodes will expect that this node provides an efficient route to the sink 
node but in reality compromised node in most cases drop, or alter the received messages 
[21]. 
 
Sybil attack. A single node creates its own multiple identities and presents it to other nodes 
in the network. This will result in removal of all original neighbours from the table of active 
sensor nodes in the routing table. In some cases if the transmission quality of compromised 
node(s) is good, then it can also remove the original sink node from node’s routing table as 
well [22]. 
 
Hello flood. A laptop class attackers broadcasts messages with powerful signals that the 
nodes in the network think that the attacker is in the network and sending normal startup 
packets used in routing protocols [21]. 

Transport Layer 

Flooding. The attacker can exhaust important resources like battery of the victim by sending 
the victim many connection establishment requests. This will ultimaltely result in denial of 
service attack on the node. 
 
Desynchronization. Request for retransmission of missed frames can be made by repeatedly 
forcing messages into the network which carry sequence numbers to one or both end points.  
 

 

2.6. Existing Security Frameworks in WSN 
 

Security was not considered as a main focus in WSN till few years back. As WSN have started 
to mark their presence in more cirtical applications, hence more and more focus is 
transferred to securing them in every possible way so that they cannot be exploited further. 
Traditional Security techniques cannot be applied in WSN due to two main reasons. 

a) In-network processing of large data to reduced aggregated  information. 

b) Important resources incase of WSN are very limited. 
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There are only few security frameworks present in WSN till now. These include SPINS [23], 
TinySec, SenSec, MiniSec, TinyECC and ContikiSec. An overview of some important 
frameworks is presented below. 

 

TinySec [24]: 

TinySec is the first fully functional link layer security architecture presented for wireless 
sensor networks and it has been a part of TinyOS. The biggest motivation for developing link-
layer security architecture was to detect unauthorized packets when they are first injected 
into the network to save energy and bandwidth. The security goals acheived by use of 
TinySec are confidentiality, message integrity & access control. 

TinyECC [25]: 

Tiny ECC is an ECC based PKC software package that can be configured and easily integrated 
into sensor network applications. It is specifically designed for use in TinyOS. TinyECC 
provides special optimization switches which can be turned on or off by the programmer 
according to the programmer's need. By configuring different optimization switches 
execution time and resource consumption can be  controlled. TinyECC has support of digital 
signature scheme (ECDSA), a key exchange protocol (ECDH), and public key encryption 
scheme (ECIES) which are different ECC schemes.     

ContikiSec [16]: 

ContikiSec provides some necessary security primitives on link layer of Contiki. WSN 
supports many different types of applications therefore ContikiSec is designed to be more 
flexible. Three different security levels confidentiality-only (ContikiSec-Enc), authentication-
only (ContikiSec-Auth), and authentication with encryption (ContikiSec-AE) are provided in 
ContikiSec. This provides the programmer/administrator a choice to select between these 
three types of security level according to the application or needs of the WSN. 
 
”ContikiSec has been designed to balance low energy consumption and security while 
conforming to a small memory footprint” [16]. ContikiSec uses symmetric key encryption 
algorithms AES, RC5, Skipjack, Triple-DES, Twofish, XTEA.  According to the ContikiSec 
developer, AES is the most appropriate block cipher for the WSNs taking into account 
memory usage (RAM and ROM), time (Encryption, decryption, and key expansion time), 
energy consumption and considering trade-off between security and resource consumption. 
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An overview of all the important frameworks alongwith their relevant information concerning 

this project discussion is shown below. 
 

 year Language 

used 

Security Properites implemented Algorithms 

SPINS 2002 N/A Data Confidentiality, Integrity, 

authentication and freshness, 

authentication 

 

TinySec 2004 NesC Access Control, Integrity, 

Confidentiality, Replay Protection 

Skipjack 

CBC-CS mode 

SenSec 2005 NesC Access Control, Integrity, 

Confidentiality, Key Management 

Skipjack-X 

CBC-CS mode 

MiniSec 2007 NesC Pre-Deployed symmetric keys, 

Confidentiality, Replay Protection, 

authentication 

Skipjack 

OCB mode 

TinyECC 2007 NesC Key Exchange, Public key 

encryption, Digital signature 

ECC 

SECG-160 

ContikiSec 2009 C Authentication, Integrity & 

Confidentiality 

AES 

CBC-CS mode 

Table 1: Overview of Security Frameworks present in WSN 

 

2.7. Contiki  
 

Contiki is developed by Swedish Institute of computer science and it is a lightweight, open 
source, highly portable and multitasking operating system used for embedded systems 
which are highly memory efficient. The memory usage for contiki is about 2kb of RAM and 
40Kb of ROM [2]. 
The first version of contiki was released in 2004 and the latest version 2.4 is released in feb 
2010. Contiki is developed in C and is currently used in many microcontrollers like MSP430, 
AVR, HC 12 and Z80. The biggest advantage of Contiki is that it provides dynamic loading and 
unloading of applications and services which enhances many resource utilization in sensor 
networks and the kernel is event driven. Contiki also provides multithreading and is 
implemented in a separate library, which can be used by an application when needed.  By 
combining multi-threading and event driven kernel contiki is the best operating system for 
sensor networks to implement asymmetric cryptography.  
 

2.8. MSB430 
 

MSB 430 is a hardware platform for sensor networks created by ScaterWeb with its own 
operating system  and it has a microcontroller, external storage, two sensors, radio and LED. 
MSP430F1612 microcontroller is used in MSB 430 which has 16bit RISC architecture, 5Kb 
RAM and 55Kb of flash ROM. The clock of MSB430 can be configured dynamically between 1 
and 11 MHz by accessing it’s software. MSB430 is equipped with Chipcon CC1020 transceiver 
which has 8.6 dBm max. transmission power and an external LNA (low noise amplifier). It can 
be operated in 402-470 and 804-940 MHz frequency range and the frequency can be 
selected differently for transmitting and receiving. MSB430 has two sensors onboard, 
humidity sensor (Sensirion SHT11) and temperature sensor (Sensirion SHT11). This sensor is 
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very important for temperature compensation which results in accurate clock frequency and 
measurements plus it can additionally use a sensor for movement detection, which is three-
axis accelerometer MMA7260Q [8]. 

 

Figure 1: MSB430 

2.9. Tmote Sky 
Tmote Sky is an ultra low power IEEE 802.15.4 compliant  wireless module for use in sensor 
networks used in monitoring  based applications, and rapid application prototyping. Tmote 
Sky gets its power by AA batteries but it has a usb port which can be connected to usb port 
of a computer to utilize power from the computer. The low power usage is of Tmote Sky is 
possible due to MSP430 F1611 microcontroller which consists of 10Kilobytes RAM and 
48Kilobytes flash ROM. This mote also includes the ability of fast wake up from sleep which 
takes less than 6μs. Its 16 bit RSIC processor enables it to use less power while active and in 
sleep mode enabling the node to run for years on single pair of AA batteries [26]. 
Tmote Sky is equipped with Integrated onboard antenna with 50m range indoors / 125m 
range outdoors, the radio is Chipcon CC2420 which provides reliable wireless 
communication. There are three types of integrated sensors in Tmote Sky including  
Humidity, Temperature, and Light sensors. It also provides hardware link-layer encryption 
and authentication for better security. For external code and data storage Tmote Sky 
provides ST M25P80 40MHz serial code flash that can hold 1024 kilobytes of data. The flash 
is decomposed into 16 segments, each 64kB in size.   
In this project a simulator COOJA [27] which is sepcially built for Contiki is used to simulate 
the Tmote Sky. 

 
Figure 2: Tmote Sky 
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Chapter 3:  

Overview of Asymmetric Cryptography 
 
3.1. Cryptography 
 

Cryptography is a subject in the field of mathematics that is applied in computer science to 
ensure the security primitives. The term cryptography which is also referred to cryptology is 
derived from a combination of two Greek Words, kryptos which means ”hidden” and grafo 
stands for ”write”. Cryptography is used for lots of purposes like encryption, data integrity, 
authentication, asymmetric encryption and digital signatures. There are two types of 
cryptography techniques symmetric cryptography and asymmetric cryptography. Symmetric 
cryptography is not used in this project hence it is not discussed here in detail. In this chapter 
basic introduction about asymmetric cryptography is presented.  
 

3.2. Asymmetric Cryptography 
 

Data transferred from one system to another is protected by means of encryption, a shared 
secret key is used to encrypt and decrypt the data by the sender and receiver respectively. 
Such encryption is called symmetric key cryptography. There are many symmetric key 
algorithms which are tested to be very secure, but the biggest problem with this kind of 
system is that the key has to be shared over a public network and in most cases it is 
predeployed on each sensor node. Asymmetric key cryptography solves problem which 
cannot be resolved by use of symmetric-key cryptography. In asymmetric-key cryptography 
two keys are generated, one private part of the key and the other is called public key part. 
The private key is kept secret while the public key is made public, the message is encrypted 
using the public key and the private key is used to decrypt the message. Another wide usage 
of such technique is utilization of private key to sign the message, while the public key is 
used to verify the signature at other end. The biggest problem associated with use of 
asymmetric cryptographic system is that it is slow and expensive. However it adds key 
management scheme & digital signatures to any network to ensure hardened security.      
 

 

3.3. Asymmetric Cryptography Techniques  
 

In recent years it has been a major challenge for the researchers in the field of WSN to 
reduce the computational complexity, and minimize memory usage of the traditional 
asymmetric cryptographic algorithms like Al-Gamal, RSA, DSA and ECC. Among all these 
algorithms ECC is considered to be most suitable for wireless environments because its 
memory and resource consumption is least as compared to all others [28].      
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RSA [29]: 

RSA stands for Rivest, Shamir and Adleman, which are the names of the authors of RSA. RSA 
is an asymmetric/public key cryptographic algorithm. It is one of the first algorithms 
(presented in 1977) to be suitable for signing as well as encryption. It is believed to be secure 
and still is widely used in e-commerce. RSA is considered to be secure due to factorization 
problem which states that it is very difficult to factorize large number. 
 
RSA consists of three operations namely key generation, encryption and decryption. 
 

Key generation. 

Key generation process is used to generate a pair of keys i.e. private key, and its public key 
part. Public key is available for all users while private key part is secret and not provided to 
any other user.If the RSA keys are not built already then they need to be created when any 
user wants to communicate with it. Key generation process has a drawback of being slow but 
this operation is only required at first time or when the keys need to be regenerated. TheKey 
genartion is composed of following five steps [30].  
 

1) First of all, two large distinct prime numbers p and q must be generated. Make sure 
that p!=q 

2) The product of above selected prime numbers is computed, let’s call this component 
n. It must be large enough so that the numbers p and q cannot be extracted from it 

like at least 512 bits i.e. numbers should be greater than       
n=pq 

3) Compute phi 
Φ = (p-1)(q-1) 

4) Choose a public exponent e such that 1 < e < Φ . Make sure that gcd (e, Φ) = 1 
5) Finally decryption key d can be made in such a way that 

de modm = 1. 

Now public key {n,e} and private keys {d} are generated and are ready to be used for 
encryption and decryption. 
 

Encryption 

RSA encryption is always done by use of public key. Any person or computer who wants to 
communicate with the target machine using RSA encryption must first obtain its public key. 
It can be done by direct communicatuon or by use of any certification authority ”CA”. If the 
message is greater than ”n” present inside public key then it should be broken down into 
blocks of messages such that each block is less than n. Now to encrypt message ”m” into 
ciphertext ”c” following computation is done where ”e” and ”n” are public key components. 

 

 

Decryption 

This operation can only be performed by the host of RSA key using its private key. Original 
message will be extracted from ciphertext by use of following computation.  
 

 

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
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Signing messages 

RSA encryption and decryption are not so much used as compared to RSA digital signatures. 
Digital Sinatures are always computed by use of private key. This signature can later be 
verified by any receiving party just by knowledge of host public key. 
 

RSA Digital sinature is never applied to the whole message as it is very slow, several 
techniques are present to forge such signature. RSA based signature is always computed 
over the hash of the original message. In order to make a signature the sender node will 
produce a hash of the message and then raise it to the power of ”dmod n”, and then attach 
this to the origianl message. Once the receiving node receives the signed message then same 
hash function is used to calculate the hash of the message like sender did. After this it will be 
raised to the power of ”emod n”. Finallt the resultant value is compared to the received 
signature appended to the received message. If they are same then this means that the 
sender of this message holds its private key, and hence the message is not tampered during 
its transmission. 
 

 

3.4. ECC 
 

Elliptic Curve Cryptography ”ECC” was proposed by Niel Koblitz and Victor Miller in 1985. 
ECC is a public key cryptography approach based on algebraic structure of elliptic curves over 
finite fields. ECC is emerging as a strong public key crypto system compared to other public 
key cryptosystems like RSA. RSA is considered to be secure on the basis of assumption, that 
it is very difficult to find factor of very large prime numbers (Integer Factorization Problem). 
While ECC is considered secure on basis that it is infeasible to find discrete logarithm of a 
random elliptic curve element with the knowledge of base point present in public ”ECDLP” 
[31. In conclusion ECC is more secure and provides equivalent security with smaller key sizes 
which results in faster computation, lower power, memory and bandwidth usage. ECC has 
the highest strength-per-bit compared to other public key cryptosystems [32], so ECC is 
considered to be very useful for mobile devices.  
 
The mathematical formula of ECC over the elliptic curve is 

                  
Where x,y,a and b are real numbers and with the condition  

            . 
 
By changing the values of ‘a’ and ‘b’ different eliptic curves can be generated. All the points 
which satisfy the above equation lie on the eliptic curve. Private key is genrated by random 
number generations while public key is obtained by multiplying the private key with a 
constant base point G (Scalar multiplication) in the curve. Public key is obtained as a point in 
this curve. ECC biggest advantage is its small key size, a 160 bit key size of ECC is equivalent 
in securit  to 1024 bit key size of RSA.  
 
There are two basic operations performed in ECC. 

a) Point Addition 
b) Point Doubling 

A simple graphical explanation provided by SANS is shown below [33]. 
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Figure 3: ECC Point Addition 

 
Figure 4: ECC Point Doubling 

 
 
Listed below are some of the popular schemes that use ECC. 
 

3.5. ECDH  
 

The Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol provides ability to two 
users, each holding a public-private key pair to create a shared secret agreement over a 
public channel. The biggest advantage of such technique is its ability to be used in non-
secure and public medium [34]. 
It is a version of the Diffie–Hellman protocol to be used with elliptic curve cryptography. The 
shared agreement between two nodes can be directly used as a key or can be used to make 
another key, the key can be used to encrypt messages by a symmetric algorithm.  
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ECDH Mathematics  

 
ECDH relies on two public parameters, ‘p’ is a large prime number and parameter ‘g’ which is 
an integer that is less than p. These parameters can be exchanged over an unsecure channel, 
after receiving the two parameters ‘p’ and ‘g’, both parties select private integers ‘a’ and ‘b’ 
respectively. These values are called the private keys of both sides.  Then both parties create 
public keys based upon the public parameter and their corresponding private keys, the 
private keys are asymmetric because they do not match. One private key is created based 

upon ga mod p and other is created based upon gb mod p. In all this process  the secret 

part only consists of a, b and it is known that  (gb)a = (ga)b , all the other values are public 
[34].  
 

Anyone who eavesdrops will get ‘p’, ‘g’  but it is computationally infeasible to generate 
shared secret agreement from the public values without knowing both parties private keys. 
So this protocol is secure because no one can drive private key of the both parties unless the 
Elliptic Curve Discrete Logarithm Problem is solved. ECDH uses elliptic curves instead of 
logarithmic curves, due to this ECDH is able to achieve same degree of security by using 
shorter keys. 
 

ECDH limitation 

 

The ECDH key exchange protocol is not secure because it does not prevent man in the 
middle attack. The main reason for such inability in ECDH is no pre-authentication of both 
nodes. An eavesdropper can easily get a public key of one and send its own instead of the 
original to the recipient. By doins so, the attacker can decrypt messages, change the 
messages, re-encrypt them with its own keys, and then send them to the recipients. This 
problem can be solved if both parties use digital signatures to sign public keys before 
exchanging them. 
 

 

3.6. ECDSA 
 

 

Eliptic curve digital signature ”ECDSA” is a variant of Digital Signature Algorithm ”DSA”, a 
process of calculating digital signature but using elliptic curves. The signature has the 
property that it can only be created by one (one who owns the private key) but can be 
verified by many (public key of sender is know to them) . A security level of 80 bits, means 

that the attacker needs to generate     signatures so that he can find the key, which is 
equivalent to a DSA keysize of 1024, but in the case of ECDSA the key is only 160 bits long. 
The process of ECDSA is consists of three steps: 
 

ECDSA key generation 

Key generation is required to make a key pair of public and private key. Key generation for 
ECC based ECDSA is done in 5 steps [33]. 
 
1. Select an elliptic curve E over a finite field, say GF(p). The number of points on E 
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should be divisible by a large prime n. 

2. Select a point P = (x,y)GF(p) of order n. 
3. Select an unpredictable integer d in the range [1, n-1]. d will act as the private 
key 
4. Compute Q=dP 
5. The user's public key is (E, P, n, Q). 
 

ECDSA signature generation 

To compute a signature on message ”m” following procedure is used [33]. 
1) Choose a random integer k in the range 1 < k < n-1]. 

2) Compute (x1, y1) = kP = k(x,y), and set  
r = x1(mod n)  

 If r=0 then go back to step 1. 

 

3) Compute s = k-1(h(m) + dr) mod n, where h is the hash value obtained from a 

suitable hash algorithm (for example, the Secure Hash Algorithm, SHA-1). 
 

4) If s=0 go to step 1. 
 

5) The signature to be included in the message m is the pair of integers (r, s). 

 

ECDSA signature verification 

Once the message is received by the other side then the receiver will first parse out r and s 
from the trailing part of the message. Following computations are performed on the rcceived 
r and s to verify that message sender’s identity [33]. 
 

1) Obtain an authentic copy of the public key (E, P, n, Q). 
2) Verify that r and s are integers in the range [1, n-1]. 
3) Compute  

w = s-1 mod n and h(m). 

 where h is the same hash function used by sender to calculate the hash of the 
message. 

4) Compute  
u1= h(m).w mod n 

and 

u2 = r.w mod n. 

5) Compute  
u1 P +  u2 Q = (x0 , y0) 

and 

v = x0 mod n. 

6) Accept the signature if and only if v=r.  
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3.7. Summary 
The common perception about public key cryptography is that it is complex, slow and 
consumes lot of energy and memory, so it is not suitable for wireless sensor networks as 
they have access to low power and low memory. But it is possible to design a public key 
encryption architecture with low energy and memory consumption by selecting right 
algorithms and parameters .  To prove this someresults provided by [31] are shown below in 
Table 2. They have tested both techniques on mobile processors and proved by results that 
ECC operations are much more feasible and efficient as compared to RSA in limited 
resources. RSA seems to be more efficient but it is only in the case of decryption, which is 
also  reduced to large degree is key size is increase. Secondly RSA consumes a large amount 
of memory for its operations, while on ther hand ECC provides same level of security with 
much less memory consumption. 
 

Level of Security  Key Size  Decryption Time 

(seconds) 

Verification Time  

(seconds) 

80  RSA-1024  2.694  0.191  

ECC-160  0.765  1.042  

112  RSA-2048  14.734  0.665  

ECC-224  1.187  1.626  

128  RSA-3096  44.274  1.378  

ECC-256  1.375  1.905  

 

Table 2: RSA and ECC performance comparison 
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Chapter 4  

Library Details 
 
In this chapter detailed analysis and review of different libraries is presented. This chapter 
can help future developers to understand the merits that need attention for understanding, 
or implementing cryptographic functions with context to Contiki development. At the end of 
this chapter experiences with each library are presented, that determined whether library 
suits our requirements or not concerning this project. 
 

4.1. Selection Criteria 
 

After completion of initial research study the next step was to look for cryptographic libraries 
present in open source domain.  Many factors were important for selection of library that 
can be used in our project. The main concentration from the start of project emphasized on 
finding a library that is freely available, easy to use and holds a small memory footprint. A 
cryptographic library especially prepared with embedded system’s perspective will be more 
suitable for selection. Another most important selection criteria is programming language, 
the library should be implemented in C language.  
 
Contiki is completely written in C language hence cryptographic library written in C language 
can only be integrated with it. It is found that there are very less cryptographic libraries 
written in C language as compared to C++ and Java. Currently only 2 open source libraries 
specifically written for embedded systems were located in free domain. Nearly all of the 
specially designed cryptographic implementations are for commercial use and hence their 
source code is not freely available. 
 
Symmetric Cryptography is much simpler to implement and it does not require any complex 
mathematical computation code to be added for its execution. However Asymmetric 
cryptography is much more compound when it comes to its implementation. In the case of 
asymmetric cryptography very large mathematical computations needed to be performed 
which cannot be done by simple mathematical code included with compilers. Due to this 
reason developers implement mathematical parts separately from the cryptography based 
algorithmic details. Details are presented below in two different categories so that it is easy 
to understand different parts with their context. 
 

 

4.2. Cryptographic libraries 
 

LibTomCrypt 

LibTomCrypt [35] is a famous and renowned cryptographic library when it comes to open 
source community and C language based implementation. It has been ported to many Linux 
platforms like Redhat, Debian and Gentoo due to its simple and reliable design. The biggest 
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advantage concerning this project is the flexibility of this library. LibTomCrypt gives 
developers an independence to select from three mathematical libraries (TomFastMath [36], 
LibTomMath [37] & GnuMP). Before minimizing code of this library in this case,  
mathematical program need to be prepared from any of these mathematical libraries. This 
will be discussed below in mathematical library details. 
 
After understanding the library behavior in detail, library code is reduced and prepared to be 
used on a normal PC. Once it is assured that previous procedure is done rightly and program  
is performing in a correct behavior, then again code is optimized to become minimal so that 
it can easily reside in a sensor node. By the end of the project the program reduced nearly all 
the unnecessary code from the library. This could not have been done at early stages 
because the nature of the change in requirements were not sure as they can be modified 
later in the project. 
 
Pros:  Easy to understand and modify 

Much more flexible to add or remove different parts. 

Mathematical library can be easily changed. 

 

Cons: Less functionality provided as compared to Relic. 

Library is old and not so regularly updated. 

Basic co-ordinate system and Barret Reduction are not present in current 

versions. 

Relic 

Relic [38] is a cryptographic toolkit specially written for use in sensor networks. It is very 
flexible library and provides a large set of modern cryptographic functions. There is no 
documentation resources available on this library for new users as it is very new and under 
continuous development. This resulted in problems to understand it at the start, but once 
any user understands all the details then it is very easy to use. The to work on this library 
was initiated with the same procedure as was followed in LibTomCrypt. In first phase all  
mathematical computation code was extracted, prepared a simple program of it and 
performed the tests provided with it. Then same work was cariied out for cryptographic 
library part and its integration with mathematical program. An important difference 
compared to LibTomCrypt is Relic had much more functionality and features when it comes 
to algorithmic details. 
 
Pros:  Support for 2 mathematic libraries (Relic-Easy and GnuMP) 

 New library with many new algorithms included. 

 Support for 3 Memory allocation methods (Static, Stack & Dynamic) 

 Multithreading support included. 

 Support for testing and benchmarking of different components. 

 

Cons:  Documentation details are very less. 

Some configuration details are tricky and difficult to understand. 
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4.3. Mathematical libraries 
 

TomFastMath 

TomFastMath library is also developed by the same developer who wrote LibTomCrypt and 
LibTomMath. The main aim of developer was to write a mathematical library that can 
increase performance, speed and can compute results faster. It is not flexible like 
LibTomMath but it includes inline assembly fragments for achieving quicker results. The 
biggest difference between TomFastMath and LibTomMath is use of fix precision integers by 
TomFastMath while LibTomMath uses multi precision integers. 
 
Montgomery modular reduction is preferred over Barret Reduction technique for 
implementation in this library. Most importantly use of Barret Reduction is also not 
favorable for this project as nearly all project work was carried out by use of Projective co-
ordinate System. Barret reduction provides better results only for Basic Co-ordinate system 
in ECC. The developer has compared and showed that TomFastMath outperforms 
LibTomMath if it is used by LibTomCrypt. 

LibTomMath 

LibTomMath is a very comprehensive and detailed library written with the focus to 
understand the mathematical algorithms to be used with asymmetric cryptography. It was 
prepared to compete with GnuMP on many grounds. It is not designed to be more efficident 
and dynamic but not as fast as TomFastMath, however it provides much larger mathematical 
library to support many additional functions. 

Relic 

Relic toolkit provides users flexibility to choose between Easy C implementation written by 
its developer and GnuMP as well. Currently GnuMP cannot be used with Contiki as it is not 
yet build or developed for Contiki, so this bounds to use only developer’s written 
mathematical library. The developer of this library has stated that the results can be much 
better if GnuMP is used. Relic math library offers a large set of functions which provides user 
independence to choose from any of them depending upon different requirements. 
 

 

4.4. Experiences learned with Cryptographic libraries 

LibTomCrypt 

LibTomCrypt uses dynamic memory allocation for all ecc-point variables. Complete stack 
based implementations were built as well. Still heap allocation is recommended in this 
project due to memory limitations, especially in case of low memory based sensor nodes like 
MSB430 it can perform its operations properly. If malloc is unable to allocate further 
memory then it can terminate properly after prompting an error. In the finalized version a 
heterogeneous approach is used for the performance evaluation . An important point in such 
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implementation is use of dynamic memory for ecc points only, while all other variables are 
stack based. 
 
In this project TomFastMath is preferred over LibTomMath due to two main reasons. Firstly 
it is much more efficient and secondly due to fragmentation issues related to use of 
LibTomMath.  LibTomMath has the ability to grow and shrink the size of multi precision 
integers which is a big advantage when it comes to resource management but in case of 
sensor networks it cannot be handled very efficiently. Contiki has not included use of 
reallocation function ”realloc” in memory allocation functions. In our view it is done rightly 
as in case of sensor nodes with very low RAM like MSB430, it is not possible to efficiently use 
same memory space. An alternative used in this project to overcome problem was to free 
memory space manually, and then reallocating from free space from the end. This solution 
still resulted in memory fragmentation issue, this eventually leads to reduced RAM utilization 
and not able to complete whole operations. Hence TomFastMath was selected which uses 
fixed size for multi precision integer. This looks to have some wastage in ram resource but it 
is very less memory wastage as compared to LibTomMath, similarly no fragmentation issues 
arrive in such case. In order to eliminate this small wastage in RAM resources using 
TomFastMath, it is configured to use only the estimated required size of its fix point. Hence 
for different keysize of ECC algorithms it uses different fix point variable size required by the 
ecc points.  

Relic 

Relic uses three different types of memory allocation techniques. In this library stack 
allocation is preferred as Cooja simulator can be used to see the stack usage during all 
operations. Secondly stack allocation also requires very less code size as compared to 
dynamic memory allocation in case of Relic. Relic provides different set of techniques for all 
functions required to perform cryptographic operations. As the code documentation was not 
available so the basic settings of all the functions were used initially. The results obtained 
were not so comparable to LibTomCrypt results. After discussions with developer of Relic it 
was noticed that no modular reduction was used by us in early stages. Once code was 
modified to use Montgomery reduction then the execution time was dramatically reduced. 
The results prepared by use of Montgomery reduction are showed in chapter 7. SHA1 
implementation provided with Relic was also not easy to integrate but after code review it 
was noticed that it is using the same 8-bit SHA1 for its hashing mechanism so additional layer 
of configuration was reduced,and simple 8-bit SHA1 code was plugged with Relic. This 
reduced flexibility but reduced the ROM utilization by this part. However as SHA1 is 
becoming less secure SHA 256 can be plugged in future for increased security. 

PolarSSL 

PolarSSL is a simple and elegant library especially designed for embedded systems. It is 
written in C language which suits our integration requirements. ECC is not implemented in 
this library so it cannot be used in our project. In the start of project this library was used for 
RSA behavior learning and it was found to be very easy to work with. In future if they provide 
ECC with their library then it can be very good experience and will benefit Contiki. 
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Bitint 

BitInt [39] is large number mathematical library which is especially written for Contiki. The 
biggest advantage of this library is the use of memb. Memb [40] is memory block 
management system completely written for use in Contiki. The developer of this library has 
written all basic mathematical library functions that are required by any public key 
cryptography algorithm. It has been tested and verified by developer for its concreteness 
and use in Contiki. If any developer want to write a complete new ECC library especially 
designed for Contiki then BitInt can reduce a lot of load and developer just needs to 
implement cryptographic functions. 
 

Below a simple table is presented which states the options which were used by the libraries. 
There are some optimizations that are not present or provided in the library which effects on 
the results as well.  
 

  LTCTFM Relic 

Simple Multiplication Included Included 

Sliding Window 

Multiplication 

Included Not Available 

Basic Co-ordinates Not Available Included 

Projective Co-ordinates Included Included 

Simple Verification Included Included 

Shamir’s Trick based 

ver. 

Included Included 

SECG-160 tested on MSB430 , Tmote MSB430 , Tmote 

NIST-192 tested on MSB430 , Tmote Tmote 

Table 3: ECC optimization details in each library 
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Chapter 5 

Measurement Methodology 
 

Wireless Sensor networks have very limited resources, due to these constraints many 
important factors need to be analysed before deploying in a field. In this section software 
based methods, used to measure different performance merits of the implementation phase 
are presented. 

 

5.1. Execution Time 
 

There are two techniques used to measure the time consumed by software to perform 
various operations. The most accurate method is to use high precision oscilloscope to check 
the data output pin. This method seems to be more complex and many external factors need 
like margin error of measuring tool needed to be considered. The second method is to use 
real-time timers present in Contiki. By using these real-time timers higher accuracy in 
execution time is visible. 

Contiki supports use of real-time timers and event based timers. “A real-time timer does not 
post an event when it expires, but invokes a function (from within the hardware timer’s 
interrupt service routine).This provides better control over scheduling than an event timer” 
[41]. 

Real-time timer in Contiki is hardware dependent. This gives a choice to select any of two 
clocks present in the sensor node. Main Clock (MCLK) provides a maximum resolution of 
0.4069 microseconds if the processor cycle is executed at 2.4576 MHz. This is very accurate 
but it cannot be used as this clock is disabled in low power modes, while Contiki runs in low 
power mode 1out of 5 low power modes available. The second clock option is to use 
auxillary clock ACLK which runs by use of a crystal oscillator with frequency rate of 32768 Hz.  
This configuration was preferred and selected for all the measurements in the project. 

In the initial phase RTIMER was not performing proper and the results showed abnormal 
values. After analysis it was known that it is a 16-bit counter and hence it overflows so it is 
not usable here to get the proper execution time. So decision was made to use the clock 
library present inside Contiki. An advantage of using this library was its hardware specific 
utilization. clock_init() is initialized at the start-up and it configures the hardware timers and 
interrupts. clock_time() is a function that returns the increasing tick counter. So to measure 
the performance speed initial clock value can be stored before code execution and final clock 
value once code finishes execution. 

start=clock_time(); 



26 

 

ecc_make_key (); // Any target function for time consumption 

diff=clock_time() - start; 

num_seconds=(double)diff/CLOCK_SECOND; 

The above written code shows the method for time measurements. Before RTIMER was 
patched to be used as 32-bit counter clock library was used to measure the execution time. 
Once RTIMER was corrected to handle long time durations by the Contiki developers then 
real-timer “RTIMER” was used for speed measurements. After comparison it was seen that 
clock_time_t based variable shows a little more time e.g. for near 9 seconds computation it 
delayed a difference of 200 milliseconds, however the results using clock_time_t were very 
consistent on MSB430 mote and Cooja simulation for Tmote Sky. 

t1=RTIMER_NOW(); 

     ecc_make_key (); 

t2=RTIMER_NOW(); 

printf("Ticks=  %u\n", t2-t1); 

The above written code is used for performance analysis after RTIMER was patched to work 
at 32-bit values. 

 

5.2. ROM 
 

ROM is a very limited resource in WSN and hence a very important parameter that needs to 
be fulfilled for any application to be able to reside on the node. Most of the freely available 
cryptographic libraries have not taken this constraint into consideration. Additionally there 
are only few free libraries present that are designed to be used in embedded devices. Once 
the library is chosen then it cannot be ported as a whole package into Contiki so it needs to 
be reduced and create a minimal application that can reside in the node with a code range of 
around 15 to 30 bytes. Public Key cryptography use very large numbers for computation, 
such computations cannot be done with the simple mathematical operations. Due to this 
reason all public key cryptographic libraries include or support some big number libraries. So 
this makes an additional load on the code size, but it is mandatory and cannot be skipped.  

In order to know the ROM requirements of the code msp430-size utility [9] is used. In first 
step this utility is used to find out the code size used by Contiki. Then PKC code is integrated 
with it, now again the compiled code size is measured. In this way the code size required by 
the cryptographic functions is estimated. Mathematically it can be written as; 

 

ROM required= PKC included compiled code size - Normal compiled code size 
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5.3. RAM 
 

RAM is the most important constraint that needs the most attention. WSNs are equipped 
with only a few kilobytes of RAM. MSB430 is equipped with only 5 KB of RAM while Tmote 
Sky has 10KB of RAM. As the stack has variable size during the process execution hence it 
was not easy to measure ram. A mixed approach was chosen for Ram estimations. Initially 
msp430-ram-usage [9] program is used to see the memory footprint of Contiki on the sensor 
node. Cooja simulator provides a Stack viewer which can show the stack usage during all the 
process execution. Therefore Cooja is used to view the stack usage during all of the 
operations to see their stack utilization. The maximum stack usage in Cooja is the estimated 
Ram consumption for the PKC operations. To correctly estimate the Ram usage in case of 
Relic library these results were enough as static variables and dynamic memory allocation 
were not used. For LibTomCrypt heap allocation allotted for ecc-points for final results was 
added to stack usage for final results. 

 

 

5.4. Energy 
 

As WSN are equipped with a limited power source hence energy is a very scarce resource. 
Normal applications consume use energy in the range of micro-joules but as in public key 
cryptography complex and long mathematical equations are solved so the consumption 
increases from micro-joules to mill-joules as is shown in the case of TinyECC [25]. In addition, 
the cost of a hardware-based mechanism for energy measurement is too high; the cost per-
hardware-unit is similar to the price of the sensor node [42].Contiki provides a built in tool 
ENERGEST for energy estimations. “Energest is a software-based on-line energy estimation 
mechanism that estimates the energy consumption of a sensor node” [43].  

Energest: It is a mechanism provided inside Contiki to be used by sensor node to provide 
energy estimations of all components such as radio transceiver and CPU. The core of this 
process is to use timers. When a component is turned on, a counter starts to measure the 
estimated energy consumption. When the component is turned off then the current value is 
added to the entry table of the component. The difference between the two values is a 
resultant which is then multiplied by the components power to show the energy consumed 
by it during its usage. This is called denormalization.  To denormalize the values of the table, 
the specific characteristics of the hardware must be known. Following table shows the 
parameters used for denormalization. These values are obtained from the MSP4301612 and 
CC1020 datasheets.  

Component Current Consumption ( mA ) 

CPU 1.8 

LPM 0.0545 

Radio TX 20.5 

Radio RX 19.9 
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Table 4: Component Current Comsumption 

Once the table entry of each component was derived, then these components were 
denormalized and finally they needed to be multiplied with the voltage of sensor node to 
estimate energy. Till now the energy estimations are not normalized for average results. 
Finally it is divided with RTIMER_SECOND component of Contiki to provide energy estimates 
for time used by the process. Following formula shows it in the code format. 

Energy_Consumed = ((1.8 * diff.cpu + 0.545 * diff.lpm + 20.0 * diff.listen + 17.7 * 
diff.transmit) * 3 / RTIMER_SECOND)); 

Vcc is used at value of 3Volts as sensor node was connected to a USB interface and it is 
running to full power mode. Similarly RTIMER_SECOND represents “Number of Ticks per 
second” variable used in Contiki. 
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Chapter 6 

Performance Evaluation 
 
In this chapter results acquired from the tests performed using public key cryptography with 
Contiki are presented. Initially a background about certain factors needs to be known that 
can help to understand & analyze these results more effectively.  
 

6.1. Platform Selection 
 

For testing different parameters two scenarios were opted due to different restrictions.  
1) Cooja Simulator [27]: Cooja is a java based simulator provided with Contiki to test the 

applications in simulator prepared for different motes. For this project Tmote Sky 
mote based simulation provided in Cooja was selected.  

2) MSB430: As discussed earlier in 2.8, MSB430 is a wireless sensor node which belongs 
to MSP430 based processor family.  
 

An important reason to select Tmote Sky based simulation along with MSB430 is their use of 
same processor family. Tmote Sky uses MSP430F1611 microcontroller while MSB430 uses 
MSP430F1612 microcontroller. Hence Tmote sky was chosen for simulation, as in some cases 
MSB430 fails to fulfill some operations due to limited resources mainly RAM. 
 

 

6.2. ECC Optimizations 
 

 

Elliptic Curve Cryptography is a simple but time consuming process so people have worked 
on many mathematical methods to reduce the operational time taken to perform such 
calculations. There are many ECC optimizations that can lead to better performance and 
resource utilization. TinyECC has provided a brief description of these optimizations which 
can be beneficial especially for WSN. They have presented a complete ECC framework for 
resource optimized as well as efficiency optimized implementation by use of available  
optimizations. In this project all optimizations available cannot be focused as the two 
libraries used do not provide all these optimizations. However some optimizations that are 
present in these libraries are analyzed, that can be used to make an efficient implementation 
of ECC over Contiki. These optimizations are selected such that a simple notion can be 
viewed, afterwards resource based optimizations and performance based optimizations will 
be understable for different kinds of sensor nodes. Some basic information about 
optimizations used in this project are provided below. 
 
a) Projective Co-ordinates: Projective Co-ordinate takes little more RAM and ROM as 

compared to basic co-ordinates but they reduce the execution time very effectively. 
b) Sliding Window: Sliding Window consumes more RAM but they help to reduce the time 

taken for scalar multiplication. 
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c) Shamir’s Trick [44]: This technique reduces signature time to a large extent but it 
requires more RAM as well. 

d) Curve Specific Optimization: NIST and SECG curves use pseudo-Messene prime which 
reduces the execution time as reduction modulo is performed by less modulo 
multiplications and modulo additions. Similarly no division operation is required if such 
curves are used. 

e) Montgomery Reduction: Montgomery Reduction modulo was preferred over Barret 
Reduction. TinyECC results have showed that Barret reduction requires more RAM and 
ROM as compared to Montgomery Reduction and still it has not a very effective 
difference in results. 

 

6.3. Benchmarking Issues  
 

Before going into the details of results it will be a good practice to share the constraints 
faced during the testing phase. Contiki is only stable at low power mode and it is not been 
tested to run on full speed of sensor node’s clock rate. Just few weeks back a developer has 
patched the kernel of Contiki so that it can run on maximum speed but currently it cannot 
synchronize with serial interface to give the output on console. The main architects of 
Contiki were contacted and they have told that there are many fix value adjustments in the 
core of Contiki and due to this reason it is not so stable at high speeds. 
 
Due to this major problem it was not possible to test properly the code on full speed of 
sensor node. However LEDs present on MSB430 were used to get the feedback of estimated 
time in seconds, this in-turn provides an idea of time reduction. Tmote Sky was also patched 
to run on full speed but as it was running inside Cooja simulator hence it didn’t show any 
output after the half of its full clock rate i.e after 4MHz.  
 
Energy estimation has the same problem as well. As energy estimation requires ENERGEST 
and its result needed to be viewed on serial interface so it was not possible to take any 
energy estimations on clock rate higher than 4.7MHz. 
 

 

6.4. Speed 
 

Time taken to execute different parameters of ECDSA is very vital in this project. In ECDSA 
there are three main parts that are analyzed for speed. Key Generation assuming there is no 
public key defined before this point, Signature on a message or symmetric key, and 
verification of this signature. 
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Figure 5: LTCTFM perfromance 

 
Figure 6: Relic perfromance 

Here  both results are presented independently so the time consumption by each process 
using different libraries can be elaborated more clearly. In overall comparison review Relic 
takes less time as compared to LibTomCrypt. Signature time is nearly equivalent to key 
generation time as it goes almost through the same process of key generation. It just adds 
some small mathematical functions after scalar multiplication but they take very less time. 
 
Verification is the most time consuming task in the whole ECDSA process. It takes around 3 
times more duration than the signature procedure in the case of LibTomCrypt minimal 
usage. However it can be dramatically reduced to 1.5 times if SHAMIR’s trick is used. The 
only drawback in using Shamir’s trick is that it consumes a lot of volatile memory, especially 
it cannot be used in case of MSB430 which is very low on RAM. To test SHAMIR’s trick 
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simulator based on Tmote sky mote was used. The details about RAM usage by verification 
are written in RAM analysis section. 
 
Contiki is not able to support UART (Universal asynchronous receiver/transmitter) protocol 
properly if it is run at full CPU speed of sensor node so the code was tested with the use of 
led to find the estimated time. Following graph shows the performance improvement as the 
MSB430 sensor node is configuring to run at maximum clock rate using Contiki. 

 
Figure 7: Performance comparison 

*  The results for MSB430 are estimated using led blink technique. Concrete results cannot 
be taken due to synchronization problem of Contiki at maximum clock rate. 
 
The above graph shows that higher clock rates will yield much better results and same 
improvement can be visualized for reduced use of energy by the sensor node. For this test 
Relic projective co-ordinates and SECG-160 curve were used. Shamir’s trick was not utilized 
for this test as MSB430 has less memory and cannot support this optimization. 
 
There are many standard curves that can be used for ECDSA functions. Two standard curves 
specified by SECG group were chosen for this project. SECG-160 and NIST-192 are used for all 
tests. The given graph depicts the comparison of time taken by these two curves using both 
libraries. It can be seen that SECG-160 takes less time as fewer operations are required as 
compared to NIST-192. The key point that every administrator needs to focus on, is the level 
of security required. The following graph depicts that with more level of security more time 
consumption is required. This also applies to all other major requirement factors like energy, 
RAM and ROM. 
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Figure 8: Curves Comparison 

There are two types of co-ordinates system that can be used in any ECC based algorithm, 
Basic Co-ordinates and Projective co-ordinates. A comparison of these co-ordinates is shown 
below to visualize which co-ordinate system performs much faster and hence fulfils the  
requirements. LibTomCrypt used Basic co-ordinate system till version 1.0 and stopped using 
them after this and the latest version does not include support for basic co-ordinate system. 
Relic on the other hand has provided the code for basic co-ordinate system as well. So in this 
comparison the performance of these co-ordinates was reviewed using Relic library.  

 
Figure 9: Co-ordinates comparison 

It is clearly observed that Projective co-ordinate provide much better results in any scenario 
as compared to basic co-ordinates at the cost of more RAM and ROM resources. In case of 

5209 

8152 8811 

13423 

5360 

8322 
8879 

13648 

7867 

13300 12674 

21856 

0

5000

10000

15000

20000

25000

Relic-160 LTCTFM-160 Relic-192 LTCTFM-192

Ti
m

e
 (

m
s)

 

SECG-160 & NIST-192 

Curve Comparison (milliseconds) 

Key Generation Signature Verification (SHAMIR)

15639 15704 

37642 

19196 

5209 5360 

13301 

7867 

0

5000

10000

15000

20000

25000

30000

35000

40000

Key Generation Signature Verification
(Basic)

Verification
(Shamir's Trick)

Ti
m

e
 (

m
s)

 

ECC co-ordinate system comparison 
using Relic (milliseconds) 

Basic Co-ordinates Projective Co-ordinates



35 

 

ROM there is not a big effect on addition of code size however Ram usage is much more but 
it is observed that sensor nodes that have even 5KB of Ram can easily support projective co-
ordinates. Hence projective co-ordinates are recommended and used in all ECC algorithms 
for this project. 
 
Modular Reduction Techniques play a vital role in providing efficient results. There are four 
techniques used in multi precision integers which reduce the large integer into a small 
number which can help a lot in performing large mathematical operations. These techniques 
are;  

i) Basic Division based reduction 
ii) Montgomery reduction 
iii) Barret Reduction 
iv) Fast reduction  

 
Figure 10: Modular Reduction Technique Comparison 

 
Barret Reduction was not focused, primarily as TinyECC have provided information that 
Barret Reduction only helps in case of Pre-computation. Secondly both libraries have not 
used this techniques in their implementation for ECC operations. It is clearly seen from the 
graph that Montgomery reduction reduces the computation time to a very large extent 
hence recommend are made to use Montgomery reduction with all ECC operations. 
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6.5. Energy 
 

Energy utilization is a major concern at this time. Most of the applications used in sensor 
networks consume energy in the micro joules, but public key cryptography consumes energy 
in millijoules. In order to show the detailed usage of energy in each phase of ECDSA separate 
graphs are presented for energy consumption of both libraries.   

 

Figure 11: LTCTFM Energy evaluation 

 

 

Figure 12: Relic Energy Evaliation 

LibTomCrypt performs on an average scale while Relic consumes less energy when its 
optimizations are used. Overall Relic outperforms LibTomCrypt in saving the energy 
consumption of sensor node. In verification phase Shamir’s trick takes the minimal energy as 
it takes less computational time. However it was not possible to take the results on higher 
clock rate due to serial rate synchronization problem. 
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6.6. ROM  
 

 

 

Figure 13: Complete ROM estimations 

 

The above graph shows detailed code size requirements for adding elliptic curve 
cryptography into Contiki. The estimated code size for using elliptic curve cryptography is 
around 16-20 KB for both of libraries. Here it can be seen that the code size is not dependent 
on the level of security required. Similarly it is found that code size required for SECG-160 
and NIST-192 curves doesn’t change to a large extent that can affect the ROM size to be 
used. 
 
During this project  implementation work was performed in two phases. First phase was to 
strip all the code on a normal PC and test its validity. Once it is reduce to a minimal size and 
it correct behavior is verified then the process of porting such code to Contiki platform was 
started. This was a major problem and it took most of the time in this project as it was 
uncertain until mid of project about how to reduce different aspects of code for Contiki. 
Many factors needed to be focused, like code reusability (in case of rand function) and 
variable usage optimizations/reductions. 
 
A simple example of such case is the use of SHA1 in the ECDH code. A normal SHA1 takes 10 
KB on normal PC but once it is ported to Contiki then it overflows the stack space and hence 
cannot be compiled. After some research information about an 8bit SHA1 was found which 
was used later on with the code and then it uses minimal code size, and hence able to port 
program into Contiki. 
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6.7. RAM 
 

In order to analyze the RAM requirement for complete ECDSA process a mix approach was 
used to calculate the estimated RAM size.  
Cooja provides a stack viewer which can let users view the real-time stack size utilization of 
the compiled code. This estimation was enough for relic RAM estimation as relic was 
configred to use all variables from the stack memory space. Malloc based allocation was not 
used in case of Relic instead stack was preferred for the whole process. There is only one 
exceptional scenario of pre-computation which uses static variables. Hence in case of Pre-
Computation static variable usage was added with stack to estimate the total Ram usage. 
 
In LibTomCrypt a mix approach for memory allocation was finalized after many code 
readjustments. Due to different tests and observations it was decided to use a mix of 
dynamic memory allocation with stack. So in order to find the total RAM size usage for 
LibTomCrypt based implementations heap allocation was added to stack view as well.  
 

 

Figure 14: RAM estomations 

 
The graph shows that LibTomCrypt with no optimizations included requires least RAM 
resources as compared to optimized LibTomCrypt and relic. Currently there is no sliding 
window implementation available for Relic, and LibTomCrypt doesn’t include pre-
computation methods, these merits cannot be compared for memory usage.  
 

ECDH & ECDSA Comparison Review 

 
An additionaly analysis concerning the RAM estimations for ECDH implementation were 
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RAM in all scenarios. It is found that both libraries can run on sensor nodes with less than 
5KB RAM if is configured to be resource efficient. However there was some monir 
differences in ROM size comaprison as ECDH includes more code for its operation. 
 

 
Figure 15: Rom Estimations for ECDH and ECDSA 

 
There is a clear tradeoff between RAM usage and performance speed of algorithms. If more 
optimizations are used to reduce the execution time then it will require more RAM and vice 
versa. Hence it can be said that a review of these factors with the perspective of sensor 
nodes specifications are necessarily required before deployment. 
 

6.8. Comparison with TinyECC 
 

During all the project timeline,  TinyECC was used as role model because it holds the same 
perspective as the work done in this thesis. Secondly TinyECC is the only standard present 
with context of operating systems usage in sensor networks that can be compared to see the 
performance merits. There are some optimizations present in TinyECC that are not available 
in Libtomcrypt and Relic (free version) hence it cannot be sais completely that the results are 
comparable, still it can provide a notion that the work done in this project is in the right 
path.  
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ROM 13.5 KB 19 KB 19.5 KB 

RAM 1.5 KB 2.5 KB  1.2 KB 

Table 5: All optimizations Enabled 

In above table TinyECC provide a much better result due to addition of optimizations which 
include Hybrid Multiplication and Inline assembly code. Relic can provide much better results 
once their developers will make the MSP430 assembly code available in their free version.  
 

  TinyECC LTCTFM Relic 

Time 4.2s (sign) 8.6s (verify) 9 s     (s)   13s   (v) 15s(s)    36s   (v) 

Energy 230 mJ + 463mJ 47mj + 48mj + 71mj 91 mj + 92mj + 117mj 

ROM 8.2 KB 15 KB 17KB 

RAM 160 bytes 312 bytes 100 bytes 

Table 6: All Optimizations disabled 

 
The table shown above is not used for comparison but it is more of a reference related data. 
Basic co-ordinates in LibTomCrypt and Relic are not used as they take more computational 
time, and preferred to use projective co-ordinates completely. In conclusion it can be said 
that Relic is much more efficient when same optimizations are used in all of compared 
libraires. However TinyECC shows much better results when no optimizations are used. In 
case of Contiki Relic seems to be a much better option as it has more optimizations included 
and it is specificly written for sensor networks. 
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Chapter 7 

Project Recommendations 
 
7.1. Contiki 
 

Contiki is an operating system for wireless sensor networks that is comparatively new and 
getting stable day by day as compared to TinyOS development which is more mature now. 
Due to these changes that arrive in Contiki many factors are still uncertain about the 
integration of public key cryptography in it. Some main factors that still need to be focused 
in this case are; 

i) Running Contiki on maximum clock rate 
ii) UART synchronization issues for debugging 

 
The results presented in previous chapter are dependent on these considerations. Due to 
these best results were not obtained with use of Contiki. Contiki is not able to run fully 
functional in maximum clock rate of the sensor node. The core developers of Contiki were 
contacted for this matter and they told that still there are many fix value implementations so 
Contiki will be unstable if it is run at full clock rate. The only way for us to make it possible is 
to read and understand core of Contiki with reference to individual datasheets of the sensor 
nodes but this is not part of the scope of project. Still Contiki is made stable and used in 
experiments until the half of processor speed. Hence in this case  MSB430 remained stable 
to work and show results through serial link up to 4.7MHz and on Tmote Sky using Cooja it 
can show proper results up till 3.9MHz.  
 
During the last phase of project one developer contributed on Contiki by providing a hack to 
run Contiki on full speed. The only problem still unsolved at maximum clock rate is serial link 
synchronization. Hence Contiki ca now run on full speed but the results were not visible on 
serial link based display. The solution used to solve this problem was to utilize LEDS on 
MSB430. leds_on() function was place in code at locations where the code is checked and 
added tests  at important checkpoints in the code. Hence it was assured that code executed 
completely and gives positive results at full clock speed. Same solution cannot be used for 
Tmote Sky inside Cooja as Cooja becomes unstable and doesnot even show the proper 
results for leds.  
 

 

7.2. Cryptographic adaptations suitable for Contiki 
 

In order to integrate Public Key cryptography with any sensor network operating system 
many important factors needed to be considered before deployment. 
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Level of Security 

 

First and foremost information required to deploy public key is to determine how much level 
of security is required. If sensor nodes are deployed in military or any other security 
environment then a higher level of security should be considered. In this case at least 192-bit 
elliptic curve cryptography should be the used. On the other hand if the sensor nodes are 
deployed in some peaceful zones and just required for gathering information then 160bit 
based ECC is enough to ensure message integrity. Consequently higher the level of security is 
implemented higher the RAM, ROM and energy requirements will be.  

 High Level of 

Security 

Low Level of Security 

Key Size  At least 192 bit At least 160 bit 

Hash Function SHA256 8-Bit SHA1 

 

Sensor Node Processing Speed 

 

There are many large mathematical computations required to complete public key 
cryptography. These computations seem to have very normal requirements in PC’s as they 
can handle large instruction-sets, but sensor nodes have very small microcontroller with 
some balanced functionality. Currently most of the available microcontrollers used in sensor 
networks have a very low processing power, hence the public key computation takes more 
time but still it is not far to see good processing power in sensor nodes. An example of such 
case is computation time of SECG-160 taken from TinyECC. TelosB running at 4MHz took 
3169 milliseconds (3.16 seconds) for ECDSA based signature while Imote2 running at 
416MHz performed same work in only 11.8 milliseconds (0.011 seconds). Contiki is not fully 
tested to be used at maximum clock rate. Currently it can run stable under low power mode 
1 (LPM1). Once Contiki is stable for full computational speed then much better results can be 
seen. 
If processing power of any sensor node is not very high or not fully utilized then high key size 
based ECC should be used minimally as high key sizes will take more time which can affect 
many critical resources. 

 Low Processing Power High Processing 
Power 

Key Size 
Recommended 

160 bit 192  bit 

 

RAM consideration 

 

Sensor nodes come with very low resources hence their RAM and ROM sizes are very 
limited, this puts an additional pressure on choosing the appropriate key size for ECC. It is 
experienced many times in this project. Some optimizations are very good for saving time 
but they require a lot of RAM which may not be available. The most important scenario for 
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such case is use of Shamir’s trick. Shamir’s trick can help reduce time for verification but it 
requires additionally. Most of the research shows that public key cryptography is even 
possible with very low resources while in our case it is different from other findings. All other 
implementations except TinyECC have run on sensor node without use of any operating 
system. Similarly most of them have used machine language code for optimizing the 
performance and resources. In this project no machine language code is used and all the 
code is running inside an operating systems “Contiki”. Due to use of operating system many 
other considerations were changed like less RAM and ROM allocation, interrupt based 
handling and low power mode usage. Here recommendations regarding dfiferent ECC 
optimizations are summarized which can be used with respect to variable RAM 
requirements.  
 

 MSB430 (5KB RAM) Tmote Sky (10KB RAM) 

Projective Co-ordinates Applicable Applicable 

Montgomery Reduction Applicable Applicable 

Simple Multiplication Applicable Applicable 

Sliding Window Not Applicable Applicable 

Shamir’s Trick Not Applicable Applicable 

Pre-Computation Not Applicable Applicable 
Table 7: ECC optimizations used on different sensor nodes 

 
There was more focus on RAM as compared to ROM as most of the current sensor nodes 
arrive with enough ROM to fill the required code. Low ROM based sensor node Tmote Sky 
was used which has only 48KB total ROM, and the maximum code size for this project was 
around 20KB. Hence the total code size including Contiki was around 45 KB. However an 
important point is case of Tmote Sky as it will not be able to add more applications into 
Contiki system once PKC is added to it. Below total code size estomations in case of two 
sensor nodes is highligted. 
 MSB430  

(55 KB ROM) 
Tmote Sky 
(48KB ROM) 

Total ROM size 55KB 48KB 

ECDSA-All optimizations used 36406 bytes 44298 bytes 

ECDSA- No optimization used 36406 bytes 41276 bytes 

Table 8: Total Rom Usage 

In case of MSB430 only 1500 bytes of RAM is available hence any advanced optimizations 
present cannot be used. This shows that RAM is the major factor as compared to ROM when 
it comes to use optimizations for ECC in sensor nodes. 
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Chapter 8 

Conclusion 
 
In this thesis a complete feasibility study for deploying ECC based algorithms in wireless 
sensor networks under the Contiki operating system is presented. Public key cryptography is 
still expensive in the field of sensor networks as compared to most of the other applications. 
However it is showed that Contiki can also achieve high level of security using smaller key 
sizes like TinyOS has performed by use of TinyECC.  
 
Moreover, the details description about parameters required to evaluate a cryptographic 
library are presented, and how it can be integrated into Contiki. Two most relevant 
cryptographic libraries LibTomCrypt and Relic are evaluated, with relevance to performance, 
energy, ROM and RAM usage inside Contiki. Relic has proven to be much better choice as it 
is specifically designed for wireless sensor networks. 
 
ECC is expensive in wireless sensor networks if it is used without any additional optimizations 
available. Evaluations concerning the performance and resource efficiency of ECDSA and 
ECDH algorithms on the MSB430 platform and simulation based Tmote Sky are documented 
as well. Experiments have showed that it is possible to utilize ECC along with its 
optimizations even in low resource based sensor networks.  
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Chapter 9 

Future Work 
 
 
The project focused on only one cryptography technique which is widely used and 
considered efficient for low resource based sensor networks. The main emphasis revolved 
around one ECC-based algorithm i.e. ECDSA. More algorithms like ECDH and ECIES can be 
added and compared to make the complete package of security based on ECC to be used 
with Contiki.  There are certain ECC optimizations that are still not being used and tested. 
These include Hybrid Multiplication, and assembly code usage for multiplication and 
squaring operations. Once these are used it is expected that the results will be more 
efficient. ECC over Prime field was selected over Binary field as its being proven by TinyECC 
to be more resource efficient. In future Binary Curves can be added to the code which can 
build ground for more cryptographic techniques. 
 
Pairing based cryptography is also becoming more feasible to be used with WSN. Many 
publications have shown that using pairing based algorithms with ECC can provide much 
more security to time ratio for the sensor networks. 
 
 
In future ContikiSec framework can be modified to include ECC. This will make a concrete 
framework for the security of wireless sensor networks using Contiki. 
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