

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, July 2010

Asymmetric-Key Cryptography for Contiki

Master of Science Thesis in the Programme Networks and Distributed

Systems

QAMAR TOHEED

HASSAN RAZI

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Asymmetric-Key Cryptography for Contiki

QAMAR TOHEED

HASSAN RAZI

© QAMAR TOHEED, July 2010.

© HASSAN RAZI, July 2010.

Examiner: PHILIPPAS TSIGAS

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2010

iii

Abstract

Wireless Sensor Networks have become a core component in much diverse

application range which extends from just a forest temperature monitoring

to monitoring in many power plants. With this increased dependency on

WSN and its association to current internet, hardened security primitives are

required to ensure the correct behaviour of sensor nodes on its own and as a

whole network. Public-Key Cryptography was considered too expensive for

WSN but it all changed due to the advancements in software and hardware

prototypes.

In this thesis different pubic key cryptographic approaches have been

analysed, that can be used with Contiki. Contiki is a new but popular

operating system used in WSN. Using public key cryptography in wireless

sensor networks has its own negative aspects like more energy utilization,

requirement of more RAM and ROM space. To investigate the feasibility of

public key cryptography, different cryptographic libraries were analysed,

out of them two libraries, LibtomCrypt & Relic were selected for

evaluation. After a methodical review and code reduction these libraries

were ported to Contiki, the code reduction was carried out to minimize the

use of different resources by these libraries while running on top of Contiki.

For evaluation of these libraries with Contiki, MSB430 mote and simulation

based Tmote Sky is used. Results have shown that public key cryptography

is possible, and fewer efforts are required to use it with Contiki. Factors like

processor speed and RAM size lead to better results in case of such

integrations. It is also observed that use of many mathematical

optimizations provided with these algorithms can significantly help in

performance increase.

iv

ACKNOWLEDGEMENTS

We would like to express our deepest gratitude to supervisor Prof. Philippas

Tsigas at Chalmers University for offering us such an interesting thesis. The

comments and suggestions given by him have helped a lot to improve this

thesis work.

Many special thanks to friends especially Shahid Nawaz who kept us

motivated and provided a moral support.

We are also grateful to contributors of Contiki development forum who

have helped us in understanding many new concepts and overcoming

implementation problems faced.

Finally we both are deeply grateful to our parents and families for their

continuous support, love, guidance and encouragement throughout all the

thesis work. We would like to dedicate our work to them.

v

Table of Contents

Introduction ... 1

1.1. Background .. 1

1.2. Objectives ... 2

1.3. Problem Description... 2

1.4. Limitations .. 2

1.5. Method ... 3

1.6. Structure... 3

Background .. 4

2.1. Wireless Sensor Networks (WSN) .. 4

2.2. Security Principles for WSN: ... 4

2.3. Security Threats in WSN ... 5

2.4. WSN Adversary ... 5

2.5. Types of attacks .. 6

2.6. Existing Security Frameworks in WSN .. 7

2.7. Contiki .. 9

2.8. MSB430 .. 9

2.9. Tmote Sky ... 10

Overview of Asymmetric Cryptography .. 12

3.1. Cryptography .. 12

3.2. Asymmetric Cryptography ... 12

3.3. Asymmetric Cryptography Techniques .. 12

3.4. ECC ... 14

3.5. ECDH ... 15

3.6. ECDSA ... 16

3.7. Summary .. 18

Library Details .. 20

4.1. Selection Criteria .. 20

4.2. Cryptographic libraries ... 20

4.3. Mathematical libraries ... 22

4.4. Experiences learned with Cryptographic libraries ... 22

Measurement Methodology .. 25

5.1. Execution Time ... 25

vi

5.2. ROM ... 26

5.3. RAM .. 27

5.4. Energy ... 27

Performance Evaluation ... 30

6.1. Platform Selection .. 30

6.2. ECC Optimizations .. 30

6.3. Benchmarking Issues .. 31

6.4. Speed .. 31

6.5. Energy ... 36

6.6. ROM ... 37

6.7. RAM .. 38

6.8. Comparison with TinyECC .. 39

Project Recommendations .. 42

7.1. Contiki .. 42

7.2. Cryptographic adaptations suitable for Contiki ... 42

Conclusion ... 46

Future Work ... 47

Bibliography ... 48

vii

List of Figures

Figure 1: MSB430 .. 10
Figure 2: Tmote Sky ... 10
Figure 3: ECC Point Addition .. 15
Figure 4: ECC Point Doubling ... 15

Figure 5: LTCTFM perfromance ... 32
Figure 6: Relic perfromance ... 32
Figure 7: Performance comparison .. 33
Figure 8: Curves Comparison ... 34
Figure 9: Co-ordinates comparison .. 34

Figure 10: Modular Reduction Technique Comparison ... 35
Figure 11: LTCTFM Energy evaluation .. 36

Figure 12: Relic Energy Evaliation .. 36
Figure 13: Complete ROM estimations .. 37
Figure 14: RAM estomations ... 38
Figure 15: Rom Estimations for ECDH and ECDSA .. 39

List of Tables

Table 1: Overview of Security Frameworks present in WSN .. 9
Table 2: RSA and ECC performance comparison .. 18

Table 3: ECC optimization details in each library ... 24
Table 4: Component Current Comsumption .. 28

Table 5: All optimizations Enabled .. 40
Table 6: All Optimizations disabled ... 40

Table 7: ECC optimizations used on different sensor nodes .. 44
Table 8: Total Rom Usage .. 44

viii

1

Chapter 1

Introduction

In this chapter the basic description about the master’s thesis project “Asymmetric-Key
Cryptography for Contiki” is presented. This includes project overview, scope, limitations and
basic details about implementation technique used throughout this thesis.

1.1. Background

Wireless Sensor Networks are nowadays becoming a regular component in our daily life for
ease of many operations. It can be seen that they are now deployed in nearly every field of
computer science research. Many areas in science and technology are adapting to use
wireless sensor networks for analysis of data. This includes its usage in large areas as well in
small vicinities for a real time gathering of data. Due to these advancements in the use of
WSN, more and more critical and sensitive operations of industry and military are becoming
part of sensor networks. With such high dependency of large WSN for a complete picture of
any sort of operation, security becomes a major concern. If some intruder can access the
data and/or tamper with it, then it can result in any undesirable results.

Security has been a major concern in all modern communications. Now with the increasing
use of wireless sensor networks in many real time applications for data gathering, security
has become a vital ingredient and its continual need in this technology is emerging as a big
concern. Embedded Systems like WSN need specailly designed & written operating systems
due to their limited resources. There are some famous OS specially written with WSN in
perspective, these include TinyOS [1], Contiki [2] and MANTIS [3]. Contiki is a new operating
system as compared to most of the others operating systems in this field. During its six years
of development it has become the second major operating system by the contribution of
large community of developers. Due to the use of C language for its development, many

advanced and light components are now becoming part of it such as uIPv4 [4] & uIPv6 [5]

network stacks.

Although the speed of development in Contiki is very rapid and up-to-date, but it still lacks
the use of security primitives for secure communication between sensor nodes. Till now
there is only one Security architecture “ContikiSec” [6] proposed for this operating system.
ContikiSec has presented a very detailed analysis with regard to use of different symmetric
ciphers and their effect on scarce resources of sensor nodes. A framework is presented in
ContikiSec which can be used by Contiki to communicate securely using different security
primitive requirements.

The symmetric cipher based security cannot be used alone as it cannot solve some security
problems like inability to handle node compromise and time synchronization issues.These
issues are resolved by use of two major security primitives, key management and
authentication. The major reason for not promoting such additions in Contiki till now, is its
extensive use of resources mostly battery power and volatile memory. However with

2

growing use of Contiki in WSN such requirements need more attention now. Once Contiki is
able to integrate ContikiSec along with key management and authentication, then it can
harden the security of data communication between sensor nodes.

1.2. Objectives

The main objective of this thesis work is to explore the feasibility of public-key cryptography
implemetation in Contiki. This includes the integration of public key based cryptographic
operaions along with regular desig of Contiki. It should be able to provide a proof of concept
for embedding additional security parameters in security layer of Contik, which can be a part
of its future designs.

The proposed solution should be able to provide developers and administrators about the
details and suggestions, relevant to addition of security primitives from asymmetric
cryptography. The resultant solutions should be tested on some sensor network for their
concreteness in order to access for their future deployment. There should be a discussion
with sound results about the consequences if such integration is adopted by Contiki. All
complications associated in any integration should be listed and explained in detail.

1.3. Problem Description

Once these objectives are analyzed, some questions become very prominent, these can be
then formulated into problems. By solving these problems project goals can be acheived.

Security: Is it required to have such security features to be added into Contiki? What kind of
scenario will require such usage?

Implementation: Is it possible to implement such advanced cryptographic functions for
Contiki? Can such implementation be power efficient at reasonable cost of resources? How
Contiki will cope with such integration with reference to its share of resources?

1.4. Limitations

a. The only platform available for this project is based on 16-bit RISC MSP430 [7]
processor. It cannot be tested on any 8-bit or 32-bit sensor nodes due to non-
availability. However it is assured that this work will be applicable on all other
platforms as well.

b. The implementations used in this project are not specifically designed for MSB430 [8]
or Tmote Sky. One of these libraries has assembly code for MSP430 based processors
but it is not yet released in free version.

c. Manually optimizing cryptographic code is a complex process and it requires in-depth
knowledge of programming and mathematics involved. Only GCC [9] based compiler
optimizations were used in this project.

d. The hardness of any cryptographic protocol is based on a strong pseudorandom
number generator. To reduce the load on Contiki system built-in random function is
used.

3

e. In this project an important limitation is unavailability and no support of debugger.
Contiki has developed a debugger called MSPSim [10] for Tmote Sky [11] but it is not
available for MSB430 at this time.

f. The performance of programs is only evaluated on two platforms. Firstly on real
MSB430 sensor node and secondly Cooja simulated Tmote Sky.

g. Network utilization and bandwidth related issues were not focused in this project.
The main task is to analyze cryptographic operations on a single sensor node.

1.5. Method

The project work is organized in several steps. It started from theoretical studies of Contiki
and cryptographic algorithms. A search for suitable cryptographic libraries present in open
source community was also started in parallel. As many things were new and under
development in case of Contiki, therefore scope was reviewed and redesigned after
acquiring many intermediate goals. Similarly theoretical studies were reused in the
intermediate and final stage of the project for verification and review respectively.
Implementation phase consisted of the following steps.

1) Understanding whole library and thorough analysis of PK cryptographic parts
included in it.

2) Take out minimum code and test it for suitable usage.
3) Port the program to Contiki (Cooja [12], MSB430).
4) Redesign program to remove any additional functionality or resource usage.

The above stated algorithm was used for both cryptographic libraries as well as for
mathematical portions, that are used with them. Once it was assured that the code is now in
most optimal form then different tests were performed for detail analysis. In final stage
these results were analyzed and compared for performance merits suitable expecially for
Contiki. This included suggestions and improvements for a balanced cryptosystem intended
for Contiki.

1.6. Structure

This report is organized in such a way that the reader will understand every detail which can
help to understand efficiently about subsequent chapters. Next chapter describes the basic
details about wireless sensor networks, their growth and different security frameworks. In
addition security properties required in diverse scenarios of WSN and attacks are explored.
After this an overview of public key cryptography techniques that are commonly used is
provided. Till this point reader has acquired all necessary information required to
understand this project, then all the details and outcomes of the project are presented. In
chapter 5 all the relevant information and analysis about libraries that are used or reviewed
for this project are provided. In Chapter 6 measurement methodology used to evaluate and
analyze security primitives are elaborated. The results and the motivation behind such
results are included in Chapter 7. After the complete analysis a clear picture about the public
key cryptography recommendations suitable for Contiki are documented in Chapter 8. Finally
Chapter 9 includes conclusion and some future work recommendations.

4

Chapter 2

Background

2.1. Wireless Sensor Networks (WSN)

Wireless sensor networks consist of small nodes also called motes that monitor physical or
environmental conditions around them such as temperature, sound, vibration etc , process
data, and communicate through wireless links [13]. A wireless sensor network (WSN)
generally consists of a basestation (or “gateway”), which holds the ability to communicate
with a number of wireless sensors present nearby by use of a radio link. Once the data is
collected by some intermediate node, it is then compressed, and transmitted to the gateway
directly or, if not directly connected then uses other wireless sensor nodes to forward data
to the gateway. Once this data reaches the base-station then it is presented to the system by
the gateway connection [14].
Wireless Sensor Networks are widely used these days and are very popular in research for
use of embedded systems in our daily life. WSN’s are used in applications involving
monitoring, tracking, or controlling such as habitat monitoring, robotic toys, battlefield
monitoring, packet insertion [15], traffic monitoring, object tracking and nuclear reactor
control.

2.2. Security Principles for WSN:

The basic security primitives required for wireless sensor networks are listed below [16].

Data Confidentiality:

In WSN, data confidentiality is very important because it ensures that only authorized nodes
can get access to the data. The basic purpose of confidentiality is to ensure that data
transferred from one node to other node is not understandable from any intermediate node
or unauthorized parties. This is acheived by use of symmetric key cryptography. The sender
node and receiver node use a predefined secret key, or negotiate for a shared secret key.
The data is then encrypted/decrypted by use of such key.

Data Authentication:

It is important in WSN to ensure that the data is originated from the right source, in other
words an intruder cannot insert false messages or data into the network. Asymmetric
cryptography has the ability to create signatures, which can only be generated by a sender
by use of some special information. In order to acheive this property signatures are prepared
and used by sender. The receiver verifies the signature and hence confirms that the data is
sent from the authorized node.

5

Data Integrity:

Data integrity ensures that the data is not altered by unauthorized parties during
transmission. It can be acheived by use of message integrity code (MIC) or a checksum added
to each packet. MIC can detect message altering caused by accidental transmission errors as
well as malicious altering. Checksum on the other hand can only detect accidental
transmission errors.

 Data freshness:

The messages transmitted should not repeat at receiving end, likewise a node should not
receive two identical messages in certain time range. The main goal is to ensure that data is
recent, fresh and, it is not used by any intruder who wants to learn some symmetric key used
in the communication. There are two kinds of freshness techniques. Weak Freshness is
typically achieved by use of partial message ordering, but without delay information. While
strong freshness is achieved by use of complete ordering and delay estimation.

Availability:

The whole system or even a single node in a WSN should be available, and capable to
provide its services when-ever required. When modifications are applied to WSN, then it can
affect the availibility of the node to a great extent. It can be said that when security proprties
are applied to WSN then it doesn’t only effects the operations of the network, but it is also
important that the availability of the whole network should be preserved as well.

2.3. Security Threats in WSN

In WSN, traditional security techniques cannot be applied directly. WSNs are growing rapidly
in many aspects, therefore security mechanism for WSN should be updated as well. WSN
operates in outdoor environment where they are unattended, so security should be
considered in the design phase [17]. Security in WSN can be categorized into two types,
operational and information security. Operational security means that the network should
be able to provide services even if some of its components fail or become compromised.
Information security means that the network should not disclose any secret information,
plus it should guarantee integrity and authenticity of the messages. Security is a critical
requirement for WSN, the data and node should be protected against attacks like
eavesdropping, tempering, DOS attack [15] etc. When designing a security model for WSN,
all these type of attacks should be considered and security should be defined on different
layers to ensure high degree to reliability.

2.4. WSN Adversary

An adversary is a person or another entity that attempts to cause harm to the network. The
reason to do such can vary from just a denial of service attack to larger extent of
unauthorized access to the WSN, resulting in loss of many security properties related to
important data [18].

6

There are two general types of adversary attacks on any network.

a) Active adversary technique involves with the tampering to data while it is being under
process in the network. This includes deletion, alteration and addition to the data. This result
in violation of core security primitive’s like data integrity, confidentiality and authentication.

b) Passive attacks only monitor the communication link and listens to every piece of
information that passes through. After this the adversary use different techniques in offline
mode, to either decrypt a saved encrypted data or moves to active mode to guess secret key.
Here the main aim of adversary is to attack the confidentiality thus he can view the original
data from encrypted data.

In WSN the adversary classifications are broadened to four more classes.
i) Mote-Class Attacker: Such adversary has access to a few nodes which have capabilities

similar to the nodes that are deployed in the network.
ii) Laptop-Class Attacker: This type of adversary has access to a much powerful device like

laptop as compared to sensor nodes. This provides gain to the adversary as he has access
to larger resources at his disposal, and hence he can use larger set of techniques for his
purpose.

iii) Insider: In some cases adversary is able to compromise or capture some internal nodes
therefore he can become a part of network easily. Once it is done then he can exploit
whole network for his own purpose.

iv) Outsider: Such adversary has no special access to this network.

2.5. Types of attacks

In this section an overview about some simple and common attacks on different layers is
presented.

Physical Layer

Jamming. Jamming is a type of physical layer attack in which the radio frequencies of WSN
are disturbed by use of interference. This can result in altering some important radio
parameters like collision rate, bad frame rate and RSSI level [19].

Tampering. In such attack the node is physically compromised. This is mostly done by
capturing a node from the WSN field. The attacker can collect all information from the node
and try to recover beneficial infromation. An advanced attacker can recover, reprogram and
redeploy it in the field to attack the whole WSN [20].

 Data-link Layer

Collision. The packets can be disrupted by altering the transmission octet, this can result in
checksum mismatch or back-off in some mac protocols. Attacker listens on the
communcation medium and try to guess the expected time of message transmission. Then
he notices the time and send a message at the same time when a proper message is started.
So these two messages collide in the wirelss medium and results in an incorrect message for
the receiver.

7

Exhaustion. The batteries of sensor nodes can be exhausted if the network face continuous
collisions and back-off in MAC protocols. This results in degradation of avaialability on a large
scale in the WSN.

Network Layer

Selective forwarding. Certain malicious nodes can refuse to forward some messages and just
drop them. This can result in delay and bandwidth degradation in the whole WSN.

Sinkhole. In such attack the routing information can be altered in different nodes connected
to the compromised node. An adversary attracts a node and provides it with wrong routing
information. Senosor nodes will expect that this node provides an efficient route to the sink
node but in reality compromised node in most cases drop, or alter the received messages
[21].

Sybil attack. A single node creates its own multiple identities and presents it to other nodes
in the network. This will result in removal of all original neighbours from the table of active
sensor nodes in the routing table. In some cases if the transmission quality of compromised
node(s) is good, then it can also remove the original sink node from node’s routing table as
well [22].

Hello flood. A laptop class attackers broadcasts messages with powerful signals that the
nodes in the network think that the attacker is in the network and sending normal startup
packets used in routing protocols [21].

Transport Layer

Flooding. The attacker can exhaust important resources like battery of the victim by sending
the victim many connection establishment requests. This will ultimaltely result in denial of
service attack on the node.

Desynchronization. Request for retransmission of missed frames can be made by repeatedly
forcing messages into the network which carry sequence numbers to one or both end points.

2.6. Existing Security Frameworks in WSN

Security was not considered as a main focus in WSN till few years back. As WSN have started
to mark their presence in more cirtical applications, hence more and more focus is
transferred to securing them in every possible way so that they cannot be exploited further.
Traditional Security techniques cannot be applied in WSN due to two main reasons.

a) In-network processing of large data to reduced aggregated information.

b) Important resources incase of WSN are very limited.

8

There are only few security frameworks present in WSN till now. These include SPINS [23],
TinySec, SenSec, MiniSec, TinyECC and ContikiSec. An overview of some important
frameworks is presented below.

TinySec [24]:

TinySec is the first fully functional link layer security architecture presented for wireless
sensor networks and it has been a part of TinyOS. The biggest motivation for developing link-
layer security architecture was to detect unauthorized packets when they are first injected
into the network to save energy and bandwidth. The security goals acheived by use of
TinySec are confidentiality, message integrity & access control.

TinyECC [25]:

Tiny ECC is an ECC based PKC software package that can be configured and easily integrated
into sensor network applications. It is specifically designed for use in TinyOS. TinyECC
provides special optimization switches which can be turned on or off by the programmer
according to the programmer's need. By configuring different optimization switches
execution time and resource consumption can be controlled. TinyECC has support of digital
signature scheme (ECDSA), a key exchange protocol (ECDH), and public key encryption
scheme (ECIES) which are different ECC schemes.

ContikiSec [16]:

ContikiSec provides some necessary security primitives on link layer of Contiki. WSN
supports many different types of applications therefore ContikiSec is designed to be more
flexible. Three different security levels confidentiality-only (ContikiSec-Enc), authentication-
only (ContikiSec-Auth), and authentication with encryption (ContikiSec-AE) are provided in
ContikiSec. This provides the programmer/administrator a choice to select between these
three types of security level according to the application or needs of the WSN.

”ContikiSec has been designed to balance low energy consumption and security while
conforming to a small memory footprint” [16]. ContikiSec uses symmetric key encryption
algorithms AES, RC5, Skipjack, Triple-DES, Twofish, XTEA. According to the ContikiSec
developer, AES is the most appropriate block cipher for the WSNs taking into account
memory usage (RAM and ROM), time (Encryption, decryption, and key expansion time),
energy consumption and considering trade-off between security and resource consumption.

9

An overview of all the important frameworks alongwith their relevant information concerning

this project discussion is shown below.

 year Language

used

Security Properites implemented Algorithms

SPINS 2002 N/A Data Confidentiality, Integrity,

authentication and freshness,

authentication

TinySec 2004 NesC Access Control, Integrity,

Confidentiality, Replay Protection

Skipjack

CBC-CS mode

SenSec 2005 NesC Access Control, Integrity,

Confidentiality, Key Management

Skipjack-X

CBC-CS mode

MiniSec 2007 NesC Pre-Deployed symmetric keys,

Confidentiality, Replay Protection,

authentication

Skipjack

OCB mode

TinyECC 2007 NesC Key Exchange, Public key

encryption, Digital signature

ECC

SECG-160

ContikiSec 2009 C Authentication, Integrity &

Confidentiality

AES

CBC-CS mode

Table 1: Overview of Security Frameworks present in WSN

2.7. Contiki

Contiki is developed by Swedish Institute of computer science and it is a lightweight, open
source, highly portable and multitasking operating system used for embedded systems
which are highly memory efficient. The memory usage for contiki is about 2kb of RAM and
40Kb of ROM [2].
The first version of contiki was released in 2004 and the latest version 2.4 is released in feb
2010. Contiki is developed in C and is currently used in many microcontrollers like MSP430,
AVR, HC 12 and Z80. The biggest advantage of Contiki is that it provides dynamic loading and
unloading of applications and services which enhances many resource utilization in sensor
networks and the kernel is event driven. Contiki also provides multithreading and is
implemented in a separate library, which can be used by an application when needed. By
combining multi-threading and event driven kernel contiki is the best operating system for
sensor networks to implement asymmetric cryptography.

2.8. MSB430

MSB 430 is a hardware platform for sensor networks created by ScaterWeb with its own
operating system and it has a microcontroller, external storage, two sensors, radio and LED.
MSP430F1612 microcontroller is used in MSB 430 which has 16bit RISC architecture, 5Kb
RAM and 55Kb of flash ROM. The clock of MSB430 can be configured dynamically between 1
and 11 MHz by accessing it’s software. MSB430 is equipped with Chipcon CC1020 transceiver
which has 8.6 dBm max. transmission power and an external LNA (low noise amplifier). It can
be operated in 402-470 and 804-940 MHz frequency range and the frequency can be
selected differently for transmitting and receiving. MSB430 has two sensors onboard,
humidity sensor (Sensirion SHT11) and temperature sensor (Sensirion SHT11). This sensor is

10

very important for temperature compensation which results in accurate clock frequency and
measurements plus it can additionally use a sensor for movement detection, which is three-
axis accelerometer MMA7260Q [8].

Figure 1: MSB430

2.9. Tmote Sky
Tmote Sky is an ultra low power IEEE 802.15.4 compliant wireless module for use in sensor
networks used in monitoring based applications, and rapid application prototyping. Tmote
Sky gets its power by AA batteries but it has a usb port which can be connected to usb port
of a computer to utilize power from the computer. The low power usage is of Tmote Sky is
possible due to MSP430 F1611 microcontroller which consists of 10Kilobytes RAM and
48Kilobytes flash ROM. This mote also includes the ability of fast wake up from sleep which
takes less than 6μs. Its 16 bit RSIC processor enables it to use less power while active and in
sleep mode enabling the node to run for years on single pair of AA batteries [26].
Tmote Sky is equipped with Integrated onboard antenna with 50m range indoors / 125m
range outdoors, the radio is Chipcon CC2420 which provides reliable wireless
communication. There are three types of integrated sensors in Tmote Sky including
Humidity, Temperature, and Light sensors. It also provides hardware link-layer encryption
and authentication for better security. For external code and data storage Tmote Sky
provides ST M25P80 40MHz serial code flash that can hold 1024 kilobytes of data. The flash
is decomposed into 16 segments, each 64kB in size.
In this project a simulator COOJA [27] which is sepcially built for Contiki is used to simulate
the Tmote Sky.

Figure 2: Tmote Sky

11

12

Chapter 3:

Overview of Asymmetric Cryptography

3.1. Cryptography

Cryptography is a subject in the field of mathematics that is applied in computer science to
ensure the security primitives. The term cryptography which is also referred to cryptology is
derived from a combination of two Greek Words, kryptos which means ”hidden” and grafo
stands for ”write”. Cryptography is used for lots of purposes like encryption, data integrity,
authentication, asymmetric encryption and digital signatures. There are two types of
cryptography techniques symmetric cryptography and asymmetric cryptography. Symmetric
cryptography is not used in this project hence it is not discussed here in detail. In this chapter
basic introduction about asymmetric cryptography is presented.

3.2. Asymmetric Cryptography

Data transferred from one system to another is protected by means of encryption, a shared
secret key is used to encrypt and decrypt the data by the sender and receiver respectively.
Such encryption is called symmetric key cryptography. There are many symmetric key
algorithms which are tested to be very secure, but the biggest problem with this kind of
system is that the key has to be shared over a public network and in most cases it is
predeployed on each sensor node. Asymmetric key cryptography solves problem which
cannot be resolved by use of symmetric-key cryptography. In asymmetric-key cryptography
two keys are generated, one private part of the key and the other is called public key part.
The private key is kept secret while the public key is made public, the message is encrypted
using the public key and the private key is used to decrypt the message. Another wide usage
of such technique is utilization of private key to sign the message, while the public key is
used to verify the signature at other end. The biggest problem associated with use of
asymmetric cryptographic system is that it is slow and expensive. However it adds key
management scheme & digital signatures to any network to ensure hardened security.

3.3. Asymmetric Cryptography Techniques

In recent years it has been a major challenge for the researchers in the field of WSN to
reduce the computational complexity, and minimize memory usage of the traditional
asymmetric cryptographic algorithms like Al-Gamal, RSA, DSA and ECC. Among all these
algorithms ECC is considered to be most suitable for wireless environments because its
memory and resource consumption is least as compared to all others [28].

13

RSA [29]:

RSA stands for Rivest, Shamir and Adleman, which are the names of the authors of RSA. RSA
is an asymmetric/public key cryptographic algorithm. It is one of the first algorithms
(presented in 1977) to be suitable for signing as well as encryption. It is believed to be secure
and still is widely used in e-commerce. RSA is considered to be secure due to factorization
problem which states that it is very difficult to factorize large number.

RSA consists of three operations namely key generation, encryption and decryption.

Key generation.

Key generation process is used to generate a pair of keys i.e. private key, and its public key
part. Public key is available for all users while private key part is secret and not provided to
any other user.If the RSA keys are not built already then they need to be created when any
user wants to communicate with it. Key generation process has a drawback of being slow but
this operation is only required at first time or when the keys need to be regenerated. TheKey
genartion is composed of following five steps [30].

1) First of all, two large distinct prime numbers p and q must be generated. Make sure
that p!=q

2) The product of above selected prime numbers is computed, let’s call this component
n. It must be large enough so that the numbers p and q cannot be extracted from it

like at least 512 bits i.e. numbers should be greater than
n=pq

3) Compute phi
Φ = (p-1)(q-1)

4) Choose a public exponent e such that 1 < e < Φ . Make sure that gcd (e, Φ) = 1
5) Finally decryption key d can be made in such a way that

de modm = 1.

Now public key {n,e} and private keys {d} are generated and are ready to be used for
encryption and decryption.

Encryption

RSA encryption is always done by use of public key. Any person or computer who wants to
communicate with the target machine using RSA encryption must first obtain its public key.
It can be done by direct communicatuon or by use of any certification authority ”CA”. If the
message is greater than ”n” present inside public key then it should be broken down into
blocks of messages such that each block is less than n. Now to encrypt message ”m” into
ciphertext ”c” following computation is done where ”e” and ”n” are public key components.

Decryption

This operation can only be performed by the host of RSA key using its private key. Original
message will be extracted from ciphertext by use of following computation.

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman

14

Signing messages

RSA encryption and decryption are not so much used as compared to RSA digital signatures.
Digital Sinatures are always computed by use of private key. This signature can later be
verified by any receiving party just by knowledge of host public key.

RSA Digital sinature is never applied to the whole message as it is very slow, several
techniques are present to forge such signature. RSA based signature is always computed
over the hash of the original message. In order to make a signature the sender node will
produce a hash of the message and then raise it to the power of ”dmod n”, and then attach
this to the origianl message. Once the receiving node receives the signed message then same
hash function is used to calculate the hash of the message like sender did. After this it will be
raised to the power of ”emod n”. Finallt the resultant value is compared to the received
signature appended to the received message. If they are same then this means that the
sender of this message holds its private key, and hence the message is not tampered during
its transmission.

3.4. ECC

Elliptic Curve Cryptography ”ECC” was proposed by Niel Koblitz and Victor Miller in 1985.
ECC is a public key cryptography approach based on algebraic structure of elliptic curves over
finite fields. ECC is emerging as a strong public key crypto system compared to other public
key cryptosystems like RSA. RSA is considered to be secure on the basis of assumption, that
it is very difficult to find factor of very large prime numbers (Integer Factorization Problem).
While ECC is considered secure on basis that it is infeasible to find discrete logarithm of a
random elliptic curve element with the knowledge of base point present in public ”ECDLP”
[31. In conclusion ECC is more secure and provides equivalent security with smaller key sizes
which results in faster computation, lower power, memory and bandwidth usage. ECC has
the highest strength-per-bit compared to other public key cryptosystems [32], so ECC is
considered to be very useful for mobile devices.

The mathematical formula of ECC over the elliptic curve is

Where x,y,a and b are real numbers and with the condition

 .

By changing the values of ‘a’ and ‘b’ different eliptic curves can be generated. All the points
which satisfy the above equation lie on the eliptic curve. Private key is genrated by random
number generations while public key is obtained by multiplying the private key with a
constant base point G (Scalar multiplication) in the curve. Public key is obtained as a point in
this curve. ECC biggest advantage is its small key size, a 160 bit key size of ECC is equivalent
in securit to 1024 bit key size of RSA.

There are two basic operations performed in ECC.

a) Point Addition
b) Point Doubling

A simple graphical explanation provided by SANS is shown below [33].

15

Figure 3: ECC Point Addition

Figure 4: ECC Point Doubling

Listed below are some of the popular schemes that use ECC.

3.5. ECDH

The Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol provides ability to two
users, each holding a public-private key pair to create a shared secret agreement over a
public channel. The biggest advantage of such technique is its ability to be used in non-
secure and public medium [34].
It is a version of the Diffie–Hellman protocol to be used with elliptic curve cryptography. The
shared agreement between two nodes can be directly used as a key or can be used to make
another key, the key can be used to encrypt messages by a symmetric algorithm.

16

ECDH Mathematics

ECDH relies on two public parameters, ‘p’ is a large prime number and parameter ‘g’ which is
an integer that is less than p. These parameters can be exchanged over an unsecure channel,
after receiving the two parameters ‘p’ and ‘g’, both parties select private integers ‘a’ and ‘b’
respectively. These values are called the private keys of both sides. Then both parties create
public keys based upon the public parameter and their corresponding private keys, the
private keys are asymmetric because they do not match. One private key is created based

upon ga mod p and other is created based upon gb mod p. In all this process the secret

part only consists of a, b and it is known that (gb)a = (ga)b , all the other values are public
[34].

Anyone who eavesdrops will get ‘p’, ‘g’ but it is computationally infeasible to generate
shared secret agreement from the public values without knowing both parties private keys.
So this protocol is secure because no one can drive private key of the both parties unless the
Elliptic Curve Discrete Logarithm Problem is solved. ECDH uses elliptic curves instead of
logarithmic curves, due to this ECDH is able to achieve same degree of security by using
shorter keys.

ECDH limitation

The ECDH key exchange protocol is not secure because it does not prevent man in the
middle attack. The main reason for such inability in ECDH is no pre-authentication of both
nodes. An eavesdropper can easily get a public key of one and send its own instead of the
original to the recipient. By doins so, the attacker can decrypt messages, change the
messages, re-encrypt them with its own keys, and then send them to the recipients. This
problem can be solved if both parties use digital signatures to sign public keys before
exchanging them.

3.6. ECDSA

Eliptic curve digital signature ”ECDSA” is a variant of Digital Signature Algorithm ”DSA”, a
process of calculating digital signature but using elliptic curves. The signature has the
property that it can only be created by one (one who owns the private key) but can be
verified by many (public key of sender is know to them) . A security level of 80 bits, means

that the attacker needs to generate signatures so that he can find the key, which is
equivalent to a DSA keysize of 1024, but in the case of ECDSA the key is only 160 bits long.
The process of ECDSA is consists of three steps:

ECDSA key generation

Key generation is required to make a key pair of public and private key. Key generation for
ECC based ECDSA is done in 5 steps [33].

1. Select an elliptic curve E over a finite field, say GF(p). The number of points on E

17

should be divisible by a large prime n.

2. Select a point P = (x,y)GF(p) of order n.
3. Select an unpredictable integer d in the range [1, n-1]. d will act as the private
key
4. Compute Q=dP
5. The user's public key is (E, P, n, Q).

ECDSA signature generation

To compute a signature on message ”m” following procedure is used [33].
1) Choose a random integer k in the range 1 < k < n-1].

2) Compute (x1, y1) = kP = k(x,y), and set
r = x1(mod n)

 If r=0 then go back to step 1.

3) Compute s = k-1(h(m) + dr) mod n, where h is the hash value obtained from a

suitable hash algorithm (for example, the Secure Hash Algorithm, SHA-1).

4) If s=0 go to step 1.

5) The signature to be included in the message m is the pair of integers (r, s).

ECDSA signature verification

Once the message is received by the other side then the receiver will first parse out r and s
from the trailing part of the message. Following computations are performed on the rcceived
r and s to verify that message sender’s identity [33].

1) Obtain an authentic copy of the public key (E, P, n, Q).
2) Verify that r and s are integers in the range [1, n-1].
3) Compute

w = s-1 mod n and h(m).

 where h is the same hash function used by sender to calculate the hash of the
message.

4) Compute
u1= h(m).w mod n

and

u2 = r.w mod n.

5) Compute
u1 P + u2 Q = (x0 , y0)

and

v = x0 mod n.

6) Accept the signature if and only if v=r.

18

3.7. Summary
The common perception about public key cryptography is that it is complex, slow and
consumes lot of energy and memory, so it is not suitable for wireless sensor networks as
they have access to low power and low memory. But it is possible to design a public key
encryption architecture with low energy and memory consumption by selecting right
algorithms and parameters . To prove this someresults provided by [31] are shown below in
Table 2. They have tested both techniques on mobile processors and proved by results that
ECC operations are much more feasible and efficient as compared to RSA in limited
resources. RSA seems to be more efficient but it is only in the case of decryption, which is
also reduced to large degree is key size is increase. Secondly RSA consumes a large amount
of memory for its operations, while on ther hand ECC provides same level of security with
much less memory consumption.

Level of Security Key Size Decryption Time

(seconds)

Verification Time

(seconds)

80 RSA-1024 2.694 0.191

ECC-160 0.765 1.042

112 RSA-2048 14.734 0.665

ECC-224 1.187 1.626

128 RSA-3096 44.274 1.378

ECC-256 1.375 1.905

Table 2: RSA and ECC performance comparison

19

20

Chapter 4

Library Details

In this chapter detailed analysis and review of different libraries is presented. This chapter
can help future developers to understand the merits that need attention for understanding,
or implementing cryptographic functions with context to Contiki development. At the end of
this chapter experiences with each library are presented, that determined whether library
suits our requirements or not concerning this project.

4.1. Selection Criteria

After completion of initial research study the next step was to look for cryptographic libraries
present in open source domain. Many factors were important for selection of library that
can be used in our project. The main concentration from the start of project emphasized on
finding a library that is freely available, easy to use and holds a small memory footprint. A
cryptographic library especially prepared with embedded system’s perspective will be more
suitable for selection. Another most important selection criteria is programming language,
the library should be implemented in C language.

Contiki is completely written in C language hence cryptographic library written in C language
can only be integrated with it. It is found that there are very less cryptographic libraries
written in C language as compared to C++ and Java. Currently only 2 open source libraries
specifically written for embedded systems were located in free domain. Nearly all of the
specially designed cryptographic implementations are for commercial use and hence their
source code is not freely available.

Symmetric Cryptography is much simpler to implement and it does not require any complex
mathematical computation code to be added for its execution. However Asymmetric
cryptography is much more compound when it comes to its implementation. In the case of
asymmetric cryptography very large mathematical computations needed to be performed
which cannot be done by simple mathematical code included with compilers. Due to this
reason developers implement mathematical parts separately from the cryptography based
algorithmic details. Details are presented below in two different categories so that it is easy
to understand different parts with their context.

4.2. Cryptographic libraries

LibTomCrypt

LibTomCrypt [35] is a famous and renowned cryptographic library when it comes to open
source community and C language based implementation. It has been ported to many Linux
platforms like Redhat, Debian and Gentoo due to its simple and reliable design. The biggest

21

advantage concerning this project is the flexibility of this library. LibTomCrypt gives
developers an independence to select from three mathematical libraries (TomFastMath [36],
LibTomMath [37] & GnuMP). Before minimizing code of this library in this case,
mathematical program need to be prepared from any of these mathematical libraries. This
will be discussed below in mathematical library details.

After understanding the library behavior in detail, library code is reduced and prepared to be
used on a normal PC. Once it is assured that previous procedure is done rightly and program
is performing in a correct behavior, then again code is optimized to become minimal so that
it can easily reside in a sensor node. By the end of the project the program reduced nearly all
the unnecessary code from the library. This could not have been done at early stages
because the nature of the change in requirements were not sure as they can be modified
later in the project.

Pros: Easy to understand and modify

Much more flexible to add or remove different parts.

Mathematical library can be easily changed.

Cons: Less functionality provided as compared to Relic.

Library is old and not so regularly updated.

Basic co-ordinate system and Barret Reduction are not present in current

versions.

Relic

Relic [38] is a cryptographic toolkit specially written for use in sensor networks. It is very
flexible library and provides a large set of modern cryptographic functions. There is no
documentation resources available on this library for new users as it is very new and under
continuous development. This resulted in problems to understand it at the start, but once
any user understands all the details then it is very easy to use. The to work on this library
was initiated with the same procedure as was followed in LibTomCrypt. In first phase all
mathematical computation code was extracted, prepared a simple program of it and
performed the tests provided with it. Then same work was cariied out for cryptographic
library part and its integration with mathematical program. An important difference
compared to LibTomCrypt is Relic had much more functionality and features when it comes
to algorithmic details.

Pros: Support for 2 mathematic libraries (Relic-Easy and GnuMP)

 New library with many new algorithms included.

 Support for 3 Memory allocation methods (Static, Stack & Dynamic)

 Multithreading support included.

 Support for testing and benchmarking of different components.

Cons: Documentation details are very less.

Some configuration details are tricky and difficult to understand.

22

4.3. Mathematical libraries

TomFastMath

TomFastMath library is also developed by the same developer who wrote LibTomCrypt and
LibTomMath. The main aim of developer was to write a mathematical library that can
increase performance, speed and can compute results faster. It is not flexible like
LibTomMath but it includes inline assembly fragments for achieving quicker results. The
biggest difference between TomFastMath and LibTomMath is use of fix precision integers by
TomFastMath while LibTomMath uses multi precision integers.

Montgomery modular reduction is preferred over Barret Reduction technique for
implementation in this library. Most importantly use of Barret Reduction is also not
favorable for this project as nearly all project work was carried out by use of Projective co-
ordinate System. Barret reduction provides better results only for Basic Co-ordinate system
in ECC. The developer has compared and showed that TomFastMath outperforms
LibTomMath if it is used by LibTomCrypt.

LibTomMath

LibTomMath is a very comprehensive and detailed library written with the focus to
understand the mathematical algorithms to be used with asymmetric cryptography. It was
prepared to compete with GnuMP on many grounds. It is not designed to be more efficident
and dynamic but not as fast as TomFastMath, however it provides much larger mathematical
library to support many additional functions.

Relic

Relic toolkit provides users flexibility to choose between Easy C implementation written by
its developer and GnuMP as well. Currently GnuMP cannot be used with Contiki as it is not
yet build or developed for Contiki, so this bounds to use only developer’s written
mathematical library. The developer of this library has stated that the results can be much
better if GnuMP is used. Relic math library offers a large set of functions which provides user
independence to choose from any of them depending upon different requirements.

4.4. Experiences learned with Cryptographic libraries

LibTomCrypt

LibTomCrypt uses dynamic memory allocation for all ecc-point variables. Complete stack
based implementations were built as well. Still heap allocation is recommended in this
project due to memory limitations, especially in case of low memory based sensor nodes like
MSB430 it can perform its operations properly. If malloc is unable to allocate further
memory then it can terminate properly after prompting an error. In the finalized version a
heterogeneous approach is used for the performance evaluation . An important point in such

23

implementation is use of dynamic memory for ecc points only, while all other variables are
stack based.

In this project TomFastMath is preferred over LibTomMath due to two main reasons. Firstly
it is much more efficient and secondly due to fragmentation issues related to use of
LibTomMath. LibTomMath has the ability to grow and shrink the size of multi precision
integers which is a big advantage when it comes to resource management but in case of
sensor networks it cannot be handled very efficiently. Contiki has not included use of
reallocation function ”realloc” in memory allocation functions. In our view it is done rightly
as in case of sensor nodes with very low RAM like MSB430, it is not possible to efficiently use
same memory space. An alternative used in this project to overcome problem was to free
memory space manually, and then reallocating from free space from the end. This solution
still resulted in memory fragmentation issue, this eventually leads to reduced RAM utilization
and not able to complete whole operations. Hence TomFastMath was selected which uses
fixed size for multi precision integer. This looks to have some wastage in ram resource but it
is very less memory wastage as compared to LibTomMath, similarly no fragmentation issues
arrive in such case. In order to eliminate this small wastage in RAM resources using
TomFastMath, it is configured to use only the estimated required size of its fix point. Hence
for different keysize of ECC algorithms it uses different fix point variable size required by the
ecc points.

Relic

Relic uses three different types of memory allocation techniques. In this library stack
allocation is preferred as Cooja simulator can be used to see the stack usage during all
operations. Secondly stack allocation also requires very less code size as compared to
dynamic memory allocation in case of Relic. Relic provides different set of techniques for all
functions required to perform cryptographic operations. As the code documentation was not
available so the basic settings of all the functions were used initially. The results obtained
were not so comparable to LibTomCrypt results. After discussions with developer of Relic it
was noticed that no modular reduction was used by us in early stages. Once code was
modified to use Montgomery reduction then the execution time was dramatically reduced.
The results prepared by use of Montgomery reduction are showed in chapter 7. SHA1
implementation provided with Relic was also not easy to integrate but after code review it
was noticed that it is using the same 8-bit SHA1 for its hashing mechanism so additional layer
of configuration was reduced,and simple 8-bit SHA1 code was plugged with Relic. This
reduced flexibility but reduced the ROM utilization by this part. However as SHA1 is
becoming less secure SHA 256 can be plugged in future for increased security.

PolarSSL

PolarSSL is a simple and elegant library especially designed for embedded systems. It is
written in C language which suits our integration requirements. ECC is not implemented in
this library so it cannot be used in our project. In the start of project this library was used for
RSA behavior learning and it was found to be very easy to work with. In future if they provide
ECC with their library then it can be very good experience and will benefit Contiki.

24

Bitint

BitInt [39] is large number mathematical library which is especially written for Contiki. The
biggest advantage of this library is the use of memb. Memb [40] is memory block
management system completely written for use in Contiki. The developer of this library has
written all basic mathematical library functions that are required by any public key
cryptography algorithm. It has been tested and verified by developer for its concreteness
and use in Contiki. If any developer want to write a complete new ECC library especially
designed for Contiki then BitInt can reduce a lot of load and developer just needs to
implement cryptographic functions.

Below a simple table is presented which states the options which were used by the libraries.
There are some optimizations that are not present or provided in the library which effects on
the results as well.

 LTCTFM Relic

Simple Multiplication Included Included

Sliding Window

Multiplication

Included Not Available

Basic Co-ordinates Not Available Included

Projective Co-ordinates Included Included

Simple Verification Included Included

Shamir’s Trick based

ver.

Included Included

SECG-160 tested on MSB430 , Tmote MSB430 , Tmote

NIST-192 tested on MSB430 , Tmote Tmote

Table 3: ECC optimization details in each library

25

Chapter 5

Measurement Methodology

Wireless Sensor networks have very limited resources, due to these constraints many
important factors need to be analysed before deploying in a field. In this section software
based methods, used to measure different performance merits of the implementation phase
are presented.

5.1. Execution Time

There are two techniques used to measure the time consumed by software to perform
various operations. The most accurate method is to use high precision oscilloscope to check
the data output pin. This method seems to be more complex and many external factors need
like margin error of measuring tool needed to be considered. The second method is to use
real-time timers present in Contiki. By using these real-time timers higher accuracy in
execution time is visible.

Contiki supports use of real-time timers and event based timers. “A real-time timer does not
post an event when it expires, but invokes a function (from within the hardware timer’s
interrupt service routine).This provides better control over scheduling than an event timer”
[41].

Real-time timer in Contiki is hardware dependent. This gives a choice to select any of two
clocks present in the sensor node. Main Clock (MCLK) provides a maximum resolution of
0.4069 microseconds if the processor cycle is executed at 2.4576 MHz. This is very accurate
but it cannot be used as this clock is disabled in low power modes, while Contiki runs in low
power mode 1out of 5 low power modes available. The second clock option is to use
auxillary clock ACLK which runs by use of a crystal oscillator with frequency rate of 32768 Hz.
This configuration was preferred and selected for all the measurements in the project.

In the initial phase RTIMER was not performing proper and the results showed abnormal
values. After analysis it was known that it is a 16-bit counter and hence it overflows so it is
not usable here to get the proper execution time. So decision was made to use the clock
library present inside Contiki. An advantage of using this library was its hardware specific
utilization. clock_init() is initialized at the start-up and it configures the hardware timers and
interrupts. clock_time() is a function that returns the increasing tick counter. So to measure
the performance speed initial clock value can be stored before code execution and final clock
value once code finishes execution.

start=clock_time();

26

ecc_make_key (); // Any target function for time consumption

diff=clock_time() - start;

num_seconds=(double)diff/CLOCK_SECOND;

The above written code shows the method for time measurements. Before RTIMER was
patched to be used as 32-bit counter clock library was used to measure the execution time.
Once RTIMER was corrected to handle long time durations by the Contiki developers then
real-timer “RTIMER” was used for speed measurements. After comparison it was seen that
clock_time_t based variable shows a little more time e.g. for near 9 seconds computation it
delayed a difference of 200 milliseconds, however the results using clock_time_t were very
consistent on MSB430 mote and Cooja simulation for Tmote Sky.

t1=RTIMER_NOW();

 ecc_make_key ();

t2=RTIMER_NOW();

printf("Ticks= %u\n", t2-t1);

The above written code is used for performance analysis after RTIMER was patched to work
at 32-bit values.

5.2. ROM

ROM is a very limited resource in WSN and hence a very important parameter that needs to
be fulfilled for any application to be able to reside on the node. Most of the freely available
cryptographic libraries have not taken this constraint into consideration. Additionally there
are only few free libraries present that are designed to be used in embedded devices. Once
the library is chosen then it cannot be ported as a whole package into Contiki so it needs to
be reduced and create a minimal application that can reside in the node with a code range of
around 15 to 30 bytes. Public Key cryptography use very large numbers for computation,
such computations cannot be done with the simple mathematical operations. Due to this
reason all public key cryptographic libraries include or support some big number libraries. So
this makes an additional load on the code size, but it is mandatory and cannot be skipped.

In order to know the ROM requirements of the code msp430-size utility [9] is used. In first
step this utility is used to find out the code size used by Contiki. Then PKC code is integrated
with it, now again the compiled code size is measured. In this way the code size required by
the cryptographic functions is estimated. Mathematically it can be written as;

ROM required= PKC included compiled code size - Normal compiled code size

27

5.3. RAM

RAM is the most important constraint that needs the most attention. WSNs are equipped
with only a few kilobytes of RAM. MSB430 is equipped with only 5 KB of RAM while Tmote
Sky has 10KB of RAM. As the stack has variable size during the process execution hence it
was not easy to measure ram. A mixed approach was chosen for Ram estimations. Initially
msp430-ram-usage [9] program is used to see the memory footprint of Contiki on the sensor
node. Cooja simulator provides a Stack viewer which can show the stack usage during all the
process execution. Therefore Cooja is used to view the stack usage during all of the
operations to see their stack utilization. The maximum stack usage in Cooja is the estimated
Ram consumption for the PKC operations. To correctly estimate the Ram usage in case of
Relic library these results were enough as static variables and dynamic memory allocation
were not used. For LibTomCrypt heap allocation allotted for ecc-points for final results was
added to stack usage for final results.

5.4. Energy

As WSN are equipped with a limited power source hence energy is a very scarce resource.
Normal applications consume use energy in the range of micro-joules but as in public key
cryptography complex and long mathematical equations are solved so the consumption
increases from micro-joules to mill-joules as is shown in the case of TinyECC [25]. In addition,
the cost of a hardware-based mechanism for energy measurement is too high; the cost per-
hardware-unit is similar to the price of the sensor node [42].Contiki provides a built in tool
ENERGEST for energy estimations. “Energest is a software-based on-line energy estimation
mechanism that estimates the energy consumption of a sensor node” [43].

Energest: It is a mechanism provided inside Contiki to be used by sensor node to provide
energy estimations of all components such as radio transceiver and CPU. The core of this
process is to use timers. When a component is turned on, a counter starts to measure the
estimated energy consumption. When the component is turned off then the current value is
added to the entry table of the component. The difference between the two values is a
resultant which is then multiplied by the components power to show the energy consumed
by it during its usage. This is called denormalization. To denormalize the values of the table,
the specific characteristics of the hardware must be known. Following table shows the
parameters used for denormalization. These values are obtained from the MSP4301612 and
CC1020 datasheets.

Component Current Consumption (mA)

CPU 1.8

LPM 0.0545

Radio TX 20.5

Radio RX 19.9

28

Table 4: Component Current Comsumption

Once the table entry of each component was derived, then these components were
denormalized and finally they needed to be multiplied with the voltage of sensor node to
estimate energy. Till now the energy estimations are not normalized for average results.
Finally it is divided with RTIMER_SECOND component of Contiki to provide energy estimates
for time used by the process. Following formula shows it in the code format.

Energy_Consumed = ((1.8 * diff.cpu + 0.545 * diff.lpm + 20.0 * diff.listen + 17.7 *
diff.transmit) * 3 / RTIMER_SECOND));

Vcc is used at value of 3Volts as sensor node was connected to a USB interface and it is
running to full power mode. Similarly RTIMER_SECOND represents “Number of Ticks per
second” variable used in Contiki.

29

30

Chapter 6

Performance Evaluation

In this chapter results acquired from the tests performed using public key cryptography with
Contiki are presented. Initially a background about certain factors needs to be known that
can help to understand & analyze these results more effectively.

6.1. Platform Selection

For testing different parameters two scenarios were opted due to different restrictions.
1) Cooja Simulator [27]: Cooja is a java based simulator provided with Contiki to test the

applications in simulator prepared for different motes. For this project Tmote Sky
mote based simulation provided in Cooja was selected.

2) MSB430: As discussed earlier in 2.8, MSB430 is a wireless sensor node which belongs
to MSP430 based processor family.

An important reason to select Tmote Sky based simulation along with MSB430 is their use of
same processor family. Tmote Sky uses MSP430F1611 microcontroller while MSB430 uses
MSP430F1612 microcontroller. Hence Tmote sky was chosen for simulation, as in some cases
MSB430 fails to fulfill some operations due to limited resources mainly RAM.

6.2. ECC Optimizations

Elliptic Curve Cryptography is a simple but time consuming process so people have worked
on many mathematical methods to reduce the operational time taken to perform such
calculations. There are many ECC optimizations that can lead to better performance and
resource utilization. TinyECC has provided a brief description of these optimizations which
can be beneficial especially for WSN. They have presented a complete ECC framework for
resource optimized as well as efficiency optimized implementation by use of available
optimizations. In this project all optimizations available cannot be focused as the two
libraries used do not provide all these optimizations. However some optimizations that are
present in these libraries are analyzed, that can be used to make an efficient implementation
of ECC over Contiki. These optimizations are selected such that a simple notion can be
viewed, afterwards resource based optimizations and performance based optimizations will
be understable for different kinds of sensor nodes. Some basic information about
optimizations used in this project are provided below.

a) Projective Co-ordinates: Projective Co-ordinate takes little more RAM and ROM as

compared to basic co-ordinates but they reduce the execution time very effectively.
b) Sliding Window: Sliding Window consumes more RAM but they help to reduce the time

taken for scalar multiplication.

31

c) Shamir’s Trick [44]: This technique reduces signature time to a large extent but it
requires more RAM as well.

d) Curve Specific Optimization: NIST and SECG curves use pseudo-Messene prime which
reduces the execution time as reduction modulo is performed by less modulo
multiplications and modulo additions. Similarly no division operation is required if such
curves are used.

e) Montgomery Reduction: Montgomery Reduction modulo was preferred over Barret
Reduction. TinyECC results have showed that Barret reduction requires more RAM and
ROM as compared to Montgomery Reduction and still it has not a very effective
difference in results.

6.3. Benchmarking Issues

Before going into the details of results it will be a good practice to share the constraints
faced during the testing phase. Contiki is only stable at low power mode and it is not been
tested to run on full speed of sensor node’s clock rate. Just few weeks back a developer has
patched the kernel of Contiki so that it can run on maximum speed but currently it cannot
synchronize with serial interface to give the output on console. The main architects of
Contiki were contacted and they have told that there are many fix value adjustments in the
core of Contiki and due to this reason it is not so stable at high speeds.

Due to this major problem it was not possible to test properly the code on full speed of
sensor node. However LEDs present on MSB430 were used to get the feedback of estimated
time in seconds, this in-turn provides an idea of time reduction. Tmote Sky was also patched
to run on full speed but as it was running inside Cooja simulator hence it didn’t show any
output after the half of its full clock rate i.e after 4MHz.

Energy estimation has the same problem as well. As energy estimation requires ENERGEST
and its result needed to be viewed on serial interface so it was not possible to take any
energy estimations on clock rate higher than 4.7MHz.

6.4. Speed

Time taken to execute different parameters of ECDSA is very vital in this project. In ECDSA
there are three main parts that are analyzed for speed. Key Generation assuming there is no
public key defined before this point, Signature on a message or symmetric key, and
verification of this signature.

32

Figure 5: LTCTFM perfromance

Figure 6: Relic perfromance

Here both results are presented independently so the time consumption by each process
using different libraries can be elaborated more clearly. In overall comparison review Relic
takes less time as compared to LibTomCrypt. Signature time is nearly equivalent to key
generation time as it goes almost through the same process of key generation. It just adds
some small mathematical functions after scalar multiplication but they take very less time.

Verification is the most time consuming task in the whole ECDSA process. It takes around 3
times more duration than the signature procedure in the case of LibTomCrypt minimal
usage. However it can be dramatically reduced to 1.5 times if SHAMIR’s trick is used. The
only drawback in using Shamir’s trick is that it consumes a lot of volatile memory, especially
it cannot be used in case of MSB430 which is very low on RAM. To test SHAMIR’s trick

8819 8990

25568

8152 8322

19497

13300

0

5000

10000

15000

20000

25000

30000

Key Generation Signature Verification

Ti
m

e
 (

m
s)

LibTomCrypt + TomFastMath

Simple Sliding Window SHAMIR's Trick for Verification

14993 15085

36398

21825

5209 5360

13301

7867

3493 2098 2251

13301

7867

0

5000

10000

15000

20000

25000

30000

35000

40000

init Key
Generation

Signature Verification
(Simple)

Verification
(SHAMIR's

Trick)

Ti
m

e
 (

m
s)

Relic Toolkit

BASIC Montgomery Reducttion Pre-Computation

33

simulator based on Tmote sky mote was used. The details about RAM usage by verification
are written in RAM analysis section.

Contiki is not able to support UART (Universal asynchronous receiver/transmitter) protocol
properly if it is run at full CPU speed of sensor node so the code was tested with the use of
led to find the estimated time. Following graph shows the performance improvement as the
MSB430 sensor node is configuring to run at maximum clock rate using Contiki.

Figure 7: Performance comparison

* The results for MSB430 are estimated using led blink technique. Concrete results cannot
be taken due to synchronization problem of Contiki at maximum clock rate.

The above graph shows that higher clock rates will yield much better results and same
improvement can be visualized for reduced use of energy by the sensor node. For this test
Relic projective co-ordinates and SECG-160 curve were used. Shamir’s trick was not utilized
for this test as MSB430 has less memory and cannot support this optimization.

There are many standard curves that can be used for ECDSA functions. Two standard curves
specified by SECG group were chosen for this project. SECG-160 and NIST-192 are used for all
tests. The given graph depicts the comparison of time taken by these two curves using both
libraries. It can be seen that SECG-160 takes less time as fewer operations are required as
compared to NIST-192. The key point that every administrator needs to focus on, is the level
of security required. The following graph depicts that with more level of security more time
consumption is required. This also applies to all other major requirement factors like energy,
RAM and ROM.

5209 5360

13301

7867

2000 2000

4000

0

2000

4000

6000

8000

10000

12000

14000

Key Generation Signature Verification
(Basic)

Verification
(Shamir's Trick)

Ti
m

e
 (

m
s)

Performance comparison on
different clock rates (milliseconds)

Tmote Sky 3.9MHz MSB430 10MHz *

34

Figure 8: Curves Comparison

There are two types of co-ordinates system that can be used in any ECC based algorithm,
Basic Co-ordinates and Projective co-ordinates. A comparison of these co-ordinates is shown
below to visualize which co-ordinate system performs much faster and hence fulfils the
requirements. LibTomCrypt used Basic co-ordinate system till version 1.0 and stopped using
them after this and the latest version does not include support for basic co-ordinate system.
Relic on the other hand has provided the code for basic co-ordinate system as well. So in this
comparison the performance of these co-ordinates was reviewed using Relic library.

Figure 9: Co-ordinates comparison

It is clearly observed that Projective co-ordinate provide much better results in any scenario
as compared to basic co-ordinates at the cost of more RAM and ROM resources. In case of

5209

8152 8811

13423

5360

8322
8879

13648

7867

13300 12674

21856

0

5000

10000

15000

20000

25000

Relic-160 LTCTFM-160 Relic-192 LTCTFM-192

Ti
m

e
 (

m
s)

SECG-160 & NIST-192

Curve Comparison (milliseconds)

Key Generation Signature Verification (SHAMIR)

15639 15704

37642

19196

5209 5360

13301

7867

0

5000

10000

15000

20000

25000

30000

35000

40000

Key Generation Signature Verification
(Basic)

Verification
(Shamir's Trick)

Ti
m

e
 (

m
s)

ECC co-ordinate system comparison
using Relic (milliseconds)

Basic Co-ordinates Projective Co-ordinates

35

ROM there is not a big effect on addition of code size however Ram usage is much more but
it is observed that sensor nodes that have even 5KB of Ram can easily support projective co-
ordinates. Hence projective co-ordinates are recommended and used in all ECC algorithms
for this project.

Modular Reduction Techniques play a vital role in providing efficient results. There are four
techniques used in multi precision integers which reduce the large integer into a small
number which can help a lot in performing large mathematical operations. These techniques
are;

i) Basic Division based reduction
ii) Montgomery reduction
iii) Barret Reduction
iv) Fast reduction

Figure 10: Modular Reduction Technique Comparison

Barret Reduction was not focused, primarily as TinyECC have provided information that
Barret Reduction only helps in case of Pre-computation. Secondly both libraries have not
used this techniques in their implementation for ECC operations. It is clearly seen from the
graph that Montgomery reduction reduces the computation time to a very large extent
hence recommend are made to use Montgomery reduction with all ECC operations.

14993 15085

21824

5294 5360

7867 6986 7078

10158

0

5000

10000

15000

20000

25000

Key Generation Signature Verification
(Shamir's Trick)

Ti
m

e
 (

m
s)

Performance comparison using
modular reduction (milliseconds)

Diviosion Montgomery Fast

36

6.5. Energy

Energy utilization is a major concern at this time. Most of the applications used in sensor
networks consume energy in the micro joules, but public key cryptography consumes energy
in millijoules. In order to show the detailed usage of energy in each phase of ECDSA separate
graphs are presented for energy consumption of both libraries.

Figure 11: LTCTFM Energy evaluation

Figure 12: Relic Energy Evaliation

LibTomCrypt performs on an average scale while Relic consumes less energy when its
optimizations are used. Overall Relic outperforms LibTomCrypt in saving the energy
consumption of sensor node. In verification phase Shamir’s trick takes the minimal energy as
it takes less computational time. However it was not possible to take the results on higher
clock rate due to serial rate synchronization problem.

50 51

147

46 48

112

76

0

20

40

60

80

100

120

140

160

Key Generation Signature Verification

En
e

rg
y

(m
j)

LibTomCrypt Energy Estimations

Simple Sliding Window SHAMIR's Trick for Verification

0

50

100

150

200

250

Key Generation Signature Verification
(Simple)

Verification
(SHAMIR's Trick)

En
e

rg
y

(m
j)

Relic Energy Estimations

BASIC Montgomery Reducttion Pre-Computation

37

6.6. ROM

Figure 13: Complete ROM estimations

The above graph shows detailed code size requirements for adding elliptic curve
cryptography into Contiki. The estimated code size for using elliptic curve cryptography is
around 16-20 KB for both of libraries. Here it can be seen that the code size is not dependent
on the level of security required. Similarly it is found that code size required for SECG-160
and NIST-192 curves doesn’t change to a large extent that can affect the ROM size to be
used.

During this project implementation work was performed in two phases. First phase was to
strip all the code on a normal PC and test its validity. Once it is reduce to a minimal size and
it correct behavior is verified then the process of porting such code to Contiki platform was
started. This was a major problem and it took most of the time in this project as it was
uncertain until mid of project about how to reduce different aspects of code for Contiki.
Many factors needed to be focused, like code reusability (in case of rand function) and
variable usage optimizations/reductions.

A simple example of such case is the use of SHA1 in the ECDH code. A normal SHA1 takes 10
KB on normal PC but once it is ported to Contiki then it overflows the stack space and hence
cannot be compiled. After some research information about an 8bit SHA1 was found which
was used later on with the code and then it uses minimal code size, and hence able to port
program into Contiki.

16378 16626 17368 17846 18172
19004 19400

0

5000

10000

15000

20000

25000

R
O

M
 (

b
yt

e
s)

ROM Estimation Comparison

LibTomCrypt-ECDSA Relic-ECDSA

38

6.7. RAM

In order to analyze the RAM requirement for complete ECDSA process a mix approach was
used to calculate the estimated RAM size.
Cooja provides a stack viewer which can let users view the real-time stack size utilization of
the compiled code. This estimation was enough for relic RAM estimation as relic was
configred to use all variables from the stack memory space. Malloc based allocation was not
used in case of Relic instead stack was preferred for the whole process. There is only one
exceptional scenario of pre-computation which uses static variables. Hence in case of Pre-
Computation static variable usage was added with stack to estimate the total Ram usage.

In LibTomCrypt a mix approach for memory allocation was finalized after many code
readjustments. Due to different tests and observations it was decided to use a mix of
dynamic memory allocation with stack. So in order to find the total RAM size usage for
LibTomCrypt based implementations heap allocation was added to stack view as well.

Figure 14: RAM estomations

The graph shows that LibTomCrypt with no optimizations included requires least RAM
resources as compared to optimized LibTomCrypt and relic. Currently there is no sliding
window implementation available for Relic, and LibTomCrypt doesn’t include pre-
computation methods, these merits cannot be compared for memory usage.

ECDH & ECDSA Comparison Review

An additionaly analysis concerning the RAM estimations for ECDH implementation were
reviewed for LibTomCrypt. ECDSA and ECDH in LibTomCrypt requires nearly same amount of

1612

3202
3796

2020

3850

5066

0

1000

2000

3000

4000

5000

6000

R
A

M
 (

b
yt

e
s)

RAM Estimation Comparison

LibTomCrypt-ECDSA Relic-ECDSA

39

RAM in all scenarios. It is found that both libraries can run on sensor nodes with less than
5KB RAM if is configured to be resource efficient. However there was some monir
differences in ROM size comaprison as ECDH includes more code for its operation.

Figure 15: Rom Estimations for ECDH and ECDSA

There is a clear tradeoff between RAM usage and performance speed of algorithms. If more
optimizations are used to reduce the execution time then it will require more RAM and vice
versa. Hence it can be said that a review of these factors with the perspective of sensor
nodes specifications are necessarily required before deployment.

6.8. Comparison with TinyECC

During all the project timeline, TinyECC was used as role model because it holds the same
perspective as the work done in this thesis. Secondly TinyECC is the only standard present
with context of operating systems usage in sensor networks that can be compared to see the
performance merits. There are some optimizations present in TinyECC that are not available
in Libtomcrypt and Relic (free version) hence it cannot be sais completely that the results are
comparable, still it can provide a notion that the work done in this project is in the right
path.
 TinyECC LTCTFM Relic

Time 3.2s (sign) 4.1s (verify) 8.3s (sign) 25s

(verify)

2.3s (sign) 7.8s (verify)

Energy 27.5 mJ + 17.1 mJ +

21.9mJ

47mj + 48mj + 71mj 25mj+ 12mj + 45mj

16378

18706
16626

19048
17368 17846

0

5000

10000

15000

20000

25000

ECDSA ECDH

R
O

M
 (

b
yt

e
s)

LibTomCrypt ROM Estimation
Comparison of ECDSA and ECDH

Simple Sliding Window SHAMIR's Trick All options

40

ROM 13.5 KB 19 KB 19.5 KB

RAM 1.5 KB 2.5 KB 1.2 KB

Table 5: All optimizations Enabled

In above table TinyECC provide a much better result due to addition of optimizations which
include Hybrid Multiplication and Inline assembly code. Relic can provide much better results
once their developers will make the MSP430 assembly code available in their free version.

 TinyECC LTCTFM Relic

Time 4.2s (sign) 8.6s (verify) 9 s (s) 13s (v) 15s(s) 36s (v)

Energy 230 mJ + 463mJ 47mj + 48mj + 71mj 91 mj + 92mj + 117mj

ROM 8.2 KB 15 KB 17KB

RAM 160 bytes 312 bytes 100 bytes

Table 6: All Optimizations disabled

The table shown above is not used for comparison but it is more of a reference related data.
Basic co-ordinates in LibTomCrypt and Relic are not used as they take more computational
time, and preferred to use projective co-ordinates completely. In conclusion it can be said
that Relic is much more efficient when same optimizations are used in all of compared
libraires. However TinyECC shows much better results when no optimizations are used. In
case of Contiki Relic seems to be a much better option as it has more optimizations included
and it is specificly written for sensor networks.

41

42

Chapter 7

Project Recommendations

7.1. Contiki

Contiki is an operating system for wireless sensor networks that is comparatively new and
getting stable day by day as compared to TinyOS development which is more mature now.
Due to these changes that arrive in Contiki many factors are still uncertain about the
integration of public key cryptography in it. Some main factors that still need to be focused
in this case are;

i) Running Contiki on maximum clock rate
ii) UART synchronization issues for debugging

The results presented in previous chapter are dependent on these considerations. Due to
these best results were not obtained with use of Contiki. Contiki is not able to run fully
functional in maximum clock rate of the sensor node. The core developers of Contiki were
contacted for this matter and they told that still there are many fix value implementations so
Contiki will be unstable if it is run at full clock rate. The only way for us to make it possible is
to read and understand core of Contiki with reference to individual datasheets of the sensor
nodes but this is not part of the scope of project. Still Contiki is made stable and used in
experiments until the half of processor speed. Hence in this case MSB430 remained stable
to work and show results through serial link up to 4.7MHz and on Tmote Sky using Cooja it
can show proper results up till 3.9MHz.

During the last phase of project one developer contributed on Contiki by providing a hack to
run Contiki on full speed. The only problem still unsolved at maximum clock rate is serial link
synchronization. Hence Contiki ca now run on full speed but the results were not visible on
serial link based display. The solution used to solve this problem was to utilize LEDS on
MSB430. leds_on() function was place in code at locations where the code is checked and
added tests at important checkpoints in the code. Hence it was assured that code executed
completely and gives positive results at full clock speed. Same solution cannot be used for
Tmote Sky inside Cooja as Cooja becomes unstable and doesnot even show the proper
results for leds.

7.2. Cryptographic adaptations suitable for Contiki

In order to integrate Public Key cryptography with any sensor network operating system
many important factors needed to be considered before deployment.

43

Level of Security

First and foremost information required to deploy public key is to determine how much level
of security is required. If sensor nodes are deployed in military or any other security
environment then a higher level of security should be considered. In this case at least 192-bit
elliptic curve cryptography should be the used. On the other hand if the sensor nodes are
deployed in some peaceful zones and just required for gathering information then 160bit
based ECC is enough to ensure message integrity. Consequently higher the level of security is
implemented higher the RAM, ROM and energy requirements will be.

 High Level of

Security

Low Level of Security

Key Size At least 192 bit At least 160 bit

Hash Function SHA256 8-Bit SHA1

Sensor Node Processing Speed

There are many large mathematical computations required to complete public key
cryptography. These computations seem to have very normal requirements in PC’s as they
can handle large instruction-sets, but sensor nodes have very small microcontroller with
some balanced functionality. Currently most of the available microcontrollers used in sensor
networks have a very low processing power, hence the public key computation takes more
time but still it is not far to see good processing power in sensor nodes. An example of such
case is computation time of SECG-160 taken from TinyECC. TelosB running at 4MHz took
3169 milliseconds (3.16 seconds) for ECDSA based signature while Imote2 running at
416MHz performed same work in only 11.8 milliseconds (0.011 seconds). Contiki is not fully
tested to be used at maximum clock rate. Currently it can run stable under low power mode
1 (LPM1). Once Contiki is stable for full computational speed then much better results can be
seen.
If processing power of any sensor node is not very high or not fully utilized then high key size
based ECC should be used minimally as high key sizes will take more time which can affect
many critical resources.

 Low Processing Power High Processing
Power

Key Size
Recommended

160 bit 192 bit

RAM consideration

Sensor nodes come with very low resources hence their RAM and ROM sizes are very
limited, this puts an additional pressure on choosing the appropriate key size for ECC. It is
experienced many times in this project. Some optimizations are very good for saving time
but they require a lot of RAM which may not be available. The most important scenario for

44

such case is use of Shamir’s trick. Shamir’s trick can help reduce time for verification but it
requires additionally. Most of the research shows that public key cryptography is even
possible with very low resources while in our case it is different from other findings. All other
implementations except TinyECC have run on sensor node without use of any operating
system. Similarly most of them have used machine language code for optimizing the
performance and resources. In this project no machine language code is used and all the
code is running inside an operating systems “Contiki”. Due to use of operating system many
other considerations were changed like less RAM and ROM allocation, interrupt based
handling and low power mode usage. Here recommendations regarding dfiferent ECC
optimizations are summarized which can be used with respect to variable RAM
requirements.

 MSB430 (5KB RAM) Tmote Sky (10KB RAM)

Projective Co-ordinates Applicable Applicable

Montgomery Reduction Applicable Applicable

Simple Multiplication Applicable Applicable

Sliding Window Not Applicable Applicable

Shamir’s Trick Not Applicable Applicable

Pre-Computation Not Applicable Applicable
Table 7: ECC optimizations used on different sensor nodes

There was more focus on RAM as compared to ROM as most of the current sensor nodes
arrive with enough ROM to fill the required code. Low ROM based sensor node Tmote Sky
was used which has only 48KB total ROM, and the maximum code size for this project was
around 20KB. Hence the total code size including Contiki was around 45 KB. However an
important point is case of Tmote Sky as it will not be able to add more applications into
Contiki system once PKC is added to it. Below total code size estomations in case of two
sensor nodes is highligted.
 MSB430

(55 KB ROM)
Tmote Sky
(48KB ROM)

Total ROM size 55KB 48KB

ECDSA-All optimizations used 36406 bytes 44298 bytes

ECDSA- No optimization used 36406 bytes 41276 bytes

Table 8: Total Rom Usage

In case of MSB430 only 1500 bytes of RAM is available hence any advanced optimizations
present cannot be used. This shows that RAM is the major factor as compared to ROM when
it comes to use optimizations for ECC in sensor nodes.

45

46

Chapter 8

Conclusion

In this thesis a complete feasibility study for deploying ECC based algorithms in wireless
sensor networks under the Contiki operating system is presented. Public key cryptography is
still expensive in the field of sensor networks as compared to most of the other applications.
However it is showed that Contiki can also achieve high level of security using smaller key
sizes like TinyOS has performed by use of TinyECC.

Moreover, the details description about parameters required to evaluate a cryptographic
library are presented, and how it can be integrated into Contiki. Two most relevant
cryptographic libraries LibTomCrypt and Relic are evaluated, with relevance to performance,
energy, ROM and RAM usage inside Contiki. Relic has proven to be much better choice as it
is specifically designed for wireless sensor networks.

ECC is expensive in wireless sensor networks if it is used without any additional optimizations
available. Evaluations concerning the performance and resource efficiency of ECDSA and
ECDH algorithms on the MSB430 platform and simulation based Tmote Sky are documented
as well. Experiments have showed that it is possible to utilize ECC along with its
optimizations even in low resource based sensor networks.

47

Chapter 9

Future Work

The project focused on only one cryptography technique which is widely used and
considered efficient for low resource based sensor networks. The main emphasis revolved
around one ECC-based algorithm i.e. ECDSA. More algorithms like ECDH and ECIES can be
added and compared to make the complete package of security based on ECC to be used
with Contiki. There are certain ECC optimizations that are still not being used and tested.
These include Hybrid Multiplication, and assembly code usage for multiplication and
squaring operations. Once these are used it is expected that the results will be more
efficient. ECC over Prime field was selected over Binary field as its being proven by TinyECC
to be more resource efficient. In future Binary Curves can be added to the code which can
build ground for more cryptographic techniques.

Pairing based cryptography is also becoming more feasible to be used with WSN. Many
publications have shown that using pairing based algorithms with ECC can provide much
more security to time ratio for the sensor networks.

In future ContikiSec framework can be modified to include ECC. This will make a concrete
framework for the security of wireless sensor networks using Contiki.

48

Bibliography

1. TinyOS Community Forum. [Online] http://www.tinyos.net.

2. The Contiki Operating System. [Online] http://www.sics.se/contiki/.

3. SHAH BHATTI, JAMES CARLSON, HUI DAI. s.l. : Springer Science, 2005. ISSN:

1383-469X.

4. Full TCP/IP for 8-Bit Architectures. Dunkels, Adam. San Francisco, California :

Proceedings of the 1st international conference on Mobile systems, applications and services,

2003.

5. Poster Abstract: Making Sensor Networks IPv6 Ready. Mathilde Durvy, Julien Abeillé,

Patrick Wetterwald , Colin O'Flynn, Blake Leverett, Eric Gnoske, Michael Vidales,

Geoff Mulligan, Nicolas Tsiftes, Niclas Finne, Adam Dunkels. s.l. : Proceedings of the 6th

ACM conference on Embedded network sensor systems, 2008. ISBN:978-1-59593-990-6.

6. ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the Contiki

operating System. Lander Casado, Philippas Tsigas. s.l. : Springer Berlin, 2009. ISBN: 978-

3-642-04766-4_10.

7. MSP430 Ultra-Low-Power Microcontrollers. Texas Instruments. [Online]

http://www.ti.com/corp/docs/landing/mcu/index.htm.

8. ScatterWeb. ScatterWeb - MSB430. [Online]

http://www.scatterweb.com/content/products/research_line/msb430.en.html.

9. mspgcc- GCC toolchain for MSP430. [Online] http://mspgcc.sourceforge.net/.

10. Mspsim - an extensible simulator for msp430-equipped sensor boards. Joakim Eriksson,

Adam Dunkels, Niclas Finne, Fredrik Osterlind. Netherlands : European Conference on

Wireless Sensor Networks, 2007.

11. Moteiv Hardware Product Transition Notices. [Online] http://www.sentilla.com/moteiv-

transition.html.

12. Fredrik Osterlind. [Online] http://www.sics.se/~fros/cooja.php.

13. F. Amin, A.H Jahangir, and H. Rasi fard. Analysis of Public-Key Cryptography for

Wireless Sensor Networks Security. World Academy of Science, Engineering and

Technology, 2008.

14. Chris Townsend, Steven Arms. Wireless Sensor Networks: Principles and Applications.

s.l. : microstrain.com.

15. Jing Deng, Richard Han, Shivakant Mishra. Enhancing Base Station Security in

Wireless Sensor Netowrks. s.l. : University of Colorado, Department of Computer Science.

Technical Report CU-US-951-03.

16. ContikiSec: A Secure Network Layer for Wireless Sensor Networks unider the Conitki

Operating System. Lande Casado, Philippas Tsigas. s.l. : Proceedings of the 14th Nordic

Conference on Secure IT Systems NordSec 2009, 2009. ISBN: 978-3-642-04765-7.

17. John Paul Walters, Zhengqiang Liang, Weisong Shi, and Vipic Chaudhary. Wireless

Sensor Network Security: A Survey. Security in Distributed, Grid, and Pervasive Computing.

s.l. : CRC Press , 2006.

18. Apostolos, Pyrgelis. Cryptography and Security in Wireless Sensor Networks.

[Presentation Slides] Greece : Department of ComputerEngineering and Informatics, 2009.

19. Jamming Detection Mechanism for Wireless Sensor Networks. Murat Cakiroglu, Ahmet

Turan Ozcerit. s.l. : ICST, 2008. ISBN: 978-963-9799-28-8.

20. Emergent Properties: Detection of the Node-capture Attack in Mobile Wireless Sensor

Networks. Mauro Conti, Roberto Di Pierto, Luigi V. Mancini, and Alessandro Mei. s.l. :

Proceedings of the first ACM conference on Wireless Netowrk Security, 2008.

49

21. Chris Karlof, David Wagner. Secure Routing in Wireless Sensor Networks: Attacks and

Countermeasures. s.l. : University of California at Berkeley, 2003.

22. Wassim Znaidi, Marine Minier, Jean-Phillippe Babau. An Ontology for Attakcs in

Wireless Sensor Networks. s.l. : INRIA, 2008. inria-00333591, version 1.

23. SPINS: security protocols for sensor networks. Adrian Perrig, Robert Szewczyk, J. D.

Tygar, Victor Wen, David E. Culler. s.l. : Wireless Networks, Volume 8 , Issue 5

(September 2002), Pages: 521 - 534, 2002. ISSN:1022-0038.

24. TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Chris Karlof,

Naveen Sastry, David Wagner. Baltimore : 2nd International Conference on Embedded

Networked Sensor Systems SenSys 2004, 2004. ISBN:1-58113-879-2.

25. TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor

Networks. An Liu, Peng Ning. s.l. : IEEE Computer Society, 2008. ISBN:978-0-7695-3157-

1.

26. Tmote Sky: Product Description. [Online]

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf.

27. COOJA/MSPSim: interoperability testing for wireless sensor networks. Joakim Eriksson,

Fredrik Osterlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels, Thiemo Viogt, Robert

SAuter, Pedro Jose Marron. Rome, Italy : International Conference On Simulation Tools

And Techniques For Communications, Networks And Systems & Workshops, 2009.

ISBN:978-963-9799-45-5.

28. Unleashing public-key cryptography in wireless sensor networks. Lopez, Javier. s.l. : IOS

Press Amsterdam, The Netherlands, 2006. ISSN:0926-227X.

29. RSA Algorithm. [Online] http://pajhome.org.uk/crypt/rsa/contrib/RSA_Project.pdf.

30. RSA Project. [Online] http://pajhome.org.uk/crypt/rsa/contrib/RSA_Project.pdf.

31. Hnerik Ahlsrom, Karl-Johan Skoglund. Encryption in Delocalized Access Systems.

Linkoping : Linkpoing Tekniska Hogskola, 2007. LITH-ISY-EX--07/4046--SE.

32. Chou, Wendy. Elliptic Curve Cryptography and Its Applications to Mobile Devices. s.l. :

University of Maryland, College Park.

33. Institute, SANS. Elliptic Curve Cryptography and Smart Cards.

34. Microsoft. Overview of ECDH Algorithm. [Online] Microsoft, 2010.

http://msdn.microsoft.com/en-us/library/cc488016.aspx.

35. LibTomCrypt. [Online] http://libtomcrypt-cug.googlecode.com.

36. TomFastMath. [Online] http://www.freshports.org/math/tomsfastmath/.

37. Debian. [Online] http://packages.debian.org/sid/libtommath-dev.

38. Relic Toolkit. [Online] http://code.google.com/p/relic-toolkit/.

39. BitInt - Multiprecision llibrary for Contiki. [Online] http://www.ohloh.net/p/bitint-

multipre.

40. Dunkels, Adam. The contiki Operating Systems. Contiki. [Online]

http://www.sics.se/contiki/developers/memory-block-management-in-contiki.html.

41. Toledo, Sivan. Exercise in Embedded Computing: Contiki Basics. [pdf] s.l. : Tel-Aviv

University.

42. Micro power meter for energy monitoring of wireless sensor networks at scale. Xiaofan

Jiang, Prabal Dutta, David Culler, Ion Stocia. Cambridge, Massachusetts, USA :

Proceedings of the 6th international conference on Information processing in sensor networks,

2007. ISBN:978-1-59593-638-X.

43. Software-based on-line energy estimation for sensor nodes. Adam Dunkels, Fedrik

Osterlind, Nicolas Tsifes, Zhitao He. Ireland : ACM, Proceedings of the 4th workshop on

Embedded networked sensors, 2007. ISBN:978-1-59593-694-3.

44. Moller, Bodo. Algorithms for multi-exponentiation. Darmstadt : Technische Universit at

Darmstadt, Fachbereich Informatik, 2001. Technical Report TI-8/01.

50

