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Abstract 

This thesis deals with the problem of designing a new real-time scheduling algorithm 

for independent periodic tasks with static priority on multi-processor platforms called 

IBSP-TS (Interval Based Semi-Partitioned Task Splitting). The widely implemented 

priority policy Rate-Monotonic is applied in the algorithm. IBSP-TS combines 

interval-based semi-partition technique and another multi-processor scheduling 

algorithm SPA2 to achieve the highest possible worst-case utilization bound to ln2 

while meeting the deadlines. 

 

The assignment of IBSP is divided into two parts. In the first part, tasks are 

categorized into several interval groups. Each group has its own assignment policy 

except for the last interval. In most cases, there are some tasks residual after applying 

all the policies. All the residual tasks are handled along with the tasks from last 

interval in the second part of the algorithm. The schedulability can be ensured by 

feasibility tests. 

 

The simulation experiment shows IBSP-TS has some good properties compared to the 

best static-priority multi-processor scheduling algorithm at this moment. It generally 

has higher success ratio, less sorted tasks and also less task migrations. In the best 

case, it can achieve the break-down utilization point to 76% in simulation. 

Additionally, this algorithm can let system designer to choose the number of intervals 

in the algorithm. The more intervals, the less number of sorted tasks there are. 
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I  
 

Introduction 

 

 

It has already become the truth that people’s life relies more and more on computers. 

Computers systems are ubiquitous. It can range from the smallest PDA device to 

super-computer. Some of them need high performance; some of them may require 

fault tolerance; and some of them have strong timing constraints. For a computer 

system with strong timing constraints, it is called real-time systems. The chief design 

goal of real-time system is not high throughput, but rather a guarantee of the 

consistency concerning the amount of time its applications take. Therefore, the 

correctness of a real-time system is not only logical and functional, but also temporal. 

 

In real world, there are always some critical issues that have to be processed within a 

fixed amount of time whenever invoked. For example, mechanical systems on 

production lines, breaking systems in vehicles, flying systems in aircrafts and space 

shuttles, E-commerce systems in stock exchanges and consoles in nuclear power 

plants, all these need real-time system to ensure the temporal correctness.  

 

All the real-time system can be categorized into two groups, hard real-time systems 

and soft real-time systems. In hard real-time systems, the consequences of not 

fulfilling a time constraint may be catastrophic, such as medical systems. Hence, 

predictability is paramount among all concerns. On the other hand, for soft real-time 

systems, single failures of not fulfilling a time constraint is acceptable, examples of 

soft real-time systems are multimedia systems and communication systems. 

 

Moore’s Law mentioned that the number of transistors per area unit on a integrate 

circuit doubles approximately every two years. It is certain that, with faster processors, 

system designers can use the increased capacity to deliver better services. 

Nevertheless, a fast computer is not enough to ensure real-time properties. Therefore, 

utilizing the resource as much as possible and ensuring real-time processing lead to a 

research of real-time scheduling. For the time being, real-time scheduling for 
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uniprocessor is quite mature. Meanwhile, the development for multi-core processor is 

impressive these years. In 2009, even a processor with 100-core was released [1]. 

However, those well-developed scheduling algorithms for uniprocessor perform 

poorly in multi-processor systems in the term of worst-case utilization bound. It is 

proved that only 50% can be achieved [2]. Therefore, developing new algorithms for 

multi-processor received considerable attention these years.  

 

Recently, there is a static-priority scheduling algorithm for multi-processor systems – 

IBPS [3] has been proposed. Tasks with the range (0, 1] are categorized into seven 

intervals to achieve a worst-case utilization bound as 55.2%.Later, another scheduling 

algorithm for multi-processor systems called the SPA2 [4], has theoretically proved 

that the worst-case utilization bound for static-priority multi-processor scheduling can 

achieve to ln2, which is the highest possible value. However, the SPA2 algorithm has 

to sort all the tasks in a task set which is not applicable for online scheduling. 

Additionally, SPA2 suffers from the number of subtasks from an individual task, 

which can bring considerable context switch in a system. 

 

In this paper, a new static-priority scheduling algorithm for multi-processor systems 

scheduling called IBSP-TS is proposed, which is an interval based semi-partitioned 

scheduling algorithm. It tries to assign as many tasks as possible to a single processor. 

However, if a task cannot be fully assigned to a single processor, it will be split into 

one or more subtasks. IBSP-TS combinations the ideas from IBPS algorithm and 

SPA2 algorithm to reach the same worst-case schedulable utilization bound as ln2. 

Meanwhile, it reduces the number of preemptions and migrations for practical use and 

holds a higher schedulable rate than SPA2. 

1.1 Contributions 

The main contributions of this thesis are as follows: 

 

1. IBSP-TS achieve the highest possible worst-case utilization bound of a 

static-priority multi-processor scheduling to ln2. 

2. Online scheduling is possible with IBSP-TS 

3. There are less overhead for IBSP compared to SPA2 algorithm. 

4. For mixed tasks and heavy utilization tasks, IBSP-TS has better schedulability 

than SPA2. 

5. It is possible for the system designer to choose the number of intervals in 

IBSP-TS. The more intervals, the less sorted tasks are. 

1.2 Thesis Outline 

The rest of this thesis is organized as follows: 
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 Chapter II describes the related background of real-time scheduling.  

 Chapter III presents the necessary assumption and models of tasks and the system 

be used in new algorithm IBSP-TS.  

 The design details of IBSP-TS algorithm are shown in Chapter IV.  

 In Chapter V, the performance of IBSP-TS is estimated by comparing with 

another algorithm SPA2.  

 Finally, Chapter VI concludes this thesis with a discussion on the applicability 

and extendibility of IBSP-TS algorithm. 
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II  
 

Related Background 

 

 

In this section, the related background of real-time scheduling is presented, such as 

what are real-time tasks, including its parameters and priorities; how is utilization 

bound defined; what is scheduling feasibility test; what is the difference between 

different scheduling schemes; and various multi-processor scheduling algorithms. 

2.1 Real-Time Tasks 

A task is unit of work such as a program or code-block that when executed provides 

some service of an application. It can be either dependent or independent. For a 

dependent task, its execution may require an exclusive access to a shared resource 

(e.g., a file, a data structure in shared memory or an external device other than 

processor time) or it has some precedence constraints. If a resource is shared among 

multiple tasks, then some tasks may be blocked from being executed until the shared 

resource is free. Similarly, if tasks have precedence constraints, then one task may 

need to wait until another task finishes its execution. A region of code with such a 

requirement is called a critical section. Tasks are said to be independent when they 

have no critical sections. In this thesis, each task is assumed to be independent in the 

sense that it does not interact in any manner (accessing shared data, exchanging 

messages, etc.) with other tasks. The only resource the tasks share is the processor 

platform. 

 

A real-time task is a task running in real-time system. In general, a real-time task may 

require a specific amount of particular resource during a specific period of time. A 

real-time task system can be classified in as periodic task, aperiodic tasks or sporadic 

tasks.  

 

A periodic task is a task that arrives with a continuous and deterministic pattern of 
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time interval. That is, it continuously requests resources at time values. In addition to 

this requirement, a real-time periodic task must complete processing by a specified 

deadline relative to the time that it acquires the processor. 

 

An aperiodic task is a stream of jobs arriving irregularly. There may either be no 

bound or only a statistical bound on the arrival period. It requests a resource during 

non-deterministic request periods. Each task job is also associated with a specified 

deadline, which represents the time necessary for it to complete its execution. 

 

A sporadic task is an aperiodic task with a hard deadline and a minimum inter-arrival 

time. 

 

In this thesis, it is assumed that only periodic tasks are considered. 

2.1.1 Task Parameters 

A task set is a set of n independent periodic tasks denoted as                  . 

An independent periodic task   can be fully characterized by the following 

parameters. 

 

 Period (  ): Each task in periodic task system has an inter-arrival time of 

occurrence, called the period of the task. In each period, a job of the task, which 

is the recurrent copy of the task, is released. 

 

 Offset (  ): A task is ready to execute at the beginning of each period, called the 

released time, of the task. The first job of a task may arrive at any time-instant; an 

offset defines the release time of the first job. If the relative deadline of each task 

in a task set is less than or equal to its period, then the task set is called a 

constrained deadline periodic task system. If the relative deadline of each task in 

a constrained deadline task set is exactly equal to its period, then the task set is 

called an implicit deadline periodic task system. If a periodic task system is 

neither constrained nor implicit, then it is called an arbitrary deadline periodic 

task system. In this thesis, scheduling of implicit deadline periodic task system is 

considered. 

 

 Deadline (  ): Each job of a task has a relative deadline that that defines the time 

window in which the job has to be executed since its release time. The relative 

deadlines of all the jobs of a particular periodic task are same. The absolute 

deadline of a job is the time instant equal to released time plus the relative 

deadline. 

 

 WCET (worst-case execution time) (  ): Each periodic task has a WCET that is 

the maximum execution time that each job of the task requires. 
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 Utilization (  ): The utilization of a task is actually the utilization of processor for 

a task, which is the ratio of the execution time of a task to its period. 

2.1.2 Task Priorities 

In a periodic task system, all that are released but have not complete their individual 

execution by the time t are called active tasks. When two or more active tasks 

compete for a same processor, some rules must be applied to for the scheduling 

dispatcher to allocate the use of the processor. It assigns priorities to all tasks that are 

eligible for execution and then selects the highest priority one on a processor. The 

priority of a task can be static or dynamic.  

 

For static-priority scheduling, priorities never change once they are assigned. Hence, 

each job of a task inherits its initial priority. Static-priority scheduling dispatchers are 

inherently memoryless in that the prioritization of tasks is independent of previous 

scheduling decisions. Rate-monotonic (RM) scheduling [5] is an example of such a 

policy for periodic and sporadic tasks. Under the RM prioritization, tasks with shorter 

periods are given higher priority. 

 

Under dynamic-priority discipline, the priority order of an active task may be changed 

during its execution. For different jobs of a task may have different priorities relative 

to other tasks in the system. Earliest-deadline-first (EDF) scheduling [5] is a 

dynamic-priority policy often considered for scheduling periodic and sporadic tasks. 

It gives jobs with earlier absolute deadlines with higher priority. 

 

When a task is released at time t, its execution may be delayed due to other higher 

priority tasks running in the system. In RM scheduling, a task with smaller period has 

higher priority. In case, two tasks have exactly the same period, they have equal 

priority, which means the scheduling dispatcher can randomly pick either of them. 

 

In this thesis, the RM scheduling priority is adopted. 

2.2 Utilization Bound 

A processor is said to be fully utilized when an increase in the computation time of 

any of the tasks in a task set will make the task set unschedulable. The least upper 

bound of the total utilization is the minimum of all total utilizations over all sets of 

tasks that fully utilize the processor. This least upper bound of a scheduling algorithm 

is called the worst-case utilization bound (minimum achievable utilization bound) or 

simply utilization bound of the scheduling algorithm. A scheduling algorithm can 

feasibly schedule any set of tasks on a processor if the total utilization of the tasks is 

less than or equal to the utilization bound of the scheduling algorithm. For example, in 

uniprocessor scheduling, the utilization bound of RM is 69% and the utilization bound 
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of EDF is 100% [5].  

 

 

2.3 Scheduling Feasibility Analysis 

To predict the temporal behavior and to determine whether the timing constraints of 

an application tasks will be met during runtime, feasibility analysis of scheduling 

algorithm is conducted. A schedule is said to be feasible if it fulfills all application 

constraints for a given set of tasks. A set of tasks is said to be schedulable if there 

exists at least one scheduling algorithm that can generate a feasible schedule. A 

scheduling algorithm is said to be optimal with respect to schedulability if it can 

always find a feasible schedule whenever any other scheduling algorithm can do so. 

 

Feasibility analysis of a hard real-time system refers to the process of determining 

offline whether the specified system will meet all deadlines at runtime. A feasibility 

test is introduced by doing feasibility analysis. It uses one or several conditions to 

determine whether a task set is feasible for a given scheduling algorithm. The 

feasibility test can be necessary and sufficient or only sufficient. 

 

For a sufficient feasibility test, a task set pass the test shows that it is definitely 

schedulable. However, if a task set does not pass the sufficient feasibility test, it may 

still be schedulable. While, for a necessary and sufficient feasibility test, if and only if 

a task set pass test, its tasks can meet their individual deadlines. 

 

Processor utilization analysis is one of the techniques to perform the feasibility test. It 

uses the sum of utilizations of all the tasks belong to the set, that is    
 
   . While, in 

multi-processor system, system utilization is often used which represent the utilization 

of a task set on m processors. 

 

In 1973, Liu and Layland derived a sufficient feasibility test for RM scheduling and 

an exact test for EDF scheduling on uniprocessor. 

 

A set of n tasks is schedulable by the RM algorithm if   
 

       
 

    
 

   
                  . 

 

For the EDF algorithm, a set of n periodic tasks is schedulable if and only if 

 

         
 

   
. 

 

In 2001, another test is presented which is called hyperbolic test [6] for 

Rate-Monotonic scheduling. It dominates the bound of Liu & Layland for RM, but it 
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has the same effect as Liu & Layland Test if there are infinite numbers of tasks on a 

processor.  

 

         

 

   

 

2.4 Scheduling Features 

When the number of tasks does not exceed the number of processors, each task can 

simply be assigned a dedicated processor. However, usually this is not the case. At 

least one processor must be shared among multiple tasks. Therefore, the most 

important part of real-time system design is to choose a good scheduling scheme 

which can fulfill the application constraints. In the following part, various scheduling 

schemes are presented. In this thesis, IBSP-TS are defined as a preemptive static 

priority multi-processor scheduling algorithm. 

2.4.1 Preemptive vs. Non-Preemptive 

A scheduling algorithm is preemptive if the release of a new job of a higher priority 

task can preempt the job of a currently running lower priority task. During runtime, 

task scheduling is essentially determining the highest priority active tasks and 

executing them in the free processor. For example, RM and EDF are examples of 

preemptive scheduling algorithm. 

 

On the contrary, in non-preemptive scheme, a currently executing task always 

completes its execution before another active task starts execution. Therefore, in 

non-preemptive scheduling a higher priority active task may need to wait in the ready 

queue until the currently executing task (may be of lower priority) completes its 

execution.  

 

A preemptive scheduling algorithm can succeed in meeting deadlines where a 

non-preemptive scheduling algorithm fails but a non-preemptive scheduling algorithm 

has naturally the advantage of no run-time overhead caused by preemptions. In this 

thesis, only preemptive scheduling is considered. 

2.4.2 Static vs. Dynamic 

The scheduling can be generated offline or online, which represent static (offline) 

scheduling and dynamic (online) scheduling separately. 

 

When the complete schedulability analysis of a task system can be done before the 
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system is put in mission, the scheduling is considered as static scheduling. Scheduling 

dispatcher holds a time table, which contains explicit start and completion times for 

each task job that controls the order of execution at run-time. In order to predict 

feasibility of a task set, static scheduling analysis requires the availability of all static 

task parameters, like periods, execution time, and deadlines.  

 

Dynamic scheduling makes scheduling decisions at each time-instant based upon the 

characteristics of the task that have arrived so far. It has no knowledge of tasks that 

may arrive in the future. Since a newly arriving task can interfere with the execution 

of already existing tasks in the system, an admission controller is needed to determine 

whether to accept a new task that arrives online. The feasibility test of a scheduling 

algorithm can be used as the basis for designing an admission controller for dynamic 

systems. However, evaluating the feasibility test when a new task arrives must not 

take too long time. This is because using processing capacity to do the feasibility test 

could detrimentally affect the timing constraints of the existing tasks in the system. 

2.4.3 Uniprocessor vs. Multi-Processor 

Real-time scheduling theorists have extensively studied for hard real-time scheduling 

with uniprocessor. Uniprocessor scheduling algorithm executes tasks on a single 

processor. The schedulability of a given set of tasks on uniprocessor platform can be 

determined by using Liu and Layland Test. It is well known that RM and EDF are 

optimal algorithms for uniprocessor scheduling. 

 

At this point, it is worth to mention that the RM algorithm is widely used in industry 

because of its simplicity, flexibility and its ease of implementation [7, 8]. It can be 

used to satisfy the stringent timing constraints of tasks; while at the same time it can 

also support execution of a-periodic tasks and meet the deadlines of the periodic tasks. 

RM can be modified easily, for example, to implement priority inheritance protocol 

for synchronization purpose [9]. The conclusion of the study in [7] is that “...the 

Rate-Monotonic algorithm is a simple algorithm which is not only easy to implement 

but also very versatile”. 

 

Multi-core processors are quickly emerging as the dominant technology in the 

microprocessor industry. Major chip manufacturers have already adopted multi-core 

technologies due to the thermal problems that distress traditional single-core chip 

designs in terms of processor performance and power consumption. In 2009, even a 

100-core processor had been released [1]. Recently, many steps have been taken 

towards obtaining a better understanding of hard real-time scheduling on 

multi-processors. 

 

As multi-processor systems have faster computational power and fault-tolerance 

feature, use of multi-processor and distributed systems in real-time applications is 

becoming popular. As compared to scheduling real-time tasks on a uniprocessor, 
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scheduling tasks on multi-processor and distributed systems is a much more 

challenging problem. 

2.5 Multi-Processor Scheduling 

Multi-processor scheduling algorithms are often categorized as global scheduling and 

partitioned scheduling. However, it has been proved that neither global nor 

partitioned static-priority multi-processor scheduling algorithm can achieve a 

utilization bound greater than 50% [2]. Therefore, in order to achieve utilization 

bound greater than 50%, another new category called semi-partitioned scheduling 

comes out recently, which introduces the technique task splitting into the traditional 

partitioned scheduling algorithm. In the following part, each of them is presented. 

2.5.1 Global Scheduling 

Global scheduling algorithms store tasks which have arrived but execution unfinished 

in one queue that is shared by all processors. In other words, the highest priority task 

is always selected to be executed whenever the scheduling dispatcher is invoked, 

regardless of which processor is being scheduled. At every moment，the m highest 

priority tasks among those are selected for execution on the m processors. In addition, 

task preemptions and migrations are permitted, that is a task preempted on a particular 

processor may resume execution on the same or on a different processor. Due to this, 

global scheduling on average utilizes computing resource well. 

 

Proportionate-fair (Pfair) scheduling [10, 11] is a global scheduling approach 

proposed as a means for optimally scheduling periodic tasks on multi-processors. 

Pfair scheduling uses a quantum-based model. In Pfair scheduling, although a task has 

started executing, lower priority tasks receive a guaranteed time quantum per time 

unit for execution, all tasks hence make some kind of progress per time unit. It is 

known that PF [10], PD [11] and PD2 [12] are optimal Pfair algorithms which can 

theoretically achieve 100% schedulable system utilization. The PD2 is known to be 

the most efficient in the optimal Pfair algorithms. LLREF algorithm [13] which is 

based on a different technique relying on the original notation called T-L Plane (Time 

and Local Execution Time Domain Plane), can also achieve 100% schedulable system 

utilization.  

 

However, these algorithms will generate a number of task preemptions and migration 

overhead and they are very complex to implement. There are some simple global 

dynamic priority scheduling algorithms which perform fairly well with a small 

number of task preemptions and migration overhead, such as EDF-US[1/2] [14, 15] 

scheduling policy. It gives only a few high-utilization tasks top priority; all other tasks 

are scheduled according to deadlines. EDZL (Earliest Deadline Zero Laxity) [16] is a 

hybrid preemptive dynamic priority scheduling scheme in which tasks with zero 

laxity are given highest priority and other tasks are ranked by deadline. Nevertheless, 
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their utilization bounds for schedulable systems are down to 50%.  

 

As applies to static priority scheduling, it is known that Rate-Monotonic priority 

assignment scheme is not optimal for multi-processor systems, because global RM 

can miss deadline even utilization approaches zero [17].  

 

RM-US [m/(3m-2)] [18] algorithm (m is the number of processors) can guarantee 

schedulability as long as the multiprocessor utilization is below 33%. Later, an 

improved version RM-US [0.37482] [19] guarantees schedulability for all systems up 

to 37.482% for the system utilization. These two algorithms categorize a task as 

heavy or light. A task is said to be heavy if the utilization exceeds a certain threshold 

number and a task is said to be light otherwise. Heavy tasks are assigned with higher 

priority and the light tasks are assigned with lower priority. The relative priority order 

among light tasks is given by RM. 

 

Nowadays, the best known utilization bound of global static-priority scheduling is 

38%, which is reached by SM-US [2/(3+√5)] (Slack Monotonic) [20]. It uses similar 

priority scheduling scheme which categorizes tasks as heavy and light and assigns the 

highest priority to heavy tasks. The relative priority order of light tasks is given by 

SM, which means task    is assigned higher priority than task    if          

  . 

 

Later, another global scheduling algorithm WM (Weight-Monotonic) [21] was 

proposed and has been proved that the worst-case utilization bound is 50% [18]. 

However, the WM algorithm generates a large number of task preemptions due to the 

characteristic of Pfair scheduling. 

2.5.2 Partitioned Scheduling 

The alternative to global scheduling is partitioned scheduling. It partition a task set 

into groups beforehand. Each processor holds a separate ready queue such that each 

task group which is assigned to a specific processor. In other words, during the run 

time, tasks may not migrate from one processor to another. Thus, multi-processor 

scheduling is equivalent to multiple uniprocessor systems.  

 

The predominant approach of scheduling multi-processor hard real-time systems is 

usually for partitioned scheduling, since it has the virtue of applying efficient 

uniprocessor techniques on each processor. As no task migrations occur in partitioned 

scheduling, it is superior to global in practice. Additionally, the schedulability of 

partitioned scheduling can be verified by using well-understood uniprocessor analysis 

techniques. 

 

The most well known static priority scheduling algorithm is RM-FF [22], which use 

First-fit bin-packing algorithm. For First-fit, it means that tasks are assigned into in 

increasing index order visited processors. It has been proved by Oh & Baker that the 
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utilization guarantee bound in RMFF for a system with m processors using the is 

between         and                    [23]. The lower bound shows 

that the worst-case utilization bound is 41%. Another algorithm, RM-FFDU (First-Fit 

Decreasing Utilization) [24], which conducts the FF heuristic after sorting the tasks in 

decreasing utilization order; it usually performs better than RM-FF algorithm. 

 

Thereafter, another static priority scheduling algorithm called R-BOUND-MP-NFR 

(multi-processor next-fit-ring) [2] is presented with the best result of partitioned 

static-priority scheduling reaching 50%. It introduces the NFR heuristic into the 

R-BOUND-MP algorithm. Here, R-BOUND-MP is a previously known 

multi-processor scheduling algorithm which combines R-BOUND [25] with First-fit 

bin-packing algorithm and exploits R-BOUND.  

 

Additionally, there are some simple dynamic-priority scheduling algorithms, such as 

EDF-FF (Earliest Deadline First-Fit) [26] and EDF-BF (Earliest Deadline Best-Fit) 

[26]. For best-fit, it means a task is assigned to a processor which verify the 

schedulability test after assignment and which maximizes the remaining processor 

capacity. The system utilization bounds of these algorithms are also 50%, but these 

partitioned scheduling algorithms can reduce more preemptions and task migration 

overhead than global scheduling algorithms. 

2.5.3 Semi-Partitioned Scheduling  

It has been proved that neither global nor partitioned static-priority multi-processor 

scheduling algorithm can achieve a utilization bound greater than 50% [2]. Therefore, 

nowadays a lot of work has been done on semi-partitioned scheduling in order to 

achieve utilization bound higher than 50%. Semi-partitioned scheduling algorithms 

introduce techniques such as task splitting into the traditional partitioned scheduling 

algorithm. When the spare capacity of the individual processor is not enough to fully 

accept the execution of a task, it split the task into two or more pieces. Each piece is 

called a subtask and to a dedicated processor. In other words, this task execution is 

allowed to migrate to different processors. Meanwhile, most tasks are statically 

assigned to one fixed processor as in traditional partitioned scheduling. Here, the most 

important condition is that no subtasks split from one task run in parallel. In such a 

way that a task never returns to the same processor within the same period once it is 

migrated from one processor to another processor. 

 

RMDP (Rate-Monotonic Deferrable Portion) [27] is a static priority scheduling 

algorithm based on the semi-portioned scheduling technique and reaches to the 

worst-case utilization bound as 50%. In RMDP, tasks are sorted in increasing period 

order and assigned to processors sequentially. If a task t makes the total utilization of 

a processor P exceed its utilization bound, the task is split into two parts. The first part 

is assigned to that processor P, and the second part is assigned to the next chosen 

processor.  
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DM-PM (Deadline Monotonic-Priority Migration), [28] an algorithm based on the 

concept of semi-partitioned scheduling also achieves utilization bound higher than 

50%. In DM-PM algorithm, each task is assigned to a particular processor by using 

some kinds of bin-packing heuristics, upon which the schedulable condition for DM is 

satisfied. If there are no such processors, DM-PM shares the task with more than one 

processor. By doing this, an unfeasible task with classical partitioned approaches can 

be scheduled. 

a task is qualified to migrate only if it cannot be assigned to any individual processors.  

 

Another static-priority scheduling algorithm – IBPS (Interval Based Partitioned 

Scheduling) [3] has been proposed with system utilization bound 55.2%. In IBPS, 

tasks are grouped into seven utilization intervals and then the tasks from these groups 

are assigned to processors using different policies. As IBPS has only two subtasks, the 

total number of migrations caused by split tasks is lower than of any other 

task-splitting algorithm.  

 

In a later work, a partitioned scheduling algorithm – PDMS-HPTS (Partitioned 

Deadline Monotonic Scheduling - Highest Priority Task Splitting) [29] with task 

splitting technique used on the highest priority task can lead to a utilization bound of 

60%. A specific instance of this class, where tasks are allocated in the decreasing 

order of sizes using PDMS-HPTS-DS [29] can achieves system utilization bound of 

65% theoretically. The utilization bound of 69.3% is achieved when the utilization of 

each individual task is restrictively less than 41.4%. Additionally, it has shown that 

the utilization bound of PDMS-HPTS-DS in simulation can reach to 88% in practice  

 

In term of worst-case utilization bound, the best algorithm for multi-processor with 

static priority so far is SPA2 (Semi-Partitioned Algorithm 2), which has theoretically 

shows the utilization bound of 69.3% in worst case [4]. In SPA2, tasks are categorized 

into heavy tasks and light tasks. For heavy tasks, there is a pre-assigning mechanism. 

For light tasks, the algorithm assigns tasks in decreasing period order, and always 

selects the processor with the least workload assigned so far among all processors, to 

assign the next task.  

 

Task splitting technology can also be applied to dynamic-priority scheduling, for 

example, the well known EKG (EDF with task splitting and K processors in a Group.) 

[12] and Ehd2-SIP (EDF with Highest priority Deferrable portion-2 task-Sequential 

assignment in Increasing Period) [30] which improves schedulability with a few 

preemptions.  

 

EKG assigns each task to a particular processor like conventional partitioned 

scheduling algorithms. However, it can split a task into parts if necessary. It assigns 

the first part to the current processor on which the assignment is going and the second 

part to the next picked processor. The two parts of a split task are scheduled 
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exclusively. The least upper bound of the schedulable system utilization for EKG 

depends on the value of a parameter k which should be selected in the range of 

      where M is the number of processors in a system. A large k results in a 

higher bound but more preemptions. The bound becomes 66% in the case of k=2 and 

100% in the case of k=M. Namely EKG is an optimal algorithm in the case of k=M, 

although there are more preemptions[30].  

 

The Ehd2-SIP algorithm takes a similar approach to EKG in such a way that each task 

is classified into a fixed task or a migratable task, and the approach is more simplified 

for practical use. While EKG utilizes the full capacity of every processor on which a 

migratable task is executed, Ehd2-SIP does not fully utilize the processor to reduce 

the computation complexity. Thus, the scheduling of migratable tasks is more 

straightforward than EKG. Although it can often successfully schedule a task set with 

system utilization much higher than 50%, the utilization bound is 50%. From the 

viewpoint of balance between schedulability and complexity, Ehd2-SIP and EKG with 

small parameter k are attractive.  

 

Another presented algorithm EDDP [31] integrates the notions of Ehd2-SIP and EKG. 

In EDDP, the deadline of a split task is changed to a smaller deadline called “virtual 

deadline”. EDDP succeeds the design simplicity of Ehd2-SIP for practical use; and at 

the same time, it partially imitates the approach of EKG but with an improved system 

utilization bound. The advantage of EDDP is that the implementation cost is not far 

beyond the traditional partitioned scheduling algorithms, while the worst-case system 

utilization bound is no less than 65%.  

 

Moreover, an algorithm called EDHS (Earliest Deadline Highest priority Split) [32] 

based on EDF also uses the task splitting techniques. The only difference between 

EDHS and those previous splitting techniques is that the tasks are never split as long 

as they can be partitioned. It has been proved that EDHS algorithm improves 

schedulable multi-processor utilization by 10 to 30% over the traditional partitioning 

approach. 

 

In this thesis, the presented algorithm IBSP-TS combines the idea of IBPS [3] and 

SPA2 [4]. It has the highest possible worst-case utilization bound as ln2 and 

dominates all other static-priority multi-processor scheduling algorithms except for 

the SPA algorithm which also achieved to ln2. Nevertheless, IBSP-TS has some other 

advantages over SPA2, such as less task migrations, less number of sorted tasks. 
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Figure 1: Design space of multi-processor real-time scheduling 

 

Figure 1 shows all the multi-processor real-time scheduling algorithms in existing 

literature. As it shows that multiprocessor real-time scheduling can be categorized into 

global scheduling, partitioned scheduling and semi-partitioned scheduling. Each of 

these categories can be divided into static priority scheduling algorithm and dynamic 

priority scheduling algorithm. In global scheduling sub-group, there is a special 

family called Pfair scheduling algorithm. The last layer of this figure shows that the 

highest utilization bound of that category.
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III  
 

Models & Assumptions 

 

 

In this section, the definition of the system and tasks used by IBSP-TS algorithm is 

presented. All the assumptions and configuration in the system are critical for 

designing a real-time scheduling algorithm. In this thesis, the scheduling problem is 

referring to the assignment of n independent, periodically arrived real-time tasks on m 

identical processors in Rate-Monotonic priory. 

 

3.1 System Model 

The system used in this thesis is a memory shared multi-processor system composed 

of m processors, P1, P2, ... , Pm. Each processor within the multi-processor system is 

identical. All code and data of tasks are shared among all processors. The overhead of 

inter-processor is negligible, which means there is no task migration cost for the 

schedulability test. Whereas, the number of context switches is counted as a metric of 

algorithm performance.  

3.2 Task Model 

The system has a task set of n periodic tasks denoted as                  . All 

these tasks are independent and preemptive. Moreover, there is no synchronization 

among tasks. No jobs of a task or subtasks can be executed on two or more processors 

simultaneously, and a processor cannot execute two or more tasks simultaneously. 

Jobs of the same task must be executed sequentially which means that every job of 

   is not allowed to run before the preceding job of    completes.  
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Each task from this task set is characterized by a pair of parameters        .    

represents the period of the task and    is the WCET        . For periodic tasks, its 

relative deadlines are equals to its period. Every time a task    arrives, a job      of the 

task is created to denote the k-th copy of the task. A task    is released and ready for 

execution at every time   . The task utilization   , is the ration of its execution time to 

its period,     
   

   
.  

Furthermore, a task   can be split into two or more subtasks    
 ,   

 ,…,   
   which 

means a task execution can be migrated to more than one processors. The sum of the 

execution time of all those subtasks split from one task is exactly equals to the  ’s 

execution time, that is    
  

   
    . The period of a subtask inherits from its 

original task. Thus, the utilization of a subtask becomes     
  

 

   
 

 

The total utilization of a task set (system utilization) which is defined as the sum of 

utilizations of all the tasks belong to the set (in a system), that is    
 
   . All these 

parameters of a task are not allowed to modify except for subtasks, which split the 

execution time to several parts. 
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IV  

 

IBSP-TS Algorithm 

 

 

In this section, assignment approach and task splitting in IBSP-TS algorithm are 

presented in detail. Moreover, non-parallel execution of subtasks is shown step by 

step with mathematic proof. Additionally, pseudo-code and a task assignment example 

are listed in order to give a more clear understanding of the algorithm. 

4.1 Overview 

The task assignment is divided into two phases so as to reach the best possible 

worst-case utilization bound as ln2. Task utilization set (0, 1] is divided into i disjoint 

subsets called utilization intervals       . Tasks from each interval            are 

assigned to some processors using a particular policy for   . By doing this, not only 

the utilization bound can be achieved to ln2 in each processor, but also the number of 

tasks left unassigned after applying these policies can be reduced. Any task 

unassigned in          and tasks from the last interval    are assigned to processors in 

by using SPA2 [4]. The more intervals, the less left unassigned tasks left for sorting 

which is good for online scheduling. Therefore, it is a trade-off between the number 

of intervals and the number of sorting tasks.  

 

In this thesis, 27 disjoint utilization intervals        . The unassigned task in intervals 

         and tasks from the last interval     are assigned by using SPA2. 
 

4.2 Phase One 

4.2.1 Intervals and Policies 

Lemma 1: In Phase One, each processor has the worst-case utilization strictly 
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greater than ln2 and all the tasks on the processor can meet their deadlines.  

 

Proof: The utilization range (0, 1] is divided into twenty-seven disjoint utilization 

intervals        , which is described in the following Table 1. Each interval defined by 

(        ], which means when a task belongs to this interval, its utilization is less or 

equal to     and strictly greater than       

 

            
 

            

             
 

  
    

 

 
    

   
 

 
            

 

 
    

 

  
    

   
 

 
    

 

 
        

 

  
    

 

 
    

   
 

 
    

 

 
        

 

 
    

 

  
    

   
 

 
    

 

 
        

 

  
    

 

 
    

   
 

 
    

 

 
        

 

  
    

 

  
    

   
 

 
    

 

 
        

 

  
    

 

  
    

   
 

 
    

 

 
        

 

 
    

 

  
    

   
 

  
    

 

 
        

 

  
    

 

 
    

    
 

 
    

 

  
        

 

  
    

 

  
    

    
 

  
    

 

 
        

 

  
    

 

  
    

    
 

 
    

 

  
        

 

 
    

 

  
    

    
 

  
    

 

 
          

 

 
    

    
 

 
    

 

  
       

 

Table 1: 27 disjoint utilization intervals   -    

 

Furthermore, twenty-seven different policies applied in intervals        . The upper 

bound of an interval equals to the lower bound of latest previous interval. According 

to Hyperbolic Test for RM scheduling , if  
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all n tasks on a processor can meet their deadlines. The details of policies are defined 

are as follow. 

 

1. All tasks with utilization greater than ln2 are assigned to one processor exclusively. 

Thus,            . Therefore, each task               is assigned to one 

dedicated processor and no more tasks left from this interval. 

 

2. Exactly five tasks        
 

 
         are assigned to four processors. Among 

these five tasks, the highest priority one is selected and split it into four subtasks. 

Each task set {   
 

 
  } is assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

         
 

 
            

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0 4 tasks left in this interval after Phase One. 

 

3. Exactly three tasks        
 

 
    

 

 
     are assigned to two processors. 

Among these three tasks, the highest priority one is selected and split it into two 

subtasks. Each task set {   
 

 
  } is assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
        

 

 
 

 

 
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0 2 tasks left in this interval after Phase One. 

 

4. Exactly five tasks        
 

 
    

 

 
     are assigned to three processors. Two 

tasks out of these five which has higher priority are split into two subtasks, one is 
 

 
  and the other is 

 

 
 . Task sets {   

 

 
  }, {   

 

 
  } and {   

 

 
   

 

 
  } are 

assigned to a single processor separately.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 
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Since, it has a set  
 

 
   

 

 
    in a processor. Thus, another test is needed to ensure 

the schedulability. 

 

 
 

 
        

 

 
 

 

 
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0 4 tasks left in this interval after Phase One. 

 

5. Exactly seven tasks        
 

 
    

 

 
     are assigned to four processors. 

Three tasks out of these seven which has higher priority are split into two subtasks, 

one is 
 

 
  and the other is 

 

 
 . Task sets {   

 

 
  }, {   

 

 
  }, {   

 

 
  } and 

{   
 

 
   

 

 
   

 

 
  } are assigned to a single processor separately. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
        

 

 
 

 

 
          

 

Since   
 

 
, it has a set  

 

 
   

 

 
   

 

 
    in a processor. Thus, another test is needed. 

 

 
 

 
        

 

 
 

 

 
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0 6 tasks left in this interval after Phase One. 

 

6. Exactly two tasks        
 

 
    

 

 
     are assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 
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Thus, there may be 0 1 tasks left in this interval after Phase One. 

 

7. Exactly nine tasks        
 

 
    

 

 
     are assigned to four processors. 

Among these nine tasks, the highest priority one is selected and split it into four 

subtasks. Each task set {      
 

 
  } is assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
          

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0~8 tasks left in this interval after Phase One. 

 

8. Exactly five tasks        
 

 
    

 

 
     are assigned to two processors. 

Among these five tasks, the highest priority one is selected and split it into two 

subtasks. Each task set {      
 

 
  } is assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0 4 tasks left in this interval after Phase One. 

 

9. Exactly eleven tasks        
 

  
    

 

 
     are assigned to four processors. 

Three tasks out of these eleven which has higher priority are split into two 

subtasks, one is 
 

 
  and the other is 

 

 
 . Task sets {      

 

 
  }, {      

 

 
  }, 

{       
 

 
  } and {       

 

 
   

 

 
   

 

 
  } are assigned to a single processor 

separately. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
          

 

Since   
 

 
, it has a set  

 

 
   

 

 
   

 

 
    in a processor. Thus, another test is needed. 
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All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 10 tasks left in this interval after Phase One. 

 

10. Exactly three tasks         
 

 
    

 

  
     are assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
         

 

Thus, there may be 0 2 tasks left in this interval after Phase One. 

 

11. Exactly thirteen tasks         
 

  
    

 

 
     are assigned to four processors. 

Among these thirteen tasks, the highest priority one is selected and split it into 

four subtasks. Each task set {         
 

 
  } is assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 12 tasks left in this interval after Phase One. 

 

12. Exactly seven tasks         
 

 
    

 

  
     are assigned to two processors. 

Among these seven tasks, the highest priority one is selected and split it into two 

subtasks. Each task set {         
 

 
  } is assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
   

 

 
 

 

  
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 
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Thus, there may be 0 6 tasks left in this interval after Phase One. 

 

13. Exactly eleven tasks         
 

  
    

 

 
     are assigned to three processors. 

Two tasks out of these five which has higher priority are split into two subtasks, 

one is 
 

 
  and the other is 

 

 
 . Task sets {         

 

 
  }, {         

 

 
  } and 

{         
 

 
   

 

 
  } are assigned to a single processor separately. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
           

 

Since   
 

 
, it has a set  

 

 
   

 

 
    in a processor. Thus, another test is needed. 

 

 
 

 
      

 
   

 

 
 

 

 
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 10 tasks left in this interval after Phase One. 

 

14. Exactly four tasks         
 

 
    

 

  
     are assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
         

 

Thus, there may be 0   tasks left in this interval after Phase One. 

 

15. Exactly seventeen tasks         
 

  
    

 

 
     are assigned to four 

processors. Among these seventeen tasks, the highest priority one is selected and 

split it into four subtasks. Each task set {            
 

 
  } is assigned to one 

processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 
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All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 16 tasks left in this interval after Phase One. 

 

16. Exactly nine tasks         
 

 
    

 

  
     are assigned to two processors. 

Among these nine tasks, the highest priority one is selected and split it into two 

subtasks. Each task set {            
 

 
  } is assigned to one processor.  

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
   

 

 
 

 

  
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
    

 

 
 

 

 
         

 

Thus, there may be 0 8 tasks left in this interval after Phase One. 

 

17. Exactly fourteen tasks         
 

  
    

 

 
     are assigned to three processors. 

Two tasks out of these fourteen which has higher priority are split into two 

subtasks, one is 
 

 
  and the other is  

 

 
 . Task sets {             

 

 
  }, 

{             
 

 
  } and {                

 

 
   

 

 
  } are assigned to a single 

processor separately. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
           

 

Since   
 

 
, it has a set  

 

 
   

 

 
    in a processor. Thus, another test is needed. 

 

 
 

 
      

 
   

 

 
 

 

 
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 13 tasks left in this interval after Phase One. 
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18. Exactly five tasks         
 

 
    

 

  
     are assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
         

 

Thus, there may be 0 4 tasks left in this interval after Phase One. 

 

19. Exactly twenty one tasks         
 

  
    

 

 
     are assigned to four 

processors. Among these twenty one tasks, the highest priority one is selected and 

split it into four subtasks. Each task set {               
 

 
  } is assigned to one 

processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 20 tasks left in this interval after Phase One. 

 

20. Exactly eleven tasks        
 

  
    

 

  
     are assigned to two processors. 

Among these eleven tasks, the highest priority one is selected and split it into two 

subtasks. Each task set {               
 

 
  } is assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
   

 

 
 

 

  
          

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

 
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 10 tasks left in this interval after Phase One. 

 

21. Exactly seventeen tasks         
 

  
    

 

  
     are assigned to three 

processors. Two tasks out of these five which has higher priority are split into two 
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subtasks, one is 
 

 
  and the other is  

 

 
 . Task sets {               

 

 
  }, 

{                
 

 
  } and {                    

 

 
   

 

 
  } are assigned to a 

single processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
   

 

 
 

 

  
           

 

Since   
 

 
, it has a set  

 

 
   

 

 
    in a processor. Thus, another test is needed. 

 

 
 

  
      

 
   

 

 
 

 

  
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 16 tasks left in this interval after Phase One. 

 

22. Exactly six tasks         
 

 
    

 

  
     are assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

 
         

 

Thus, there may be 0 5 tasks left in this interval after Phase One. 

 

23. Exactly twenty five tasks         
 

  
    

 

 
     are assigned to four 

processors. Among these twenty five tasks, the highest priority one is selected and 

split it into four subtasks. Each task set {                  
 

 
  } is assigned to 

one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

 
      

 
   

 

 
 

 

 
           

 

All the processors used in this policy maintain utilization bound greater than ln2: 
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Thus, there may be 0 24 tasks left in this interval after Phase One. 

 

24. Exactly thirteen tasks         
 

  
    

 

  
     are assigned to two processors. 

Among these eleven tasks, the highest priority one is selected and split it into two 

subtasks. Each task set {                  
 

 
  } is assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
   

 

 
 

 

  
          

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 12 tasks left in this interval after Phase One. 

 

25. Exactly twenty tasks         
 

  
    

 

  
     are assigned to three processors. 

Two tasks out of these five which has higher priority are split into two subtasks, 

one is 
 

 
  and the other is  

 

 
 . Task sets {                   

 

 
  }, 

{                     
 

 
  } and {                        

 

 
   

 

 
  } are assigned 

to a single processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
   

 

 
 

 

  
           

 

Since   
 

 
, it has a set  

 

 
   

 

 
    in a processor. Thus, another test is needed. 

 

 
 

  
      

 
   

 

 
 

 

  
      

 
     

 

All the processors used in this policy maintain utilization bound greater than ln2: 

 

  
 

  
    

 

 
 

 

  
         

 

Thus, there may be 0 19 tasks left in this interval after Phase One. 

 

26. Exactly seven tasks         
 

 
    

 

  
     are assigned to one processor. 

 

All the tasks assigned by this policy meet their deadlines according to Hyperbolic 

Bound Test: 

 
 

  
      

 
    

 

All the processors used in this policy maintain utilization bound greater than ln2: 
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Thus, there may be 0 6 tasks left in this interval after Phase One. 

 

27. The left interval which is        
 

 
    . Assign tasks which have utilization less 

than 
 

 
    along with all the unassigned tasks left which are called residual tasks 

after Phase One in Phase Two by using SPA2. 

4.2.2 Non-Parallel Execution 

Proposition 1: In Phase One, no subtask split from the same task has parallel 

execution.  

 

Proof: There are three cases considered. An assumption is needed that each non-split 

task has an offset     , so that an critical instance will occur where the response 

time of tasks are maximized [5]. When a task            is split, it is considered as 

two subtasks,   
  has execution time   

  and period equals to    , while    
  has 

execution time   
   and period equals to    (     

    
  ). The first subtask   

  has 

an offset   
    . However, in order to get non-parallel execution for subtask   

  , it 

has to be given an offset    
     

 . 

 

1. There is only one task split in a processor, by picking the highest priority task as 

split task can ensure non-parallel execution.  

 

2. There are two tasks split in a processor in Policy 4, 13, 17, 21and 25. It is proved 

by a contradiction. 

 

Select the highest two tasks within a subset and define them as     and        
   , so     has higher priority than    . Two tasks are split into two subtasks 
 

 
   

 

 
   and 

 

 
   

 

 
   respectively. 

 

 
   and 

 

 
   are assigned into two 

different processors. Since each of them has the highest priority tasks on those 

processors, non-parallel execution can be guaranteed. The rest part, 
 

 
   and 

 

 
   will be executed on the same processor.  

 

It is easy to see from Figure 2, the task set                
 

 
    is assigned 

to   ; the task set               
 

 
    is assigned to   ; while the other task set 

               
 

 
   

 

 
    is assigned to   . On    , the subtask of    may 

preempt the subtask of      which makes    miss its deadline. 
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Figure 2: Example of scheduling two 
 

 
   and 

 

 
   on one processor 

 

Assume that the subtask of    misses its deadline, the execution time of these 

two split tasks is respectively represented as    and   . The response time of 
 

 
   goes as follows 

 

 
       

  

  
  

 

 
   

 

 
    

       
  

  
  

 

 
    

  

  
 

    
  

  
  

 

 
  

  
 

      
  

  
  

 

 

  

  
  

  
  

  
  

  

  
    

      
  

  
 

 

 

  

  
 

 

 

  

  
  

     
 

 

  

  
 

 

 

  

  
  

     
 

 
   

 

 

  

  
  

       

      
 

 
    

 

Intervals Conditions Testing Procedure 

    
 

 
    

 

 
     

               
     

 

 
   

                    

                  

          

                 

A contradiction is derived, so 

   will meet its deadline. 
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A contradiction is derived, so 

   will meet its deadline. 

 

Table 2: Non-parallel execution proof for two split tasks 

 

Table 2 shows the contradictions in each different interval. It is clear that  

      
 

 
    

 

3. There are three tasks split in a processor in Policy 5 and 9. It is proved by a 

contradiction. 

 

Take the highest three tasks in a subset and define them as    ,      and        
      .    has the highest priority,    has the second higher priority, and    

has the lowest priority. Three tasks are split into three subtasks  
 

 
   

 

 
  , 

 

 
   

 

 
   and  

 

 
   

 

 
   respectively. Each 

 

 
   

 

 
   and  

 

 
   are assigned 

to a dedicated processor. Since each of them has the highest priority on that 

processor, no parallel running occurs. 
 

 
   

 

 
   and  

 

 
   will be executed on 

the same processor. 

 

In Figure 3, the task set                 
 

 
    is assigned to   ; the task set 
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    is assigned to   ; another task set                

 

 
    

is assigned to   ; while the last task set                
 

 
   

 

 
   

 

 
    is 

assigned to   . On    , (a.) the subtask of    may preempt the subtask of    and 

causes    misses its deadline; (b.) the subtask of    and    may preempt the 

subtask of      and causes    misses its deadline. 

 

 
 

Figure 3: Example of scheduling three 
 

 
  , 

 

 
   and 

 

 
   on one processor 

 

a) Assume that the subtask of    miss its deadline, the execution time of these 

three split tasks is respectively represented as       and   . The response 

time of 
 

 
   goes as follows 
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b) Assume that the subtask of   miss its deadline. The response time of 
 

 
   

goes as follows 
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so    will meet its 
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A contradiction is derived, 

so    will meet its 

deadline. 

(a) 
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Intervals Conditions Testing Procedure 

    
 

  
    

 

 
     

               

     
 

 
   

&& 

     
 

 
   

 

 
   

                    

                  

          

                 

A contradiction is derived, 

so    will meet its 

deadline. 

                    

                  

           

                 

A contradiction is derived, 

so    will meet its 

deadline. 

(b) 

 

Table 3: Non-parallel execution proof for three split tasks 

 

From Table 3, it is clear that  

      
 

 
   

 

 
   

      
 

 
   

 

Thus, all the subtasks do not run simultaneously. 

4.3 Phase Two 

In Phase Two, all the residual tasks in          along with those tasks from the last 

interval      constitute a task set called unassigned tasks. By using the idea of SPA2 

algorithm, those unassigned tasks are assigned into the processors left after Phase 

One.  

 

4.3.1 Assignment Procedure 

Lemma 2: A Unassigned task set        with N tasks is schedulable on m processors 

if                 [4]. 

 

The assignment procedure in SPA2 ensures the bound of ln2 in worst case. It contains 

following steps: 

 

1. Sort all the unassigned tasks in decreasing priority order. 
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2. Define a task    is a heavy task if its utilization 

 

   
    

      
                       

 

                  

 

3. A heavy task is determined to be a pre-assigned to a single processor if the 

following condition satisfies,         is the number of unused processors left at 

the time being. 

   

   

                  

 

These processors are called pre-assigned processors. All the rest processors are 

called normal processors. The remaining tasks after pre-assignment step become 

normal tasks. 

 

4. Sort all the normal processors based on system utilization (the sum of utilization 

of all the tasks have been assigned to a processor).  

 

5. Assign a normal task    to a normal processor whose utilization is minimal 

among all normal processors.  

 

6. If a normal task     cannot be fully assigned to a normal processor Pnorm, 

split    and assign as much as possible to Pnorm. Now Pnorm is fully utilized which 

means its utilization equals to     . The rest split part of    becomes a new 

normal task and put back in the unassigned normal task queue. 

 

7. Go to Step 4 until all normal processors are fully utilized. 

 

8. Sort all the pre-assigned processors in increasing priority order. 

 

9. Assign as many normal tasks as possible to a pre-assigned processor Ppre until it 

is fully utilized. Then select next pre-assigned processor.  

 

10. If a normal task cannot be fully assigned to Ppre, assign the split part to the next 

selected pre-assigned processor. 

4.3.2 Non-Parallel Execution 

Proposition 2: No subtasks in Phase Two suffers from parallel execution problem. 

 

SPA2 has already proved that their algorithm do not suffer the problem of subtasks 

running in parallel. There are some facts they have shown. 

 

1. Each pre-assigned task has the lowest priority on its host processor.  

2. Each body subtask (all the subtasks split from a normal task excluding the last 

split part) has the highest priority on its host processor. 
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4.4 Utilization Bound 

Theorem: If a task set   has utilization          , all the tasks can be scheduled 

in m processors. 

 

Proof: Let U1 be the utilization of the tasks which have been assigned in Phase One. 

Denote m1 as the number of processors used in Phase One. By Lemma 1, it is certain 

that  

         

 

Let U2 be the utilization of the tasks which have been assigned in Phase Two. There 

must exist some integer x such that  

 

                     

 

According to Lemma 2, all the unassigned tasks in Phase Two can be scheduled on 

x+1 processors if            . 

 

                      

                    

              

             

          

                  

              

      

      

        

4.5 Pseudo Code 

There are some notifications for the algorithm shown in Figure 4: 

 

         is the utilization of a task and             is the utilization of a processor. 

 

               represents the set of tasks belonging to different intervals 

and         is the assignment policy for          . 
 

           means the set of residual tasks in           after applying        ; 

and UnassignQ is the queue for unassigned tasks sorted in decreasing priority 

order.  

 



38 IBSP-TS Algorithm 

         is the count number of how many processors left after applying all the 

policies. 

 

       and       the sets represent processors contains pre-assigned tasks and 

processors with no pre-assigned tasks respectively.      is sorted in increasing 

order of its pre-assigned tasks priority.  

 

 NormQ is the list of unassigned tasks after pre-assignment step, initial to be 

empty. 

 

1.                  

2.                                      

3.                              

4.           

5.         

6.                   

7.                          

8.                                   

9.         

10.                                         

11.                             

12.                  

13.                                        
   

                       

14.                          
   

15.                 

16.                   
           

17.         

18.                       

19.           

20.         

21.                        

22.                   

23.                  

24.               
            

25.                              

26.           

27.                   

28.           

29.                                      

30.                     

31.                                       

32.                 

33.         

34.                                    
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35.              
                      

   

36.         
                     

    

37.                
        

  

38.                    
        

39.               
           

40.           

41.                                          

42.           

Figure 4: Pseudo code of IBSP-TS 

 

1. Line 1~5: Assign a task to an interval list based on the utilization of the task. 

 

2. Line 6~9: Apply tasks in each interval with a different policy. Put all the 

unassigned first 26 intervals together with tasks in last interval into the 

unassigned task queue. 

 

3. Line 10: If the number of processors left after Phase One (all 26 policies) is less 

or equal to 0, assignment failed. 

 

4. Line 11: Sort all the tasks in the unassigned queue in decreasing priority order. 

 

5. Line 12~20: Determine whether a unassigned task is a pre-assigned task or a 

normal task. If the condition is satisfied, the task is a pre-assigned task. Assign 

the task into a processor namely the pre-assigned processor. If the condition is not 

satisfied, put the task into a queue called normal task queue. All the left 

processors other than pre-assigned processors are called normal processors. 

  

6. Line 21: Sort the index of pre-assigned processors in increasing priority order in 

term of the pre-assigned tasks on those processors. 

 

7. Line 22~42: If there is a normal task unassigned, try to assign it to a normal 

processor first which has the minimal utilization among all normal processor. If it 

cannot be fully assigned to a normal processor, split the task and assign a subtask 

which can exactly make the normal processor fully utilized. If all normal 

processors are fully utilized, assign the task to a pre-assigned processor which is 

sorted in increasing priority order based on the pre-assigned task on that 

processor. If the task is assigned and the pre-assigned processor is not fully 

utilized, put the pre-assigned processor back to the list with its original index. If a 

task cannot be fully assigned to a pre-assigned processor, split the task and assign 

a subtask which can exactly make the pre-assigned processor fully utilized. 

4.6 An Assignment Example  

Here, an example of how a task is assigned by IBSP-TS is given in order to give a 
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better understand of the algorithm. 

 

12 tasks in a task set                    are going to be assigned on 8 processors 

                 . The utilization range of these tasks is (0, 1] and the periods of the 

tasks are randomly generated within 0 and 1000 time unit. 

 

All the 12 tasks are listed as follows. Ui and Ti are the utilization, period of the task; In 

is the interval which the task belongs to. Table 4 shows the 12 tasks in the task set. 

 

    I2 U1=0.652583 T1=550 

    I23 U2=0.113183 T2=528 

    I2 U3=0.578995 T3=508 

    I3 U4=0.485351 T4=89 

    I27 U5=0.038732 T5=235 

    I1 U6=0.976029 T6=720 

    I6 U7=0.372674 T7= 671 

    I1 U8=0.823314 T8=210 

    I7 U9=0.317253 T9=941 

     I3 U10=0.477383 T10=221 

     I1 U11=0.743396 T11=838 

     I3 U12=0.463743 T12=110 

 

Table 4: Example of a task set 

 

In Phase One,       and     are assigned to three dedicated processors, P1, P2 and 

P3. According to Policy I3, the highest priority task in I3,    is picked and equally split 

into   
  and   

 .   
  along with     are assigned to P4;   

  and     together are 

assigned to P5. Table 5 is the processors assigned in Phase One. 

 

P1    

P2    

P3     

(a) 

 

P4       
  

P5       
  

(b) 

 

Table 5: The assignment in Phase One 

 

After Phase One, only three processor P6 , P7 and P8 are left. Since there are 6 tasks 

left,              . All the remaining unassigned tasks are sorted in decreasing 

priority order. UnassignQ                     
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According to the condition,    is a pre-assigned task if 

 

                 ,    
   

                  

 

Pre-assigned tasks are PreQ         sorted in increasing priority order. Normal tasks 

are NormQ              .  

 

Assign the first two pre-assign tasks    and    in two processors, P6 and P7. 

Thereafter, normal tasks are assigned. Firstly, assign the    to the left processor P8. 

Since there is only one normal processor, the minimal utilization processor picked in 

next assignment is still P8 until it becomes fully utilized. Therefore,       and    

are directly assigned to P8. However, the processor utilization do not allow    to be 

fully assigned to P8. It split    into two parts,   
   and   

  so that   
  can be 

assigned to P8 and make P8 precisely fully utilized. Next, the scheduling dispatcher 

picks the first pre-assigned processor to assign the rest part of   . It select P6 and try 

to assign as much as possible, but still   
  cannot be fully assigned into P6. Then,   

  

is again split into two parts   
  and   

   so that   
  can be assigned to P6 and fully 

utilize P6.Finally, the last part of   ,   
   can be assigned to P7 and named as   

 . 

Table 6 is the processors assigned in Phase Two. 

 

P8            
  

Ui 0.038732 0.113183 0.372674 0.210182 

Uti of P8 0.038732 0.151916 0.524590 0.734772 

(a) 

 

P6      
  

Ui 0.652583 0.082189 

Uti of P6 0.652583 0.734772 

(b) 

 

P7      
  

Ui 0.578995 0.024881 

Uti of P7 0.578995 0.603877 

(c) 

 

Table 7: The assignment in Phase Two 
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V  
 

Evaluation 

 

 

In this section, the simulation results are shown to evaluate the performance of 

IBSP-TS, and compare it to the pure SPA2 algorithm. To the best of our knowledge, 

SPA2 is the only one algorithm at this moment which has already proved the 

utilization bound of 69.3% based on semi-partition fixed-priority scheduling. By 

running the simulation, it shows that IBSP-TS performs much better than the SPA2 

algorithms in most cases.  

 

5.1 Simulation Setup 

In all the simulations, there is a set of three parameters: Umin, Umax and m. The value m 

means the number of processors in the system. The utilization of a randomly 

generated task uniformly distributed within (Umin, Umax]. 

 

There are six sets of parameter m, the number of processors, in the simulation, which 

are m=4, m=8, m=16, m=32, m=64 and m=128. This parameter m is used to estimate 

the impact of increasing number of processors and the schedulability. For the 

utilization range, (Umin, Umax], there are five sets, (0, 1], (0, 0.25], (0, 0.5], (0.25, 0.75] 

and (0.5, 1] to represent mixed, extra light, normal light, medium and heavy task 

utilization respectively. Thus, it is easy to observe whether there is any impact 

because of different individual task utilization. Therefore, totally there are     

   different parameter sets for simulation experiments. 

 

For each parameter set, 1,000,000 task sets are generated. Each task set contains a 

number of randomly generated tasks. A task set is said to be schedulable if all the 

tasks in a task set can be successfully assigned to no more than the number of 

processors provided in the system which is m. The 1,000,000 task sets are generated 
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according to the following procedure: 

 

1. Initially, m+1 tasks are generated in the first task set. 

 

2. Calculate whether the task set is an infeasible task set        

 

3. If it is an infeasible task set, reset the number of tasks in a task set to m+1.  

 

4. Verify whether this task set can be scheduled by either IBSP-TS or SPA2. 

 

5. If the task set is schedulable by either of those two algorithms, then calculate the 

necessary metrics ( e.g. count the number of total split tasks, number of sorted 

tasks and maximum number of subtasks in a task) to evaluate the performance of 

the experiment. 

 

6. Increase the number of tasks in next task set by 1. 

 

To evaluate the performance of an algorithm, several measures are needed in the 

simulation.  

 

For each experiment, the schedulability of an algorithm can be estimated by the term 

of success ratio, which is defined as follows. 

              
                                    

                             
      

 

The greater value of success ratio an algorithm has the better performance of 

schedulability the algorithm is. In addition, 100 buckets (scales) are set to represent 

the system utilization of a task set which is from 0 to 100%. In each bucket, an 

individual success ratio (for example, the success ratio for task set with system 

utilization 69%) is calculated. Since both algorithms has theoretically proved the 

schedulability bound for task sets with ln2, all the individual success ratio should be 

100% if the system utilization is below 69% (excluding 69%). Bucket 69% can 

contain utilization 69.9% which is greater than Ln2. Moreover, it is good for an 

algorithm to have a higher Break-down Point (the individual success ratio becomes no 

more 100%), which can actually extend the utilization bound in real cases. 

  

Meanwhile, since in real situation, task migration cost is not negligible, it is better for 

an algorithm to have as smaller number of single task being split and subtasks (split 

tasks from a single task) as possible. Thus, average number of split tasks (Avg. Split), 

the average number of sorted tasks (Avg. Sort) and the maximum number of subtasks 

split from a single task (Max Sub) are also important properties for an algorithm. 
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However, due to many factors, one algorithm may have worse Success Ration but it 

perform better schedulability in some cases. Another measure is defined, which is 

called Superiority. It means that a task set can be schedulable by one algorithm, but 

not schedulable by the other one. 

           
                                                           

                                                      
      

 

The simulation code is shown in Appendix. 

5.2 Simulation Result 

The results of the thirty experiments for both algorithms are grouped into six 

categories which are based on different sets for parameters (Umin, Umax]. The statistics 

for every five different m is shown in tables and figures. 

 

Table 7 gives the results of simulation for mixed tasks within (0, 1]. The difference of 

success ratio between IBSP-TS and SPA2 increases along with the increment of 

number of processors. It starts from around 6% to more than 18%. Moreover, there 

are some critical advantages for IBSP-TS. The maximum number of subtasks for 

IBSP-TS is always less or equal to that of SPA2. In the worst case for SPA2, it even 

makes a task migrate 116 times. Additionally, the less average number of sorted tasks 

in IBSP-TS is a great property for online scheduling, and this property is always the 

same in all five groups of simulations. The reason why IBSP-TS has these advantages 

is Phase One in IBSP-TS, when the number of tasks in each task set increases, the 

chance of more tasks can be handled in different first 26 intervals is becoming bigger 

and bigger. However, this will make IBSP-TS has more split tasks if there are more 

processors available (m>8). Furthermore, the superiority of SPA2 only happens when 

m is small, for example, m=4 or m=8, but for IBSP-TS, it can have 26% in best case. 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 62.5893% 56.1998% Success Ratio 63.2001% 54.3822% 

Avg. Split 0.2850 0.4477 Avg. Split 0.5233 0.5968 

Avg. Sort 4.3916 5.7735 Avg. Sort 7.5195 10.6983 

Max. Sub 4 4 Max. Sub 7 8 

Superiority 10.2334% 0.0274% Superiority 13.9526% 0.0003% 

(a) m=4  (b) m=8 
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 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 64.2393% 52.1397% Success Ratio 64.8203% 49.5652% 

Avg. Split 1.0550 0.7539 Avg. Split 2.447456 0.9710 

Avg. Sort 4.3916 5.7735 Avg. Sort 20.8337 39.8876 

Max. Sub 9 16 Max. Sub 10 32 

Superiority 18.8352% 0% Superiority 23.5344% 0% 

(c) m=16  (d) m=32 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 64.4618% 47.3246% Success Ratio 63.8920% 45.5303% 

Avg. Split 5.6462 1.3309 Avg. Split 12.9382 1.9672 

Avg. Sort 34.9671 78.5207 Avg. Sort 57.6213 155.6472 

Max. Sub 12 62 Max. Sub 15 117 

Superiority 26.5851% 0% Superiority 23.7387% 0% 

(e) m=64  (f) m=128 

 

Table 7: Simulation results within (0, 1] 

 

From Figure 5, it is quite clear to see that IBSP-TS always has a higher success ratio 

than SPA2 in every scale of system utilization. Figure 6 presents the break-down point 

in utilization for both algorithms. Once again, the difference of both algorithms 

becomes more and more obvious.   
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Figure 5: Success ratio in simulations within (0, 1] with different m 

 

 

Figure 6: Break-down point in simulations within (0, 1] 
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Table 8 shows the results of simulation for extra light tasks within (0, 0.25]. The 

difference of success ratio between two algorithms increases from 0.2% to 2% when 

m increases. However, due to the light task (0, 0.25], there are less intervals used in 

Phase One, which causes IBSP-TS becomes more or less as same as SPA2. Thus, the 

Avg. Sort for IBSP-TS is quite close to that of SPA2. For Max. Sub, IBSP-TS may 

suffer the same problem as SPA2 because of no pre-assigned tasks and the 

assignments for last several very light tasks, but when m=128, IBSP-TS has 7 less 

subtasks than SPA2. However, IBSP-TS still perform a bit better than SPA2 which is 

listed by superiority, and even when m=4, the superiority of SPA2 is negligible. 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 71.5340% 71.3367% Success Ratio 70.6056% 70.1482% 

Avg. Split 0.1492 0.1701 Avg. Split 0.2696 0.3640 

Avg. Sort 13.5280 13.786403 Avg. Sort 25.4879 26.8990 

Max. Sub 4 4 Max. Sub 7 7 

Superiority 0.2769% 0.0003% Superiority 0.6476% 0% 

(a) m=4  (b) m=8 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 69.9035% 69.0946% Success Ratio 69.6106% 68.2750% 

Avg. Split 0.5105 0.7491 Avg. Split 1.2082 1.5135 

Avg. Sort 47.5833 53.0866 Avg. Sort 86.0277 105.4322 

Max. Sub 10 10 Max. Sub 11 15 

Superiority 1.1572% 0% Superiority 1.9187% 0% 

(c) m=16  (d) m=32 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 69.3125% 67.5807% Success Ratio 68.9200% 66.8760% 

Avg. Split 3.6731 3.0477 Avg. Split 10.4517 6.1051 

Avg. Sort 148.6568 210.1630 Avg. Sort 252.4917 419.4665 

Max. Sub 14 19 Max. Sub 13 22 

Superiority 2.4985% 0% Superiority 2.9658% 0% 

(e) m=64  (f) m=128 

 

Table 8: Simulation results for tasks within (0, 0.25] 

 

For extra light tasks, generally, both algorithms have more or less the same 

performance. However, it is still the truth that IBSP-TS has higher success ratio and 

break-down point as shown in Figure 7 and Figure 8. 
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Figure 7: Success ratio in simulations within (0, 0.25] with different m 
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Figure 8: Break-down point in simulations within (0, 0.25] 

 

Table 9 shows the results of simulation for normal light tasks within (0, 0.5]. The 

difference of success ratio between two algorithms rises from around 0.6% to 4% with 

increment value m. Since it is still considered to be light tasks, in some cases, the 

performance are similar for both algorithms. IBSP-TS is again better than SPA2 for 

all the statistics. The superiority of SPA2 when m=4 is still too small to be noticed. 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 67.9117% 67.3575% Success Ratio 67.0182% 65.9863% 

Avg. Split 0.4683 0.5297 Avg. Split 0.9414 1.1221 

Avg. Sort 7.8863 8.2655 Avg. Sort 14.4441 15.8448 

Max. Sub 4 4 Max. Sub 8 8 

Superiority 0.8180% 0.0002% Superiority 1.5397% 0% 

(a) m=4  (b) m=8 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 66.5590% 64.7012% Success Ratio 66.2644% 63.5591% 

Avg. Split 1.8953 2.2901 Avg. Split 4.3302 4.5985 

Avg. Sort 25.8697 30.9503 Avg. Sort 44.5071 61.1194 

Max. Sub 10 12 Max. Sub 13 15 

Superiority 2.7912% 0% Superiority 4.0826% 0% 

(c) m=16  (d) m=32 
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 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 66.0109% 62.5631% Success Ratio 65.7586% 61.8576% 

Avg. Split 10.4161 9.2292 Avg. Split 25.2838 18.5089 

Avg. Sort 72.9510 121.4573 Avg. Sort 166.2817 242.2193 

Max. Sub 15 20 Max. Sub 19 27 

Superiority 5.2231% 0% Superiority 5.9323% 0% 

(e) m=64  (f) m=128 

 

Table 9: Simulation results for tasks within (0, 0.5] 

 

In Figure 9, the trend of success ratio is the same as previous observation for mixed 

tasks and normal tasks. For the break-down point shown in Figure 10, IBSP-TS 

dominates the other.  
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Figure 9: Success ratio in simulations within (0, 0.5] with different m 

 

 

Figure 10: Break-down point in simulations within (0, 0.5] 

 

Table 10 is the statistics of simulation for medium tasks within (0.25, 0.75]. The 

difference of success ratio between two algorithms increases from around 3% to 17%. 

Moreover, for superiority, IBSP-TS performs twice as good as SPA2 when m is 

relatively big. This shows that IBSP-TS is better for higher utilization tasks. It is 

because in IBSP-TS, the idea of a part of the algorithm is from SPA2, thus, it makes 

IBSP suffer the same problem as SPA2 when all the tasks are light. The price of 

higher success ratio and superiority is a more split tasks. However, considered the 

great improvement of IBSP-TS, it is acceptable.  
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 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 12.9744% 9.3209% Success Ratio 28.5884% 17.6567% 

Avg. Split 1.0005 1.0000 Avg. Split 1.3275 1.0172 

Avg. Sort 2.7858 5.0000 Avg. Sort 2.5347 9.0169 

Max. Sub 4 4 Max. Sub 5 8 

Superiority 28.3906% 0.3219% Superiority 38.2382% 0% 

(a) m=4  (b) m=8 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 33.2281% 17.7830% Success Ratio 35.5960% 18.0860% 

Avg. Split 2.7815 1.4055 Avg. Split 5.9868 2.2608 

Avg. Sort 2.8645 17.4052 Avg. Sort 2.9442 34.2604 

Max. Sub 5 16 Max. Sub 5 30 

Superiority 46.4820% 0% Superiority 49.1909% 0% 

(c) m=16  (d) m=32 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 36.7294% 18.2315% Success Ratio 37.3115% 18.2986% 

Avg. Split 12.4927 3.9909 Avg. Split 25.5589 7.4895 

Avg. Sort 2.9792 67.9989 Avg. Sort 2.9906 135.4894 

Max. Sub 5 36 Max. Sub 5 37 

Superiority 50.3627% 0% Superiority 50.9572% 0% 

(e) m=64  (f) m=128 

 

Table 10: Simulation results for tasks within (0.25, 0.75] 

 

Figure 11 and Figure 12 are the graphs for success ratio and break-down point.  
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Figure 11: Success ratio in simulations within (0.25, 0.75] with different m 

 

 

Figure 12: Break-down point in simulations within (0.25, 0.75] 
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Table 11 presents the simulation results for heavy tasks within (5, 1]. Because of high 

utilization of each individual tasks, the success ratio for both algorithms is quite low. 

SPA2 can barely schedule the task sets, which leads the superiority of IBSP-TS to 

more than 90% and even close to 100%. This fully shows the bad performance of 

SPA2 when it deals with high utilization task sets. In both average sorted tasks and 

maximum subtasks, IBSP-TS has huge advantage over SPA2 when m are relatively 

large. 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 2.5584% 0.9197% Success Ratio 10.9078% 0.9402% 

Avg. Split 1.0001 1.0000 Avg. Split 1.0203 1.0257 

Avg. Sort 2.1216 5.0000 Avg. Sort 2.5347 9.0169 

Max. Sub 4 4 Max. Sub 5 8 

Superiority 64.0896% 0.1054% Superiority 91.3805% 0% 

(a) m=4  (b) m=8 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 22.1257% 0.6156% Success Ratio 27.1188% 0.2832% 

Avg. Split 1.3598 1.1556 Avg. Split 2.6948 1.5448 

Avg. Sort 2.6832 17.0101 Avg. Sort 2.8902 33.0230 

Max. Sub 5 16 Max. Sub 5 32 

Superiority 97.2177% 0% Superiority 98.9557% 0% 

(c) m=16  (d) m=32 

 

 IBSP-TS SPA2 

1 

 IBSP-TS SPA2 

Success Ratio 29.3367% 0.1099% Success Ratio 30.3594% 0.0395% 

Avg. Split 5.6993 2.5960 Avg. Split 11.8472 5.1089 

Avg. Sort 2.9517 65.0246 Avg. Sort 2.9788 129.0203 

Max. Sub 5 62 Max. Sub 5 52 

Superiority 99.6254% 0% Superiority 99.8699% 0% 

(e) m=64  (f) m=128 

 

Table 11: Simulation results for tasks within (0.25, 0.75] 

 

Figure 13 and Figure 14 shows the success ratio and break-down point for both 

algorithms. 
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Figure 13: Success ratio in simulations within (0.5, 1] with different m 
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Figure 14: Break-down point in simulations within (0.5, 1]  
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VI  

 

Conclusion 

 

 

The research in this thesis is to design a static-priority scheduling algorithm in a 

multi-processor real-time system which can assign a set of independent periodic tasks 

to a number of processors in the system and ensure each task does not miss its 

deadline. Therefore, the IBSP-TS (Interval Based Semi-Partitioned Task Splitting) 

algorithm is derived. It combines the idea of the IBPS algorithm and the SPA 

algorithm with semi-partition technique and RM priority policy to achieve the highest 

possible worst-case utilization bound to ln2.  

 

Note: there are some assumptions in IBSP-TS for systems and tasks. The 

multi-processor system used for IBSP-TS assumes that all the processors are identical 

and data-shareable; also there is no task migration do not have cost. Moreover, tasks 

are independent and preemptive. There is no synchronization among tasks. No jobs of 

a task or subtasks can be executed on two or more processors simultaneously, and a 

processor cannot execute two or more tasks simultaneously 

 

The schedulability test of IBSP is divided into two parts together with the assignment 

procedure. In Phase One, by calculating the worst-case processor work load within 

each interval, the Hyperbolic Bound test can guarantee the feasibility. In Phase Two, 

the Liu & Layland test ensure the assignment procedure only schedule a feasible 

number of tasks on a processor. Therefore, if ln2 which is 69.3% capacity of 

processors in a system is used, all the tasks in the task set can meet their deadlines. 

 

Although IBSP-TS has the same worst-case utilization bound of SPA, it has some 

advantages over SPA2. First of all, there are less sorted tasks in the assignment, which 

is suitable for online scheduling for multi-processor system. Certainly, the sorting 

itself is also time consuming. Besides, IBSP-TS leaves the algorithm implementation 

decision to the system designers. They can come up with their preferred choice by 

selecting the number of intervals in the system implementation. The more intervals, 
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the less number of sorted tasks there are.  

 

From simulation, IBSP-TS also shows its superiority to SPA2. In most cases, if a task 

can be scheduled by SPA2, it can be scheduled by IBSP-TS as well. However, only 

when the number of processors in the system is quite small, there may be few task 

sets which are only schedulable by SPA2. Nevertheless, in terms of task sets success 

ratio, average number of split tasks and maximum number of subtasks, IBSP-TS is 

much better than SPA2 in general utilization tasks or heavy utilization tasks. The 

lower number of task migrations, the less preemption cost there is. Additionally, the 

break-down point in utilization for IBSP-TS can reach to 76% for general tasks; and 

for heavy tasks, it can be 79%.   

 

In summary, IBSP-TS provides a feasibility condition with the highest possible 

worst-case utilization bound condition as ln2, less task migrations and higher success 

ratio compared to the best static-priority multi-processor scheduling at this time being. 

Moreover, IBSP-TS can adopt other priority polices as well, for example 

deadline-monotonic. Additionally, it leaves the implementation decision in IBSP-TS 

to system designers. All these properties make IBSP-TS more efficiently to schedule 

tasks in multi-processor real-time systems compared to many other competing 

scheduling algorithms. 
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Appendix 

 

 

The simulation C code for the performance comparison between IBSP-TS and SPA is 

attached as follows. 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<time.h> 

#include<math.h> 

#include<malloc.h> 

 

#define SET 1000000 

#define PROC 128 

#define N 1 

#define Ln logl(2) 

 

 

typedef struct{ 

 double uti; 

 int period; 

} task; 

 

int task_num=PROC+N; 

double weight, theta; 

task arr_task[PROC*10]; 

double tot_uti; 

int chaox_split; 

int chaox_sub; 

int chaox_sort; 

int neu_split; 
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int neu_sub; 

int neu_sort; 

int chaox_return; 

int neu_return; 

 

double init() 

{ 

 int i; 

 double tmp; 

 tot_uti=0; 

 for(i=0;i<task_num;i++){ 

  tmp=rand(); 

  if(tmp==0) 

   tmp=rand(); 

  arr_task[i].uti=tmp/(4.0*RAND_MAX); 

  tot_uti=tot_uti+arr_task[i].uti; 

 } 

 while(tot_uti>PROC){ 

  task_num=PROC+N; 

  printf("Regenerate & task_num %d\n", task_num); 

  tot_uti=0; 

  for(i=0;i<task_num;i++){ 

   tmp=rand(); 

   if(tmp==0) 

    tmp=rand(); 

   arr_task[i].uti=tmp/(4.0*RAND_MAX); 

   tot_uti=tot_uti+arr_task[i].uti; 

  } 

 } 

 for(i=0;i<task_num;i++){ 

  arr_task[i].period=rand()%1000; 

  //printf("period %d\n", arr_task[i].period); 

  //printf("uti %f\n", arr_task[i].uti); 

 } 

 theta=(pow(2,(1.0/task_num))-1)*task_num; 

 weight=theta/(theta+1); 

 printf("task_num %d theta %f weight %f\n",task_num, theta, weight); 

} 

 

double chaox() 

{ 

 int i, j, x, m, n, p, k, t, flg, proc_num, count_x; 

 double  x_uti, tmp, new_weight, new_theta, c; 

 int *subtask; 
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 double *uti, *pre_cpu, *norm_cpu; 

 int count_1, count_2, count_3, count_4, count_5, count_6, count_7, count_8, 

count_9, count_10, count_11, count_12, count_13, count_14, count_15, count_16, 

count_17, count_18, count_19, count_20, count_21, count_22, count_23, count_24, 

count_25, count_26, count_27, count_pre, count_norm; 

 task *a2, *a3, *a4, *a5, *a6, *a7, *a8, *a9, *a10, *a11, *a12, *a13, *a14, *a15, 

*a16, *a17, *a18, *a19, *a20, *a21, *a22, *a23, *a24, *a25, *a26, *ax, *pre, *norm;

   

 int rem_2, rem_3, rem_4, rem_5, rem_6, rem_7, rem_8, rem_9, rem_10, 

rem_11, rem_12, rem_13, rem_14, rem_15, rem_16, rem_17, rem_18, rem_19, 

rem_20, rem_21, rem_22, rem_23, rem_24, rem_25, rem_26, rem_x; 

 

 count_1=0; 

 count_2=0; 

 count_3=0; 

 count_4=0; 

 count_5=0; 

 count_6=0; 

 count_7=0; 

 count_8=0; 

 count_9=0; 

 count_10=0; 

 count_11=0; 

 count_12=0; 

 count_13=0; 

 count_14=0; 

 count_15=0; 

 count_16=0; 

 count_17=0; 

 count_18=0; 

 count_19=0; 

 count_20=0; 

 count_21=0; 

 count_22=0; 

 count_23=0; 

 count_24=0; 

 count_25=0; 

 count_26=0; 

 count_27=0; 

 chaox_return=0; 

 

 for(i=0;i<task_num;i++){ 

  if(arr_task[i].uti>Ln) count_1++; 

  else if(arr_task[i].uti<=Ln && arr_task[i].uti>(4.0/5*Ln)) count_2++; 
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  else if(arr_task[i].uti<=(4.0/5*Ln) && arr_task[i].uti>(2.0/3*Ln)) count_3++; 

  else if(arr_task[i].uti<=(2.0/3*Ln) && arr_task[i].uti>(3.0/5*Ln)) count_4++; 

  else if(arr_task[i].uti<=(3.0/5*Ln) && arr_task[i].uti>(4.0/7*Ln)) count_5++; 

  else if(arr_task[i].uti<=(4.0/7*Ln) && arr_task[i].uti>(1.0/2*Ln)) count_6++; 

  else if(arr_task[i].uti<=(1.0/2*Ln) && arr_task[i].uti>(4.0/9*Ln)) count_7++; 

  else if(arr_task[i].uti<=(4.0/9*Ln) && arr_task[i].uti>(2.0/5*Ln)) count_8++; 

  else if(arr_task[i].uti<=(2.0/5*Ln) && arr_task[i].uti>(4.0/11*Ln)) count_9++; 

  else if(arr_task[i].uti<=(4.0/11*Ln) && arr_task[i].uti>(1.0/3*Ln)) 

count_10++; 

  else if(arr_task[i].uti<=(1.0/3*Ln) && arr_task[i].uti>(4.0/13*Ln)) 

count_11++; 

  else if(arr_task[i].uti<=(4.0/13*Ln) && arr_task[i].uti>(2.0/7*Ln)) 

count_12++; 

  else if(arr_task[i].uti<=(2.0/7*Ln) && arr_task[i].uti>(3.0/11*Ln)) 

count_13++; 

  else if(arr_task[i].uti<=(3.0/11*Ln) && arr_task[i].uti>(1.0/4*Ln)) 

count_14++; 

  else if(arr_task[i].uti<=(1.0/4*Ln) && arr_task[i].uti>(4.0/17*Ln)) 

count_15++; 

  else if(arr_task[i].uti<=(4.0/17*Ln) && arr_task[i].uti>(2.0/9*Ln)) 

count_16++; 

  else if(arr_task[i].uti<=(2.0/9*Ln) && arr_task[i].uti>(3.0/14*Ln)) 

count_17++; 

  else if(arr_task[i].uti<=(3.0/14*Ln) && arr_task[i].uti>(1.0/5*Ln)) 

count_18++; 

  else if(arr_task[i].uti<=(1.0/5*Ln) && arr_task[i].uti>(4.0/21*Ln)) 

count_19++; 

  else if(arr_task[i].uti<=(4.0/21*Ln) && arr_task[i].uti>(2.0/11*Ln)) 

count_20++; 

  else if(arr_task[i].uti<=(2.0/11*Ln) && arr_task[i].uti>(3.0/17*Ln)) 

count_21++; 

  else if(arr_task[i].uti<=(3.0/17*Ln) && arr_task[i].uti>(1.0/6*Ln)) 

count_22++; 

  else if(arr_task[i].uti<=(1.0/6*Ln) && arr_task[i].uti>(4.0/25*Ln)) 

count_23++; 

  else if(arr_task[i].uti<=(4.0/25*Ln) && arr_task[i].uti>(2.0/13*Ln)) 

count_24++; 

  else if(arr_task[i].uti<=(2.0/13*Ln) && arr_task[i].uti>(3.0/20*Ln)) 

count_25++; 

  else if(arr_task[i].uti<=(3.0/20*Ln) && arr_task[i].uti>(1.0/7*Ln)) 

count_26++; 

  else count_27++; 

 } 
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 rem_2=count_2%5; 

 rem_3=count_3%3; 

 rem_4=count_4%5; 

 rem_5=count_5%7; 

 rem_6=count_6%2; 

 rem_7=count_7%9; 

 rem_8=count_8%5; 

 rem_9=count_9%11; 

 rem_10=count_10%3; 

 rem_11=count_11%13; 

 rem_12=count_12%7; 

 rem_13=count_13%11; 

 rem_14=count_14%4; 

 rem_15=count_15%17; 

 rem_16=count_16%9; 

 rem_17=count_17%14; 

 rem_18=count_18%5; 

 rem_19=count_19%21; 

 rem_20=count_20%11; 

 rem_21=count_21%17; 

 rem_22=count_22%6; 

 rem_23=count_23%25; 

 rem_24=count_24%13; 

 rem_25=count_25%20; 

 rem_26=count_26%7; 

 

 if(count_2 || count_5 || count_7 || count_9 || count_11 || count_15 || 

count_19 || count_23) 

  chaox_sub=4; 

 else if(count_4 || count_13 || count_17 || count_21 || count_25) 

  chaox_sub=3; 

 else if(count_3 || count_8 || count_12 || count_16 || count_20 || count_24) 

  chaox_sub=2; 

 else chaox_sub=0; 

 

 chaox_split=count_2/5+count_3/3+count_4/5*2+count_5/7*3+count_7/9+coun

t_8/5+count_9/11*3+count_11/13+count_12/7+count_13/11*2+count_15/17+coun

t_16/9+count_17/14*2+count_19/21+count_20/11+count_21/17*2+count_23/25+c

ount_24/13+count_25/20*2; 

 

 count_x=rem_2+rem_3+rem_4+rem_5+rem_6+rem_7+rem_8+rem_9+rem_10+

rem_11+rem_12+rem_13+rem_14+rem_15+rem_16+rem_17+rem_18+rem_19+rem

_20+rem_21+rem_22+rem_23+rem_24+rem_25+rem_26+count_27; 

 chaox_sort=count_x; 
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 x=count_x; 

 new_theta=(pow(2,(1.0/x))-1)*x; 

 new_weight=new_theta/(new_theta+1); 

 printf("new_theta %f new_weight %f\n", new_theta, new_weight); 

 

 proc_num=PROC-count_1-count_2/5*4-count_3/3*2-count_4/5*3-count_5/7*4

-count_6/2-count_7/9*4-count_8/5*2-count_9/11*4-count_10/3-count_11/13*4-co

unt_12/7*2-count_13/11*3-count_14/4-count_15/17*4-count_16/9*2-count_17/14

*3-count_18/5-count_19/21*4-count_20/11*2-count_21/17*3-count_22/6-count_2

3/25*4-count_24/13*2-count_25/20*3-count_26/7; 

 

 printf("proc_num %d\n", proc_num); 

 if(proc_num>0 && x>0){ 

  a2=(task*)malloc(count_2*sizeof(task)); 

  a3=(task*)malloc(count_3*sizeof(task)); 

  a4=(task*)malloc(count_4*sizeof(task)); 

  a5=(task*)malloc(count_5*sizeof(task)); 

  a6=(task*)malloc(count_6*sizeof(task)); 

  a7=(task*)malloc(count_7*sizeof(task)); 

  a8=(task*)malloc(count_8*sizeof(task)); 

  a9=(task*)malloc(count_9*sizeof(task)); 

  a10=(task*)malloc(count_10*sizeof(task)); 

  a11=(task*)malloc(count_11*sizeof(task)); 

  a12=(task*)malloc(count_12*sizeof(task)); 

  a13=(task*)malloc(count_13*sizeof(task)); 

  a14=(task*)malloc(count_14*sizeof(task)); 

  a15=(task*)malloc(count_15*sizeof(task)); 

  a16=(task*)malloc(count_16*sizeof(task)); 

  a17=(task*)malloc(count_17*sizeof(task)); 

  a18=(task*)malloc(count_18*sizeof(task)); 

  a19=(task*)malloc(count_19*sizeof(task)); 

  a20=(task*)malloc(count_20*sizeof(task)); 

  a21=(task*)malloc(count_21*sizeof(task)); 

  a22=(task*)malloc(count_22*sizeof(task)); 

  a23=(task*)malloc(count_23*sizeof(task)); 

  a24=(task*)malloc(count_24*sizeof(task)); 

  a25=(task*)malloc(count_25*sizeof(task)); 

  a26=(task*)malloc(count_26*sizeof(task)); 

  ax=(task*)malloc(count_x*sizeof(task)); 

 

  for(i=0;i<task_num;i++){ 

   if(arr_task[i].uti>Ln) continue; 

   else if(arr_task[i].uti<=Ln && arr_task[i].uti>(4.0/5*Ln)){ 

    a2[count_2-1].uti=arr_task[i].uti; 
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    a2[count_2-1].period=arr_task[i].period; 

    //printf("a2 %f\n", a2[count_2-1]);  

    count_2--; 

   } 

   else if(arr_task[i].uti<=(4.0/5*Ln) && arr_task[i].uti>(2.0/3*Ln)){ 

    a3[count_3-1].uti=arr_task[i].uti; 

    a3[count_3-1].period=arr_task[i].period; 

    //printf("a3 %f\n", a3[count_3-1]);  

    count_3--; 

   } 

   else if(arr_task[i].uti<=(2.0/3*Ln) && arr_task[i].uti>(3.0/5*Ln)){ 

    a4[count_4-1].uti=arr_task[i].uti; 

    a4[count_4-1].period=arr_task[i].period; 

    //printf("a4 %f\n", a4[count_4-1]);  

    count_4--; 

   } 

   else if(arr_task[i].uti<=(3.0/5*Ln) && arr_task[i].uti>(4.0/7*Ln)){ 

    a5[count_5-1].uti=arr_task[i].uti; 

    a5[count_5-1].period=arr_task[i].period; 

    //printf("a5 %f\n", a5[count_5-1]);  

    count_5--; 

   } 

   else if(arr_task[i].uti<=(4.0/7*Ln) && arr_task[i].uti>(1.0/2*Ln)){ 

    a6[count_6-1].uti=arr_task[i].uti; 

    a6[count_6-1].period=arr_task[i].period; 

    //printf("a6 %f\n", a6[count_6-1]);  

    count_6--; 

   } 

   else if(arr_task[i].uti<=(1.0/2*Ln) && arr_task[i].uti>(4.0/9*Ln)){ 

    a7[count_7-1].uti=arr_task[i].uti; 

    a7[count_7-1].period=arr_task[i].period; 

    //printf("a7 %f\n", a7[count_7-1]);  

    count_7--; 

   } 

   else if(arr_task[i].uti<=(4.0/9*Ln) && arr_task[i].uti>(2.0/5*Ln)){ 

    a8[count_8-1].uti=arr_task[i].uti; 

    a8[count_8-1].period=arr_task[i].period; 

    //printf("a8 %f\n", a8[count_8-1]);  

    count_8--; 

   } 

   else if(arr_task[i].uti<=(2.0/5*Ln) && arr_task[i].uti>(4.0/11*Ln)){ 

    a9[count_9-1].uti=arr_task[i].uti; 

    a9[count_9-1].period=arr_task[i].period; 

    //printf("a9 %f\n", a9[count_9-1]); 



72 Appendix 

    count_9--; 

   } 

   else if(arr_task[i].uti<=(4.0/11*Ln) && arr_task[i].uti>(1.0/3*Ln)){ 

    a10[count_10-1].uti=arr_task[i].uti; 

    a10[count_10-1].period=arr_task[i].period; 

    //printf("a10 %f\n", a10[count_10-1]); 

    count_10--; 

   } 

   else if(arr_task[i].uti<=(1.0/3*Ln) && arr_task[i].uti>(4.0/13*Ln)){ 

    a11[count_11-1].uti=arr_task[i].uti; 

    a11[count_11-1].period=arr_task[i].period; 

    //printf("a11 %f\n", a11[count_11-1]); 

    count_11--; 

   } 

   else if(arr_task[i].uti<=(4.0/13*Ln) && arr_task[i].uti>(2.0/7*Ln)){ 

    a12[count_12-1].uti=arr_task[i].uti; 

    a12[count_12-1].period=arr_task[i].period; 

    //printf("a12 %f\n", a12[count_12-1]); 

    count_12--; 

   } 

   else if(arr_task[i].uti<=(2.0/7*Ln) && arr_task[i].uti>(3.0/11*Ln)){ 

    a13[count_13-1].uti=arr_task[i].uti; 

    a13[count_13-1].period=arr_task[i].period; 

    //printf("a13 %f\n", a13[count_13-1]); 

    count_13--; 

   } 

   else if(arr_task[i].uti<=(3.0/11*Ln) && arr_task[i].uti>(1.0/4*Ln)){ 

    a14[count_14-1].uti=arr_task[i].uti; 

    a14[count_14-1].period=arr_task[i].period; 

    //printf("a14 %f\n", a14[count_14-1]); 

    count_14--; 

   } 

   else if(arr_task[i].uti<=(1.0/4*Ln) && arr_task[i].uti>(4.0/17*Ln)){ 

    a15[count_15-1].uti=arr_task[i].uti; 

    a15[count_15-1].period=arr_task[i].period; 

    //printf("a15 %f\n", a15[count_15-1]); 

    count_15--; 

   } 

   else if(arr_task[i].uti<=(4.0/17*Ln) && arr_task[i].uti>(2.0/9*Ln)){ 

    a16[count_16-1].uti=arr_task[i].uti; 

    a16[count_16-1].period=arr_task[i].period; 

    //printf("a16 %f\n", a16[count_16-1]); 

    count_16--; 

   } 
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   else if(arr_task[i].uti<=(2.0/9*Ln) && arr_task[i].uti>(3.0/14*Ln)){ 

    a17[count_17-1].uti=arr_task[i].uti; 

    a17[count_17-1].period=arr_task[i].period; 

    //printf("a17 %f\n", a17[count_17-1]); 

    count_17--; 

   } 

   else if(arr_task[i].uti<=(3.0/14*Ln) && arr_task[i].uti>(1.0/5*Ln)){ 

    a18[count_18-1].uti=arr_task[i].uti; 

    a18[count_18-1].period=arr_task[i].period; 

    //printf("a18 %f\n", a18[count_18-1]); 

    count_18--; 

   } 

   else if(arr_task[i].uti<=(1.0/5*Ln) && arr_task[i].uti>(4.0/21*Ln)){ 

    a19[count_19-1].uti=arr_task[i].uti; 

    a19[count_19-1].period=arr_task[i].period; 

    //printf("a19 %f\n", a19[count_19-1]); 

    count_19--; 

   } 

   else if(arr_task[i].uti<=(4.0/21*Ln) && arr_task[i].uti>(2.0/11*Ln)){ 

    a20[count_20-1].uti=arr_task[i].uti; 

    a20[count_20-1].period=arr_task[i].period; 

    //printf("a20 %f\n", a20[count_20-1]); 

    count_20--; 

   } 

   else if(arr_task[i].uti<=(2.0/11*Ln) && arr_task[i].uti>(3.0/17*Ln)){ 

    a21[count_21-1].uti=arr_task[i].uti; 

    a21[count_21-1].period=arr_task[i].period; 

    //printf("a21 %f\n", a21[count_21-1]); 

    count_21--; 

   } 

   else if(arr_task[i].uti<=(3.0/17*Ln) && arr_task[i].uti>(1.0/6*Ln)){ 

    a22[count_22-1].uti=arr_task[i].uti; 

    a22[count_22-1].period=arr_task[i].period; 

    //printf("a22 %f\n", a22[count_22-1]); 

    count_22--; 

   } 

   else if(arr_task[i].uti<=(1.0/6*Ln) && arr_task[i].uti>(4.0/25*Ln)){ 

    a23[count_23-1].uti=arr_task[i].uti; 

    a23[count_23-1].period=arr_task[i].period; 

    //printf("a23 %f\n", a23[count_23-1]); 

    count_23--; 

   } 

   else if(arr_task[i].uti<=(4.0/25*Ln) && arr_task[i].uti>(2.0/13*Ln)){ 

    a24[count_24-1].uti=arr_task[i].uti; 
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    a24[count_24-1].period=arr_task[i].period; 

    //printf("a24 %f\n", a24[count_24-1]); 

    count_24--; 

   } 

   else if(arr_task[i].uti<=(2.0/13*Ln) && arr_task[i].uti>(3.0/20*Ln)){ 

    a25[count_25-1].uti=arr_task[i].uti; 

    a25[count_25-1].period=arr_task[i].period; 

    //printf("a25 %f\n", a25[count_25-1]); 

    count_25--; 

   } 

   else if(arr_task[i].uti<=(3.0/20*Ln) && arr_task[i].uti>(1.0/7*Ln)){ 

    a26[count_26-1].uti=arr_task[i].uti; 

    a26[count_26-1].period=arr_task[i].period; 

    //printf("a26 %f\n", a26[count_26-1]); 

    count_26--; 

   } 

   else { 

    ax[count_x-1].uti=arr_task[i].uti; 

    ax[count_x-1].period=arr_task[i].period; 

    //printf("a27 %f\n", ax[count_x-1]); 

    count_x--; 

   } 

  } 

 

  for(i=1;i<=rem_2;i++){ 

   ax[count_x-1].uti=a2[rem_2-i].uti; 

   ax[count_x-1].period=a2[rem_2-i].period; 

   //printf("a2x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_3;i++){ 

   ax[count_x-1].uti=a3[rem_3-i].uti; 

   ax[count_x-1].period=a3[rem_3-i].period; 

   //printf("a3x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_4;i++){ 

   ax[count_x-1].uti=a4[rem_4-i].uti; 

   ax[count_x-1].period=a4[rem_4-i].period; 

   //printf("a4x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_5;i++){ 

   ax[count_x-1].uti=a5[rem_5-i].uti; 
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   ax[count_x-1].period=a5[rem_5-i].period; 

   //printf("a5x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_6;i++){ 

   ax[count_x-1].uti=a6[rem_6-i].uti; 

   ax[count_x-1].period=a6[rem_6-i].period; 

   //printf("a6x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_7;i++){ 

   ax[count_x-1].uti=a7[rem_7-i].uti; 

   ax[count_x-1].period=a7[rem_7-i].period; 

   //printf("a7x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_8;i++){ 

   ax[count_x-1].uti=a8[rem_8-i].uti; 

   ax[count_x-1].period=a8[rem_8-i].period; 

   //printf("a8x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_9;i++){ 

   ax[count_x-1].uti=a9[rem_9-i].uti; 

   ax[count_x-1].period=a9[rem_9-i].period; 

   //printf("a9x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_10;i++){ 

   ax[count_x-1].uti=a10[rem_10-i].uti; 

   ax[count_x-1].period=a10[rem_10-i].period; 

   //printf("a10x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_11;i++){ 

   ax[count_x-1].uti=a11[rem_11-i].uti; 

   ax[count_x-1].period=a11[rem_11-i].period; 

   //printf("a11x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_12;i++){ 

   ax[count_x-1].uti=a12[rem_12-i].uti; 

   ax[count_x-1].period=a12[rem_12-i].period; 

   //printf("a12x %f\n", ax[count_x-1]); 
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   count_x--; 

  } 

  for(i=1;i<=rem_13;i++){ 

   ax[count_x-1].uti=a13[rem_13-i].uti; 

   ax[count_x-1].period=a13[rem_13-i].period; 

   //printf("a13x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_14;i++){ 

   ax[count_x-1].uti=a14[rem_14-i].uti; 

   ax[count_x-1].period=a14[rem_14-i].period; 

   //printf("a14x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_15;i++){ 

   ax[count_x-1].uti=a15[rem_15-i].uti; 

   ax[count_x-1].period=a15[rem_15-i].period; 

   //printf("a15x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_16;i++){ 

   ax[count_x-1].uti=a16[rem_16-i].uti; 

   ax[count_x-1].period=a16[rem_16-i].period; 

   //printf("a16x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_17;i++){ 

   ax[count_x-1].uti=a17[rem_17-i].uti; 

   ax[count_x-1].period=a17[rem_17-i].period; 

   //printf("a17x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_18;i++){ 

   ax[count_x-1].uti=a18[rem_18-i].uti; 

   ax[count_x-1].period=a18[rem_18-i].period; 

   //printf("a18x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_19;i++){ 

   ax[count_x-1].uti=a19[rem_19-i].uti; 

   ax[count_x-1].period=a19[rem_19-i].period; 

   //printf("a19x %f\n", ax[count_x-1]); 

   count_x--; 

  } 
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  for(i=1;i<=rem_20;i++){ 

   ax[count_x-1].uti=a20[rem_20-i].uti; 

   ax[count_x-1].period=a20[rem_20-i].period; 

   //printf("a20x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_21;i++){ 

   ax[count_x-1].uti=a21[rem_21-i].uti; 

   ax[count_x-1].period=a21[rem_21-i].period; 

   //printf("a21x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_22;i++){ 

   ax[count_x-1].uti=a22[rem_22-i].uti; 

   ax[count_x-1].period=a22[rem_22-i].period; 

   //printf("a22x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_23;i++){ 

   ax[count_x-1].uti=a23[rem_23-i].uti; 

   ax[count_x-1].period=a23[rem_23-i].period; 

   //printf("a23x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_24;i++){ 

   ax[count_x-1].uti=a24[rem_24-i].uti; 

   ax[count_x-1].period=a24[rem_24-i].period; 

   //printf("a24x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_25;i++){ 

   ax[count_x-1].uti=a25[rem_25-i].uti; 

   ax[count_x-1].period=a25[rem_25-i].period; 

   //printf("a25x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

  for(i=1;i<=rem_26;i++){ 

   ax[count_x-1].uti=a26[rem_26-i].uti; 

   ax[count_x-1].period=a26[rem_26-i].period; 

   //printf("a26x %f\n", ax[count_x-1]); 

   count_x--; 

  } 

 

  free(a2); 
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  a2=NULL; 

  free(a3); 

  a3=NULL; 

  free(a4); 

  a4=NULL; 

  free(a5); 

  a5=NULL; 

  free(a6); 

  a6=NULL; 

  free(a7); 

  a7=NULL; 

  free(a8); 

  a8=NULL; 

  free(a9); 

  a9=NULL; 

  free(a10); 

  a10=NULL; 

  free(a11); 

  a11=NULL; 

  free(a12); 

  a12=NULL; 

  free(a13); 

  a13=NULL; 

  free(a14); 

  a14=NULL; 

  free(a15); 

  a15=NULL; 

  free(a16); 

  a16=NULL; 

  free(a17); 

  a17=NULL; 

  free(a18); 

  a18=NULL; 

  free(a19); 

  a19=NULL; 

  free(a20); 

  a20=NULL; 

  free(a21); 

  a21=NULL; 

  free(a22); 

  a22=NULL; 

  free(a23); 

  a23=NULL; 

  free(a24); 
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  a24=NULL; 

  free(a25); 

  a25=NULL; 

  free(a26); 

  a26=NULL; 

 

  x_uti=0; 

  for(i=0;i<x;i++) x_uti=x_uti+ax[i].uti; 

  //printf("x_uti %f\n",x_uti); 

    

  count_pre=0; 

  count_norm=0; 

 

 

  uti=(double*)malloc(x*sizeof(double)); 

  pre=(task*)malloc(x*sizeof(task)); 

  norm=(task*)malloc(x*sizeof(task)); 

  for(i=0;i<x-1;i++){ 

   for(j=i+1;j<x;j++){ 

    if(ax[j].period<ax[i].period){ 

     tmp=ax[i].period; 

     ax[i].period=ax[j].period; 

     ax[j].period=tmp; 

     tmp=ax[i].uti; 

     ax[i].uti=ax[j].uti; 

     ax[j].uti=tmp; 

    } 

   } 

  } 

 

  //for(i=0;i<x;i++) printf("ax %f\n",ax[i]); 

  tmp=0; 

  for(i=0;i<x;i++){ 

   tmp=tmp+ax[i].uti; 

   uti[i]=x_uti-tmp; 

   //printf("uti[] %f\n", uti[i]); 

   //printf("proc_num %d\n", proc_num); 

   c=(proc_num-1)*new_theta; 

   //printf("c %f\n", c); 

   if(i!=x-1 && ax[i].uti>new_weight && uti[i]<=c){ 

    pre[count_pre].uti=ax[i].uti; 

    //printf("ax[] %f pre[] %f\n", ax[i].uti, pre[count_pre].uti); 

    pre[count_pre].period=ax[i].period; 

    count_pre++; 
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    proc_num--; 

   } 

   else { 

    norm[count_norm].uti=ax[i].uti; 

    norm[count_norm].period=ax[i].period; 

    count_norm++; 

   } 

  } 

 

  free(uti); 

  uti=NULL; 

  free(ax); 

  ax=NULL; 

 

  for(i=0;i<count_pre-1;i++){ 

   for(j=i+1;j<count_pre;j++){ 

    if(pre[j].period>pre[i].period){ 

     tmp=pre[i].period; 

     pre[i].period=pre[j].period; 

     pre[j].period=tmp; 

     tmp=pre[i].uti; 

     pre[i].uti=pre[j].uti; 

     pre[j].uti=tmp; 

    } 

   } 

  } 

 

  //for(i=0;i<count_pre;i++) printf("pre[] %f\n",pre[i].uti); 

  //for(i=0;i<count_norm;i++) printf("norm[] %f\n",norm[i].uti); 

 

  pre_cpu=(double*)malloc(count_pre*sizeof(double)); 

  norm_cpu=(double*)malloc(proc_num*sizeof(double)); 

  subtask=(int*)malloc(count_norm*sizeof(int)); 

 

  for(i=0;i<count_pre;i++) pre_cpu[i]=pre[i].uti; 

  free(pre); 

  pre=NULL; 

 

  for(i=0;i<proc_num;i++) norm_cpu[i]=0; 

  for(i=0;i<count_norm;i++) subtask[i]=1; 

  n=proc_num; 

  m=count_pre; 

  p=count_norm; 

  i=0; 
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  t=0; 

  flg=0; 

  printf("CHAOX pre %d, norm %d, x %d, proc_num %d\n", m, p, x, n); 

 

  while(count_norm>0){ 

   while(proc_num>0){ 

    if((norm_cpu[0]+norm[i].uti)<=new_theta){ 

     norm_cpu[0]=norm_cpu[0]+norm[i].uti; 

     //printf("norm[i].uti %f\n", norm[i].uti); 

     //printf("norm_cpu[0] %f\n",norm_cpu[0]); 

     count_norm--; 

     if(norm_cpu[0]==new_theta) { 

      proc_num--; 

      printf("Retard\n"); 

     } 

     for(j=0;j<n-1;j++){ 

      for(k=j+1;k<n;k++){ 

       if(norm_cpu[k]<norm_cpu[j]){ 

        tmp=norm_cpu[j]; 

        norm_cpu[j]=norm_cpu[k]; 

        norm_cpu[k]=tmp; 

       } 

      } 

     } 

     i++; 

     if(count_norm==0) break; 

    } 

    else { 

     //printf("~~1norm[i].uti %f\n", norm[i].uti); 

     norm[i].uti=norm[i].uti-(new_theta-norm_cpu[0]); 

     //printf("~~2norm[i].uti %f\n", norm[i].uti); 

     norm_cpu[0]=new_theta; 

     //printf("~~norm_cpu[0] %f\n",norm_cpu[0]); 

     proc_num--; 

     subtask[i]++; 

     for(j=0;j<n-1;j++){ 

      for(k=j+1;k<n;k++){ 

       if(norm_cpu[k]<norm_cpu[j]){ 

        tmp=norm_cpu[j]; 

        norm_cpu[j]=norm_cpu[k]; 

        norm_cpu[k]=tmp; 

       } 

      } 

     } 
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     if(proc_num==0) break; 

    } 

   } 

   if(count_norm==0) break; 

   while(count_pre>0){ 

    while(t<m){ 

     if((pre_cpu[t]+norm[i].uti)<=new_theta){ 

      //printf("i %d\n", i); 

      //printf("t %d\n", t);  

      pre_cpu[t]=pre_cpu[t]+norm[i].uti; 

      //printf("``norm[i].uti %f\n", norm[i].uti); 

      //printf("``pre_cpu[0] %f\n",pre_cpu[t]); 

      count_norm--; 

      i++; 

      if(pre_cpu[t]==new_theta){ 

       t++; 

       count_pre--; 

       printf("Retard\n"); 

      } 

      if(count_norm==0) break; 

     } 

     else { 

      //printf("^^1norm[i].uti %f\n", norm[i].uti); 

      norm[i].uti=norm[i].uti-(new_theta-pre_cpu[t]); 

      //printf("^^2norm[i].uti %f\n", norm[i].uti); 

      pre_cpu[t]=new_theta; 

      //printf("^^pre_cpu[0] %f\n",pre_cpu[t]); 

      t++; 

      //printf("t %d\n", t); 

      count_pre--; 

      subtask[i]++; 

     } 

    } 

    if(count_norm==0) break;      

   } 

   if(count_pre==0 && proc_num==0) { 

    printf("! CHAOX ASSIGNMENT FAILED 1\n"); 

    flg=1; 

    chaox_return=1; 

    break; 

   } 

  } 

  free(norm); 

  norm=NULL; 
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  for(i=0;i<p-1;i++){ 

   for(j=i+1;j<p;j++){ 

    if(subtask[j]>subtask[i]){ 

     tmp=subtask[i]; 

     subtask[i]=subtask[j]; 

     subtask[j]=tmp; 

    } 

   } 

  } 

  for(i=0;i<p;i++){ 

   //printf("subtask[] %d\n", subtask[i]); 

   if(subtask[i]!=1) chaox_split++; 

  } 

 

  if(chaox_sub<subtask[0]) chaox_sub=subtask[0]; 

  if(flg==1) { 

   chaox_split=0; 

   chaox_sort=0; 

   chaox_sub=0; 

  } 

  if(flg!=1){ 

   double temp=0; 

   for(i=0;i<m;i++) temp=temp+pre_cpu[i]; 

   for(i=0;i<n;i++) temp=temp+norm_cpu[i]; 

   printf("CHAOX Uti CPU %f,  Uti Tot %f\n",temp, x_uti); 

    

  } 

  free(pre_cpu); 

  pre_cpu=NULL; 

  free(norm_cpu); 

  norm_cpu=NULL; 

  free(subtask); 

  subtask=NULL; 

 } 

 else if(proc_num==0 && x>0){ 

  printf("! CHAOX ASSIGNMENT FAILED 2\n"); 

  chaox_return=1; 

  chaox_split=0; 

  chaox_sort=0; 

  chaox_sub=0; 

 } 

 else if(proc_num<0){ 

  printf("! CHAOX ASSIGNMENT FAILED 3\n"); 
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  chaox_return=1; 

  chaox_split=0; 

  chaox_sort=0; 

  chaox_sub=0; 

 } 

} 

 

double neu() 

{ 

 int i, j, k, t, m, n, p, flg, norm_num, count_pre, count_norm; 

 double tmp, tsk_uti, c; 

 task *tsk,  *pre, *norm; 

 double *uti, *pre_cpu, *norm_cpu; 

 int *subtask; 

 neu_return=0; 

 neu_split=0; 

 neu_sort=task_num; 

 tsk=(task*)malloc(task_num*sizeof(task)); 

 

 for(i=0;i<task_num;i++){ 

  tsk[i].uti=arr_task[i].uti; 

  tsk[i].period=arr_task[i].period; 

 } 

 

 tsk_uti=0; 

 for(i=0;i<task_num;i++) tsk_uti=tsk_uti+tsk[i].uti; 

 

 count_pre=0; 

 count_norm=0; 

 norm_num=PROC; 

 pre=(task*)malloc(task_num*sizeof(task)); 

 norm=(task*)malloc(task_num*sizeof(task)); 

 uti=(double*)malloc(task_num*sizeof(double)); 

 

 for(i=0;i<task_num-1;i++){ 

  for(j=i+1;j<task_num;j++){ 

   if(tsk[j].period<tsk[i].period){ 

    tmp=tsk[i].period; 

    tsk[i].period=tsk[j].period; 

    tsk[j].period=tmp; 

    tmp=tsk[i].uti; 

    tsk[i].uti=tsk[j].uti; 

    tsk[j].uti=tmp; 

   } 
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  } 

 } 

 //for(i=0;i<task_num;i++) printf("tsk[] %f\n",tsk[i]); 

 

 tmp=0; 

 for(i=0;i<task_num;i++){ 

  tmp=tmp+tsk[i].uti; 

  uti[i]=tsk_uti-tmp; 

  c=(norm_num-1)*theta; 

  if(i!=task_num-1 && tsk[i].uti>weight && uti[i]<=c){ 

   pre[count_pre].uti=tsk[i].uti; 

   pre[count_pre].period=tsk[i].period; 

   //printf("pre %f\n",pre[count_pre]); 

   count_pre++; 

   norm_num--; 

  } 

  else { 

   norm[count_norm].uti=tsk[i].uti; 

   norm[count_norm].period=tsk[i].period; 

   //printf("norm %f\n",norm[count_norm]); 

   count_norm++; 

  } 

 } 

 

 for(i=0;i<count_pre-1;i++){ 

  for(j=i+1;j<count_pre;j++){ 

   if(pre[j].period>pre[i].period){ 

    tmp=pre[i].period; 

    pre[i].period=pre[j].period; 

    pre[j].period=tmp; 

    tmp=pre[i].uti; 

    pre[i].uti=pre[j].uti; 

    pre[j].uti=tmp; 

   } 

  } 

 } 

 

 

 free(tsk); 

 tsk=NULL; 

 free(uti); 

 uti=NULL; 

 pre_cpu=(double*)malloc(count_pre*sizeof(double)); 

 norm_cpu=(double*)malloc(norm_num*sizeof(double)); 
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 for(i=0;i<count_pre;i++) pre_cpu[i]=pre[i].uti; 

 free(pre); 

 pre=NULL; 

 subtask=(int*)malloc(count_norm*sizeof(int)); 

 for(i=0;i<norm_num;i++) norm_cpu[i]=0; 

 for(i=0;i<count_norm;i++) subtask[i]=1; 

 

 n=norm_num; 

 m=count_pre; 

 p=count_norm; 

 i=0; 

 t=0; 

 flg=0; 

 

 while(count_norm>0){ 

  while(norm_num>0){ 

   if((norm_cpu[0]+norm[i].uti)<=theta){ 

    norm_cpu[0]=norm_cpu[0]+norm[i].uti; 

    //printf("norm[i].uti %f\n", norm[i].uti); 

    //printf("norm_cpu[0] %f\n",norm_cpu[0]); 

    count_norm--; 

    if(norm_cpu[0]==theta) norm_num--; 

    for(j=0;j<n-1;j++){ 

     for(k=j+1;k<n;k++){ 

      if(norm_cpu[k]<norm_cpu[j]){ 

       tmp=norm_cpu[j]; 

       norm_cpu[j]=norm_cpu[k]; 

       norm_cpu[k]=tmp; 

      } 

     } 

    } 

    i++; 

    if(count_norm==0) break; 

   } 

   else { 

    //printf("~~1norm[i].uti %f\n", norm[i].uti); 

    norm[i].uti=norm[i].uti-(theta-norm_cpu[0]); 

    //printf("~~2norm[i].uti %f\n", norm[i].uti); 

    norm_cpu[0]=theta; 

    //printf("~~norm_cpu[0] %f\n",norm_cpu[0]); 

    norm_num--; 

    subtask[i]++; 

    for(j=0;j<n-1;j++){ 

     for(k=j+1;k<n;k++){ 
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      if(norm_cpu[k]<norm_cpu[j]){ 

       tmp=norm_cpu[j]; 

       norm_cpu[j]=norm_cpu[k]; 

       norm_cpu[k]=tmp; 

      } 

     } 

    } 

    if(norm_num==0) break; 

   } 

  } 

  if(count_norm==0) break; 

  while(count_pre>0){ 

   while(t<m){ 

    if((pre_cpu[t]+norm[i].uti)<=theta){ 

     //printf("i %d\n", i); 

     //printf("t %d\n", t);  

     pre_cpu[t]=pre_cpu[t]+norm[i].uti; 

     //printf("``norm[i].uti %f\n", norm[i].uti); 

     //printf("``pre_cpu[0] %f\n",pre_cpu[t]); 

     count_norm--; 

     i++; 

     if(pre_cpu[t]==theta){ 

      t++; 

      count_pre--; 

     } 

     if(count_norm==0) break; 

    } 

    else { 

     //printf("^^1norm[i].uti %f\n", norm[i].uti); 

     norm[i].uti=norm[i].uti-(theta-pre_cpu[t]); 

     //printf("^^2norm[i].uti %f\n", norm[i].uti); 

     pre_cpu[t]=theta; 

     //printf("^^pre_cpu[0] %f\n",pre_cpu[t]); 

     t++; 

     //printf("t %d\n", t); 

     count_pre--; 

     subtask[i]++; 

    } 

   } 

   if(count_norm==0) break;      

  } 

  if(count_pre==0 && norm_num==0) { 

   printf("! NEU ASSIGNMENT FAILED\n"); 

   flg=1; 
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   neu_return=1; 

   break; 

  } 

 } 

 

 free(norm); 

 pre=NULL; 

 

 if(flg==0){ 

  for(i=0;i<p-1;i++){ 

   for(j=i+1;j<p;j++){ 

    if(subtask[j]>subtask[i]){ 

     tmp=subtask[i]; 

     subtask[i]=subtask[j]; 

     subtask[j]=tmp; 

    } 

   } 

  } 

   

  for(i=0;i<p;i++){ 

   //printf("subtask[] %d\n", subtask[i]); 

   if(subtask[i]!=1) neu_split++; 

  } 

  if(neu_sub<subtask[0]) neu_sub=subtask[0]; 

 

  double temp=0; 

  for(i=0;i<m;i++) temp=temp+pre_cpu[i];  

  for(i=0;i<n;i++) temp=temp+norm_cpu[i]; 

  printf("NEU Uti CPU %f,  Uti Tot %f\n",temp, tsk_uti); 

  printf("NEU pre %d, norm %d\n", m, n); 

 } 

 else { 

  neu_split=0; 

  neu_sort=0; 

  neu_sub=0; 

 } 

 

 free(pre_cpu); 

 pre_cpu=NULL; 

 free(norm_cpu); 

 norm_cpu=NULL; 

 free(subtask); 

 subtask=NULL; 

} 
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main() 

{ 

 int i, j; 

 int chaox_tot_split=0; 

 int chaox_max_subtask=0; 

 int chaox_tot_sort=0; 

 double chaox_tot_task=0;  

 double chaox_ok=0; 

 int neu_tot_split=0; 

 int neu_max_subtask=0; 

 int neu_tot_sort=0; 

 double neu_ok=0; 

 double sys_uti, ratio; 

 int n=0; 

 int m=0; 

 typedef struct{ 

  int succ; 

  int fail; 

 } bucket; 

 bucket chaox_bucket[100], neu_bucket[100]; 

 double chaox_graph[100], neu_graph[100]; 

 for(i=0;i<100;i++){ 

  chaox_bucket[i].succ=0; 

  chaox_bucket[i].fail=0; 

  neu_bucket[i].succ=0; 

  neu_bucket[i].fail=0; 

 } 

 srand((unsigned)time(0)); 

 for(i=0;i<SET;i++){ 

  init(); 

  sys_uti=(tot_uti/PROC)*100; 

  for(j=0;j<100;j++){ 

   if(sys_uti<j+1) break; 

  } 

  //printf("j %d\n",j); 

  chaox(); 

  chaox_tot_split=chaox_tot_split+chaox_split; 

  if(chaox_max_subtask<chaox_sub) chaox_max_subtask=chaox_sub; 

  chaox_tot_sort=chaox_tot_sort+chaox_sort; 

  neu(); 

  neu_tot_split=neu_tot_split+neu_split; 

  neu_tot_sort=neu_tot_sort+neu_sort; 

  if(neu_max_subtask<neu_sub) neu_max_subtask=neu_sub; 
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  if(chaox_return==0) { 

   chaox_ok++; 

   chaox_bucket[j].succ++; 

  } 

  if(neu_return==0) { 

   neu_ok++; 

   neu_bucket[j].succ++; 

  } 

  if(chaox_return) chaox_bucket[j].fail++; 

  if(neu_return) neu_bucket[j].fail++; 

  printf("chx succ %d, chx fail %d\n", chaox_bucket[j].succ, 

chaox_bucket[j].fail); 

  printf("neu succ %d, neu fail %d\n", neu_bucket[j].succ, neu_bucket[j].fail); 

  if(chaox_return==0 && neu_return) n++; 

  if(chaox_return && neu_return==0) m++; 

  //if(m>0) sleep(100000); 

  /*if(chaox_return && neu_return){ 

   task_num=PROC+N; 

   i--; 

   printf("TASK RESET~~~~~~~~~~\n"); 

   //sleep(1);  

  } 

  else*/ 

  task_num++; 

  printf("CHAOX_OK %f NEU_OK %f\n", chaox_ok, neu_ok); 

  printf("No.SET %d TASK NUM %d\n", i+1, task_num); 

  printf("---------------------------------------------\n"); 

  printf("---------------------------------------------\n"); 

  //if(chaox_bucket[68].fail>0) sleep(100000); 

 } 

 

 for(i=0;i<100;i++){ 

 

 chaox_graph[i]=((double)chaox_bucket[i].succ)/(chaox_bucket[i].succ+chaox_bu

cket[i].fail); 

 

 neu_graph[i]=((double)neu_bucket[i].succ)/(neu_bucket[i].succ+neu_bucket[i].f

ail); 

  printf("%d %f\n",i, chaox_graph[i]); 

 } 

 printf("+++++++++++++++++++++++++++++++++++++++++++++\n"); 

 for(i=0;i<100;i++) printf("%d %f\n",i, neu_graph[i]); 

 printf("CHAOX\nOK %f\nTot Split %d\nAvg Split %f\nMax. Subtask %d\nTotal 

Sorted %d\nAvg Sorted %f\nAverage Ratio %f\n", chaox_ok, chaox_tot_split, 
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chaox_tot_split/chaox_ok, chaox_max_subtask, chaox_tot_sort, 

chaox_tot_sort/chaox_ok, chaox_ok/SET); 

 printf("+++++++++++++++++++++++++++++++++++++++++++++\n"); 

 printf("NEU\nOK %f\nTot Split %d\nAvg Split %f\nMax. Subtask %d\nTotal 

Sorted %d\nAvg Sorted %f\nAverage Ratio %f\n", neu_ok, neu_tot_split, 

neu_tot_split/neu_ok, neu_max_subtask, neu_tot_sort, neu_tot_sort/neu_ok, 

neu_ok/SET); 

 printf("+++++++++++++++++++++++++++++++++++++++++++++\n"); 

 printf("Dominant Value n %d m %d\n", n, m); 

 printf("+++++++++++++++++++++++++++++++++++++++++++++\n"); 

} 


