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Abstract

Oscillator phase noise becomes a problem in digital communication systems
operating at radio frequencies when the signal constellation is dense. Internal
noise in the oscillators at the transmitter and receiver interacts with the trans-
mitted data in a non-linear fashion, to cause a time-varying rotation of the
signal space. In this thesis a receiver algorithm to counter the effects of the
phase noise is derived and evaluated. The thesis also investigates theoretical
performance bounds for communication with noisy oscillators.

In the first part of the thesis, the expectation-maximization framework from
estimation theory is applied to the problem of phase noise estimation. A receiver
structure is derived where the phase noise process is estimated jointly with data
decoding. The algorithm works in cooperation with an iterative low-density
parity-check code and uses soft information. Simulations are presented, showing
large improvements in terms of bit error rates. The computational complexity
of the derived algorithm is also reduced to implementable levels.

In the second part of the thesis, upper and lower bounds on the channel
capacity, in terms of bits per channel use, are derived. The channel investigated
consists of Wiener phase noise and additive white Gaussian noise (AWGN). The
upper and lower bounds are shown to be tight, thus enclosing the true channel
capacity. The channel capacity for a fixed level of phase noise follows the well
known capacity for the AWGN channel, for low to medium signal to noise ratios
(with respect to the additive noise). At some point, determined by the ratio
of the additive noise variance and the innovation variance of the Wiener phase
noise, the capacity for the phase noise constrained channel deviates from that
of the channel impaired only by additive noise. In this region the increase in
capacity gained by increasing the signal power is only 50% as compared with
the channel without phase noise.
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Notation

Latin Symbols

Throughout this thesis, bold symbols denote vectors.
b Uncoded bit
c Coded bit
C Channel capacity
Eb Average bit energy
Es Average signal/symbol energy
fc Carrier frequency
f3dB 3dB single-sided bandwidth of the oscillator PSD
h(·) Entropy
I(·; ·) Mutual information
In Identity matrix, n× n
L(f) Single-sideband phase noise power
n(t) Internal oscillator noise process
N (µ, σ) Normal distribution with mean µ and variance σ
NC(µ, σ) Circular symmetric complex Normal distribution with mean µ and variance σ
Pbi Probability that bit i is a 1
Pc Total power in carrier
r Received (complex) symbol or received (real) amplitude (Paper B)
R Transmitted amplitude
Rx(τ) Oscillator ACF
s Transmitted (complex) symbol
Sx(f) Oscillator PSD
Ts Symbol interval
vk Rescaled discrete AWGN
w Discrete AWGN

Greek Symbols

α Soft symbol
∆ Discrete innovation step
θ Received phase (Paper B)
Θ Transmitted phase
φ(t) Phase noise process, continuous time
φk Phase noise process, discrete time
σ2
∆ Innovation variance, discrete phase noise process

σ2
N AWGN variance
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Operators

arg{·},∠ Complex argument
| · | Absolute value
|| · ||2 Power
Re{·} Real part
Im{·} Imaginary part
E[·] Expected value
arg max Maximizing argument

Superscripts

∧ Estimate
n Iteration number
− Average
∗ Complex conjugate
H Complex conjugate and transpose (Hermitian)
∼ Vector of past three samples
Tx Transmitter
Rx Receiver

Subscripts

k,n Discrete time index
‖ Projection onto transmitted vector
⊥ Orthogonal projection

Abbreviations

ACF Autocorrelation Function
AWGN Additive White Gaussian Noise
BER Bit Error-Rate
LDPC Low Density Parity-Check (Code)
LLR Log-Likelihood Ratio
ML Maximum Likelihood
PN Phase Noise
PSD Power Spectral Density
QAM Quadrature Amplitude Modulation
RF Radio Frequency
SNR Signal-to-Noise Ratio
SSB Single Sideband
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Introduction





Chapter 1

Background

The current evolution of the next generation wireless communication systems
has as its main target a tenfold increase in the data rates offered to the users.
To provide this, the pressure on the backbone networks is increasing accord-
ingly. When pushing the systems to meet these requirements, limitations in
the hardware reveal themselves. Links in the communication chain that has
previously been approximated as behaving ideally can no longer be considered
to do so. Fettweis [1] introduces the term ”Dirty RF” and talks about a shift of
paradigm when the analog (RF) and the digital design domains can no longer
be kept separated. One of these ”dirty” components is the local oscillator,
transferring the baseband signal to the desired passband frequency registered
for communication.

The hardware equipment is of course constantly being improved, but there
will always be limitations. Also the improvements come at a cost, and one of
the largest challenges of the communication systems of tomorrow is to deliver
cost efficient services. A cheap solution to hardware obstacles is digital signal
processing. Signal processing may be done in both the transmitter chain, e.g.,
predistortion, and in the receiving end, e.g, signal filtering. The focus for this
thesis lies on the receiver structure.

This study derives and evaluates a digital signal processing algorithm for
dealing with time varying phase noise from noisy oscillators. The algorithm
works iteratively with soft information, in accordance with the ”Turbo princi-
ple” employed by modern error correcting decoders. The algorithm is aided by
working jointly with a low-density parity-check (LDPC) code to improve the
estimates of the disturbing phase noise process.

To evaluate the performance of an algorithm, some benchmark tool is needed.
This is provided by information theory and the channel capacity. Up until two
decades ago channel capacity was merely theory; the achievable limits were far
from what any actual systems could provide. In the beginning of the 1990s,
however, the turbo codes were invented and the LDPC codes were rediscovered
[2]. By the use of these error correcting codes, capacity-approaching results were
obtained by real systems. Since then, information theory provides a benchmark
tool for comparison. Knowing the possible achievable performance also provides
designers and developers with knowledge of where to spend resources on further
improving their systems. In this thesis capacity bounds are derived for a channel
suffering from time varying oscillator phase noise.
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1.1 Thesis Outline

Part I of the thesis provides some knowledge of oscillator phase noise and the
impact it has on communication systems. Chapter 2 gives a short introduction
to stochastic modeling of oscillator phase noise and Chapter 3 shows how the
noise in the local oscillators impacts the digital communication system. In
Chapter 4 the contributions of this thesis are summarized, and some suggestions
for future work are given.

The main work of this thesis is provided in Part II, in the form of two
included research papers.



Chapter 2

Phase Noise Modeling

2.1 Mathematical Oscillator Model

When communicating in a certain frequency band, the baseband pulses contain-
ing the information are carried by a high frequency radio wave. This wave has a
frequency many times higher than the rate of the communication system, typi-
cally in the Gigahertz range. Denote the baseband signal s(t) and the oscillator
signal x(t), the transmitted signal in baseband notation is then,

sTx(t) = s(t)x(t). (2.1)

Ideally the oscillator signal looks like,

x(t) = A exp[j2πfct], (2.2)

for the carrier frequency fc and amplitude A. However, due to hardware im-
pairments, a real oscillator is better modeled as

x(t) = (A+ a(t)) exp [j(2πfct+ φ(t))] , (2.3)

where a(t) is amplitude noise and φ(t) is phase noise.
A local oscillator is a self-resonating circuit. To mathematically analyze the

noise terms this circuit may be modeled by a stochastic differential equation.
This has been done very rigorously by Demir et. al. in [3] and [4]. They
show that the amplitude noise decays over time, since the system is self stabi-
lizing. The amplitude noise may thus be ignored and the following, normalized,
oscillator model will be used from here on.

x(t) = exp [j(2πfct+ φ(t))] = ej2πfc ejφ(t). (2.4)

This process is stationary, due to the wrapping of the phase. We denote the
power spectral density (PSD) of the process Sx(f), and the autocorrelation
function (ACF) Rx(τ). It is immediately obvious that the oscillator PSD is
determined by the spectrum of exp[jφ(t)], translated to the carrier frequency,
fc.

When measuring the phase noise properties of an oscillator, the spectrum,
Sx(f) may be obtained through a spectrum analyzer [5]. This directly gives
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the single sideband phase noise power, L(f), a performance measure commonly
used in practice. It is defined as the noise power in a 1Hz sideband at offset f
from the carrier, divided by the total power in the carrier, Pc. The unit is dBc,
decibel relative to carrier,

L(f) = 10 log10
Sx(fc + f)

Pc

. (2.5)

2.2 Phase Noise Model

Regarding disturbances in the phase of the oscillator, every time shifted oscilla-
tor is still a solution to the stochastic differential equation and there is nothing
restoring the phase shift. Phase shifts thus accumulate over time and may be
modeled as an integration of disturbances, [3],

φ(t) =

t
∫

0

n(s) ds. (2.6)

It is the characteristics of the the internal noise in the oscillator circuit,
n(t), that determines the behavior of the phase noise. It will be assumed to be
a stationary Gaussian process with PSD Sn(f).

If n(t) is a white process, Sn(f) = C, the phase noise process is the Wiener
process (also known as a Brownian motion). It was shown in [3] that for this
case the oscillator spectrum is a Lorentzian,

L(f) = 10 log10
1/πf3dB

1 +
(

f
f3dB

)2 . (2.7)

The spectrum is plotted in Figure 2.1. It is characterized by a single parameter,
the 3db bandwidth, f3dB. The autocorrelation function is [4],

Rx(τ) = e−2πf3dBτ . (2.8)

2.3 Discrete Phase Noise

In a communication system the phase noise process will be sampled every Ts

seconds, the transmission time interval. The discrete phase noise process is
defined as,

φk , φ(kTs). (2.9)

In accordance with (2.6) the process may be written as a random walk,

φk = φk−1 +∆k. (2.10)

Since the oscillator noise, n(t), is assumed to be a Gaussian process, the inno-
vation term, ∆k, will be a discrete Gaussian random variable,

∆k ∼ N (0, σ2
∆). (2.11)
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Figure 2.1: Lorentzian SSB Phase Noise power, f3db = 50Hz

The variance can be related to the stochastic properties of the oscillator as,

σ2
∆ = −2 lnRx(Ts). (2.12)

If n(t) is white the variance will be, from (2.8) and (2.12)

σ2
∆ = 4πf3dBTs, (2.13)

where f3dB is, as before, the single-sided 3dB bandwidth of the oscillator spec-
trum, and Ts is the symbol transmission interval. The discrete innovation pro-
cess will of course also be white,

E[∆k∆l] = 0, k 6= l. (2.14)

The phase noise model defined by (2.10), (2.11) and (2.14) will be referred to
as the discrete Wiener phase noise model. It is restated in boxed equation 2.15
for clarity. A realization of Wiener phase noise is plotted in Figure 2.2.

Wiener Phase Noise model:

φk = φk−1 +∆k

∆k ∼ N (0, σ2
∆)

E[∆k∆l] = 0, k 6= l

(2.15)
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Chapter 3

Digital Communication

with Phase Noise

In a digital communication system a pulse shape is transmitted every Ts seconds,
the symbol transmission rate. The transmitted pulse shape reaching the receiver
at time kTs is represented in baseband notation by a complex symbol, sk. The
symbols are chosen from a discrete set of points in the complex plane, sk ∈ S ∈
C. S is the signal space, e.g., an M -QAM constellation as displayed in Figure
3.1, see, e.g., [6] for the basics of digital communication.

A simple channel modeling thermal noise affecting the signal is the additive
white Gaussian noise (AWGN) channel. The received symbol at time kTs is,

rk = sk + w̃k. (3.1)

The additive noise, w̃k, is complex, circular symmetric, white Gaussian noise
with variance σ2

N per dimension,

w̃k ∼ NC(0, 2σ
2
N )

E[w̃kw̃l] = 0, k 6= l. (3.2)

An example of received symbols from the AWGN channel are plotted in Figure
3.2.

To include the effects of oscillator phase noise the transmitted and received
symbols are multiplied by a complex phasor, ejφ, see [7] for details. This will
cause a rotation of the signal space, illustrated in Figure 3.3.

Let φTx
k and φRx

k denote the discrete phase noise sample at the transmitter
and the receiver, respectively. The received signal at discrete time k will now
be

rk = (ske
jφTx

k + w̃k)e
jφRx

k (3.3)

= ske
j(φTx

k
+φRx

k
) + wk (3.4)

= ske
jφk + wk. (3.5)

In (3.4) wk , w̃k exp[jφ
Rx
k ]. A rotation of the circular symmetric additive noise

does not change the stochastic properties, so wk has the same probabilistic
definition as w̃k in (3.2). In (3.5) the total phase noise process is introduced,
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Figure 3.2: Received constella-
tion affected by AWGN

φk , φTx
k +φRx

k . The result of this channel containing AWGN and Wiener phase
noise is displayed in Figure 3.4. It is also depicted as a block diagram in Figure
3.5.

As seen in (3.5) the transmitter and receiver phase noise samples add to-
gether and may be described by one process, the properties of which will now
be examined more closely. By the random walk statement of the discrete phase
noise process (2.10),

φk = φTx
k + φRx

k (3.6)

=

k
∑

l=0

∆Tx
l +

k
∑

l=0

∆Rx
l (3.7)

=

k
∑

l=0

(∆Tx
l +∆Rx

l ) (3.8)

,

k
∑

l=0

∆l. (3.9)

So the total phase noise process is also a discrete Wiener process. Assuming
independence between the transmitter and receiver oscillators, the innovation
variance for the total phase noise process will be the sum of the variances,

∆k ∼ N (0, σ2
∆(Tx) + σ2

∆(Rx)). (3.10)
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Chapter 4

Contributions and Future

Work

This chapter summarizes the contributions made in the included papers. Some
directions and suggestions for future work are also given.

4.1 Paper A

4.1.1 Summary

In Paper A the problem of estimating the phase noise process at the receiver is
considered. By doing so the constellation may be de-rotated, in order to alleviate
the performance decreasing effects of the phase noise. Since the phase noise
interacts non-linearly with the transmitted data the unknown data sequence is
considered as a nuisance parameter. The expectation-maximization framework
is employed to find the ML-estimate of the phase noise process over a block of
data consisting of one codeword. The error correcting code used is an LDPC
code.

The derivation shows that the soft information iterated in the LDPC de-
coder may be used to compute estimates of the phase noise process. These
two operations, decoding and tracking, should then work iteratively to further
improve both the data and the phase noise estimates.

The algorithm was simulated and shown to give good results. Also some
propositions lowering the computational complexity to reasonable levels were
investigated.

4.1.2 Future Work

Complexity

The computational complexity of the proposed algorithm should be evaluated
more thoroughly. First of all the optimal operating settings, in terms of low com-
plexity, while maintaining performance, should be found. Then the increased
complexity of the proposed scheme as compared to a conventional (non-iterative)
phase noise tracker could be derived analytically.
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BER Floor?

To see the performance at lower bit-error rates the algorithm should be simu-
lated at a higher signal-to-noise ratio. This will show if the BER curve follows
the curve for a system without phase noise, which looks like a waterfall, or if it
will floor out. In order to do this the algorithm must be implemented in C-code
or something similar to obtain reasonable simulating times.

Colored phase noise innovation

The model used was the Wiener phase noise model. The problem could be ex-
tended to tracking time varying phase noise with colored (correlated) innovation
steps. This would not change the overall structure of the algorithm. The only
thing needed is to extend the Kalman filter with more states. These states could
be the covariance matrix for the noise, or the phase noise could be reformulated
as an AR-process and the states would then be the taps.

4.2 Paper B

4.2.1 Summary

Paper B derives upper and lower bounds on the capacity for the AWGN and
Wiener phase noise channel. The approach consists of stating the input-output
relations of the phase and amplitude of the signal, and then making a high
SNR approximation. To resolve the infinite memory of the Wiener phase noise
process, differential decoding of the phase is employed. To find the optimal dis-
tributions an optimization theorem of functionals from the calculus of variations
is used.

The results are expressions from which the capacity bounds may be nu-
merically found for given levels of phase noise and signal-to-noise ratios. The
channel capacity for the limiting cases when the phase noise dominates the
additive noise, and vice versa, are also derived to ensure consistency.

The numerical results show that the upper and lower bounds are close to
each other, thus enclosing the channel capacity. For low enough levels of phase
noise the capacity is the same as for the AWGN channel. When the phase
noise becomes a limiting factor, however, the achievable rate increase gained by
increasing the signal-to-noise ratio rapidly decreases to 50%.

4.2.2 Future Work

Distributions

The derived output distributions should be investigated to see if it is possible to
construct corresponding input distributions. For high SNR the optimal input
distributions may be approximated by the derived optimal output distributions.
The mutual information can then be investigated through simulations.

Discrete constellations

In the paper a system with continuous, complex, inputs from an arbitrary dis-
tribution of our choice is assumed. An interesting question is what effect a
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discrete constraint on the input distribution would have on the capacity. Prac-
tical systems always work with discrete signal constellations. Given the number
of points in the constellation the optimal placement of these with respect to
maximizing the mutual information could be derived. This would be very valu-
able knowledge since it could be easily implemented in an existing system.

Another interesting question is what the mutual information for some fixed,
commonly used, constellations is. For example an M -QAM constellation should
be possible to investigate analytically.
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Iterative Code-aided Estimation of Time Varying
Phase Noise

Johan Söder and Thomas Eriksson
Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden

soderj@student.chalmers.se , thomase@chalmers.se

Abstract—The problem of estimating time varying Wiener
phase noise by using the iterative structure of the low-density
parity-check decoder is investigated. An algorithm performing
joint iterative phase noise estimation and data decoding isderived
from the expectation-maximization framework. The algorithm is
simulated for a high order QAM system and shown to give huge
improvements in terms of decreased bit error rates. Furthermore
suggestions to decrease the computational complexity of the
algorithm are discussed, tested and proved to work.

I. I NTRODUCTION

Carrier phase noise due to noisy oscillators is a serious
source of errors in digital communication systems. The impact
of phase noise increases with the number of points in the
signal constellation, as well as with the increasing baud rates
required in modern systems. The phase noise interacts with
the transmitted symbols in a non-linear manner and rotates the
signal space. To alleviate these effects the phase noise process
should be estimated in order to de-rotate the signal space.

By using the iterative structures of receivers employing
turbo or low-density parity-check (LDPC) codes, huge im-
provements may be gained in these estimates. The main idea
is to perform the noise estimation jointly with the iterative data
decoding, and let the improved knowledge of the transmitted
data and the reduced estimation errors of the noise help each
other to further improvement. This has previously been done
to provide improved estimates of synchronization parameters
such as the symbol delay and constant frequency and phase
offsets of the carrier. The method has been labeled ”Turbo
synchronization” and was initially donead hoc, see e.g. [1].
The approach has since been formalized with the use of the
expectation-maximization (EM) framework in [2] and by the
use of factor graphs in [3].

This paper is concerned with the tracking of time-varying
carrier phase noise in a system using an LDPC code, [4].
Previous work on tracking a constant carrier phase offset using
the turbo approach includes [1], [2] and [3]. Time-varying
phase noise in a turbo coded system has been investigated in
e.g. [5].

The case investigated here consists of a high order QAM-
constellation used in single carrier transmission. This isof
great practical interest since most work in the literature focuses
on very small constellation sizes. The phase noise model
used is the commonly accepted Wiener phase noise process,
equivalent to a Lorentzian oscillator spectrum, behaving as

Encoder Modulator
b c sk

wk

rk

ejφk

+×

Fig. 1. Block diagram of system model

1/f2 for high frequency offsets [6]. The transmitter and
channel models are presented in Section II.

The approach of this paper is to start off with the EM
algorithm, described in Section III, and apply it to the problem
of tracking time varying phase noise, extending the work done
in [2] on a constant phase offset. This is done in Section IV.
In doing so it turns out that information given by the standard
LDPC decoder, ignoring the phase noise, can be used to
track the time varying phase noise. The tracking is performed
by a Kalman Smoother based on a linearized measurement
equation previously suggested for a turbo coded system in [5].
In Section V, the joint iterative phase noise tracking and LDPC
decoding algorithm is presented. To show the performance of
the algorithm simulations has been performed, and the results
are presented in Section VI.

II. SYSTEM MODEL

The transmitter and channel are drawn in Figure 1. At the
transmitter the bits,b, are encoded with an LDPC block code
to produce a codeword,c. The encoded bits are modulated
onto complex symbols,s = [s1, . . . , sL], from an M-QAM
constellation,S. These symbols are rotated by oscillator phase
noise and then transmitted over an additive noise channel. The
output,rk, from the Wiener phase noise and AWGN channel,
with input sk at discrete timek, is,

rk = ske
jφk + wk. (1)

The additive noise,wk, is complex white circular symmetric
Gaussian noise with powerσ2

N per dimension,

wk ∼ NC(0, 2σ
2
N), (2)

E[wkwl] = 0, k 6= l. (3)

The phase noise,φk, is defined as

φk = φk−1 +∆k, (4)

∆k ∼ N (0, σ2
∆), (5)

E[∆k∆l] = 0, k 6= l. (6)
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This discrete time Wiener model corresponds to a sampled
version of a continuous time Brownian motion process, i.e.,
integrated white noise. Samples are taken everyTs second,
the transmission symbol interval. The continuous time process
of the corresponding oscillator has a Lorentzian spectrum
[6]. This spectrum is fully characterized by a single param-
eter, such as the 3-dB single sided bandwidth,f3dB. The
innovation variance for the discrete phase noise process is
σ2
∆ = 4πf3dBTs.

III. E XPECTATION-MAXIMIZATION

The Expectation-Maximization (EM) framework is an it-
erative approach to solving an estimation problem where the
observation depends not only on the parameter to be estimated
but also on some, unobserved, nuisance parameter. Let the
observation bey = y(x, θ) where θ is the parameter to be
estimated andx is the nuisance parameter. Theny is called
the incomplete observation, and the set{y, x} the complete
observation. We assume here thatx andθ are independent. The
Maximum Likelihood (ML) estimate ofθ from the marginal
likelihood of the complete observation is

θ̂ML = argmax
θ

log fy|θ(y|θ). (7)

The marginal likelihood functionfy|θ(y|θ) is the total likeli-
hood function averaged over the unobserved nuisance param-
eter,

fy|θ(y|θ) =

∫

fy,x|θ(y, x|θ)dx =

∫

fx(x)fy|x,θ(y|x, θ)dx.

(8)

The EM-algorithm consists of iterating between an expectation
(E) and a maximization (M) step defined by

E : Λ(θ|θ̂n) = E
x|y,θ̂n[log fy|x,θ(y|x, θ)] (9)

M : θ̂n+1 = argmax
θ

Λ(θ|θ̂n). (10)

The algorithm has been shown to converge to the ML-solution
[7].

Inspecting the steps, we see that the E-step computes
the conditional a posteriori expectation of the log likelihood
function (LLF), given the current estimate of the parameter,
θ̂n. This is a function ofθ, the conditioning argument in
the LLF, and θ̂n which is the conditioning argument in the
expectation. Note that̂θn is kept fixed through the E-step. It
is instead updated in the M-step which maximizes overθ to
find the next estimate,̂θn+1

IV. PHASE NOISE ESTIMATION

For the Wiener phase noise and AWGN channel, the param-
eter to be estimated is the phase noise sequence,φ, and the
nuisance parameter is the vector ofL transmitted symbols,s.
The incomplete observation is the received vector,r, and the
complete observation set is{r, s}.

A. E-step analysis

Given the transmitted data and the phase noise process, the
received signal has a Gaussian distribution due to the additive
noise, see the system model in Section II. The conditional
likelihood function is thus,

f(r|s,φ) =
exp

[

− 1
4σ2

N

(r − sejφ)(r − sejφ)H
]

(4πσ2
N )L/2

. (11)

Taking the logarithm and dropping terms independent ofφ we
get the conditional log-likelihood function (LLF),

log f(r|s,φ) ∝ −2Re
L
∑

k=1

s∗krke
−jφk . (12)

Now taking the conditional expectation overs given r and
φ̂

n
, the current phase noise estimate, gives:

Λ(φ|φ̂
n
) = E

s|r,φ̂
n

[

−2Re
L
∑

k=1

s∗krke
−jφk

]

(13)

= −2Re
L
∑

k=1

E
s|r,φ̂

n

[

s∗krke
−jφk

]

(14)

= −2Re
L
∑

k=1

E
s|r,φ̂

n [sk]
∗
rke

−jφk (15)

Next we define the a posteriori average vector of the transmit-
ted symbols, conditioned on̂φ

n
,

αk , E
s|r,φ̂

n [sk] =
∑

al∈S

al Pr(sk = al|r, φ̂
n
) (16)

The sum is over the points in the signal constellation,S.
Pr(sk = ak|r, φ̂

n
) are the marginal a posteriori probabilities

(APPs) of the transmitted symbols.
We can now write (15) as

Λ(φ|φ̂
n
) = −2Re

L
∑

k=1

α∗

krke
−jφk (17)

The E-step may thus be computed by first finding the marginal
APPs of the transmitted symbol vector, given the current
estimate of the phase noise process. These should then be
used to construct a vector of weighted, or ”soft”, symbols,α.

To find the marginal APPs a summation over all possible
sequences of data symbols has to be performed. For an
uncoded system with independent and equiprobable symbols
this is possible to compute. For a coded system, however, it
will be a very large set to sum over, and it is also questionable
if all codewords have the same probability.

B. Soft decoding as the E-step

An iterative decoder working with soft information is
marginalizing the APPs of the individual bits. For a mem-
oryless Gaussian channel the decoder converges to the true
values of the APPs. Since the channel at hand has memory,
convergence is not guaranteed. But the soft output from the
decoder may be used as approximations of the APPs for the
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transmitted bits. If a simple mapping from bits to symbols is
available these bit APPs may then be used to construct the
soft symbol vector,α.

As an example, consider the Gray mapping from bits to
symbols in 16 QAM,

a = b1(2− b2)− jb3(2− b4), (18)

wherebi ∈ {−1, 1}. By assuming the bits to be independent,
which is true for the data bits and reasonable for the parity
bits if an interleaver is used between the encoder and the
modulator,αk may be broken down into the probabilities of
the individual bits (the subscriptk on the bits is dropped for
notational clarity) [1],

αk =(Pb1 + Pb3) (1 + j + 2 (Pb2 + jPb4))

(Pb3 − Pb1) (−1 + j − 2 (Pb2 − jPb4)) , (19)

wherePbi , Pr(bi = 1|r, φ̂
n
), i.e., the a posteriori probability

of the bits conditioned on the current phase noise estimate.
The LDPC decoder works with the log likelihood ratios

(LLRs) of the APPs, defined as

Li , log
Pr(bi = 1|r, φ̂

n
)

Pr(bi = −1|r, φ̂
n
)
= log

Pbi

1− Pbi

. (20)

By inverting (20) the APP may be expressed as a function of
the LLR,

Pbi =
eLi

1 + eLi

(21)

Let βi , tanh(Li/2), by inserting (21) into (19) the following
expression of the soft symbols is obtained:

αk = β1(2− β2)− jβ3(2 − β4). (22)

We call this a soft modulation of the LLRs. It is easily verified
that as the APPs converge to one or zeroβi → 1 or −1 and,
consequentlyαk → a, a symbol in the constellation.

C. M-step

The M-step should maximize the a posteriori likelihood
functionf(r|s = α,φ) with respect toφ. A general solution
to this problem is given by the Kalman Smoother, which suits
this problem perfectly since it is already given in state-space
form;

State : φk = φk−1 +∆k (23)

Observation : rk = αke
jφk + wk. (24)

The only problem is that the observation equation is nonlinear
and we must use a linearized version, giving suboptimal
solutions. It will be shown, however, that this still gives good
results.

To be able to make a small angle approximation of the
phase noise process, we begin by removing the mean of the
phase rotation over one codeword, as proposed in [5]. The ML
estimator for the mean is [5],

ˆ̄φ = arg
{

∑

rkα
∗

k

}

. (25)

Soft Demodulator LDPC Decoder

Soft ModulatorKalman Smoother

LLRs

LLRs

α

r

e−jφ̂
n

×

Fig. 2. Block diagram of receiver algorithm

Now the parameter to be estimated isθ , φ− ˆ̄φ. First consider
the real and imaginary parts of the received signal,

Re {rk} = Re {αk} cos(θk)− Im {αk} sin(θk) + Re {wk}

Im {rk} = Re {αk} sin(θk) + Im {αk} cos(θk) + Im {wk}.
(26)

Assuming small values of the phase noise deviation from the
mean, the following approximations can be made:

sin(θk) ≈ θk (27)

cos(θk) ≈ 1. (28)

Applying the approximations to (26) gives linear functionsof
θk:

Re {rk} ≈ Re {αk} − Im {αk}θk +Re {wk}

Im {rk} ≈ Re {αk}θk + Im {αk}+ Im {wk}. (29)

The following measurement equation, removing thecos(θk)
term, was proposed by [5],

yk = Im {rkα
∗

k} (30)

= Im {rk}Re {αk} − Re {rk}Im {αk} (31)

≈ (Re {αk}θk + Im {αk}+ Im {wk})Re {αk}

− (Re {αk} − Im {αk}θk − Re {wk})Im {αk} (32)

= (Re {αk}
2 + Im {αk}

2)θk

+ Im {wk}Re {αk} − Re {wk}Im {α(n)} (33)

, ||αk||
2θk + vk, (34)

where vk ∼ N (0, Esσ
2
N/2) and Es is the average symbol

energy. The measurement equation is now linear and a regular
Kalman Smoother may be used.

V. THE JOINT ITERATIVE PN TRACKING AND LDPC
DECODING ALGORITHM

The joint iterative phase noise tracking and LDPC decoding
algorithm is described in Algorithm 1 and depicted as a block
diagram in Figure 2.

When implementing the proposed algorithm some design
parameters needs to be decided upon. Firstly the EM-algorithm
does not converge to the global maximum if the initial guess
is not close enough to the optimum. The procedure thus needs
to be bootstrapped with a good enough guess. To achieve this,
pilots are inserted into the data stream everypr symbol. The
pilots are known data symbols providing a more stable phase
noise estimate since there is no uncertainness of the nuisance
parameter.
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Algorithm 1: The Joint Iterative PN Tracking and
LDPC Decoding Algorithm

input : r
output : b̂
parameters: Nloops, Nits, σ2

N , σ2
∆

s(0) ← r

for n← 1 to Nloops do
LLRs ← SoftDemodulator(s(n−1), σ2

N)
for n← 1 to Nits do

LLRs ← LDPCDecoder(LLRs)
end
α← SoftModulator(LLRs)

φ̂
(n)
← KalmanSmoother(α, r, σ2

∆, σ2
N)

s(n) ← r(0) exp[−jφ̂
n
]

end
b̂← HardDemodulator(s(n), σ2

N)

Another question related to convergence is how many iter-
ations the LDPC decoder should perform before passing the
LLRs on to the Kalman Smoother. To be a good approximation
of the marginal APPS of the transmitted bits, the decoder
should be run to convergence. This is, however, not feasible
in a real system since the processing load and the delay time
will be very high. It was investigated here as a first step to
see the performance of the algorithm. The next step is of
course to decrease the number of decoder iterations and see
how many are needed for convergence. A trick to speed up
convergence was proposed in [2] for a turbo coded system.
The idea is to avoid restarting the decoder between iterations
of the total algorithm. For the LDPC decoder this would mean
that the extrinsic information in the node checksums are kept
between phase noise estimate updates. Only the input LLRs
of the individual bits are replaced.

VI. SIMULATIONS AND RESULTS

The derived algorithm was simulated for a 256-QAM sys-
tem, with a rate 7/8 LDPC code from the NASA Goddard
technical standard [8], having a block length of 7154 coded
bits. Pilots were inserted every 20th symbol. The phase noise
process was a Wiener process as described in Section II, with
innovation varianceσ2

∆ = 10−4. At the receiver joint iterative
phase noise tracking and LDPC decoding was performed on
each code block.

In Figure 3 the results of the simulations are shown. The
LDPC decoder makes 20 iterations before outputting informa-
tion to the Kalman smoother. Then the decoder is restarted
with the input rotated according to the new estimate of the
phase noise process. For comparison, a baseline case is plotted.
This refers to performing the phase noise estimation separated
from the decoding. In detail the signal is first demodulated in
a soft manner to retrieve bit LLRs, these are then used to
construct soft symbols which are fed to a Kalman Smoother,
which provides a phase estimate. This phase estimate is used
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Fig. 3. BER curves

to rotate the original received signal before passing it to the
LDPC decoder. The LDPC decoder in the baseline case makes
a large number of iterations to give a fair comparison since
the iterative algorithm multiplies the total number of decoding
iterations performed.

To evaluate the possible performance of the algorithm a
simulation was performed where the Kalman Smoother had
access to the transmitted symbols. This ”all pilot” scenario
should show what performance in terms of bit error-rate the
algorithm gives when it reaches convergence. For comparison
the BER curve resulting from removing all phase noise in the
system is also shown.

To improve the speed of the algorithm, the number of
iterations required for convergence was investigated. Figure
4 shows the improvement in BER for each new iteration of
the algorithm, for a fixed signal-to-noise ratio. It also displays
the effect of decreasing the number of decoding iterations
performed inside the algorithm. As seen it is possible to go
down to 5 decoder iterations per algorithm iteration with small
losses in performance.

Figure 5 shows the same experiment, but here the LDPC
decoder is not restarted between phase noise updates. With
this setting it is possible to go all the way down to one
decode iteration per total algorithm iteration. Since the decode
iterations are the heaviest operations in the algorithm, the total
computational complexity is approximately given by the total
number of decode iterations. The number of operations per-
formed after 30 algorithm iterations with one decode iteration
is thus approximately the same as the number of operations
after 10 algorithm iterations with 3 decode iterations.
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keeping internal decoder information

VII. C ONCLUSION

The expectation maximization framework has been applied
to the problem of estimating time varying Wiener phase noise
in a digital communication system. The derivation motivates
the proposed joint iterative phase noise tracking and LDPC
decoding algorithm. The algorithm uses the soft information
iterated in the decoder to estimate the phase noise process
through a Kalman Smoother. The phase noise estimates are
used to de-rotate the received signal returning better input to
the decoder. This process is then iterated to improve both the

phase noise estimates and the quality of the decoded data.
The performance of the proposed algorithm was evaluated

for a 256-QAM system with a rate 7/8 LDPC code and shown
to give performance gains, in terms of significantly lower bit
error rates. To obtain reasonable computational complexity it
was shown that the algorithm converges faster if the LDPC
decoder is never reset. The phase can be estimated, and the
received signal de-rotated, every decode iteration.
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Johan Söder and Thomas Eriksson
Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden
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Abstract—The channel capacity of a channel consisting of
additive white gaussian noise (AWGN) and time varying Wiener
phase noise, equivalent to a random walk, is investigated. This
channel is of interest since it models the effects noisy oscillators
has on a communication system operating at radio frequencies.

Upper and lower bounds on the capacity are derived through
functional optimization of the output distributions. To deal with
the infinite memory of the Wiener phase noise process differential
decoding of the phase is employed. The capacity bounds are
evaluated numerically and it turns out they are extremely tight,
thus enclosing the true capacity well. The results are also shown
to be consistent with capacities derived for asymptotical levels of
phase noise. The procedure followed may be repeated for given
values of the Wiener phase noise innovation variance and signal-
to-noise ratio(SNR).

The capacity for the AWGN and Wiener phase noise channel
follows the well known AWGN capacity curve for low values
of SNR. At some point, determined by the ratio of the Wiener
phase noise innovation variance and the SNR, the curve deviates.
After this point the increase in achievable data rate gainedby
increasing the SNR is only half of that for the pure AWGN
channel.

I. I NTRODUCTION

INFORMATION THEORY has been used since it was
introduced by Shannon in 1948 to calculate the capacity of
different communication channels in terms of maximum data
rate achievable for a fixed time interval and spectral allocation.
However, it took until the 1990s for real communication
systems to approach the capacity limit, with the arrival of the
turbo codes [1] and the revival of the LDPC codes [2],[3].
Since then, the importance of capacity has increased as it
provides a benchmark comparison tool for communication
systems.

Phase noise (PN) is a reality in any RF communication sys-
tem, where local oscillators are used to translate the baseband
signal to passband and back down again at the transmitter and
receiver, respectively. It has become a more important factor
with the increased popularity of the orthogonal frequency
division multiplexing (OFDM) as well as with the increased
constellation sizes in single carrier systems. For OFDM sys-
tems the phase noise tends to destroy the orthogonality of the
subcarriers [4].

In the research literature, little work is found on the capacity
of a channel with phase noise. In [5], the capacity is derived
for a system with residual white phase noise after a phase
locked loop. A bound for a phase noise process with memory
is derived by Lapidoth in [6]. It is assumed, however, that the

phase noise is a stationary process. That assumption is lifted
here by considering time varying phase noise generated by a
Wiener process, which is a commonly accepted model [7].

This paper derives upper and a lower bounds on the capacity
of the additive white Gaussian noise (AWGN) and Wiener PN
channel. The approach is initialized by replacing the classical I
and Q-channel with an equivalent amplitude-phase channel in
Section II. This shows more explicitly the effects of the phase
noise and also allows for some high SNR approximations
simplifying the calculations. Channel capacity is defined as a
functional optimization problem in Section III and a theorem
from the calculus of variations is stated, to be used later.

Using the amplitude-phase channel, the mutual information
between the input and the output is examined in Section IV. To
strengthen the methods used and familiarize the reader with
the approach used, two extreme cases are then investigated.
The capacity is derived for the case of negligible phase noise
in Section V. The result is the well known AWGN capacity
formula. In Section VI the case of a phase noise dominated
channel is investigated.

In Section VII lower and upper bounds on the mutual
information for arbitrary levels of phase noise are derived.
The infinite memory of the Wiener phase noise process is
resolved by the use of differential decoding. There is however
a dependence on the amplitude distribution in the bounds on
the mutual information. To make the bounds tight they are
optimized over all amplitude distributions satisfying an energy
constraint in Section VIII. Finally, in Section IX, numerical
results are presented showing that the bounds are very close
to each other, thus enclosing the true capacity. The bounds
also match the extreme cases derived.

II. SYSTEM MODEL

A. The channel

The output,yk, from the Wiener phase noise and AWGN
channel with inputxk at discrete timek is

yk = xke
jφk + wk. (1)

The additive noise,wk, is complex white circular symmetric
Gaussian noise with powerσ2

N per dimension,

[w1, w2, · · · , wn] ∼ NC(0, 2σ
2
NIn). (2)
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The phase noise,φk, is defined as

φk = φk−1 +∆k, (3)

[∆1,∆2, · · · ,∆n] ∼ N (0, σ2
∆In). (4)

This discrete time Wiener model corresponds to a sampled
version of a continuous time Brownian motion process. Sam-
ples are taken everyTs second, the transmission symbol
interval. The continuous time process of the corresponding
oscillator has a Lorentzian spectrum [7]. This spectrum is
fully characterized by a single parameter; the 3dB single sided
bandwidth, f3dB. The innovation variance for the discrete
phase noise process isσ2

∆ = 4πf3dBTs.

B. Amplitude and phase input-output relations

The input, xk, to the channel (1) is a complex number.
We denote it’s amplitude,|xk|, with Rk and it’s phase,∠xk,
with Θk so thatxk = Rke

jΘk . In the same wayrk and θk
are the output amplitude and phase, respectively. The additive
noise,wk, is divided in two orthogonal parts, one parallel
with the transmitted vector,wk,‖ and one orthogonal to it,
wk,⊥. The input-output relationships between the transmitted
and received phase and amplitude are:

rk , |yk| =
√

(Rk + wk,‖)2 + w2
k,⊥ (5)

θk , ∠yk = Θk + arctan
wk,⊥

Rk + wk,‖

+ φk. (6)

These two real-valued channels, equivalent to the complex
channel (1), has the advantage of being additive in terms of
the phase noise. The impact of the amplitude on the total noise
added to the transmitted phase is also made more visible.

C. Approximations

For high signal-to-noise ratio (SNR) the amplitude dom-
inates the noise terms,Rk >> w2

k,⊥/‖
. In this case the

orthogonal noise,wk,⊥, will not change the amplitude much.
This may be seen by expanding (5),

rk =
√

(Rk + wk,‖)2 + w2
k,⊥ (7)

=
(

Rk + wk,‖

)

√

1 +
w2

k,⊥

(Rk + wk,‖)2
(8)

≈ Rk + wk,‖. (9)

Using the above approximation and the fact thatarctan(x) ≈
x for small x, which is the case in (6) for high SNR, the
following approximative relation for the received phase may
be used,

θk = Θk + arctan
wk,⊥

Rk + wk,‖

+ φk (10)

≈ Θk + arctan
wk,⊥

rk
+ φk (11)

≈ Θk +
wk,⊥

rk
+ φk. (12)

To summarize, the following approximative input-output
relationships for the phase and amplitude have been derived
in (7) - (12):

rk ≈ Rk + wk,‖ (13)

θk ≈ Θk +
wk,⊥

rk
+ φk. (14)

The approximations are valid for high SNR. These equations
provide additive noise relationships for the phase noise,φk, as
well as the white noise,wk. The received phase does, however,
have a non-linear dependence on the received amplitude.

III. T HEORETICAL FOUNDATIONS

A. Definition of Capacity

The capacity of a channel is defined as the maximum of the
mutual information between the input and the output over all
input distributions satisfying an energy constraint [8]. Since
the problem at hand involves a channel with memory, we
consider capacity per channel use. This is defined as the
maximum mutual information between a long input vector,x,
and the corresponding output vector,y, divided by the length
of the vectors.

C =max
fx(x)

1

n
I(x;y)

subj.to
1

n
E
[

||x||2
]

= Es. (15)

B. Calculus of Variations

The problem stated in (15) is a functional optimization
problem. A functional is a mapping from a function to a
real number, e.g. an integral. A theorem from the calculus
of variations will be used in this paper, for proof see, e.g.,[9].

Theorem 1: (Functional optimization)
If the functionalI(u) is defined by:

I(u) =

∫

Ω

K(x, u(x)) dx, (16)

whereu(x) is a real valued function of a real vector argument
x,

u : Ω ⊂ R
N → R, (17)

andK andLi, i = 1, 2, ..., n, are real valued functions with
continuous first partial derivatives,

K,Li : Ω× R → R, i = 1, 2, ..., n. (18)

Then a necessary condition foru to be a stationary point of
I(u) under then constraints

∫

Ω

Li(x, u(x)) dx = 0, i = 1, 2, ..., n , (19)

is satisfying the simplified Euler-Lagrange equation:

∂K

∂u
+

n
∑

i=1

λi

∂Li

∂u
= 0. (20)

The Lagrange multipliersλi should be chosen to fulfill the
constraint.
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IV. M UTUAL INFORMATION

The functional to be optimized is the mutual information
per channel use between an input vectorx and an output
vectory, as stated in (15). The input and the output are related
through the Wiener phase noise and AWGN channel stated in
(1). By using the approximative amplitude and phase input-
output relations, (13) and (14), this may be rewritten,

1

n
I(x;y) =

1

n
I(r, θ;R,Θ) (21)

=
1

n
(h(r, θ)− h(r, θ|R,Θ)) (22)

=
1

n
(h(r) + h(θ|r)− h(r|R,Θ)− h(θ|r,R,Θ)) (23)

=
1

n
(h(r)− h(r|R) + h(θ|r)− h(θ|r,R,Θ)) (24)

≤
1

n
(h(r)− h(r|R) + h(θ)− h(θ|r,R,Θ)) (25)

=
1

n
(I(r;R) + I(θ; r,R,Θ)) . (26)

In (23) the chain rule for entropy has been used. Under
the high SNR approximations the received amplitudes,r, are
conditionally independent of the transmitted phases,Θ, given
the transmitted amplitudes,R. This makes (24) true. The
inequality, (25), comes from the fact that conditioning reduces
entropy. Equality is obtained ifθ is independent ofr which
is true if the transmitted phases,Θ, are uniformly distributed,
Θk ∼ U(0, 2π).

Looking at (26) we see two information channels. The first
one,I(r;R), will be referred to as the amplitude channel and
the second one,I(θ; r,R,Θ) as the phase channel. The phase
channel information may be thought of as the information
gained by decoding the phase after the the amplitude has
already been decoded.

V. AWGN DOMINATED

As a special case we first consider the case when the
additive noise dominates over the phase noise. Assume that
σ2
N >> σ2

∆, then the approximative phase channel in (14)
may be further approximated as:

θk ≈ Θk +
wk,⊥

rk
(27)

= Θk +Nk. (28)

For notational convenience the processNk , wk,⊥/rk has
been introduced. It is the orthogonal part of the additive noise
scaled with the received amplitude.

A. Mutual Information

First consider the amplitude information channel in (26),
1

n
I(r;R) =

1

n
(h(r) − h(r|R)) (29)

=
1

n
h(r)−

1

n
h(w‖) (30)

=
1

n
h(r)−

1

2
log2 2πeσ

2
N (31)

≤ h(r) −
1

2
log2 2πeσ

2
N . (32)

Equality is achieved in the last step if the received amplitude
symbols are independent.

Consider now the phase information channel in (26),

1

n
I(θ; r,R,Θ) =

1

n
(h(θ)− h(θ|r,R,Θ)) (33)

The entropy of the received phases may be bounded as,

1

n
h(θ) ≤

1

n

n
∑

k=0

h(θk) ≤ log2 2π, (34)

where equality is achieved for independent, uniformly dis-
tributed phases.

The conditional entropy may be written as an expectation
over the distribution of the received amplitudes, if the approx-
imative channel ignoring the phase noise, (27), is used,

1

n
h(θ|Θ, r,R) ≈

1

n
h(Θ+N|Θ, r,R) (35)

=
1

n
h(N|Θ, r,R) (36)

=
1

n
h(

w⊥

r
|r) (37)

=
1

n
Er

[

h(
w⊥

r
)
]

(38)

= Er

[

1

2
log2 2πe

σ2
N

r2

]

. (39)

In (39) the independence of the amplitudes was used.
To summarize, the mutual information is bounded by the

following expression, depending on the distribution of the
received amplitudes,

1

n
I(θ, r;R,Θ) ≤h(r) −

1

2
log2 2πeσ

2
N (40)

+ log2 2π − Er

[

1

2
log2 2πe

σ2
N

r2

]

(41)

=h(r) − Er

[

log2
1

r

]

− log2 eσ
2
N . (42)

Equality in (40) is achieved when the received amplitudes
are independent and the received phases are independent and
uniformly distributed.l

B. Optimization

Since the capacity is defined as the maximum of the mutual
information an optimization needs to be done over all possible
amplitude distributions. ApplyingTheorem 1to the mutual
information in (42) under the constraints of a normalized pdf
and limited power, the following distribution is obtained,

⇒ f(r) = Kre−λr2 . (43)

So r is Rayleigh distributed, as expected since this is actually
nothing but the regular AWGN channel. The capacity is,

C = log2

(

1 +
Es

2σ2
N

)

, (44)

which is the well known AWGN channel capacity.
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VI. PHASE NOISE DOMINATED

Consider now the case of a phase noise dominated system.
Under the assumption thatσ2

∆ >> σ2
N the following phase

channel may be used:

θk = Θk + φk. (45)

A. Mutual Information

When the phase noise dominates over the additive noise
there will be no dependence between the phase channel and
the amplitudes,

1

n
I(θ; r,R,Θ) =

1

n
(h(θ)− h(θ|Θ, r,R)) (46)

=
1

n
(h(θ)− h(θ|Θ)) (47)

≤ log2 2π −
1

n
h(Θ+ φ|Θ) (48)

= log2 2π −
1

n
h(φ) (49)

= log2 2π −
1

n
h(∆) (50)

= log2 2π −
1

2
log2 2πeσ

2
∆. (51)

For the amplitude channel, the distribution of the amplitudes
may now be chosen without care of the phase channel,

1

n
I(r;R) =

1

n
h(r)−

1

2
log2 2πeσ

2
N (52)

≤ h(r) −
1

2
log2 2πeσ

2
N , (53)

where equality is reached for independent amplitude symbols.
The total mutual information is thus,

1

n
I(r, θ;R,Θ) ≤2π −

1

2
log2 2πeσ

2
∆

+h(r)−
1

2
log2 2πeσ

2
N . (54)

B. Optimization

The only function involved in the maximization is the
amplitude entropy,h(r). Applying Theorem 1to the problem
of maximizingh(r) under power and normalization constraints
the result is

⇒ f(r) = Ke−λr2 , r > 0, (55)

which is a half-normal (or folded normal) distribution, the
entropy of which is 1 bit less than the regular, bilateral, normal
distribution,

h(r) =
1

2
log2 2πe(Es + 2σ2

N )− 1. (56)

Combining equations (54) and (56) the capacity may be
written in closed form,

C =
1

2
log2

(

1 +
Es

2σ2
N

)

−
1

2
−

1

2
log2

eσ2
∆

2π
. (57)

The result is displayed in Figure 1.

VII. G ENERAL CASE

Now the general case will be investigated, where no as-
sumptions are made regarding the relative impacts of the phase
noise and the additive noise.

A. The Phase Channel

The phase channel in (26) contains two entropies:

1

n
I(θ; r,R,Θ) =

1

n
(h(θ)− h(θ|r,R,Θ)) (58)

The entropy of the received phase,h(θ), may be bounded
as,

1

n
h(θ) ≤

1

n

n
∑

k=0

h(θk) ≤ log2 2π. (59)

Equality is achieved for independent, uniformly distributed
phases.

For the conditional entropy of the received phase,
h(θ|r,R,Θ), the approximative phase channel, (14), will now
be used. It is stated here again withNk = wk,⊥/rk, as before,

θk ≈ Θk +Nk + φk (60)

To resolve the infinite memory of the phase noise process
the conditional entropy of the received phase may now be
rewritten as:

1

n
h(θ|r,Θ,R) ≈

1

n
h(Θ+N+ φ|r,Θ,R) (61)

=
1

n
h(N+ φ|r,Θ,R) (62)

=
1

n
h({Nk −Nk−1 +∆k}

n
k=1|r,Θ,R)

(63)

,
1

n
h ({ak}

n
k=1|r,Θ,R) . (64)

In (63) the noise vector has been rearranged into the difference
between consecutive noises, as in differential decoding. The
new processak , Nk − Nk−1 + ∆k, with N0 = 0, is a
stationary process and in the limit ofn → ∞ the average
joint entropy may be replaced with an equivalent expression
for the entropy rate, see p.74 in [8],

1

n
h ({ak}

n
k=1) → h

(

an|{ak}
n−1
k=1

)

. (65)

By conditioning on only one previous sample ofak the
conditional entropy of the received phase may be bounded.
Continuing (64) using (65) we get:

1

n
h(θ|r,Θ,R) ≈

1

n
h ({ak}

n
k=1|r,Θ,R) (66)

→ h
(

an|{ak}
n−1
k=1 , r,Θ,R

)

(67)

≤ h (an|an−1, r,Θ,R) (68)

= h (an|an−1, rn, rn−1, rn−2) (69)

= h(an, an−1 |̃r)− h(an−1 |̃r). (70)

The equality (69) is true because there is no dependence on
the transmitted phases or amplitudes, as long as the received
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amplitudes are known. Furthermore there is only dependence
on the past three amplitudes. To get to (70) the chain rule of
entropy has been used and the vectorr̃ , {rn, rn−1, rn−2}
denotes the past three received amplitudes. The first term in
(70) contains two samples of zero-mean correlated Gaussian
noise with covariance matrix,

Σ =





σ2
∆ +

σ2

N

r2
n

+
σ2

N

r2
n−1

σ2

N

r2
n−1

σ2

N

r2
n−1

σ2
∆ +

σ2

N

r2
n−1

+
σ2

N

r2
n−2



 . (71)

Expressing the entropies in (70) as expectations overr̃ we get:

h(an, an−1 |̃r)− h(an−1 |̃r) (72)

=Er̃

[

1

2
log(2πe)2|Σ| −

1

2
log 2πe(σ2

∆ +
σ2
N

r2n−1

+
σ2
N

r2n−2

)

]

(73)

,Er̃

[

1

2
log 2πe g(r̃)

]

. (74)

The functiong(r̃) is defined as:

g(r̃) ,
|Σ|

σ2
∆ +

σ2

N

r2
n−1

+
σ2

N

r2
n−2

(75)

=
(σ2

∆ +
σ2

N

r2
n

+
σ2

N

r2
n−1

)(σ2
∆ +

σ2

N

r2
n−1

+
σ2

N

r2
n−2

)− σ2

N

r4
n−1

σ2
∆ +

σ2

N

r2
n−1

+
σ2

N

r2
n−2

.

(76)

Combining (58) with (59), (70) and (74) a lower bound for
the mutual information of the approximative phase channel is:

1

n
I(θ;Θ, r,R) > log2 2π − Er̃

[

1

2
log 2πe g(r̃)

]

(77)

To obtain an upper bound for the phase channel information,
genie knowledge about a previous noise term,Nn−1, is added
to (64), again using (65),

1

n
h(θ|r,Θ,R) ≈

1

n
h ({ak}

n
k=1|r,Θ,R) (78)

→ h
(

an|{ak}
n−1
k=1 , r,Θ,R

)

(79)

> h
(

an|{ak}
n−1
k=1 , Nn−1, r,Θ,R

)

(80)

= h (Nn +∆n|Nn−1, r,Θ,R) (81)

= h (Nn +∆n|rn) (82)

=Er

[

1

2
log2 2πe

(

σ2
N

r2
+ σ2

∆

)]

. (83)

The genie knowledge added in (80) decreases the entropy. In
(81) an is conditionally independent ofak for k < n when
Nn−1 is known, and in (82) all other terms conditionally
independent ofNn + ∆n are removed. The final expression,
(83), is thus an expectation over the last received amplitude of
the entropy of the sum of two independent Gaussian random
variables. Combining (83) with (59) an upper bound on the
phase information channel, (58), is obtained:

1

n
I(θ;Θ, r,R) < log2 2π − Er

[

1

2
log2 2πe

(

σ2
N

r2
+ σ2

∆

)]

.

(84)

B. The Amplitude Channel

The amplitude channel in (26) may be expanded in the
following way,

1

n
I(r;R) =

1

n
(h(r)− h(r|R)) (85)

≈
1

n

(

h(r) − h(R+w‖|R)
)

(86)

=
1

n

(

h(r) − h(w‖)
)

(87)

=
1

n
h(r) −

1

2
log2 2πeσ

2
N . (88)

In (86) the approximate amplitude channel from (13) has
been used. (87) comes from using the fact that the noise term
is independent of the transmitted amplitudes and (88) from
using that it is Gaussian.

For the lower bound on mutual information in the phase
channel, (77), there might be something to gain from having
dependent amplitudes over three consecutive symbols. To
make the lower bound on the total mutual information tight,
this should be exploited. Under this constraint the amplitude
channel information may be bounded, continuing (88),

1

n
h(r)−

1

2
log2 2πeσ

2
N (89)

=
1

n
h(r̃(1), r̃(2), . . . , r̃(n/3))−

1

2
log2 2πeσ

2
N (90)

=
1

n

(

h(r̃(1)) + h(r̃(2) |̃r(1)) + . . .
)

−
1

2
log2 2πeσ

2
N (91)

≤
1

3
h(r̃)−

1

2
log2 2πeσ

2
N (92)

In (90) the vector of amplitudes has simply been divided
into sets of three,̃r(1) , {r1, r2, r3}, r̃(2) , {r4, r5, r6} etc.
Next, in (91), the chain rule of entropy is applied. Equalityis
achieved in (92) if consecutivẽr(k)-vectors are independent.
Combining (77) and (92) to get a lower bound, in accordance
with the mutual information of the total channel, (26), yields:

1

n
I(x;y) >

1

3
h(r̃)−

1

2
log2 2πeσ

2
N

+ log2 2π − Er̃

[

1

2
log 2πe g(r̃)

]

. (93)

When the upper bound for mutual information in the phase
channel, (84), was derived, there were no limitations on the
correlation between the amplitude symbols. We can therefore
assume independent amplitudes, continuing from (88) this
yields,

1

n
(h(r)) −

1

2
log2 2πeσ

2
N (94)

≤h(rn)−
1

2
log2 2πeσ

2
N (95)

Now, combining (84) with (95), according to the total
mutual information, (26), gives an upper bound,

1

n
I(x;y) < log2 2π − Er

[

1

2
log2 2πe

(

σ2
N

r2
+ σ2

∆

)]

+ h(r)−
1

2
log2 2πeσ

2
N . (96)
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The bound depends on the distribution of the received ampli-
tudes, the phases are assumed to be uniformly distributed.

VIII. O PTIMIZATION OF GENERAL CASE

To make the bounds on the mutual information into bounds
on the capacity they have to be maximized over all input
distributions fulfilling an energy constraint. It has already
been established in Section IV that the mutual information
is maximized for uniformly distributed, independent, phase
symbols. When it comes to the amplitude, the bounds are
dependent on the distribution of the received amplitude. The
maximization will therefore be performed over probability
distributions for the output amplitude.

A. Lower bound

Identifying the function corresponding toK in Theorem 1
from the lower bound on the mutual information in (93) we
find that:

KL(r̃, fr̃(r̃)) = −
1

6
fr̃(r̃) log2 fr̃(r̃)

2g(r̃)3 −
1

2
log2(e

2σ2
N )

(97)

To obtain a normalized pdf and meet the power constraint the
following constraint functions are identified:

LL,1(r, fr̃(r)) = fr̃(r̃)− 1
LL,2(r, fr̃(r)) = ||̃r||2fr̃(r̃)− 3(Es + 2σ2

N )
(98)

Solving the Euler-Lagrange equation (20) yields:

fr̃(r̃) = κLg(r̃)
−

3

2 e−λL||r̃||
2

. (99)

κL and λL should be chosen to satisfy the normalization
and energy constraints. They are, unfortunately, hard to derive
analytically but may be found through numerical integration.

The capacity bound may now be expressed as a function of
KL, λL, σ

2
∆, Es and σ2

N (note that the only actual variables
are of courseσ2

∆ andEs/2σ
2
N ) by inserting (99) into (93):

CL = −
1

3
log2 κL +

λL

ln 2
(Es + 2σ2

N )−
1

2
log2 e

2σ2
N (100)

B. Upper bound

Applying Theorem 1to the upper bound on mutual infor-
mation in (96) with

KU (r, fr(r)) = fr(r) log2 f(r)

√

σ2

N

r2
+ σ2

∆ − 1
2 log2 σ

2
Ne2

LU,1(r, fr(r)) = fr(r)− 1
LU,2(r, fr(r)) = |r|2fr(r) − (Es + 2σ2

N )
(101)

⇒ f(r) =
κU

√

σ2

N

r2
+ σ2

∆

e−λUr2 . (102)

κU andλU should be set to meet the constraints. This pdf is
a mixture of a half-normal distribution and a Rayleigh distri-
bution. The half-normal distribution was derived in section VI
as the optimal distribution when the phase noise dominates
over the additive noise, i.e., for high SNR when the phase
noise level is fixed. In Section V the Rayleigh distribution was
shown to be optimal for the case with insignificant levels of

phase noise, i.e., for low SNR. The weights in (102) between
these two distributions are the phase noise innovation variance,
σ2
∆, and the white noise variance,σ2

N .
The upper capacity bound is, from (102) and (93):

CU = − log2 κU +
λU

ln 2
(Es + 2σ2

N )−
1

2
log2 σ

2
Ne2 (103)

IX. RESULTS

In Figure 1 the upper and lower bounds are plotted for
various values of SNR for a fixed value ofσ2

∆. The bounds
are extremely close to each other and the true capacity is thus
tightly enclosed. For comparison the capacity of the AWGN
channel and the capacity of the phase noise dominated channel
is also plotted.

For low SNR the capacity bounds approach the AWGN
capacity, because the additive noise dominates over the phase
noise. For high SNR the capacity bounds for the phase
noise channel show a loss in slope by 50% as compared
to the AWGN capacity. This is because the phase noise is
dominating. Since the phase noise level is fixed in this setting,
the capacity on the phase channel is a constant. The only
increase in capacity with SNR is thus for the amplitude
channel, meaning that half of the available dimensions are
lost.

Figure 2 shows the upper bound for various levels of phase
noise innovation variance,σ2

∆, and a fixed level of additive
noise. As expected it approaches the capacity for the AWGN
channel without phase noise whenσ2

∆ << σ2
N .

In Figure 3 the upper bound on capacity is plotted against
SNR for different levels of phase noise.

The optimal probability distributions of the received ampli-
tude are displayed in Figure 4 for different values of SNR and
a fixed σ2

∆. As discussed in Section VIII-B the distribution
approaches the Rayleigh distribution for low SNR and a half-
normal density function for high SNR.

X. CONCLUSION

In this paper a method to calculate a bound on the capacity
of a channel disturbed by addtive white Gaussian noise of a
given power and Wiener phase noise with given innovation
variance has been presented. Numerical results show that for
a fixed level of phase noise the capacity as function of SNR
follows the well known capacity curve for the AWGN channel
up to some point where the phase noise starts do dominate.
This point is approximately given byσ2

∆ > 2σ2
N/Es. In the

phase noise dominating region the increase in capacity when
increasing the SNR is only 50% of that in the case with no
phase noise.
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