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Abstract

Oscillator phase noise becomes a problem in digital communication systems
operating at radio frequencies when the signal constellation is dense. Internal
noise in the oscillators at the transmitter and receiver interacts with the trans-
mitted data in a non-linear fashion, to cause a time-varying rotation of the
signal space. In this thesis a receiver algorithm to counter the effects of the
phase noise is derived and evaluated. The thesis also investigates theoretical
performance bounds for communication with noisy oscillators.

In the first part of the thesis, the expectation-maximization framework from
estimation theory is applied to the problem of phase noise estimation. A receiver
structure is derived where the phase noise process is estimated jointly with data
decoding. The algorithm works in cooperation with an iterative low-density
parity-check code and uses soft information. Simulations are presented, showing
large improvements in terms of bit error rates. The computational complexity
of the derived algorithm is also reduced to implementable levels.

In the second part of the thesis, upper and lower bounds on the channel
capacity, in terms of bits per channel use, are derived. The channel investigated
consists of Wiener phase noise and additive white Gaussian noise (AWGN). The
upper and lower bounds are shown to be tight, thus enclosing the true channel
capacity. The channel capacity for a fixed level of phase noise follows the well
known capacity for the AWGN channel, for low to medium signal to noise ratios
(with respect to the additive noise). At some point, determined by the ratio
of the additive noise variance and the innovation variance of the Wiener phase
noise, the capacity for the phase noise constrained channel deviates from that
of the channel impaired only by additive noise. In this region the increase in
capacity gained by increasing the signal power is only 50% as compared with
the channel without phase noise.
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Notation

Latin Symbols

Throughout this thesis, bold symbols denote vectors.

b

c
C
Ey
E;
Je

f3dB

S

(Q%}E‘U:Uﬁ
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g F 535
=
~—

Uncoded bit

Coded bit

Channel capacity

Average bit energy

Average signal/symbol energy

Carrier frequency

3dB single-sided bandwidth of the oscillator PSD
Entropy

Mutual information

Identity matrix, n X n

Single-sideband phase noise power

Internal oscillator noise process

Normal distribution with mean p and variance o
Circular symmetric complex Normal distribution with mean g and variance o
Probability that bit ¢ is a 1

Total power in carrier

Received (complex) symbol or received (real) amplitude (Paper B)
Transmitted amplitude

Oscillator ACF

Transmitted (complex) symbol

Oscillator PSD

Symbol interval

Rescaled discrete AWGN

Discrete AWGN

Greek Symbols

Soft symbol
Discrete innovation step

Transmitted phase

e
A
0 Received phase (Paper B)
©
¢

(t) Phase noise process, continuous time
Ok Phase noise process, discrete time

oX  Innovation variance, discrete phase noise process

0%  AWGN variance
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Operators

arg{-},Z Complex argument

|- |
-1
Re{-}
Im{-}
E[]

Absolute value
Power

Real part
Imaginary part
Expected value

arg max Maximizing argument

Superscripts

Estimate

Iteration number

Average

Complex conjugate

Complex conjugate and transpose (Hermitian)
Vector of past three samples

Transmitter

Receiver

Subscripts

k.n

I
1L

Abb

ACF
AWG
BER

Discrete time index
Projection onto transmitted vector
Orthogonal projection

reviations

Autocorrelation Function
N Additive White Gaussian Noise
Bit Error-Rate

LDPC  Low Density Parity-Check (Code)

LLR
ML
PN
PSD
QAM
RF
SNR
SSB

Log-Likelihood Ratio

Maximum Likelihood

Phase Noise

Power Spectral Density
Quadrature Amplitude Modulation
Radio Frequency

Signal-to-Noise Ratio

Single Sideband
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Chapter 1

Background

The current evolution of the next generation wireless communication systems
has as its main target a tenfold increase in the data rates offered to the users.
To provide this, the pressure on the backbone networks is increasing accord-
ingly. When pushing the systems to meet these requirements, limitations in
the hardware reveal themselves. Links in the communication chain that has
previously been approximated as behaving ideally can no longer be considered
to do so. Fettweis [1] introduces the term ”Dirty RF” and talks about a shift of
paradigm when the analog (RF) and the digital design domains can no longer
be kept separated. Omne of these "dirty” components is the local oscillator,
transferring the baseband signal to the desired passband frequency registered
for communication.

The hardware equipment is of course constantly being improved, but there
will always be limitations. Also the improvements come at a cost, and one of
the largest challenges of the communication systems of tomorrow is to deliver
cost efficient services. A cheap solution to hardware obstacles is digital signal
processing. Signal processing may be done in both the transmitter chain, e.g.,
predistortion, and in the receiving end, e.g, signal filtering. The focus for this
thesis lies on the receiver structure.

This study derives and evaluates a digital signal processing algorithm for
dealing with time varying phase noise from noisy oscillators. The algorithm
works iteratively with soft information, in accordance with the ”Turbo princi-
ple” employed by modern error correcting decoders. The algorithm is aided by
working jointly with a low-density parity-check (LDPC) code to improve the
estimates of the disturbing phase noise process.

To evaluate the performance of an algorithm, some benchmark tool is needed.
This is provided by information theory and the channel capacity. Up until two
decades ago channel capacity was merely theory; the achievable limits were far
from what any actual systems could provide. In the beginning of the 1990s,
however, the turbo codes were invented and the LDPC codes were rediscovered
[2]. By the use of these error correcting codes, capacity-approaching results were
obtained by real systems. Since then, information theory provides a benchmark
tool for comparison. Knowing the possible achievable performance also provides
designers and developers with knowledge of where to spend resources on further
improving their systems. In this thesis capacity bounds are derived for a channel
suffering from time varying oscillator phase noise.
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1.1 Thesis Outline

Part I of the thesis provides some knowledge of oscillator phase noise and the
impact it has on communication systems. Chapter 2 gives a short introduction
to stochastic modeling of oscillator phase noise and Chapter 3 shows how the
noise in the local oscillators impacts the digital communication system. In
Chapter 4 the contributions of this thesis are summarized, and some suggestions
for future work are given.

The main work of this thesis is provided in Part II, in the form of two
included research papers.



Chapter 2

Phase Noise Modeling

2.1 Mathematical Oscillator Model

When communicating in a certain frequency band, the baseband pulses contain-
ing the information are carried by a high frequency radio wave. This wave has a
frequency many times higher than the rate of the communication system, typi-
cally in the Gigahertz range. Denote the baseband signal s(¢) and the oscillator
signal x(t), the transmitted signal in baseband notation is then,

stx(t) = s(t)xz(t). (2.1)
Ideally the oscillator signal looks like,
x(t) = Aexp[j2n f.t], (2.2)

for the carrier frequency f. and amplitude A. However, due to hardware im-
pairments, a real oscillator is better modeled as

z(t) = (A+a(t) exp [ (27 fet + ¢(1))], (2.3)

where a(t) is amplitude noise and ¢(t) is phase noise.

A local oscillator is a self-resonating circuit. To mathematically analyze the
noise terms this circuit may be modeled by a stochastic differential equation.
This has been done very rigorously by Demir et. al. in [3] and [4]. They
show that the amplitude noise decays over time, since the system is self stabi-
lizing. The amplitude noise may thus be ignored and the following, normalized,
oscillator model will be used from here on.

z(t) = exp [j (27 fot + ¢(t))] = €727 eI ?(), (2.4)

This process is stationary, due to the wrapping of the phase. We denote the
power spectral density (PSD) of the process S, (f), and the autocorrelation
function (ACF) R, (7). It is immediately obvious that the oscillator PSD is
determined by the spectrum of exp[j¢(t)], translated to the carrier frequency,
.

When measuring the phase noise properties of an oscillator, the spectrum,
S, (f) may be obtained through a spectrum analyzer [5]. This directly gives
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the single sideband phase noise power, L(f), a performance measure commonly
used in practice. It is defined as the noise power in a 1Hz sideband at offset f
from the carrier, divided by the total power in the carrier, P,. The unit is dBc,
decibel relative to carrier,

L(f) = 101ogy, w (2.5)

2.2 Phase Noise Model

Regarding disturbances in the phase of the oscillator, every time shifted oscilla-
tor is still a solution to the stochastic differential equation and there is nothing
restoring the phase shift. Phase shifts thus accumulate over time and may be
modeled as an integration of disturbances, [3],

6(t) = / n(s) ds. (2.6)

It is the characteristics of the the internal noise in the oscillator circuit,
n(t), that determines the behavior of the phase noise. It will be assumed to be
a stationary Gaussian process with PSD S,,(f).

If n(t) is a white process, S, (f) = C, the phase noise process is the Wiener
process (also known as a Brownian motion). It was shown in [3] that for this
case the oscillator spectrum is a Lorentzian,

1/7 f3aB

—.
f
1+ (deB)

The spectrum is plotted in Figure 2.1. It is characterized by a single parameter,
the 3db bandwidth, fsqp. The autocorrelation function is [4],

L(f) =10logg (2.7)

Ry(7) = e~ 2" fsanT, (2.8)

2.3 Discrete Phase Noise

In a communication system the phase noise process will be sampled every T
seconds, the transmission time interval. The discrete phase noise process is
defined as,

b 2 G(KT,). (2.9)
In accordance with (2.6) the process may be written as a random walk,
Ok = -1+ Ag. (2.10)

Since the oscillator noise, n(t), is assumed to be a Gaussian process, the inno-
vation term, Ay, will be a discrete Gaussian random variable,

Ag ~ N(0,0%). (2.11)
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Figure 2.1: Lorentzian SSB Phase Noise power, f3q, = 50Hz

The variance can be related to the stochastic properties of the oscillator as,
oA = —21In R, (T%). (2.12)
If n(t) is white the variance will be, from (2.8) and (2.12)
oA = 4n fzanTs, (2.13)

where f3qp is, as before, the single-sided 3dB bandwidth of the oscillator spec-
trum, and 7 is the symbol transmission interval. The discrete innovation pro-
cess will of course also be white,

E[ARA] =0,k # 1. (2.14)

The phase noise model defined by (2.10), (2.11) and (2.14) will be referred to
as the discrete Wiener phase noise model. It is restated in boxed equation 2.15
for clarity. A realization of Wiener phase noise is plotted in Figure 2.2.

Wiener Phase Noise model:
Ok = Pr—1 + Ay

Ay ~ N(0,0%)

E[ALA] =0,k #1

(2.15)




Chapter 2

¢ [deg]

20 T T T T

————— Wiener phase noise
0 kL i

—20

—40

—60

—80

—100

—120 1 1 1 1
0 20 40 60 80 100

k

Figure 2.2: Wiener phase noise, oo = 6°



Chapter 3

Digital Communication
with Phase Noise

In a digital communication system a pulse shape is transmitted every T seconds,
the symbol transmission rate. The transmitted pulse shape reaching the receiver
at time kT is represented in baseband notation by a complex symbol, s;. The
symbols are chosen from a discrete set of points in the complex plane, s € S €
C. S is the signal space, e.g., an M-QAM constellation as displayed in Figure
3.1, see, e.g., [6] for the basics of digital communication.

A simple channel modeling thermal noise affecting the signal is the additive
white Gaussian noise (AWGN) channel. The received symbol at time kT is,

Tk = Sk + Wk. (31)

The additive noise, wy, is complex, circular symmetric, white Gaussian noise
with variance 0% per dimension,

Wy, ~ Ne(0,20%)
Elwpdy] = 0,k # 1. (3.2)

An example of received symbols from the AWGN channel are plotted in Figure
3.2.

To include the effects of oscillator phase noise the transmitted and received
symbols are multiplied by a complex phasor, e??, see [7] for details. This will
cause a rotation of the signal space, illustrated in Figure 3.3.

Let ¢f* and ¢B* denote the discrete phase noise sample at the transmitter
and the receiver, respectively. The received signal at discrete time k will now
be

rE = (skemgx + wk)eW?* (3.3)
— 5, el O oy, (3.4)
= s,e?" 4wy

In (3.4) wy = Wy exp[jdR*]. A rotation of the circular symmetric additive noise
does not change the stochastic properties, so wy has the same probabilistic
definition as Wy in (3.2). In (3.5) the total phase noise process is introduced,
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o = gng + ngkRX. The result of this channel containing AWGN and Wiener phase
noise is displayed in Figure 3.4. It is also depicted as a block diagram in Figure
3.5.

As seen in (3.5) the transmitter and receiver phase noise samples add to-
gether and may be described by one process, the properties of which will now
be examined more closely. By the random walk statement of the discrete phase
noise process (2.10),

P = G + D (3.6)
k k
=D A AR (3.7)
=0 =0
k
= SaP A (38)

=0

k
23 AL (3.9)

=0

So the total phase noise process is also a discrete Wiener process. Assuming
independence between the transmitter and receiver oscillators, the innovation
variance for the total phase noise process will be the sum of the variances,

Ag ~ N(0,03 (Tx) + 03 (Rx)). (3.10)
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Chapter 4

Contributions and Future
Work

This chapter summarizes the contributions made in the included papers. Some
directions and suggestions for future work are also given.

4.1 Paper A

4.1.1 Summary

In Paper A the problem of estimating the phase noise process at the receiver is
considered. By doing so the constellation may be de-rotated, in order to alleviate
the performance decreasing effects of the phase noise. Since the phase noise
interacts non-linearly with the transmitted data the unknown data sequence is
considered as a nuisance parameter. The expectation-maximization framework
is employed to find the ML-estimate of the phase noise process over a block of
data consisting of one codeword. The error correcting code used is an LDPC
code.

The derivation shows that the soft information iterated in the LDPC de-
coder may be used to compute estimates of the phase noise process. These
two operations, decoding and tracking, should then work iteratively to further
improve both the data and the phase noise estimates.

The algorithm was simulated and shown to give good results. Also some
propositions lowering the computational complexity to reasonable levels were
investigated.

4.1.2 Future Work
Complexity

The computational complexity of the proposed algorithm should be evaluated
more thoroughly. First of all the optimal operating settings, in terms of low com-
plexity, while maintaining performance, should be found. Then the increased
complexity of the proposed scheme as compared to a conventional (non-iterative)
phase noise tracker could be derived analytically.
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BER Floor?

To see the performance at lower bit-error rates the algorithm should be simu-
lated at a higher signal-to-noise ratio. This will show if the BER curve follows
the curve for a system without phase noise, which looks like a waterfall, or if it
will floor out. In order to do this the algorithm must be implemented in C-code
or something similar to obtain reasonable simulating times.

Colored phase noise innovation

The model used was the Wiener phase noise model. The problem could be ex-
tended to tracking time varying phase noise with colored (correlated) innovation
steps. This would not change the overall structure of the algorithm. The only
thing needed is to extend the Kalman filter with more states. These states could
be the covariance matrix for the noise, or the phase noise could be reformulated
as an AR-process and the states would then be the taps.

4.2 Paper B

4.2.1 Summary

Paper B derives upper and lower bounds on the capacity for the AWGN and
Wiener phase noise channel. The approach consists of stating the input-output
relations of the phase and amplitude of the signal, and then making a high
SNR approximation. To resolve the infinite memory of the Wiener phase noise
process, differential decoding of the phase is employed. To find the optimal dis-
tributions an optimization theorem of functionals from the calculus of variations
is used.

The results are expressions from which the capacity bounds may be nu-
merically found for given levels of phase noise and signal-to-noise ratios. The
channel capacity for the limiting cases when the phase noise dominates the
additive noise, and vice versa, are also derived to ensure consistency.

The numerical results show that the upper and lower bounds are close to
each other, thus enclosing the channel capacity. For low enough levels of phase
noise the capacity is the same as for the AWGN channel. When the phase
noise becomes a limiting factor, however, the achievable rate increase gained by
increasing the signal-to-noise ratio rapidly decreases to 50%.

4.2.2 Future Work
Distributions

The derived output distributions should be investigated to see if it is possible to
construct corresponding input distributions. For high SNR the optimal input
distributions may be approximated by the derived optimal output distributions.
The mutual information can then be investigated through simulations.

Discrete constellations

In the paper a system with continuous, complex, inputs from an arbitrary dis-
tribution of our choice is assumed. An interesting question is what effect a
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discrete constraint on the input distribution would have on the capacity. Prac-
tical systems always work with discrete signal constellations. Given the number
of points in the constellation the optimal placement of these with respect to
maximizing the mutual information could be derived. This would be very valu-
able knowledge since it could be easily implemented in an existing system.

Another interesting question is what the mutual information for some fixed,
commonly used, constellations is. For example an M-QAM constellation should
be possible to investigate analytically.
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JPk )
Abstract—The problem of estimating time varying Wiener ¢ Wk
phase noise by using the iterative structure of the low-derity %Encoder M Modulato Sk Tk
parity-check decoder is investigated. An algorithm perfoming

joint iterative phase noise estimation and data decoding iderived
from the expectation-maximization framework. The algorithm is
simulated for a high order QAM system and shown to give huge
improvements in terms of decreased bit error rates. Furthemore

suggestions to decrease the computational complexity of éh 1/f2 for high frequency offsets [6]. The transmitter and

Fig. 1. Block diagram of system model

algorithm are discussed, tested and proved to work. channel models are presented in Section II.
The approach of this paper is to start off with the EM
. INTRODUCTION algorithm, described in Section Ill, and apply it to the devb

of tracking time varying phase noise, extending the workedon
Carrier phase noise due to noisy oscillators is a seriogs[2] on a constant phase offset. This is done in Section IV.
source of errors in digital communication systems. The €hpan doing so it turns out that information given by the stamdar
of phase noise increases with the number of points in thepc decoder, ignoring the phase noise, can be used to
signal constellation, as well as with the increasing bauesra yrack the time varying phase noise. The tracking is perfarme
required in modern systems. The phase noise interacts With 3 Kalman Smoother based on a linearized measurement
the transmitted symbols in a non-linear manner and rotates bquation previously suggested for a turbo coded systenin [5
signal space. To alleviate these effects the phase noisess0 |y section V, the joint iterative phase noise tracking andPD
should be estimated in order to de-rotate the signal space.decoding algorithm is presented. To show the performance of
By using the iterative structures of receivers employinge algorithm simulations has been performed, and thetsesul
turbo or low-density parity-check (LDPC) codes, huge imare presented in Section VI.
provements may be gained in these estimates. The main idea
is to perform the noise estimation jointly with the iteratidata [l. SYSTEM MODEL

decoding, and let the improved knowledge of the transmltted.l.he transmitter and channel are drawn in Figure 1. At the

data and the re(_juced est|mat|on_errors of th_e noise help e?r%rﬁsmitter the bitsh, are encoded with an LDPC block code
other to further improvement. This has previously been done :

. . o to produce a codeword;. The encoded bits are modulated
to provide improved estimates of synchronization paranaeteomo complex symbolss — [ s1], from an M-QAM
such as the symbol delay and constant frequency and phase P y — - OLh

offsets of the carrier. The method has been labeled "TurBS.nSte”atlonS' These _symbols are rota’ng by QSC'"ator phase
o - noise and then transmitted over an additive noise chanhel. T
synchronization” and was initially donad hoc, see e.g. [1]. , )
. ) . utput,r, from the Wiener phase noise and AWGN channel,
The approach has since been formalized with the use of t\%vﬁh DUt s, at discrete times. is
expectation-maximization (EM) framework in [2] and by the PUt sk T
use qf factor graphs in [3]. _ _ _ . e = spel®r 4wy (1)
This paper is concerned with the tracking of time-varying N . . o .
carrier phase noise in a system using an LDPC code, [4he additive noisej, is complex white circular symmetric
Previous work on tracking a constant carrier phase offsagus Gaussian noise with powery; per dimension,
the turbo approach includes [1], [2] and [3]. Time-varying N (0. 202 2
phase noise in a turbo coded system has been investigated in wr ~ Ne(0, 207y), ©)
e.g. [5]. Elww] =0,k # 1. 3)
The case investigated here consists of a high order QA
constellation used in single carrier transmission. Thiofis
great practical interest since most work in the literato@ises br = Pp_1 + Ay, (4)
on very small constellation sizes. The phase noise model Ao N 2
. - . k™~ (07 UA); (5)
used is the commonly accepted Wiener phase noise process,
equivalent to a Lorentzian oscillator spectrum, behaviag a E[ARA] =0,k # 1. (6)

Mhe phase noiseyy, is defined as
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This discrete time Wiener model corresponds to a sampléd E-step analysis

version of a continuous time Brownian motion process, i.€., Gjven the transmitted data and the phase noise process, the
integrated white noise. Samples are taken evrysecond, yaceived signal has a Gaussian distribution due to theineldit

the transmission symbol interval. The continuous time gssc noise, see the system model in Section Il. The conditional
of the corresponding oscillator has a Lorentzian spectrUiRelinood function is thus

[6]. This spectrum is fully characterized by a single param-

eter, such as the 3-dB single sided bandwidfk;z. The exp |— o (1 — se/?)(r — sel?)H
innovation variance for the discrete phase noise process is/(7|s, ) = = (AroZ L7 - (1)
U2A = 47Tf3dBTs- N

Taking the logarithm and dropping terms independenp ofe

1. EXPECTATION-MAXIMIZATION get the conditional log-likelihood function (LLF),
. . . - - . L
The Expectation-Maximization (EM) framework is an it- log f(r|s, d) x —2Re ZSZWE_M’“- (12)

erative approach to solving an estimation problem where the
observation depends not only on the parameter to be estimate _ . . _
but also on some, unobserved, nuisance parameter. Let 'ﬂ?é’v taking the condltlon_al expgctatlon_overgwen r and
observation bey = y(x,#) whered is the parameter to be # » th€ current phase noise estimate, gives:

estimated and: is the nuisance parameter. Thens called - L '

the incomplete observation, and the $gtz} the complete Al ) = E, 4 | —2Re ZSZT‘kem‘] (13)
observation. We assume here thandd are independent. The k=1

k=1

Maximum Likelihood (ML) estimate of from the marginal L . i
likelihood of the complete observation is = —2Re Y E,, 0 [sire ] (14)
k=1
O = argmeaxlog Ty10(v10). (7

L
= —2Re Z Es\r,zf)" [Sk]* T‘kefj%: (15)
The marginal likelihood functiory,4(y|0) is the total likeli- k=1
hood function averaged over the unobserved nuisance parddext we define the a posteriori average vector of the transmit

eter, ted symbols, conditioned o¢on
L2E  nls] = Pr(sp = air, ¢ 16
fy\e(yle) :/fyz\G(ny'e)dx:/fx(x)fy|x,0(y|m59)dm Ok s|r,¢ [Sk] alzezg(ll I'(Sk al|7' ¢ ) ( )

(®) The sum is over the points in the signal constellation,
AN . . . ey
The EM-algorithm consists of iterating between an expémtat Fr(sx = ax|r, ¢ ) are the marginal a posteriori probabilities

(E) and a maximization (M) step defined by (APPs) of the transmitted symbols.
We can now write (15) as
E: A(@len) = Eajly7é” [1Og fy\z,G(y|x7 9)] (9) n L .
M : én-{-l = arg maXA(9|é"). (10) A(¢|¢ ) = —2Re Z azrkefﬂbk (17)
0 k=1

The algorithm has been shown to converge to the ML-solutidie E-step may thus be computed by first finding the marginal
[7]. APPs of the transmitted symbol vector, given the current
Inspecting the steps, we see that the E-step compu@séimate of the phase noise process. These should then be
the conditional a posteriori expectation of the log likeliln used to construct a vector of weighted, or "soft”, symbais,
function (LLF), given the current estimate of the parameter To find the marginal APPs a summation over all possible
. This is a function off, the conditioning argument in Sequences of data symbols has to be performed. For an
the LLF, andé™ which is the conditioning argument in theuncoded system with independent and equiprobable symbols
expectation. Note that” is kept fixed through the E-step. Itthis is possible to compute. For a coded system, however, it

is instead updated in the M-step which maximizes avgo Will be a very large set to sum over, and it is also questiamabl
find the next estimate)™+1 if all codewords have the same probability.

B. Soft decoding as the E-step

An iterative decoder working with soft information is
For the Wiener phase noise and AWGN channel, the paramarginalizing the APPs of the individual bits. For a mem-
eter to be estimated is the phase noise sequeficand the oryless Gaussian channel the decoder converges to the true
nuisance parameter is the vectorlotransmitted symbolss. values of the APPs. Since the channel at hand has memory,
The incomplete observation is the received vecitoand the convergence is not guaranteed. But the soft output from the
complete observation set {3, s}. decoder may be used as approximations of the APPs for the

IV. PHASE NOISE ESTIMATION
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transmitted bits. If a simple mapping from bits to symbols i Soft Demodulator LLRs LDPC Decoder
available these bit APPs may then be used to construct the

soft symbol vectorgx. e—id" LLRs

As an example, consider the Gray mapping from bits t o
Kalman Smoother Soft Modulato

symbols in 16 QAM,
A

a:b1(2—b2)—jb3(2—b4), (18)
Fig. 2. Block diagram of receiver algorithm

whereb; € {—1,1}. By assuming the bits to be independent,
which is true for the data bits and reasonable for the parity
bits if an interleaver is used between the encoder and
modulator,«;, may be broken down into the probabilities o
the individual bits (the subscrigt on the bits is dropped for

Bw the parameter to be estimatedis qb—fﬁ. First consider
he real and imaginary parts of the received signal,

notational clarity) [1], Re{rr} = Re{a} cos(x) — Im {as } sin(6x) + Re {wy }
an =(Py, + Poy) (1+7+2 (P, +P,)) Im {7} = Re{ax} sin(x) + Im {ay } cos(0y) + Im {wy }.
(Pb37Pb1)(71+j72(Pb27ij4>>a (19) (26)

Assuming small values of the phase noise deviation from the

An . . . o
whereP;, £ Pr(b; = 1|r,¢ ), i.e., the a posteriori probability mean, the following approximations can be made:
of the bits conditioned on the current phase noise estimate.

The LDPC decoder works with the log likelihood ratios sin(6x) ~ O (27)
(LLRs) of the APPs, defined as cos(0y) =~ 1. (28)
P J— 1 A n P . . . . . .
Li 2 log r(b; |r, ¢A 7)L ~log b (20) g\pplymg the approximations to (26) gives linear functiasfs
Pr(bi:71|r7q§ ) ].*Pbi k-

By inverting (20) the APP may be expressed as a function of Re {7y} =~ Re{ax} — Im {ay}0; + Re {wi}

the LLR, Im {r;} ~ Re {ax}0 + Im {ay} + Im {wi}.  (29)
L;
P, (21) The following measurement equation, removing the(6y)

Coltels term, was proposed by [5],
Let 8; £ tanh(L;/2), by inserting (21) into (19) the following

expression of the soft symbols is obtained: yr = Im{nag} (30)
' = Im{rip}Re{ar} — Re{ri}Im{a} (31)
ar = B1(2 = F2) = jB3(2 = Ba). (22) ~ (Re{aw}br +Im{ag} + Im{ws})Re {a}
We call this a soft modulation of the LLRs. It is easily verifie — (Re{az} — Im {a }0r — Re {wi})Im {ar} (32)
that as the APPs converge to one or zgro— 1 or —1 and, - (R 2.7 2y
consequentlyy, — a, a symbol in the constellation. (Re g} + Im {u})0x
+ Im {wy, }Re {ax} — Re {wy HIm {a(n)} (33)
C. M-step L

. o |k [0k + v, (34)
The M-step should maximize the a posteriori likelihood

function f(r|s = «, ¢) with respect top. A general solution Wherevr ~ N(0, Es0%,/2) and E; is the average symbol
to this problem is given by the Kalman Smoother, which sui1€"9y- The measurement equation is now linear and a regular

this problem perfectly since it is already given in stataegp Kalman Smoother may be used.

form; V. THE JOINT ITERATIVE PN TRACKING AND LDPC
State : Ok = 1 + Ak (23) DECODING ALGORITHM
Observation : e = agpel®* 4wy (24) The joint iterative phase noise tracking and LDPC decoding

algorithm is described in Algorithm 1 and depicted as a block

The only problem is that the observation equation is noalinegiagram in Figure 2.
and we must use a linearized version, glVIng suboptimal When imp]ementing the proposed a|gorithm some design
solutions. It will be shown, however, that this still givesagl parameters needs to be decided upon. Firsﬂy the EM_thorit
results. does not converge to the global maximum if the initial guess

To be able to make a small angle approximation of thg not close enough to the optimum. The procedure thus needs
phase noise process, we begin by removing the mean of {B&e bootstrapped with a good enough guess. To achieve this,
phase rotation over one codeword, as proposed in [5]. The Mlots are inserted into the data stream evgrysymbol. The

estimator for the mean is [35], pilots are known data symbols providing a more stable phase
fb — arg {ZT‘WZ} . (25) noise estimate since there is no uncertainness of the rmgisan
parameter.
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Algorithm 1. The Joint Iterative PN Tracking and
LDPC Decoding Algorithm

i 1071
input T
output b LTS
parameters Nloops, Nits, 0%, 04 1072
s ¢« p s
for n + 1 to Nloops do 1073 ¢,
LLRs < Sof t Denodul at or ( sV, %) N LR LR R A VS " R R R E R B G
for n + 1 to Nits do I )
| LLRs « LDPCDecoder ( LLRs) 3 : 1)
end DI R DU SO e \ o
o «+ Sof t Modul at or ( LLRs) L
~ (n) ) ) —O©— Baseline |:
¢ <+ Kal manSnoot her (o, r, 03, o) A tterative | .-
S(”) — T(O) exp[_j{bn] 1076 3 .
——k—— All pilot
end ——No PN |1k
b « Har dDenodul at or (5™, 0%) 10-7 . . . .
13 14 15 16 17 18
Ey/No
Another question related to convergence is how many iter- Fig. 3. BER curves

ations the LDPC decoder should perform before passing the
LLRs on to the Kalman Smoother. To be a good approximation
of the marginal APPS of the transmitted bits, the decoder

TShOUId be run to convergence. Th'_s is, however, not fea&_%e rotate the original received signal before passing ithi t
in a real system since the processing load and the delay t'EBPC decoder. The LDPC decoder in the baseline case makes

wil t;ﬁ very fh|gh. It wai Evest:gatg{g her1<_ahas a ft|rstt step té)flarge number of iterations to give a fair comparison since
see the periormance of the algoriinm. e next Step 1S Pl iterative algorithm multiplies the total number of déirmy
course to decrease the number of decoder iterations and .

. i f .
how many are needed for convergence. A trick to speed |§§r%t|ons performed

convergence was proposed in [2] for a turbo coded systemTo evaluate the possible performance of the algorithm a
The idea is to avoid restarting the decoder between iteraticsimulation was performed where the Kalman Smoother had
of the total algorithm. For the LDPC decoder this would meagiccess to the transmitted symbols. This "all pilot” scemari

that the extrinsic information in the node checksums are keghould show what performance in terms of bit error-rate the
between phase noise estimate updates. Only the input LL&gorithm gives when it reaches convergence. For compariso
of the individual bits are replaced. the BER curve resulting from removing all phase noise in the

system is also shown.
VI. SIMULATIONS AND RESULTS
To improve the speed of the algorithm, the number of

The derived algorithm was simulated for a 256-QAM SYSterations required for convergence was investigatedurieig

tem, with a rate 7/8 LDPC code from the NASA Goddar . . . .
’ . hows the improvement in BER for each new iteration of
technical standard [8], having a block length of 7154 code;HS WS Improv ! W !

: ) . e algorithm, for a fixed signal-to-noise ratio. It alsopdéy's
bits. Pilots were inserted every 20th symbol. The phaseenolﬂe effect of decreasing the number of decoding iterations

process was a Wiener process as described in Section Il g}formed inside the algorithm. As seen it is possible to go

innovatior) variancgrQA = 107", At the rec_eiver joint iterative down to 5 decoder iterations per algorithm iteration witraim
phase noise tracking and LDPC decoding was performed Rses in performance

each code block.
In Figure 3 the results of the simulations are shown. The Figure 5 shows the same experiment, but here the LDPC
LDPC decoder makes 20 iterations before outputting infermdecoder is not restarted between phase noise updates. With
tion to the Kalman smoother. Then the decoder is restartdts setting it is possible to go all the way down to one
with the input rotated according to the new estimate of ttdecode iteration per total algorithm iteration. Since theatle
phase noise process. For comparison, a baseline casetégiploiterations are the heaviest operations in the algorithetakal
This refers to performing the phase noise estimation seghracomputational complexity is approximately given by theatot
from the decoding. In detail the signal is first demodulated number of decode iterations. The number of operations per-
a soft manner to retrieve bit LLRs, these are then used ftrmed after 30 algorithm iterations with one decode iferat
construct soft symbols which are fed to a Kalman Smoothés, thus approximately the same as the number of operations
which provides a phase estimate. This phase estimate is ua#tdr 10 algorithm iterations with 3 decode iterations.
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—<&— 3 decode iterations

— — — 5 decode iterations ‘
10 decode iterations

——k— 20 decode iterations |:

phase noise estimates and the quality of the decoded data.
The performance of the proposed algorithm was evaluated
for a 256-QAM system with a rate 7/8 LDPC code and shown
to give performance gains, in terms of significantly lower bi
error rates. To obtain reasonable computational comyléixit
was shown that the algorithm converges faster if the LDPC
decoder is never reset. The phase can be estimated, and the

Fig. 4. BER performance for each algorithm iterationft/No = 16dB

10
Algorithm Iterations

10-5

—o6— 1 decode iteration

—<&—— 3 decode iterations
— — — 5 decode iterations
——— 20 decode iterations |

received signal de-rotated, every decode iteration.

(1]
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VIl. CONCLUSION

The expectation maximization framework has been applied
to the problem of estimating time varying Wiener phase noise
in a digital communication system. The derivation motigate
the proposed joint iterative phase noise tracking and LDPC
decoding algorithm. The algorithm uses the soft infornmatio
iterated in the decoder to estimate the phase noise process
through a Kalman Smoother. The phase noise estimates are
used to de-rotate the received signal returning bettertitgpou
the decoder. This process is then iterated to improve bath th
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Abstract—The channel capacity of a channel consisting of phase noise is a stationary process. That assumptiones lift
additive white gaussian noise (AWGN) and time varying Wiene here by considering time varying phase noise generated by a

phase noise, equivalent to a random walk, is investigated.AIS  \yianer process, which is a commonly accepted model [7].
channel is of interest since it models the effects noisy oHators

has on a communication system operating at radio frequencie This paper derives upper and a lower bounds on the capacity
Upper and lower bounds on the capacity are derived through Of the additive white Gaussian noise (AWGN) and Wiener PN

functional optimization of the output distributions. To deal with  channel. The approach is initialized by replacing the itas$
the infinite memory of the Wiener phase noise process differial  and Q-channel with an equivalent amplitude-phase channel i
decoding of the phase is employed. The capacity bounds aregetion |1, This shows more explicitly the effects of the gha

evaluated numerically and it turns out they are extremely tght, . d al I f hioh SNR . .
thus enclosing the true capacity well. The results are alschewn NOIS€ anad aiso allows tor some hig approximations

to be consistent with capacities derived for asymptoticaldvels of ~Simplifying the calculations. Channel capacity is definecaa
phase noise. The procedure followed may be repeated for give functional optimization problem in Section Ill and a themre
values of the Wiener phase noise innovation variance and sigl-  from the calculus of variations is stated, to be used later.
to-noise ratio(SNR). ' : Using the amplitude-phase channel, the mutual information
The capacity for the AWGN and Wiener phase noise channel . . T . .
follows the well known AWGN capacity curve for low values Petween the inputand the output is examined in Section IV. To
of SNR. At some point, determined by the ratio of the Wiener strengthen the methods used and familiarize the reader with
phase noise innovation variance and the SNR, the curve dev&s. the approach used, two extreme cases are then investigated.
After this point the increase in achievable data rate gainedoy Tpe capacity is derived for the case of negligible phaseenois
::nhce:ﬁﬁzlﬁg the SNR is only half of that for the pure ANGN i, secfion v, The result is the well known AWGN capacity
formula. In Section VI the case of a phase noise dominated
|. INTRODUCTION channel is investigated.
, ) In Section VII lower and upper bounds on the mutual
INFORMATION THEORY has been used since it Wasytormation for arbitrary levels of phase noise are derived

introduced by Shannon in 1948 to calculate the capacity §fe infinite memory of the Wiener phase noise process is
different communication channels in terms of maximum dajaq,ved by the use of differential decoding. There is hawev
rate achievable for a fixed time interval and spectral atioca 5 gependence on the amplitude distribution in the bounds on
However, it took until the 1990s for real communicatio,e mytyal information. To make the bounds tight they are
systems to approach the cap_acny limit, with the arrivalhef t optimized over all amplitude distributions satisfying areegy
turbo codes [1] and the revival of the LDPC codes [2],[3}gnstraint in Section VIII. Finally, in Section 1X, numeaic
Since then, the importance of capacity has increased asdlits are presented showing that the bounds are very close
provides a benchmark comparison tool for communicatiQy each other, thus enclosing the true capacity. The bounds

systems. _ o o also match the extreme cases derived.
Phase noise (PN) is a reality in any RF communication sys-

tem, where local oscillators are used to translate the baskb
signal to passband and back down again at the transmitter and
re_ceiver, r_espectively. It has_become a more importandfacty The channel
with the increased popularity of the orthogonal frequency
division multiplexing (OFDM) as well as with the increased The output,y,, from the Wiener phase noise and AWGN
constellation sizes in single carrier systems. For OFDM syghannel with inputz; at discrete timek is
tems the phase noise tends to destroy the orthogonalityeof th ,
subcarriers [4]. Y = Tl 4wy 1)
In the research literature, little work is found on the catyac
of a channel with phase noise. In [5], the capacity is derivéd'e additive noiseiw, is complex white circular symmetric
for a system with residual white phase noise after a pha@@ussian noise with powery, per dimension,
locked loop. A bound for a phase noise process with memory )
is derived by Lapidoth in [6]. It is assumed, however, that th [w1, w, -+, wn] ~ Ne(0, 205 1) 2

Il. SYSTEM MODEL
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The phase noise)y, is defined as To summarize, the following approximative input-output
relationships for the phase and amplitude have been derived
b = Pr—1 + A, ®) in @ - 2):
2
[Ay, Ag, -+ AL ~ N(0,01). (4) ro ~ Ry + wy (13)
This discrete time Wiener model corresponds to a sampled 0, ~ O, + Wk, L + b (14)
version of a continuous time Brownian motion process. Sam- Tk
ples are taken ever{; second, the transmission symbollhe approximations are valid for high SNR. These equations
interval. The continuous time process of the correspondipgovide additive noise relationships for the phase naigeas
oscillator has a Lorentzian spectrum [7]. This spectrum igell as the white noisey,. The received phase does, however,
fully characterized by a single parameter; the 3dB singledi have a non-linear dependence on the received amplitude.
bandwidth, f345. The innovation variance for the discrete
phase noise processd$ = 47 f3a57Ts.

[Il. THEORETICAL FOUNDATIONS
A. Definition of Capacity
B. Amplitude and phase input-output relations The capacity of a channel is defined as the maximum of the

The input, zj, to the channel (1) is a complex numbermutual information between the input and the output over all
We denote it's amplitudezy,|, with R, and it's phase/y, input distributions satisfying an energy constraint [8inc®
with ©, so thatr, = Rre’®*. In the same way, and 6, the problem at hand involves a channel with memory, we

are the output amplitude and phase, respectively. Theigeldiconsider capacity per channel use. This is defined as the
noise, wy, is divided in two orthogonal parts, one paralle@ximum mutual information between a long input vector,
with the transmitted vectory,, | and one orthogonal to it, and the corresponding output vectgr,divided by the length
w1 . The input-output relationships between the transmitté the vectors.

and received phase and amplitude are: O = max ll(x- v)

fx(x) N
e 2 Jyk| = \/(Rk +wg)? Wi | ) subj.to ~F [lIxI*] = E.. (15)
Wi, 1 "
6 2 Lys = © tan —==——+¢,. (6 iat
k Yk i + arctan Ri + wy| + Ok ©6) B. Calculus of Variations

These two real-valued channels, equivalent to the complex-rk:e probltfam s_tatetlj In (15) is a fl:nctionai optimization
channel (1), has the advantage of being additive in terms FHPI em. bA unctional is a Tapplﬂg romfa unﬁtlon Ito Ia
the phase noise. The impact of the amplitude on the totaenof€3l number, e.g. an integral. A theorem from the calculus

added to the transmitted phase is also made more visible. Of variations will be used in this paper, for proof see, 4.,
Theorem 1: (Functional optimization)

C. Approximations If the functionall(u) is defined by:

For high signal-to-noise ratio (SNR) the amplitude dom- I(u) = / K (x,u(x)) dx, (16)
inates the noise termsk, >> w;L . In this case the Q
orthogonal noisey, 1, will not change the amplitude much.whereu(x) is a real valued function of a real vector argument

This may be seen by expanding (5), X,
. N
- \/(Rk +wg)? +wd | @ u:QCRY -5 R, (17)
w2 andK andL;, i =1,2,...,n, are real valued functions with
= (Rp + wry) 4|1+ kL (8) continuous first partial derivatives,
| (R + ) KL :QOQxR—-R, i=1,2 18
~ Ry + wy . ©) L OXxR—=R, 1=1,2,...,n. (18)

] o Then a necessary condition farto be a stationary point of
Using the above approximation and the fact thatran(z) ~ I(u) under then constraints

x for small z, which is the case in (6) for high SNR, the

following approximative relation for the received phaseyma / Li(x,u(x))dx=0,i=1,2,..n, (19)
be used, Q
is satisfying the simplified Euler-Lagrange equation:
0, = O + arctan Rw% + ¢k (10)
kT W | 0K <~ . OL;
—+t D> A\ = 0. 20
~ Oy + arctan Yhl Ok (11) ou z_: ou (20)
Tk =
~ O+ el g, (12) The Lagrange multipliers\; should be chosen to fulfill the
Tk constraint.
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V. MUTUAL INFORMATION Equality is achieved in the last step if the received amgétu

The functional to be optimized is the mutual informatioymbols are independent.
per channel use between an input vectorand an output ~ Consider now the phase information channel in (26),
vectory, as stated in (15). The input and the output are related 1 1
through the Wiener phase noise and AWGN channel stated in 1(6;r, R, ©) = —(h(6) — h(0Ir,R,©))  (33)
(1). By using the approximative amplitude and phase inp
output relations, (13) and (14), this may be rewritten,

n

u1t_he entropy of the received phases may be bounded as,

1 1 1 1 n
ZI(x;y) = —I(r, 6; 21 - -
~I(x;y) = ~I(r,0;R,©) (21) ~h(9) < — kzoh(ek) < log, 27, (34)
1 =
=, (h(x,8) = h(r,0|R, ©)) (22)  \where equality is achieved for independent, uniformly dis-
1 B - tributed phases.
n (h(x) + h(B]r) — h(r|R,©) — h(6]r, R, ©))  (23) The conditional entropy may be written as an expectation
:l (h(r) — h(x|R) + h(B]r) — h(O]r, R, ©)) (24) _over_the distribut_ion of the received am_plitudes, if the rapp
711 imative channel ignoring the phase noise, (27), is used,
<— (h(r) = h(r|R) + h(0) — h(O|r,R,® 25
—?( (r) ~ h{r[R) +h(6) ~ h(6Ir. R, ©)) (@3) L10/@,r,R) ~ 1h(® + N|©, 1, R) (35)
n n
=—(I(r;R)+1(6;r,R,0)). 26 1
~ U R) + 1(6;r ) (26) _ lyNje.rR) (36)
In (23) the chain rule for entropy has been used. Under 711 w
the high SNR approximations the received amplitudesire = —h(—ﬂr) (37)
conditionally independent of the transmitted phagsgiven Tt Wl
the transmitted amplituded®. This makes (24) true. The = —F; {h(T)} (38)
inequality, (25), comes from the fact that conditioninguees " 1 o2
entropy. Equality is obtained # is independent of which =FE, [5 log, 27re—]2v} . (39)
is true if the transmitted phase®, are uniformly distributed, "
O ~ U(0, 2m). In (39) the independence of the amplitudes was used.

Looking at (26) we see two information channels. The first To summarize, the mutual information is bounded by the
one,I(r; R), will be referred to as the amplitude channel anfbllowing expression, depending on the distribution of the
the second ond,(0; r, R, ®) as the phase channel. The phaseceived amplitudes,
channel information may be thought of as the information

- . . 1
gained by decoding the phase after the the amplitude has—7(0,r;R,®) <h(r) — 510g2 2meas (40)
already been decoded. K ) ;2

V. AWGN DOMINATED +logy 2m — Ly {5 logy 2”674_]2\[} (41)

As a special case we first consider the case when the 1 )
additive noise dominates over the phase noise. Assume that =h(r) - E; {10%2 ;] —logyeoyy.  (42)
0% >> o%, then the approximative phase channel in (14[% o _ _ _ _
may be further approximated as: quality in (40) is achieved when the received amplitudes

w1 are independent and the received phases are independent and
Ox ~ O + o (27)  uniformly distributed.|
= O + Np. (28) B. Optimization

For notational convenience the proceSs = wy, 1/ has  Since the capacity is defined as the maximum of the mutual
been introduced. It is the orthogonal part of the additivis@0 information an optimization needs to be done over all pdssib
scaled with the received amplitude. amplitude distributions. Applyingrheorem 1to the mutual

A. Mutual Information information in (42) under the constraints of a normalizefl pd

First consider the amplitude information channel in (26), and limited power, the following distribution is obtained,

1 1 D\ . —Ar?
~I{(rsR) = —(h(x) - h(x|R)) (29) = flr) = Kre™ (43)
1 1 Sor is Rayleigh distributed, as expected since this is actually
= gh(r) - #L(WII) (30) nothing but the regular AWGN channel. The capacity is,
1 1 )
= Zh(r)— = E,
nh(r) 5 log, 2meon (31) C = log, (1 +52 > , (44)
1 N
< — —log, 2mec?;. 2
< h{r) g ‘082 #MEIN (32) which is the well known AWGN channel capacity.
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VI. PHASE NOISE DOMINATED VIlI. GENERAL CASE

Consider now the case of a phase noise dominated systeniNow the general case will be investigated, where no as-
Under the assumption thaty >> o3% the following phase sumptions are made regarding the relative impacts of thegpha

channel may be used: noise and the additive noise.
0 = O + oy (45) A. The Phase Channel
The phase channel in (26) contains two entropies:

A. Mutual Information
When the phase noise dominates over the additive noise l1(0;1~,R,®) _1 (h(0) — h(OIr,R, ®)) (58)
there will be no dependence between the phase channel and " "

the amplitudes, The entropy of the received phagg#), may be bounded
as,
lI(6’;r,R, Q)= l(h(6?) — h(0]®,r,R)) (46) 1 1>
" T ~h(0) < = > h(0) < log, 2. (59)
= —(h(8) — h(6]®)) (47) T
Equality is achieved for independent, uniformly distristt

< log, 27 — %h(@ + ¢|O®) (48)

phases.
B 1 For the conditional entropy of the received phase,
= logy 2m — Eh(@ (49) h(0|r, R, ®), the approximative phase channel, (14), will now
— log, 21 — lh(A) (50) be used. It is stated here again with = w1 /71, as before,
n

0 ~ O + Ni + ¢ (60)

To resolve the infinite memory of the phase noise process
For the amplitude channel, the distribution of the ampkisid the conditional entropy of the received phase may now be
may now be chosen without care of the phase channel, rewritten as:

1
= log, 27 — 3 log, 2meci. (51)

1 1
Lremr) = L) - % log, 2me0?, (52)  h(Olr.©.R)~—h(O+N+¢lr,O,R) (61)
n n
1 1
< h(r) = 5 logy omeas, (53) =_h(N+4¢Jr,®,R) (62)
1 ;
where equality is reached for independent amplitude sysabol :Eh({Nk — Np—1+ Ag}iq|r, ©,R)
The total mutual information is thus, (63)
1 1 1
EI(r,G;R,@) <27 — §1og2 2meca é5h({ak}7§=1|r,(Q,R). (64)

(54) In(63) the noise vector has been rearranged into the diftere
between consecutive noises, as in differential decodimg T
B. Optimization new processi, = Ni — Ni_1 + Ag, With Ny = 0, is a

The only function involved in the maximization is theStationary process and in the limit af — oo the average

amplitude entropyh(r). Applying Theorem 1io the problem joint entropy may be replaced_ with an equivalent expression
of maximizingh(r) under power and normalization constraintl®" the entropy rate, see p.74 in [8],

the result is 1 n e
) Eh ({aktiz1) = h (an|{ak}k=11) . (65)
Y=Ke ™ ,r>0 55 L _
= /) ‘ . (55) By conditioning on only one previous sample @f the

which is a half-normal (or folded normal) distribution, theconditional entropy of the received phase may be bounded.
entropy of which is 1 bit less than the regular, bilaterathnal  Continuing (64) using (65) we get:

1
+h(r) — B log, 2meas;.

distribution, 1 1
1 ) Eh(0|r, O,R)~ Eh({ak}}gzﬂr, O, R) (66)
h(r) = 5 log, 2me(Es + 20%) — 1. (56) o (an|{ak}z;117ra o R) (67)
Combining equations (54) and (56) the capacity may be < h(an|an-1,r,0,R) (68)
written in closed form, = h(an|Gn_1, s Tr—1, n_2) (69)

1 E, 1 1 2 = h(an, apn_1|F) — h(a,_1|%).

C= ilog2 (1 + 5 5 ) -3~ 510g2 (EQU_A (57) h(an; an-1|%) = h(an_1|T) (70)

IN T The equality (69) is true because there is no dependence on

The result is displayed in Figure 1. the transmitted phases or amplitudes, as long as the réceive
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amplitudes are known. Furthermore there is only dependerizeThe Amplitude Channel
entropy has been used and the vedto® {r,,7,_1,7n—2} following way,
denotes the past three received amplitudes. The first term in

. . 1 1
(70) contains two samples of zero-mean correlated Gaussian —I(r;R) = — (h(r) — h(r|R)) (85)
noise with covariance matrix, n 71‘
~ — (h(r) = (R R 86
A+ B+ o " (h(r) —h(R+w[R))  (86)
Expressing the entropies in (70) as expectations Dves get: = lh(r) — % log, 2meas;. (88)
n
h(an, an-1|F) — h(an—1[F) (72)  In (86) the approximate amplitude channel from (13) has
! 9 1 9 o3 o3 been used. (87) comes from using the fact that the noise term
=E; [5 log(2me)?|X| — 510g 2me(oa + 2 T 7.72172) is independent of the transmitted amplitudes and (88) from

(73) using that it is Gaussian.

1 For the lower bound on mutual information in the phase
£F; {5 log 27e g(f‘)} : (74)  channel, (77), there might be something to gain from having
dependent amplitudes over three consecutive symbols. To
The functiong(t) is defined as: make the lower bound on the total mutual information tight,
N |Z] this should be exploited. Under this constraint the amgétu
9(F) = o2 4 % 4 9 (75) " channel information may be bounded, continuing (88),
A Th_ 1 Th o 1 1
(03 + 25 + T ) (02 + 2h 4 ) — I ) = 5 logy 2meoy (89)
T Tn—1 Th—1 Tn—2 Tn—1
- o2 + Tg?vl N rgi :%h(f(l),f@), )y %10g2 orec?, (90)
(76) 1 (h(f(l)) +hEP WD) + . ) - l10g2 2meas,  (91)
Combining (58) with (59), (70) and (74) a lower bound for "' 1 2
the mutual information of the approximative phase charsiel i Sgh(f) ~3 log, 2meas; (92)

11(0;@7&}{) > logy 27 — Fi F log Zweg(f)] 77y In (90) the vector oAf amplitudes has Asimply been divided
n 2 into sets of threef™) £ {r,ry, 73}, 73 £ {ry, 75,76} etc.
To obtain an upper bound for the phase channel informatidiext, in (91), the chain rule of entropy is applied. Equaiity
i i i i achieved in (92) if consecutiv&*)-vectors are independent.
genie knowledge about a previous noise teiy, 1, is added (92) p
to (64), again using (65), Combining (77) and (92) to get a lower bound, in accordance
with the mutual information of the total channel, (26), dil

1 1 n

—h(O|r,®,R) ~ —h ({ar}i_q|r,®,R) (78) 1 1 1 ,

n n . —I(x;y) >=h(T) — = log, 2meoyy
— h (anl{ar}}Z{,r,O,R) (79) n 3 2
> h (an|{ak}Z;11, N,_1,r,0, R) (80) +log, 2T — F& B log 2me g(f")} . (93)
:h(Nn+An|Nn,1,I‘,®,R> (81) . . .
BN 4 A 82 When the upper bound for mutual information in the phase
=N (No + Bnlrn) (82) channel, (84), was derived, there were no limitations on the

_B llog ore ﬁ 102 (83) correlation between the amplitude symbols. We can thegefor
! 2 r2 A assume independent amplitudes, continuing from (88) this

The genie knowledge added in (80) decreases the entropyYi®lds,

(81) a,, is conditionally independent of;, for £ < n when 1 1 5
N,_1 is known, and in (82) all other terms conditionally ,, (h(r)) = 5 logy 2meoy (94)
independent ofV,, + A,, are removed. The final expression, 1 9
: . . ; < —=
(83), is thus an expectation over the last received amg@itfd <h(rn) 2 log, 2meay (95)

the entropy of the sum of two independent Gaussian randonNow, combining (84) with (95), according to the total
variables. Combining (83) with (59) an upper bound on th@utual information, (26), gives an upper bound,
phase information channel, (58), is obtained: 1 1 o2
1 1 o2 —I(x;y) < logy 2w — E; [— log, 2me <—N + O'QA):|

N 2 n 2 r2
—I1(0;0,r,R) < log, 27 — E, {5 log, 2me (—2 + JA>:| .
n r

1
(84) + h(r) — 3 log, 2meo. (96)
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The bound depends on the distribution of the received ampbhase noise, i.e., for low SNR. The weights in (102) between
tudes, the phases are assumed to be uniformly distributedthese two distributions are the phase noise innovatioanes,
0%, and the white noise variances.

VIIl. QPTIMIZATION OF GENERAL CASE The upper capacity bound is, from (102) and (93):

To make the bounds on the mutual information into bounds

on t_he _capacity_ t_hey have to be maxin"_nized over all input Cy; = —log, Ky + 1)‘—(12(ES +20%) — %10g2 o%e?  (103)
distributions fulfilling an energy constraint. It has aliga n
been established in Section IV that the mutual information IX. RESULTS

is maximized for uniformly distributed, independent, phas In Figure 1 the upper and lower bounds are plotted for
symbols. When it comes to the amplitude, the bounds argrious values of SNR for a fixed value of . The bounds
dependent on the distribution of the received amplitudee Thre extremely close to each other and the true capacity $s thu
maximization will therefore be performed over probabilittightly enclosed. For comparison the capacity of the AWGN
distributions for the output amplitude. channel and the capacity of the phase noise dominated channe
is also plotted.
o . ) . For low SNR the capacity bounds approach the AWGN
Identifying the function corresponding t in Theorem 1 canacity, because the additive noise dominates over theepha
f_rom the lower bound on the mutual information in (93) We,gise. For high SNR the capacity bounds for the phase
find that: noise channel show a loss in slope by 50% as compared
PN =2 =3 L 2 2 to the AWGN capacity. This is because the phase noise is
Ko(x /(@) = 6fr(r) log, f(F)"9 () 2 loga(e“ow) dominating. Since the phase noise level is fixed in thisragptti
O7)  the capacity on the phase channel is a constant. The only
To obtain a normalized pdf and meet the power constraint tigrease in capacity with SNR is thus for the amplitude

A. Lower bound

following constraint functions are identified: channel, meaning that half of the available dimensions are
- lost.
ém(?”v ff(r)) B fi(‘i) j~1 3(F. 4 202 (98) Figure 2 shows the upper bound for various levels of phase
L2(r fe(r)) - = IF|IPfe(®) = 3(E + 20%) noise innovation variances%, and a fixed level of additive
Solving the Euler-Lagrange equation (20) yields: noise. As expected it approaches the capacity for the AWGN
- 3 2112 hannel without phase noise wheR << o%.
(F) — ~3 o= ArlIFl channg N .
Ji(F) = rLg(¥) e ' (99) I Figure 3 the upper bound on capacity is plotted against

xr and Az, should be chosen to satisfy the normalizatio®NR for different levels of phase noise.

and energy constraints. They are, unfortunately, hard tivele ~ The optimal probability distributions of the received ampl

analytically but may be found through numerical integnatio tude are displayed in Figure 4 for different values of SNR and
The capacity bound may now be expressed as a functiondofixed 04. As discussed in Section VIII-B the distribution

K, \,0%,Es and 0% (note that the only actual variablesapproaches the Rayleigh distribution for low SNR and a half-

are of courser and E,/20%,) by inserting (99) into (93): nhormal density function for high SNR.

1 A 1
Op = —=logy ki + L (B, +20%) — = logy ¢*0%, (100) X. CONCLUSION
3 In2 2 In this paper a method to calculate a bound on the capacity
B. Upper bound of a channel disturbed by addtive white Gaussian noise of a
Applying Theorem 1to the upper bound on mutual infor-given power and Wiener phase noise with given innovation
mation in (96) with variance has been presented. Numerical results show that fo

a fixed level of phase noise the capacity as function of SNR

Ky(r, fr(r)) = fr(r)logy f(r)\/ ‘j—?g + 02 — 1log, 0%e? follows the well known capacity curve for the AWGN channel
Lui(r, fr(r)) = frlr) =1 up to some point where the phase noise starts do dominate.
Lua(r, fr(r)) = |r2fr(r) — (Es + 20%) This point is approximately given by2 > 203, /E;. In the

(101) phase noise dominating region the increase in capacity when
: . . 0 ; "
= f(r) = KyU o rur? (102) increasing the SNR is only 50% of that in the case with no

2 phase noise.
\VEE + 0%

ky and Ay should be set to meet the constraints. This pdf is

a mixture of a half-normal distribution and a Rayleigh distr [1] C. Berrou and A. Glavieux, "Near optimum error corregfiooding and
buti The half | distributi derived i il decoding: turbo-codesfEEE Transactions on Communicationsl. 44,
ution. The half-normal distribution was derived in sec no. 10, pp. 1261 —1271, oct 1996.

as the optimal distribution when the phase noise dominatesR. Gallager, “Low-density parity-check codeslRE Transactions on
over the additive noise, i.e., for high SNR when the phaﬁ Information Theoryvol. 8, no. 1, pp. 21 28, january 1962.

. .. . . L 3] D. MacKay, “Good error-correcting codes based on vegrse matrices,”
noise level is fixed. In Section V the Rayleigh distributioasv ™ |£gg Transactions on Information Theoryol. 45, no. 2, pp. 399 —431,

shown to be optimal for the case with insignificant levels of mar 1999.
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