

Analysis and Presentation of Combinatorics

 in Product Configuration

Master of Science Thesis

HU ZIYANG

Department of Product and Production Development

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

i

Master of Science Thesis

Analysis and Presentation of Combinatorics

 in Product Configuration

HU ZIYANG

 Examined by:

 Professor Johan Malmqvist

Department of Product and Production Development

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

ii

Analysis and Presentation of Combinatorics in Product Configuration

HU ZIYANG

© HU ZIYANG, October 2010

Examiner: Professor Johan Malmqvist

Department of Product and Production Development

CHALMERS UNIVERSITY OF TECHNOLOGY

SE-412 96 Göteborg

Sweden

Telephone +46 (0) 31-772 1000

Chalmers Reproservice

Göteborg 2010

http://www.songwriter101.com/articles/entry/C_in_a_Circle_Exceptions_To_The_Rule_When_Unlicensed_Uses_of_a_Copyright_Are_Not_Infringements

iii

Abstract

In automotive industry, engineers are working hard to check whether

existing constraints are correct and valid combinations are expected

among the allowed combinations. However, this is not a trivial task due

that the number of variables and the constraints may be very large. The

goal of this thesis is to examine feasibility of analyzing and exploring

such large data sets to support engineers’ work.

For this purpose, a two-step strategy has been taken to solve this task.

Workload is divided to firstly investigate the feasibility to present big

number of string-formatted allowed combinations. The second step is to

find techniques that are of value to navigate and query the data. Several

terminologies, Cartesian Product, Treemap, etc, are introduced to fulfill

the two tasks respectively.

The decision on rejection or acceptance of the alternatives are made with

the help of graphs and tables. The outcome of the study covers a set of

workflows and user cases that describe the principles and results of the

proposed solutions.

Key words: Constraints, Allowed Combinations, Presentation, Visualization

iv

Acknowledgments

This thesis is the last part of my study in the Master of Science program

in Computer Science at Chalmers University of Technology.

I would like to express my gratitude to all those who have helped me

during the writing of this thesis. I gratefully acknowledge the help of my

supervisor Professor Johan Malmqvist. I do appreciate his patience,

encouragement and instructions during this specific period.

My gratitude also extends to my friends and my family who have been

assisting, supporting and caring for me all of my life.

v

Table of Contents

1. Introduction: the nature of the problem .. 1

1.1 Background of the problem .. 1

1.2 Problem Statement... 1

1.3 Relevance of the problem .. 2

1.4 Research objectives ... 2

1.5 Project Scope and Challenges .. 2

1.5.1 In scope .. 2

1.5.2 Out of scope.. 2

1.6 Project Resources .. 2

1.7 Thesis Outline ... 3

2. Terminologies and concepts in Automotive Industry .. 4

2.1 Terminology .. 4

2.2 Concept: allowed combinations ... 4

3. Compress combinations in a logical way ... 7

3.1 Cartesian Product Definition .. 7

3.2 Identifier Representation .. 10

3.2.2 Compression based on one Variant Family ... 11

3.2.3 Compression based on multiple Variant Families .. 12

3.2.4 Identifier Compression Method Selection ... 13

3.2.5 Variant Family Order Selection .. 14

3.2.6 Case Study ... 15

3.3 Discussion and conclusion .. 17

4. Visualize the compressed combinations ... 19

4.1 Treemap .. 19

4.2 Tree Structure .. 20

4.3 Elastic List to randomly filter specific combination .. 22

4.4 Combination Shot .. 23

4.5 Discussion and conclusion ... 23

5 Conclusion and future work ... 26

vi

5.1 Conclusion .. 26

5.2 Future work ... 26

References .. 27

Bibliography ... 27

Appendix A: Use Identifier to compress the Fuel Tank example 29

Appendix B: A VB script to mark different cells in two regions in an excel file 31

1

1. Introduction: The Nature of The Problem

1.1 Background of the problem

In the automotive industry, companies design product ranges instead of individual

products to offer customers different options. For example, a vehicle could be

equipped with engines of different sizes, different suspensions, different electronic

systems, etc. Normally, a vehicle is equipped with around 500 features and there are

at least 2 alternatives for each feature. Consequently, for a single vehicle, the

theoretical product range will contain more than 2
500

 products, a massively huge

number to present. However, a specific engine may not be offered in all types of

vehicles due to the constraints among the features. These constraints may be due to

engineering considerations, legal issues, or marketing strategy and they are expressed

as configuration rules. The configuration rules are stored in the PDM (Product Data

Management) system along with other critical documentation. Though these

constraints greatly remove a considerable part of theoretical options, the number of

remaining configurable vehicles is hundreds of thousands, still on a high level.

A PDM system is the framework used to describe technical product offerings and

corresponding design solutions [1]. Currently, when searching after allowed partial

product configurations the PDM system requires a limited/specific input of

component features in order to be able to display the results. The aim of the research

is to find alternative presentation methods for large results.

1.2 Problem Statement

There are around 500 features to consider building a single vehicle and when the

engineers just review a partial configuration, there is a risk that selected features do

not get along with other unselected ones to build a complete vehicle. Such conflicts

are hard to detect and need to be solved by the experts. We may advise the engineers

to select the features in a bigger scope to cover all possible conflicts. However, this

leads to another problem. Since there are 500 features in a complete vehicle and there

are at least two alternatives in a single feature, all the theoretical combinations will be

at least 2 to the power of 500. Though not all of them are offered to customers due to

technical or market considerations, the remaining allowed combinations will still be

on a high level and there is not a good method to display and analyze this huge data.

The classical exploration of big datasets usually follows a three step process:

overview first, zoom and filter, and then details-on demand, which has been called the

Information Seeking Mantra [2]. Based on these facts, the analysis of large data in this

research reveals two tasks. The first one is the question, how presentations for this

massive data sets can be constructed without losing important information. The

second task is to find techniques to efficiently navigate and query such large data sets.

2

1.3 Relevance of the Problem

In large scale product development applications, constraints are changing constantly,

rules are frequently added, deleted and modified. Thus, the configuration engineer

must be able to check out whether new rules are valid and whether invalid (obsolete)

combinations have been correctly removed. Normally, the more information provided

to the engineers, the easier to detect the faults. The capability to present a larger scope

of allowed configurations supports the configuration engineers to detect the incorrect

configurations easier, letting them work more efficiently.

1.4 Research Objectives

In general, the aim of this research is to analyze how to present and navigate the huge

data in a user-friendly and comprehensive way. Accordingly, four main objectives

have been set up to ensure the purpose of the project will be fully covered. The

objects are as follows:

 Understand the problem

 Literature study of presenting and navigating methods for huge data

 Propose solutions of presenting and navigating huge data

 Test and verify key components of the suggested solutions

1.5 Project Scope and Challenges

The feasibility of presenting and navigating massive allowed combinations in an

user-friendly and comprehensive way has been studied and analyzed in this project.

To better achieve the above research objectives, some in-scope and out-of-scope

issues need to be clarified and taken into account in this study.

1.5.1 In Scope

Investigating alternatives and constraints for presenting and navigating huge data and

developing a feasible solution based on the findings formed the majority of research

activities in this research. Feasible methods are selected and have been tested that they

are proper to present and navigate huge data. Several real examples have also been

given to test their validities and stabilities.

1.5.2 Out of Scope

The author will only present two principles to accomplish the two tasks respectively,

alternatives under these two principles will be introduced and evaluated. It is beyond

the scope of this paper to assess all possible principles.

On the other hand, the author will not study the mechanism that generates the source

data. All focus is given to present and navigate the huge data in a good way.

1.6 Project Resources

Several persons have assisted and different sources have been used in this research.

Professor Johan Malmqvist has examined the project at Chalmers University of

Technology. In order to check the validation of the solutions, several real examples

3

have been provided and tested.

1.7 Thesis Outline

Chapter 2 briefly introduces several important terminologies that help to better

understand the research. Chapter 3 suggests two methods to present the huge data.

Chapter 4 enumerates several ways to visualize the compressed combinations.

Chapter 5 sums up major conclusions in this research and proposes some ideas of the

future work. Appendix A illustrates the complete flow of using identifiers to compress

the fuel tank example while Appendix B displays a partial VB script that is used to

mark differences of two block data in an excel file.

4

2. Terminologies and Concepts in Automotive Industry

This chapter presents the terminologies that support this research. It is generally

aimed to derive a good understanding about variants, variant families, configuration

rules and allowed combinations. A small example is given to better illustrate these

concepts.

2.1 Terminology

Two terminologies, Variant Family and Configuration Rule are introduced as they are

critical to understand the research problem.

 Variant Family: In order to describe different products, different features are

used. These features are called “variant families” and the

variations within the family are called “variants”. In

automotive industry, “Fuel Tank Material” may be used as a

Variant Family to describe this tank property. Variants of

“Fuel Tank Material” could be “steel”, “aluminum”, and

“plastic”. In this paper, VF is the acronym for Variant

Family.

Configuration Rule: There are multiple types of configuration rules, inclusion and

exclusion rules are two types of the rules reflecting the

constraints among variants. Inclusion rule is on the format

that “If Variant X is selected, then Variant Y must be selected”

while exclusion rule is on the format “if Variant X is selected,

then Variant Y can not be selected”. Take exclusion rule for

instance, in automotive industry, the fuel tank is not made of

plastic with high volume fuel content due to the strength of the

material. To reflect the constraint that “plastic is not selected

for a 40L volume tank”, an exclusion rule “If tank volume

is 40L, then plastic will not be selected as material” will be

added.

2.2 Concept: Allowed Combinations

We describe a vehicle component from different angles to state its distinctive feature,

different variant families will be selected to describe a single object. A fuel tank, for

instance, could be partially described by its volume, material and color. To

completely describe a fuel tank, all these factors will be combined together. A red

plastic fuel tank of 20L volume will be presented by a combination as

“20L-plastic-red”.

A fuel tank example is given (Table 1) to further illustrate the concept of allowed

5

combinations. Three Variant Families, “Fuel tank volume”, “Fuel tank material”, and

“Fuel tank color” have been selected to describe a fuel tank. Variants of the three

families are as follows:

Table 1 A Fuel Tank example

Tank Volume Tank Material Tank Color

10L Aluminum Red

20L Steel Black

30L Plastic

40L

Given the above variants, totally, there are 24 theoretical combinations, each

represents a fuel tank that may be possible to produce. They are listed in Table 2

Table 2 Theoretical combination in the small example:

1 10L Aluminum Red

2 10L Aluminum Black

3 10L Steel Red

4 10L Steel Black

5 10L Plastic Red

6 10L Plastic Black

7 20L Aluminum Red

8 20L Aluminum Black

9 20L Steel Red

10 20L Steel Black

11 20L Plastic Red

12 20L Plastic Black

13 30L Aluminum Red

14 30L Aluminum Black

15 30L Steel Red

16 30L Steel Black

17 30L Plastic Red

18 30L Plastic Black

19 40L Aluminum Red

20 40L Aluminum Black

21 40L Steel Red

22 40L Steel Black

23 40L Plastic Red

24 40L Plastic Black

6

However, not all theoretical combinations are valid. Constraints from different aspects

need to be taken into account and they are presented as configuration rules which

reduce a large portion of them. The remaining combinations are offered as allowed

combinations since they could be produced in reality. Still take the previous small

example for instance, adding two configuration rules as below:

Table 3 Variant families with constraints

Tank Volume Tank Material Tank Color Configuration Rule

10L Aluminum Red If 20L,then material

must be plastic

20L Steel Black If aluminum, then

color can not be red

30L Plastic

40L

Given the variant information, there will be 17 allowed combinations as follows:

Table 4 Allowed combination in the small example

1 10L Aluminum Black

2 10L Steel Red

3 10L Steel Black

4 10L Plastic Red

5 10L Plastic Black

6 20L Plastic Black

7 20L Plastic Red

8 30L Aluminum Black

9 30L Steel Red

10 30L Steel Black

11 30L Plastic Red

12 30L Plastic Black

13 40L Aluminum Black

14 40L Steel Red

15 40L Steel Black

16 40L Plastic Red

17 40L Plastic Black

Allowed combinations is a critical concept in this research as they are the very data

the author tries to present in a comprehensive way. However, presenting the allowed

combinations is not an easy task, two factors contribute to the complexity of

presenting such data in our research: discerning the structure of a hierarchy and

presenting the huge number of allowed combinations. Even with the increasing power

of computer systems, displaying millions of data in the screen is time consuming.

Alternatives to present this huge data and discussions are shown in the next chapter.

7

3. Compress Combinations in a Logical Way

Normally, engineers are dealing with tens of thousands allowed combinations at one

time. Improper variant may be selected in a specific combination due to engineers’

knowledge limitation. In order to have an understanding of where the erroneous

configurations may be, it is good to have an overview of the complete data that

supports a plausible hypothesis. In addition, engineers need to zoom in a specific area,

finding the exact combinations to prove whether the previous hypothesis is correct.

While filters support to dig in a specific area of information, the tricky issue is how to

present the complete combinations on a high level. How presentations for this

massive data can be constructed without losing important information?

In mathematics, permutation methodology takes a set of limited values to represent a

big number of arrangements of those values into particular order. That is to say, this

big set of arrangements could also be represented by a small set of limited values.

Inspired from this idea, the author proposes that one approach is to increase scalability

by generating an initial compact presentation of the whole data. That is to compress

the allowed combinations in a logical way without damaging the relations among

variant families. In this research, two methods, Cartesian Product and Identifier

Representation are selected for compression. Both two methods are analyzed and

compared respectively in the paper.

3.1 Cartesian Product Definition

The Cartesian Product is a mathematical terminology and the definition of Cartesian

product A B (read “A cross B”) of two sets A and B is defined as the set of all

ordered pairs (a, b) where a is a member of A and b is a member of B [3]. There are

two important notes to be stated in Cartesian Product:

(i) A x B B x A unless A = B

(ii) n(A x B) = n(A) x n(B), where n is a rational number

A small example:

Question:

If A = {3, 5}, B = {2, 4, 6}, write the Cartesian product (i) A x B (ii) B x A

Answer:

A x B = set_AB={(3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)}

B x A = set_BA={(2, 3), (2, 5), (4, 3), (4, 5), (6, 3), (6, 5)}

As shown in the example, both set_AB and set_BA could be represented by A x B

and B x A respectively. Instead of enumerating every element in set_AB, Cartesian

Product presents the group of enumerated elements with A cross B. In comparison,

this representation is more compact.

8

Following this idea, the list of allowed combinations could also be presented by

Cartesian Product with a set of variant families. The previous fuel tank example

supports to interpret how Cartesian Product presents the allowed combinations. The

transformation from allowed combinations to Cartesian Product Representation is also

explained.

Table 5 Allowed combination in the small example

The analysis starts from the second row as the first row is single and currently can not

be grouped with others. The four records start from the second to the fifth are

Cartesian product of three sets (10L), (Steel, Plastic) and (Black, Red). Likewise, the

sixth and the seventh rows are Cartesian Product of three sets, (20L), (Plastic) and

(Black, Red). Following this, the transform from the 17 string-based combinations to

Cartesian Product Representation would be as follows:

Step 1: fix variant in VF volume and use Cartesian Product to group VF material and color

Table 6 Transform from allowed combination to Cartesian Product (1)

9

Step 2: fix variant in volume material and color, use Cartesian Product to group VF volume

Table 7 Transform from allowed combination to Cartesian Product (2)

In this stage, a new question comes to our mind, when should the compression be

terminated. The answer is that the compression does not stop until all combinations

differ from each other in more than one column. Take the above example for instance,

“x” symbol separates compressed combinations into three columns (Table 8)

Table 8 Three compressed allowed combination in the small example

Combination Number Volume (Column_1) Material (Column_2) Color (Column_3)

1 20L Plastic (Red, Black)

2 (10L,30L, 40L) (Steel, Plastic) (Red, Black)

3 (10L,30L, 40L) Aluminum Black

In the table, Column_1 and Column_2 of the first row differ from the ones of the

second combination while the first row differs from the third in all three columns. On

the other hand, the second row differs from the third in both Column_2 and

Column_3. Consequently, all three compressed combinations differ with each other in

more than one column, Cartesian Product compression stops then.

With Cartesian Product Representation, the 17 allowed combinations have been

compressed to 3 entries, providing a compact overview to the engineers. More

combinations could be manipulated and presented with this method.

However, implementation of Cartesian Product Representation in this research is

complex. Normally, to determine whether a list of combinations could be presented

by Cartesian Product, the first step is to divide the list into several smaller portions.

Secondly, it is to construct proper Cartesian Product sets that present each portion and

then finally combine all sets to present the complete data. The tricky part is to

properly construct the Cartesian Product sets. One approach is to firstly construct

Cartesian Products sets with a few variants that present some of the combinations and

then gradually fill in more variants in the previous sets that present more

combinations until the sets cover all combinations. Yet, the criterion of picking

variants to construct the Cartesian Product set to present certain combinations is not

obvious. It will be more complex and time-consuming when it is dealing with a large

number of combinations consisting of multiple variant families.

10

3.2 Identifier Representation

A new approach, Identifier Representation is introduced in this section. Based on this

self-created idea, two different but similar algorithms are developed and compared to

compress the allowed combinations. Before introducing the two algorithms, three

terms Identifier, Partial Combination and Pattern should be firstly studied:

 Identifier: a set of variants in the same variant family. It could either

contain all the variants in the variant family or contain a subset.

Partial Combination: a combination that removes some variant families. It is a portion

of the original combination.

Pattern: a set of partial combinations.

The formats of an Identifier and a Pattern are as follows:

Identifier: {VF_Name}_{Identifier_Sequence}_{Number of Variant}.

Pattern: {Variant_Name}_{Pattern_Sequence}_{Number of Partial Combination}.

Though the formats of the two terms are quite similar, they represent different content.

An identifier represents a group of variants while a pattern represents a group of

partial combinations.

Take the combinations in Table 8 for example, the set (Red, Black) in Column_3

could be presented as Identifier Color_1_2. “1” shows this is the first identifier in

Variant Family “color” while “2” shows there are two variants, red and black in it.

Likewise, Identifier Material_1_2 could present the set (Steel, Plastic) while Identifier

Volume_1_3 presents set (10L,20L,30L). Table 8 would then be changed to

Table 9 Compressed combination by Identifier

Combination Number Volume (Column_1) Material (Column_2) Color (Column_3)

1 20L Plastic Color_1_2

2 Volume_1_3 Material_1_2 Color_1_2

3 Volume_1_3 Aluminum Black

If we remove Volume (Column_1), the new table will then be ;

Table 10 Compressed combinations without Volume variant family

Combination Number Material (Column_2) Color (Column_3)

1 Plastic Color_1_2

2 Material_1_2 Color_1_2

3 Aluminum Black
 pattern, {Volume_1_3}_1_2

11

The first row Plastic-{color_1_2} is a partial combination of 20L-Plastic-{color_1_2}.

On the other hand, the second and the third rows are represented by a pattern,

{Volume_1_3}_1_2. In the pattern, “1” shows it is the first pattern of variant

“Volume_1_3” while “2” shows there are two partial combinations in it.

If there are two combinations that differ in only one column, then two records can be

compressed to a new combination with an identifier. The compression could either be

based on one variant family or multiple variant families.

3.2.2 Compression Based on One Variant Family

Method Description:

1. Determine Variant Family order. Sort the combinations and divide them into

m blocks. From block i1 to im-1, the combinations differ from others of the

same block in only one column. The remaining combinations that differ all the

others in more than one column would be sorted and stored in block im.

2. From block i1 to im-1, use identifiers to compress the allowed combinations.

3. Combine the compressed combinations with the records in block im. If

possible, generate new identifiers to recompress them. The compression does

not stop until all combinations differ from others in more than one column.

For the first five rows in Table 5, the first row is excluded as it is single and can not

be grouped with the rest four. Combinations from the second to the fifth are sorted

and divided into two blocks as follows:

Table 11 Four combinations in two blocks

2 Block_1 10L Steel Red

3 10L Steel Black

4 Block_2 10L Plastic Red

5 10L Plastic Black

The compression starts from right to left:

Step 1: Determine Variant Family Order and divide combinations into blocks. In this

example, variant families are ordered as volume, material and color. The

combinations are divided into two blocks shown in Table 11

Step 2.1: use Identifier Color_1_2 which represents a set of two variants (Red, Black)

to compress the combinations in Block 1

Table 12 compression in Block_1

Step 2.2: still use Identifier Color_1_2 to compress the combinations in Block 2

12

Table 13 compression in Block_2

Step 3: combine the compressed records and recompress with identifier Material-1-2

which represents a set of two variants (Steel, Plastic)

Table 14 compression in Block_3

As shown in the above, the arrow moves from the third column to the second, right to

left, during the compression. It firstly compresses the records in Block_1 whose

combinations differ in the third column. Likewise, the same procedure happens in

Block_2. After combining the compressed combinations, the compression occurs in

Block_3 whose records differ in the second column. The compression stops when all

combinations differ in more than one column. In this example, there is only one single

combination left, the compression stops.

3.2.3 Compression Based on Multiple Variant Families

Method Description:

1. Starting from the first variant V1 in the first Variant Family VF1, record all

combinations begin with V1 as a set, V1_set1. In V1_set1, the combinations that

have removed variant V1 are grouped as a pattern, V1_pattern1. The process

applies to all the variants in VF1. The last variant Vm of VF1 have a set Vm _setm

and a pattern Vm _patternm.

2. Use identifier to compress the variants in VF1 that have identical pattern.

3. Starting from the first set V1_set1, follow the procedures from step1 to step 2 to

compress it. The compression applies to all the sets from V1_set1 to Vm_setm.

4. Combine the combinations that represent the compressed sets. If possible,

generate new identifiers to recompress them. The compression does not stop

until all combinations differ in more than one column.

Take the combinations in Table 11 for example, the compression starts from left to

right:

Step 1: from variant “10L”, record set 10L_set1 and pattern 10L_1_4

13

Step 2: divide set 10L_set1 into another two sets, 10L-Steel_set1 and 10L-Plastic_set1.

Record corresponding patterns steel_1_2 and plastic_1_2 for these two sets. ,

Step 3: As two sets, 10L-Steel_set1 and 10L-Plastic_set1 have identical pattern, two

sets can be compressed by identifier material_1_2

Step 4: compress the pattern steel_1_2(same as pattern plastic_1_2) with identifier

color_1_2

As shown, the arrow moves from the second column to the third, left to right, during

the compression. It firstly compresses the variants, steel and plastic, in sets

10L-steel_set1 and 10L-plastic_set1 as the two sets have identical patterns. Then an

identifier color_1_2 is selected to compress the two combinations as they only differ

in the third column. The compression stops when all combinations differ with each

other in more than one column. In this example, there is only one combination left

and the compression stops.

3.2.4 Identifier Compression Method Selection

In general, two methods are similar. Both methods compress two combinations when

they differ in only one column. The first method checks the condition based on one

column, while the latter checks it based on a pattern, multiple columns. Assume there

are three combinations with three variant families and all combinations differ in the

second column. Compressions of each method are as follows:

14

Though the final results in both methods are actually the same, compression based on

multiple VF is more efficient. As shown, the first method takes two times with two

identifiers to compress three combinations while the second method only takes one

time with one identifier. The effects will be more impressive when it deals with a

larger data set. Thereby, we will use Identifier to compress allowed combinations

based on multiple Variant Families in this research.

Additionally, we can observe another interesting fact in this example. There is a

balance between compression ratio and the number of identifiers. By removing the

limitation that one identifier cannot contain another identifier of the same VF, it leads

to the maximal compression ratio by generating more identifiers.

3.2.5 Variant Family Order Selection

If an object is represented by a combination consisting of N variant families, totally

there will be N! ways to represent this object due to multiple variant family orders.

This section is to discuss how different variant family orders impact the compression.

Let us assume that there is a VFA, and a set of variants from VFA, named A.

Consequently, there is at least a pair of two subsets of A, A1 and A2, where A1 and A2

do not have duplicate variants, and A is the union set of the two. Suppose there is

another pair of two subsets, A3 and A4, where A3 and A4 do not have duplicates

variants either and A is also the union set of A3 and A4. Hence, set A could be either

presented by (A1 ∪ A2) or (A3 ∪ A4). In either form, set A will be the most compact

representation that covers all the variants from VFA. Thereby, with the Identifier

representation, certain list of combinations will be compressed to the same result no

matter what transient identifiers are used. Different variant family orders do not

impact the final compression ratio.

Yet, different variant family orders impact the compression time. The easier to find

out whether different sets have identical patterns, the less time compression would

take. In this research, the Variant Family that has the most number of variants will be

displayed in the leftmost columns.

15

3.2.6 Case Study

This section is to present four cases which have been successfully compressed using

identifiers. In real work, there could be either a list of combinations with a few variant

families or with many variant families. Case one covers the first scenario while the

second case covers the second scenario. Case three and case four are two big cases

that have successfully been compressed. They are provided to test the scalability of

the identifier compression method. The complete final results of the compressed

results are provided in both case one and case two while excepts of case three and

case four are given due to the space limitation. Identifiers used in these four cases are

not provided in all four cases.

Case 1

Table 17 Compress 2854 combinations of 7 VF to 8 entries

Case 2

Table 18 Compress 3932 combinations of 15 VF to 22 entries

YDX-1-51 Z9X-4-7 YAX-1-3 R X5X-1-2 F30 RA
RL1345 Z9X-1-4 YAX-2-2 R X5X-1-2 F30 RA
YDX-1-51 Z9X-2-3 YAX-2-2 R X5X-1-2 F20 RA
RL1345 Z9X-2-3 YAX-2-2 R X5X-1-2 YBX-1-2 RA
RL2365 FIL-EEEB YAX-2-2 T X5X-1-2 F30 YLX-1-2
RL2175 FIL-EEEB YAX-2-2 T UFRACLOS F30 YLX-1-2
RL2365 Z9X-3-2 YAX-2-2 T X5X-1-2 YBX-1-2 YLX-1-2
RL2175 Z9X-3-2 YAX-2-2 T UFRACLOS YBX-1-2 YLX-1-2

PDC-OFF FAA11 KEX-1-2 BBOX-L USUP KSX-1-3 TNK-SING UADCHAS UTFUEL UFRF FAX-1-2 MTNK-R KFX-1-2 DDX-1-2 F30
PDC-OFF FAA10 KEX-1-2 BBOX-L YRX-2-2 KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 DDX-1-2 YBX-1-2
PDC-OFF FAA10 FTANK-PL BBOX-L YRX-2-2 KSX-1-3 TNK-SING UADCHAS TFUEL100 UFRF FAX-1-2 MTNK-R FCAP-UL DDX-1-2 YBX-1-2
PDC-OFM FAA11 KEX-1-2 BBOX-L USUP KSX-1-3 TNK-SING UADCHAS UTFUEL FRFS-BS FAX-1-2 MTNK-R KFX-1-2 R F30
PDC-OFR FAA20 KEX-1-2 BBOX-L YRX-1-3 KSX-1-3 TNK-SING UADCHAS UTFUEL Q9A-1-2 FAX-1-2 MTNK-R KFX-1-2 R F30
PDC-OFR FAA21 KEX-1-2 BBOX-L USUP KSX-1-3 TNK-SING UADCHAS UTFUEL Q9A-1-2 FAX-1-2 MTNK-R KFX-1-2 R F30
PDC-OFM FAA10 KEX-1-2 BBOX-L YRX-2-2 KSX-1-3 KDX-1-2 UADCHAS UTFUEL FRFS-BS FAX-1-2 7VB-1-2 KFX-1-2 R YBX-1-2
PDC-OFM FAA10 FTANK-PL BBOX-L YRX-2-2 KSX-1-3 TNK-SING UADCHAS TFUEL100 FRFS-BS FAX-1-2 MTNK-R FCAP-UL R YBX-1-2
PDC-OFF FAA10 KEX-1-2 BBOX-AC YRX-1-3 KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 T F30
PDC-OFF FAA10 FTANK-AL BBOX-EF YRX-3-2 KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 MTNK-L KFX-1-2 T F30
PDC-OFF FAA10 FTANK-PL BBOX-AC YRX-1-3 KSX-1-3 TNK-SING UADCHAS TFUEL100 UFRF STWPOS-L 7VB-1-2 FCAP-UL T F30
PDC-OFF FAA10 FTANK-PL BBOX-EF YRX-3-2 KSX-1-3 TNK-SING UADCHAS TFUEL100 UFRF FAX-1-2 MTNK-R FCAP-UL T F30
PDC-OFR FAA20 FTANK-AL BBOX-AC USUP EAS-SCR TNK-DUAL UADCHAS UTFUEL UFRF STWPOS-R 7VB-1-2 FCAP-L T F30
PDC-IF FAA10 FTANK-AL BBOX-EF YRX-3-2 KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 MTNK-L KFX-1-2 T YBX-1-2
PDC-IF FAA10 FTANK-AL BBOX-EF SUP-BAS KSX-1-3 KDX-1-2 4TX-1-2 UTFUEL UFRF FAX-1-2 MTNK-L KFX-1-2 T YBX-1-2
PDC-IF FAA10 FTANK-AL L4X-1-2 YRX-3-2 KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 T YBX-1-2
PDC-IF FAA10 FTANK-AL L4X-1-2 SUP-BAS KSX-1-3 KDX-1-2 4TX-1-2 UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 T YBX-1-2
PDC-IF FAA10 FTANK-PL L4X-2-3 YRX-3-2 KSX-1-3 TNK-SING UADCHAS TFUEL100 UFRF FAX-1-2 MTNK-R FCAP-UL T YBX-1-2
PDC-IF FAA10 FTANK-PL L4X-2-3 SUP-BAS KSX-1-3 TNK-SING 4TX-1-2 TFUEL100 UFRF FAX-1-2 MTNK-R FCAP-UL T YBX-1-2
PDC-IF FAA10 FTANK-ST L4X-1-2 YRX-3-2 KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 T YBX-1-2
PDC-IF FAA10 FTANK-ST L4X-1-2 SUP-BAS KSX-1-3 KDX-1-2 4TX-1-2 UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 T YBX-1-2
PDC-OFF FAA10 KEX-1-2 BBOX-L SUP-LOW KSX-1-3 KDX-1-2 UADCHAS UTFUEL UFRF FAX-1-2 7VB-1-2 KFX-1-2 T YBX-1-2
PDC-OFF FAA10 FTANK-PL BBOX-L SUP-LOW KSX-1-3 TNK-SING UADCHAS TFUEL100 UFRF FAX-1-2 MTNK-R FCAP-UL T YBX-1-2

16

Case 3

Table 19 Compress 39650 combinations of 7 VF to 108 entries – except of final result

Case 4

Table 20 Compress 64955 combinations of 5 VF to 398 entries – except of final result

It is impressive that all the four cases have been compressed with a good ratio. The

detailed information is listed in Table 21

Table 21 Compressed Case Analysis

Combination_Number VF_Number Identifier_Number Compressed_Number Compression_Ratio

2854 7 10 8 0.0028

3932 15 15 22 0.0056

39650 7 57 108 0.0027

64955 5 78 398 0.0061

YDX-25-8 RAD-GR Z9X-9-2 YAX-2-3 RFEC-L F30 UFRACLOS

RL825 RAD-G2 Z9X-3-3 YAX-2-3 X6X-1-2 F30 UFRACLOS

RL825 RAD-GR Z9X-5-4 YAX-2-3 X6X-1-2 F30 UFRACLOS

RL825 RAD-G2 Z9X-4-4 YAX-2-3 X6X-2-3 F30 UFRACLOS

YDX-10-30 RADD-GR UFIL FST8080 RFEC-L YBX-1-2 UFRACLOS

YDX-31-2 RADD-GR UFIL FST8080 X6X-2-3 YBX-1-2 UFRACLOS

YDX-10-30 RADD-GR FIL-TXEB YAX-1-2 RFEC-L YBX-1-2 UFRACLOS

YDX-25-8 RAD-GR Z9X-8-2 YAX-1-2 RFEC-L YBX-1-2 UFRACLOS

RL825 RAD-GR Z9X-7-2 YAX-1-2 X6X-1-2 YBX-1-2 UFRACLOS

YDX-31-2 RADD-GR FIL-TXEB YAX-1-2 X6X-2-3 YBX-1-2 UFRACLOS

RL825 RAD-GR UFIL YAX-1-2 X6X-3-3 YBX-1-2 UFRACLOS

YDX-15-23 RAD-GR FIL-TXEF FST6060 X6X-1-2 F30 X5X-1-2

YDX-21-19 RAD-GR Z9X-6-3 FST6060 X6X-1-2 F30 X5X-1-2

YDX-14-23 RAD-GR Z9X-8-2 FST6060 X6X-2-3 F30 X5X-1-2

TAX-69-3 HHX-1-7 DKX-2-2 VT2214B T-FLAT
RAT3.61 HHX-1-7 DKX-27-2 VT2214B QCX-1-3
RAT3.61 HHX-1-7 GCW32.0 VT2214B QCX-3-4
TAX-63-5 HHX-1-7 DKX-2-2 VT2214B QCX-1-3
RAT5.41 HHX-1-7 DKX-1-4 VT2214B QCX-3-4
RAT5.41 HHX-1-7 DKX-5-3 VT2214B QCX-1-3
RAT7.21 ETOR2180 DKX-2-2 VT2214B T-FLAT
RAT7.21 HHX-11-2 DKX-2-2 VT2214B T-FLAT
RAT7.21 HHX-2-3 DKX-1-4 VT2214B QCX-1-3
RAT7.21 HHX-2-3 GCW50.0 VT2214B QCX-2-2
RAT7.21 HHX-15-7 DKX-1-4 VT2214B QCX-3-4
TAX-71-5 HHX-2-3 GCW40.0 VT2214B QCX-1-3
TAX-4-2 ETOR2400 DKX-5-3 VT2214B QCX-1-3
TAX-4-2 HHX-1-7 DKX-21-2 VT2214B QCX-1-3
TAX-70-4 HHX-2-3 DKX-10-3 VT2214B QCX-1-3
TAX-68-3 HHX-1-7 DKX-10-3 VT2214B QCX-3-4
TAX-67-4 HHX-1-7 GCW56.0 VT2214B QCX-1-3

17

Compressed by identifiers, the number of manageable combinations have increased

from thousands to tens of thousands. As there are at least two variants in one identifier,

the analysis and conclusion for a single variant holds for other variants of the same

identifier. Data analysis turns to be flexible and accurate accordingly.

In addition, with compressed data, users could detect the hidden information among

the Variant Family easily. Take Table 17 for instance, the Identifier YLX-1-2 contains

two variants RA and RL. It is interesting to notice that all combinations begin with

variant R are combined with variant RA while the combinations begin with variant T

are combined with both RA and RL. Some users may be interested about this hidden

information. Similar findings could be discovered in rest of the three cases that prove

compression supports the users to get more hidden information among allowed

combinations.

3.3 Discussion and Conclusion

The first task in this research is to present the huge data in an user-friendly and

comprehensive way. To be more specific, three more factors should be taken into

account to fully evaluate the two methods:

1. the comprehensiveness of the compressed combinations

2. the complexity to implement the method in practice

3. the capacity to deal with huge data in practice

Accordingly, three criteria are set up to evaluate above factors:

1. the data format of the compressed combinations

2. the complexity of the key component to implement the method

3. the scalability of the method

Evaluations for the criteria in two methods are listed in Table 22

Table 22 Evaluations of Identifier Product and Cartesian Product method

Criteria Cartesian Compression Identifier Compression Winner Method

Data

Format

(20L) x (plastic) x (red,

black)

20L–plastic-{color_1_2} Cartesian

Compression

Key

component

/complexity

Formulate Cartesian Product

sets present certain

combinations / Hard

Find combinations that

differ only in one field /

Medium

Identifier

Compression

Scalability Medium Good Identifier

Compression

The Cartesian Product compression fills the variants in the sets to present the

combinations while the Identifier method could not provide variant information to the

users directly. Users have to learn the variants behind the identifiers by heart. The

content in the Cartesian method is more comprehensive. However, from the point of

implementation, Identifier Compression is superior to Cartesian Compression. In

18

Identifier Compression, the process of checking compression condition can be well

structured and consequently, it is easier to implement. Moreover, since Identifier is

easier to implement, it guarantees its capability to deal with bigger data in practice, a

better scalability.

Due to the high importance to present the huge data in practice, we select Identifier

Compression to present the compact overview of data in our research, and the

compression is based on multiple variant families. Identifier Compression’s weakness

in comprehensiveness will be made up with a technique that works well at navigating

and querying the compressed combinations. Details are given in next chapter.

19

4. Visualize the Compressed Combinations

In the last decade, data visualization techniques have proven to be valuable in huge

data analysis. It successfully combines human recognition capabilities with the ever

increasing power of computer systems to detect the patterns and trends in the data [4].

These hidden knowledge are used to identify bottlenecks, errors or any other

interesting information among the data. In addition, data visualization adds aesthetic

value to originally lifeless data, making information communication clear through

graphical representations.

As stated, Identifier compression has been selected to present the allowed

combinations. The second task in this research is then changed to find techniques to

efficiently navigate and query the compressed combinations. Several popular

visualization techniques are studied and evaluated to accomplish the goal in this

chapter.

4.1 Treemap

Treemap is a space-filling approach based in dividing a display into nested rectangles,

each with an area that corresponds to a weight associated with the node [5]. It is a hot

visualization technique for displaying hierarchically structured data. Directory

structures, internet news are some of the common applications of treemaps. Figure 1

shows one example that helps users to navigate hard disk content.

Figure 1 SequoiaView uses treemaps to show the content of hard drive. Area

indicates file size and color shows file type [6]

An allowed combination is a string format data consist of variants from corresponding

20

variant families. In visualization, the variant of the first variant family could be

viewed as “above” the variant of the second variant family while the variants from the

same variant family are considered as “at the same level”. Hence, a list of compressed

combinations can be constructed to a “hierarchically” structured dataset, and treemap

can be used to drill down in the combinations and visualize the corresponding area. A

possible application may be Figure 2.

 Figure 2 Use Treemap to dig the compressed combinations

In each grid, the figure follows every variant represents the number of combinations

that contain this specific variant. When the cursor points at the specific grid, users

could get a summary of the combinations in it. Users could zoom in and digs deeper

inside the grid by clicking at the grid. On the top of each grid, there is a pointer

floating and indicating the user what level of variant family he is currently in. This

pointer also helps the user to navigate the data. Users could go back to an upper level

or drill down to a lower level by clicking the pointer.

4.2 Tree Structure

A tree structure is a way of representing the hierarchical nature of a structure in a

graphical form. The “root” resides at the top while the leaves reside at the bottom.

As stated, the combinations could be viewed as “hierarchically” structured data in

visualization, a tree structured data in this case. Variants of the same family are at the

same height in the tree structure and the variant of the posterior family is the “child”

of its preceding variant. The identifier that contains all variants of the family will be

presented as a circle instead of a rectangular. A tree structured example that visualizes

the compressed combinations is given as below

http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Structure

21

Figure 3 Tree structure to present the compressed combination

Elaborations such as pruning of sub-structures of the tree are also available. A

compact variation is that same nodes at the same level could sometimes be grouped.

The variation is presented in Figure 4.

Figure 4 A compact tree structure to present the compressed combination

22

4.3 Elastic List to Randomly Filter Specific Combination

Elastic lists allow users to navigate large, multi-dimensional information with just a

few clicks. By selecting a value and filter the results, users navigate and explore

desired information through an iterative refining process. They enhance traditional UI

approaches for facet browsers by visualizing weight proportions, animated transitions,

emphasis of characteristic values and sparkline visualizations [7]. The process is

illustrated in Figure 5

 Figure 5 Facet browsing principle [8]

Inspired from this, Figure 6 illustrates how elastic list can help to visualize the

compressed combinations.

Figure 6 Elastic List to randomly filter specific combination

Each Variant Family is presented as a list, separated by its variants. The number of

the combinations that contain this specific variant is listed after the variant name. Let

us assume in the initial navigation, the variant R is selected in variant family DDX.

This restricts the display of contents to those combinations matching this value.

Accordingly, all metadata attribute are restricted only to variants occurring together

with R. By subsequent filtering, users gradually narrow down to the target information,

23

making it impossible to construct queries with an empty result. This is commonly

considered as one of the best benefits of this method. In general, elastic list is easy to

manipulate and it provides a good style for users to navigate and query big data.

4.4 Combination Shot

Interactive History Timeline [9] divides the history of the United Kingdom, in this

example, into several interactive blocks. In this system, each colorful block reflects a

historical period and the white spots represent the major events in that period. When

users zoom in each block, images of the events in this period will appear in the

background. Additionally, information about this event will be given when clicking at

the white points. Following this, a similar visualization is given in Figure 7 to

navigate and query the compressed combinations.

Figure 7 Combination Shot to navigate compressed combination

Compressed combinations are presented as nodes and they are distributed over the

plane. The location and the size of the nodes are determined based on how many

combinations have been presented by this single node. The darker color of area nodes

reside in, the more combinations have been presented by this single entry. When

clicking at the certain node, text-based information will be given to explain what have

been presented by it. Moreover, user could navigate the color bar to filter the nodes

that represent specific number of combinations.

4.5 Discussion and Conclusion

The second task in this research is to navigate and query the compressed

combinations. As all four techniques guarantee users’ capacities to navigate the data,

24

more criteria need to set up before making final decision.

In daily work, engineers are frequently adjusting the filters to sort out needed

information from allowed combinations. This progressive adjustment is mostly based

on their expertise knowledge and the relations among variant families they have so far

discovered. Thereby, it is critical to get this information at the first glance. Besides, as

many visualization methods do not scale efficiently even for the moderate size of data

[10], the scalability of each method should be evaluated. Finally, the complexity to

implement the method is also an impacting factor. Accordingly, four criteria are set

up to evaluate above factors:

1. possibility to detect variant family relation

2. possibility to adjust variant family combination

3. scalability

4. implementation complexity

Evaluations for the criteria of four visualization methods are listed in Table 23

Table 23 Evaluations of four visualization methods

criteria possibility to detect

VF relation

possibility to adjust

VF combination

Scalability Implement

Complexity

Tree Map Medium Difficult Scalable Medium

Tree

Structure

Easy Difficult Scalable Low

Elastic Menu Difficult Easy Scalable Medium

Combination

Shot

Difficult Difficult Scalable Medium

By fixing the variants in different variant families in sequence, tree map enables users

to detect corresponding distributions when drilling down the data from top to bottom.

Though restrained to the fact that it gets the variant family relation information on a

low level instead of an overview, it is still an alternative to partly detect variant family

relation. Elastic Menu performs well to adjust variant family combination. Users are

flexible to refine proper variant family combinations, analyze the hidden information

from different angles. Yet, Combination Shot is weak in all fields, it is excluded as a

poor choice in this research.

Tree structure works well in all fields despite of its weakness to adjust variant

combinations. Considering the high importance of detecting the variant family

relations during the analysis, tree structure is the first choice to navigate and query the

compressed combinations. By navigating the tree from top to the bottom, it is easy to

identify the data structure and how the variants are the same height are related. In

addition, users could either get an overview or drill down to particular information by

expanding or collapsing a specific node.

25

Due that tree structure is not flexible to change variant family combination, it is

necessary to combine it with other methods, elastic list for instance. Before

visualization, users will be asked to filter combinations that are restricted to specific

variants (or variant combination). The complete data will be visualized if users choose

not to filter and the number of combinations to be visualized does not exceed a certain

threshold (500, for instance).

Finally, visualization of combinations is sensitive to the variant family order. The

family order in compression may not be in accordance with the one in visualization.

Users may organize same families with different orders for various purposes. Hence,

users are expected to determine family order before visualizing the data

26

5 Conclusion and Future Work

5.1 Conclusion

This research has been concentrating on configuration knowledge, its representation

and visualization. The paper highlights how compression can be used to present huge

data without losing important information and how visualizations support engineers in

navigating and querying the massive data. The data used in this research is real-world

industrial data and it is representative for similar product development organizations.

Generally, we have following conclusions:

1. The compression approach is sensitive to the number and the size of the

problem. Different family orders affect the calculation time.

2. There is a balance between compression ratio and the number of identifiers.

Better compression ratio is together with more number of identifiers.

3. Discerning the structure of the combinations and detecting hidden variant

relations are critical factors to support engineers’ work. They are given higher

priority when comparing different visualization techniques.

4. Visualization is sensitive to the family order. Users are expected to determine

the family orders before visualizing the combinations. Moreover, the filtering

feature needs to be built-in in any selected visualizing approach to fast locate

the interesting information and limit the data to be visualized.

5. In this research, we use identifier which is based on multiple variant families

to compress the allowed combinations and tree structure to visualize the

compressed data

5.2 Future Work

As the author just describes one feasible approach that could be used for compression,

more ideas could be taken into account in future research. Moreover, when describing

Identifier technique to compress the allowed combinations, the paper orders the

variant family by the most comes first rule, that is the VF that has the most number of

variants will be put in the leftmost columns. More family order choices should be

studied and compared to come to the best solution.

Exploration in improving comprehensiveness of identifiers’ name format is also

helpful. Identifiers that contain all variants of the variant family need to be presented

in a unique way and the variants that are never shown should also be marked for users’

information.

Moreover, it may be a good idea to have compression as a built-in function in PDM

system. Thereby, PDM could either provide original allowed combinations or the

compressed ones to the end-users.

27

References

[1] Miller, E. (1997) What's PDM? Computer-Aided Engineering Magazine,

September 1997.

[2] B. Shneiderman. The eye have it: A task by data type taxonomy for information

visualizations. In Proc. 1996 IEEE Conference on Visual Languages, 336-343

[3] Gibbard A (1974) A Pareto-Consistent Libertarian Claim. J Econ Theory7:388-410

[4] Daniel A. Keim, Jörn Schneidewind (2005) Scalable Visual Data Exploration of

Large Date Sets via MultiResolution, page 1

[5] Johnson, B. and Shneiderman, B. (1991). Tree-Maps: A space-filling approach to

the Visualization of Hierarchical Information Structures, Proc. 2
nd

 International

Visualization Conference, IEEE, 284-291

[6] Ben Shneiderman, University of Maryland

 < http://www.cs.umd.edu/hcil/treemap-history/>

[7] Mortitz Stefaner, Information Aesthetics

<http://moritz.stefaner.eu/projects/elastic-lists/>

[8] Mortitz Stefaner, Information Aesthetics

<http://well-formed-data.net/experiments/elastic_lists/>

[9] Interactive History Timeline, BBC UK

< http://www.bbc.co.uk/history/interactive/timelines/british/index.shtml

[10] Philip Kegelmeyer, Robert Calderbank, Terence Critchlow, (2008) Mathematics

for Analysis of Petascale Data, 13-19

http://www.cs.umd.edu/hcil/treemap-history/
http://moritz.stefaner.eu/projects/elastic-lists/
http://well-formed-data.net/experiments/elastic_lists/
http://www.bbc.co.uk/history/interactive/timelines/british/index.shtml
http://www.bbc.co.uk/history/interactive/timelines/british/index.shtml

28

Bibliography

[1] Ben Shneiderman. (2006) Using a hierarchical structure, treemmaps provide

Meaningfully organized displays of high-volume information, 57-64

[2] Card, S., Mackinlay, J., and Shneiderman, B., (1999) Readings in Information

Visualization: Using Vision to Think, Morgan Kaufmann Publ., San Francisco，CA

[3] Daniel A. Keim. (2000) Designing pixel-oriented visualization techniques:

Theory and applications. IEEE Transactions on Visualization and Computer

Graphics

[4] Gouthami Chintalapani, Catherine Plaisant, and Ben Shneiderman.(2004)

Extending the Utility of Treemaps with Flexible Hierarchy

[5] Ketan Babaria. (2001) Using Treemaps to Visualize Gene Ontologies, 58-77

[9] William W. Hargrove, Forrest M. Hoffman (1999) Using Multivariate Clustering

to Characterize Ecoregion Borders, 619-626

[10] An introduction of permutation methodology, Wikipedia

<http://en.wikipedia.org/wiki/Permutation>

 [11] Michael Brestrich, Eindhoven University of Technology

 <http://w3.win.tue.nl/nl/onderzoek/onderzoek_informatica/visualization/sequoiaview//>

[12] Map of the market, Dow Jones & Company, Inc

<http://www.smartmoney.com/map-of-the-market/>

[13] Product data management, Wikipedia

<http://en.wikipedia.org/wiki/Product_data_management>

http://en.wikipedia.org/wiki/Permutation
javascript:linkTo_UnCryptMailto('iwehpk6ixnaopneydWsax:za');
http://w3.win.tue.nl/nl/onderzoek/onderzoek_informatica/visualization/sequoiaview/
http://www.smartmoney.com/map-of-the-market/
http://en.wikipedia.org/wiki/Product_data_management

29

Appendix A: Use Identifier to Compress the Fuel Tank Example

Take fuel tank example for instance, a set of flows are to illustrate the complete

procedures of compressing allowed combinations based on multiple variant families.

In the example, identifier volume_1_3 presents set (10L,30L, 40L), material_1_2

presents set (steel, plastic) and color_1_2 presents set (black, red).

Step 1: fix variants in VF Volume and divide allowed combinations into corresponding sets and patterns

Step 2: compress sets that have identical patterns

30

Step 3: divide set volume_1_3-set1, 20L-set1 into corresponding small sets and patterns

Step 4: compress sets that have identical patterns

Step 5: combine and recompress the newly-generated sets

31

Appendix B: A VB Script to Mark Different Cells in Two

Regions in an Excel File

Usage: Mark differences and highlights the cells that are different in the two regions. The code

loops through the first region's collection, looking for corresponding cells in the second collection.

If it finds a corresponding cell, it compares the cells' values and highlights the first cell if they are

different. If there is no corresponding cell in the second collection, the code highlights the

unmatched first cell. The code repeats this step to compare the cells in the second collection to

those in the first.

Script content:

Sub MarkDifferences()

Dim active_sheet As Worksheet

Dim name1 As String

Dim name2 As String

Dim range1 As Range

Dim range2 As Range

Dim cells1 As Collection

Dim cells2 As Collection

Dim cell1 As Range

Dim cell2 As Range

Dim key As String

Dim no_match As Boolean

 Set active_sheet = ActiveSheet

' name1 = InputBox$("First Range Name:", "First Range",

' "")

name1 = "Range1"

 If Len(name1) = 0 Then Exit Sub

 Set range1 = active_sheet.Range(name1)

' name2 = InputBox$("Second Range Name:", "Second

' Range", "")

name2 = "Range2"

 If Len(name2) = 0 Then Exit Sub

 Set range2 = active_sheet.Range(name2)

 ' Make normal collections holding the cells.

 Set cells1 = New Collection

 For Each cell1 In range1.Cells

 key = cell1.Row - range1.Row & "," & cell1.Column - _

32

 range1.Column

 cells1.Add cell1, key

 Next cell1

 Set cells2 = New Collection

 For Each cell2 In range2.Cells

 key = cell2.Row - range2.Row & "," & cell2.Column - _

 range2.Column

 cells2.Add cell2, key

 Next cell2

 ' Examine the cells in the first collection.

 For Each cell1 In cells1

 On Error Resume Next

 Err.Clear

 key = cell1.Row - range1.Row & "," & cell1.Column - _

 range1.Column

 Set cell2 = cells2(key)

 If Err.Number <> 0 Then

 ' The second cell is missing.

 no_match = True

 ElseIf cell1.Text <> cell2.Text Then

 ' The cells don't match.

 no_match = True

 Else

 no_match = False

 End If

 ' If the cells don't match, color cell1.

 If no_match Then

 With cell1.Interior

 .ColorIndex = 35

 .Pattern = xlSolid

 End With

 Else

 With cell1.Interior

 .ColorIndex = xlNone

 End With

 End If

 Next cell1

 ' Examine the cells in the second collection.

 For Each cell2 In cells2

 On Error Resume Next

33

 Err.Clear

 key = cell2.Row - range2.Row & "," & cell2.Column - _

 range2.Column

 Set cell1 = cells1(key)

 If Err.Number <> 0 Then

 ' The second cell is missing.

 no_match = True

 ElseIf cell2.Text <> cell1.Text Then

 ' The cells don't match.

 no_match = True

 Else

 no_match = False

 End If

 ' If the cells don't match, color cell2.

 If no_match Then

 With cell2.Interior

 .ColorIndex = 35

 .Pattern = xlSolid

 End With

 Else

 With cell2.Interior

 .ColorIndex = xlNone

 End With

 End If

 Next cell2

End Sub

End Sub

