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Abstract

Cluster analysis is a sub-field in artificial intelligence and machine learning that refers
to a group of algorithms that try to find a natural grouping of objects based on some
objective metric. In general this problem is hard because a good grouping might be sub-
jective, two expert taxonomists can disagree on what they believe represents reasonable
discriminatory features. The methods work directly on the data and are thus contained
in the class of unsupervised algorithms contrary to classification algorithms whose bias
is based on known classes. This report tries to give an overview to the application of
clustering algorithms to text and how data might be processed.

Keywords: document clustering, text clustering, cluster analysis, cluster, unsuper-
vised categorisation



Sammanfattning

Klusteranalys är ett delområde inom artificiell intelligens och maskininlärning som ref-
ererar till en grupp av algoritmer som försöker hitta naturliga grupperingar av objekt
baserat på dess egenskaper. I allmänhet detta problem är svårt, eftersom en bra grup-
pering kan vara subjektiv, två experter inom taxonomi kan exmepelvis vara oense om
vilka egenskaper de anser vara mest utmärkande. Dessa metoder som arbetar direkt
på data och ingår därmed i klassen av oövervakade algoritmer vilka skiljer sig från mot
klassificeringsproblemets algoritmer vars preferenser baseras på inlärd information. Den-
na rapport försöker ge en översikt över tillämpningen av kluster algoritmer till text och
hur data kan bearbetas.

Keywords: dokumentklustring, textklustring, klusteranalys, kluster, oövervakad
kategorisering
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Chapter 1

Introduction

It is vital to remember that information — in the sense of raw data — is not
knowledge, that knowledge is not wisdom, and that wisdom is not foresight.
But information is the first essential step to all of these.
Arthur C. Clarke (2003) Humanity will survive information deluge

We are currently standing at the shoreline of the big sea of data that is the information
age. And while this era’s most precious resource is intellectual property and data there
seems to be no bound to how much can be gathered. Digitalisation is booming and the
big problem is how to interpret or analyse what is sampled, because the vast amounts
surpasses what can be done by humans alone. Clearly we need powerful techniques to
help us in this endeavor. The study of the much smaller problem only relating to text
has spawned multiple fields in academia and industry such as computational linguistics,
text data mining, information retrieval and news analytics etc.

Picture the hard working miner swinging his pickaxe, far below ground level, at
tons after tons of rock in the pursuit precious jewels. This is the perfect analogy of
the field of textual processing as it is today. Current methods have no concept of true
semantics, the meaning of what it analyses, it does not understand words more than
the symbols they are made of. Although it is debatable whether true meaning even
exists and whether it is achievable by machines or whether it is just the resulting feeling
of finding a match in the huge archives that is the human memory, this is better done
elsewhere[42][12][23].

When processing text a lot of it is removed by sifting away useless rock to find the
glittering bits. Because we have no concept of meaning except in very primitive cases
our most sophisticated methods of today rely on single words and possibly their close
neighbours while their most important information carriers, structure, grammar and
semantics are mostly ignored. Even though there exist very good grammatical parsers,
they can at most reconstruct syntactical structures to a degree.

When trying to understand any unknown data one of the most basic instincts for
humans is look for patterns or structure. The leading question is “What does these
points have in common? This leads us to our main topic of this report, grouping or
unsupervised categorisation of textual data also known as document clustering. Clus-
tering is one of the classic tools of our information age swiss army knife. Grouping is
a blunt instrument in itself but it is a start that may lead to points of interest that
require further analysis by humans. It narrows the search space because one is studying
nearly structured data instead of a porridge random points. It can be thought of as the
analogy of “lets plot and see what happens” method possible only when sampling data
in a low dimensional space.
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It may help as a guide when browsing or searching for knowledge [13] or serve as
one of the core methods in automatic discovery of news articles1. Other known uses in
industry is in market segmentation, plagiarism detection[31]etc.

1http://news.google.com
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Chapter 2

Representation models

We have no idea about the ’real’ nature of things ... The function of modeling
is to arrive at descriptions which are useful.
Richard Bandler and John Grinder. (1979) Frogs into Princes: Neuro Lin-
guistic Programming

The above quote sums everything up. A model is designed to represent the true nature
of an object. As documents goes, they are quite well modeled to begin with. A document
have has its topic, its sentences and its words that all together represents the documents
A literate person could with ease make a good understanding of what the document
represents, its meaning, the true nature of what it is about. Then repeat this for several
other documents and group those documents that are alike. However in the world of
computing, we have literate computers in the sense that they can parse text and read it
back to the user, yet they have a hard time generalising the concept in the same manner
as a human can. Whether or not this last is completely true can be debatable as there
is no clear image of how humans do conceptualise. But that debate is outside the scope
of this project.

Currently we do not have a good model of how humans conceptualise text, yet we
have to find a representation that works for computers. The question is how? Can we
assume that documents are bags of words and compare them with each other simply by
looking at the contents of the bags? Bag of word perspective is the overall dominant
document perspective in the field. While it is simple to implement and easy to work with,
one must ask if it is enough? Text have structure, sentences, phrases that undoubtedly
do contribute to the meaning of the text. Can these features be incorporated in our
model in such a way that a computer can make sense of them?

In this chapter we will introduce different ways of modeling documents that some-
what addresses these questions.

2.1 Vector space
Introduced in the early seventies by Salton et al[40] as a model for automatic index-
ing, the vector space model has become the standard document model for document
clustering.

In this model a document d can be interpreted as a set of terms {t1 . . . tn}. Each
of these terms can be weighted by some metric (importance , occurrence etc). Given a
weighting schema W (d), d can represented by an n–dimensional vector w.

The strongest motivation for a vector space representation is that it is easy to for-
mulate and word with.
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Figure 2.1: Illustration of a 3D vector space

In figure 2.1 illustrates a 3 dimensional vector space with the dimensions ’fox’,’red’,’quick’.
The three clauses, ’red fox’ ’quick red fox’ and ’quick fox’ represents points in that vector
space. Example 2.1 demonstrate how three documents, {d1, d2, d3} can be calculated
by using a simple term frequency weighting scheme.

Example 2.1:
d1 : The fox chased the rabbit
d2 : The rabbit ate the cabbage
d3 : The fox caught the rabbit.

These three documents can be represented by a co-occurrence matrix as show in table
2.1. Each document is represented by a column vector the table.

d1 d2 d3

the 2 2 2
fox 1 0 1

rabbit 1 1 1
chased 1 0 0
caught 0 0 1
cabbage 0 1 0

ate 0 1 0

Table 2.1: Term-Document Co-occurrence matrix

The model is simple but it comes with a few drawbacks. Note that the words the
and rabbit occur with the same frequency in all documents. As far as document features
go, these terms are not discriminatory features for any of documents. As a consequence,
they do not contribute to the separation of the documents. Increased separation will
help distinguish similar documents. Imagine organising a bag of coins: Each coin is
made out of the same metal and they all have a monetary value imprinted on them. It
is quite obvious that the metal feature will not help significantly in the organisation of
the coins, while the monetary value will.

To tackle the issue with non-discriminatory features it is common to apply a more
delicate weighting scheme. From information retrieval we borrow Term Frequency In-
verse Document Frequency or tf-idf for short. The tf-idf score for a term at position i
in document j is computed as

4



(tf -idf)ij = tfij × idfi (2.1)

Where tfij is the term frequency for term i in document j. idfi, is the inverse
document frequency for a term ti expressed as

idfi = log
|D|

|{d : ti ∈ d}|
(2.2)

|D| denotes the total number of documents in the corpus and the denominator,
|{d : ti ∈ d}| are the number of documents in which therm ti exists.

The tf-idf–weighting scheme will increase the weight of terms that have frequent
occurrence in a smaller set of documents and lower the weight of those terms that are
frequently occurring over the entire corpus. tf-idf is just one out of many different
weighting schemes. We investigate how different weighting schemes affects clustering in
section 5.5. [25, 27] give a good introduction to different weighting schemes.

The observant reader will notice that, even though each of the three documents
only contains four unique terms, the length of the context-vectors are equal to the total
number of unique terms in the corpus. This causes an apparent space efficiency problem.
With each new unique term, the matrix grows by the size of the corpus. This calls for a
more efficient representation for the model. From table 2.1 we can observe that we have
more zero weighted features than non-zero features. These are call sparse vectors. The
number of zero weighted terms will increase with the number of new terms entered in
the document. Rather than using a matrix representation, we store only the non-zero
terms in a sparse matrix. The sparsity of the model can be explained by the how the
words are distributed in a language. The most frequently occurring word, occurs almost
twice as frequent as the second most frequent word and so forth[39]. This phenomena
was described by Zipf in 1949 and has known as Zipf’s law.

A bit problem with high dimensional spaces is that points become more separated
with each new dimension. This complicates similarity measure as points that appear to
be similar in one subspace, might not be similar in another subspace. We can address
this problem by reducing our feature space. This topic is further addressed in section 3.

2.1.1 Extensions
Standard vector model makes the assumption that all axis are pairwise orthogonal,
i.e. terms are linearly independent. This assumption makes modeling simple but it
badly reflexes natural languages, where terms (in general) are not linearly independent
(synonyms etc). Figure 2.2 demonstrates this flaw.

5



Figure 2.2: Leporidae is the Latin family name for rabbit, but is in the standard vector
model assumes that rabbit is as close to fox as Leporidae

The consequence of the assumption be comes apparent when measuring similarities
between documents. Documents that discuss to a common theme, but use different
vocabulary, will be treated as dissimilar, when in reality the contrary is true. The general
vector space model [46, 44] was introduced to address this. The idea is to expand the
vector space model with a term to term correlation weight. When computing similarities
between the documents, we introduce the correlation weight into the similarity metric.
This allows us to overcome the orthogonal assumption.

Topic-based Vector Model (TBVM) introduces the concept of fundamental topics.
Fundamental topics are defined to be orthogonal and assumed to be independent form
each other. For our small fox and rabbit example, such topics might be animals,vegetables,retrieval
etc.

This is a major difference to the standard vector space model. TBVM transforms
documents to a d dimensional space R. Each term ti ∈ T is assigned a relevance towards
each of these fundamental topics thus each term is represented by a fundamental topic
vector, ti in R. A term’s weight corresponds to the length of ti. Now the model for a
document d in a corpus D can be represented in TBVM, by a document vector d ∈ R
(after being normalized to unit length) as follows:

∀d ∈ D : d = 1
|δ|

δ

where
δ =

∑
ti∈T

eijti

where eij is the number of occurrences of term i in document j.
However while the original paper[5] proposes guidelines of how these fundamental

topics should be picked, nothing specific is given. This was later addressed in the
Enhanced Topic-based Vector Space Model[35] by using ontologies and several other
linguistic techniques.

2.2 Graph model
While the popular vector space model can be considered the standard representation
model, some authors suggest a different approach. [41, 19, 47] propose using graphs
as representation. A graph is a set of vertices (or nodes) and edges usually denoted as
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G = {V,E}, where V is the vertices and E is the set of edges. Edges represent some
relation between vertices.

In contrast to the bag-of-words perspective used by the vector model, the common
denominator among the different graph approaches is that the structural integrity of the
documents in some sense, is preserved. The motivation behind analysing the structure
becomes apparent when one considers the phrases in example 2.2.

Example 2.2:

“The fox chases the rabbit”
“The rabbit chases the fox”

The two phrases are semantically different but they have an equal bag-of-words repre-
sentation {the,fox,chases,rabbit}.

Hammonda[19] proposes a Document Index Graph (DIG). A DIG is an directed
graph. Each vertex vi, represents a unique word in corpus. Each edge is between an
ordered pair of vertices (vi, vj) if and only if vj follows vi in document in the corpus.
Vertices within the graph keep track of which document the word occur in. Sentence path
information i.e., what edge goes where and in what document is held in a separate index.
Following this definition, a path from v1to vn represents a sentence of length n. Sentences
that share sub-phrases will have shared paths in G. The degree of phrase matching
between documents within the directed graph is later used to determine documents’
similarities.

caught

cabbage

rabbit

fox
chased

the

ate

Figure 2.3: A document index graph over three document

A variation on the same theme as DIG is the Suffix Tree Clustering. Introduced by
Zamir and Ezzioni[47] as a mean for clustering web snippets from search engine results.
As with DIG, the idea is to work with the phrase structure documents, or snippets. A
suffix tree is a rooted directed tree. Documents are regarded as strings of words rather
than characters. This structure holds the following properties:

• Each internal node has at least 2 children.

• Each edge on the tree is a labeled with a unique phrase from a document with in
the corpus.

• No two edges from an edge begin with the same word.

• For each suffix s with in a document there exist suffix-node whose label is s.

• At leaf contains information about where its phrase originated from.

7



An example of a suffix tree is given in figure 2.4.

cabbage rabbit

fox ate ate

cabbage rabbit

cabbage rabbit

1,2 1,2 1 2

1 2

Figure 2.4: A STC over ’fox ate cabbage’ ’fox ate rabbit’

While Zamir and Ezzioni focused on short web snippets, others such as Schenker[41]
have focused on entire HTML pages. He proposes three different models to represent
web documents. Unlike DIG and STC, each document is represented by a directed
graph. Thus a corpus is a set of graphs. Each unique term in a document is represented
by a node. A edge from vertex vi to vj exist if and only if term tj succeeds term ti in
the text.

For the Schenker’s standard model, Schenker utilizes meta data from the HTML-tags to create labels for each and every edge. In [41] the there are three kinds of labels to mark the importance of a relation. Labels used are title, link and text. E.g.,. If a document has a title “Google News” an edge will be introduced from “Google” to “News” labeled “title”. The same idea applies to, text and link labels.

In Schenker’s simple model the dependencies are based on word order. The more so-
phisticated n–Distance model applies a n word look ahead (n-gram) where the labels
on introduced edges are the distance in numbers of words from the first word in the
sentence to the next node. These two models are illustrated in figure 2.5.

Edge labels are an important key in Schenker’s way to cluster later on.

cabbage

rabbit
the

ate

is

gray

cabbage

rabbit
the

ate

is

gray
1

23

4
2

3

Figure 2.5: Left:Schenker simple model Right:Schenker n–gram model

2.3 Probabilistic topic models
Another perspective to document modeling is that they have been generated through
some random process. Imagine that a document is constructed by first choosing a
distribution of topics that your corpus shall cover e.g.{fox : 0.4, rabbit : 0.1, hunting :
0.3, cooking : 0.2}. Then from this distribution select a topic at random. Now each
topic represents a distribution of words. By some mean select words to your document
by drawing words from the topic. E.g., let say we randomly pick the fox topic, then
we would draw words such as canid, sneaky, fur etc. These words then make up you
document. In general documents can be a generated from a mixture of topics. This
generative model is the core idea behind topic models.

It was introduced by Hoffman in 1999[22], and has since been improved and modified[9,
10, 43].
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The real work in topic modeling comes from that we usually do not know the topic
distribution in a document nor the topic-word distribution. These unknown properties
are called hidden variables. With the data that we have observed (the words of the
document) we can use posterior inference methods to reveal the latent structure[9].

Figure 2.6: Probabilistic generative process behind a topic model

Let us formalise (notation by [43]) the process to emphasize that it is a probabilistic
model we are dealing with. Let P (z) denote the distribution of topics z for a particular
document d.

As previously mentioned, words within a document are assumed to be generated by
first sampling a topic and then a word is drawn from that topic-word distribution. Let
P (zi = j) denote the probability that the jth topic was sampled for the ith word in
the document. P (wi|zi = j) would then denote the probability that the word wi was
sampled under the jth topic as the ith word. Then the probability distribution over
words within a document is denoted by

P (wi) =
k∑
j=1

P (wi|zi = j)P (zi = j) (2.3)

k is the number of topics. In the literature, θd usually denotes the multinomial
distribution of topics for a document d. This process is repeated for all documents
in a corpus. To simplify this notation, graphical models (such as probabilistic topic
models) are often described by a plate notation. The plate notation allows for demon-
strating the conditional dependencies between an ensemble random variables. Example
2.1 demonstrates a simple conditional dependencies.

Example 2.1 The conditional dependence, with random variable X = {x1, . . . , xn}
and Y = y

P (y, x1, . . . , xn) = P (y)
N∏
n=1

P (xn|y) (2.4)

can be represented as
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Figure 2.7: Plate notation of 2.4.

Nodes represent random variables. Shaded nodes are observed variables. Edges
denotes the possible dependence. The plates represents the replicated structure. N is
here the number of times the replicated structure is being repeated.

In general topic models follows the bag-of-word assumption. But some extensions
have been proposed that handles word-order sensitivity. It has further been extended
to be able to capture properties such as author and year of which the document might
have been generated[9].

In some topic models documents are assumed to have been generated from a mixture
of topics and can thus capture polysemy i.e., word that have multiple meanings.

2.3.1 Latent Dirichlet Allocation
In Latent Dirichlet Allocation (LDA) the generative model is assumed to be as follows:

1. For each topic, pick a distribution over words: βi ∼ DirV (η) for i ∈ {1, . . . , k}

2. For each document d:

(a) Draw topic distribution θd ∼ Dirk(α)
(b) For each word:

i. Draw a topic assignment Zd,n ∼Mult(θd), Zd,n ∈ {1, . . . , k}
ii. Draw a word Wd,n ∼Mult(βZd,n),Wd,n ∈ {1, . . . , V }

k is the number of topics and V is the size of the vocabulary. α is a positive K–vector
and η is a scalar. DirV (α) denotes a V –dimensional Dirichlet parametrised by α, and
similar for DirK(η). Mult(θd) is the multinomial distribution over topics for document
d and Mult(βZd,n) is the multinomial distribution over words.

Figure 2.8: LDA process on plate notation

Recall that we have seen some of the elements before. What is added now for LDA is
a specific assumption on how the multinomial distributions are generated. This is done
by introducing a Dirichlet prior on θd. The Dirichlet distribution is conjugate prior
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for the multinomial distribution. This means that if our likelihood is multinomial with
a Dirichlet prior, our posterior will also be a Dirichlet, thus simplyfing the statistical
inference[43].

The elements {α1, . . . , αK} of the hyper-parametric vector α can be interpreted as a
prior observation count for the number of times topic j ∈ {1, . . . ,K} that is sampled for
a document (before having observed the words in the document!)[43]. It is convenient
to assume that α1 = α2 = · · · = αK , thus giving a symmetric Dirichlet distribution and
even further reduce the inference complexity.

Similarly η can be interpreted as the prior observation count on the number of times
words are sampled from a topic before having seen the words in the corpus. In the
original paper suggests that values for α and η can be given by a altering variational
expectation maximisation (EM) procedure. [43] provides empirical values for α and η.

In section 4.9 we will present an inference method for LDA.
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Chapter 3

Dimensionality reduction

The Cube which you will generate will be bounded by six sides, that is to
say, six of your insides. You see it all now, eh? – Sphere explains Space to
Square
Edwin A. Abbott. (1884) Flatland: A Romance of Many Dimensions.

High dimensional data can cause computational difficulties e.g., similarities measuring.
But how to deal with it? Does one really need M features to cluster N documents. In
general M � N for text. Perhaps not all features are needed? This is the assumption
behind most dimensionality reduction strategies.

We can apply a supervised process that selects features matching certain criterions
(usually by some filtering). We evaluate some of these techniques in sections (5.4) and
(5.6). The supervised process is sometimes known as feature selection.

Alternatively we can apply an unsupervised process where features are extracted
subject to some optimisation criterion. This unsupervised version is known to as feature
extraction. Feature extraction performs a transformation from M–dimension space to
a K–dimensional space (M > K). In the linear class we find Factor analysis, Principle
Component Analysis (PCA) Singular Value Decomposition, Latent Semantic Analysis,
Random Projection among others[15]. The non-linear methods include Independent
Component Analysis, IsoMap, kernel PCA and Kohonen Maps. In this report we will
address linear methods such as PCA,SVD low-rank approximation and random projec-
tion.

3.1 Feature selection
The literature is full of different ideas on what are good features for to select.

Stop-word-filtering is by far the most popular and perhaps simplest approach used
in many document clustering applications. A stop word is usually a term that either is
very frequently occurring such as the, and etc or has little or no contextual significance
such as articles, prepositions etc. Stop-words are, from an information theoretic point
of view, words with non or little information about the context of a document. The
idea is than that by removing the stop-words, we can obtain a higher retrieval precision
(5.2). A standard stop-word set’s cardinality is the numbers of a few hundreds, hence it
marginally reduces the dimensionality since languages (in general) contains a far greater
number of words.

We can extend this this idea and assume that not just “frequent occurring words”
are terms with high entropy, but that certain word classes or syntactic roles possesses a
similar feature. E.g.
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Example 3.1

“The red fox caught the grey rabbit”

Here, the word “the”, would be removed by simple stop word filtering. One can argue
that we can even further reduce the sentence without losing a significant amount of the
meaning example 3.1, by removing certain word classes. In this example the adjectives
“red”, “grey”. Clearly we are able to understand the meaning of “fox caught rabbit”
with the same ease. Similar assumptions can be made by certain syntactic roles such as
accusative case.

We call this process of selecting word-classes for part-of-speech tag selection or POS-
tag selection. From the field of linguistics we know that the smallest meaningful clause
consists of a verb and a noun which carry the core meaning of a sentence. Additional
classes only adds more nuance to the meaning. That is why in our dimensionality process
we have chosen to retain only nouns and verbs.

We can extract words which have a certain syntactic role in the sentence such as
subject, object and predicate etc. We call this process SR-tag selection.

Statistical reduction is a fairly common and simple approach. Remove those terms
which are too common through out the corpus or too uncommon. The motivation for
too common removal is equal to tf-idf motivation whereas too uncommon can be noisy
data.

3.2 Principle component analysis
Principle component analysis or PCA for short dates back to 1901[34] and is a widely
used technique for dimensionality reduction. It is a also known as Karhunen-Loève
transformation. [7] gives two definition to PCA that boils down to the same algorithm.
PCA can be interpreted as an linear projection that minimizes the average projection
cost, where the average projection cost is the average squared distance between the data
points and their projection1. The second interpretation is that PCA is the orthogonal
projection of data onto a lower dimensional linear space (the principle subspace), such
that the variance of the projected data is maximized.

x1

x2

u1

Figure 3.1: PCA from 2-d to 1-d. Either minimize the distance to u1 or the maximize
the variance between the points on the projection

PCA is about finding a set of k independent vectors to project or data on, but which
one to choose? From derivations in A.1 we find that we need to calculate a covariance
matrix representing the minimization error, given the first interpretation. Once we
have the covariance matrix, calculate the k largest eigenvalues and their corresponding
eigenvectors. These are the k first principle components.

1This is the definition given by Pearson[7, 34]
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Computing all eigenvalues for a D × D matrix is expensive and has running time
O(D3), but since we only need the k first principle components, those can be computed
in O(kD2)[7, 6]

3.3 Singular Value Decomposition
Singular value decomposition (SVD) can be used as a low-rank approximation for ma-
trices.

[27] provides the following theorem defining SVD
Let r be the rank of an M ×N matrix C then there is an singular valued decompo-

sition of C on the form
C = UΣV T (3.1)

where U is an M × M matrix whose columns are the orthogonal eigenvectors of
CCT . V is an N×N matrix whose columns are the eigenvectors of CTC. An important
property to note is that the eigenvalues λ1 . . . λr are the same for both CCT and CTC.
Σ is an M × N diagonal matrix where Σii = σi for i = 1 . . . r else 0 where σi =

√
λi,

λi > λi+1. σi is called a singular value of C. In some literature Σ is expressed as a
matrix of size r× r with the zero entries left out and the corresponding entries in U and
V are also left out. This representation of the SVD is called reduced SVD.

We can use SVD to construct a low rank approximation, Dk, of D by following the
Eckhart-Young theorem:

Algorithm 3.1 SVD low rank approximation
Construct the SVD of Dr as in equation 3.1
From Σr identify the k largest singular values(k first, since λi > λi+1), and set the
r − k other values to 0, yielding Σk
Compute Dk from UΣkV T . The reduced form is obtained by pruning row vectors of
length 0 in Dk

For optimality proof of Dk as an approximation of D see [27].
For sparse matrices of sizeM×N with c non-zero elements, an SVD can be computed

in O(cMN) time[6].

3.4 Random Projection
In random projection (RP) the goal is to project M−dimensional data on to a k–
dimensional with the help of an random matrix R of size k ×M whose columns are of
unit length. If D is the original matrix of size M ×N , then

DRP = R×D (3.2)

where DRP is the k ×N reduced data set.
While PCA and SVD are data-aware, i.e., they make reduction based on the original

data, RP is said to be an data-oblivious technique as it does not assume any prior
information about the data.[2].

Random projection relies on the Johnson-Lindenstrauss lemma[2, 6], which states
that if points from a vector space are projected into a randomly selected subspace of
substantially high dimension, the distances between the points are preserved with high
probability[6]. If one is only interested in keeping the Euclidean properties of the matrix,
it can be shown that the dimension size can be as low as the logarithm to the original
matrix[2, 6]. With k = log(N/ε2) a distortion factor of 1 + ε can be achieved.
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Strictly speaking, random projection is not a projection, since in general R is not
orthogonal. Ensuring that R is orthogonal comes with a hefty computational price O(n3)
for a n×n matrix.[17]. Not having orthogonality can cause some real distortions in the
data set. However, due to the conclusions of Hecht-Nielsen[20] that in a high dimensional
space there exists a much larger number of almost orthogonal than orthogonal directions,
we can still apply the random projection with acceptable errors. Bringham experience
mean square difference between RTR and I approximate to 1/k[6]

When it comes to constructing R several different approaches have been proposed.
The most general produces R by selecting k random M -dimensional unit vectors from
some distribution, usually Gaussian or uniformed.[6].

Given R on the previous format, applying R to any vector cost O(kN)[2]. To address
this Achlioptas proposes a much simpler distribution for rij [1, 2]:

rij =


−
√

3/N with probability 1/6
0 2/3√

3/N 1/6
(3.3)

In practice any zero mean,unit variance distribution of rij would give a mapping that
satisfies the Johnson-Lindenstrauss lemma[6]. The speed up comes from the relative
sparseness of R that allows for smart bookkeeping of the non-zero elements of R. This
yields a three times speed up[2] compared to a Gaussian distribution, without marginal
losses in performance[6]. Unfortunately the sparsity does not work well for all input. If
input data is very sparse, DRP might be null, due to the multiplications of rijDj might
be zero.
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Chapter 4

Clustering methods

But from a planet orbiting a star in a distant globular cluster, a still more
glorious dawn awaits. Not a sunrise, but a galaxy rise. A morning filled
with 400 billion suns, the rising of the milky way. – Carl Sagan
Carl Sagan. (1980) Cosmos: A Personal Voyage, episode 9, "The Lives of
Stars"

A group of elements can be organised in a lot of different ways just like mathematical
sets. Any specific set of clusters (a clustering) can be described using a few properties.
Memberships can be either exclusive or overlapping, fuzzy or binary. Exclusive in this
context means that an element can be a member of at most one cluster (this type
of clustering is called partitional) while overlapping allows multiple (possibly nested)
clusters. Fuzzy membership is a gradual quantity described by real value in the interval
[0, 1]. This value could possibly be interpreted as a classification probability or closeness
relative to the given cluster.

The problem of clustering can be expressed as an optimisation problem where one
tries to minimise the distortion of choosing each cluster as a quantisation vector for
its members. Solving this problem optimally is NP-hard (even in the simplest cases
where k = 2, arbitrary d (see [3]) or d = 2, arbitrary k (see[26]) where k is the number
of clusters and d is the number of dimensions) which means that in practice we have
to approximate solutions. Hence, every algorithm described in the following section is
heuristic, some with better guarantees than others. Most methods will also require a
parameter k describing the sought number of clusters.

One can further organise clusters into hierarchies where higher order sets contain
multiple, more detailed sets and so on as illustrated in figure 4.1. Algorithms usually
work on data in an either divisive (top down) or agglomerative (bottom up) manner.
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Figure 4.1: Example of hierarchical clustering

4.1 Outliers
When examining data in our n–dimensional space we may find elements whose measured
features deviate greatly from the rest (see figure 4.2). This could indicate that they do
not belong to any specific grouping or that portions of input is missing. These anomalies
could be interesting in their own right depending on the users needs. They play a central
role in fraud and intrusion detections systems.

Outliers do cause problems when performing complete clusterings, i.e., when every
point is assigned to some cluster, because true members are mixed with erroneous ones.
This increases the cluster boundaries and may lead to merging of clusters bridged by
outliers or inclusion of members from other clusters. In greedy methods such as single-
link and complete-link described in section 4.5 our clustering would suffer the most.
This error can be mitigated somewhat by using mean based criteria functions because
this spreads it over all included members. If one knows that data contains a lot of
noise it might be wise to run methods designed specifically for this purpose such as
DBSCAN[14] or detect and remove outliers early.

Figure 4.2: Example of outliers
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4.2 Batch, online or stream
We can consider data in different ways before passing judgment on how we can cluster
the data. The standard k–means (see section(4.4)) consider all data points at once and
then calculates all clusters in one batch. .

Alternatively we can let the clusters do a bit of competition. Considering one input
at a time, the clusters will compete for that input. The competition is usually based on
some metric, e.g. closest distance. The winning cluster will be allowed to adjust itself
to respond more tightly with the given input, making it more likely to capture similar
inputs. When clustering is performed in this fashion it is called online. Compared to
batch case, online methods are less sensitive to the initial clustering and they are never
“done” in some sense.

We can also assume that data arrives in streams. We buffer a certain of the data,
apply our clustering algorithm on this selection. That clustering can then be compacted
in to a history vector that is weighted in at the next set of data, until all data is
exhausted. Clustering on streams allows for non-stationary data in a much higher degree
than the batch and online versions, which assumes stationary data.

4.3 Similarity measure
The choice of proximity function is a significant one because it will define what to
interpret as clusters in the n–dimensional space that our documents reside in. We
would like to achieve a good separation while keeping generality so we do not get either
too small of too large clusters. The most intuitive metric is probably the Euclidian
distance also known as the `2 norm of the difference vector. This is the direct distance
between two objects in a linear space defined by

d2(p,q) =

√√√√ n∑
k=1

(pk − qk)2 (4.1)

where p,q are either points or vectors.
Other metrics based on linear space distances, although less common, are the the

taxi cab distance (also known as the manhattan distance or `1 norm) and Chebyshev
distance (`∞ norm or chessboard distance).

d1(p,q) =
∑
|pk − qk| (4.2)

dchebyshev(p,q) = max
k
|pk − qk| (4.3)

More sophisticated distances include Mahalanobis distance that exploit correlations of
the data set (which are unfortunately somewhat expensive to calculate). All above
mentioned functions measure the dissimilarity between vectors which are all examples
of the more general concept Bregman divergence.

Figure 4.3: Geometric interpretation of `1, `2 and `∞norms of −→pq in two dimensions
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The most common example of a true similarity function is the cosine similarity
defined by the dot product between each feature vector

sc(p,q) = p · q =
n∑
k=1

pkqk (4.4)

An attractive property when micro-optimising is its simplicity or sparse vectors where
you can skip any non-zero coordinates of either vector. In documents the number of
nonzero elements can be as low as 0.1% or less, depending on the corpus, which makes
this metric very cheap. The geometric interpretation is cosine of the angle between the
position vectors of each point. This is commonly done with unit position vectors i.e.,
each point resides on an n–dimensional unit hypersphere. Note that if no projectional
dimensionality reduction is performed every point will reside on the strictly positive
hyperoctant.

Figure 4.4: Geometric interpretation cosine similarity

A concept borrowed from statistics is Jaccard index or Jaccard similarity coefficient
that measures similarity between sets of samples. The idea is that the intersection
between the sets measure commonality which is normalised with the union of both sets.

J(A,B) = |A ∩B|
|A ∪B|

(4.5)

Another slightly modified weighting gives us a statistic called the Sørensen similarity
coefficient which is usually called Dice’s coefficient in IR literature or some variant of
their names combined.

S(A,B) = 2|A ∩B|
|A|+ |B| (4.6)

This idea of sets can be extended to feature vectors if we interpret nonzero features
from each vector as a binary membership attribute. The intersection would then include
dimensions where both features are nonzero while the union would include either and
both. By combining cosine similarity with this way of thinking we get the Tanimoto
coefficient

T (p,q) = |p · q|2

|p|2 + |q|2 − |p · q|2 (4.7)

which is a variant that yields the Jaccard similarity for binary attribute vectors.

4.4 Basic k–means
The most basic and probably intuitive way of clustering is to interpret eachm–dimensional
feature vector as a point in space. The basic idea is to use cluster prototypes called cen-
troids to represent each partitions center in space and then assign elements based on

19



their closeness. Each centroid is then updated with respect to the mean of these ele-
ments and the procedure is repeated until no elements are reassigned. Centroids, being
means would not represent any object in our input set but some kind of continuous
blend. In figure 4.5 the centroids are denoted by “+”. A variant of this is if we require
that centroids represent a real object then this algorithm becomes k–medioid.

Figure 4.5: Three clusters with centroids

Algorithm 4.1 Basic k–means algorithm
Initialize k centroids
repeat

for all objects in input do
Assign each element to its closest centroid

end for
for all centroids do
Compute the mean of the assigned points
This mean now becomes the new centroid

end for
until all centroids remains unchanged or other termination criteria

The majority of the runtime is spent computing vector distances as can be seen from
the description above. Every distance or similarity is computed once and then compared
to the current best each pass of the assignement step. The new means consider every
vector once as well. This leads us to believe that k–means is linear to the number of
documents and the dimensionality. The centroids scale linearly as well with k. If we
run it with a fixed number it iterations i the total runtime complexity would become
O(iknd). In practice this is cheaper for document clustering because our vectors are
very sparse, the true dimensionality of each vector is much lower than d.

By using a radius-based assignment scheme this algorithm will prefer clusters that
are globular and hyperspherical in some dimension. Figure 4.6 demonstrates groupings
that are not globular. This implies that k-means will fail to correctly group piecewise
similar elements like the one below.
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Figure 4.6: Groupings that are not globular

Being a heuristic method there are no guarantees that it will give an optimal clus-
tering. The only guarantee we have is that it will not yield worse results than the initial
conditions. Unfortunately this also implies that bad initial conditions might lead to a
local optima like the example illustrated in figure 4.7.

Figure 4.7: k–means stuck in a local optima

There have been a few proposals how to remedy this problem. Among them to
perform a hierarchical clustering on a small subset to discover which data points are
central to the found clusters and use these as initial centroids. Others suggest performing
a number of trial runs each pass and choosing the one with that satisfies the global
criteria best. One can also do a local search and try swapping points between clusters
to see if that helps minimize the total distortion.

4.4.1 Bisecting k–means
This variant on k-means treats the input data as a single cluster and repeatedly splits
the “worst” cluster in some sense until k clusters has been reached. Having a more
general criterion function gives us some control over how we would like to decide what
we considers the worst current cluster. Typical criteria are cluster size, total distortion
or some other function of the current state. Splitting on size gives us more balanced
cluster sizes.

If we assume the worst case in each split of n documents, i.e., one document in
one of the clusters and n − 1 documents in the other. This would mean that we have
k− 1 splits and O(nk) similarity calculations. So in worst case this algorithm is as bad
as normal k-means. But in practice this would be a very rare case indeed, with more
balanced clusters should run faster, quite a bit faster.
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Algorithm 4.2 Bisecting k–means
repeat
Pick a cluster to split according to a criterion
for i = 1 to N do
Bisect into two sub-clusters using k–means for k = 2
Keep track of best candidate

end for
until k clusters remains

4.5 Hierarchical Agglomerative Clustering (HAC)
By treating each object as a cluster and then successively merging them until we reach a
single root cluster we have organised the data into a tree. The pairwise grouping requires
that we know the current best (according to some criteria) clusters which either forces
us to calculate the similarity each pass or do it once through memorisation. The former
method is not realistic in practice so calculating this similarity matrix is required and
costs O(n2) runtime and memory.

Algorithm 4.3 Hierarchical Agglomerative Clustering
Compute the similarity matrix
repeat
Find two best candidates according to criterion
Save these two in the hierarchy as sub clusters
Insert new cluster containing elements of both clusters
Remove the old two from the list of active clusters

until k or one cluster remains

Single–link clustering is the cheapest and most straightforward merge criterion to
use. We use the closest point in the both clusters to figure out the cluster similarity
locally. In other words, the two most similar objects represent the similarity between
the clusters as a whole. By sorting the values of the similarity matrix the merging phase
can be done in linear time. This means that a total single link clustering runtime is only
bound by the similarity matrix in O(n2).

In a complete–link clustering the greedy rule instead tries to minimize the total
cluster diameter. This makes the two furthest points in each cluster the interesting
ones. This is a global feature that depends on the current structure and requires some
extra computation in the merging phase. Running time for a complete–link rule is
O(n2log n)

The names single link and complete link come from their graph theoretic interpreta-
tions. We can define si as the similarity between the clusters merged at step i and G(si)
as the graph that links all clusters with similarity at least si. In a single–link clustering
the state at step i are all the connected components of G(si) and in complete–link the
maximal cliques of G(si).

Average–link clustering is a criterion that takes into account all similarities in each
considered cluster instead of just the edges of each clusters. In other words the greedy
rule tries to maximize cluster cohesion instead of diameter or local similarity. This
however requires that we have the more information than just the similarity matrix
because we need to calculate the mean of each cluster. In literature this method is also
known as group–average clustering or Unweighted Pair Group Method with Arithmetic
Mean (UPGMA). UPGMA is defined as
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1
|C1| · |C2|

∑
x∈C1

∑
y∈C2

dist(x,y) (4.8)

where C1, C2 are two separate clusters. Running time for UPGMA is O(n2log n)
A great strength of HAC is its determinism, i.e., always yields the same result from

the same input. This means that we can at least depend on it to not fail miserably from
bad initial conditions. The generated tree contains a clustering of every k = 1, 2, . . . , n so
there is no need for this to be specified a priori. Unfortunately the memory requirement
of O(n2) is a big obstacle for this algorithm to be used in document clustering because
it does not scale with large corpora. Some remedies of this has been suggested such as
the Buckshot algorithm (used in the Scatter/Gather document browsing method) where
one only clusters a sample size of O(

√
nk)[13].

4.6 Growing neural gas
This method stems from a group of algorithms drawing their concepts from self–organizing
neural networks which can create a mapping from a high dimensional signal space into
some (lower dimensional) topological structure. Being an extension of the Neural Gas
[28] (NG), Growing Neural Gas [16] (GNG) is a competitive method that learns a dis-
tribution by drawing samples and then reinforcing the best matching particle; moving
it closer to the signal.

The particles are represented as nodes in a graph where edges correspond to a topo-
logical closeness. The exploration is done in an incremental manner, instead of starting
with k particles like NG one starts with only two and add a particle every λ steps. This
new particle is inserted where it is currently “needed” the most, i.e., at the node with
the largest accumulated error and its worst neighbour.

Outliers are dealt with using an age associated with each edge which deprecates
outdated network structures. When a node is selected as a best representative for a
given signal one also increments the age of every neighbor edge. Outlier nodes are
seldom selected as a best matching unit therefore it’s edges will decay with time and
become totally unconnected, after which the algorithm removes it totally. This also
makes the method capable to learn moving distributions however some modifications
are needed to make it more efficient at this task .

Figure 4.8: Growing neural gas after after initialization and after 1000 iterations
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Figure 4.9: Growing neural gas after 3000 and 7000 iterations

Algorithm 4.4 Growing neural gas
Start with two neurons
repeat
Draw signal from distribution
Find best and second best matching units (bmu) and connect them
Move bmu and neighbors closer to signal
Age all touched local edges
Remove edges older than Tmax and unconnected neurons
if iteration is multiple of λ then
Find node with largest accumulated error
In this node find its worst neighbor
Insert new node between the connected nodes
Connect these nodes to the inerted node and remove old edge
Set error of new edges to half the largest and age to zero

end if
Decay error

until termination criterion

4.7 Online spherical k–means
This extension to the standard k–means uses document vectors normalised to unit length
and cosine similarity to measure document similarity. When vectors are of unit length,
maximising cosine similarity and minimising mean square distance are equivalent[48].
To ensure that our centroids remain on the hypersphere, the centroid must be normalised
at the assignment step. In general centroids are not sparse, hence the normalisation step
will cost O(m).

We can further extend our modification with an online scheme rather than a batch
version.

With these two modifications of the standard k–means we have the online-spherical
k-means(OSKM). The OSKM applies a winner take all strategy for its centroids. The
centroid µi, being closest to the input vector xi will be updated as

µ′
i ←

µi + η(t)xi
|µi + η(t)xi|

(4.9)
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where η(t) is the learning rate depending on iteration t

Algorithm 4.5 Online spherical k–means algorithm
Initialize unit length k centroid vectors {µ1, . . . , µk},t← 0
while termination criteria not reached do

for each data vector xi do
find closest centroid µi = arg max

k
xTi µk

Update µi accordingly
t← t+ 1

end for
end while

OSKM is essentially an incremental gradient ascent algorithm.
Zhong[48] describes three different learning rates. One which is inversely proportional

to the cluster size, generating balanced clusters. The second is a simple flat rate (η =
0.05) and the third follows a decreasing exponential scheme:

η(t) = η0(ηf
η0

) t
NM (4.10)

where N is the number of input values and M is the number of batch iterations. In [48]
the later is empirically shown to lead to better clustering results.

The computational bottleneck is the normalisation of µ. If M batch iterations are
performed the total time complexity for estimating all centroids is O(MNm). However
by some cleaver bookkeeping and deferring of normalisation, the over all running time
of OSKM can be reduced to O(MNnzk)[48] where Nnz denotes the number of non-zero
elements in the term-document matrix. To further speed up OSKM , Zhong suggest
a sampling scheme. At each m, (m < M) batch, sample mN

M data points and adjust
centroids after those. The motivation is that with an annealing learning rate (as earlier
proposed), the centroids will move around much in the beginning and as the learning rate
declines, the centroids will adjust more smoothly to the local data structure. With the
sampling technique, Zhong achieves reduces runtime cost by 50%, without any significant
clustering performance loss.

4.8 Spectral Clustering
Depending on one’s background this method can be interpreted in a few different ways.
What is clear though is that it works on a graph / matrix duality of the pairwise simi-
larity. The similarity graph can be constructed using a few different methods generating
different resulting graphs.

By only connecting points with a pairwise similarity greater than some threshold ε
one gets the ε-neighbourhood graph. Because the resulting similarities are pretty homo-
geneous one usually ignores them and constructs an unweighted graph.

One can keep the k best matches for each vertex and construct a graph called the
k-nearest neighbour graph. This graph becomes directed because this relationship might
not be mutual. Either one can ignore the direction of the edges or enforce that only the
vertices with a mutual k-best similarity are connected.

The last case is the fully connected graph where one keeps every cell of the similarity
matrix and uses the closeness as the edge weights. The implications of the choice of
graph construction method is still an open question however each of them are in regular
use according to [45].
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It was discovered that there exists a correspondence between bi-partitions and eigen-
vectors of the graph Laplacian. The Laplacian a matrix calculated from the similarity
graph matrix and another feature called the degree matrix which is a diagonal matrix
with the degree of each vertex in their respective cells.

With the similarity graph constructed one intuitively wants to find the minimum–
or sparsest cuts of this graph to isolate k clusters. Depending on which cut one tries to
approximate the last step has some variations. They all calculate k vectors that are fed
into a k–means algorithm to produce the final clustering.

Algorithm 4.6 Spectral Clustering
Compute the similarity matrix
Compute the laplacian matrix L
Find the k first eigenvectors of L
Construct matrix A using eigenvectors as columns
Partition into k clusters with k–means using the rows of A as initial centroids

4.9 Latent Dirichlet Allocation
With the representation given in 2.3.1 we now proceed with the inference step.

From clustering point of view the hidden variable θd is of most interest. We can
either use θ to calculate similarities between documents and then use the similarities to
cluster the documents or allow for the topics to be interpreted as clusters. In the later
θd can then be interpreted as a soft clustering membership[9].

We infer its and the other hidden variables’ posterior distribution given D observed
documents from the following equation [9]

P (θ1:D, z1:D,1:N , β1:K |w1:D,1:N , α, η) = P (θ1:D, z1:D, β1:K |w1:D, α, η)´
β1:K

´
θ1:D

∑
z P (θ1:D, z1:Dβ1:K |w1:D, zn, β1:K)

(4.11)
However, due to the coupling of the hidden variables θ and β, the denominator is

intractable for exact inference[10]. Instead we have to approximate it.
Instead of directly estimating β and θ for each document one can estimate the pos-

terior distribution over z, the per-word topic assignment, given w, while marginalizing
out β and θ. The reason is that they can be seen as statistics of the association between
the observed words and the corresponding topic assignment[21].

Blei[10, 9] uses a mean field variational inference method for estimating z. The basic
idea behind mean field variational inference is to approximate the posterior distribution
with a simpler distribution containing free variables, hence turning it into an optimisa-
tion problem. This is done by decoupling the hidden variables and create independence
between them. The independence is governed by a variational parameter. Each hidden
variable can now be described by its own distribution.

Q(θ1:D, z1:D,1:N , β1:K) =
K∏
k=1

Q(βk|λk)
D∏
d=1

(
Q(θdd

|γd)
N∏
n=1

Q(zd,n|φd,n)
)

(4.12)

where λk is a V –Dirichlet distribution,γd is aK–Dirichlet and φd,n is aK–multinomial.
As before V is the size of the vocabulary and K is the number of topics

With this at hand the optimisation problem is to minimise the Kullback-Leibler of
the approximation and the true posterior.
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arg min
γ1:D,λ1:K ,φ1:D,1:N

KL(Q(θ1:D, z1:D,1:N , β1:K)||P (θ1:D, z1:D,1:N , β1:K |w1:D,1:D) (4.13)

Algorithm 4.7 Mean field variational inference for LDAΨ is the digamma function,
the first derivative of the log Γ function
γ0
d := αd +N/k for all d
φ0
d,n := 1/k for all n and d

repeat
for all topic k and term v do

λ
(t+1)
k,v := η +

D∑
d=1

N∑
n=1

1(wd,n = v)φ(t)
n,k

end for
for all documents d do
γ

(t+1)
d := αk +

N∑
n=1

φ
(t)
d,n,k

for all word n do
φ

(t+1)
d,n,k := exp{Ψ(γ(t+1)

d,k ) + Ψ(λ(t+1)
k,wn

)−Ψ(
V∑
v=1

λ
(t+1)
k,v )

end for
end for

until convergence for function 4.13 (see [9] for more details)

Each iteration of the mean field variational inference algorithm performs a coordinate
ascent update. One such update has time complexity of O(knm+ nm).

[10] gives (based on empiric studies) a value for the numbers of iterations needed
until convergence. For a single document is in order of the numbers of words in the
document. This gives approximate running time of O(m2n)

Once the algorithm has converted we can return estimate for θd,βk and zd,n.

β̂k,v = λk,v∑V
v′=1 λk,v′

(4.14)

θ̂d,k = γd,k∑K
k′=1 γd,k′

(4.15)

ẑd,n,k = φd,n,k (4.16)

[43] uses Gibbs sampling to estimate z and then provides a estimate for θd and βk.
A thorough describtion of their procedure is given in [21].

Expectation propagation and collapsed variational inference are other approximation
methods that have been evolved for LDA. The choice of approximation inference algo-
rithm amount to trading of speed, complexity, assurance and conceptual simplicity[9].
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Chapter 5

Results

The definition of insanity is doing the same thing over and over and expecting
different results.
Rita Mae Brown. (1983) Sudden Death

In this section we would like to evaluate what kind of text processing that yields good
results and how it affects the input space for the algorithms. As we will find later, just
applying any clustering algorithm straight on the term frequency vector is not a very
good idea for more than one reason.

5.1 Measuring cluster quality
While the clustering algorithms aims to optimise some target function, it is not clear
whether this target function always divides the data into clusters that reflect the true
nature of the data. The model might not be fully representative or biased in some
negative way, or the documents express a greater depth than the algorithm can cover.
Due to the nature of the problem it also follows that the perfect clustering is rarely
know a priori (unless synthetic data) for general data. Thus there is often nothing
to compare the clustering with. If we do have something to compare against, perfect
clustering is highly subjective in the eye of the beholder. Especially when it applies to
natural language data.

The literature provides a broad spectrum of evaluation methods and they can be
either be supervised or unsupervised.

Unsupervised evaluation methods evaluate the internal structure of the clustering.
One can calculate the density of the clusters by calculating the cohesion of each cluster
with some distance function. Arguably a good clustering yields dense clusters. Alter-
natively one can investigate the average separation between clusters. A good clustering
should provide a good separation of internal and external objects.

The good thing about unsupervised evaluation is that we do not require any com-
plicated and detailed heuristic to evaluate the clustering. Unfortunately unsupervised
method are highly algorithmic-dependent, e.g., k–means returns globular clusters, then
the square-sum-error might be good cohesion measure whereas applying the same met-
ric on a clustering from a density based algorithm, the SSE might be catastrophic and
vise versa.

Provided that we have some categorisation a prioi — a gold standard so to say,
we can make more accurate judgments about the clustering provided by the algorithm.
This is the supervised branch.
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5.1.1 Recall, precision and F-measure
From information retrieval comes metrics such as recall and precision. We can interpret
a clustering as a retrieved set documents given a query, then recall is defined as the
proportion of relevant documents retrieved out of all relevant documents. Precision can
be interpreted as the proportion of retrieved and relevant documents out of the retrieved
documents[4].

An alternative interpretation is that clustering is a series of decisions, one for each
pair of documents in the corpus[27]. The decision is whether or not to assign the two
documents to the same cluster given their calculated similarity. A true positive (TP)
is the decision that has assigned two similar documents to the same cluster. A true
negative (TN) assignment is when we have assigned two dissimilar documents to two
different clusters. If we assign two dissimlar documents to the same cluster we have
a false positive (FP) and two similar documents to different clusters we have a false
negative (FN).

With these interpretations in mind we can formally define recall as

recall = |retrieved ∩ relevant|
|relevant|

= TP

TP + FN
(5.1)

and precision

precision = |retrieved ∩ relevant|
|retrieved|

= TP

TP + FP
(5.2)

The observant reader will notice that one can achieve perfect recall by simply gather-
ing all documents within one cluster. To cope with this flaw. It is practice use precision
and recall in a combined metric known as F-measure or F-score.

Fβ = (β2 + 1)recall · precision
recall + β2 · precision

(5.3)

where β controls the penalisation of false negatives, by selecting β > 1.
To apply F-measure to clustering we assume that we have a perfect clustering i.e.,

a set of classes C and set of clusters Ω given by the clustering. The F-measure for a
cluster j can be calculated as[4]:

Fβ =
∑
c∈C

|c|
|D|

arg max
ω∈Ω

Fβ(ω, c) (5.4)

where |D| denotes the total size of the corpus and |c| denotes the size of the class.
F-measure addresses the total quality of the clustering from an information retrieval
perspective. A perfect F-score (1.0), indicate a perfect match between the classification
set and the clustering. While F-measure is quite popular in the information retrieval
community its application to evaluate clustering can be questioned. F-measure does not
address the composition of the clusters themselves[4]. It also requires that |C| = |Ω| = k
and this puts limitations on the clustering algorithm – it must return a fixed number of
clusters.

5.1.2 Purity, entropy and mutual information
From the information theoretic field comes purity, entropy and mutual information.

Purity measures the dominance of the largest class per cluster.

purity(Ω,C) = 1
|D|

∑
ω∈Ω

max
c∈C
|ω ∩ c| (5.5)
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A perfect clustering will yield a purity of 1 and bad close to 1/k. It can be shown
that purity encourage a clustering with high cardinality. If |Ω| = |D| we will get a
perfect purity, but intuitively we would appreciate lower cardinality on our clustering.

Entropy is a measure on uncertainty about the distribution of an random variable.
The literature provides several, slightly different interpretations of entropy in relation
to clustering. We can either consider the probability of a document being in a specific
cluster and class or by the probability of a document being in a specific cluster regardless
of class. The former definition can be expressed as [4]:

entropy(Ω,C) = −
∑
ω∈Ω

|ω|
|D|

∑
c∈C

P (c, ωj) logP (c, ωj) (5.6)

where P (c, ωj) is the probability of a document j from cluster ω belongs to classifi-
cation c. The second interpretation given by[27] does not consider the actual class. It
can be written as:

H(Ω) = −
∑
ω∈Ω

P (ωj) logP (ωj) (5.7)

where P (ωj) is the probability of a document being in cluster ω.
The mutual information (MI) between a clustering and a classification is a metric

on the amount of information Ω and C share. Given the information about a document
being in a particular cluster gives us some information about what class that cluster
might be. As we learn more about what documents are in that specific cluster the more
certain we get about its actual class. MI measures how much our knowledge about
classes increases as we learn about the clustering. This works in both ways. Knowing
more about one of the input variables reduces the uncertainty about the second and vice
versa.

It has strong relations to entropy and can be expressed in terms of entropy. [27]
defines mutual information as

MI(Ω,C) =
∑
ω∈Ω

∑
c∈C

P (c, ωj) log P (c, ωj)
P (ωj)P (c) (5.8)

Minimum mutual information is 0. Then the documents in a specific cluster cannot
say anything about what classification that cluster is. Maximum mutual information is
reached when the clustering exactly matches the reference classification. More over, if
Ω is divided into sub-clusters of the perfect matching we will have maximum mutual
information. Consequently MI, does not penalise low cardinality. To address this, it is
practical to use the normalised version of mutual information normalised mutual infor-
mation (NMI ). NMI ensures that large cardinality is penalised. The literature describes
geometric interpretations on the normalisation factor

√
H(Ω) ·H(C)[48, 4], but also as

a arithmetic mean between the entropy of the Ω and C, i.e.,|H(Ω) +H(C)|/2[27]. The
normalisation factor also restricts the metrics upper value to 1.

NMI(Ω,C) = MI(Ω,C)√
H(Ω)H(C)

(5.9)

It has been empirically demonstrated that NMI is the superior to purity and entropy
as a measurement for document clustering[4].

With these evaluation methods available, we have chosen work with NMI for eval-
uation in combination with purity as we for most of the evaluated algorithms have to
provide a fixed k clusters.
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5.1.3 Confusion matrix
Table 5.1 is a confusion matrix over clusters A to K. The category distribution is given
by the columns of the matrix.

Clusters
Categories A B C D E F G H I J K

News 327 3 109 3 2 9 1 90 26 170 19
Economy 137 1 2 - - - - 3 2 5 3
Consumer 120 3 2 142 7 - 212 - - 35 -

Entertainment 30 - - - - 3 3 6 216 77 216
Food 3 138 9 35 100 - 2 - - 24 -
Living 26 - - - 1 - 1 - - 67 -
Sports 4 - 2 - - 384 3 33 - 15 5
Travel - 1 - 1 - - - - - 25 -
Job 18 - - - - - - - 1 33 -
Auto 14 - - - - - 20 - - 78 -

Fashion 2 - - - - 1 3 - - 14 -

Table 5.1: Confusion matrix for GP for clustering with NMI 0.50

The confusion matrix above demonstrates an important caveat in all supervised
clustering evaluation. We have to assume the categories are separable and disjoint. The
above clustering is on a collection of news articles. The confusion matrix reflects that
categories like “News” and “Economy” are similar and will use the similar features. A
similarity that human readers can agree to whereas “Sport” can be easily identified a
different vocabulary.

5.2 Data sets
In the scope of our project we have chosen to work with two rather different corpora —
one Swedish newspaper corpus and one English newsgroup corpus. It has been argued
that Swedish is more difficult to cluster due to language specific features of Swedish
(compounds,homonyms etc)[38] and this has been something that we would like to cover
as well.

The English data set is the popular collection called 20 Newsgroup1. The original
collection contains 19997 Usenet discussions crawled from 20 different newsgroup boards
with topics covering computer science, politics, religion, etc.

The documents are almost evenly distributed over the different newsgroups. There
is an modified version where duplicated and cross-post have been removed, which we
have used throughout our work. The headers only contains the from and subject fields
and this reduced data set contain 18828 documents. We consider the discussion board
topics as our golden standard clustering.

1Available at http://people.csail.mit.edu/jrennie/20Newsgroups/
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Topic #
alt.atheism 799
comp.graphics 973
comp.os.ms-windows.misc 985
comp.sys.ibm.pc.hardware 982
comp.sys.mac.hardware 961
comp.windows.x 980
misc.forsale 972
rec.autos 990
rec.motorcycles 994
rec.sport.baseball 994

Topic #
rec.sport.hockey 999
sci.crypt 991
sci.electronics 981
sci.med 999
sci.space 987
soc.religion.christian 997
talk.politics.guns 910
talk.politics.mideast 940
talk.politics.misc 755
talk.religion.misc 628

Table 5.2: Category distribution NG20

Our second corpus is crawled from the online version of the local news paperGötebors-
Posten2(GP). GP contains 3049 documents distributed over 11 categories about news,
economics, sport etc. Documents have been manually categorised by the editor of the
news paper. The categories have been selected from the topology of the web site. In
contrast to NG20, the GP corpus is fairly unbalanced in the distribution of documents
per category.

Topic #
Living 97

Economy 153
Job 52

Consumer 519
Entertainment 553

Food 311

Topic #
Fashion 20
Auto 112
News 759
Travel 27
Sports 446

Table 5.3: Category distribution GP

GP NG20
N 3049 18828∑
nd 1307287 7141855

1
N

∑
nd 429± 399 379± 1182

(minnd,max nd) (4, 7425) (7, 71337)
Balance 0.03 0.63
NNZ 653813 3055221
dim 93656 177868
k 11 20

Table 5.4: Statistics about the corpora

In table 5.4, the notion of balance follows from [48] and is defined as the ratio between
the smallest category and the largest category. It can give a hint on how hard the corpus
is to cluster (depending on algorithmic preference). The lower balance value is worse. D
denotes the set of documents in the corpus. N is the cardinality of D. The cardinality
of a document d ∈ D is denoted by nd and it corresponds to the number of terms within
that document. dim is the number of unique terms throughout the corpus and NNZ are

2http://www.gp.se
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the total number of non-zero elements in the corresponding term-document matrix. k
are the number of classes.

After textual processing (described in 5.3) we retain slightly different statistics about
the corpora as shown in table 5.5.

GP NG20
N 3049 18828

1
N

∑
nd 89± 64 63± 70

(minnd,max nd) (1, 514) (1, 1236)
NNZ 272677 1193420

Table 5.5: Statistics about the corpora after textual processing

5.3 Experimental setup
In each experiment run two types of tests. First we do a baseline and see how each
parameter affects the input space and/or the cluster solution with any other processing
turned off i.e., the only textual processing is tokenisation and word counting. These runs
do in general not perform very well, but the intent is to show the relative improvements
not any absolutes. Please note that the parameters investigated are probably not linear
in cluster quality with each other there seems to be some dependencies. This is why we
do a second run with some more “sane” values to see how each parameter affects a “real
world” clustering.

The second type of setup involves “good” values for all parameters, some of which
are supported in literature others that we have discovered work well. The following
settings are used except for the parameter investigated in the experiment at hand. We
remove terms occurring in more than 60% of the corpus (section 5.4.3) as well as terms
occurring in less than 7 documents (section 5.4.2). Stop words are removed and only
terms in the lexical classes noun, proper noun and verbs are kept (section 5.6). All
frequencies are weighted with the

√
tf × idf scheme (see section 5.5). After this only

the 7000 most common terms are kept to keep down runtime costs (section 5.4.1).
For each experiment we generate the document matrix and then perform 100 cluster-

ings using the bisecting k–means with 10 trials each pass. The motivation for bisecting
k–means is its runtime performance and consistency.

5.4 Simple statistical filtering
As our first experiment we would like to empirically test how some statistical analysis
can reduce the dimensionality.

5.4.1 The N most common terms
A few articles suggest a selection based on the N most common words appearing in the
whole corpus. This cuts down the dimensionality of the vocabulary vector to length N
and the document matrix of m documents to N ×m.

33



N Purity NMI NNZ (%) dim (%)
1000 0.163± 0.004 0.054± 0.002 56.49 0.56
3000 0.166± 0.005 0.054± 0.002 70.90 1.69
7000 0.168± 0.005 0.055± 0.001 80.65 3.94
10000 0.169± 0.005 0.055± 0.001 84.09 5.62
15000 0.169± 0.004 0.055± 0.001 87.54 8.40
30000 0.169± 0.005 0.055± 0.002 92.27 16.87
177868 0.170± 0.004 0.055± 0.001 100.00 100.00

Table 5.6: Keeping only the N most common words of the vocabulary, NG20

N Purity NMI NNZ (%) dim (%)
1000 0.531± 0.006 0.143± 0.001 50.15 1.07
3000 0.533± 0.003 0.147± 0.001 63.91 3.20
7000 0.542± 0.010 0.148± 0.001 74.19 7.47
10000 0.549± 0.011 0.148± 0.001 78.25 10.68
15000 0.554± 0.010 0.150± 0.002 82.59 16.02
30000 0.556± 0.010 0.150± 0.002 89.10 32.03
93656 0.555± 0.008 0.150± 0.002 100.00 100.00

Table 5.7: Keeping only the N most common words of the vocabulary, GP

Even though this reduces the dimensionality drastically it does not reduce the num-
ber of nonzero values more than half at one hundredth of the dimensionality. As the
only textual filter this parameter has very little impact on the clustering results. Unfor-
tunately the clustering results are so bad that no other conclusions can be drawn from
them.

5.4.2 Terms less common than u

Instead of removing all but the N most common one can limit the terms to only those
which exist in at most u texts of the input. This reduces the connectedness between
clusters that share words that are not discriminatory. We have seen values of 60–90%, in
literature Another idea we tried was to set this limit to 1/k and even smaller to remove
all smudging factors.

u (%) Purity NMI NNZ (%) dim (%)
0.1 0.198± 0.012 0.110± 0.008 13.27 92.37
0.5 0.605± 0.018 0.525± 0.011 25.88 97.81
1 0.663± 0.016 0.574± 0.009 33.58 98.81
5 0.595± 0.013 0.553± 0.006 55.14 99.77
10 0.535± 0.010 0.479± 0.005 64.14 99.89
30 0.301± 0.014 0.178± 0.004 77.48 99.96
50 0.210± 0.005 0.122± 0.001 84.38 99.98
70 0.189± 0.005 0.093± 0.003 90.36 99.99
90 0.210± 0.008 0.088± 0.003 95.77 100.00
100 0.1700± 0.004 0.055± 0.001 100.00 100.00

Table 5.8: Removing terms occurring in more than fraction u documents, NG20
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u (%) Purity NMI NNZ (%) dim (%)
0.1 0.362± 0.023 0.114± 0.015 15.39 80.46
0.5 0.611± 0.028 0.397± 0.019 29.54 94.54
1 0.674± 0.026 0.454± 0.017 37.59 97.16
5 0.784± 0.016 0.505± 0.015 57.65 99.43
10 0.766± 0.018 0.487± 0.012 66.36 99.71
30 0.610± 0.016 0.283± 0.007 80.44 99.91
50 0.512± 0.001 0.203± 0.001 88.72 99.96
70 0.476± 0.001 0.179± 0.001 92.22 99.98
90 0.536± 0.027 0.188± 0.008 98.23 100.00
100 0.555± 0.008 0.150± 0.002 100.00 100.00

Table 5.9: Removing terms occurring in more than fraction u documents, GP

Some very interesting results spring forth from this simple filter. It seems that by
heavily removing the most common terms one can get reasonably good clustering results
on these specific corpora. Note that while a lot of the matrix elements are removed the
dimensions stay roughly the same. In other words, this operation produces a yet more
sparse environment possibly making clusters more separated.

5.4.3 Terms more common than L

The last statistical feature we filter by a lower bound, words must exist in at least L
documents to not get filtered out. If a word only exists in one or two documents it does
not help to generalize those specific documents into any group and could therefore be
considered noise in a sense.

L Purity NMI NNZ (%) dim (%)
0 0.167± 0.004 0.055± 0.001 100.00 100.00
3 0.169± 0.005 0.055± 0.001 95.13 29.85
5 0.168± 0.006 0.055± 0.002 93.17 19.86
7 0.169± 0.004 0.055± 0.001 91.82 15.58
15 0.170± 0.005 0.055± 0.001 88.14 9.10
30 0.168± 0.004 0.055± 0.001 83.70 5.39

Table 5.10: Removing terms occurring in less than L documents, NG20

L Purity NMI NNZ (%) dim (%)
0 0.555± 0.008 0.150± 0.002 100.00 100.00
3 0.557± 0.005 0.150± 0.002 87.35 25.91
5 0.546± 0.012 0.148± 0.002 82.53 15.91
7 0.549± 0.011 0.148± 0.001 79.21 11.64
15 0.540± 0.010 0.148± 0.001 71.14 5.78
30 0.533± 0.003 0.146± 0.001 62.81 2.93

Table 5.11: Removing terms occurring in less than L documents, GP

By only applying this filtering we see no real improvement in the resulting clusters.
There is however a big reduction in dimensionality already with a requirement of occur-
rence frequency being more than 5. In literature we have seen frequency values of 3 to
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30. Further investigation is required to see what the consequences of clustering quality
is in combination with other processing.

5.5 Term weighting schemes
The assignment of weights to words is commonly used in the vector space model. Our
next experiment tries to demonstrate the impact of different weighting schemes on the
resulting clusters. The first setup is unprocessed in every way except for word counting
and tokenisation. The schemes used are tf , the baseline of this test that uses the word
count directly. Manning[27] suggests a values normalized by the maximum term of each
vector ntf = α + (1 − α)tf/tfmax. The two last functions use a sub-linear scheme,
1 + log2 tf and

√
tf which smoothes the vector coordinates towards 1, toning down the

extreme frequencies. The reasoning here is that a term of frequency ten is not necessarily
10 times more important than a term of frequency 1.

GP NG20
Scheme Purity NMI Purity NMI
tf 0.555± 0.008 0.150± 0.002 0.170± 0.004 0.055± 0.001
ntf 0.555± 0.009 0.150± 0.002 0.170± 0.004 0.055± 0.001

log2 tf 0.574± 0.001 0.237± 0.001 0.221± 0.023 0.125± 0.002√
tf 0.631± 0.010 0.304± 0.009 0.238± 0.017 0.138± 0.002

Table 5.12: Weighting schemes

As can be seen in tables 5.12 and 5.13 it seems using a smoothing function for the
frequency does make sense in practice. Both sub-linear functions perform better than
no weighting. Surprisingly the max-tf scheme does not affect the results at all.

GP NG20
Scheme Purity NMI Purity NMI
tf × idf 0.605± 0.006 0.205± 0.006 0.206± 0.005 0.102± 0.002
ntf × idf 0.605± 0.004 0.204± 0.002 0.204± 0.005 0.102± 0.002

log2 tf × idf 0.699± 0.018 0.329± 0.017 0.403± 0.015 0.254± 0.005√
tf × idf 0.710± 0.020 0.368± 0.013 0.450± 0.022 0.347± 0.014

Table 5.13: Weighting schemes with idf

Combining these weighting schemes with the inverse document frequency described
in section 2.1 we get an increase of cluster quality across the board. It does seem to
impact the larger corpus NG20 a lot more than GP. These scores are rather low however
which means we need more textual processing than just counting unique terms.

5.5.1 Standard settings
In our second experiment we see the real world importance of weighting with idf .
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GP NG20
Scheme Purity NMI Purity NMI
tf 0.597± 0.006 0.271± 0.005 0.279± 0.011 0.155± 0.004
ntf 0.598± 0.008 0.271± 0.007 0.281± 0.009 0.155± 0.004

log2 tf 0.699± 0.005 0.319± 0.005 0.228± 0.011 0.152± 0.004√
tf 0.667± 0.003 0.333± 0.002 0.273± 0.017 0.169± 0.005

Table 5.14: Weighting schemes with textual processing

GP NG20
Scheme Purity NMI Purity NMI
tf × idf 0.795± 0.009 0.514± 0.012 0.708± 0.017 0.617± 0.007
ntf × idf 0.796± 0.010 0.515± 0.011 0.707± 0.018 0.617± 0.007

log2 tf × idf 0.792± 0.011 0.505± 0.015 0.729± 0.013 0.627± 0.007√
tf × idf 0.773± 0.023 0.492± 0.011 0.742± 0.011 0.639± 0.004

Table 5.15: Weighting schemes with idf and textual processing

Yet again we see a much bigger impact on the NG20 corpus when using the inverse
document frequency. Compared to the results where no processing occurred, these result
scores are actually quite acceptable and comparable to studies in literature. Interesting
to note here is that the sub-linear weighting methods log2 tf and

√
tf actually make the

clusterings worse on our GP corpus while the opposite effect is seen on NG20.

5.6 Language based filtering (LBF)
In this experiment we wanted to investigate the impact of language based filtering or
language based feature selection.

It is standard procedure in most information retrieval application to prune stop-
words from the document in the corpus. Here we use the stop-word list provided by
the Natural Language Tool Kit3. In extension to stop-word filtering, we apply Part of
speech-tag (POS-tag) selection and syntactic role selection (SR-selection).

Word classes, or part-of-speech tags are obtained by running the corpus through the
HunPos[18]4 tagger. HunPos is a hidden Markov model based part of speech tagger.
The tagger uses a trained model for each language. The English model is trained on
Penn Tree Bank II[18]; an annotated corpus consisting of text from the Wall Street
Journal. For Swedish the model is trained on the Swedish equivalent, SUC-corpus and
uses their annotation.

Due to the probabilistic nature of the underlying algorithms in HunPos, it does not
have a 100% accuracy. [29] reports an accuracy of 95.90% on a 1M Swedish token data
set, while [18] reports an overall accuracy for English of 96.58% on the 1M token WSJ
data set.

The syntactic roles tags are extracted with the use of MaltParser5[33] dependency
parser. It is a data driven parser generator that makes use a support vector machine
(liblinear) to make classification. It too uses trained model for each language. The two
language specific trainings sets are the same for MaltParser as for HunPos. Nivre[32]
reports a tagging accuracy of 96.1% and 95.6% for English and Swedish respectively.

3http://nltk.googlecode.com/svn/trunk/nltk_data/packages/corpora/stopwords.zip
4http://code.google.com/p/hunpos/
5http://www.maltparser.org
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The input format for MaltParser requires that the text data is tagged with POS-tags.
We feed the MaltParser the POS-tagged data produced by HunPos.

We apply feature selection when filtering, i.e., extracting those words which are
of interest, rather than removing unwanted words (except for stop words). A lists of
allowed part of speech tags and syntactic role tags are located in appendix B.1 and B.2
respectively.

In the tables 5.16 through 5.19 let

s : stop-word filtering

p : POS-tag selection

r : SR-tag selection

5.6.1 LBF on NG20

Filter Purity NMI NNZ (%) dim (%)
base 0.170± 0.004 0.055± 0.001 100.00 100.00
s 0.121± 0.003 0.026± 0.001 77.83 99.93
p 0.157± 0.007 0.083± 0.002 59.47 83.19
r 0.152± 0.010 0.051± 0.001 15.30 16.18

s+ p 0.309± 0.013 0.152± 0.002 55.24 83.13
s+ r 0.186± 0.013 0.102± 0.002 11.03 16.16

s+ t+ r 0.178± 0.009 0.102± 0.003 10.63 15.34

Table 5.16: Language Based Filtering NG20

Filter Purity NMI NNZ (%) dim (%)
base 0.699± 0.010 0.600± 0.006 61.07 3.94
s 0.700± 0.011 0.603± 0.006 52.59 3.94
p 0.742± 0.011 0.638± 0.005 40.83 3.94
r 0.396± 0.017 0.325± 0.005 9.49 2.20

s+ p 0.744± 0.012 0.640± 0.004 39.06 3.94
s+ r 0.402± 0.018 0.325± 0.005 9.13 2.18

s+ t+ r 0.396± 0.013 0.322± 0.005 8.82 2.13

Table 5.17: Language Based Filtering NG20 with textual processing

In table 5.16 we see that our stop-word filtering in the unprocessed stage truly reduces
the number of non-zero entries and there by increase separation between documents.
However it worsens the cluster purity and NMI compared to the base line. It has been
speculated that perhaps stop word filtering is better suited for information retreival
tasks than clustering[38]. Here we get some hint that it might be the case.

While it might be a good idea to filter on stop-words for short queries, it has little
effect on total size of term-document matrix. Our experiments show that stop-word
filtering can works well as a booster for other techniques.

Both POS-tag and SR selection do present a significant dimensionality and non-
zero element reduction, with the SR selector being the most strict filtering policy. Just
allowing nouns, proper nouns and verbs, we achieve a boost in clustering quality, while
reducing the dimensionality. From the above experiment we can conclude that the best
quality clusters are generated when we combine stop-word filtering and POS-tagging.
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Just from a small change in the vocabulary (106 terms) allows us to double the clustering
quality.

5.6.2 LBF on GP

Filter Purity NMI NNZ (%) dim (%)
base 0.555± 0.008 0.150± 0.002 100.00 100.00
s 0.585± 0.013 0.142± 0.002 82.90 99.88
p 0.559± 0.009 0.166± 0.003 56.43 82.82
r 0.449± 0.009 0.114± 0.001 36.40 55.32

s+ p 0.604± 0.006 0.272± 0.006 53.91 82.77
s+ r 0.620± 0.018 0.325± 0.012 32.17 55.28

s+ t+ r 0.613± 0.020 0.302± 0.008 28.98 50.95

Table 5.18: Language Based Filtering GP

Filter Purity NMI NNZ (%) dim (%)
base 0.787± 0.003 0.468± 0.002 65.50 7.47
s 0.757± 0.004 0.485± 0.004 55.74 7.47
p 0.803± 0.010 0.498± 0.012 43.64 7.47
r 0.774± 0.015 0.496± 0.011 23.31 5.57

s+ p 0.775± 0.022 0.494± 0.013 41.71 7.47
s+ r 0.768± 0.012 0.512± 0.013 20.71 5.55

s+ t+ r 0.772± 0.016 0.509± 0.010 19.65 5.25

Table 5.19: Language Based Filtering GP with textual processing

The results for GP is similar to NG20. Except for the combined setting, where s + r
has a small advantage over s+ p.

5.6.3 LBA over all
The over all results indicate that the single best policy to boost the clustering quality
is POS-tag selection for both languages. When combining with stop-word filtering,
the results disagree. Assuming that the parser performs equally good on both data
sets (previous results indicate similar accuracy) and that we apply equivalent selection
preferences, the difference is how much the policies reduces the data set. In NG20
only 16.16% of the vocabulary remain when using s + r, compared to 55.28% for the
same policy in GP. Besides the obvious difference in languages, the two corpora are
produced in different ways. GP contains professionally written articles, while NG20 is
peoples discussions about various topics. This might play a part in why there is such a
significant difference in quality.

5.7 Lemmatisation, synonyms and compounding
The idea here is to insert some sense of language semantics in the textual processing.
The first problem we consider is where we get multiple terms from a single underlying
word inflected in different ways. A typical example is “walk”, “walks”, “walked”, “walk-
ing” and so on. These words convey similar semantic information to the text but are
considered different terms. By solving this problem one loses some syntactic nuances
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but it gives us an arguably more compact representation of the semantics of a processed
text. What we would like to do is lemmatise the group of words into a single item. This
concept is similar to stemming where one does suffix removal based on a set of rules.
The de facto stemmer out there today for English is the Porter stemmer (see [36]) that
works quite well on Germanic languages. Some problems arise however when using a
stemmer, sometimes different words will assume the same root and a stemmer will fail
at finding the lemma of the word “better” because it requires a dictionary look-up. Our
implementation uses lexical look-ups, in WordNet[30] for English and in SALDO[11] for
Swedish, with some heuristics to remove inflections.

Different words that carry the same or very similar meaning are called synonyms.
These might pose a possible problem when trying to find a grouping. In extreme cases
two documents might share the exact same high level idea but do not share a single
information carrying word. One possible remedy for this problem is to make a look-up
for each word and try to unify words carrying the same meaning. Euphemism poses a
different but related problem where an expression such as “kicked the bucket” (when
referring to a person) usually doesn’t have anything to do with neither kicks or buckets.
In this case the correct substitution would be “died” or possibly the root word “death”.

Compounded words carry information regarding two or more different semantic con-
cepts merged into a single term. The norm in Germanic languages is to prepend the
main word with a descriptive word thereby forming the concatenation. These are usu-
ally called solid compounds whereas some languages separates each component with a
space which are called open compound (e.g., English). The impact of splitting solid
compounds in Swedish is investigated in [37]. We would rather like to investigate the
opposite problem of joining open compounds. More specifically names of places, persons
and entities. For this we use a snapshot of the Wikipedia index from DBpedia[8]. This
decreases the descriptive power of the component words but also avoids mistakes like
different persons sharing family name with no blood relations, or company names with
meanings totally unrelated to their business etc.

In the tables 5.20 through 5.21 let

l : lemmatisation

d : dbpedia

s : synsets

Filter Purity NMI NNZ (%)
base 0.744± 0.012 0.640± 0.004 39.06
l 0.738± 0.009 0.644± 0.004 39.16
d 0.745± 0.011 0.638± 0.004 38.14
s 0.742± 0.011 0.641± 0.005 39.39

l + d 0.736± 0.008 0.643± 0.004 38.22
l + s 0.739± 0.009 0.641± 0.003 39.42
d+ s 0.746± 0.011 0.641± 0.005 38.46

l + d+ s 0.740± 0.009 0.643± 0.004 38.47

Table 5.20: Lexical analysis NG20

All these experiments were run with full textual processing mentioned in section 5.3.
What we can clearly see here is that neither filter yields any significant improvements
but rather minor changes in quality within the standard deviation.
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Filter Purity NMI NNZ (%)
base 0.775± 0.022 0.494± 0.013 41.71
l 0.795± 0.009 0.547± 0.013 43.43
d 0.784± 0.015 0.509± 0.018 41.23
s 0.767± 0.021 0.484± 0.018 41.97

l + d 0.797± 0.009 0.547± 0.013 42.92
l + s 0.784± 0.009 0.530± 0.011 39.68
d+ s 0.802± 0.024 0.513± 0.017 41.44

l + d+ s 0.782± 0.007 0.524± 0.009 39.00

Table 5.21: Lexical analysis GP

In our Swedish corpus the changes are a lot more vivid. Lemmatisation shows real
promise while dbpedia look-ups not so much. Please note that the dbpedia look-up was
in the English language version for more completeness because the Swedish version does
not have more than roughly one tenth of the number of articles. This should hopefully
not impact our main targets too much: names, places and corporations. The synonym
replacement method we performed was worse than base which suggests that our specific
method of replacement could use some improvements.

5.8 Keyword extraction
In modern search application it is common to generate keywords from the indexed data
and display these when presenting the query results. The keywords are a set terms or
noun phrases that represent a document. The idea behind this experiment is that we
shall preprocess our data and extract keywords from our documents and allow for these
keywords to represent the documents. From our previous exploration of the data sets we
have found that after our text process reduction schema have been applied, we had 69
and 89 words on average remaining for NG20 and GP respectively. This brings up and
interesting question: If we are able to extract an equal amount of keywords, how would
these keywords perform be compared to our other textual processing for clustering?
Would one be able to just cluster on a M number of keywords per document?

To extract keywords we the software developed by Johansson and Linström[24]. They
report precision of 0.31 and recall of 0.51, with a total F-measure of 0.39 .

From this we have taken two different approaches on how to evaluated the extracted
keywords. The first aspect is that the keywords are well represented for the documents
and all play an equally important role in the representation for the document. We
therefor apply a boolean weighting schema for the keywords.

Filter Purity NMI NNZ (%) dim (%)
base 0.744± 0.012 0.640± 0.004 39.06 3.94
69 0.168± 0.013 0.072± 0.003 22.04 171.03
50 0.165± 0.012 0.074± 0.003 19.72 171.03
30 0.205± 0.014 0.109± 0.008 6.05 171.03
15 0.222± 0.013 0.111± 0.007 8.80 171.03
10 0.205± 0.014 0.109± 0.008 6.05 171.03
5 0.211± 0.014 0.106± 0.006 3.07 171.03

Table 5.22: Keyword extraction NG20 with equal weight
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Filter Purity NMI NNZ (%) dim (%)
base 0.775± 0.022 0.494± 0.013 41.71 7.47
89 0.478± 0.016 0.175± 0.007 26.76 104.07
50 0.483± 0.020 0.166± 0.006 18.68 104.07
30 0.471± 0.022 0.183± 0.010 12.55 104.07
15 0.478± 0.031 0.197± 0.014 6.75 104.07
10 0.437± 0.024 0.171± 0.016 4.57 104.07
5 0.398± 0.023 0.138± 0.015 2.32 104.07

Table 5.23: Keyword extraction GP with equal weight

Apparently this point of view on keywords are inferior as documents representation
in clustering. Evaluating keywords extracted from a random documents, we see that
some keywords occur with a much higher frequency than expected. In NG20 the word
“subject” occur in almost all documents. A more thorough investigation would probably
reveal that a small set of keywords are dominating the corpus and and this would cause
a skewed feature space, where document separation is more complicated.

A second possible reason why the keywords perform worse than expected can be
related to the trained models that the keyword extractor uses. Those are trained on
mostly medical literature. The increased dimensionality is a consequence from that
keywords can be noun-phrases, hence the number of unique features increases. We
can see that when the number of keywords are 15 we seem to reach some maxima on
clustering quality for keyword clustering.

Alternatively we can assume that keywords are the result of a prior dimensional-
ity reduction and that the keywords generated are bag-of-word representation for the
documents. Given the previous results of the automatically generated keywords, bag-of-
words aspect is motivated by the fact the we do not have perfect keywords. If we use a
more appropriate weighting schema, we should be able to reduce weight on those terms
with high idf score and there by increase the clustering quality.

Filter Purity NMI NNZ (%) dim (%)
base 0.744± 0.012 0.640± 0.004 39.06 3.94
69 0.721± 0.009 0.629± 0.004 22.47 3.94
50 0.722± 0.009 0.626± 0.004 20.74 3.94
30 0.716± 0.011 0.618± 0.004 17.09 3.94
15 0.661± 0.014 0.567± 0.007 12.13 3.94
10 0.586± 0.018 0.493± 0.009 9.07 3.94
5 0.330± 0.015 0.263± 0.007 4.95 2.81

Table 5.24: Keyword extraction NG20 as dim reduction

Filter Purity NMI NNZ (%) dim (%)
base 0.775± 0.022 0.494± 0.013 41.71 7.47
89 0.795± 0.018 0.528± 0.008 19.92 5.62
50 0.800± 0.019 0.519± 0.010 12.62 4.02
30 0.763± 0.011 0.478± 0.007 7.78 2.71
15 0.633± 0.021 0.355± 0.015 3.52 1.38
10 0.582± 0.032 0.295± 0.015 2.06 0.85
5 0.438± 0.023 0.177± 0.015 0.81 0.35

Table 5.25: Keyword extraction GP as dim reduction
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Interestingly this seems to prove itself quite useful. We achieve a good dimensionality
reduction and yet high quality clustering is achieved. Applying a more ’fair’ weighting
schema reduces the score of the most frequent occurring keywords and increase the
count on the unique terms. The keywords beats the base line on the GP corpus but is
unable to beat the NG20 base line. A probable reason for this could that the underlying
functionality behind the keyword extractor performs with different quality on the differ-
ent languages[24]. Even though the keyword extracted data performs roughly equally
good as our other text processing settings the running time overhead in producing the
keywords is far greater than our previous feature selection methods.

5.9 Comparing clustering methods
In a final experiment we evaluate the reviewed clustering algorithms with respect to
document clustering. Here our objective is to demonstrate how different classes of clus-
tering algorithms performs using our textual processing. To achieve a broad spectrum
of documents we have used external clustering tools such as CLUTO6 as well as own im-
plementations of well described algorithms such as OSKM and GNG. CLUTO is an tool
developed for efficient clustering of high dimensionality data clustering. The package
contains various clustering algorithms, of which we have chosen to use the following:

RB is an repeating bisecting k–means. Here default settings are used, with using cosine
similarity and random initialisation seed

graph performs a k–way spectral clustering. We use asymmetric graph linkage and the
Jaccard similarity metric

bagglo is an bias-agglomerative method. It first compute an heuristic by using the
repeating bisection method and then applies this to an agglomerative algorithm.
By default, UPGMA is the criterion function

agglo is a standard agglomerative method, however apply different criterion functions.
slink which is single link. clink is complete linkage and upgma as .

All CLUTO methods run with ’colmodel=none’ since we when already perform our own
term weighing.

We have written our own implementation of the online spherical k means.

OSKM We follow the implementation details in the original paper. The data sample
procedure implemented as well as the exponentially decaying learning rate. The
termination criterion is different, instead of ending after M batches we continue
until no document changes cluster between batches. To make sure that we sample
all documents, the algorithm will run for at least M iterations. The parameters
used are: M =10, η0 = 1.0 and ηf = 0.01

Topic modeling is also represented in the survey by an LDA implementation that uses
Gibb’s sampling. It is called GibbsLDA++7.

LDA We cluster simply by using θd and assigns the documents to its most dominant
topic, i.e., creating a hard clustering. We assume that each category within the
corpus is topic. The number of topics is equal to k.

To represent the self-organizing clustering methods we have implemented our own grow-
ing neural gas

6http://glaros.dtc.umn.edu/gkhome/views/cluto
7http://gibbslda.sourceforge.net/
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GNG We ran the GNG with settings recommended by [16]

Each algorithm ran 20 times

GP NG
Algorithm Purity NMI Purity NMI

RB 0.771± 0.024 0.494± 0.015 0.746± 0.012 0.640± 0.004
graph 0.733± 0.024 0.522± 0.014 0.629± 0.018 0.518± 0.008
bagglo 0.791± 0.000 0.480± 0.000 0.646± 0.000 0.635± 0.000

aggloslink 0.932± 0.000 0.027± 0.000 0.953± 0.000 0.018± 0.000
aggloclink 0.408± 0.000 0.138± 0.000 0.181± 0.000 0.044± 0.000
aggloupgma 0.672± 0.000 0.279± 0.000 0.310± 0.000 0.354± 0.000
OSKM 0.808± 0.021 0.525± 0.011 0.730± 0.029 0.680± 0.014
LDA 0.712± 0.019 0.499± 0.011 0.581± 0.027 0.588± 0.015
GNG 0.821± 0.010 0.504± 0.010 0.575± 0.016 0.468± 0.010

Table 5.26: Clustering methods results

The single link criterion produces pure clusters but has a poor NMI. The high purity
can be explained by how we measure purity. Our purity is the unweighted mean over
all clusters and since single link produces one huge “blob” as a main cluster and leaving
the rest of the clusters fairly sparse. The small clusters will have a good purity given
their small size, hence the unweighted mean is high. See appendix C for more details.

Over all OSKM produces the best clustering given our data sets and preprocessing.
When comparing our results for OSKM with the result given in the original paper for
the same data set we have achieved about 10% better clustering result thanks to our
textual processing.

44



Chapter 6

Conclusion

The project set out to perform a survey over document clustering techniques. This has
involved a broad investigation from the underlying data models to various algorithms.
Our main focus has been investigating different text processing methods in order to
enhance the clustering results. Motivation has been on the one hand to reduce dimen-
sionality in order to keep running times low and on the other to enhance clustering
results. We have focused on feature selection methods, rather than feature extraction.
Feature extraction is very well formulated mathematically but their heavy computational
burden makes them almost infeasible in any real application. However with the benefit
of working with texts is we can apply more sophisticated feature selection methods.

We investigated the impact of how well simple statistical filtering affects the clus-
tering results. Results from our experiments showed that by filtering heavily on words
that occur frequently over the entire corpus, we achieve acceptable clustering results.

Term weighting makes a huge impact on the clustering quality. Though well explored
in information retreival, not as well explored in the document clustering literature, where
the standard tf × idf dominates. We demonstrated the impact of inverse document
frequency and that in a stand alone case, when no other textual process is used, the
tf×idf is inferior to

√
tf×idf . This result is unfortunately not consistent when combined

with our other processing.
Stop-word filtering is almost always applied in all clustering applications. We show

this can be extended to more delicate levels by filtering on certain part of speech tags
and/or syntactic role tags. The stop-words themselves gave very poor results, but
combined with the more complex feature selection methods, it acted as a boosting
technique. When POS-tag filtering was combined with the stop-word filtering and the
other textual processing techniques, we achieved our highest clustering quality.

The effect of lemmatisation was tested with some inconclusive results. We tried
to “normalise” words further by replacing them with their synonyms, but with little
success. The disambiguation issue makes the selection problem hard and it reflects the
results.

We regarded keywords both as perfect document representations as well as reduced
document representation for document clustering. When regarding the generated key-
words as perfect document representatives we were fairly unsuccessful in clustering but
the quality of keywords could questioned.

Last but not least we apply a cocktail of textual processing techniques and evaluate
a different clustering algorithms set to represent different algorithm classes. The overall
result are quite even with the Online Spherical k–means turning out victorious. However
simply judging the clustering result by a metric is treacherous and can be deceiving as
shown by some of the confusion matrices presented in appendix C. Categories can have
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similar attributes but be in different classes in the reference set. However this critique
is in favour of the clustering algorithms as some categories are similar.

Over all document clustering presents a feasible way for making a rough categorisa-
tion of large corpora, infeasible to humans.
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Appendix A

Derivations

A.1 PCA
Given an arbitrary N-dimensional vector x from the data set, represented as a linear
combination of orthonormal basis vectors [u1 ⊥ u2 ⊥ · · · ⊥ uN ] as

x =
N∑
i=1

αiui

Assume that we want to represent x by only M (M < N) basis vectors. This can be
done by replacing [αM+1, . . . αN ]T by some preselected constants β

x̂(M) =
M∑
i=1

αiui +
N∑

j=M+1
βjuj

The representation error, ∆x(M) = x− x̂(M) is then

∆x(M) =
N∑
i=1

αiui − (
M∑
i=1

αiui +
N∑

j=M+1
βjuj) =

N∑
i=M+1

(αi − βi)ui

The error can be measured by the mean square magnitude of ∆x

ε̄2(M) = E[|∆x(M)|2]

= E

 N∑
i=M+1

N∑
j=M+1

(αi − βi)(αj − βj)uTi uj

 (A.1)

=
N∑

i=M+1
E[(αi − bi)2]

Now among the basis vectors ui and constants βi chose those that minimizes A.1. Op-
timal value for βi can be found by derivation the objective function with respect to βi
and setting the partial derivative to 0

∂

∂β
E[(αi − βi)2] = −2(E[αi]− βi) = 0→ E[αi] = βi (A.2)

A.2 shows that we can replace βi by the expected value of αi. Inserting this into A.1
one obtains
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ε̄2(M) =
N∑

i=M+1
E[(αi − E[αi])2]

=
N∑

i=M+1
E[(xui − E[xui])T (xui − E[xui])]

=
N∑

i=M+1
uTi E[(x− E[x])(x− E[x])T ]ui (A.3)

=
N∑

i=M+1
uTi Σxui

Σx is here the covariance matrix
Continuing on the effort of minimizing A.3. Since we had the constraint that u was

to be orthogonal basis (uTi ui = 1), we incorporate this with Lagrange multipliers λi

ε̄2(M) =
N∑

i=M+1
uTi Σxui +

N∑
i=M+1

λi(1− uTi ui)

Compute the partial derivative with respect to u and set the function equal to 0.
Since the covariance matrix is symmetric the following holds.

∂

∂ui
ε̄2(M) = ∂

∂ui

[
N∑

i=M+1
uTi Σxui +

N∑
i=M+1

λi(1− uTi ui)
]

= 2(Σxui−λiui) = 0→ Σxui = λiui

This tells us that ui are eigenvectors of the covariance matrix Σx and λi are eigen-
values. We may now express the sum square error as

ε̄2(M) =
N∑

i=M+1
uTi Σxui =

N∑
i=M+1

uTi λiui =
N∑

i=M+1
λi

Hence, in order to minimize the error, λi will have to be smallest eigenvalues. There-
fore to represent x inM dimensions we shall pick theM eigenvectors ui that corresponds
to the M largest eigenvalues λi. The largest eignenvector is also know as the first prin-
ciple component.
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Appendix B

Feature selection schemes

B.1 Allowed Part-Of-Speech tags
Listed below are the allowed POS-tags for both English and Swedish. The English tags
uses Penn Tree Bank annotation and the Swedish equivalent uses Stockholm-Umeå-
corpus (SUC) annotation.

POS-tag Description
NN Noun
PM Proper Noun
VB Verb

Table B.1: Allowed POS-tags Swedish

Pos-Tag Description
NN Noun
NNS Noun plural
NNP Proper noun singular
NNPS Proper noun plural
VB Verb base form
VBD Verb past tense
VBG Verb gerund or present particle
VBN Verb, past participle
VBP Verb non 3rd person singular present
VBZ Verb 3rd person singular present

Table B.2: Allowed POS-tags English

B.2 Allowed syntactic roles
Below are the allowed syntactic role tags for both English and Swedish. For English,
we use the Penn Tree Bank tag set and for Swedish the Stockholm-Umeå-corpus (SUC)
tag set.
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Constituent-labels Description
AG Agent
EO Logical object
ES Logical subject
IO Indirect object
OO Other object
PA Complement of preposition
SP Subjective predicative complement
SS Other subject
HD Other head

Table B.3: Allowed SR-tags Swedish

Constituent-labels Description
SBJ subject
OBJ object
PRD predictive complement
OPRD Predictice complement of rising/control verb
LGS Logical subject of passive verb
DTV Dative complement (to) in dative shift
PUT Complement of the verb put
BNF Benefactor complement for in dative shift

Table B.4: Allowed SR-tag English
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Appendix C

Confusion matrices

Below are example confusion matrices for various clustering algorithms on the GP cor-
pus. Rows represent the categories and the columns are the different clusters. Results
from GNG is left out for practical reasons.

A B C D E F G H I J K
News 332 1 3 16 3 93 9 109 22 168 2

Economy 137 - - 3 1 3 - 2 2 5 -
Consumer 121 213 142 - 3 - - 2 - 33 7

Entertainment 32 4 - 203 - 3 4 - 217 88 -
Food 3 1 36 - 138 - - 9 - 24 100
Living 26 1 - - - - - - - 67 1
Sports 4 3 - 11 - 14 396 2 - 16 -
Travel - - 1 - 1 - - - - 25 -
Job 18 - - - - - - - 1 33 -
Auto 14 20 - - - - - - - 78 -

Fashion 2 3 - - - 1 1 - - 14 -

Table C.1: Confusion matrix: Bisecting k-means

A B C D E F G H I J K
News 387 9 3 11 114 12 4 21 38 156 4

Economy 135 1 2 11 1 1 2
Consumer 101 6 1 207 1 13 175 5 9 1

Entertainment 32 12 2 90 129 15 272 1
Food 1 107 143 43 10 1 5 1
Living 24 1 2 11 2 1 56
Sports 2 24 2 2 2 27 2 10 375
Travel 2 1 1 1 22
Job 48 3 1
Auto 2 105 1 1 3

Fashion 1 1 1 2 1 6 2 5 1

Table C.2: Confusion matrix: Spectral
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A B C D E F G H I J K
News 427 3 108 17 2 8 4 140 31 17 2

Economy 102 1 47 1 2
Consumer 506 2 7 1 3

Entertainment 70 1 106 1 1 5 7 224 138
Food 59 140 9 103
Living 96 1
Sports 28 2 30 385 1
Travel 26 1
Job 48 1 2 1
Auto 111 1

Fashion 20

Table C.3: Confusion matrix: Bagglo

A B C D E F G H I J K
News 756 1 1 1

Economy 153
Consumer 519

Entertainment 548 1 1 1 1 1
Food 311
Living 97
Sports 445 1
Travel 27
Job 51
Auto 112

Fashion 19 1

Table C.4: Confusion matrix: Agglo-Slink

A B C D E F G H I J K
News 53 186 179 54 113 5 6 12 8 89 63

Economy 12 17 20 22 37 19 1 18 7
Consumer 25 42 55 144 63 2 10 2 36 140

Entertainment 110 39 113 41 79 85 5 20 5 52 4
Food 19 2 77 10 151 21 7 24
Living 2 37 8 10 1 5 1 2 4 27
Sports 40 66 75 19 95 1 16 129 5
Travel 8 11 1 2 4 1
Job 3 23 3 5 15 1 2
Auto 10 2 1 9 3 4 83

Fashion 3 1 6 1 2 7

Table C.5: Confusion matrix: Agglo-Clink
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A B C D E F G H I J K
News 3 3 95 2 644 4 1 3 1 3

Economy 1 148 2 2
Consumer 7 508 1 3

Entertainment 1 12 1 533 3 2 1
Food 10 111 12 178
Living 3 94
Sports 2 2 1 440 1
Travel 27
Job 52
Auto 112

Fashion 19 1

Table C.6: Confusion matrix: Agglo-UPGMA

A B C D E F G H I J K
News 55 26 11 176 2 51 11 52 206 143 26

Economy 1 5 1 1 1 2 1 134 6 1
Consumer 17 42 126 10 205 4 81 33

Entertainment 287 5 178 1 14 2 13 12 35 6
Food 1 155 1 1 151 2
Living 12 5 57 2 19 1
Sports 3 2 2 1 1 2 11 3 43 378
Travel 23 2 2
Job 1 1 8 42
Auto 101 1 4 4 2

Fashion 8 4 1 3 1 3

Table C.7: Confusion matrix: LDA

A B C D E F G H I J K
News 122 201 109 3 45 3 2 29 3 13 229

Economy 1 107 2 1 2 2 38
Consumer 2 13 344 1 6 2 151

Entertainment 5 19 42 2 236 216 33
Food 2 9 33 105 139 22
Living 2 2 2 1 90
Sports 7 3 2 2 68 352 1 11
Travel 2 24
Job 5 1 46
Auto 1 111

Fashion 3 1 2 4 1 9

Table C.8: Confusion matrix: OSKM
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