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Abstract

Inherent uncertainty causes dynamic response of apparent identical structures

to differ. In industrial applications discrepancies have been demonstrated for au-

tomotive vehicles. The solution is to evaluate design robustness and worst-case

response, which demands that modeling and data uncertainties are incorporated.

The emphasize of this thesis is on simple dynamic systems exposed to different

amounts of global and local endogenous uncertainty.

To investigate structural uncertainty a traveling wave model was developed.

Subsystems, were steady-state longitudinal motion occur, are modeled as piece-

wise homogeneous beams. Material, geometrical and boundary properties were

assigned by statistical distributions or stochastic processes. Especially, Markov

jump processes were used to generate local perturbations and an uniform distri-

bution was used to generate global properties. Subsystem couplings were modeled

by a spring impedance.

The results show that global uncertainty causes shifting and scaling of individ-

ual modes which impact the low-frequency response, the observed effects conform

to response changes of a mass-spring system for the fundamental resonance in a

homogeneous longitudinal rod. As the wavelength shortens phenomena related

to local uncertainty, which is primarily due to partition impedance mismatch, are

pronounced. Consequently; response discrepancies at high-frequencies compared

to the nominal behavior is observed. A hypothesis is that localization and non-

sinusoidal mode shapes can explain these results; however confirmation of this

hypothesis demands further work, and is beyond the scope of this work.

Effects of varies kind and magnitude of uncertainty have been demonstrated.

The model indicate that material and geometrical endogenous uncertainty has a

large influence on overall system response.

Keywords: Linear time-invariant stochastic systems, disordered subsystems,

local and global uncertainty, endogenous uncertainty, structural uncertainty, wave

approach, jump processes, longitudinal wave propagation
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Notation and abbreviations

Due to this thesis interdisciplinary nature and in order to get coherent equa-

tions are custom notation used. Complex variables are written as z = z
′

+ j z
′ ′

where z
′

= ℜ{z}, z
′ ′

= ℑ {z} and j =
√

−1. Conjugate is written z̄, magnitude is

denoted as |z| and argument as ∠z. Exponential functions are denoted ej φ. Vector

quantities are represented with a tilde a
˜

, matrices with bold letters X and trans-

poses with T as in XT. An element of a matrix can be expressed as (1, 2) = X12

which refers to the first row and second column of X with a value X12. A fil-

tration of a stochastic process are written as Fn = {Φi : i = 1, . . . , n} and can be

described by expectancy E (Φ), variance V (Φ), observed average 〈Φ〉, observed

smallest value m (Φ) and observed largest value M (Φ). Consider a number of

independent observations F
m = {F1, . . . ,Fm}. This allows considerations largest

of largest values M (M (Fm)) and average of largest values 〈M (Fm)〉. An uniformly

distributed random variate between {−1, +1} is denoted U.

Abbreviations

FEA Finite element analysis

FRF Frequency response function

iid Independent and identically distributed

MC Monte Carlo

SEA Statistical energy analysis

Notation

Greek Upper-Case Letters.

∆ Jump

∆e Jump direction

∆M Magnitude of largest jump

∆w Jump weight

Ξ Magnitude of uncertainty

Ω Spectrum

Π Power

Πdiss Dissipated power

Πin Excitation power
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viii NOTATION AND ABBREVIATIONS

Φ Extremal value

Ψ Expectancy function

Greek Lower-Case Letters.

α, β Beta distribution parameter

γ Smoothness parameter

ǫ Strain

ǫ Perturbation function

ζ Jump constrain

η Loss-factor
!

η Coupling loss-factor

λ Wavelength

ξ Material or geometrical parameter

ρ Density

σ Tensile stress

ω Angular frequency

Latin Upper-Case Letters.

B
˜

Boundary values

E Young’s modulus

F Longitudinal force
!

F Coupling force

Fin Excitation force

H Structural ensemble

H Structural system

L Complex Young’s modulus

N Modal density

O Vibrational measure

S Cross-section surface

U Uniform random variete

W Subsystem

X Linear system matrix

Y Mobility

Z Characteristic impedance
!

Z Coupling impedance
!

Z Junction

Latin Lower-Case Letters.

a
˜

Wave amplitudes

d Displacement



NOTATION ix

f Frequency

f0 Fundamental frequency

g General pointer

gg General pointer

h Cross-section height

i Pointer to subsystem partition

ii Pointer to subsystem

j Imaginary unit

k Wavenumber

l Length

n Number of segments

p Junction position
!

r Damper
!

s Spring

t Time

u Longitudinal speed

w Cross-section width

x Spatial coordinate

Script Upper-Case Letters.

C Complex domain

R Real domain
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Part 1

A Priori





CHAPTER 1

Introduction

During the past 50 years has research around statistical energy analysis (SEA)

or statistical prediction models focused on ensemble average response of complex

structures. On the other hand has little concern been given to prediction of ex-

tremal response, needed in order to properly understand vibrational behavior of

complex systems where uncertainty cause severe response differences or where

similar parts share eigenspace. Furthermore; design engineers can be expected to

be interested in how robust a structure is to uncertainty.

1. Background

Modern analysis of complex structures rely on numerical procedures which

demand large and fast computational resources capable of solving detailed mod-

eling of physical structures. In principle can numerical deterministic models, such

as finite element analysis (FEA), be used to analyze high frequency vibration re-

sponse of uncertain systems using Monte Carlo (MC) approaches. However; it

is neither practical nor economically feasible as computational demand increase

rapidly with geometric and material complexity, as well as frequency resolution.

Further on requires such approaches knowledge of the unavoidable uncertainty

of precise dynamic properties; for example damping distribution and boundary

conditions. Deterministic models are often tuned against one realization from a

statistical ensemble, causing deviation from other structures. In reality, nominally

identical structures are observed to differ by large margins. [1, 2]

Analytical methods for vibration prediction, such as traveling wave or modal

approach, is based on a deterministic view where structural properties are consid-

ered to be known. As uncertainty are pronounced for high frequencies, when the

wavelength shortens and gets in the order of geometrical or material defects, can

such models describe only low-frequency response. [2]

To increase robustness of high-frequency vibration prediction where statistical

energy analysis (SEA) which depend only on a minimum description of a system,

such as total subsystem energy, derived. One of the fundamental ideas are that

the relative magnitude and phase of a frequency response at a given point of a

subsystem are unpredictable; one should treat them as random quantities. In

other words are no information of spatial distribution of response variables, or the

3



4 1. INTRODUCTION

parameters them self, necessary. As long as radiation efficiency is weak can in-

vacuo conditions be used to derive wave intensity distributions or energy density.

Another assumption of energy-conservative couplings result in that SEA can be

used as an estimate of worst-case structural response. [2]

The simplicity of SEA causes deviation when subsystems are similar or tonal

excitation is considered. Even worse is system failure, or malfunction, due to

excessive local response and not global response characteristics which SEA cannot

predict. Another example where SEA is not applicable is highly damped structures

which do not have uniformly distributed energy density. [2]

Contrary to SEA, which predicts ensemble average behavior, is the concern of

this thesis extremal response of dynamic systems in the low- and midfrequency

range. The aim was formulated as a hypothesis, which state: small-scale ran-

dom imperfections of large-scale system properties explains the largest response

of dynamic systems. This statement is the underlying premise of this work. Also,

imperfection cause deviation between measurements and prediction models which

neglect geometrical, material, and boundary uncertainty. In order to investigate

extremal behavior was a traveling wave approach which accounts for small-scale

random imperfections developed.

2. Aim

The primary aim of this thesis is to investigate a hypothesis 1; which state

that small-scale uncertainty explains extremal response of systems. A secondary

goal is to provide the reader with understanding of how uncertainty influence

vibrational response of a dynamic system; however, the discussion is based around

how different kind of uncertainty compare to each other rather then to develop an

model for extremal response or precise dynamical properties of uncertain systems.

Emphasize is on dynamic systems which consists of one freely suspended or two

spring coupled self-similar (not identical) subsystems.

HYPOTHESIS 1. Inherent uncertainty of small-scale properties of large-scale struc-

tures or structural parts explain extremal dynamic response.

3. Delimitation

This master’s thesis is concerned explicitly with linear time-invariant systems

where one-dimensional quasilongitudinal motion occur. Subsystems are consid-

ered to be of finite dimensions, linear-elastic materials, rectangular cross-sections

and disordered; where the word “disordered” indicate stochastic and spatial vari-

ant properties. A traveling wave approach is used to describe the motion in each

subsystem which are coupled by impedance junctions. Subsystems are excited by
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a point time-harmonic force. In-vacuo condition is assumed so no energy is radi-

ated. Finally; junction, material and geometrical uncertainty are modeled by jump

processes and uniform distributions.

4. Outline

The first part, A Priori, concerns classification, modeling and impact of struc-

tural uncertainty. It is followed by a second part, Modeling, which uses a traveling

wave approach developed for the purpose of investigating power flow between

and vibrational behavior of uncertain dynamic systems. A third part, Findings,

presents different numerical cases which where investigated and analyzes ob-

tained results. The final and fourth part, A Posteriori, discusses and concludes

on the result and gives some ideas of future work.





CHAPTER 2

Structural uncertainty

Research on uncertainty has different purposes; which can be generalized into

a few distinct groups. Those are strategies to classify uncertainty, cope with uncer-

tainty, modeling of uncertainty and numerical or experimental validation. During

design are strategies for reducing effect, economical or functional, of uncertainty

important. Strategies rely on underlying assumptions of inherent structural prop-

erties, which phenomena should be considered or neglected. In order to achieve

a strategy for structural analysis with confidence on the outcome has different

parameter uncertainty to be classified. Attempt of modeling uncertainty can be

carried out once the interesting phenomena has been selected. Once the model is

setup are numerical or experimental validation necessary.

1. Classification

There are four distinct groups of uncertainty. Uncertainty from within a system

is said to be endogenous. An example could be the fluctuation of Young’s modulus

or phase speed along a waveguide. The opposite are changes from the outside,

exogenous. This could be effects from random loads, such as wind, or electro-

magnetic noise disturbing signal cables, which are unexplained or outside of the

model. Uncertainty due to incomplete knowledge or ignorance of phenomena is

called epistemic from Greek episteme which means knowledge. Uncertainty due

to the inherent randomness of phenomena is called aleatory which comes from

Latin alea which means throwing a dice. [3]

2. Strategies

Takewaki et al. proposed a design strategy for earthquake safe construction.

For such models is uncertainty of structural parameters and uncertainty of ground

motion necessary to take into account simultaneously. This can be done by info-

gap robustness analysis. It is based on the assumption that an optimized func-

tional performance of a building corresponds to minimized robustness in regards

to uncertainty. Parameters should be considered by satisfying and not minimizing

cost functions; which depend on dynamical properties by operating on transfer

functions. Robustness can then be defined as the error between a nominal de-

sign transfer function and a model which incorporates uncertainty. An info-gap

7



8 2. STRUCTURAL UNCERTAINTY

model for uncertainty of dynamic behavior of a structure is the unbounded family

of structural ensembles which satisfies all cost functions, given an amount of un-

certainty. An interesting conclusion of this is that there is no worst-case structural

response, only satisfying or non-satisfying models. [4]

Donders et al. studied how an envelope of an uncertain dynamic response

can be modeled by the short transformation method. Deterministic FEM mod-

els are limited by the fact that most parameters are not known, which should be

incorporated in the model by e.g. fuzzy logic. A numerical method based on

the α-sublevel method was carried out to compute uncertain transfer functions. It

was stated that uncertain parameters with global effect on response characteristics

have monotonic dependency on frequency of resonances at best, while response

levels does not depend on the input in similar fashion. Combinatorics where pa-

rameters are assigned either the minimal or maximal allowed value was used to

construct the fuzzy FRF. Different fuzzy parameter membership functions where

used, truncated Gaussian and triangle. The method was validated using Monte

Carlo data for a FE model, and fuzzy representation of the FE models FRF. A re-

sponse envelope with generally good compliance was demonstrated, although the

model was computationally costly. [5]

3. Modeling

Structural uncertainty can be observed at large-scale and/or small-scale struc-

tural details. A parameter subjected to uncertainty can therefore be thought of

in terms of global uncertainty, e.g. a distribution of expected behavior, and local

uncertainty, e.g. small-scale variation of the expected behavior. Homogeneous

models can be made uncertain by assigning parameters from statistical distribu-

tions, which incorporates global uncertainty. Heterogeneous models allow both

large-scale differences of a parameter and small-scale spatial fluctuations, albeit

being more mathematical and numerical cumbersome. It is not known if the un-

certainty is aleatory or epistemic, both are treated as random quantities.

Endogenous parameters relate to material or geometrical properties while ex-

ogenous properties model boundaries and excitation. Structural uncertainty can

be classified as global or local phenomena which effects endogenous or exogenous,

excitation and surrounding, parameters. An example is given in figure 2.1.

Material uncertainty can be caused by random lattice imperfections in crys-

talline material, which cause small-scale variations of mechanical and acoustical

properties. Measurement of Young’s modulus for such a material usually gives

only an ensemble average or distribution of spatial averages of elasticity [GPa],

while suppressing information of fluctuation. In other words are measurement
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Πin E, η, ρ, S, l

!

r

Figure 2.1: A dynamic system where endogenous and exoge-
nous parameters are subject to uncertainty.

data for global uncertainty often quite easy to find, while local uncertainty should

be modeled such that the spatial average coincides with measures. [6]

Náprstek studied longitudinal wave propagation in a one-dimensional semi-

infinite stochastic bar where the density and elasticity where centered random

Gaussian homogeneous processes along the propagation dimension. He found that

when only the density is varied the apparent damping of the system is increased.

In general was a drop of response mean with an increase of response variance

observed. [7]

Sapoval et al. studied extreme geometrical disorder using fractal geometry.

Using numerical investigations they found that a number of modes where con-

fined at the boundary, and that the amplitude of inner resonances where small.

The tendency to localization increases with geometrical irregularity. The effect

of localization is to locally enhance the response magnitude at regions where the

energy is dissipated. The level spacing decreases and becomes more regular. [8]

4. Validation

An example of observed phenomena due to uncertainty is given by Loyau and

Weinachter; they found large differences of mobility response in an experimen-

tal study of apparent identical steel structures. They conducted experiments on

coupled plates; where small changes of the coupling angle resulted in large dif-

ferences. The measures where conducted under similar conditions, already at low

frequencies differed the resonances several Hz and for magnitude levels by more

then 30 dB. [11]

In automotive industry is computational structural-aucoustic models introduc-

ing uncertainties during the modeling process due to the complexity of the struc-

ture and internal acoustic cavities in terms of geometry, material and boundary

conditions. A stochastic computational model based on Monte Carlo solver and

convergence analysis of an entire car was demonstrated with good agreement in

low frequency range; where mean value and confidence region was compared to
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experimental measurements of narrowband FRF. Comparing individual measure-

ments are large response level and frequency spread seen; which partly can be

expected due to the customization possibilities of modern cars.[9]

A second example is a Monte Carlo stochastic finite element implementation

of a satelite and corresponding rocket launcher by the European Space Agency;

evaluating the robustness of the nominal design. The article focuses on two dif-

ferent models of uncertainty; parametric and non-parametric. For the parametric

response is each parameter of interest defined in terms of a coefficient of variation

and probability distribution. The non-parametric model is based on based on re-

placing the mean reduced matrices of the FE model with random matrices whos

etrencies are constructed according to the principle of maximum entropy. The

confidence region shows increasing sensitivty with frequency and more then 20

dB spread in a low-frequency band. The main advantage of a non-parametric ap-

proach is that it accounts for model uncertainties and not only data uncertainties.

This allows different kinds of model robustness to be investigated. [10]
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Modeling





CHAPTER 3

Overview

To investigate effects of uncertainty in dynamic systems, was a numerical

model based on a traveling wave ansatz developed. The model treats the prob-

lem in five separate stages. The first stage, the user interface, requires an explicit

definition of a structural filtration of expected properties and present uncertain-

ties as well as number of realizations and frequencies of interest for the problem

at hand. After the first stage comes three iterative stages, one for each realiza-

tion. The second stage, generation, creates hypothetical subsystems and junctions

in accordance to the specification. Once all parameters are known are the third

stage, solution, concerned with assembling linear equations into a matrix equation

which allows unknown wave amplitudes to be solved using Gaussian elimination,

this is repeated for each frequency of interest. Vibrational measures are then com-

puted from the wave amplitudes during the fourth stage, processing. A final fifth

stage, postprocessing, computes statistical measures from the vibrational ones, for

example largest observed power flow.

The approach indicates that three separate mathematical problems has to be

dealt with. On one hand is a deterministic model, a wave approach solution of

an equation of motion, which results in knowledge of wave amplitudes needed.

On the other hand is stochastic or statistical models needed to assign material,

geometrical or boundary values which fits to the structure and uncertainty of in-

terest needed. Finally, once the uncertain system can be generated and predicted

is processing and data analyzing required. Combined together can the vibrational

behavior of uncertain dynamic systems be investigated. A graphical summary of

the ideas can be found in figure 3.1.

As with all deterministic models are the end result a mirror of the specification.

If no suitable filtration can be setup, or uncertainty cannot be generated in an

appeasing way can the model not be expected to give insight. Further on as the

model utilize randomness should the result be treated in a statistical way, there is

no certain vibrational behavior of an uncertain system.

1. Limitation

To simplify the mathematical model is this thesis limited to dynamic systems

defined by filtrations on the form

13



14 3. OVERVIEW

(3.1) H = {
!

Z a, Wa,
!

Z ab, Wb, . . .}

of chains, where W denote subsystems and
!

Z impedance junctions. Define a

subsystem W as

(3.2) W = {E, η, p, S, l}.

A parameter is described by initial values and a generation function. For each

realization of the system is the generation function outputting parameter values

using the initial values. Typically, initial values are a tolerance, kind of uncertainty

and an expected value. Coupling junctions are described by spring or dashpot

impedance elements as given by

(3.3)
!

Z = {

!

s

j ω
,

!

r }.

Equations describing the motion of such a filtration are written in a condensed

format by use of pointers; a concept which is introduced here. In order to denote

the ansatz are a subset of integers defined as the English alphabet
1
a, . . . ,

26
z used

to denote subsystems. Let ii be a pointer in the system H such that ii = k means

the k:th subsystem. Basic algebraic laws govern the behavior of pointers such as if

ii = c then ii+a = d. Each subsystem ii has a number nii−1 of quasidiscontinuities,

and hence nii partitions. Furthermore, let the pointer i in the sequence 1, . . . , nii

target a partition of ii. In other words are ii a pointer to a given subsystem and i

to a partition of that particular subsystem.
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Generation
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Outline of model

Iterative process

Observed structures

Figure 3.1: A summary of different components and usage of
the numerical model. The user specifies a structural filtration
and a spectrum of interest, the model outputs hypothetical
structures and their vibrational behavior.





CHAPTER 4

Generation

Introducing structural uncertainty into a model requires artificial methods to

render subsystems and junctions. Hence, this chapter is devoted to generation of

an artificial parameter ξ which fluctuates along a spatial dimension of a subsys-

tem, or which represents an impedance junction. Discrete changes can be used

to approximate spatial fluctuations of a physical parameter by a sample and hold

function, see figure 4.1. An important note is that some structural changes are

inherently discrete, for example a saw cut in a wooden structure. Only if a sam-

pling process of a physical parameter can be simulated by a stochastic process or

a statistical distribution can a successful generation be carried out. [12]

Spatial fluctuation can be decomposed into an expectancy and a perturbation

of the expected value. Perturbation ε can be thought of as the relative distance be-

tween the current value of a stochastic process and its expectancy in %-percentage.

Assume that a parameter ξ has a spatial invariant expected value Ψ. E.g. a ho-

mogeneous beam is often assigned a certain value Young’s modulus [GPa]. Local

perturbations of expectancy can then be thought of in terms of a stochastic process

or statistical distribution that distorts the value one. There are numerous mathe-

matical functions that could model perturbation but a special class are named zero

mean processes which has the properties required not to alter the expected value

0 0.2 0.4 0.6 0.8 1
900

950

1000

1050

1100

x/l

ξ

Figure 4.1: Sample and hold representation of ξ; a dotted
physical signal and filled sampled signal is shown.
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18 4. GENERATION

over an ensemble average. Due to manufacturing tolerances and physical limita-

tions, the perturbation should be considered to be bounded between a minimal

ξm and maximal ξM value. This idea could be written down as

(4.1) ξ = Ψ (1 + ǫ) , ξm ≤ ξ ≤ ξM,

and summarizes how generation of hypothetical subsystems can be performed.

Global uncertainty phenomena can be modeled by allowing fluctuation of ex-

pectancy according to a statistical distribution. Local uncertainty phenomena can

be modeled by stochastic processes or statistical distributions; albeit, a suitable

mesh is pre-required. Furthermore; investigation of structural uncertainty can be

done in fuzzy sets where the amount of uncertainty is increased from one compu-

tational set to another.

1. Membership functions and system uncertainty

A fundamental question in system modeling is the amount of uncertainty as-

sumed to be present in different parameters, which can be modeled by several

classes of mathematical functions. An alternative is to make use of fuzzy set the-

ory, see [5] for in detail discussion of the topic. In short is a membership function

used to compute a parameter state domain for each subsystem and junction. For

each domain is a number of independent and identically distributed (iid) realiza-

tions computed.

A simple computational domain is a polygon generated by triangle member-

ship functions. Imagine walking downwards on a pyramid (membership function)

where each cross-section perpendicular to the height represents a level of uncer-

tainty (domain), the pyramid represents an entirely deterministic problem at the

top while effects of uncertainty gets pronounced the further down one get. A con-

tinuous domain contains an infinite amount of state possibilities, computational

complexity motivate a finite amount of states drawn uniformly over the domain.

An important benefit of the approach is an dramatic reduction of degrees of free-

doms in the model, by knowledge of the distance from the top is the complete

domain known. Further on is uncertainty mapped into a normalized space for the

case when a height interval of Ξ ∈ {0, 1} is used. [5]

In general for a parameter ξ is a core value, and an interval between an al-

lowed minimum and maximum value defined for the largest amount of tolerated

uncertainty. If there is no uncertainty present, Ξ = 0, is the parameter repre-

sented by its core value ξ0. For the other extreme, when Ξ = 1, is the parameter

distributed between the minimal ξm and maximal ξM values. See figure 4.2. [5]



2. SUBSYSTEM MESH 19

1

Ξ

ξm ξ0 ξM

Figure 4.2: A triangle transformation which gives an interval
{ξm, ξM} with core ξ0 given a number Ξ ∈ {0, 1}.

xii

xii 1 xii i xii nii

!

Z ii−a ii

!

Z ii ii+a

lii

lii 1 lii i lii nii

1 i nii

x

Figure 4.3: A discretized subsystem where local and global
coordinate systems and lengths are shown.

2. Subsystem mesh

Discrete changes requires a suitable mesh of a structural continuum. While

partitioning is a common topic in finite element analysis, it is unusual in traveling

wave approaches. In fact, and as will be discussed later, is the wave field not

discretized but continuous and only the material and geometrical properties of

subsystems are discretized using an imaginative analog to digital converter, see

figure 4.3.

Consider a specific subsystem ii and a partition i of that particular subsystem.

A 1D mesh is defined by a number of segments, i = 0, ..., nii−1, which are confined

between endpoint positions

(4.2) pii 0, pii 1, pii 2, . . . , pii nii−1

generated in a monotonic fashion pii i−1 ≤ pii i. The first partition would be con-

fined between the two first endpoints; per definition is pii 0 = 0 and pii nii−1 < lii.
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The amount of partitions are found, once the subsystem length is known, from the

spatial sampling frequency fx [1/m] using

(4.3) nii = liifx,

which allow all positions to be found from

(4.4) pii i = i ∆l

where ∆l = 1
fx

. A segment can then be thought of as a constant phase continuum

between a position pii i and a segment length ∆l. As will be discussed later can a

local coordinate system be introduced as

(4.5) xii i = x −

i −1∑

g=0

pii g,

constrained by 0 ≤ xii i ≤ ∆l.

A side effect of spatial sampling is that endogenous properties can be exam-

ined by a discrete Fourier transform. An interesting note is that as the segments

are assumed to be constant can resampling to a high spatial frequency be made,

allowing local uncertainty to be represented by spectrums.

3. Expectancy

A homogeneous beam can be modeled as globally uncertain by randomly as-

signing parameter values according to a statistical distribution. This will result in

level and spacing differences of eigenfrequencies. An expectancy function repre-

sents the expected value of a spatial variant parameter for a realization.

3.1. Uniformly distributed. The most simple model for global uncertainty

is to assign homogeneous parameter values for an ensemble of structures by an

uniformly distributed expectancy. This can be written on the form

(4.6) Ψ [ii] = Ψ0 (1 + Ψw U [ii]) ,

where Ψ0 is the expected value, Ψw is a weight and U [ii] is a uniform random

number. A zero weight Ψw = 0 would result in an ensemble with a fixed expected

parameter value.
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4. Perturbation

Local uncertainty is generated by bounded discrete-step continuous-state zero-

mean random processes. Perturbation functions represent spatial fluctuation of

parameter expectancy and are thought to simulate sampling processes.

4.1. Jump process. A perturbation function in the form of a Markov jump

process can be expressed as

(4.7) ǫ [i] = ǫ [i−1] + ∆ [i] , i ≥ 2,

where ǫ [i−1] is the state of the previous segment and ∆ [i] is a jump. An initial

value ǫ [1] is drawn from a distribution. Properties of jump processes are governed

by the step function ∆ [i], which can be seen if the equation is rewritten as

ǫ [i] = ǫ [1] +

i∑

g=2

∆ [g] .(4.8)

Depending on ∆ [g] is the process state bounded or unbounded, smooth or volatile,

continuous or discrete. [13, 14]

4.2. Bounded jump process. In order to confine a Markov jump process is a

first step to recognize that a step from one state to another can be described by a

direction, a largest possible step size and a weight. This idea can be written down

as

(4.9) ∆ [g] = ∆e [g]∆M [g] ∆w [g] .

Where ∆e [g] is a unit vector in the direction of the jump, ∆M [g] is the largest

possible jump (the distance between the current state and the constrain in the

direction of ∆e [g]) and ∆w [g] is a weight which defines the jump size. Define the

bounded process as symmetrically constrained between

(4.10) −ζ ≤ ǫ [i] ≤ ζ.

Here, ζ is referred to as the tolerance of local uncertainty and represent the largest

deviation from the expected value. The largest value of a jump can then be de-

scribed by

(4.11) ∆M [g] = ζ − ∆e ǫ [i−1] .
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i−1i

∆ [i]

ǫ [i]

ǫ [i−1]

+ζ

−ζ

2ζγ ζ − ∆e ǫ [i−1]

l [i]

∆e

Figure 4.4: Illustration of jump generation for a bounded
Markov jump process. First is the direction decided and dis-
tance to boundary computed, a jump i−1 to i is then decided
by the weight distribution.

As can be seen must the direction be determined before the largest value can be

computed. The most simple way of determining the direction is to consider a coin

flip which gives “up” or “down” depending on outcome. The direction, increase

+1 or decrease −1, can be determined by

(4.12) P (∆e = +1 | U) = P (U ≥ 0.5) = 0.5.

Due to symmetric constraints are jumps ∆ [i] bounded by a weight 0 ≤ ∆w ≤ 1

of a maximum jump ∆M. Such processes are always constrained and governed by

the weight ∆w, which determines if a jump is small or transient, if the process is

smooth or volatile. An initial value is uniformly drawn in {−ζ, +ζ}.

4.2.1. Smoothness. Characteristics of a jump process is governed by the weight

distribution ∆w and the maximum allowed jump ∆M. A jump process is either tran-

sient or smooth. Transient processes allow jumps between the limits within a few

jumps, while a smooth process may not allow changes between the limits along a

subsystem realization. A mathematical model for this is to include a smoothness

parameter γ ∈ {0, 1} which relates how large a jump can be in proportion to the

maximal jump according to

(4.13) ∆M [g] = m





2ζγ,

ζ − ∆e ǫ [i−1] .
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0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x/l

∆

Figure 4.5: Examples of different smoothness for jump pro-
cesses with uniformly distributed weight.
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Figure 4.6: Examples of jump processes with different weight
distribution parameter for the case when γ ≪ 1.

A smooth process γ ≪ 1 implies that the weight distribution is working against

a strict (fixed) scale, which makes the process similar to an unbounded process.

Transient behavior γ ≫ 0 result in non-linear scaling of the weight distribution.

Examples using different smoothness can be seen in figure 4.5.

4.2.2. Weight distribution. A weight distribution is limited by {0, 1}. It could be

any statistical distribution that describes how likely a large or small jump occurs

in relation to the maximum jump; i.e. volatility of the process. A skewed process

which mainly gives small jumps could be used to represent a less volatile process.

In the most simple form is a uniform random distribution used. A more general

choice would be a Beta distribution; which allows a skewed distribution and a

more controlled volatility. Beta distributions are governed by two parameters α, β.

A uniform distribution represents the special case of α = β = 1.0. Examples of

Beta distributed jump processes can be seen in figure 4.6.





CHAPTER 5

Solution

Uncertain dynamic systems can be described by structural filtrations; which

describe all possible outcomes of subsystem properties and structural junctions.

A graphical overview of the filtration considered can be seen in figure 5.1. Sub-

systems are associated with material and geometrical properties; which may be

deterministic or stochastic in their nature. Therefore, each material or geometri-

cal parameter should be treated in terms of generation functions and initial values,

as described in the previous chapter. The focus of this chapter is to describe a so-

lution of the longitudinal motion using a traveling wave ansatz. The solution will

take the form of a matrix equation

(5.1) XTa
˜

= B
˜
,

where XT is boundary conditions, a
˜

wave amplitudes and B
˜

boundary values. This

equation has to be assembled and solved for each frequency of interest.

An important consequence of the traveling wave approach is the large, sparse

and costly matrix equations that has to be solved for each frequency of interest for

all realizations. Fortunately, numerical solution is straight forward and MATLAB

use Gaussian elimination to compute the unknown wave amplitudes. The model

requires memory proportional to the square of the total amount of endogenous

junctions.

!

Z a

!

Z ab

!

Z yz

!

Z z

a0
al

b0
yl z0 zl

Πin
a Πin

z

Wa Wz

Πdiss
a

Πdiss
z

Figure 5.1: A stochastic system consisting of a number of
chain connected subsystems. Impedance junctions, subsys-
tem excitation and dissipation as well as pick-up points can
be seen.
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x

∆x

σ σ + ∂σ
∂x

∆x

d

d + ∂d
∂x

∆x

Figure 5.2: Positive direction of stresses σ, longitudinal dis-
placement d and deformations of a small element of a subsys-
tem.

1. Wave equation

Quasilongitudinal motion can be understood by the relative displacement of

both sides of a small element of a waveguide. For a body at rest are those planes

parallel to each other and perpendicular to the direction of propagation. Dur-

ing quasilongitudinal motion are those planes expanded, or compressed, due to

cross-contraction while shifted apart, see figure 5.2. An interesting consequence

of cross-contraction, which results in transverse motion, is that it enables sound ra-

diation into surrounding mediums that cannot support shear stresses; for example

air. [15]

A first step in deriving an equation of motion is to consider two planes of a

small element. A plane, initially at x, is displaced a distance d and at the other

side of the element a plane a distance ∆x away is displaced d + ∂d
∂x

∆x. Thus, an

element between x and x + ∆x experiences a strain ǫ = ∂d
∂x

. For linear-elastic

material is strain related to stress by Hooke’s law σ = Lǫ; where L is longitudinal

stiffness.

During motion is a net unbalanced stress acting on the element, which corre-

sponding equation of motion can be written as

(5.2) σ +
∂σ

∂x
∆x − σ = ρ∆x

∂2d

∂t2
.

By introduction of particle velocity u = ∂d
∂t

and longitudinal force F = −Sσ can the

relation above be written as two equations
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(5.3) ρS
∂u

∂t
+

∂F

∂x
= 0,

∂F

∂t
+ LS

∂u

∂x
= 0,

which couples the quasilongitudinal wave field. The sign convention of stresses

imply that longitudinal force F is positive for compression. Alternatively, combina-

tion of the coupling equations 5.3 yield a second order partial differential equation

on the form

(5.4) L
∂2

∂x2
(u, F) − ρ

∂2

∂t2
(u, F) = 0, L ∈ C, ρ ∈ R.

Equation 5.4 is in the following called the wave equation. Linear steady-state so-

lutions to the wave equation can be found by a wave ansatz or by a modal ansatz,

a wave approach solution is considered in this thesis. An in detailed derivation of

the wave equation can be found in [15].

2. Wave approach

One solution of the longitudinal wave equation is given by superposing trav-

eling waves. In order to solve the wave equation for a structural filtration as

discussed above are some definitions necessary as well as an explanation of the

ansatz. Thereafter is a description of how the matrix equation should be assembled

given for exogenous and endogenous junctions. A note may be that the derivation

is based on geometrical considerations of simpler cases in combination with alge-

braic solutions to the encountered boundary conditions. By studying simple matrix

solutions was a geometrical pattern of applied boundary conditions encountered;

this is conceptually presented by so called pointers.

2.1. Definitions. An uncertain system H consist of a number of connected

subsystems a, . . . , M where M = M (ii), each subsystem a disordered quasilon-

gitudinal waveguide. To each subsystem is an associated amount of partitions

na, nb, . . . , nM belonging.

If the problem is considered without coupling is each independent system ii de-

scribed by a matrix equation XT
iia˜ii = B

˜ii where XT
ii is a [2nii, 2nii] matrix. Therefore

must the combined system matrix have the dimension [2
∑M

gg=1 ngg, 2
∑M

gg=1 ngg].

The amount of non-zero elements are 4+8
(∑M

gg=a (ngg − 1)
)

and the total number

of elements are
(
2

∑M

gg=1 ngg

)2

. It turns out that matrix elements are positioned

along the diagonal, and the matrix is sparse even for a moderate number of sub-

systems. Let us define the number sequence
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u−

ii i
u+

ii i u+

ii i+1u−

ii i+1

xii

Figure 5.3: Forth and backward traveling waves in two adja-
cent partitions of a waveguide.

(5.5) Ha, Hb . . . , HM = 0, na, . . . , na + . . . + nM−1

given by

(5.6) Hii =






∑ii−a

gg=a ngg, b ≤ ii ≤ M + a

0, ii = a

where each number describes where in XT a subsystem ii−a ends; such that (2Hii+

1, 2Hii + 1) is the first element in XT corresponding to ii. Further on, define a

sequence of unknown amplitudes

(5.7) a
˜

T = a+

a1, a
−

a1, . . . , a
−

ana
, a+

b1, . . . , a
−

MnM
,

and boundary values

(5.8) B
˜

T = −Fin
a , 0, . . . , 0, −Fin

M . . . , 0,

where Fin
a correspond to the force amplitude of time-harmonic exogenous excita-

tion Fin
a = Fin

a e+ j ωt; the position of occurrence is discussed below. An important

note is that the definition of a
˜

T imply how junctions are applied in the matrix XT;

row and column element indexes are only valid for this particular order.

2.2. Traveling waves. Considering particle velocity, a wave ansatz for longi-

tudinal motion in a partition ii i of H can be written as an forth, in the positive x

direction, traveling wave

(5.9) u+

ii i = a+

ii i e
− j kii ixii i+j ωt,

and a back, in the negative x direction, traveling wave
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(5.10) u−

ii i = a−

ii i e
+ j kii ixii i+j ωt,

denoted with + and - respectively; where harmonic time dependency on the form

e+j ωt has been assumed. See figure 5.3. Waves are scattered at material disconti-

nuities or structural junctions; incident waves are both reflected and transmitted.

Material, geometry and subsystem couplings determine the unknown wave ampli-

tudes a+

ii i and a−

ii i. Using the principle of superposition the longitudinal wave field

in a partition can be found; particle velocity according to

(5.11) uii i = u+

ii i + u−

ii i,

and longitudinal force from

(5.12) Fii i = Zii i (u
+

ii i − u−

ii i) .

In principle can wave amplitudes be superposed from any amplitude defining a

physical variable; for example displacement or stress. The choice of superposing

particle velocity amplitudes are due to simplicity when impedance junctions are

considered. In order to solve the wave equation is first and second time and

spatial derivatives of longitudinal velocity and force needed. By insertion into

mentioned coupling equations 5.3, it is found that field quantities in each partition

ii i are related by characteristic impedance Zii i = Sii i

√
Lii iρii i and traveling with a

constant phase speed cii i =
√

Lii i

ρii i
; where longitudinal stiffness Lii i relate to a loss-

factor ηii i and Young’s modulus Eii i as Lii i = Eii i (1 + j ηii i). In addition is each

partition associated with a length lii i and local coordinate system 0 ≤ xii i ≤ lii i

which depend on the applied mesh. [16, 15]

Damping is introduced, as discussed above, by inclusion of a loss-factor which

allow different damping mechanisms, including non-material and material phe-

nomena, to be modeled. A loss-factor results in a complex modulus which results

in a complex phase speed and complex characteristic impedance. That damping

has been introduced can be seen in the phase of the ansatz, equation 5.11 and

5.12, where a complex wavenumber approximately results in waves on the form

(5.13) u+

ii i = a+

ii i e
− j ω

q

ρii i
Eii i

xii i−ω
η

2

q

ρii i
Eii i

xii i+j ωt
.

In other words are the propagating waves dying out exponentially; the first part

carries phase information while the second represent damping. [17, 15]
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2.3. Exogenous junctions. Predicted vibrational behavior of dynamic systems

can be expected to depend strongly on the assumption of junctions; the interaction

between waveguides governs the overall response. An incident wave at a junction

is reflected back and transmitted; in addition parts of the energy is absorbed. In

the following derivation is impedance couplings between neighboring subsystems

ii and ii+a discussed; it is assumed that transmission and reflection impedances

govern a coupling. Assuming that couplings are reciprocal in regard to energy, the

four different impedances are related according to

(5.14)
!

Z ii nii ii nii
=

!

Z ii+a1 ii+a1 = −
!

Z ii nii ii+a1 = −
!

Z ii+a1 ii nii
,

which is denoted
!

Z ii ii+a. The notation of the four impedances above should be

read as
!

Z in out, the incident subsystem and partition are given first and followed

by the subsystem and partition of the transfered energy. As mentioned only longi-

tudinal motion is considered; therefore, it is assumed that no energy is transfered

to other wave modes.

xa1 = la1

Fin
a

!

Z a
Fa1, ua1

Figure 5.4: Exogenous boundary conditions shown for the left
hand side of the first subsystem.

2.3.1. Left end of first subsystem. Force equilibrium at an impedance junction

at xa1 = 0 for subsystem a gives the following boundary condition

(5.15) Fa1

∣∣∣∣∣
xa1=0

+
!

Z a1a1ua1

∣∣∣∣∣
xa1=0

+ Fin
a = 0,

see figure 5.4. Inserting the ansatz, equation 5.11 and 5.12, results in
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(XT : 1, 1) = +Za1 +
!

Z a1a1,(5.16)

= +Za1 +
!

Z a,(5.17)

(XT : 1, 2) = −Za1 +
!

Z a1a1,(5.18)

= −Za1 +
!

Z a.(5.19)

External excitation correspond to BT (1) = −Fin
a .

xii nii
= lii nii

xii+a1 = 0

Fii nii
, uii nii

Fii+a1, uii+a1

!

Z ii ii+a

Fin
ii+a

Figure 5.5: Exogenous boundary conditions shown an
impedance junction between two subsystems.

2.3.2. Junction between subsystems. Between neighboring subsystems ii and

ii+a a coupling impedance
!

Z ii ii+a is acting, see figure 5.5. A coupling impedance

is modeled by a mechanical circuit and may show mass, dashpot or spring charac-

teristics. In the following the pointer ii is valid between a to M − 1 for a system

with M subsystems, given that M ≥ 2. In addition it can be seen in the coupling

equations that for the case when
!

Z ii ii+a = 0 the subsystems are independent of

each other.

At the right end of subsystem ii force equilibrium can be expressed as

(5.20) Fii nii

∣∣∣∣∣
xii nii

=lii nii

=
!

Z ii nii ii nii
uii nii

∣∣∣∣∣
xii nii

=lii nii

+
!

Z ii+a1ii nii
uii+a1

∣∣∣∣∣
xii+a1=0

,

which correspond to
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(XT : 2Hii+a, 2Hii+a − 1) =
(
+Zii nii

−
!

Z ii nii ii nii

)
e− j kii nii

lii nii ,(5.21)

=
(
+Zii nii

−
!

Z ii ii+a

)
e− j kii nii

lii nii ,(5.22)

(XT : 2Hii+a, 2Hii+a ) =
(
−Zii nii

−
!

Z ii nii ii nii

)
e+ j kii,nii

lii,nii ,(5.23)

=
(
−Zii nii

−
!

Z ii ii+a

)
e+ j kii,nii

lii,nii ,(5.24)

(XT : 2Hii+a, 2Hii+a + 1) = −
!

Z ii+a1 ii nii
,(5.25)

= +
!

Z ii ii+a,(5.26)

(XT : 2Hii+a, 2Hii+a + 2) = −
!

Z ii+a1 ii nii
,(5.27)

= +
!

Z ii ii+a.(5.28)

At the left end of subsystem ii+a is equilibrium expressed as

(5.29) Fii+a1

∣∣∣∣∣
xii +a1=0

+
!

Z ii+a1 ii+a1uii+a1

∣∣∣∣∣
xii+a1=0

+
!

Z ii nii ii+a1uii nii

∣∣∣∣∣
xii nii

=lii nii

+Fin
ii+a = 0,

which give

(XT : 2Hii+a + 1, 2Hii+a − 1) = +
!

Z ii nii ii+a1 e−j kii nii
lii nii(5.30)

= −
!

Z ii ii+a e− j kii nii
lii nii ,(5.31)

(XT : 2Hii+a + 1, 2Hii+a ) = +
!

Z ii nii ii+a1 e−j kii nii
lii nii(5.32)

= −
!

Z ii ii+a e+ j kii nii
lii nii ,(5.33)

(XT : 2Hii+a + 1, 2Hii+a + 1) = +Zii+a1 +
!

Z ii+a1 ii+a1(5.34)

= +Zii+a1 +
!

Z ii ii+a,(5.35)

(XT : 2Hii+a + 1, 2Hii+a + 2) = −Zii+a1 +
!

Z ii+a1 ii+a1(5.36)

= −Zii+a1 +
!

Z ii ii+a.(5.37)

At each left end of a subsystem an external time-harmonic force is acting. Alterna-

tively, excitation can occur wherever the waveguide has an endogenous junction.

I.e. each position (2Hii+a + 1, 2Hii+a + 1) in XT corresponds to a subsystem excited

by an external force Fin
ii+a at xii+a1 = 0, which gives BT (2Hii+a + 1) = −Fin

ii+a.

2.3.3. Right end of last subsystem. At the right end of the last subsystem M an

additional impedance junction is acting. It is constrained by
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xMnM
= lMnM

!

Z M
FMnM

, uMnM

Figure 5.6: Exogenous boundary conditions shown for the
right hand side of the last subsystem.

FMnM

∣∣∣∣∣
xMnM

=lMnM

=
!

Z MnMMnM
uMnM

∣∣∣∣∣
xMnM

=lMnM

,(5.38)

which gives

(XT : 2HM+a, 2HM+a − 1) =
(
+ZMnM

−
!

Z MnMMnM

)
e− j kMnM

lMnM ,(5.39)

=
(
+ZMnM

−
!

Z M

)
e− j kMnM

lMnM ,(5.40)

(XT : 2HM+a, 2HM+a ) =
(
−ZMnM

−
!

Z MnMMnM

)
e+ j kMnM

lMnM ,(5.41)

=
(
−ZMnM

−
!

Z M

)
e+ j kMnM

lMnM .(5.42)

Fii i, uii i Fii i+1, uii i+1

xii i = lii i, xii i+1 = 0

Figure 5.7: Endogenous boundary conditions shown for a
junction between two partitions of a subsystem.

2.4. Endogenous junctions. An important step towards a wave approach so-

lution for a disordered subsystem is the study of field-conservative junctions. Such
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junctions govern the vibrational field behavior from changes inside a solid, see fig-

ure 5.7. Such a change may be a locally increased density or a change of elasticity.

In the most simple form field-conservative junctions state that on each side of a

change the field quantities, velocity u and force F, must not be altered.

A well-known example from noise control in HVAC equipment is that air-

borne sound on each side of a ventilation duct, where the cross-section has been

changed, must the dynamic pressure and air flow be conserved. Field-conservation

in air-borne applications is only working well for small-changes, or not arbitrar-

ily high changes, of the cross-section and below the cut on frequency of cross-

sectional modes [15]. A solution in air-borne applications is to use correction

impedance factors as discussed by for example [18].

In structure-borne sound does such junctions occur whenever the cross-section,

damping property or any other parameter changes inside of a structure. A number

of small-scale changes such as lattice defects on a large-scale, yet small, region

of a beam is enough to change density, elasticity and other properties by small

margins. The region boundaries will be governed by field-conservative junctions.

A general discussion of discontinuities in quasilongitudinal waveguides can be

found in [15].

As been stated before, endogenous junctions are quasidiscontinous; while the

material and geometry is discretized are the wave motion continuous. Hence, the

boundary conditions are given by conservation of the field.

2.4.1. Particle velocity. Conservation of velocity through a discontinuity be-

tween two adjacent partitions is described by

(5.43) uii i

∣∣∣∣∣
xii i=lii i

= uii i+1

∣∣∣∣∣
xii i+1=0

,

which can be written as

(XT : 2Hii + 2 i, 2Hii + 2 i −1) = + e− j kii ilii i,(5.44)

(XT : 2Hii + 2 i, 2Hii + 2 i ) = + e+ j kii ilii i,(5.45)

(XT : 2Hii + 2 i, 2Hii + 2 i +1) = −1,(5.46)

(XT : 2Hii + 2 i, 2Hii + 2 i +2) = −1.(5.47)

2.4.2. Longitudinal force. Conservation of force on both sides of a discontinu-

ity can be expressed as
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(5.48) Fii i

∣∣∣∣∣
xii i=lii i

= Fii i+1

∣∣∣∣∣
xii i+1=0

,

which yield

(XT : 2Hii + 2 i +1, 2Hii + 2 i −1) = +Zii i e
− j kii ilii i,(5.49)

(XT : 2Hii + 2 i +1, 2Hii + 2 i ) = −Zii i e
+ j kii ilii i,(5.50)

(XT : 2Hii + 2 i +1, 2Hii + 2 i +1) = −Zii i+1,(5.51)

(XT : 2Hii + 2 i +1, 2Hii + 2 i +2) = +Zii i+1.(5.52)

3. Limitation

The model cannot be expected to give physical results above the cut on fre-

quency for cross-sectional modes, a phenomenon which is neglected. Cut on fre-

quency for cross-section resonances given a rectangular surface is given by

(5.53) fcross
ii i =

1

2 m (w, h)

√
Eii i

pii i

.

An interesting upper frequency limit is when localization or resonances occur

in partitions of a subsystem. As a uniform distribution of partitions length is con-

sidered a resonance is observed when a (half-) wavelength get in the order of the

partitions length. Phenomenon of localization is not taken into account and it is

therefore of importance to use a fine mesh, to push the upper limit away from the

observed spectrum. Partition localization cut on is defined by

(5.54) f
partition
ii i =

nii

2lii

√
Eii i

pii i

.

As the elasticity and density fluctuates should the lowest cut on frequency be con-

sidered. Partition resonances imply that each partition is acting as a beam in itself,

rather then a small part of a subsystem. In other words subsystems are then act-

ing like a long chain of field-conservative coupled deterministic subsystems rather

than one uncertain subsystem.





CHAPTER 6

Processing

Estimation of vibrational measures and response characterization from wave

amplitudes represent the last stage of the model. Overall system response can be

estimated once the properties of individual realizations has been determined, an

overview can be seen in 6.1.

1. Vibrational measures

Wave propagation can be described by several measures. Apart from the de-

rived wave amplitudes are the field quantities the most brute way to describe

system response. However; while fully describing the motion of a system is the

measures not practical, a change of excitation or boundaries requires a new mea-

sure. Hence, normalized transfer functions are usually preferred. Driving-point

mobilities Y relates excitation point force Fin to particle velocity u at an arbitrary

measurable pick-up point of the structure. Transfer functions of this kind can be

computed by

(6.1) Y =
u

Fin
.

Driving-point mobilities represent an normalized system response; in this thesis

are transfer mobilities from source excitation point to subsystem end points con-

sidered. Resonances occur as an phenomenon of wavetrain closure; the response

Wave amplitudes

Field equations

u,F

Vibrational measures

Y,Π

Statistical measures

Largest power flow etc.

Figure 6.1: Overall system response characterization using
wave amplitudes of realizations requires several steps of pro-
cessing.
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levels and frequencies depend on the assumption of junctions, geometry and ma-

terial. Eigenfrequencies can be detected as local maximas in driving-point mobili-

ties; for example by a peak detection algorithm used on narrowband data. In this

thesis is an modified version of an off the shelf algorithm used [19]. [15]

Traveling waves are associated with net energy transport; the speed of energy

transport is the group speed which for longitudinal motion are identical to the

phase speed, in other words is the medium non-dispersive. Power flow can be

found from the well-known relation Π = 0.5ℜ{Fū}; inserting equation 5.11 and

5.12 is it found that power flow is given from

(6.2) Πii i = 0.5ℜ{Zii iu
+

ii iū
+

ii i − Zii iu
−

ii iū
−

ii i} .

Positive power flow is defined to be in the positive x-direction. As can be seen is

power flow defined by the time-averaged behavior of wave propagation. [20, 15]

Narrowband data can be smoothened by averaging into octavebands. Using

to low bandwidth designator results in that the differences introduced by struc-

tural uncertainty is averaged away. Using narrowband data means that a large

amount of data has to be acquired and processed. Hence, one solution is to use

an moderate one-third designator and present line spectrums where appropriate.

[21]

2. Response characterization

Uncertain systems can on one hand be characterized by overall behavior and

on the other by robustness to uncertainty. An possibillistic indication of the over-

all behavior is given by the envelope between the system smallest and largest

response in one-third octaveband data, robustness to uncertainty is then indicated

by the response level spread. Ensemble extremal response is computed by looking

at the set largest and smallest response level for each octaveband of interest taken

independent of each other; rather then to compute the overall largest level and

choose the corresponding realization as extreme. The ensemble extreme value Φ

[dB] of an octaveband, or line, in a spectrum Ω of an vibrational measure O (for

example mobility) is defined by

(6.3) Φ (Ω) =





M (O) ,

m (O) .

The result is an response level envelope, which is computed for each amount of

uncertainty and set of observations. For an ensemble with m sets of realizations
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(6.4) Hm (Ω) = {Φ1, . . . , Φm},

are m different observations of the extremal value done; the largest and smallest

values are treated separately. The extremal response is estimated by an average of

extremes defined by

(6.5) 〈Hm〉 = 20 lg

(
1

m

m∑

i=1

10
Φi
20

)
.

Alternatively, extremal response can be estimated by the extreme of extremes ac-

cording to

(6.6) M (Hm) , m (Hm) .

The procedure is illustrated in figure 6.2, which shows how an observed en-

semble of realizations are transformed into a visualization of the extremes. In

6.2d, the filled spectrum is dark grey between the two averages of extremes, light

grey between the smallest of smallest and largest of largest observed values and

the observed domain is marked by a black line.

Eigenfrequencies are characterized by the largest observed domain, illustrated

in figure 6.3. Acquired scatter data of a resonance is processed using Delaunay

triangulation and the convex hull is computed for each amount of uncertainty.

Finally, the domain is visualized using linear interpolation. Of interest is the re-

sponse level spread ∆L and frequency spread ∆f; as well as the shape of the ob-

served domain.
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(a) One set of realizations
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(b) Extrema’s of one set of realizations
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(c) Extrema’s of each set
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(d) Estimation of extremal response

Figure 6.2: Illustration of different computational steps in-
volved in order to visualize extremal response. The filled en-
velope is a possibillistic approach to the response of uncertain
dynamic systems.
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(d) Observed domain from above

Figure 6.3: Eigenfrequencies as detected by a peak detection
algorithm represents a three dimensional domain which can
be visualized by Delaunay triangulation. Observations “den-
sity” is lost in the process, only the shape of the domain is
presented.
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CHAPTER 7

Nominal systems

Different numerical experiments of parameter uncertainty in dynamic systems

of one or two self-similar coupled subsystems were conducted. A specific homoge-

neous subsystem was formulated and investigated by changing one parameter at

a time to be uncertain. Phenomena related to different scales of uncertainty, local

or global, and amount of uncertainty was investigated. In total was 20 levels of

uncertainty ranging from ±1% to ±20% used, which in theory allow investigation

of modest 2% to extreme 50% tolerated uncertainty. The experiments was divided

into material uncertainty, geometrical uncertainty and coupling uncertainty. En-

semble vibrational measures is presented from 1 Hz to 1 kHz in one-third octave

band averaged spectrums while nominal and extremal response is presented in

line spectrums. For each case was 10 sets of 20 realizations computed. For each

set was the largest and smallest measures used to compute the average extremal

response. Alternatively; all 200 realizations where used to visualize resonances.

1. Reference waveguide

Most dynamic systems considered are assembled using one specific subsystem.

The use of a reference subsystem was done in order to simplify comparison be-

tween different kind of uncertainty. Material parameters was chosen as Young’s

modulus 1 MPa, loss-factor 0.01 [-] and density 1000 kg/m3. Each subsystem has

a length 1 m and a cross-section surface of 0.01×0.001 m2. A uniform mesh of one

thousand partitions was used; in other words are partition resonances occurring

from 15 kHz. A source system consists of a freely suspended beam while a source

and receiver system are assembled from two beams coupled by a spring with stiff-

ness 1000 kg/s2. Excitation is considered to be a time-harmonic point force of 1

N acting at the left end of the source structure. Only longitudinal wave motion is

considered in the reference subsystem.

The reference system can be made uncertain by modifying one or several

parameters. Global uncertainty is modeled by a uniform distribution; centered

around the expected value given above. Local uncertainty is generated using jump

processes where the weight distribution is a Beta distribution. For each parameter

generation is the weight distribution parameters α, β drawn uniformly between

[0.1, 10] while smoothness γ is drawn uniformly between [0.001, 1]. Hence, the

45
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Figure 7.1: Magnitude and phase of driving-point mobility at
the left end of the source waveguide.

fluctuation characteristics of two different realizations can differ by a large mar-

gin.

2. Source system

The source system is the most simple dynamic system which can be subjected

to uncertainty in the model. It consists of a freely suspended beam excited at the

left end by a point harmonic force. For the deterministic case, it is found that the

first resonances occurs at 15.8, 31.6, 47.4, 63.3 and 79.0 Hz. The response level

observed in the driving-point mobility is respectively 46.1, 40.1, 36.5, 34.0 and

32.1 dB re. 1 m/Ns. The response level of resonances at the right end compared

to the left end is only minor different and neglected. Magnitude and phase of

the left end can be seen in figure 7.1. The nominal system agrees with the result

obtained for a homogeneous beam in appendix B.

3. Source and receiver system

In addition to the freely suspended beam is a coupled source and receiver

system examined. The system consist of two self-similar subsystems coupled via

a spring. The spring is deterministic and has a constant value for most of the

cases. Self-similar indicates that both waveguides are uncertain, being different

realizations of the same filtration.

For the deterministic case, it is found that the source and receiver subsystem

has a resonance at 7.8, 15.8, 23.6, 31.6, 39.3 and 47.4 Hz, see figure 7.2. The sub-

system coupling cause the system motion to act as a rigid beam at low frequencies;
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Figure 7.2: Magnitude and phase of driving-point mobility
at the left end of the source and receiver waveguides. Reso-
nances can be clearly seen as phase jumps, the coupling oc-
curring as small dips, or as local maxima in the magnitude
plots.

a softer spring would decouple the subsystems while a stiffer spring would couple

them more strongly. At high frequencies acts the spring as a vibration isolation.

The effect of the soft spring is clearly seen on driving-point mobility data at the

left end of the receiver subsystem. A jump in magnitude and phase can be seen

at the first resonance. If the pickup-point was moved to the middle of a virtual

spring rather then to the right end would the mobility data agree with the case of

stiffer coupling; see figure 7.3.

The system can be compared to a beam with length 2 m and otherwise identical

parameters, see figure 7.4. As can be expected is resonance frequencies unaltered.

However; it can be seen that the first resonance in the rigid beam has an an-

tiresonance that is not present in the coupled system. Modes that correspond to
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Figure 7.3: Driving-point mobility at the left end of the re-
ceiver for the case of stiff spring coupling; the nominal case is
dotted.
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Figure 7.4: Driving-point mobility at the middle of a source
system where the length is 2 m; the nominal case is dashed.

subsystem modes in the source and receiver system agrees well with the 2nd and

4th mode in the source system although the response level is lower. At the peak

around 15.8 Hz is there a -6.0 dB level difference. This difference is enlarged with

frequency as the spring will act like vibration isolation.

A measure of power transport from the source to the receiver is given by re-

lating the observed power input to each other; see figure 7.5. In the plot is three

regions seen. Below the first resonance are a spring stiffness controlled region

seen. The input force is pushing the source beam against the spring with no sig-

nificant power transport to the receiver system. The second region is a plateau at
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Figure 7.6: Power difference between input power and power
flow in the middle of a 2 m long homogeneous beam com-
pared to the nominal case (dotted).

-3.0 dB; the region is characterized by good transmission and half of the power

is transported into the receiver system. The transmission is even higher at reso-

nances. As the number of modes increases are the plateau more and more flat. The

third region is characterized by the soft spring and the transmission is dropping

at a rate of -6.0 dB/oct. Compared to power flow in a coupling with a stiff spring

or inside of a rigid beam is the decay faster. The decay can be due to distance

attenuation, internal damping in the source subsystem. However; this is not likely

as the power flow in the middle of a 2 m long beam is attenuating at a slower rate,

see figure 7.6. Hence; the decay is primarily due to that the soft spring acts like

a vibration isolation. The transition from a system that acts like a homogeneous

beam into a system where the source is isolated from the receiver is clearly seen

and starts at around 100 Hz.
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Power difference over the coupling is 0 dB due to the energy-conservative cou-

pling. Power difference over the receiver subsystem is not meaningful as the free

end demand the longitudinal force to be zero.



CHAPTER 8

Source system

The source system is a single freely suspended beam subjected to partial uncer-

tainty; fluctuation occurs in one and only one parameter for each case. Phenom-

enon related to different amount of local, global or local and global uncertainty

is examined for driving-point mobilities. In the discussion of eigenfrequencies are

outliers (up to about 10 of 4000) sorted out. The main reason for their existence is

the sensitivity of the peak detection algorithm; sometimes it skips or rather detects

more peaks then it should. Realizations showing extreme behavior is presented in

line spectrums.

1. Material uncertainty

Local and global effects of material uncertainty should be related to the fact

that an increase of density correspond to a decrease of phase speed and increase

of characteristic impedance, while an increase of elasticity increase both phase

speed and characteristic impedance. In fact, opposite behavior is observed in the

behavior of the fundamental resonance; see figures 8.2 and 8.5. For global den-

sity uncertainty is it clear that a high resonance frequency correspond to a high

response level, while for the elasticity a high frequency gives a low response level.

This agrees with the behavior of a mass-spring system; see appendix A. The reason

behind is that the eigenfrequency depends on the phase speed while the response

level depends on the characteristic impedance. Observations of an resonance in a

system subject to local uncertainty creates a domain. However; if the level spread

or frequency spread is plotted as a function of the magnitude of uncertainty is an

almost linear (triangle) relationship seen, see figure 8.3. For the case of octave-

band data is the behavior described above seen for low frequencies where one

or few resonances determines the overall level, see 8.1 and 8.4. The resonance

frequency shifting results in that the case of elasticity has a higher response level

before the resonance cut on and lower above compared to the case of density un-

certainty. As the modal density increase, the two kinds of material uncertainty gets

more similar to each other. This effect is expected as the shifting of an individual

resonance is less important.

For material uncertainty is it seen in the octaveband data that local uncertainty

result in large spread at high frequencies while global uncertainty give a large

51
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Figure 8.1: Driving-point mobilities dB for a beam subjected
to density uncertainty presented in octaveband data. The case
of global, local or global and local uncertainty is shown.

spread at low frequencies. As the wavelength shorten should effects of waveg-

uide imperfections be pronounced; however, the cut on for partition resonances is

above 15 kHz and clear effects of local uncertainty compared to global is seen from

50 Hz. It can be seen that the response level at high frequencies are exceeding the

nominal response; especially, for the case of a large amount of uncertainty.

Realizations with local and global uncertainty has an overall big spread in low

and high frequencies; almost as if it was superposed from the separate observa-

tions. As expected is the spread between realizations increasing with the amount

of uncertainty; from 5% is the spread in a few dB.
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(c) Response
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Figure 8.2: Mobility response for the fundamental resonance
for a beam subjected to density uncertainty as detected by a
peak detection algorithm.
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Figure 8.3: Response variation as a function of magnitude of
uncertainty illustrated for the case of local density fluctuation
in a beam. An almost symmetric and linear relationship has
been observed for all examined eigenfrequencies; however
the response as a function of level-frequency varies a lot.
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Figure 8.4: Driving-point mobilities dB for a beam subjected
to elasticity uncertainty presented in octaveband data. The
case of global, local or global and local uncertainty is shown.
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Figure 8.5: Mobility response for the fundamental resonance
for a beam subjected to elasticity uncertainty as detected by a
peak detection algorithm. The case of global, local or global
and local uncertainty is shown. Outliers has been removed.
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2. Damping uncertainty

The behavior of the fundamental resonance when the system is subject to loss-

factor fluctuation agrees with the behavior of a mass-spring system. No shift-

ing of frequency occurs while the response level is changed. An increase of loss-

factor correspond to an increase of spatial attenuation. The outcome is therefore

a straight line rather then an area. Global fluctuation has bigger effects on the

response level compared to local fluctuation. As the modal density increase is the

level spread decreasing. Furthermore; the response level has a symmetric linear

relationship (triangle) to the amount of uncertainty present.

Examining observed mobilities, see 8.6, reveal that response level differences

are much less pronounced then for other cases. This can be interpreted as that it

is the variance of resonance frequencies of the eigenfrequencies rather then the

resonance response levels that result in wideband spread of response levels. It

is clear that the loss-factor only effects the response when there is modes in the

octaveband.
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Figure 8.6: Driving-point mobilities dB for a beam subjected
to loss-factor uncertainty presented in octaveband data. The
case of global, local or global and local uncertainty is shown.
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Figure 8.7: Mobility response for the fundamental resonance
for a beam subjected to loss-factor uncertainty as detected by
a peak detection algorithm. The case of global, local or global
and local uncertainty is shown. Outliers has been removed.
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3. Geometrical uncertainty

Fluctuation of cross-section surface has a higher impact on the response com-

pared to damping and material cases. It can be expected as the characteristic

impedance has a linear dependency on cross-section surface. On the other hand is

the phase speed independent of cross-section surface. Hence; effects of impedance

mismatch between partitions are seen.

Global uncertainty result in a frequency invariant scaling of driving-point mo-

bility data, see 8.8. As the characteristic impedance is in the denominator is an

increase of cross-section area corresponding to a decrease of response level; a

result which agrees with a longitudinal rod in appendix A. As expected is the

spread symmetric around the nominal behavior. Local uncertainty is different and

large discrepancies compared to the nominal behavior is observed, especially for

higher frequencies. The spread of response level is in the order of several dB even

for moderate amount of uncertainty (< 5%). Ensemble largest high frequency

response is more flat in level decay compared to the other cases of uncertainty.

The fundamental resonance, see 8.9, is constant for the case of global uncer-

tainty, only the response level fluctuates; which agrees with a mass-spring system

in appendix A. The fluctuation of resonance response level is similar for the case of

local uncertainty when examined from how it react to the amount of uncertainty.

Local uncertainty result in a large domain for a given amount of uncertainty. That

resonance frequency shift occurs for the local case can be explained by a change

of mode shape. The combined case of local and global uncertainty is more “oval”

in the shape compared to the “rectangular” local shape. The spread is also slightly

bigger.
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Figure 8.8: Driving-point mobilities dB for a beam subjected
to cross-section surface uncertainty presented in octaveband
data. The case of global, local or global and local uncertainty
is shown.
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Figure 8.9: Mobility response for the fundamental resonance
for a beam subjected to cross-section surface uncertainty as
detected by a peak detection algorithm. The case of global,
local or global and local uncertainty is shown. Outliers has
been removed.
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∆f Hz ∆L dB

ρ Global 3.2 1.8 Sym. line, level inc. with freq.
Local 2.5 1.9 Small domain
Both 4.9 2.8 Large domain

E Global 3.2 1.8 Sym. line, level dec. with freq.
Local 2.8 2.0 Small domain
Both 4.5 3.4 Large domain

η Global 0.0 3.5 Ver. line
Local 0.0 2.9 Ver. line
Both 0.0 5.3 Ver. line

S Global 0.0 3.5 Ver. line
Local 1.6 3.6 Large rectangular domain
Both 1.8 5.1 Large oval domain

Table 8.1: A brief summary of spread on the fundamental res-
onance due to different kind of uncertainty. The spread be-
tween the largest of largest and smallest of smallest observed
response level and resonance frequency is given for the case
of ±20% of uncertainty.

4. Summary

Geometrical, damping and material uncertainty has different characteristic.

The global behavior agrees with a mass-spring system when resonances are exam-

ined. Local behavior is increasingly important with frequency. A brief summary of

response spread for resonances can be found in table 8.1 and for driving-point mo-

bility data in table 8.2. Observed phenomenon include frequency shifting which

explain the large discrepancies at low frequencies, response scaling which is most

clearly seen for cross-section surface, modal density explain why high frequency

bands are less sensitive to shifting, internal attenuation which makes the precise

loss-factor less important at high frequencies. Large response level exceedence

compared to the nominal system has been demonstrated.
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0 f ∼ fnom

0 f > fnom
0 f ≫ fnom

0

1 - 10 Hz 12.5 - 20 Hz 25 - 80 Hz 100 - 1000 Hz

ρ Global Scaling, 3.2-6.3 Shifting, 2.1-20.8 Shifting, 2-17.6 1.8-3.9 Shifting of few modes
Local 0.9-1.9 2.7-4.6 1.4-7.3 3.4-5.2 Imp. mismatch inc. with freq.
Both 3.5-6.3 4.9-25.5 3.8-20.5 4.3-5.3

E Global 0.0-8.5 Shifting, 1.0-19.8 Shifting, 0.8-21.7 1.0-3.0 Insignificant at low freq.
Local 0.0-4.4 0.9-6.9 2.7-13.9 3.3-5.1 Insignificant at low freq., exceeds nom.
Both 0.0-8.6 2.9-21.5 3.2-23.8 3.6-5.3

η Global None, 0.0 No shifting, 0.0-1.7 0.0-1.7 0.5-1.8 Insignificant, only at resonances
Local 0.0 0.0-0.9 0.0-0.9 0.2-0.9 Spread decrease with freq.
Both 0.0 0.0-1.7 0.0-1.7 0.5-1.9

S Global Scaling, 3.2 3.2 3.2 3.2 Freq. invariant
Local 1.0-2.9 1.9-3.6 2.9-5.6 5.6-10.4 Imp. mismatch, exceeds nom.
Both 3.4-4.3 3.7-5.1 4.3-6.2 5.6-10.7

Table 8.2: A brief summary of spread on octaveband driving-
point mobility data due to different kind of uncertainty.
Smallest and largest spread between averages are given in
dB for the case of ±20% of uncertainty.



CHAPTER 9

Source and receiver system

The source and receiver system consist of two spring coupled beams. The

source subsystem is excited by an unit force at the left end and coupled at the

right end; one of the main interesting things is to study how power flow to the

receiver subsystem is effected by uncertainty. Phenomenon related to different

amount of local, global or local and global uncertainty is examined.

1. Material uncertainty

Power transmission between the subsystems are at a first glance similar for the

case of elasticity or density uncertainty, see figures 9.2 and 9.3. However; global

elasticity fluctuation tend to have a bigger spread at low-frequencies (around 2.1

dB) compared than is observed for global density (up to 1.7 dB) uncertainty. On

the other hand is the response level spread bigger at high-frequencies for density

fluctuation. For the case of local uncertainty is only minor differences (< 0.1 dB)

observed between density and elasticity fluctuation; likely due to that the relative

effect on the characteristic impedance is the same. As expected is the spread

increased as the wavelength shortens.

As the source and receiver where chosen to be identical, is the nominal case

expected to correspond to the largest possible power transmission. As expected

is the power transmission observed already at low magnitude of uncertainty (1%)

to be far lower; but, only at the frequency region adjacent to the fundamental

resonance. Examining the power input to the individual subsystems, a slightly

higher power input to the receiver subsystem and slightly lower power input to

the source subsystem is observed, see figure 9.1. The discrepancy can be seen in

that the nominal value (represented by a dot) is not centered in the darker grey

region. Better transmission than for the nominal system can be seen at frequencies

further away from the fundamental resonance.

Driving-point mobilites are examined at the left end of the source subsystem

and at the left end of the receiver subsystem, see figures 9.4 and 9.5. Global

density fluctuation has large impact in octavebands adjacent to low-frequency res-

onance frequencies; the response can exceed the nominal subsystem with up to

17.8 dB for density and 14.2 dB for elasticity uncertainty. The same effect can

be seen for global elasticity fluctuation. However; compared to the case of global

65



66 9. SOURCE AND RECEIVER SYSTEM

10° 10¹ 10² 10³
−40

−30

−20

−10

0

10

20

f Hz

1
0

lg
Π

in a
d

B
re

.
1

W

(a) Global and local, source

10° 10¹ 10² 10³
−40

−30

−20

−10

0

10

20

f Hz

1
0

lg
Π

in b
d

B
re

.
1

W

(b) Global and local, receiver

1% 20%

Figure 9.1: Input power to source and receiver in dB re. 1 W
when density is fluctuating (local and global).

elasticity is the spread below or far above the fundamental resonance larger for

density fluctuation. Inbetween is an area where a few modes determine the sys-

tem response and where the spread is larger for elasticity fluctuation. The case

of global and local uncertainty shows a spread at low and high frequencies due

to the respective kind of uncertainty. Finally; as the magnitude of uncertainty

increase tend the response level to increase at the source and decrease at the re-

ceiver subsystem; likely a result of increased impedance mismatch between the

subsystems.

While the frequency and level spread in absolute numbers are almost identi-

cal, can major differences between elasticity and density uncertainty be seen when

individual resonances are examined; see figure 9.7 and 9.8. The response is mea-

sured at the left end of the source and at the right end of the receiver due to that

resonances are expected to have a maxima at the boundaries. If the left end of the

receiver is used as pickup is the first resonance near to a region of low response; a

nodal point in a rigid beam, which result in large sensitivity to the uncertainty, see

figure 9.6. The difference is that density uncertainty result in a higher response

level when the resonance is shifted upwards in frequency; while the opposite be-

havior is seen for elasticity uncertainty. Hence; the result agrees with the behavior

seen for a longitudinal beam in the previous chapter and a mass-spring system.

The frequency spread is as expected identical between the two subsystems; while

the response level spread is about twice as large for the source subsystem.
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Figure 9.2: Input power difference between source and re-
ceiver in dB re. 1 W when density is uncertain. The case of
global, local or global and local uncertainty is shown.
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Figure 9.3: Input power difference between source and re-
ceiver in dB re. 1 W when elasticity is uncertain. The case of
global, local or global and local uncertainty is shown.
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Figure 9.4: Averages of observed largest and smallest values
of driving-point mobilities dB re. 1 for a source and receiver
system for the case of density fluctuation. The case of global,
local or global and local uncertainty is shown.
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Figure 9.5: Averages of observed largest and smallest val-
ues of driving-point mobilities dB re. 1 for a source and re-
ceiver system for the case of elasticity fluctuation. The case of
global, local or global and local uncertainty is shown.
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Figure 9.6: Observed spread of the first harmonic for the re-
ceiver system when density is fluctuating (local and global),
the result is sensitive to uncertainty as the pickup point is near
a region of low response.
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Figure 9.7: Observed spread of the first harmonic for a source
and receiver system where density is fluctuating. The case of
global, local or global and local uncertainty is shown.
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Figure 9.8: Observed spread of the first harmonic for a source
and receiver system where elasticity is fluctuating. The case
of global, local or global and local uncertainty is shown.
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2. Damping uncertainty

Global fluctuation of loss-factor has a clear impact on the net power transport

between the subsystems, see figure 9.9. The spread is symmetric around the nom-

inal behavior. The spread is around 1.5 dB for the plateau region and increases

below (up to 2.1 dB) and above (up to 3.2 dB) the region. The effect should be

related to the difference in spatial attenuation in the source subsystem. Effects

due to local fluctuation of loss-factor is negligible (less than 0.8 dB); the mean

loss-factor is roughly constant. Global and local uncertainty is similar to the case

of global uncertainty.

Minor effects due to damping uncertainty is seen in the mobility response, see

figure 9.10. As the loss-factor only influence the damping of modes, no frequency

shifting occur, are most low-frequency octavebands observed to be invariant. For

higher frequencies are the spread decreasing with frequency for the source subsys-

tem and increasing for the receiver subsystem. The largest spread is observed to

be around 3 dB for the case of 20% of global and local uncertainty at the receiver

pickup; which is very little compared to material or geometrical uncertainty.

Examining the fundamental resonance is quite interesting. Loss-factor fluctu-

ation is the only source of uncertainty that was observed to influence the source

and receiver pickup in exact the same way, see figure 9.12. No shifting occur

for the fundamental resonance, only the response level is changed. However; an

neglectable frequency shift (< 0.03 Hz) was observed for both local and global

uncertainty at the receiver left end, see figure 9.11. The response level spread is

notable bigger when global uncertainty is present (up to 3 dB); this can be ex-

pected as the mean loss-factor can be expected to fluctuate less for the case of

local uncertainty.
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Figure 9.9: Estimation of extremal averages of power differ-
ence between source and receiver in dB re. 1 W when loss-
factor is uncertain. The case of global, local or global and
local uncertainty is shown.
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Figure 9.10: Averages of observed largest and smallest val-
ues of driving-point mobilities dB re. 1 for a source and re-
ceiver system for the case of loss-factor fluctuation. The case
of global, local or global and local uncertainty is shown.
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Figure 9.11: Observed spread of the first harmonic for the left
end of the receiver system when the loss-factor is fluctuating.
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Figure 9.12: Observed spread of the first harmonic for a
source and receiver system where loss-factor is fluctuating.
The case of global, local or global and local uncertainty is
shown.
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3. Geometrical uncertainty

Power transmission between the source and receiver is almost invariant (less

than 1.3 dB at 20% magnitude of uncertainty) to global cross-section surface fluc-

tuation, see figure 9.13. In the plateau is the spread as low as 0.1 dB for most

octavebands. On the other hand is the spread large for local fluctuation at high

frequencies (up to 7.6 dB) and otherwise between 0.4-1.8 dB. The nominal case

is observed as the extreme; with negligible exceedence. The power transport tend

to decrease with the amount of uncertainty for local fluctuation; the smallest re-

sponse is 10 dB below the nominal for high frequencies and large amount of fluctu-

ation. This indicates that impedance mismatch between partitions are increasing

the energy localization or damping; as the loss-factor is invariant.

The system response, mobility measures at the source and receiver subsystems,

show large sensitivity to local cross-section fluctuation at high frequencies, see

figure 9.14. The spread is observed to be up to 9.9 dB for the source subsystem,

mainly exceeding the nominal response, and 6.7 dB for the receiver, mainly falling

below the nominal behavior. Global fluctuation gives an frequency invariant and

symmetric response spread (2.7 dB) for the receiver subsystem. The spread is

between 0.2 and 7.5 dB for the source subsystem; the spread is due to that cross-

section surface scales the magnitudes Y ∼ 1
S

and does not shift the resonance

frequency.

No frequency shifting of the fundamental resonance occur for global cross-

section uncertainty, see figure 9.15. The response level spread is larger at the

source pickup (6.4 dB) than for the receiver pickup (2.7 dB). On the other hand is

frequency shifting observed for local fluctuation (up to 0.7 Hz) with lightly lower

response level spread (4.9 respectively 2.1 dB). This spread is larger than observed

for material or damping uncertainty and due to that the characteristic impedance

is linear to cross-section area and not square root of. The shifting of resonance

frequency is thought to be due to a change of mode shape. The reason behind

this is that as the phase speed and the length of the waveguide is invariant must

the change of resonance frequency be due to a non-sinusoidal wave-train closure;

considering that the system acts like a rigid beam at low frequencies.



80 9. SOURCE AND RECEIVER SYSTEM

10° 10¹ 10² 10³
−20

−15

−10

−5

0

f Hz

1
0

lg
Π

in b
/
Π

in a
d

B
re

.
1

W

(a) Global

10° 10¹ 10² 10³
−20

−15

−10

−5

0

f Hz

1
0

lg
Π

in b
/
Π

in a
d

B
re

.
1

W

(b) Local

10° 10¹ 10² 10³
−20

−15

−10

−5

0

f Hz

1
0

lg
Π

in b
/
Π

in a
d

B
re

.
1

W

(c) Global and local

1% 20%

Figure 9.13: Estimation of extremal averages of power dif-
ference between source and receiver in dB re. 1 W when
cross-section surface is uncertain. The case of global, local or
global and local uncertainty is shown.
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Figure 9.14: Averages of observed largest and smallest values
of driving-point mobilities dB re. 1 for a source and receiver
system for the case of cross-section surface fluctuation. The
case of global, local or global and local uncertainty is shown.
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Figure 9.15: Observed spread of the first harmonic for a
source and receiver system where cross-section surface is fluc-
tuating. The case of global, local or global and local uncer-
tainty is shown.
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4. Summary

Examining the fundamental resonance of the source and receiver subsystem,

it was found that it tend to agree with a mass-spring system; as concluded in the

last chapter. The frequency shift is equal for both subsystems (up to 2 Hz, around

25%); while the response level spread is higher for the source subsystem (up to

8 dB). Damping fluctuation is different in that no frequency shifting occur and

the response spread is identical both subsystems, see table 9.2. For driving-point

mobility data is the response level of the source increased with uncertainty, while

the response level of the receiver is decreased; see table 9.1. The largest response

level discrepancies compared to the nominal system is observed at low frequencies

when the modes are pushed into adjacent one-third octavebands (up to 20 dB).

The reason should be an increased impedance mismatch at the coupling causing

more wave energy to be reflected back into the source subsystem. This can be seen

when the power input difference between the two subsystems are examined, see

9.3. The nominal system is the worst-case with good transmission between the

subsystems, which results in that increased uncertainty lowers the transmission.
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f < fnom
0 f ∼ fnom

0 f > fnom
0 f ≫ fnom

0

1 - 5 Hz 6.3 - 10 Hz 12.5 - 50 Hz 63 - 1000 Hz

ρ Global Src. 2.6-6.0 3.0-13.8 1.7-17.9 3.8-1.7, dec. with fre.
Rec. 2.3-2.6 5.9-13.4 1.8-11.7 2.2-3.9

Local Src. 1.0-2.8 1.2-4.7, high adjacent to fnom
0 1.4-6.4 3.0-5.0

Rec. 0.9-1.2 2.4-6.5, high around fnom
0 0.9-6.3 1.9-3.9

Both Src. 0.7-6.4 3.9-17.8 2.3-18.0 4.0-5.4
Rec. 2.4-2.7 5.5-13.1 2.1-13.6 2.2-4.8

E Global Src. 0.2-8.1 2.5-11.9 0.6-19.4 1.4-2.9
Rec. 0.1-2.1 6.0-13.1 0.6-13.0 1.1-2.8

Local Src. 0.0-2.7 0.9-3.8 1.4-9.0 3.0-5.0
Rec. 0.0-0.7 2.0-5.0 0.7-5.7 1.7-3.8

Both Src. 0.2-8.0 2.7-14.2 1.4-20.3 3.7-5.4
Rec. 0.1-2.5 6.7-14.1 0.9-13.7 1.7-3.9

η Global Src. 0.0, no spread 0.0-1.3, high around fnom
0 0.0-1.4 0.2-1.4, spread dec. with freq.

Rec. 0.0, no spread 0.0-0.2 0.0-1.3 1.0-2.9, spread inc. with freq.
Local Src. 0.0, no spread 0.0-0.5, high around fnom

0 0.0-0.5 0.4-0.1, spread dec. with freq.
Rec. 0.0, no spread 0.0-0.1 0.0-0.5 0.4-1.2, spread inc. with freq.

Both Src. 0.0, no spread 0.0-1.5 0.0-1.5 1.6-0.3, spread dec. with freq.
Rec. 0.0, no spread 0.0-0.2 0.0-1.5 1.2-3.2, no freq. dep.

S Global Src. 0.2-7.5 5.0-5.7 2.7-5.0 2.6-3.6
Rec. 2.7 2.5-2.7 2.6-2.7 2.7-3.5 (only at 800 Hz)

Local Src. 0.1-4.1 2.5-4.0 2.3-4.9 5.5-9.9
Rec. 1.0-1.1 1.6-4.8 1.5-3.9 0.5 (only at 800 Hz) - 6.8

Both Src. 1.1-8.3 5.4-6.8 3.5-7.2 6.5-11.4
Rec. 2.8-2.9 2.8-3.6 3.2-4.0 0.4 (only at 630) - 13.3

Table 9.1: A brief summary of spread on octavebands driving-
point mobility data due to different kind of uncertainty.
Smallest and largest spread between averages are given in
dB for the case of ±20% of uncertainty.
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∆f Hz ∆L dB
Src. Rec. Src. Rec.

ρ Global 1.5 1.5 4.0 2.1
Local 0.9 0.9 2.5 1.4
Both 1.6 1.6 5.0 2.5

E Global 1.4 1.4 3.8 2.0
Local 0.9 0.9 2.4 1.3
Both 1.7 1.7 4.5 2.3

η Global 0.0 0.0 3.0 3.0
Local 0.0 0.0 1.7 1.7
Both 0.0 0.0 3.9 3.9

S Global 0.0 0.0 6.4 2.7
Local 0.7 0.7 4.9 2.1
Both 0.8 0.8 7.9 4.4

Table 9.2: A brief summary of spread on the fundamental res-
onance due to different kind of uncertainty for a source and
receiver system. The spread between the largest of largest and
smallest of smallest observed response level and resonance
frequency is given for the case of ±20% of uncertainty.
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Mass Plateau Decay

ρ Global 1.2-1.7, freq. inc. spread dec. 0.3-1.2 0.9-2.0 Sym.
Local 0.6-0.7 0.2-0.7 1.0-2.7 Sym., nom. worst case
Both 1.6-1.4 0.3-1.3 1.3-3.8, freq. inc. spread inc.

E Global 2.1, const. 0.2-2.0 0.8-1.4
Local 0.7, const. 0.3-0.7 0.8-2.6, freq. inc. spread inc.
Both 2.4, const. 0.4-2.1 1.2-3.4

η Global 2.1-1.6 1.2-1.5 1.5-3.2
Local 0.8-0.4 0.6-0.4 0.5-1.1
Both 2.2-1.7 1.1-1.6 1.8-3.7

S Global 0.6-1.1 0.1-1.0 0.4-1.3
Local 0.6-0.8 0.4-1.8 3.1-7.6
Both 1.0-1.4 0.6-1.6 2.4-8.1

Table 9.3: A brief summary of spread on input power dif-
ference between source and receiver system due to different
kind of uncertainty.
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CHAPTER 10

Conclusions

Vibroacoustic prediction of complex structures are uncertain in nature, due to

modeling difficulties of precise endogenous boundary, material and geometrical

properties.

In this report two nominal system were subject to different kind and magnitude

of partial endogenous uncertainty. Partial uncertainty of endogenous parameters

in the nominal source system was examined in order to understand how different

parameters influence the response. Effects of global uncertainty conform to the

behavior of a mass-spring system at low-frequency resonances. Global uncertainty

is of importance at low-frequencies where shifting or scaling of an individual mode

effects the overall one-third octaveband response. Damping uncertainty had the

biggest effect on the response level of individual resonances, but as no shifting oc-

curs the overall response change was negligible. Material uncertainty which shifts

the individual resonances gave the largest response spread. On the other hand, for

local uncertainty, which is more pronounced at higher frequencies and primarily

due to impedance mismatch, geometrical uncertainty was of main interest.

The nominal source and receiver system was chosen to represent a determin-

istic extreme, where power transmission between the subsystems where as good

as possible. However; the results indicate that an increase of magnitude of uncer-

tainty only conform to poorer transmission from the source to the receiver around

the fundamental resonance. Considering mobility type response, the source sys-

tem response level increased with the magnitude of uncertainty and large excesses

was observed compared to the nominal system. Especially; for cases where global

uncertainty of material or geometrical properties result in frequency shifting. The

receiver subsystem response level decreased in response level.

The primary aim of the work was to investigate a generally formulated hy-

pothesis. Nothing in the outcome of the model indicates that the hypothesis is

false. The results agree with the statement that inherent uncertainty of small-

scale structural details explains extremal structural response. Hence; endogenous

uncertainty should be incorporated in the modeling if ensemble extremal response

is of interest.
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CHAPTER 11

Discussion

Worst-case structural response is a sophisticated problem. Formulated in form

of a hypothesis, it was carefully investigated for the case of a beam and a beam-

spring-beam system. The idea of defining a filtration with initial values, ex-

pectancy functions and perturbation functions to describe a structure resulted in a

straight forward approach to incorporate various kind and amount of endogenous

or exogenous uncertainty in the model. However; only aleatory phenomenon was

modeled while epistemic uncertainty was neglected.

In order to properly assess the worst-case response of a dynamic system, one

should consider the definition of “worst”. Most likely, not only is the ensemble

largest response of interest, one would also want to output the worst realization

in an ensemble. In order to select the observed worst-case response in an ensemble

of transfer functions proper penalty functions must be designed; here, a penalty

function is a rule which rank responses from functional criteria. Depending on

whether a problem is related to wideband, narrowband or tonal characteristics

different penalty functions and realizations will be selected as worst. Granted a

good penalty function silent or noisy realizations can be studied and the endoge-

nous information be used to develop a theory of worst-case response. Perhaps

one could even manufacture for example fluctuation of density inside a solid to

increase damping or altering radiated noise in other ways; given that knowledge

of a good pattern exists.

Deterministic modeling of longitudinal wave propagation in one-dimensional

subsystems was done via a traveling waves approach. The subsystem properties

were discretized while the vibrational field was kept continuous. The solution

is therefore in some sense exact; but, the discretization was based on piecewise

homogeneous partitions. It can be expected that the approach is inexact if adjacent

partitions differ to much from each other. Therefore, a high spatial frequency was

used; partition resonances are avoided and properties of adjacent partitions can

be expected to be similar. However; in wooden beams can for example a saw

cut represent a sudden and discrete change. Wooden beams represent a material

where density fluctuation is expected; it could occur as inherent changes in the

wood or by sudden and randomly positioned spikes.
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Derivation of the deterministic model was different from other models I worked

with. In reality, a freely suspended beam was derived. The homogeneous beam

was then discretized and derived for the case of one, two and three endogenous

junctions. In the derived matrices a pattern was seen in the position of the bound-

ary condition elements. This knowledge allowed me to describe where an endoge-

nous junction is applied for an arbitrary amount of partitions. The model was then

extended by looking at the case of one, two and three homogeneous subsystems.

Once again, a geometric pattern in the matrices could be seen and a description

of where in a matrix an element belonged could be derived.

Emphasize on the numerical findings was on different properties of structures

and how robust they are to uncertainty; this is the reason why I presented the

overall picture of how and why a parameter uncertainty effects a nominal system

rather then the precise disturbance in dB and Hz. As a first step in understanding

structural uncertainty focus in this thesis was on a “nominal worst-case system”;

the source and receiver subsystem is self-similar. Hence; the modes are similar

and power transport should be simplified between the subsystems. This was seen

in the results as the power flow between the systems went below the nominal

behavior. The subsystems behavior was examined carefully as a freely suspended

beam before the coupled case was presented. Therefore; an important future work

would be to conclude from acquired data and to develop a theory of how and why

a realization deviate from a nominal structure. A natural second step would be

to run simulations with subsystems that are not similar and see how they react to

uncertainty.

One of the more interesting results was the frequency shift due to local uncer-

tainty. When material change inside of a beam, my initial thought was that the

observed damping should increase; due to energy localization in local resonances.

This phenomenon was not observed, but only the beam end-points was used as

pick-up points. On the other hand was the frequency shift more unexpected, and

a hypothesis is that it is due to a change of mode shape; however examining this

effect requires further work. Another interesting observation was the high sensi-

tivity of power flow due to low magnitude of uncertainty around the fundamental

resonance. In other words is power transmission changed between 0% and 1%

magnitude of uncertainty, which was not examined in this thesis.

An area of research that was not explored in this thesis is multiple sources of

uncertainty, for example cross-section and density fluctuation. Perhaps, one can

distinguish the different sources from the transfer functions. If a backward process

is possible, one could explore eigenfrequencies of a real structural ensemble to see

what kind of uncertainties are present; an experiment on wooden beams should

be expected to indicate density uncertainty.
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Another problem which was not discussed in this thesis is to estimate pre-

diction confidence of the worst-case measure and the expected number of ex-

ceedences of the worst response. As the worst response is a statistical measure

and not an absolute measure, there will be structures which exceed the predicted

worst-case level. It would be interesting to understand the expected amount of

exceedences in an ensemble given an estimated worst-case response.

Finally; structural uncertainty is not limited to endogenous properties. In mod-

eling epistemic uncertainty is a necessity, as a model describing all phenomenon is

not feasible. Validation of a model is nearly impossible as the structural filtration

demands a good statistical description of material, geometrical and exogenous

properties. Therefore; the model itself should be examined from a robustness

perspective.

1. Suggested future work

There are at least four different areas where there is room for improvement.

The deterministic model as presented in this thesis is limited to a narrow range

of filtrations and utilizes piecewise homogeneous beams. The model could be

extended to:

(1) Spatial sampling. The partitions could be derived with linear or higher

polynomial interpolation.

(2) Excitation. Arbitrary point or line excitation of subsystems. Exogenous

uncertainty such as random excitation could then be examined.

(3) Impedance junctions. Arbitrary and multiple couplings between subsys-

tems. This would allow for a network rather than a chain of beams to be

investigated.

(4) Modes. Disordered beams using Euler-Bernoulli theory or other equation

of motions would allow for models with coupling between wave energies

inside the same subsystem and between subsystems.

The stochastic modeling was done by uniform distributions and Markov random

walks. However; the generation mechanisms were not examined in detail and

there are many alternative ways to render subsystems. Hence, suggested future

work would be:

(1) Evaluation of different stochastic processes and/or statistical distribu-

tions as generation mechanisms of material, geometry and boundary val-

ues.

(2) Continued evaluation of effects from and modeling of global and local

endogenous structural uncertainty.



94 11. DISCUSSION

In addition to developing the model, validation is necessary. Numerical validation

could be to compare SEA results with ensemble average response of the model.

Experimental result would be possible on driving-point measurements of wooden

beams, if the endogenous uncertainty can be described. Finally; in the long run it

would be interesting to conclude on acquired data and develop a theory of when

and why some structures or structural parts get increased response levels.
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APPENDIX A

Mass-spring system

Effects due to global uncertainty in a homogenous beam can be understood by

comparison to a mass-spring system, see figure A.1.

F

u
m

!

s
(
1 + j

!

η
)

Figure A.1: A damped mass-spring system.

The motion is described by a integral-differential equation on the form

(A.1) m
∂u

∂t
+

!

s
(
1 + j

!

η
) ∫

u∂t = F,

which is a force balance of the system. Under an assumption of harmonic ex-

citation F = F e+ j ωt, should the forced system react with a harmonic motion

u = u e+ j ωt where F and u is complex amplitudes. Inserting the ansatz into

the equation of motion results in

(A.2)

(
j ωm +

1

j ω

!

s
(
1 + j

!

η
))

u = F.

The resonance frequency occurs at ω0 = ±
√

!

s
m

√(
1 + j

!

η
)

. A complex resonance

frequency results in damping in the time domain; which can be seen if the expres-

sion is inserted into the velocity ansatz. To compute the mobility response level at

the resonance frequency is the expression above rewritten by seperating effects of

the real and imaginary part of the frequency

(A.3) ω0 = ±

√
!

s

m




√√√√
√

1 +
!

η
2
+ 1

2
+ j

√√√√
√

1 +
!

η
2
− 1

2


 .
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100 A. MASS-SPRING SYSTEM

E ↑ ρ ↑ S ↑ η ↑ l ↑
ω0 ↑ ↓ - - ↓
|Y0| ↓ ↓ ↓ ↓ -

Table A.1: Effects on resonance frequency and response level
of a longitudinal rod when material or geometrical parame-
ters are changed.

Normalized response magnitude of the damped system is then given by

(A.4) |Y (ω)|
2

=
1

(
+ω

′

m −
!

s ω
′

|ω|2
−

!

s
!

η ω
′ ′

|ω|2

)2

+
(
−ω

′ ′

m −
!

s ω
′ ′

|ω|2
+

!

s
!

η ω
′

|ω|2

)2
.

Evaluated for a small loss factor
!

η ≪ 1 it can be seen that the complex part of the

resonance frequency is much smaller then the real part; and that the real part ω
′

and magnitude |ω| is close to

√
!

s
m

. The mobility can therefore be approximated

as |Y0| = ω0
′

!

s
!

η
. Hence, an increased eigenfrequency ω0

′

correspond to a increase

in response level while a stiffer or more damped system reduce the response level.

The behavior at resonance of a longitudinal rod can be estimated by inserting
!

s = ES
l
,

!

η = η and m = ρSl. The eigenfrequency is given by ω0 = 1
l

√
E
ρ
, and the

magnitude of the driving point mobility is |Y0| = 1

S
√

Eρη
. Effect on the resonance

due to material or geometrical change in the longitudinal rod is summarized in

table A.1.



APPENDIX B

Longitudinal beam

In order to validate the model was an analytical solution for the case of an ho-

mogenous freely suspended beam derived, see figure B.1. Using a wave approach

as described in the thesis, can the linear system equation XTa = B
˜

be written as

(B.1)

[
Z −Z

Z e− j kl −Z e+ j kl

][
a+

a−

]
=

[
−Fin

0

]
.

The system is excited by a time harmonic force Fin = Fin e+ j ωt at the left end. Due

to damping in the beam is k, Z ∈ C. The first step in the solution is to find the

system determinant

det
(
XT
)

= Z2
(
e− j kl − e+ j kl

)
(B.2)

= −2 j Z2 sin (kl)(B.3)

System eigenfrequencies can be found by det
(
XT
)

= 0; the equation can be for-

mulated as

(B.4) sin (kl) = 0,

which has the solution kl = πn which gives the eigenvalues and eigenfrequencies

(B.5) kn = n
π

l
, fn = n

c

2l
.

The modal density for longitudinal waves in beam can be expressed as

Fin E, ρ, η, S, l

Figure B.1: A freely suspended beam.
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(B.6)
∆n

∆ω
=

l

πc
.

Solving the system equation as described above is the forth and backward trav-

eling wave amplitudes found to be

(B.7) a+ =
Fin

Z

e+ j kl

e− j kl − e+ j kl
, a− =

Fin

Z

e− j kl

e− j kl − e+ j kl
.

Inserting the wave amplitudes into the ansatz it is found that

u = j
Fin

Z

cos (k (x − l))

sin (kl)
, F = Fin sin (k (x − l))

sin (kl)
.(B.8)

Driving point mobility can be written as

(B.9) Y =
j

Z
cot (k (x − l)) .

Power flow at a point inside of the beam can be computed from Π = 0.5ℜ{Fū}. An

effect that can explain poor transmission at high frequencies is distance attenua-

tion, for a wave propagating in a infinite beam can the attenuation be estimated

as ∆L = 4.35kl∆x.


