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A fully nonlinear model is developed for the bump-on-tail instability including the effects of
dynamical friction �drag� and velocity space diffusion on the energetic particles driving the wave.
The results show that drag provides a destabilizing effect on the nonlinear evolution of waves.
Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario
of the wave evolution, leading to the creation of phase space holes and clumps that move away from
the original eigenfrequency. Later in time, the electric field associated with a hole is found to be
enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the
frequency evolution between holes and clumps. The combined effect of drag and diffusion produces
a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady
state regimes. An analytical model is presented, which explains the aforementioned diversity. A
continuous production of hole-clump pairs in the absence of collisions is also observed.
© 2010 American Institute of Physics. �doi:10.1063/1.3486535�

I. INTRODUCTION

Energetic particles often excite Alfvén waves in toroidal
magnetic confinement devices and similar instabilities may
be driven by alpha particles and high-energy beam ions in
ITER.1 Observations of these waves provide important infor-
mation about the plasma.2 However, Alfvén waves can po-
tentially enhance energetic particle losses from the plasma,
which is undesirable.1 It is therefore important, for burning
plasmas, to predict and control the consequences of the
wave-particle interaction. The nonlinear behavior of indi-
vidual waves is an essential element of such research.

The present day experiments on Alfvén eigenmodes
�AEs� reveal a rich family of nonlinear scenarios with sev-
eral types of evolution of the wave amplitudes and frequen-
cies. AEs excited by ion cyclotron resonance heating
�ICRH�-produced ions show usually the “soft” excitation
regimes.3–8 In these nonlinear scenarios, the mode frequency
remains close to the linear AE eigenfrequency and the struc-
ture of the mode remains similar to the linear one. In con-
trast, in the case of neutral beam injection �NBI�, a “hard”
nonlinear regime is observed more often, resulting in burst-
ing amplitude evolution and in rapid frequency sweeping.9–13

Spontaneous formation of phase space holes and clumps14 is
typical of the NBI-driven scenarios.9 The holes and clumps
in the energetic particle distribution function correspond to
resonant particles that are trapped in the field of the wave.
These nonlinear structures can be viewed as long living
Bernstein–Greene–Kruskal �BGK� modes.15

The disparity between experiments on AE excitation by
ICRH and NBI has recently been attributed to the role of
dynamical friction �drag� as a relaxation process for resonant
particles.16 This observation was made in the bump-on-tail
model for a near threshold instability with ��L−�d���d��L,

where �L is the energetic particle contribution to the wave
growth rate and �d is the wave damping rate due to dissipa-
tion in the bulk plasma. In the past, such a model was suc-
cessfully used to explain nonlinear bifurcations and fre-
quency sweeping events observed in various AE
experiments.3,4,9

It was found16 that the mode grows explosively when
dynamical friction �drag� dominates over velocity space dif-
fusion in the vicinity of the wave-particle resonance. This
previous analysis was limited to a weakly nonlinear regime
with a perturbative treatment of the energetic particle re-
sponse to the wave field. The present paper extends the
analysis of Ref. 16 to describe the full nonlinear behavior in
drag dominated scenarios. This is largely based on numerical
modeling, which generalizes an earlier code17 to include the
effect of drag. We observe that the drag continues to play a
destabilizing role in the fully nonlinear problem. It causes an
asymmetric frequency sweeping pattern by enhancing the
holes and suppressing the clumps. In addition, the combined
effect of drag and velocity space diffusion creates an inter-
esting range of nonlinear behaviors including hooked fre-
quency chirping, undulating, and steady state regimes.

The remainder of this paper is organized as follows: Sec.
II describes the basic equations of the bump-on-tail model,
Sec. III deals with benchmarking of the numerical code
�named BOT� against analytical theory, Sec. IV presents the
formation and evolution of holes and clumps in the collision-
less, drag dominated, and drag+diffusion cases, Sec. V sum-
marizes the results, and the Appendix describes the numeri-
cal algorithm.

II. THE MODEL

Despite the specifics of the idealized bump-on-tail
model,18 the nonlinear behavior of this system is in fact
universal19 and can be applied to other wave-particle inter-a�Electronic mail: matthew.lilley@chalmers.se.

PHYSICS OF PLASMAS 17, 092305 �2010�

1070-664X/2010/17�9�/092305/10/$30.00 © 2010 American Institute of Physics17, 092305-1

http://dx.doi.org/10.1063/1.3486535
http://dx.doi.org/10.1063/1.3486535


actions, including those in tokamaks, by transforming to ap-
propriate variables. The system considered in this paper con-
sists of a purely electrostatic wave in a plasma of three
species. The first two are the static background ions and
“cold” electrons �characterized by mass me, an equilibrium
density ne, and perturbed fluid velocity V�. The cold elec-
trons respond linearly to the wave field and are subject to a
small friction force providing a damping mechanism for the
wave. The third is a low density population of fast electrons
that are subject to “weak” �much less than the background�
collisions and whose distribution function F is treated kineti-
cally. The resulting closed system of equations is

�F

�t
+ v

�F

�x
−

�e�E
me

�F

�v
= �dF

dt
�

coll
, �1a�

�V

�t
= −

�e�E
me

− �cV , �1b�

�E

�t
= 4��e��neV +	 v�F − F0�dv
 , �1c�

where �c is the cold electron collision frequency, F0 is the
unperturbed distribution function of the fast electrons �as-
sumed to have a constant positive slope �F0 /�v�0 that de-
termines the linear growth rate �L�, and the right hand side of
Eq. �1c� is a sum of the perturbed currents from the cold and
fast electrons. The constant slope assumption is appropriate
as long as the velocity range of interest is significantly nar-
rower than the overall width of the distribution function F0.
The appropriate collision operator for the problem
�dF /dt �coll� involves three relaxation processes �diffusive,
drag, and Krook-type� and is taken to be of the following
form:

�dF

dt
�

coll
= D

�2

�v2 �F − F0� + S
�

�v
�F − F0� − K�F − F0� ,

�2�

where D, S, and K are constants characterizing the velocity
space diffusion, dynamical friction �slowing down�, and
Krook operators, respectively.

We investigate a traveling wave solution that has a spa-
tial period denoted by � and carrier frequency denoted by 	.
The physical quantities can then be represented as Fourier
series F=F0�v�+ f0�v , t�+�n=1


 �fn�v , t�exp�in��+c.c.�, E
=1 /2��n=1


 �En�t�exp�in��+c.c.�, and V=�n=1

 �Vn�t�

�exp�in��+c.c.�, where ��kx−	t and k�2� /�. Based on
the previous studies, we anticipate that the physical quanti-
ties will be almost periodic in time, which means that the
envelope functions fn, En, and Vn vary on a time scale that is
long compared to 1 /	. By calculating the current from the
cold background perturbatively, using the assumed smallness
of �c and ��log�Vn�� /�t with respect to 	, Ampère’s law is
then written as

�En

�t
1 +

	pe
2

n2	2� = in	1 −
	pe

2

n2	2�En +
	pe

2

n2	2 �− 2�d�En

+ 4��e�
	

k
	 fndv , �3�

where �d��c /2 is the damping rate of the wave. In Eq. �3�
we have taken into account that the dominant contribution to
the perturbed current comes from the resonant electrons with
v=	 /k, which allows the fast electron current to be written
as

− �e�	 vfndv � − �e�
	

k
	 fndv . �4�

An immediate consequence of Eq. �3� is that 	�	pe when
the perturbed fast electron current is small compared to that
from the background population. Also En�0 for n�1 in this
case so that the electric field is almost sinusoidal. Conse-
quently, the evolution of the wave can be described by set-
ting 	=	pe without any loss of generality. Moreover, this
formalism can describe the evolution of waves with multiple
carrier frequencies as long as their frequencies do not deviate
far from 	pe. Then both the evolution of the amplitudes and
the frequencies can be captured in the slowly varying E1

function. This approach was previously taken for studying
the spontaneous creation of holes and clumps in phase
space17 and this paper will continue this line of investigation
now including the effect of dynamical friction.

As the holes and clumps evolve, the electric field be-
comes a sum of noninteracting BGK waves with time depen-
dent frequencies 	�	pe+	�t� so that the envelope En�t�
takes the form

En�t� = �
j

Ên,j�t�exp�− in	
t0

t

	 j�t��dt�
 , �5�

where Ên and 	 are real �with a proper choice of t0�. The
distribution function can be written in a similar way. It is

implied in Eq. �5� that dÊn,j /dt� Ên,j	 and d	 /dt
� �	�2. Ampère’s law, written for each BGK mode, can
then be written as

n	1 −
	pe

2

n2	2�Ên,j = − 4��e�
	

k
	 Im� f̂ n,j�dv , �6a�

�Ên,j

�t
1 +

	pe
2

n2	2� =
	pe

2

n2	2− 2�d +
	̇

	
�Ên,j

+ 4��e�
	

k
	 Re� f̂ n,j�dv . �6b�

Although Eqs. �6�, for an individual BGK mode, are
derived under the assumption that 	�	pe, they are in fact
still valid when 	�	pe. It is not, however, the focus of this
paper to explore that regime. In what follows, we limit our
consideration to the case when 	�	pe, in which case we
take 	=	pe and so the kinetic equation in the wave frame
�moving with speed v=	pe /k� can then be written as
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�F

�t
+ u

�F

��
−

1

2
�	B

2ei� + c.c.�
�F

�u
= �dF

dt
�

coll
�7�

and the wave equation �Eq. �3�� simplifies to

�	B
2

�t
−

4��e�2

me

	pe

k
	 f1du + �d	B

2 = 0, �8�

where 	B
2 = �e�kE1 /me is the bounce frequency of the elec-

trons trapped in the field of the wave, u�kv−	pe, and
��kx−	pet. The collision operator written in the wave ref-
erence frame becomes

�dF

dt
�

coll
= �3 �2

�u2 �F − F0� + �2 �

�u
�F − F0� − ��F − F0� ,

�9�

where �, �, and � are constants characterizing the velocity
space diffusion, dynamical friction, and Krook operators, re-
spectively: �3=Dk2, �2=Sk, and �=K. For the remainder of
this paper, only drag and diffusion will be considered so that
�=0 is assumed throughout. Note that in Eq. �2� the equilib-
rium positive slope gives rise to a two part collision operator
for drag, which is not present in the diffusion operator
��2F0 /�v2=0�. The �F /�u term enters formally in the same
way as a dc electric field. The �F0 /�u part is a sink of par-
ticles that allows the formation of a steady state solution of
the unperturbed distribution function �see, e.g., Ref. 20�. In
what follows, the first term of the drag operator will be re-
ferred to as the “dynamic part” and the second part of the
drag operator will be referred to as the “sink part.”

In order to explore the full nonlinearity of the system,
Eqs. �7� and �8� are solved numerically using a scheme simi-
lar to Ref. 17. More specifically, the Fourier series represen-
tation of F in space transforms Eq. �7� into a set of coupled
partial differential equations in t and u. By Fourier trans-
forming in velocity, a set of advection equations is then ob-
tained for numerical processing using the BOT code �see the
Appendix�. The key advantages of BOT are high speed, the
simplicity of collisions in Fourier space �they are represented
algebraically�, and the convenient procedure for eliminating
small scales in velocity space.

Unless otherwise stated, a fixed damping rate �d /�L=0.9
will be used for the BOT simulations, which is close enough
to the threshold to be considered marginal. This is the regime
in which holes and clumps were previously observed to form
spontaneously. When BOT results are displayed in subse-
quent figures, the simulation parameters are either the de-
faults given in the Appendix or they are displayed above the
figure �see Appendix for notation�.

III. BENCHMARKING

In the collisionless, dissipationless limit ��=�=�d=0�,
the system is predicted to saturate with an electric field cor-
responding to a bounce frequency of 	B /�L�3.2.21 The
saturated distribution function is then predicted to form a
plateau inside a region of phase space defined by the wave
separatrix. In this case, the particles that are trapped by the
wave potential �those inside the wave separatrix� become
“phase-mixed” over time. In this way, the distribution func-

tion remains a monotonic function of velocity with a narrow
flat region around the resonance. The BOT code reproduces
the saturation and phase mixing with good accuracy, as can
be seen in Figs. 1 and 2.

In the presence of diffusive collisions only ��=0�, the
nonlinear amplitude evolution of a wave excited close to the
threshold ��d��L� is predicted to exhibit four main regimes,
in order of decreasing ratio of � / ��L−�d�:19 �1� a steady state
regime, �2� a regime with periodic amplitude modulation,
�3� a chaotic regime, and �4� an “explosive” regime. All re-
gimes are recovered with the BOT code, noting that the ex-
plosive regime leads to the spontaneous formation of holes
and clumps in phase space, which is discussed in more detail
in Sec. IV. Figure 3 shows a case of mode saturation. The
results from the BOT simulation and the “cubic equation”
�Eq. 14 in Ref. 19� converge as the threshold is approached,
as expected, noting that the intermediate dynamics also con-
verge along with the saturation level. Figure 4 shows an
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FIG. 1. �Color online� Collisionless, dissipationless saturation. The solid
line shows the bounce frequency for the BOT simulation and the dashed line
shows the predicted saturation level �Ref. 21�.
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FIG. 2. �Color online� Phase space plot showing contours of F correspond-
ing to Fig. 1 at t��L=40. The black line corresponds to the wave separa-
trix. A contour equal to 100 corresponds to the level of the original
resonance.
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example of the transition from the saturated to the periodic
amplitude modulated case. Note that this transition �called
the first bifurcation� is marked by a critical diffusion coeffi-
cient of �BIF / ��L−�d��2.05.19 This coefficient is also recov-
ered by the BOT simulations to within 2.5% as the threshold
is approached, as can be seen in Fig. 5. Finally, Fig. 6 shows
an example of the chaotic regime.

In the presence of drag and diffusive collisions, the pre-
dicted nonlinear amplitude evolution is governed by Eq. 4 of
Ref. 16. The BOT simulations agree to the same accuracy as
in the pure diffusive case.

IV. HOLES AND CLUMPS

A. Collisionless limit

The strongly nonlinear “hole-clump” scenario described
in Ref. 14 is observed in the marginally unstable regime, as
can be seen from the spectrogram in Fig. 7 and in the phase

space plot in Fig. 8. The holes and clumps move away from
the original resonance, as shown schematically in Fig. 9.
This motion is almost adiabatic and preserves the value of
the distribution function for the particles trapped by the
wave.

We note that within this simplified theory there is no
limit to the extent of the chirp, and this is indeed supported
by the simulation. The chirping behavior shows the correct
�t scaling, noting that the associated coefficient is larger than
predicted analytically14 by a factor of approximately 1.32 in
this case. This discrepancy could result from the nonunifor-
mity of the distribution function along the wave separatrix
that is seen in Fig. 8, this is not included in the analytical
theory. How the system sustains this nonuniform distribution
will be the focus of future investigation.

It may look surprising that holes �seen as upward sweep-
ing spectral lines in Fig. 7� and clumps �seen as downward
sweeping spectral lines in Fig. 7� are generated continuously
in the collisionless case, without any source of particles. This
can be understood by following the evolution of the “wake”
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FIG. 3. �Color online� Comparison of the BOT simulation with the cubic
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that forms when a hole or a clump detaches from the original
resonance. Referring to Fig. 9, since the particle number is
conserved, a number of particles must be displaced during
the motion of a hole or a clump, which leads to a slight
excess behind a hole and a depletion behind a clump. There
is thus a tendency for the gradient in the distribution function
to steepen, making the system susceptible to instability once
again. This effect should be strongest when the hole and
clump are still relatively close to the original resonance,
which could explain why the holes and clumps are produced
in rapid succession. In reality the finite extent of the distri-
bution in velocity space limits the range of chirping for the
initially formed holes and clumps. It is then reasonable to
expect that eventually the holes and clumps will “stack up”
next to one another as they move away from the original
resonance �see Fig. 10�. In this way, the distribution function
should eventually form a global plateau that determines the
maximum amount of energy that can be released from the

fast particles to the wave. At this point, the wave should then
decay due to dissipation, leaving behind a significantly de-
formed fast electron distribution.

B. The effect of drag

The drag introduces a preferred direction of particle flow
into the system. Consequently, one can expect the symmetry
observed in Fig. 7 to be broken when drag is introduced and
this is indeed found to be the case �Fig. 11�a��.

To understand the results shown in Fig. 11, we consider
the effect of drag on a single hole or clump, the formal
description of which is given by Eqs. �6a� and �6b�. First we
calculate the power transfer from the particles to the wave in
the presence of drag in the adiabatic regime ���	B�. The
drag operator consists of a dynamic part and a sink for the
particles. The former acts as a constant force slowing the
particles down, and the latter acts to lower the distribution
function. The wave separatrix determines an area of phase
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FIG. 7. �Color online� Spectrogram of the electric field amplitude E1 for the
collisionless case close to the threshold. The white line is the best �t fit
passing through the upper and lower chirping structures.
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FIG. 9. �Color online� Cartoon illustrating the motion of holes and clumps
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creating a favorable environment for instability.
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FIG. 10. �Color online� Cartoon illustrating how holes and clumps might
form a global plateau in a distribution function with a finite extent in veloc-
ity space. The dashed lines mark the boundaries of the “stacked up” holes
and clumps.
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space filled with trapped particles and its location in velocity
space is given by the phase velocity of the wave 	 /k. The
dynamic part of the drag operator creates a flow of passing
particles toward the separatrix at a rate of �2 /k. However,
the particles that approach the separatrix are unable to enter
and instead they make a “jump” to a velocity that is lower by

an amount given by the separatrix width �v���. The corre-
sponding energy release can be calculated using the same
line of reasoning as that in Refs. 14 and 22. When consider-
ing the flow over the entire separatrix �from 0���2��, the
power released to the wave per unit volume is given by

�drag
+ = fout

�2

k
� me

	pe

k
	

0

2�

�vd� , �10�

where the separatrix width �v��� is assumed to be small
compared to the wave phase velocity, which is close to
	pe /k, and fout is the value of the distribution function just
outside the separatrix. For the trapped particles, moving with
an approximate speed 	pe /k, the electric field works against
the drag force �me�

2 /k per particle� to keep them inside the
separatrix. The separatrix acts as a rigid boundary for the
particles in the adiabatic regime. Note that the work done is
insensitive to the details of the distribution inside the sepa-
ratrix, it only depends on the total number of trapped par-
ticles. The rate of work done by the electric field on the
trapped particles must balance the work done against the
drag force, which, per unit volume, is approximately given
by

�drag
− = f in	

0

2�

�vd� � me
�2

k

	pe

k
, �11�

where the distribution function f in is assumed to be constant
inside the separatrix. The net power released as a result of
this dynamic part is then given by

�drag = �fout − f in�	
0

2�

�vd�me
�2

k

	pe

k
. �12�

Hence, for a hole drag will channel energy to the wave and
for a clump energy will be taken. If the phase velocity and
hence the frequency of the wave changes, there will be a
similar release of energy if a hole moves up or a clump
moves down in phase space, and this energy release is pro-
portional to the rate of chirping and the difference in height
of the ambient distribution function and that within the
separatrix,14,22

�chirp = �fout − f in�	
0

2�

�vd�me
1

k

�	

�t

	pe

k
. �13�

If the amplitude of the wave is changing slowly,

��log�Ê1�� /�t��d, then an energy balance condition can be
constructed so that the energy dissipated by the background

plasma, �d�Ê1�2 /4�, is balanced by the work done by the
electric field on the fast particles, �drag+�chirp. Note that the
integrals in Eqs. �12� and �13� can be estimated as 	B /k. At
this point, it is convenient to introduce a function g that
characterizes the depth of a hole �fout− f in�= ��F0 /�v�g /k
��Lgkne /	pe

3 in a way similar to that shown in Fig. 9. The
energy balance condition can then be written as
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FIG. 11. �Color online� �a� Spectrogram of the electric field amplitude E1

showing chirping asymmetry for the pure drag case. ��b� and �c�� Snap shots
�at t��L=800 and t��L=1600� of the phase space for the upper most
spectral line showing a deepening hole. A contour equal to 100 corresponds
to the level of the original resonance.
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�c1	B�3 = g �	

�t
+ �2� , �14�

when �L��d and where c1 is a constant. Note that presence
of drag in this energy balance allows a downward motion of
a hole structure, something that was previously forbidden.
This equation, which is equivalent to Eq. �6b�, involves three
unknown functions: 	B, 	, and g. We now derive two more
equations for these unknowns to obtain a complete set.

The effect of the sink part of the drag operator is to
reduce the height of a clump and to deepen a hole linearly
with time. In this way, the drag is acting to destroy a clump
structure but to enhance a hole. As a result of drag and chirp-
ing, the depth/height evolves in time according to

�g

�t
=

�	

�t
+ �2. �15�

The final relation follows from Eq. �6a� with n=1 and 	
�	pe. We note that the dominant contribution to the per-
turbed charge density of the fast electrons comes from the
narrow depletion �hole� or protrusion �clump� in the distri-
bution function so that Eq. �6a� gives the following estimate:

	c1	B = c2�Lg , �16�

where c2 is a constant. When considering the long time evo-
lution of a drag dominated hole, one can neglect �	 /�t as
compared to �2 in Eqs. �14� and �15� to find the following
scaling:

	B � �4/3t1/3, 	 � �L��t�2/3 �17�

for an upward chirping hole. The immediate consequence is
that the hole cannot reach a steady state. The frequency and
amplitude of the wave will increase continuously, as can be
seen in Figs. 11�a� and 12. The depth of the hole also in-
creases, which is consistent with Figs. 11�b� and 11�c�.

In the absence of the drag sink term ��F0 /�u�, the depth
of the hole is g=	 and a steady state is permitted. This can
be demonstrated numerically by removing the slope of the
equilibrium distribution after the initial instability has been
seeded. The results are shown in Fig. 13 where the slope is
removed at a time t��L=800.

We conclude this section by recalling that dynamical
friction was found to be destabilizing in the weak nonlinear
approximation studied in Ref. 16. Now in the fully nonlinear
regime, dynamical friction continues to provide a destabiliz-
ing effect.

C. Drag and diffusion

In reality, a system will exhibit both drag and diffusion.
The effect of diffusion, unlike drag, is always to act to de-
stroy a hole and a clump by filling the hole and depleting the
clump. For a phase space structure whose characteristic size
in velocity space is approximately �v=�� /k, the decay
time as a result of diffusion is approximately �D���2 /�3.
We observe that a steady hole can be established when both
drag and diffusion are present, as can be seen in Fig. 14.

With somewhat more diffusion, there is a tendency for
the frequency and the electric field to undulate �Fig. 15�.
With a further increase in diffusion, the frequency spectrum
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FIG. 12. �Color online� Drag induced growth of the bounce frequency cor-
responding to the upper most spectral line in Fig. 11�a�.
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FIG. 13. �Color online� Establishment of steady state holes by the removal
of the drag sink at t��L=800.
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FIG. 14. �Color online� Establishment of a steady state hole in the presence
of both drag and diffusion.
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exhibits intermittent hooks �Fig. 16�. It is noteworthy that
these hooks resemble experimentally observed chirping
patterns.23

These behaviors can be understood by recognizing the
competition that now exists between the sink in the drag
collision operator that acts to deepen the hole and the diffu-
sion that acts to fill the hole. This competition can be mod-
eled using Eqs. �14�–�16�, with Eq. �15� modified to account
for the effect of diffusion on the depth of the hole. The re-
sulting set of dynamical equations is then

�c1	B�3 = g �	

�t
+ �2� , �18a�

�g

�t
+

�3

c3�c1	B�2g =
�	

�t
+ �2, �18b�

	c1	B = c2�Lg , �18c�

where c3 is a free parameter of order unity. These equations
reduce to

x2 = y �y

��
+ 1� , �19a�

a
��xy�

��
+

y

x
= 1 +

�y

��
� , �19b�

where c1	B�c3�4x /�3, 	��6c2c3
2�Ly /�6, t

��4c2c3
2�L� /�6, and a�c3�4 /�3c2�L. Equations �19� exhibit

a steady state at x=1, y=1. By analyzing the stability of this
solution, we find small deviations from the steady state
evolve as exp���� with the following eigenvalues:

� =
− 3�a − 1� � �9�a − 1�2 − 4a

2a
. �20�

Thus, the steady state is stable for a�1 and unstable for
a�1.

In order to compare this simple model to the results from
the BOT simulations, the coefficients c1, c2, and c3 must be
chosen. c1 and c2 are determined by comparing the solution
of Eqs. �18� at early times �when g=	 and collisions can be
neglected� with the following expressions for 	B and 	
given in Ref. 14:

	

�L
=

16�2

3�2�3
��dt , �21a�

	B

�L
=

16

3�2 . �21b�

This gives c1= �3�2 /48�1/3 and c2 /c1=16 /3�2. The value of
c3 is determined by comparing the stability condition
a�c3�4 /�3c2�L=1 from Eqs. �19� with the stability bound-
ary obtained numerically for the case �=�. This gives
c3=1.84.

Figure 14 can now be related to the stable solution of
Eqs. �19� since a=2.02 in this case. More specifically, the
asymptotic value of 	 is calculated to be 	 /�L�17.7, and
the relaxation time, defined to be �=1 /Re �, gives t��L

�1600. This agrees well with the simulation.
Figure 16 represents the unstable case with a=0.92. A

numerical solution of Eqs. �19� �shown in Fig. 17�a�� repro-
duces the evolution of a single hook. The frequency and time
scales are in good quantitative agreement with the well iso-
lated hooks seen in Fig. 16, as shown in Fig. 17�b�. For
Fig. 15, a=1.91. Based on this value, one would expect that
a single hole should evolve to a steady state. However, the
correlation seen between different spectral lines in Fig. 15
suggests that there is some hole-hole interaction �not covered
in this model� that produces the undulating behavior.

V. SUMMARY

The destabilizing effect of drag, which was predicted in
Ref. 16, has now been shown to continue to be destabilizing
in the fully nonlinear regime. The clear signature of drag is
the asymmetry of the wave evolution with respect to the
original resonance. Drag provides an energy source for the
wave in a way similar to chirping. The source term in the
drag collision operator acts to enhance a phase space hole
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FIG. 15. �Color online� Undulating frequency and amplitude behavior with
drag and somewhat more diffusion than in Fig. 14.
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FIG. 16. �Color online� Hooked frequency spectrum with drag and a further
increase in diffusion from that in Fig. 15.
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and to weaken, or even suppress, a phase space clump. The
combined effect of drag and velocity space diffusion allows a
steady state hole to be established. It can also produce a
repetitive pattern of hooked frequency chirping. These be-
haviors have been captured by a reduced analytical model.
The full scale simulations agree with the trends of this
model. The resemblance between the hooked chirping pat-
tern and that seen in experiments is an interesting topic for
further investigation. Another natural next step would be to
extend the presented results, on the basis of Eqs. �6�, to the
case when the range of frequency sweeping is comparable to
the plasma frequency.
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APPENDIX: BOT EQUATIONS

Referring to Eqs. �7� and �8�, we define C=	B
2 /�L

2,
where 	B

2 = �e�kE1 /m, G= �2��e�2	pe /m�L
2k�F, �=�Lt,

�̂d=�d /�L, �= �kv−	pe� /�L, �̄=� /�L, and similarly for �̄

and �̄. Using these variables and Fourier transforming
Eq. �7� in � gives

�Gn

��
− n

�Gn

�s
+ ��̄3s2 − i�̄2s + �̄�Gn = Rn�s,�� , �A1�

�C

��
+ �̂dC = 2�2�G1�0,�� , �A2�

where Gn= �1 /�2���−

+
Gn exp�−i�s�d� is the Fourier trans-

form of Gn and Rn�s ,�� is given by

R0 =
is

2
�C�G1�s,�� + CG1

��− s,��� , �A3a�

R1 =
is

2
�C�G2�s,�� + CG0�s,��� +

1
�2�

C�s� , �A3b�

Rn =
is

2
�C�Gn+1�s,�� + CGn−1�s,��� , �A3c�

RN =
is

2
�CGN−1�s,��� , �A3d�

and where the number of harmonics of F, N, is determined
by numerical convergence. Similar equations can be also cast
for the case when the wave electric field has several spatial
harmonics, and the BOT code includes this capability; how-
ever, for simplicity, only the single harmonic sinusoidal case
is shown in this paper.

The kinetic equation now forms a set of coupled advec-
tion equations in s with an algebraic collision operator.
Structures in F “flow” to larger �s� and hence to smaller
scales in velocity space. The smallest scales do not contrib-
ute to the current that drives the electric field, so they are
eliminated by choosing an appropriate box size in s. In the
presence of diffusion, the box size is chosen so that
�s�max�1 / �̄. Without diffusion the box size is varied until
convergence is achieved. The kinetic equation is integrated
in time by the method of characteristics �i.e., transforming to
s�=s+n�, ��=��. This produces a set of integral equations
that are not subject to the Courant limit that would arise from
using a standard finite difference technique. The trapezoid
rule is then used to calculate the time integrals. The contri-
bution from the equilibrium distribution �which is the delta
function in Eq. �A3b�� is integrated analytically. The time
step �� is set to be an integer multiple of �s so that the
advection procedure is performed perfectly, without the need
to interpolate the distribution function. This is advantageous
since the contribution from the delta function to G1 creates a
discontinuity in Gn that is not easily captured by interpola-
tion. A default simulation with 1001 points in s, a box with
�s�max=10, N=10, ��=0.02, ��=�s, �d /�L=0.9, and a run
time of �max=5000, takes about 10 min on a single dual core
Intel Centrino processor.
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FIG. 17. �Color online� �a� Hooked chirp solution of Eqs. �19� with
c1
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and dashed lines show the bounce frequency and the deviation of the fre-
quency from the plasma frequency, respectively. �b� A quantitative agree-
ment between hooks seen in Figs. 16 and 17�a� �white line� is shown.
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