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Abstract – We propose a scheme to measure the mass of a single particle using the nonlinear
response of a 2D nanoresonator with degenerate eigenmodes. Using numerical and analytical
calculations, we show that by driving a square graphene nanoresonator into the nonlinear regime,
simultaneous determination of the mass and position of an added particle is possible. Moreover, this
scheme only requires measurements in a narrow frequency band near the fundamental resonance.

Copyright c© EPLA, 2010

Introduction. – Nanoelectromechanical (NEM)
resonators hold promise as ultrasensitive mass detec-
tors [1,2]. NEM mass sensors (NEM-MS) rely on a
resonant frequency shift ∆ω due to an added mass ∆M .
However, as opposed to detecting a single adsorbed
particle, to actually measure its mass ∆M from ∆ω, the
position of the particle must be known. Proposed position
determination schemes [3–6] rely on detectors to measure
the frequency shifts of several vibration modes. While
this poses no problems in principle, it causes practical
difficulties for NEM-MS operating in the GHz regime.
We propose a detection scheme that only requires

measurements in a single narrow band centered at the
fundamental mode resonance frequency of a square 2D
resonator. Our method uses the nonlinear response of the
resonator by exploiting the interaction between vibration
modes to make information about higher modes available
at the fundamental frequency. We illustrate by showing,
analytically and numerically, how the nonlinear response
of micrometer-size graphene resonators [7,8] can be used
for single-particle mass measurements with zeptogram
precision at room temperature.
Several other technology tracks are being considered for

NEM-MS devices. One is downscaling of Si-MEMS [9–13]
where the present state-of-the-art give a minimum detect-
able mass of ∼ 10 zg [9]. Another track relies on
carbon nanotubes (CNTs) [14] and has already reached
sub-zg levels [15–18]. However, after the discovery
of graphene [19], novel 2D NEMS devices have been

(a)E-mail: andreas.isacsson@chalmers.se

explored [20–23], including mass detectors with zg sensi-
tivity [7]. Apart from increasing the adsorbtion cross-
section, 2D NEMS can also have degenerate flexural
modes. As we show, this degeneracy makes possible to
distinguish single-particle from multi-particle adsorption.
Graphene also represents the ultimate material for 2D
NEMS through its combination of large strength and low
mass.

System. – We consider a square graphene sheet with
mass M and side length L0 suspended in the XY -plane
above an actuation gate (see fig. 1). The sheet is simply
clamped at all edges. The gate geometry, which has a
symmetry line parallel to the Y -axis, is chosen such that
the fundamental and higher-order modes can be excited.
The transverse deflection w(X, t) of the membrane is given
by [8]

ρẅ+ cẇ−
∑
ξ=X,Y

∂ξ(Tξ∂ξw) = Pz(X, t). (1)

Here Pz is the external pressure on the sheet. This pressure
comes from the electric biasing on the gate electrode. The
exact geometry of the gate, and the exact X-dependence
of Pz need not be known. It suffices that Pz has the
proper symmetry. And TX = TY = T0+T1|∇w|2 are sheet
tension components where T0 is an initial tension and
T1 ≈ 112N/m. Equation (1) is nonlinear due to stretching-
induced tension [8]. For a particle with relative mass
ε≡∆M/M adsorbed at XM , the density is ρ(X) = ρ0+
∆Mδ(X−XM ), where δ(X) is the 2D delta function and
ρ0 is the density of graphene.
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Fig. 1: (Colour on-line) Possible realisation of a NEM mass
spectrometer using a suspended square graphene sheet with
all edges clamped. Below the graphene an electrostatic gate
for actuation and transduction is placed symmetrically with
respect to the X-axis and asymmetrically with respect to the
Y -axis. By electrostatic actuation of vibration modes, a mass
∆M located at an arbitrary position XM = (XM , YM ) can be
determined.

For future convenience, we begin by rescaling eq. (1) into
a dimensionless form. We do this by introducing the length
and time scales h0 =L0

√
T0/T1 and t0 =L0

√
ρ0/T0, we

write the deflection as u(x, τ) =w(L0x, t0τ)/h0. Equa-
tion (1) then becomes

[1+ εδ(x−xM )]ü+ γu̇−∇2u−
∑
ξ=x,y

∂ξ(|∇u|2∂ξu) = pz,

(2)
where γ = ct0/ρ0 and pz = Pzt

2
0/(ρ0h0).

Linear response. – We consider first small deflections
where TX,Y ≈ T0, and the resonator is in the linear regime.
The eigenmodes are then determined from

−ω2[1+ εδ(x−xM )]u−∇2u= 0, x∈ [0, 1]2. (3)

Without adsorbed particles ε= 0, the first three
mode shapes are φ10 = 2 sin(πx) sin(πy), φ20 =
2 sin(2πx) sin(πy), φ30 = 2 sin(πx) sin(2πy), with eigen-
frequencies ω210 = 2π

2 and ω220 = ω
2
30 = 5π

2. To linear order
in ε, adding a mass at xM leads to ω

2
1 = ω

2
10(1− εφ̄21),

ω22 = ω
2
20(1− εN 2), and ω3 = ω30. Here φ̄m ≡ φm0(xM )

and N ≡ [φ̄22+ φ̄23]1/2. To zeroth order in ε, φ1 = φ10,
φ2 = [φ̄2φ20+ φ̄3φ30]/N and φ3 = [φ̄2φ30− φ̄3φ20]/N .
These solutions are illustrated in fig. 2.
For a twofold degenerate mode, the frequency of one

mode is lowered due to particle adsorbtion. The other
mode will not change frequency since it has a nodal line
passing through the location xM . This allows a simple
test to see if more than one particle has been adsorbed.
A multi-particle adsorption results in frequency shifts for
both the initially degenerate modes.

Nonlinear response. – To study the nonlinear dyna-
mics of the system, we expand the scaled deflection u in
eq. (1) in the eigenmodes φm(x) of the linear problem

Fig. 2: (Colour on-line) Amplitudes for the three lowest
flexural eigenmodes as functions of drive frequency ω for weak
driving. Dashed lines: linear response without added mass. The
unperturbed mode shapes φ10, φ20 and φ30 are indicated on
the plaquettes where the locations of node lines antinodes are
shown. The modes φ20 and φ30 are degenerate. Solid lines:
linear response in the presence of an added mass. The mode
functions are φ1, φ2 and φ3 with shapes indicated on the
plaquettes. The blue dots show the position of the added mass.

(eq. (3) with ε �= 0) as u(x, τ) =∑∞m=1 um(τ)φm(x). This
yields a system of coupled Duffing equations for the mode
amplitudes um,

Dm(üm+ω
2
mum)+ γu̇m+

∞∑
rst=1

Amrsturusut = pm. (4)

HereDm = 1+ εφm(xM )
2 = 1+ εφ̃2m, Amrst =

∫
dx (∇φm ·

∇φr)(∇φs ·∇φt), and pm =
∫
dxφmpz. As ε� 1 we have

to lowest order in ε, D−1m ≈ 1− εφ̃2m ≈ ω2m/ω2m0:
(üm+ω

2
mum)+ γ[1− εφ̃2m]u̇m

+

∞∑
rst=1

Amrst[1− εφ̃2m]urusut = pm[1− εφ̃2m]. (5)

In what follows we will consider the weakly nonlinear
regime. The cubic nonlinearities in eq. (5) can be then be
treated using the method of averaging (Krylov-Bogoliubov
method). In this method, both the damping γu̇, the
driving pm, and the terms of order u

3 are of the same
order and small (see, for instance, ref. [24]). Formally, γ
can in this method be treated as a small parameter of a
perturbation expansion. To simplify the analysis, terms of
order O(εγ) can then be considered as higher-order terms
and omitted. Further, only drive frequencies close to ω10
and ω20 = ω30 are used and equations for the three lowest
modes suffice. These approximations give

ü1+ γu̇1+(ω
2
1 +5[Au

2
2+Au

2
3])u1+Au

3
1 = p1,

ü2+ γu̇2+(ω
2
2 +5[Au

2
1+Cu

2
3])u2+Bu

3
2 = p2, (6)

ü3+ γu̇3+(ω
2
3 +5[Au

2
1+Cu

2
2])u3+Bu

3
3 = p3,

where A= 5π4, B = 161π4/4+3π4φ̄22φ̄
2
3/(2N 4) and C ≈

41π4/5. The ultimate justification for the approximations
leading up to eq. (6) are the comparisons of the theoretical
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treatment of the system (6) with the numerical simulations
of the full equations (4).
For the external force of the form pz(x, τ) = p(τ)g(x)

where g obeys the symmetry relation g(x) = g(|x− 0.5|, y),
the source terms can be written as

p1(τ) =D1p(τ),

p2(τ) =D2p(τ) cos(πyM ),

p3(τ) =D2p(τ) cos(πxM ).

Here

D1 = 2

∫
dx sin(πx) sin(πy)g(x)

and

D2 = 2

∫
dx sin(πx) sin(2πy)g(x)√
cos2 πxM +cos2 πyM

.

In the expressions for the source terms pn, the form
of the driving force, g(x) is included in the coefficients
D1,2. We again stress that the exact form of g(x) is not
important, and need not be known, as long as it has
the symmetry property g(x) = g(|x− 0.5|, y). It is this
symmetry property which causes the same coeffecient D2
to appear in both the source terms p2 and p3. Hence,
any measurable quantity which depends only on the ratio
p2/p1 will thus be a function of only the particle position
xM . This will be used in the mass measurment scheme
presented below.

Mass measurement. – To determinine the position
of the adsorbed mass we will use the parameters r and s
defined as

r≡ cos(πyM )2/cos(πxM )2, (7)

s≡ 1− [cos2 (πxM )+ cos2 (πyM )]. (8)

The quantity s is related to the frequency shifts in the
linear response regime through

1− s≈ 1
10

ω220−ω22
ω210−ω21

. (9)

This parameter can thus be determined by applying a
weak harmonic drive of the form p(τ) = cos(ωτ) and
monitoring the location of resonances. Driving the system
harder, still with a single frequency, puts it in the non-
linear regime. However, for a single-frequency excitation
in the weakly nonlinear regime, the coupling between the
equations in (6) can be ignored and the system turns into
three uncoupled Duffing equations:

ü1+ γu̇1+ω
2
1u1+Au

3
1 = p1,

ü2+ γu̇2+ω
2
2u2+Bu

3
2 = p2, (10)

ü3+ γu̇3+ω
2
3u3+Bu

3
3 = p3,

Characteristic for a driven Duffing oscillator in the non-
linear regime is the bistability region in parameter space

Fig. 3: (Colour on-line) Amplitudes for modes 2 and 3 as
functions of drive frequency ω for a square membrane with an
added mass. Solid lines: nonlinear response. Dashed lines: linear
response (see fig. 2). By driving both modes into the nonlinear
regime, the parameter r (see eq. (11)) can be obtained from
the frequency shifts ∆ωc2 and ∆ωc3. The parameter r defines
the nodal line of mode 3. Both ωc2 and ωc3 are measured
by sweeping ω downwards. Solid curves were obtained by
numerical integration of eq. (4) with a mass fraction ∆M/M =
0.08% located at (xM , yM ) = (0.81, 0.20) (quality factor Q1 =
3000). Dash-dotted line: above the frequencies ωc2,c3 hysteretic
behavior can be observed by sweeping ω upwards.

where the system oscillates with either small or large
amplitude depending on the initial conditions. This leads
to the characteristic hysteresis loops seen in fig. 3.
The parameter r can be related to the frequency shifts

by noting that the ratio of the forces p2(τ) and p3(τ) in
eqs. (6) is given by

√
r. As shown in the appendix, the

edges of the hysteresis loops depend on the applied forces
as (ω2cn−ω2n)3 ≈ (9/4)2Bp2n (n = 2, 3) so that

r=

(
ω2c2−ω22
ω2c3−ω23

)3
. (11)

Hence, frequency measurements in the linear and non-
linear regimes can be used to determine r and s. From
r and s the position of the adsorbed particle can be
deduced (up to symmetry of the structure). Knowing the
position (in terms of r and s) allows calculation of the
mass responsivity R1 of the fundamental mode φ1 by
calculating the linear frequency shift

R1(xM )≈−2ω10 (s+ r)(1+ rs)
(1+ r)2

(12)

which gives the added mass ∆M = εM =R−11 M∆ω1.
The result presented here rests on three main equa-

tions, (9), (11) and (12). To obtain this result we have
made two crucial assumptions relating to the symmetry
of the system; the symmetry leading to mode degener-
acy and the symmetry of the gate. In any real situation,
these symmetries will not be exact and it is relevant to
question to what extent these symmetries will need to be
fulfilled. For a complete error analysis, one must analyze
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the detailed reasons for lifting the degeneracies. While
such a detailed analysis is beyond the scope of the present
work, some observations can be readily made. Firstly, the
most crucial symmetry is that of the membrane. For the
scheme presented here to be relevant thus puts constraints
on the intrinsic mode splitting ∆ω23 ≡ ω30−ω20. The
first of these constraints is ∆ω23� ω20−ω2. When this
inequality is fulfilled, the effect of an adsorbed particle on
the nearly degeneraty modes is larger than the effect of
imperfections leading to the intrinsic splitting. A second
criterion, which is less obvious, is that

∆ω23� ω3−ω2

This criterion means that mode 3 does not shift apprecia-
bly when the particle is added.

Narrow-band scheme. – Above, we have demon-
strated that frequency measurements can be used to
determine the position and mass of the adsorbed parti-
cle. We now show that, by exploiting the nonlinearities in
the system, this information can be obtained by measur-
ing only in a narrow frequency band near the fundamental
mode frequency ω1.
Equations (6) represent a system of three coupled

Duffing oscillators for the modes amplitudes un (n=
1, 2, 3). Here, the effective resonant frequency of a mode
depends not only on the oscillation amplitude of the
mode itself but also on the amplitudes of other modes
so that, for instance, ω21 increases by approximately
5A
∑
2,3〈u2k〉, where 〈·〉 denotes the time average over an

oscillation period. This allows us to choose to use the
fundamental mode to monitor the amplitudes of modes
2 and 3 as follows: In the first step, the system is excited
with a single-frequency signal p(τ) = pAcos(ωτ) and the
frequency ω1 of the fundamental mode in the linear
regime is determined. The frequency of this excitation,
and detection, is henceforth kept fixed at ω1. A second
excitation signal pB cos(ωτ) is superimposed on the signal
at frequency ω1. When the amplitude pB is low, the
excitation of mode 2 in the linear regime for ω= ω2 can be
detected as a reduction of the oscillation amplitude of the
fundamental mode. This is because the effective frequency
of the fundamental mode is shifted away from ω1 due to
the excitation of mode 2. Finally, when pB is increased, the
mode 2 is driven into the nonlinear regime and ωc2 can be
determined. Similarly, ω3 and ωc3 can be obtained. The
effect of the mode interaction between the fundamental
mode and modes 2 and 3 are shown in fig. 4.
At first hand one may object to this scheme by noting

that when the fundamental mode is strongly excited, it
affects the frequencies ω2 and ωc2. However, since both ω

2
2

and ω2c2 shift by the same amount, these shifts cancel out
(to first order) in the expression for r. The cancellation
occurs also in the expression for s if the resonant frequen-
cies ωn0 before mass adsorption are determined through
the same narrow-band scheme.

Fig. 4: (Colour on-line) Mode amplitudes obtained by numer-
ical integration of the system (4) using a gate signal
pAcos(ω1t)+ pBcos(ωt). Upper panel: amplitude of mode 1 as
function of variable drive frequency ω. Lower panel: ampli-
tudes for modes 2 and 3 as functions of drive frequency ω.
The frequency ω1 is fixed at the resonance of mode 1 while ω
is varied. Due to nonlinearity the modes couple. This causes the
resonant frequency of mode 1 to depend on the amplitudes of
modes 2 and 3. It will thus shift away from ω1 for finite ampli-
tudes of modes 2 and 3. Hence, by measuring the response of
mode 1, the responses of modes 2 and 3 can be probed by
measuring only in a narrow frequency band around ω1.

Measurement sensitivity and range. – We now
consider sensitivity and range. In the NEM-MS experi-
ments reported in the literature [9–18], the sensitivity is
usually taken as the smallest detectable mass. In our case
this occurs when the particle is adsorbed at the sweet
spot of the resonator at xM = (0.5, 0.5). This leads to
∆Mmin = 0.5(∆ω1/ω10)minM . The intrinsic limitation on
|∆ω/ω| comes from thermomechanical noise that deter-
mines how small resonance shift can be reliably detected.
If the detector band width ∆ω is narrower than the reso-
nance at ω1 we have |∆ω/ω|>Q−11 10−DRn/20 [11]. Here
DRn is the dynamic range of mode n and Q1 the quality
factor of the fundamental mode. For modes n= 1, 2, 3 we
find

DRn = 10 log10

[
Rn

Q1

(
T0

T1

)
T0L

2
0

kBT

]
,

where R1 ≈ 0.6 and R2 =R3 ≈ 0.3. For a device with
L0 = 1µm, Q1 = 3000 and ω1/(2π) = 2GHz we find
∆Mmin ≈ 12MQ−11 10−2.5 ≈ 0.5 zg at T = 300K. At lower
temperatures the sensitivity improves as T 1/2.
Thermal fluctuations also influence the determination

of the frequencies ωc2,c3. If the system performs low-
amplitude oscillations with ω close to ωc, thermal fluc-
tuations can cause transitions to the high-amplitude state
before ωc is reached. To accurately determine ωc we must
have W � ωc where W is the rate for transitions to the
high-amplitude state. This rate obeys W ∝ e−RET /(kBT )
where ET ≡ T 20L20/T1 [25]. As demonstrated in ref. [26],
the strong exponential dependence of W on system para-
meters can for NEMS lead to an enhanced sensitivity in
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Fig. 5: (Colour on-line) (a) Maximal values of ε≡∆M/M
due to limitations of first-order perturbation theory. Within
each contour, mass fractions up to εmax can be determined
with a 5% accuracy. (b) Contours of minimum εQ1 where
eq. (11) is applicable. E.g., in the shaded area eq. (11) is
valid for ε > 1.6/Q1. (c) Determination of randomly deposited
masses using numerical integration of eq. (4) for a membrane
with Q1 = 3000. The masses were uniformly distributed in
the range 0.02%< ε< 0.35%. Frequencies were determined
using an accuracy of |∆ω/ω| ≈ 0.5 · 10−4. The positions of the
deposited masses are shown by shaded symbols. The open
symbols were obtained using eqs. (9) and (11). The size of
the markers are proportional to ε. The dashed lines indicate
regions where |(ε− εexact)/εexact| is less than 2% or 10%.

the measurements of ωc2,c3 compared to the frequency
measurements in the linear regimes.
We now consider the range of masses that can be

reliably measured with the nonlinear mass determination
scheme presented above. This must not be confused with
the sensitivity discussed above which only considers the
minimum detectable mass change. The range includes both
upper and lower bounds on ε≡∆M/M . The upper bound
arises from omitting terms of O(ε2) and higher in the
relation ∆ω1 =R1ε+O(ε2). Figure 5(a) shows contours
on a quadrant of the unit square corresponding to the
membrane. Each contour encloses a region where the
relative error due to omitting terms of O(ε2) is less than
5%. For instance, masses with ε up to εmax = 0.1% can
only be determined with a relative error less than 5%
if they are located inside the εmax = 0.1% contour. The
upper bound can be improved upon by using numerically
calculated values of ∆ω1(ε,xM ) instead of perturbation
theory.
Specific to this scheme is that to determine r in eq. (11),

the regions of multivalued response for modes 2 and

3 must not overlap. Not only will an overlap lead to
frequency shifts (the jump in amplitude of mode 3 at
ω= ωc2 in fig. 3 comes from such a shift), but we have also
observed that it leads to richer dynamics, including Hopf
bifurcations with limit cycles [27]. The necessary criterion
for nonoverlap can be shown (using eq. (6)) to give a
lower bound εmin � 2.2[N (xM )]−2Q−11 . Figure 5(b) shows
contours of constant values of εminQ1. There, regions close
to the edges and the center are excluded. Because the
responsivity R1(r, s)→ 2ω10s+O([1− s]2) as s→ 1, the
exclusion of the central area is superficial. For example, if
we want to use the part of the membrane with 0.1<x,
y < 0.9, we have approximately the lower bound ε�
3Q−1. For a square membrane of 1µm side (M ≈ 760 ag),
the present scheme is applicable to masses larger than
∆Mmin ≈ 0.76 ag (assuming Q= 3000).
Numerical simulations. – To test the scheme we

implemented an automated mass measurment algorithm
which numerically integrated the system (4) with a
randomly deposited mass on the membrane. The algo-
rithm then determined the frequencies ω1,2,3 and ωc2,c3
and calculated ε using eqs. (9), (11), and (12). The results
are shown in fig. 5(c). The relative error in ε ranges from
0.1% to 98% with the larger errors near the edges where
ε is highly sensitive to position. Masses close to the edges
could be identified by overlapping responses for modes
2 and 3 in the nonlinear regimes and were discarded.
As can be seen, the errors in position of the remaining
particles are typically small.

Conclusions. – In conclusion, we have proposed a
scheme to determine both the position and mass of a single
particle adsorbed on a vibrating graphene membrane. We
have shown that by using bimodal excitation and exploit-
ing the nonlinear response of the resonator, measure-
ments can be restricted to a narrow frequency band near
the fundamental frequency. Considering that the typical
resonance frequencies of graphene membranes lie in the
GHz range, this simplification offers significant experimen-
tal advantages. These measurements provide information
about the resonance frequencies and the coefficients of the
nonlinear terms of the dynamic equations (Kerr constants)
of the high-order modes. In a resonator without special
symmetries, the mass and position of the adsorbed parti-
cle can be determined using the resonance frequency shifts
of three different modes —measured at a narrow frequency
band near the fundamental frequency. If the resonator is
square, it is possible to separate the single-particle adsorb-
tion events by watching out for changes of the resonance
frequency of the third mode. Using a gate with a proper
symmetry, it is possible to determine the mass and posi-
tion of a adsorbed analyte on the membrane by using
the resonance frequency shifts of modes 1 and 2 and the
frequencies of the lower-edge bistability regions of modes
2 and 3.
As an example we have studied a square membrane with

an area of 1µm2, eigenfrequency of 2GHz and quality
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factor of Q≈ 3000. For this membrane the sensitivity at
room temperature (minimum detectable mass change) is
below 1 zeptogram with a practical operating range in the
attogram region. This can be compared with, e.g., quartz
crystal microbalances that have mass sensitivities in the
nanogram range.
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Appendix

We here present, for completeness, a brief derivation of the
location of the bifurcation point on the so called backbone
curve for the Duffing oscillator. Similar derivations can
be found in most books on nonlinear systems (see, for
instance, [24]).
Consider a harmonically driven Duffing oscillator ẍ+

2γẋ+ω20x+κx
3 = p0 cos(ωt) and introduce slowly in time

varying action-angle variables r(t) and φ(t) such that x=
r sin(ωt+φ) and ẋ= rω cos(ωt+φ) . Substituting these
expressions into the differential equation and averaging
over the fast oscillations (see, for instance, [24]) gives the
system

ṙω = −γωr− p0
2
sinφ,

rωφ̇ =
ω20 −ω2+(3κ/4)r2

2
r− p0
2
cosφ.

The frequency response curve is found by solving for the
stationary regime ṙ= φ̇= 0. This amounts to solving the
frequency response equation

4γ2r2ω2+ r2
[
(ω20 −ω2)+

3

4
κr2
]2
= p20. (A.1)

We seek the solution when the bifurcation occur. This is
exactly the point where ∂ω

∂r
= 0. Using this equality while

taking the derivative with respect to r in the frequency
response equation (A.1), leads to an equation for the
critical frequency ωc (considering here the limit γ→ 0)
for transition from the low- to large-amplitude solution

[
(ω20 −ω2c )+

3

4
κr2
]
+
3

2
r2κ= 0.

Inserting the solution for r2 in eq. (A.1) (still using γ = 0)
gives

p20 =

(
4

9

)2
(ω2c −ω20)3
κ

.
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