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Abstract

An IP-STB is a small and stand alone embedded system which is able to provide a series of 
advanced entertaining services. However, like an ordinary embedded system, an IP-STB still 
has to bear with extremely main memory constraints and no disk space. Normally, advanced 
features provided by an IP-STB require a large amount of limited main memory, therefore 
how to maintain a small static memory footprint and low memory usage becomes very 
important.

Libraries composed of shared code contribute to a significant amount of memory 
consumption. Libraries can be categorized into two types: static libraries and shared libraries. 
Both of them have their pros and cons in terms of memory usage and system performance. 
However, there is no existing generic method to determine when and why to choose one type 
over the other one.

To address this problem, a series of tools were implemented to give a quantitative analysis of 
how different types of libraries affect the system memory usage. Besides, their advantages and 
disadvantages were discussed and compared. In addition to the above, the optimization of 
shared libraries was also investigated. 
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1  Introduction

1.1  Background

An ordinary set-top box is a device that connects to a television to display digital TV and 
receives digital signal from external sources such as satellites, cables and antennas. An IP 
based set-top box (IP-STB), as its name implies, connects and receives digital signals from IP 
based networks. Taking full advantages of broadband networks, an IP-STB is able to provide 
a range of advanced services such as video on demand (VOD), time-shifting video, muliticast 
TV, as well as some Internet applications, including web surfing and so on. 

The IP-STB used in this thesis is a small and stand alone embedded system based on the 
Renesas SH4 architecture with a limited amount of main memory (RAM) and flash memory, 
and lack of hard drive which means that no swap space is available. The software of the IP-
STB (called KreaTV) is based on a Linux kernel with several processes running on top. Some 
of them are hardware specific but most of them are unaware of the underlying hardware and 
are Linux-generic and cross-compiled for all architectures. 

1.2  Problems description

Despite the above hardware limitations, there is usually a requirement of heavy-weight user 
interfaces on top of web browsers or Java virtual machine which requires a large amount of 
limited memory, therefore it is important to maintain low memory usage: the more memory 
that can be saved, the more room there is for additional application functionality and capacity. 

Shared code that makes up libraries contributes to a significant amount of the memory 
consumption, therefore, it is desirable to find a solution to optimize the use of shared code and 
minimize its memory footprint.

1.3  Objective

According to how shared code is shared among different applications, normally, libraries are 
categorized into two types: static libraries and shared libraries. Both of them have their pros 
and cons in terms of memory usage and system performance.

The main goal of this thesis work is to analyse shared code with respect to memory usage, and 
to propose a generic method that explains when and why to choose one type of libraries over 
the other one. 

The secondary goal is to investigate the current GNU compiler and linker optimization 
options, and to propose a better compilation and linking strategy to generate faster and smaller 
code. 
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1.4  Glossary

ELF
Executable and Linking Format, is the de-facto standard object file format in 
Linux.

DRAM
Dynamic Random Access Memory

GNU
GNU is a recursive acronym for "GNU's Not Unix!". Programs released under 
the auspices of the GNU Project are called GNU packages or GNU programs. 

GOT
Global Offset Table, is an ELF data structure used to hold absolute virtual 
addresses of imported functions and variables.

IIP
Installation Package, is a Motorola software package used to store software 
and configurations.

PIC
Position Independent Code, is designed to load code in arbitrary location in 
the virtual memory without modification of the text segment of code. 
Typically, used for shared libraries.

PLT
Procedure Linkage Table, is an ELF data structure used to redirect PIC 
function calls to GOT.

Pss
Proportional Set Size, is a metric which reports the amount of physical memory 

that is used by a process. It is calculated by dividing each page by the number of 
processes sharing it.

Rss
Resident Set Size, is a metric which reports the amount of virtual memory that is 
currently marked as resident in RAM.

RISC
Reduced Instruction Set Computing, is a CPU design philosophy with few and 
simple instructions.

Squashfs
Squash file system, is a read-only compressed file system for Linux. 
Typically, used in embedded systems.
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1.5  Thesis organization

The remainder of this thesis is organized as below:

Chapter 2 provides a brief description of the hardware and software of the IP-STB as well as 
characteristics of tmpfs. 

Chapter 3 gives a general description of libraries and tools.

Chapter 4 describes our methodology of how to measure the system memory usage and how 
to determine the impact on the run-time memory usage from static and shared libraires.

Chapter 5 gives a specific disscussion of advantages and disadvantages of static and shared 
libraries. A comparison of two types of libraries is provided. In addition, the topics of how to 
remove unused material and the benifits of position independent code are mentioned as well.

Chapter 6 concludes the thesis along with a discussion of future work.
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2  The System

2.1  Hardware

The specific IP-STB used in this project is the 1920-9C version of Motorola VIP1900 series. 
The microprocessor used by this IP-STB is a RISC processor with integrated TV video 
processing and a MPEG decoder. It has 4 MB of NOR flash memory that is used for storing 
firmware and configuration information. 32 MB of NAND flash memory is used for storing 
the boot image. The size of the dynamic random-access-memory (DRAM) is 128 MB [1].

The interaction between users and the box is done through a remote control, in some 
configurations a keyboard is also supported.

2.2  Software

The KreaTV software is mainly written in C++ and based on open source software with Linux 
as the operating system kernel and runs on multiple hardware and architectures, e.g., the 
multiple IP-STB series.  The architecture of software is designed for a hardware environment 
with very limited resources (memory and CPU). It is also designed for a specific user 
environment (the TV environment) and specific applications (broadcast television, video on 
demand, music, e-mail and chat) [2].

Due to the hardware limitations, the size of software becomes crucial. Several technologies 
and software specialized for embedded systems are employed to optimize software size. For 
instance, BusyBox [3] is utilized. BusyBox provides more than 70 core utilities within one 
application. Many of these utilities are reduced version with limited features, but still 
sufficient for most common needs. It can also be compiled to only contain necessary utilities 
that you select. Compression is another efficient technology to reduce the size of software, 
therefore it is widely used typically in the construction of boot images. 

2.3  IP-STB installation packages

Applications and libraries as well as configuration files are organized and placed into different 
IP-STB installation packages (IIPs) according to different software modules. An IIP is a gzip 
compressed tar archive which could be installed in a boot image at build-time or run-time. An 
IIP may depend on another IIP, therefore, the dependencies between IIPs must be specified in 
order to make sure all IIPs are installed in the correct order. Different IIPs are combined to 
form a complete boot image [2].

2.4  Boot images

An boot image consists of a Linux kernel image and a root disk image (a tmpfs image) which 
is a gzip compressed cpio archive. A boot image itself is signed and encrypted, moreover, it is 
compressed as well. The usr_bin, usr_lib and usr_appliction folders in the /usr directory of the 
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root file system are compressed respectively into three squash file systems: usr_bin.sqfs, 
usr_lib.sqfs and usr_applications.sqfs. The boot image structure is shown as below:

Figure 1. The boot image structure

2.5  Boot procedure

There are several methods to boot an IP-STB. In a live deployment, an Infocast Server is 
commonly used to transmit boot images to IP-STBs via multicast, however this is not the 
most convenient way when you are developing and testing IP-STB software in a lab 
environment, because it requires you to modify the Infocast Server settings. In this project, 
another easier method, TFTP booting is chosen. A TFTP server must be configured in the 
workstation in order to enable TFTP booting. 

A boot image is downloaded into the IP-STB's flash memory from the workstation. Then the 
boot loader starts to execute, decrypts and decompresses the boot image, and loads the Linux 
kernel image and root disk image into RAM. Once Linux boots up, it decompresses and 
unpacks the root disk, and then mounts it as the root file system. The squash file systems are 
mounted as well.

2.6  File systems

In this system, tmpfs is used as the final root file system. Tmpfs is supported by Linux kernel 
from version 2.4 and up [4]. Tmpfs is a file system which keeps all files in virtual memory. 
Tmpfs puts everything into the kernel internal caches and grows and shrinks to accommodate 
the files it contains and is able to swap unneeded pages out to swap space. Since tmpfs lives 
completely in the page cache and on swap, all tmpfs pages currently in memory will show up 
as cached [5].
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As we mentioned above, squash file system (Squashfs) is used as well. Squashfs is a 
compressed read-only file system for Linux [6]. Squash file system provides greater 
compression ratio and performance in comparison with other read-only compressed file 
systems. Besides, since the squash file system is read-only, using it can prevent malicious 
users from compromising system security effectively.

There are two facts which have close connections to memory usage and must be pointed out. 
Since tmpfs is a RAM-based root file system, the size change of applications and libraries 
would affect memory usage directly. In other words, the larger the file becomes, the more 
memory it will occupy. Another important fact is that when a process attempts to access a 
page which resides in the squash file systems, the appropriate page is decompressed and 
loaded into RAM. Because the squash file systems have already resided in RAM, this 
operation implies that there are two copies of each referenced page from the squash file 
systems in RAM: one compressed copy and one decompressed copy. We must always keep 
these two facts in mind. Figure 2 shows the process of populating and mounting file systems.

Figure 2. The process of populating and mounting file systems
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3  Libraries and tools

3.1  ELF

The Executable and Linking Format was originally developed and published by UNIX System 
Laboratories (USL) as part of the Application Binary Interface (ABI) [7]. Currently, ELF is 
the de-facto standard object file format in Linux. According to different usages, ELF object 
files can be categorized into the following three main types:

1. A relocatable file holds code and data suitable for linking with other object files to 
create an executable or a shared object file. Compiling a source file generates a 
relocatable file. This file has the file extension “.o”.

2. An executable file holds a program suitable for execution. Normally, this kind of file 
does not have a file extension.

3. A shared object file holds code and data suitable for linking in two contexts. First, the 
link editor may process it with other relocatable and shared object files to create 
another object file. Second, the dynamic linker combines it with an executable file and 
other shared objects to create a process image. The file extension of a shared object 
file is “.so” [7].

Object files are binary representations of programs which are intended to run directly. Object 
files participate in both program linking and execution processes. Corresponding to these two 
activities, there are two parallel views of object files' contents: linking view and execution 
view. The following figure shows these two views.

Figure 3. Linking view and execution view [7]
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From figure 3 we can see, the ELF header resides in the beginning of an object file. It holds 
information about file's organization and identification.  The program header table, if present, 
tells the system how to create a process memory image. The section header contains 
information about various sections, such as lengths of sections, section names, access 
permissions and so on. A section is the smallest indivisible unit that can be processed within 
an ELF file. Each section contains a single type of information, such as program instructions, 
data, symbols, relocation information and so on. A segment is a collection of sections, it is the 
smallest indivisible unit that can be mapped into the memory image of a process. Loadable 
segments such as the text segment and data segment must be mapped. There are dozens of 
sections within an ELF file, some of them contain debug information can be stripped away for 
production, here, we only select and explain the following important sections:

.text
  This section holds actual executable instructions.

.bss
This section holds uninitialized data such as uninitialized global variables and 
local static variables. It occupies no file space. When a program starts to run, 
this section will be initialized with zero.

.data
This section holds initialized data such as initialized global variables and local 
static variables. If the initial value of data is equal to zero, this data will be 
placed in the .bss section.

.rodata
This section holds read-only data such as string constants.

.dynsym
This sections holds the dynamic linking symbol table which contains symbols 
participating in dynamic linking.

.dynstr
This section holds strings that are needed in dynamic linking. These strings 
represent the names associated with entries of dynamic linking symbol table.

.plt
This section holds the procedure linkage table. The PLT entries convert 
position-independent function calls to absolute virtual addresses.

.got
This section holds the global offset table. The GOT entries contain absolute 
virtual addresses of each imported variables and functions.

.gnu.hash
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This section holds the GNU style hash table which is used to facilitate symbol 
look up. 

.rela.dyn
This section holds relocation records correspond to imported variables.

.rela.plt
This section contains relocation records correspond to imported functions.

 
3.2  Static libraries

To improve modularity and reusability, normally, commonly used functions are included in 
libraries. The traditional library is the static library which is a collection of concatenated 
object files of similar types. A static library is stored on disk as an archive (.a file). There is an 
index which provides an association of symbols with the object files that supply symbol 
definitions in a static library. This index will be used by the link-editor (ld) to speed up 
symbol look up. The ranlib command can be used to construct this index, it is equivalent to 
passing the -s option to the ar command. 

When a static library is involved in linking, by default, the link-editor performs selective 
extraction [7] of object files in the static library. It passes through the library iteratively, and 
only extracts the object files which contain symbol definitions of undefined symbols in the 
link-editor's internal symbol table. The link-editor concatenates all program data sections such 
as .text, .data, and .bss sections of selected object files to form new sections in the later output 
object file. The link information sections such as .symtab, .synstr sections and so on will be 
used by the link-editor to modify other sections. These information sections are also used to 
generate new link information sections in the later output object file. Figure 4 shows the 
process of linking object files against a static library as well as generating an executable file 
and a shared library.

Figure 4. Linking process of static libraries
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3.3  Shared libraries

In order to address resource waste and maintenance problems with static libraries, shared 
libraries are utilized by most operating system. The idea behind shared libraries is to have 
only one copy of commonly used functions in physical memory, different applications can 
share these functions instead of having their own copies. Shared libraries are often referred to 
as shared objects. 

A shared library is an indivisible unit that is created from one or more relocatable object files. 
When a shared library is involved in linking, unlike linking against a static library, the shared 
library's program data sections and most of the link information sections will not be used by 
the link-editor. However, some other information will be generated to record the shared 
library as a dependency of the output object file. This notable difference between linking 
against static and shared libraries indicates that the size of executable files can be reduced 
significantly by linking against shared libraries, thus disk space is saved. Another primary 
difference is that the actual linking process of a shared library is carried out at run-time by the 
run-time linker (ld-linux.so) which itself is a shared library. The run-time linker is responsible 
for loading shared libraries and binding symbols to applications before the applications gain 
control from operating systems to execute. The run-time linker can also be called during the 
process of an application's execution to load additional shared libraries by using dlopen 
function. Symbols provided by these shared libraries can be bound by using symbols dlsym 
function, and this process is often referred to as dynamic loading. Once a shared library is 
loaded in physical memory, it's functions and variables can be shared by all processes that 
reference it, therefore the amount of used physical memory can be reduced.

To build an efficient shared library, a special option (-fPIC/-fpic) should be passed to the 
compiler. The benefits of using this option will be mentioned in the a section in detail. Figure 
5 shows the process of linking object files against a shared library as well as generating an 
executable files and a new shared library.

Figure 5. Linking process of shared libraries
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3.4  Linux memory mapping

During the initial start-up of a program, the contents of its ELF executable file must be 
mapped into the corresponding process' virtual address space by the Linux kernel. This is also 
true for any shared library that the executable file has been linked to. However, the memory 
mapping of shared libraries is performed by the run-time linker instead of the kernel. The 
address space of a process is represented by a mm_struct data structure. The contents of the 
address space are defined by a list of vm_area_struct structures, each structure represents a 
virtual memory region corresponding to a loadable segment of an ELF object file: the text and 
data segment. For reason of efficiency, both the initial address and the length of a memory 
region must be a multiple of 4096 bytes, which is the default Linux page size.

3.5  GNU compiler and binutils

GCC is the GNU Compiler Collection, which in our version currently contains compilers for 
C and C++. GNU binutils is a collection of binary utilities used for manipulation of object 
files. The compiler and binary utilities included in the KreaTV toolchain is a cross platform 
toolchain. It is built to run on a normal Linux PC and is able to generate binaries for various 
IP-STB series. Here we only list the following binary utilities which are useful for our project.

ld
The GNU link editor

as
The GNU assembler

ar
This utility is used for creating, modifying and extracting from archives. It can 
be used for generation of static libraries.

c++filt
This utility is a de-mangling filter for C++ symbols.

ranlib
This utility is used for creating indexes for archives.

readelf
This utility is heavily used in our project. It is used to display contents of ELF 
object files. Combining with various options, a lot of useful information such as 
the ELF header, sections, symbols and so on can be read.

size
This utility tells the text segment size, data segment size, .bss section size 
and total size of an object file. Note, the data segment in this context is subtly 
different from the notion we mentioned previously. In this context, the size of 
.bss section is listed separately, therefore, the size of the data segment is equal to 
the size of former data segment minus the size of .bss section.
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3.6  The /proc file system

The /proc file system is a virtual file system that resides in RAM. It does not contain any 
“physical” files (most of them are zero byte in size) but very valuable run-time system 
information such as the state of the kernel, the state of individual process and so on. In this 
project, two of them are utilized. The first file is /proc/meminfo that reports plenty of 
information about the current RAM usage on the system. Figure 6 is a snapshot of the output 
from a sample /proc/meminfo file.

MemTotal: 71656 kB

MemFree: 10032 kB 

Buffers: 8068 kB 

Cached: 35680 kB 

SwapCached: 0 kB 

Active: 12880 kB 

Inactive: 37040 kB 

SwapTotal: 0 kB 

SwapFree: 0 kB 

Dirty: 0 kB 

Writeback: 0 kB 

AnonPages: 6188 kB 

Mapped: 13004 kB 

Slab: 5140 kB 

Sreclaimable: 1132 kB 

Sunreclaim: 4008 kB 

PageTables: 456 kB 

NFS_Unstable: 0 kB 

Bounce: 0 kB 

CommitLimit: 35828 kB 

Committed_AS: 116152 kB 

VmallocTotal: 507880 kB

VmallocUsed: 13352 kB 

VmallocChunk: 493160 kB 

Figure 6. Information reported from a /proc/meminfo file

From figure 6 we can see that, a lot of memory details are revealed. Here, we only interpret 
the most important metrics.

MemTotal
Amount of usable RAM (i.e. total amount of RAM minus a few reserved 

         bits and the kernel binary code).
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MemFree
Amount of RAM unused by the system, in kilobytes.

Buffers
Relatively temporary storage in RAM for raw disk blocks. After the Linux 
kernel version 2.4.10, buffers do not exist any more. In fact, they have been 
merged into page cache [8].

Cached
Cache in RAM for pages read from disk. Buffers and swap cache are excluded.

As we have mentioned previously, there is no swap space available in our system, therefore 
swap associated metrics such as SwapCached, SwapTotal and SwapFree are equal to zero. 

Another file is /proc/PID/smaps that displays information of memory regions of a program 
and its dependent shared libraries from the process' virtual address space as well as specific 
physical memory consumption information. The PID indicates the specific process id. For 
each process, a series of information is shown as the following: 

00400000-00427000 r-xp 00000000 07:00 67 /usr/bin_ro/procman 

Size:                156 kB

Rss:                 140 kB

Pss:                 140 kB

Shared_Clean:          0     kB

Shared_Dirty:           0     kB

Private_Clean:       140 kB

Private_Dirty:         0 kB

Referenced:          140 kB

00437000-00438000 rw-p 00027000 07:00 67 /usr/bin_ro/procman 

Size:                  4 kB

Rss:                   4 kB

Pss:                   4 kB

Shared_Clean:          0 kB

Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:         4 kB

Referenced:            4 kB

...

29580000-29589000 r-xp 00000000 07:01 27 /usr/lib_ro/libemio.so 

Size:                 36 kB

Rss:                  32 kB

Pss:                  10 kB

Shared_Clean:         32 kB
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Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:         0 kB

Referenced:           32 kB

...

Here, we omit some parts of the output, the rest are similar to what is shown. As we can see, 
for each mapping, there are a few lines of information. The first line shows the virtual 
memory address, access permission, offset into the virtual memory address, device number, 
inode number and the path name of the associated file for this mapping. The Size indicates the 
amount of virtual memory for this mapping, commonly another term, the Vss (virtual set 
size), is used. The Rss (resident set size) reports the amount of virtual memory that is 
currently marked as resident in RAM, in other words, the amount of used physical memory 
for this mapping. The Rss can be misleading for shared pages, because it counts the amount of 
shared pages as if there was only a single process using them. For example, if three processes 
share 30 pages of a shared library, this shared library will contribute 30 pages to the Rss that 
is reported for each of these three processes. The Pss (proportional set size) addresses this 
problem well. It is calculated by dividing each shared page by the number of processes 
sharing it, therefore, for the previous example, the shared library will only contribute 10 pages 
to the Pss instead. Moreover, when one of these processes is terminated, these 30 pages will 
be proportionally distributed to the Pss of the remaining two processes that are still using the 
shared library. The Pss is an extremely useful metric, because it presents an accurate method 
to measure the memory usage of each process. If we sum up all the Pss values from a running 
process' smaps file, we are able to find out how much physical memory this process is using 
currently.  The Pss was introduced since the Linux kernel version of 2.6.25 [9]. However, the 
kernel of the IP-STB did not support this metric initially. Fortunately, applying a Pss patch to 
the kernel is quite easy. The remaining lines show the number of clean and dirty shared pages 
in the mapping, and the number of clean and dirty private pages in the mapping.  The 
Referenced indicates the amount of memory currently marked as referenced or accessed. 

The mapping with r-xp access permission (i.e., read, execute and private permission) 
corresponds to the text segment of the executable file or shared library. Likewise, the mapping 
with rw-p access permission (i.e., read, write and private permission) corresponds to the data 
segment of the executable file or shared library.
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4  Measuring memory usage: methodology

In order to analyse how static and shared libraries affect physical memory usage and which 
type of libraries is preferred, the most efficient and straightforward method is to convert a 
given library, either change a static library to a shared library, or convert a shared library to a 
static one, then link all associated applications and shared libraries which have dependencies 
on the original given library against the newly created library. Next, boot up the system and 
record memory consumption. Last, observe and compare memory usage variations, then 
determine which version is more memory efficient for the given library.

4.1  Prerequisites

Before we set our hands to measure physical memory usage, there are three essential 
prerequisites: 

First, we must find a way to list the dependency relationship among applications, static 
libraries and shared libraries. In practice, almost every application has dependencies on 
various static libraries and shared libraries. A shared library sometimes also has its own 
dependencies as well, it may need functions and variables that are defined in other shared 
libraries or static libraries.

Second, accurate memory usage statistics must be obtained to serve as the benchmarks for 
comparison. In the absence of  accurate benchmarks, it is impossible to correctly assess the 
effect on physical memory usage by converting libraries.

Third, how to measure physical memory usage accurately is the most important issue. It is 
closely connected with the second prerequisite.

We will describe how to address these prerequisites in the following subsections respectively.

4.2  Listing dependencies

When we compiled the whole source file tree, by passing the -t option to the link-editor, the 
link-editor would print the name of files it processed when it was linking an application or a 
shared library. Therefore, we could observe which shared libraries and static libraries were 
used by each application or shared library. The whole compilation process took several hours 
to complete and the tremendous output from the link-editor was saved in a log file. The log 
file contained a hundred thousand lines of information (both linking and other building 
information), obviously, it was quite time consuming and error prone to analyse log file 
manually. Consequently, a Bash script was written to facilitate the analysis and generate a 
dependency report automatically. The resulting dependencies were listed and sorted in the 
form as below:

[library name]
[list of files that use the library]
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lib1.a
lib2.so
lib3.so
exe1
...

lib1.so
lib2.so
lib4.so
exe2
...

The libraries were divided into two categories (shared and static libraries). For each category, 
libraries were sequenced in descending order of the number of files that used them. As a 
result, it was very convenient to find out which shared or static library was used by the most 
number of files.

4.3  Measuring memory usage

As we noted above, the second and the third prerequisite are closely connected. Once the issue 
of how to measure memory usage is solved, then accurate memory usage statistics can be 
obtained. First of all, the term of a stable system state must be defined, because any change of 
file size or running additional service will affect the system memory usage statistics directly. 
In order to eliminate the effect of running additional service, the definition of the stable 
system is: after the system boots up,  the system becomes stable with only the default 
processes running on it. All the benchmarks must be measured from the initial stable system. 

Initially, the measurement of memory usage was performed from the whole system's point of 
view: the value of the metric MemFree of the /proc/meminfo file from the original system 
served as the benchmark for comparison. However, in the initial stage of implementation, this 
benchmark was proved to be problematic and even misleading. The following chart shows the 
unstable values of MemFree measured eight times in the same time interval.

Figure 7. Variations of the MemFree values
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Due to its inaccuracy, the MemFree was not the desired candidate for the benchmark. Another 
approach was tested, there was a running background daemon which monitored the amount of 
available physical memory, once this amount reached a pre-set threshold, it would trigger the 
system to reboot. The program allocmem which allocated a certain amount of physical 
memory every millisecond was used to eat up the available physical memory. In theory, as 
soon as the system crashed, the amount of the allocated physical memory should be equal to 
the total amount of available physical memory minus the threshold. Therefore, as long as the 
amount of the allocated physical memory was constant, it was qualified for becoming to the 
benchmark. Unfortunately, after a lot of tests, this amount was proved to be unstable and 
unreliable as well. Consequently, this approach was discarded. Since there were not any 
feasible methods to measure physical memory from the whole system's perspective, we were 
forced to switch our train of thought to perform the measurement from the process' point of 
view. As we mentioned in the previous chapter, the sum of all the Pss values from a running 
process' smaps file (/proc/pid/smaps) is an accurate representation of the physical memory 
usage for a single process, more importantly, the statistics from the /proc/pid/smaps file were 
verified to be stable. Besides, the number of default processes is fixed. Thus, the total amount 
of physical memory used by the default running processes can be obtained by summing up all 

the sum of Pss of each process, i.e., �
k�1

n

��
i�1

n

Pssi �k Here, k indicates the number of default 

processes, i indicates the number of Pss values from a single process. It is noted that the 
original Pss is calculated by dividing each shared page by the number of processes sharing it, 
in order to keep division error low, the PAGE_SIZE (1000000000000 B) is left shifted 12 bits 
of error bits before the division, however, the resulting Pss is right shifted of 22 bits (12+10) 
to align with 1 kB which is the minimum output unit of /proc/pid/smaps. 22 bits of precision 
are thrown away merely for alignment. In order to keep division error as low as possible, the 
original Pss was modified. Instead of 22 bits, 12 bits was thrown away, this gave us the real 
byte count for Pss. The specific code of the modified Pss patch is shown in the appendix A.

On the other hand, the conversion of libraries will affect not only the process' memory usage 
but also the size of associated executable files and shared libraries; accordingly, the size of the 
root disk which is loaded in RAM will be affected as well. To be more specific,  in the case of 
changing a static library to a shared library, the size of associated files will increase. Besides 
this shared version of the library must be available at run-time which implies it must be 
copied to the root disk; in the case of converting a shared library to a static library, the size of 
associated files will decrease and the original shared library must be removed from the root 
disk, since it becomes useless. In addition, all the user space files are compressed and placed 
into the squash file systems in the root disk. Consequently, the impact on memory usage from 
file size changes will be reflected on the difference between the size of initial root disk and 
new one. The most precise and convenient method to get the size of root disk is finding the 
size of tmpfs by means of the df command on the system. As we noted before, the root disk is 
mounted on the system as a tmpfs, therefore, the size of tmpfs must be equal to the size of the 
root disk. The df command used to show the file system disk space usage in kilobytes, in our 
case, it shows the RAM usage of file systems.

Based on the above analysis, the memory usage can be measured through the following 
formula from the system:
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tmpfs���
k�1

n

��
i�1

n

Pssi�k �

Here, the tmpfs denotes the size of tmpfs measured from the initial stable system. 
Accordingly, the benchmark can be obtained by means of the above formula on the initial 

stable system, i.e., tmpfsinit���
k�1

n

��
i�1

n

Pssi�k�init

With the benchmark on hand, another formula was proposed to determine which version of a 
given library was more memory efficient. It is shown as below:

tmpfsinit���
k�1

n

��
i�1

n

Pssi�k�init��tmpfs new���
k�1

n

��
i�1

n

Pssi�k�new �

Each time, the subtrahend is re-measured after every conversion of a given library. If the 
difference is positive, this means the new version of the library is more memory efficient than 
the original one, otherwise, the original one is preferred. Two scripts were written to facilitate 
analysis. The fist script is mem_usage_gen.sh used to record the /proc/pid/smaps files and 
generate a memory usage report on the system. Another script is mem_cmp_gen.sh used to 
compare the new memory usage report with the benchmarks, then generate a comparison 
report in the form as below:

Process Vss(kB) Rss(kB) Pss(B)

process1 xxx xxx xxx
 xxx         xxx         xxx

...
process(n) xxx        xxx xxx

  xxx xxx xxx

we lost/gain xx kB memory.

4.4  The specific procedure of measurement

In the case of a static library, the specific procedure of measurement can be summarized into 
the following steps:

1. Choose a static library, then recompile the source codes composing the library, last, re-
link them to a shared library.

2. Re-link all applications and shared libraries which depend on this static library.

3. Copy the new shared library to an IIP, since it must be available at run-time, and then 
rebuild the rest of associated IIPs which contains the changed applications and shared 
libraries, next construct a new boot image and load it into the IP-STB.

4. Set up a telnet connection to the IP-STB, run the mem_usage_gen.sh script with the 
library name as an argument to generate a memory usage report with the suffix of the 
library name.
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5. Copy the memory usage report from the IP-STB to the workstation, then run the 
mem_cmp_gen.sh , pass the file name of benchmark as the first argument and the file 
name of the new memory usage report as the second argument to generate a 
comparison report.     
  

In contrary to a static library, there is a small difference in step 3 when we convert a shared 
library to a static one. Instead of copying a new library to an IIP, the original shared library 
contained in the IIP must be removed. The specific results of converting libraries are shown in 
appendix B.
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5  Discussion

5.1  Shortcomings of static libraries

There is a common misunderstanding about how the link-editor concatenates program data 
sections. People always take it for granted that the link-editor only copies referenced symbols 
into the output object file. However, as we mentioned above, concatenation of all program 
data sections indicates that if the selected object file contains both referenced and non-
referenced symbols (unused symbols), unfortunately, the code and data associated with non-
referenced symbols will also be copied into the later output object file. This unused data not 
only bloats the output object file but also puts an extra burden on the link-editor. Several 
experiments were carried out in order to verify the above viewpoint. Each sample library was 
built into two versions: one static version and one shared version. By linking the sample 
executable file against static and shared versions of a sample library respectively, two 
versions of a sample executable file were obtained. Figure 8 shows the symbol table entries 
which associated with the static version of a specific sample library from the static version of 
a specific sample executable file. Figure 9 shows the symbol table entries which associated 
with the shared version of the same sample library from the static version of the sample 
executable file. Obviously, the static version of the sample executable file contains much 
more symbols than the shared version. To be more precisely, the static version contains all 
symbols that are defined in the TEdidParser.cpp source file.

Figure 8. Symbol table entries from the static version of the executable file
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Figure 9. Symbol table entries from the shared version of the executable file

On the other hand, in case of each executable file linked against a static library, it must have 
its individual copy of shared code, the duplicated code will lead to a significant resource 
waste in terms of disk space and physical memory. Imagine in a common Linux system, if 
each object file has its own copy of printf function of the C library,  the required amount of 
disk space will increase dramatically. Moreover, it may take up more physical memory 
typically where there are a number of concurrently running processes using common 
functions of a static library.  Another disadvantage of static libraries is that whenever a static 
library is modified or updated, everything linked against this static library must be recompiled 
in order to make the changes take effect. This will bring a lot of troubles to the product 
update, installation and release. For instance, one program consists of 20 modules, each of 
them is 1 MB, whenever any module is updated, a user has to retrieve this 20 MB program.

5.2  Shortcomings of shared libraries

Despite the disadvantages of static libraries, shared libraries are not a panacea to shared code 
issues. There are still several shortcomings of them. First, there is usually a trade-off in 
performance, as we mentioned above, shared libraries are loaded at run-time by the run-time 
liker, resolving and relocating symbols at run-time will lead a considerable one-time 
performance degradation when a program starts up, since the program can not gain control to 
execute until the run-time linker completes its tasks. Second, although the text segment of a 
shared library can be shared by multiple processes, the data segment is private to each 
individual process. Thus each process has to maintain its own copy of the data segment of a 
shared library in RAM. Ordinarily the data segment is relative small. However, since the 
default page size is 4 kB, which means the minimum physical memory requirement is 4 kB 
due to the page alignment regardless how small the data segment it is. Third, there is a 
potential memory run-time overhead of using a shared library. During our implementation 
phase, from the /proc/pid/smaps files we observed that: when converted a static library to a 
shared one, the decrease of the Rss values of the text segments of associated processes were 
quite smaller than the Rss values of text segments of the newly introduced shared library, or 
in reverse conversion, the increase of the Rss values of the text segments were still quite 
smaller than the Rss values of the original shared library. It implies that a considerable 
amount of other information rather than the actual instructions (contained in the text section) 
of a shared library must also be loaded in RAM while the run-time linker loads it. Several 
experiments were carried out to make this run-time overhead more visible. The most 
straightforward method is to link an unused shared library against an executable file (the link-
editor will record this shared library as a dependency of the executable file), and then execute 
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this executable file and check the Rss value of the text segment of the unused shared library 
from the /proc/pid/smaps of the process, since neither functions nor symbols of the chosen 
library will be used by the running process, this Rss value should be sufficient to represent the 
amount of the run-time overhead. The following chart shows the Rss values and the size of 
the sample shared libraries.

Figure 10. The size of run-time overhead and shared libraries

From the above figure we can find that the size of run-time overhead is considerably large in 
most cases. Besides, it is not in direct proportion to the size of shared libraries. Particularly, in 
comparison to the share library libhalcppclient.so which shows the 136 kB run-time overhead 
in 260 kB text segment, the size of the text segment of the shared library libhalclient.so is 500 
kB, while its run-time overhead is only 64 kB. It is extraordinarily difficult to figure out the 
exact pages which compose the run-time overhead by means of the existing Binutils tools. 
However, according to the missions of the run-time linker during the application's startup 
phase, it is able to derive that several sections should be partially or entirely loaded in 
physical memory. Because, once the run-time linker has loaded all the dependencies required 
by an application, it processes each object file and performs all necessary relocation, symbol 
lookup and symbol resolution as well as application and dependencies initialization. The 
whole loading, relocation and initialization process proceeds in the following steps:

1. All the loaded objects make up a symbol lookup scope for the run-time linker. The 
run-time linker maintains a chain of symbol tables with pointers to its own dynamic 
symbol table and application's dynamic symbol table as well as all loaded shared 
libraries' dynamic symbol tables.

2. For each imported variable symbol, the run-time linker checks the associated 
relocation record in the executable file's .rela.dyn section (relocation records in the 
.rela.dyn section must be processed immediately after the loading phase), and 
determines the hash value for the relocation symbol. Next, in the first shared library of 
the look up scope, it uses the hash value  to determine the hash bucket contained in the 
.gnu.hash section to find the symbol name contained in the .dynstr section. Then it 
compares the symbol name with the relocation name. If the names match, it 
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subsequently compares the versions of each symbol. If the versions match as well, 
then the definition of the relocation symbol is found. If the definition can not be found 
in the current shared library, the run-time linker proceeds with the next shared library 
in the lookup scope.

3. Once the definition of the relocation symbol is found, the run-time linker adds the 
absolute virtual address to the corresponding GOT entry.

The above relocation process is repeated for each relocation symbol in each loaded objects' 
.rela.dyn sections. Last, before transferring the control to the application, the run-time linker 
still needs to execute any .init sections found in the loaded dependencies. 

According to the above description, we can conclude that sections such as the .gnu.hash, 
the .dynsym”, the .dynstr, the .rela.dyn, the .gnu.version, the .gnu.version_r and the .init must 
be available at run-time and loaded in physical memory partially or entirely by the run-time 
linker.  This implies that the run-time overhead may be composed of the above 6 sections. 
From figure 11 we can see that the variation trends of the two lines are quite similar. 
However, the sum of the size of the above 6 sections of each shared library is smaller than the 
size of run-time overhead. This may be due to the following reasons:

1. Without consideration of page alignment restraint, while calculating the sum of 
sections. It may lead to 4 kB to 8 kB skew.

2. The first few relocation records with the R_SH_RELATIVE type in the .rela.dyn 
section are associated with the contents of the .ctors data section which starts 
immediately after the .gcc_except_table text section. Therefore, the beginning part of 
the .ctors section may coexist with the end part of the .gcc_except_table section in 
the same page. When this page is referenced, it will be counted in both text and data 
segment, which will result in 4 kB skew.

3. Unknown reasons. Even counting the above two skews in, in some cases, the sums of 
the size of sections are still smaller than the measured run-time overhead.

23



Figure 11. The variation trends of run-time overhead and sum of relocation associated 
sections 

Figure 12 shows the comparison between the sum of associated sections and the measured 
run-time overhead, after including the first and second skews.

Figure 12. Comparison between the sum of associated sections and the measured run-time 
overhead, after including the first and second skews.

From the above figure we can see, in most cases, the differences between the measured run-
time overhead and the calculated overhead are very small. Therefore, we believe that the 
calculated overhead with skews consideration should be sufficient to represent the size of run-
time overhead approximately. Besides, it is noted that the .dynsym and .dynstr sections are the 
dominative factors to the run-time overhead, since they are very large in size, while the other 
4 sections are relative small. 
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5.3  Static libraries or shared libraries 

In the above two sections, we have discussed the shortcomings of static libraries and shared 
libraries respectively. In this section, we will give a general comparison of static libraries and 
shared libraries in terms of memory usage and system performance as well as compatibility 
and extendibility.

5.3.1  Memory usage

From the size of the root disk point of view, all code of referenced object files of a static 
library are merged into the resulting executable files, thus the file size of executable files are 
increased which in turn may lead to a lager root disk which requires more physical memory 
space. However, since shared library must be available as a whole unit at run-time which 
means it must be contained in the root disk, in some cases, the size of a shared library may 
outweigh the increased size of executable files due to statical linking. This depends on several 
factors such as how the object files of a library are shared by executable files, and the number 
of executable files sharing the library. 

From run-time memory usage point of view, in theory, there is only one copy of commonly 
used functions or variables in physical memory, thereby if several applications use a common 
function or variable, physical memory will be saved without duplicated copies. However, as 
we stated in the section 5.2, using a shared library will introduce a considerable large amount 
of run-time overhead. Although this run-time overhead is shareable, in some cases, the run-
time overhead may outweigh the memory saving from keeping one copy of function or 
variable in physical memory. We should also remember that using a shared library, each 
application should maintain at least 4 kB for the shared library's data segment which is not 
shareable. Since the data segment is relative small, there are always gaps existing in the 
physical memory pages corresponding to data segments, therefore, in some cases, information 
of the shared library's data segment can be merged into to the executable files' data segment 
thus fills up the gaps and keeps them still within the page boundary. Consequently, 4 kB 
physical memory could be saved for each application, if we use static library instead. A much 
larger effect is from additional dependencies. If an application references a shared library, all 
the dependencies of the shared library should be mapped and loaded, however, if a static 
version of the library is used, only the dependencies of the referenced object files must be 
loaded instead of all of them. Loading unnecessary dependencies will waste a considerable 
amount of physical memory due to the run-time overhead.

5.3.2  System performance

Generally speaking, using static libraries has better overall system performance, particularly 
in the application startup phase, since relocation, symbol lookup and resolution are processed 
at link-time. Using shared libraries may result in run-time performance penalties due to the 
following reasons:

1. A shared library and its dependencies must be dynamically mapped and parts of their 
contents must be decompressed and loaded by the run-time linker for the first time. 
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2. Relocation, symbol lookup and resolution of a shared library as well as its 
dependencies are very costly at run-time. A successful symbol lookup must match the 
whole string, comparing dozens of characters takes a lot of time. C++ mangling 
mechanism increases the lengths of symbol strings which in turn results in large 
dynamic symbol tables, decompressing and loading a large dynamic symbol table in 
physical memory is time consuming. 

3. Shared libraries are usually compiled in position independent mode. References and 
calls to imported variables and functions are carried out indirectly through GOT and 
PLT entries. This will result in slower performance. According to Scott Bronson's 
statistics [10], calling a function in a shared library is 1%-20% slower than the static 
one in worst-cases. The variations of performance dependent on the GCC complier 
optimization level.

The above three performance penalties will not occur while using static libraries. However, in 
our case, these costs can be more or less offset by saving the decompression time once the 
operating system has already mapped and loaded a shared library in physical memory, and 
subsequent applications using the shared library are loading and executing. The more 
applications use a shared library, the less run-time performance costs they have to pay.

5.3.3  Compatibility and extendibility

In the case of using shared libraries, functions and variables are not statically bound to an 
application but are dynamically bound when the application is loaded. This permits 
applications to automatically inherit changes to the shared libraries, without recompiling or 
rebinding. This advantage can be utilized to make plug-in programs which can add new 
features and extended functionalities to the current applications. However, dynamically linked 
applications are dependent on compatible shared libraries. If a shared library is changed (for 
example, some interfaces of the shared library are changed or deleted) and becomes 
incompatible, this will lead to the applications no longer working. If a shared library is 
removed from the system, applications using that library will no longer work either. These 
problems would not happen, if applications are linked against static libraries, since all code is 
contained in the applications.

5.3.4  General proposals 

Both the impacts on physical memory from file size and the large run-time overhead of shared 
libraries complicate the memory usage analysis dramatically. In addition, how shared code 
would be shared by applications and how many applications would share shared code will 
also affect the memory usage greatly. Therefore, it is barely possible to predict how static 
libraries and shared libraries will affect physical memory usage in reality. However, the 
following general proposals may be useful in the extreme cases. 

1. If shared code is currently used by a single application, it is strongly recommended to 
put it into a static library. Except the cases that shared libraries are used as plug-ins 
which require frequently update. 

2. If the size of resulting object files is quite large and the number of files sharing this 
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code is relative large. In addition to the above, if you are doubtless that most shared 
code will be shared by the majority of executable files, it it also recommended to 
compile the shared code to a shared library.

3. In a more general case, it would be a good idea to run the tools to determine which 
version of a library is more memory efficient. 

5.4  How to remove unused material

It is wasteful to include unused functions and data in built object files. This unused material 
expands the size of object files, that will result in unnecessary relocation and memory waste. 
However, searching and eliminating unused material by hand is troublesome and time 
consuming. Fortunately, the link-editor provides this ability by passing the -gc-sections option 
to it, it will removed all unused sections. There is a problem with this method, since the 
sections such as .text and .data often contain more than one function and variable, the link-
editor can not eliminate the entire sections unless all including functions or variables are 
useless. The solution to this problem is to separate each function and data into individual 
section. This section separation is achieved by using compiler options, i.e., the -ffunction-
sections and -fdata-sections options. The -ffunction-sections and -fdata-sections options place 
each function or data into it's own section named .text.function_name or .data.data_name 
instead of a big .text or a big .data section. Armed with the -gc-sections, the ffunction-sections 
and the -fdata-sections options, the link-editor is able to track references of symbols and 
discard unused sections. Removed sections can be displayed by using –print-gc-sections 
option. After we applied this method on the Motorola executable files, the overall decrease in 
code size is 2% - 9%.

Figure 13. The proportion of the reduced file size to the original size.

The inclusion of unused library dependencies is also wasteful. Normally, the link-editor will 
consider all input shared libraries on the command line as dependencies of the output object 
file, regardless of whether the shared libraries are actually referenced by the built object or 
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not. Linking to these unused library dependencies will result in unnecessary loading and 
processing of shared libraries, which will affect run-time performance and memory usage 
considerably. This problem can become even worse when such unused shared library 
dependencies have their own dependencies, because, by default, the run-time linker will load 
and process any additional dependencies. To be more precise,  the run-time linker will load 
library dependencies in a breadth-first traversal order which is starting with the libraries 
directly linked to the executable. Therefore, it is essential to exclude those unused 
dependencies, the link-editor provides this ability by passing the –as-needed option to it. The 
–as-needed option tells the link-editor to only records shared libraries which are actually 
referenced by the built object as dependencies.

5.5  Position independent code (PIC)

In the common case, code can be compiled in two different modes. By default, code is 
position dependent. Putting position dependent code into a shared library will cause the link-
editor to generate a lot of relocation information, and cause the run-time linker to do a lot of 
processing at run-time. In addition, absolute virtual addresses of functions and variables will 
be encoded as a part of the instruction in the text segment. Since absolute virtual addresses are 
only known to the run-time linker, the text segment will be modified at run-time. This 
relocation of the text segment is referred to as text relocation. Due to text relocation, the 
modified text page can not be shared by other processes any more, each process requires its 
own private copy, this will compromise the shareability of the text segment. 

Code can also be compiled in position independent mode, typically with the -fpic or -fPIC 
option. Position independent code does not contain absolute virtual addresses in the text 
segment. On the contrary, it contains addresses in the Global Offset Table (GOT) which 
resides in the data segment and is private to each process. Therefore, any modification of 
addresses in the GOT by the run-time linker will not compromise the shareability of the text 
segment. Position independent code enables the run-time linker to load shared libraries at any 
location of a process' virtual memory regions without modifying the text segment.

5.5.1  Differences between -fPIC and -fpic 

The compiler can generate position independent code under either the -fPIC or the -fpic 
option. For some architectures, there is a limit of the size of GOT when compiling code with 
the -fpic option. For example, the limit number of GOT entries of SPARC is 2048, if the 
number of entries exceeds this limit, the link-editor will generate a fatal error.  To overcome 
this error, we can recompile those source files with the -fPIC option.  According to Ulrich 
Drepper's research [11], for some architectures, such as SPARC, there is a big difference 
between the -fPIC and the -fpic option with respect to instructions, code compiled under the 
-fPIC option requires two instructions (the compiler has to generate some instructions which 
can deal with any number of  GOT entires) than the -fpic option when references to an 
imported variable or calls an imported function. Therefore, for such architectures, it is 
recommended to use the -fpic option for every source file and recompile those source files 
that exceed the size limit with the -fPIC option. However, the comparison of disassembled 
code of the Motorola shared libraries that compiled under the -fpic option with the -fPIC 
option indicates that there are not any differences at all, i.e., neither additional instructions are 
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needed nor GOT limit existing. Therefore, for the SH4 architecture, both the -fPIC and the 
-fpic options are applicable.

5.5.2  Relocation processing

In position dependent mode, relocation of symbols must be carried out by the run-time linker 
immediately when a shared library is loaded. On the contrary, in position independent mode, 
some relocation, typically calls to global functions, can be postponed until the functions are 
actually called by some code. The process of this delayed relocation is referred to as lazy 
binding. Lazy binding can speed up the start-up time of an application, because many 
functions will not be called when an application starts to execute. 

In the following section I will simply explain how the relocation is carried out in position 
independent mode. There are two import data structures Procedure Linkage Table (PLT) and 
Global Offset Table (GOT). How these two tables are constructed is architecture-specific, 
however, the general principle is similar and applicable. The GOT holds the absolute virtual 
addresses of imported variables and functions. In position independent mode, the link-editor 
will create an entry for each imported global function in the PLT which resides in the 
shareable text segment. These entries make up the .plt section. The link-editor will also create 
a relocation entry in the .rela.plt section that tells the run-time linker which symbol is 
associated with the specified entry in the PLT. Code will call an imported global function 
through an associated entry in the PLT. As part of the first call to a PLT entry, control will be 
passed to the run-time linker. The run-time linker looks up the required function symbol and 
modifies the absolute virtual address of the associated entry in the GOT with the actual 
function address. The subsequent calls of the same PLT entry will not go through the run-time 
linker, instead go to the function directly. Furthermore, for each reference to an imported 
variable, the link-editor will create a relocation entry in the .rela.dyn section and an associated 
entry in the GOT as well. Unlike the relocation of function calls that can be lazy binding, the 
relocation of variables must be performed immediately before an application starts to run. The 
compiler will generate an instruction to load the absolute virtual address of a variable from the 
associated GOT entry, and then gets the actual value of the variable.

5.5.3  Cost of position independent code

From the above description, we can see that the most notable characteristic of position 
independent code is indirect references to variables and calls to functions. These indirect 
references and calls imply the cost of using position independent code, compared with 
position dependent code. We can summarize the cost as below:

1. For each call to an imported function, we need one PLT entry and one GOT entry.

2. For each reference to an imported variable, we need at least one extra load instruction 
and one GOT entry.

3. Position independent code is slightly slower when it calls an imported function or 
references to an imported variable. The code refers to such objects indirectly through 
the PLT and GOT. The specific amount of performance degradation mainly depends 
on the number of dynamic references to imported objects.
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In sum, extra instructions and PLT entries indicate the incremental text segment size of a 
shared library, likewise, extra GOT entries indicate the incremental data segment size, 
therefore, the size of a shared library compiled in position independent mode should be larger 
than position dependent mode apparently. Is this conclusion correct? In order to verify this 
conclusion, several experiments were carried out on the Motorola shared libraries. Each 
experimental shared library was compiled with and without -fPIC option, thus, we obtained 
one position dependent version and one position independent version for each shared library. 
By comparing the size of two versions of shared libraries, unexpectedly, we observed that in 
most cases the size of position independent version was even smaller than the position 
dependent version. That subverts what we have concluded previously. In order to find out the 
reason, the size of each section of position independent and position dependent versions was 
compared. The sections with the most significant size changes were the .text section, the .plt 
section, the .got section, the .rela.dyn section and the .rela.plt section. Among these sections, 
two relocation associated sections (the .rela.dyn and the .rela.plt sections) caught our eyes. 
The .rela.plt sections consists of relocation records of dynamically linked functions which are 
called through PLT. The .rela.dyn section contains relocation records of dynamically linked 
data and functions which are not called through PLT. The size of the .rela.dyn section 
increased significantly in the position independent version compared with the position 
dependent version. The reason for this increase is that: in position independent mode, the 
relocation for each imported function will be performed only once and applied to the first 
instruction of a specific entry in PLT regardless of the number of this function called in the 
shared library. Likewise, the relocation for each imported data will also be performed only 
once. Therefore, there is only one relocation record with R_SH_JMP_SLOT relocation type 
for each imported function in the .rela.plt section and one relocation record with 
R_SH_GLOB_DAT relocation type for each imported data in the .rela.dyn section. 
Nevertheless, in position dependent mode, the relocation is performed as many times as the 
imported functions and data are referenced in the code. In addition, the relocation record for 
each imported function will be categorized into the .rela.dyn section, since no PLT entry is 
needed any more, moreover, the type of this relocation record will be changed to 
R_SH_DIR32. Thus, the specific number of relocation records for each imported function and 
data in the .rela.dyn section depends on the the number of times of these function and data 
called or referenced. Because each relocation record is 12 bytes and many imported function 
and data are referenced repeatedly, so the size of the .rela.dyn section will be expanded 
several times when a shared library compiled in position dependent mode. Sometimes, this 
increased amount is even larger than the total decreased amount from the text section, the .plt 
section and so on. 

In conclusion, the size of a shared library compiled in position independent mode is not 
certainly larger than in position dependent mode, sometimes we can even benefit from 
position independent code in terms of size. Through the above analysis, there is an important 
fact revealed namely, that position dependent code generally requires much more relocation to 
be processed which will result in a considerable performance degradation in terms of 
application start-up time. Furthermore, there is also a moderate security risk in position 
dependent shared library. Because the text pages which involved in text relocation will be 
marked as writeable instead of read-only by the run-time linker temporally, so the attackers 
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can exploit this time slot and modify the code. All in all, it is strongly recommended to 
compile shared libraries in position independent mode.

5.5.4  Why not use PIC for all applications?

If position independent code has so many advantages, why not use it for all applications? As 
we mentioned previously, several experiments were performed to explore how position 
independent code would affect shared libraries in terms of size, we concluded that the change 
of size was not absolute. However, we also observed that there was an increase in size of each 
object file in position independent mode compared to position dependent mode.  This implies 
that the cost of position independent code in terms of size will still exit in the object files 
which do not intend to compose a shared library. In other words, the size of executable files 
and static libraries which contain position independent code will be larger than position 
dependent code. For normally executable files, there is no text relocation needed, because all 
absolute virtual addresses are at the same location in a process' virtual memory space. 
Moreover, due to the cost of position independent code and size increase, compiling 
executable files in position independent mode will not bring us less start-up time and less 
memory usage by making text relocation unnecessary, instead it will result in a considerable 
performance penalty due to indirect references. Therefore, it is not recommended to apply 
position independent mode to executable files. For static libraries, the situation becomes more 
complicated, we must deal with them case by case, although a static library is a simple archive 
of object files. According to the intention of a static library, we can categorize our 
recommendations into there cases:

1. If a static library is intended to be used by executable files exclusively, it is 
recommended to build it in position dependent mode.

2. If a static library is intended to be used by shared libraries exclusively, it is 
recommended to build it in position independent mode.

3. If a static library is intended for both shared libraries and executable files, it is 
recommended to build two versions. A position independent version will be used by 
shared libraries, another position dependent version will be used by executable files. 
Since static libraries do not need to be loaded into set-top box, no extra physical 
memory is required to perform this method.
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6  Summary

In this thesis, we have gained knowledge of the ELF format for object files in Linux. The 
linking and loading process of ELF object files along with Linux virtual memory management 
have also been studied. In fact, the most time-consuming and tedious part of this work is the 
understanding of the background theories. Perhaps due to the continuously evolving of free 
software contributed by decentralized programmers all over the world, the Linux 
documentation is quite poor. 

6.1  Conclusion

During our implementation phase, we observed that adopting a shared library would impose a 
considerable amount of run-time memory footprint overhead and performance overhead. The 
main cause of this overhead is due to the relocation and load-time symbol resolution of a 
shared library. Therefore, eliminating unnecessary dependencies is very important. Besides, 
we also found out that the components of shared code and how these components were shared 
by applications as well as the number of applications sharing the shared code and the impacts 
on the file size from static and shared libraries were the determinant factors for the destination 
of shared code. All these factors complicate the analysis dramatically in reality. Therefore, it 
is barely possible to predict how static libraries and shared libraries will affect physical 
memory usage in practice, except some extreme cases. Although a generic method that 
determines when to choose one type of libraries over the other in advance is not available, 
converting an existing static or shared library and running our tools could still give us the 
sufficient evidence of whether keeping the current type of a library or not.  In addition to the 
above, we also concluded the benefits of compiling shared libraries to position independent 
code mode outweighed the performance penalties it brought.

6.2  Future work

Due to time constraints, currently, our tools are limited to the 1920-9C IP-STB, it is better to 
extend the existing tools to be able to be applied on other series of IP-STBs. Since we only 
focused on the Motorola's proprietary code, the third party code was not considered. It would 
be interesting to investigate third party code in future, since the third party focuses more on 
feature completeness than embedded usage. Besides, all the performance analysis are 
theoretical, if a method of measuring the performance variations will be proposed in future, it 
will give us a deep insight into the theoretical performance costs in practice. There are still 
several interesting topics about linker optimization options that have not been covered, such 
as the -O option which optimizes the hash table size, -z now and -z relro options which are 
related to the relocation. They are also worth being investigated in the future. 
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8  Appendix A

The code segment of the modified “Pss” patch.

@@ -12,7 +12,7 @@ 
  seq_printf(m, 
     "Size:           %8lu kB\n" 
     "Rss:            %8lu kB\n" 
-+    "Pss:            %8lu kB\n" 
++    "Pss:            %8lu B\n" 
     "Shared_Clean:   %8lu kB\n" 
     "Shared_Dirty:   %8lu kB\n" 
     "Private_Clean:  %8lu kB\n" 
@@ -20,7 +20,7 @@ 
     "Referenced:     %8lu kB\n", 
     (vma->vm_end - vma->vm_start) >> 10, 
     mss->resident >> 10, 
-+    (unsigned long)(mss->pss >> 22), 
++    (unsigned long)(mss->pss >> 12), 
     mss->shared_clean  >> 10, 
     mss->shared_dirty  >> 10, 
     mss->private_clean >> 10, 
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9  Appendix B

Memory usage comparison reports of converting static libraries to shared libraries.

Converting libcutils.a to libcutils.so

Process           Vss(kB) Rss(kB) Pss(B)  

procman            4732 2020 533844

               4800 2028 536574    

halserver_7109 127324 33716 2654942

                  127324 33716 2654942         

sysman             6092 2596 653095             

                6092 2596 653095                

appman             6116 2368 582219             

                   6116 2368 582219             

infobroker         5928 2416 640476             

                 5928 2416 640476            

tdiserver          35036 31324 847015           

                  35036 31324 847015           

netconfig          4612 1840 362444             

                4612 1840 362444               

audiooutput       6104 2356 567033             

                  6104 2356 567033              

storageman         5668 2300 627744            

                 5668 2300 627744               
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mediamanager 7368 2504 803121

      7444 2524 818139             

streamer 13416 4588 2399803

          13488 4596 2402533           

                              

infoclient 6044 2100 438996

         6044 2100 438996             

                               

frontindicator 6080 2296 525513

     6080 2296 525513             

                                

ekioh 24736 12356 6949835

             24736 12356 6949835          

sum_pss_orig - sum_pss_new =  -19.998  kB

tmpfs_size_orig - tmpfs_size_new =  -4  kB

we lost 23.998 kB memory

Converting libproc.a to libproc.so

Process           Vss(kB) Rss(kB) Pss(B)  

procman            4732 2020 533844

               4824 2044 537354    

halserver_7109 127324 33716 2654942

                  127412 33728 2646164         

sysman             6092 2596 653095             

                6184 2620 656605                

appman             6116 2368 582219             

                   6116 2368 582219             
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infobroker         5928 2416 640476             

                 6028 2448 652178            

tdiserver          35036 31324 847015           

                  35036 31324 847015           

netconfig          4612 1840 362444             

                4708 1868 370050               

audiooutput       6104 2356 567033             

                  6104 2356 567033              

storageman         5668 2300 627744            

                 5760 2328 635350               

mediamanager 7368 2504 803121

      7444 2524 818139             

streamer 13416 4588 2399803

          13512 4616 2407409           

                              

infoclient 6044 2100 438996

         6044 2100 438996             

                               

frontindicator 6080 2296 525513

     6080 2296 525513             

                                

ekioh 24736 12356 6949835

             24736 12356 6949835          

sum_pss_orig - sum_pss_new =  -31.994  kB

tmpfs_size_orig - tmpfs_size_new =  -16  kB

we lost 47.994 kB memory
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Memory usage comparison reports of converting shared libraries to static libraries.

Converting libhalcppclient.so to libhalcppclient.a

Process           Vss(kB) Rss(kB) Pss(B)  

procman            4732 2020 533844

               4732 2020 533844    

halserver_7109 127324 33716 2654942

                  127324 33716 2656141         

sysman             6092 2596 653095             

                5924 2496 678188                

appman             6116 2368 582219             

                   4960 2048 489907             

infobroker         5928 2416 640476             

                 5928 2416 641675            

tdiserver          35036 31324 847015           

                  35036 31324 848078           

netconfig          4612 1840 362444             

                4612 1840 362444               

audiooutput       6104 2356 567033             

                  5924 2240 573557              

storageman         5668 2300 627744            

                 5668 2300 628211               

mediamanager 7368 2504 803121
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      7444 2524 804184             

streamer 13416 4588 2399803

          13120 4424 2357311           

                              

infoclient 6044 2100 438996

         5876 1992 445521             

                               

frontindicator 6080 2296 525513

     5756 2140 489030             

                                

ekioh 24736 12356 6949835

             24736 12356 6951034          

sum_pss_orig - sum_pss_new =  123.980  kB

tmpfs_size_orig - tmpfs_size_new =  -56  kB

we saved 67.980 kB memory

Converting libsubtitlesource.so to libsubtitlesource.a

Process           Vss(kB) Rss(kB) Pss(B)  

procman            4732 2020 533844

               4732 2020 533844    

halserver_7109 127324 33716 2654942

                  127324 33716 2654942         

sysman             6092 2596 653095             

                6092 2596 653095                

appman             6116 2368 582219             

                   6116 2368 582219             
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infobroker         5928 2416 640476             

                 5928 2416 640476            

tdiserver          35036 31324 847015           

                  35036 31324 847015           

netconfig          4612 1840 362444             

                4612 1840 362444               

audiooutput       6104 2356 567033             

                  6104 2356 567033              

storageman         5668 2300 627744            

                 5668 2300 627744               

mediamanager 7368 2504 803121

      7368 2524 803121             

streamer 13416 4588 2399803

          13416 4588 2399803           

                              

infoclient 6044 2100 438996

         6044 2100 438996             

                               

frontindicator 6080 2296 525513

     6080 2296 525513             

                                

ekioh 24736 12356 6949835

             24736 12356 6949835          

sum_pss_orig - sum_pss_new =  24.000  kB

tmpfs_size_orig - tmpfs_size_new =  4  kB

we saved 28.000 kB memory
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