
Database for a high performance and stability
demanding command and control system
Master of Science Thesis in Electrical Engineering

SOFIA JOHANSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden 2010

MASTER OF SCIENCE THESIS 2010

Database for a high performance and stability demanding
command and control system

Master of Science Thesis in Electrical Engineering
SOFIA JOHANSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden 2010

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Database for a high performance and stability demanding command and control system

SOFIA JOHANSSON

c©SOFIA JOHANSSON, 2010

Examiner: DAVID SANDS

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden 2010

Abstract

The purpose of this Master Thesis was to evaluate the possibility to use a
database for data storage in a Command and Control system being built by
SAAB AB (Saab) for Estonia. Today the data storage consists of a distributed
data model and this complicates the wanted functionality.

Data to be stored in the database was analysed and modelled into EER-
diagrams. The diagrams were then transformed into database schemas that had
to be tested. The database had to be changed during the thesis to get faster.
The evaluation tests were performed by using a Java program that created
data of the correct format and the data was then used to test the database
performance.

The results from this thesis were found to fulfil the system demands when
using the test data and test program written. The results will need further
evaluation before it is possible to fully understand how including this database
would affect the system.

i

ii

Sammanfattning

Syftet med den här rapporten var att testa möjligheten att använda en databas
i ett ledningssystem som byggs av Saab för Estland. Idag består datalagrin-
gen av en distribuerad datamodell som komplicerar åtkomsten av de naturliga
relationerna som finns mellan data i systemet.

Den data som skulle utgöra databasen analyserades och modellerades till
EER-diagram. Diagrammen översattes till ett databasschema som låg till grund
för databasen. Databasen testades och ändrades för att bli snabbare. Ett
Javaprogram skrevs för att skapa data på rätt format, denna data användes
sen för att testa databasen. Även testen utfördes genom ett egenhändigt skrivet
testprogram i Java.

Resultaten uppnådda under detta projektarbete ansågs vara tillräckliga för
att uppfylla kraven när testdata och testprogram användes. För att fullt ut
kunna veta hur systemet skulle påverkas av att ersätta dagens datalagringsmod-
ell med en databas måste fler test göras där tillgång till den verkliga datan och
systemet finns.

iii

iv

Acknowledgement

I would like to take the opportunity to thank some people for helping me during
the work with this thesis. Sven Nilsson has been my supervisor at Saab and he
has been very helpful by giving an introduction to the problem and continually
keeping me updated of the system. Josef Svenningsson has been my supervi-
sor at Chalmers and has helped me to approach the problem and structure the
work. Jessica Alhbin for her support and encouragement through all the work.
The employees at the department for making me feel welcome and let me take
part of the daily routine and gossip. I would also like to thank Karolina Ljung-
berg,Maria Stegberg, Pierre Ingmansson, Judit Sunesson, Marcus Oscarsson
and Mattias Runge for valuable feed back, support and encouragement.

v

vi

Contents

1 Introduction 1
1.1 Aim . 1

2 Theory 3
2.1 The system . 3

2.1.1 Data flow . 4
2.1.2 Command and Control System 5

2.2 Database . 6
2.2.1 Database management system - DBMS 7

2.3 Enhanced Entity-Relationship diagram 7
2.4 Connecting to the database . 9

2.4.1 Java Database Connectivity - JDBC 9
2.5 Stored Procedures . 9

3 Method 11
3.1 Analysis . 11
3.2 System . 11
3.3 Data model . 11

3.3.1 Missions and Points . 12
3.3.2 Tracks . 13
3.3.3 The complete data model 15

3.4 Database design . 17
3.5 Tests . 17

3.5.1 Populating the database 17
3.5.2 Test data . 17
3.5.3 Initial Tests . 17
3.5.4 Querying the database . 18
3.5.5 Stored procedures . 18

4 Results 19
4.1 Initial tests . 19
4.2 Java Tests . 20

4.2.1 Create . 21
4.2.2 Get . 22
4.2.3 Update . 23

vii

5 Discussion 25
5.1 Analysis . 25
5.2 Data model and database design 25
5.3 Populating the database and creation of test data 27
5.4 Tests . 27

6 Conclusion 29

7 Future Outlook 31

Bibliography 32

Appendices 33
A Abbreviations . 35
B Computer Specifications . 36

B.1 Latitude D600 . 36
B.2 Optiplex 745 MT . 36

C Database Code . 37

viii

List of Figures

2.1 VESP . 3
2.2 Giraffe . 4
2.3 An overview of the data flow between internal components in a

C2 Center . 4
2.4 Traditionally data flow through data processing unit 5
2.5 Data flow through data processing unit in the VESP system . . . 5
2.6 EER-parts . 8

3.1 EER-diagram of missions and points 13
3.2 EER-diagram of tracks . 14
3.3 EER-diagram . 16

ix

x

List of Tables

4.1 Initial Tests . 20
4.2 Create Track . 21
4.3 Create Point . 21
4.4 Get Track . 22
4.5 Get Point . 22
4.6 Update Track . 23
4.7 Update Point . 23

xi

xii

Chapter 1

Introduction

Traditionally Saab[3] has stored application data in a distributed data structure.
In the command and control system covered by this report most application
input and output data is related in many ways and different components need
access to the same information. The old traditional model makes it hard to find
and represent the relationships between data. Therefore it is the wish of Saab
to install a relational database using MySQL.

Databases are used to simplify and make the storing and handling of data
effective. The idea is to have all data collected in one location so that all the
programmers easily know how and where to get hold of the information needed
for their application.

When replacing the present data storage model with a database it is impor-
tant that it does not slow down the data handling process. It must not however
jeopardize the stability or persistency of the data storage.

1.1 Aim
The goal of this master thesis is to make an information model and create a
database that sufficiently can replace the current data storage application. The
database is to be tested on both performance and stability. This is to be done in
close cooperation to a real project at Saab, where the new model immediately
can be compared to the existing. The database should be able to interact with
the existing system.

1

2

Chapter 2

Theory

This chapter introduces the theory that this master thesis is based on. It gives a
short introduction to the areas of command and control, the type of the system
reviewed, database management system which is used to solve the problem and
enhanced entity-relationship diagram which was used to visualise the basic idea
of this project.

2.1 The system

The system is built for the Estonian (government) military and is called VESP =
VSHORADMS Estonia Saab Part where VSHORADMS stands for Very Short
Range Air Defence Missile System. The VESP system is a system of systems
and consists of 4 parts, the structure of a system can be seen i Figure 2.1

Sensor

C2 C2

Defence
system

C2

Sensor

TDU

TDU

TDU

TDU

Figure 2.1: VESP

Giraffe AMB (GAMB) The GAMB is a sensor that monitors 360◦ of air vol-
ume and simultaneously detects and warns of incoming ballistic weapons
using 3D-radar.[6] The GAMB can be seen in figure 2.2

3

Figure 2.2: Giraffe

C2 Centre The brain in the system. It is responsible for processing and han-
dling information from the sensor and other C2s. The processed informa-
tion is then stored locally and can be sent to the other C2s or TDUs.

MMI

C2 Logic

COM

AMB

Figure 2.3: An overview of the data flow between internal components in a C2
Center

Tactical Data Unit (TDU) TDU is a portable hand held device that receives
data from the C2. The TDU is used by a soldier and together with a
weapon they form a fire unit.

Communications (COM) The communications between the different units
both internal and external i.e C2-C2 or C2-TDU.

2.1.1 Data flow

Traditionally at Saab the systems consists of an information flow where each
component that uses information also processes it and stores it locally in order
to be able to use it. An example of this can be seen in Figure 2.4 which shows

4

the data flow for the construction of a track in the sensor. For this reason there
has been no need to use a centralized storage system.

Sensor
Signal

processing
Plot

handling Tracker Correlator System
Tracks

Measurements Plots Tracks

Figure 2.4: Traditionally data flow through data processing unit

In the C2 system there are several different components that need to use
and alter the same data. Examples of these components are the Man Machine
Interface (MMI) which uses the track data to make a visual representation of
the air picture. At the same time the threat evaluation component (TEWA) also
needs the track data to determine if a target is a threat. Since a C2 is only one
part of the VESP system, there is also need for external communication like the
TDU COM which transmits information to the fire units on the battle field, C2
COM that communicates with other C2s and External link which transfers the
system information to a external system, e.g the defence system. The correlator
uses the track data from different C2s to create a complete air picture that
contains information of what all the connected sensors see. The Order Manager
uses this information to set and issue orders.

In the traditional system every piece of information is owned by one compo-
nent and this would mean storing the same information in several places within
the C2 system. Therefore the need to evaluate a more centralized approach is
clear. The data flow of the C2 system can be seen in Figure 2.5.

Points Orders

Tracks

TEWAMMI

CorrelationExternal
link

Order
Manager TDU COM

C2 COM

Figure 2.5: Data flow through data processing unit in the VESP system

2.1.2 Command and Control System

A Command and Control System is used to gather information from different
sources (i.e. radar, sonar, tactical data links or observers). An administrator
evaluates the information and makes a decision on how to act in the specific
situation. In military situations the action can be an order to open fire, or in a
civilian situation to send paramedics.[9]

5

The structure of different C2s are hard to find since they are used in military
operations and often are classified information. But a general overview of two
systems will be described below. The Slovenian army Command and Control
system TIPSINK is used to manage the information needed during an operation.
It holds information about the state of the army and other friendly or hostile
units. The base of the system consists of two main programs IRIS replication
mechanism and Sitaware. The first is in charge of the data exchange between
the C2s. This information is used for decision-making during operations. The
second one is the graphical interface of the C2 system used by an operator to get
a general view of the tactical units on the battle field. The graphical interface
hold information needed about the situation to be able to make decisions and
share it with other military units. [14]

The system which this Master thesis model and the data that is going to
be stored in the database is described in the section below. It consists of four
major parts.

Missions A mission is defined as a collection of points and tactical settings.
It contains information about a single mission and defines the position of
the C2 unit, defended assets and fire units. There can be several different
missions loaded into the system but only one can be active at once.

Tracks A track is a flying object of interest to be watched. It might be an
enemy that needs to be monitored or a friendly air plane. The position
and velocity of the track is reported by the Sensor.

Points Points are objects that can be defined on tactical display. There are
two types of points, ground points which represent physical objects, or
reference points which might be an air defence area or line.

Orders There are two kinds of orders in VESP, Mission Control Orders (MCO)
and Fire Control Orders FCO. They can either be local, between a C2
unit and any connected TDU, or remote, between a C2 unit and other
reporting units. An order will always have a source and a destination. An
FCO connects two or more objects together with an assignment. It might
be to assign a fire unit to monitor an airplane of interest.[4]

2.2 Database
There are different kinds of databases to choose between. To mention some
there are the relational database, object database, relational-object database
and the flat-file database. There are advantages and disadvantages with all of
the above mentioned alternatives. The relational database model is the most
commonly used database model as of today mainly because it is easy for the
programmer to implement and has a good protection from programming er-
rors. It was introduced by Edgar F. Codd in the 1970s. It consists of several
tables which represents the data and relationships between it, similar to the
mathematical relational theory. To be able to connect to a relational database
through an object-oriented programming language e.g. Java an extra interface
that translates the data manipulation language to Java and back has to be
implemented.

In some cases when there is need of more complex data structures the re-
lational model is inadequate. One case is a multimedia database that must be

6

able to store and recall video audio, images as well as documents. To meet
this demand the object-oriented database was introduced in the 1980s. This
database allows the structure to be more general and was therefore thought
to be a competitor to the relational database but the complexity and lack of
standardisation hindered its success. Object-oriented databases build on the
object-oriented programming language rules and include features such as inher-
itance, object-identity and encapsulation (information hiding). It gives direct
access to the database information through the programming language and no
additional data manipulation language is needed. This yields low over head
when accessing the database but on the other hand it is easier for an error in
the programming language to be transferred in to the database.

The object-relational database model is a combination between the relational
model and the object-oriented model. It extends the relational model with
object orientation, and allows inheritance of relations not just types. An object-
relational database is a good option for developers that has a relational database
but need to have object-oriented characteristics.

A simpler alternative would be to use a flat file database. A flat file database
consists of only one table/file with a field for each of the attributes. The fields
are separated by a delimiter for example a comma, the file can then be parsed
to receive the wanted information. These files can then be managed by the file
processing system and different operational system applications can be built to
create more advanced functionality. [12] [15]

2.2.1 Database management system - DBMS
There are a lots of different database management systems to choose between
but it was given in the thesis statement that the use of MySQL was desired in
this project. MySQL is an open source database widely used all over the world,
distributed under a dual license model, where non commercial users can use it
for free under the GNU General Public License[7]. Commercial users must buy
a license but it is a small cost compared to many other database management
systems.

The MySQL database is owned, developed and supported by Sun Microsys-
tems, one of the world’s largest contributors to open source software.[1] Sun was
recently bought by the big database company Oracle[2]. What effect this might
have on MySQL is not yet known.

2.3 Enhanced Entity-Relationship diagram
Enhanced entity-relationship diagram (EER-diagram) is an easy way to com-
municate the structure and relationships of the data to persons not familiar
with the concept of databases. The choice to model the data using the EER-
diagram was based on the fact that it is considered to be more efficient than
the object-oriented diagram to model the data and easy to use to communicate
with other people about the model.[15]

EER is an extended version of ER-modelling that includes specialization/in-
heritance used to model databases. A description of the different parts of the
EER-diagram used in this thesis can be seen in figure 2.6

7

Entity

Attribute

Key

Relationship

Parent

ISA

Child

includes MissionPoint

MissionincludesPoint

MissionincludesPoint

Entity

Attribute

Key

Relationship

Specialization/inheritance

Many to many
relationship

Many to one
relationship

One to one rela-
tionship

Figure 2.6: EER-parts
8

2.4 Connecting to the database
The command and control system under construction is written in Java and
there has to be a way to make the system talk to the database. This can be
done using Java Database Connectivity (JDBC) and the JConnector which is
the official JDBC driver for MySQL.

The connection to the database had to be in Java and there was a desire to
use Hibernate. There was a concern that Hibernate might slow down the whole
process and that could not be risked so JDBC was also evaluated and used.

2.4.1 Java Database Connectivity - JDBC
JDBC is a complementary Application Programming Interface (API) to the Java
API used to connect to databases. JDBC is now a part of the Java standard
edition which makes the use of databases easier. To be able to connect to the
database using JDBC, the JConnector which is the official JDBC driver for
MySQL also have to be installed.[8]

2.5 Stored Procedures
Stored procedures are a part of the DBMS used to secure and speed up the
database queries. They are stored in the data directory in the same place as
the data in the database. Stored procedures are supported in MySQL since
MySQL 5.1. Stored procedures are a way to store a collection of statements in
the server. This also means that a user can refer to the procedure instead of
reinitiate it every time it is used. There are many advantages of using stored
procedures e.g. the benefit of uniting clients that use different platforms to only
use the same database operations. This increases the security of the database,
if the only operations allowed in the database are predecided, the risk of misuse
get reduced and the ease of logging increases.

9

10

Chapter 3

Method

This chapter describes the methods used in this masters thesis. It explains
construction of the database model and database schema. It also describes the
tests that have been performed.

3.1 Analysis

Initially information was gathered from books, articles and Saabs documenta-
tion. The literature was studied to find out what database modelling option
would be most suitable to describe the data and the different relations between
them. After studying the gathered information, the key functionality of the
system was found to consist of a number of major data types, mainly missions,
points, tracks and the different relations between them.

3.2 System

The initial idea of this Master thesis was to implement a database into the C2
center of the system described in section 2.1. This was not possible to carry
out since the structure of the data to be stored changed during this thesis and
therefore the results of this thesis will just show whether it is possible to carry
out this change or not. A test program had to be written and used to test the
possibility to integrate a database into the system. The data was modelled and
a data model created. The model was later used to realize the database and the
database was tested.

3.3 Data model

To model the data, the collected information was analysed and modelled into
an EER-diagram as described in section 2.3. The EER-diagram was chosen
based on the information given in [10],[13] and the fact that prior knowledge
and experience of it gave it clear advantages in the case of less learning time.
The data model does not contain information about orders described in 2.1.2
since their structure was not decided in time to be able to include them in this
masters thesis. The orders are relations with some extra information and can
easily be incorporated into the the real system by adding new relationships.

11

3.3.1 Missions and Points
A mission is a container of information and there can only be one active mission
at a time. A point has to exist within a mission and is persistent data that
represent an object. The point is initialized and then only seldom updated.
This data type has to be persistent but does not require fast access. A point
always consists of at least one position based on if it is representing a point, area
or volume. A point may also have a reported position and thus get multiple
positions. The created EER-model of missions and points can be seen in Figure
3.1.

A mission is identified by its name in the system. The name is not the best
primary key and therefore an auto incremented integer identifier have been used
as the primary key. An auto incremented integer has also been used as primary
key for points. A point have a unique identifier, a track number, where the
different C2s get a separate range of numbers that they are allowed to use for
their points. Since a point may have several positions, a position is represented
as an entity by itself. A position does not however have a unique identifier, no
validations are made to see if a position already exists in the database. The
positions also have an auto incremented integer as primary key.

A point can be of many different types and the different types contain a
variation of data, therefore points have been divided into the subclasses ground
point and fire unit, where fire unit is a subclass of ground point.

12

Position

hasPosition Point includes Mission

pointID

trackNumber

isDefended

protectionValue

pointName

ISA

pointType

forceTellsenderAddress

GroundPoint

missionID

targetTypeValue

missionName

missonDescription

validStartDatevalidEndDate

fileName

hasRadius Radius

hasreported
Position

ISA

FireUnit

unitStatus

isAddressable

weaponControl
Status

airRaidWarning
Stauts

hasFireSector hasNonFire
Sectors

engagement
Status

ammoLeft

radiusradiusID

FireSector

startBearing

sectorID endBearing

AirDefenceArea

startDate

endDate

airSpaceControl
MeansName

airDefenceArea
Usage

fromAltitude

toAltitude

longitud altitude

latitude

positionID

Figure 3.1: EER-diagram of missions and points

3.3.2 Tracks

In this system a track is always an air track and will always have a position and
a velocity, and it is this movement that is traced. The position of the track is
updated once every second and need to be stored. There can be several hundred
tracks in the air at a time and they all need to be stored. The information of
the old positions and velocity need not be persisted and may be overwritten.
The created model in Figure 3.2 describes the general case of tracks.

A track is identified in the system by its track number. The track number
has to be within range of the number assigned to the C2. This could be used
as a primary key but to maintain the speed of the system an auto incremented
integer have been used. The track may also have more track numbers that

13

correlate to the other C2s assigned range of number.

This model was created under the impression that the system track might
not contain position or velocity. After studying the system the tracks have been
found to always be air tracks and always have a position and a velocity therefore
the database also had to be altered.

Track TrackNumberhasTrack
Number

forceTellIndicator

trackID

emergencyIndicat
or

specialProcessing
Indicator

identityDifference
Indicator

simulated

livness

platform

dimension

identity

updateTime

identityAmplifying
Descriptor

hasRRTrack
Number

trackNumberID trackNumber

trackNumberType

ISA

AirTrack

hasPosition

hasVelocity

Position

Velocity

longitud altitude

latitude

positionID

velocityID

x z

y

iffTIme2

isEstimated

includedInRAP

threatLevel

estimatedAltitude

iffMode2

iffMode3

trackQuality

iffTime3

iffCivilian
Emergancy

iffPositionIndicator

iffCommunication
Failure

specialInterest
Indicator

iffTime1

iffXPulses
Radiation

iffMode1

iffMilitary
Emergancy

iffMode4

iffTimeC

iffTime4

iffModeC

manualyAdded
ToRAP

association

associationID

Figure 3.2: EER-diagram of tracks

14

3.3.3 The complete data model
The models seen in the two previous sections can be combined and then the
complete EER-diagram was created and can be seen in Figure 3.3. The sys-
tem consists of various types of data and associations between them. There are
several different types of relations that need to be described. There are associ-
ations between tracks and tracks, tracks and points and there is also a relation
called orders that has not been modelled since its structure was not defined
and therefore not possible to model. Orders associate information to a point or
track.

15

Point

pointID trackNumber

isDefended

protectionValue

pointName

ISA

pointType

forceTell

senderAddress

GroundPoint

ISA

FireUnit

unitStatus

isAddressable

weaponControl
Status

airRaidWarning
Stauts

hasFireSector hasNonFire
Sectors

engagement
Status

ammoLeft

FireSector

startBearing

sectorID

endBearing

AirDefenceArea

startDate

endDate

airSpaceControl
MeansName

airDefenceArea
Usage

fromAltitude

toAltitude

radius

AirTrack

iffTIme2

isEstimated

includedInRAP

threatLevelestimatedAltitude

iffMode2

iffMode3

trackQuality

iffTime3

iffCivilian
Emergancy

iffPositionIndicator

iffCommunication
Failure

specialInterest
Indicator

iffTime1

iffXPulses
Radiation iffMode1

iffMilitary
Emergancy

iffMode4

iffTimeC

iffTime4

iffModeC

manualyAdded
ToRAP

ISA

Track

forceTellIndicator

trackID

emergency
Indicator

specialProcessing
Indicator

identityDifference
Indicator simulated

livness

platform

dimensionidentity

updateTime

identityAmplifying
Descriptor

hasRRTrack
Number

hasTrack
Number

Mission

missionID

targetTypeValue

missionName

missonDescription

validStartDatevalidEndDate

fileName

includes

trackPoint
Association

trackTrack
Association

Position

longitud

altitude

latitude

positionID

hasTrack
Position

TrackNumber

trackNumberID

trackNumber trackNumberType

hasPoint
Position

Figure 3.3: EER-diagram

16

3.4 Database design
The DBMS used in this thesis has been MySQL 5.1 which is the current and
recommended version[8]. The database was created through a direct translation
of the EER-diagram as described in[11]. When creating the data model, the aim
was to make it at least to comply with the third normal form[15]. The design
changed during the project due to the fact that the preliminary testing showed
that the original design was too slow. The final design can be seen in Appendix
C.

In the VESP system the objects have several different identifiers used at
different times. In a database one single identifier is to prefer and therefore an
auto incremented integer have been used as identifier (primary key) for most of
the objects.

There were lots of thoughts on how much redundancy the database can cope
with and still be fast enough without causing problems updating the contained
information. Some different database models where created to make it possible
to test the efficiency of the different models.

3.5 Tests
In this section the different tests and design choices are described. It is also
described how the test data is created and how it is used to test the performance
of the database. The critical part of the test are going to be the track data.
The system is supposed to be able to handle 500 track updates each second.
This would mean that there are 500 air planes in the air at the same time that
the sensor detects, this is very unlikely but the system still needs to manage it.
There are no requirement that the point operations have to be fast but the data
stored has to be persistent over time.

3.5.1 Populating the database
Before any testing could be done the database had to be populated. This was
accomplished by writing Java code that generated random data on the correct
format into a text file that was loaded into the database. A populated database
helps make the measurements more correct and make it possible to test the
foreign key constraints. The size to which point the tables were filled was based
on the information about how much data the system is designed to contain.
These generation programs were also used to generate the data used to test the
database.

3.5.2 Test data
To be able to run tests on the database data on the correct form needed to
be created. This was accomplished by using the previously mentioned Java
program to generate random data on the correct format. The data was later
used to test the database.

3.5.3 Initial Tests
The initial test was performed on a regular office laptop with encrypted hard
drive. The specifications of the computer can be seen in appendix B.1. A

17

summary of these tests can be seen in Table 4.1. These tests were made to
tune the database and modify the database schema. The tests showed that the
separation of data into many different tables made the querying too slow to
fulfil the system requirement of track speed, and therefore the database had to
be adjusted. The improved version was the one used in the final tests. At this
point there was a clear advantage of bundling operations together and commit
(i.e store) them at once. The bundling were achieved by disabling the auto
commit function in the initializing file.

The querying was done by the execution of a file containing SQL statements.
i.e. the queries were made directly in the command line in MySQL.

3.5.4 Querying the database
The final test was done by running code on computers similar to the ones going
to be used in the real system. The computer specifications can be seen in
appendix B.2 The operating system running on these computers are suse linux
10[5]. The tests have been performed several times and the results have been
written into a file. The data files have then been studied and the maximum,
minimum, mean and median values from every test run have been picked out
and inserted into a table which can be seen in Chapter 4.

The test times that are declared in the result chapter are all calculated by
the Java-functions and this might affect the collected times.

3.5.5 Stored procedures
Stored procedures were used to increase the speed of the database queries. The
queries are preloaded into the database and invoked later when they are going
to be used. The use of stored procedures also facilitates the queries by being
able to call upon the code already written.

The stored procedures were used through the JDBC connection to the database.
The procedures were not created directly into the database but created in the
Java code.

18

Chapter 4

Results

The big question in this project was if the database was going to be able to
measure up to the specifications given. The critical point of the results are
the track operations that need to be fast. The actual system requirements are
classified information and will therefore not be disclosed in this report. Point
operations need not to be fast but persistent. The system is supposed to work
in close to real-time.

4.1 Initial tests
Initially there was no access to the real system or the computers on which the
system was going to run therefore the first tests were made on an office laptop
with encrypted hard drive. The results of this test can be seen in summary in
Table 4.1. The tests have been performed by bundling of operations and the
results are shown for 10, 100 or 1000 operations together at once. The effect
of bundling can be seen in the table. The office computer did not fulfil the
requirements and as a result of this more tests had to be done using the correct
environment.

19

Table 4.1: Initial Tests

Query number of objects time
ms/object

Create Track 10 8.55
100 2.91
1000 1.93

Create Point 10 7.82
100 3.19
1000 2.01

Update Track 10 29.07
100 24.42
1000 23.93

Update Point 10 186.88
100 172.23

Get Track 10 1.31
100 1.10

Get Point 10 1.93
100 1.67

Delete Track 10 17.89
100 6.07

Delete Point 10 11.10
100 3.31

4.2 Java Tests
Tests have been executed to evaluate the performance of the database using
a connection through JDBC. The tables below show the results. There are
different tables for all the different tests. The database should be able to handle
500 tracks each second. This means that the execution time of each track
operation must not exceed 2ms.

To test the speed of the database queries were asked. The time to create,
i.e. store, a track into the database has been measured, by sending different
numbers of data to the database at once to see if bundles altered the speed.
The tests queries have been executed 1000 times every test run and every test
run have been executed five times.

20

4.2.1 Create
The creation of tracks and points was tested as described in Chapter 3. First
the test data had to be created and then the time to store it into the database
was measured. The times can be seen in Table 4.2 and Table 4.3. The tables
describe the results for 1, 10 or 100 bundled operations respectively and it can
be seen that the bundling of operations gives clear advantages in the speed of
the querying.

Table 4.2: Create Track

Number of Tracks Test run Mean Median Max Min
(ms) (ms) (ms) (ms)

1 1 0.9 1 10 0
1 2 0.9 1 9 0
1 3 1.1 1 10 0
1 4 1.3 1 8 0
1 5 1.0 1 10 0
10 1 4.9 4 61 3
10 2 5.0 4 80 3
10 3 4.8 4 66 3
10 4 4.9 4 53 3
10 5 4.9 4 38 3
100 1 38.9 38 460 29
100 2 40.5 38 456 29
100 3 40.2 38 461 29
100 4 38.6 37 463 29
100 5 37.5 37 453 29

Table 4.3: Create Point

Number of Points Test run Mean Median Max Min
(ms) (ms) (ms) (ms)

1 1 0.9 1 11 0
1 2 1.0 1 12 0
1 3 1.0 1 12 0
1 4 1.0 1 11 0
1 5 1.4 1 12 0
10 1 4.8 4 53 3
10 2 4.9 4 21 3
10 3 4.9 4 119 3
10 4 4.9 4 111 3
100 1 39.7 38 455 29
100 2 42.2 38 423 29
100 3 43.3 38 594 29
100 4 42.1 38 426 29
100 5 40.0 38 478 29

21

4.2.2 Get
This section contains the results of reading a track or a point from the database.
This was done according to the description in chapter 3. The times measured
in this test can be seen in Table 4.4 and Table 4.5. The tables describe the
results for 1, 10 or 100 bundled operations respectively and it can be seen that
the bundling of operations gives advantages in the speed of the querying.

Table 4.4: Get Track

Number of Tracks Test run Mean Median Max Min
(ms) (ms) (ms) (ms)

1 1 4.4 4 19 4
1 2 4.2 4 8 4
1 3 4.3 4 10 4
1 4 4.4 4 13 4
1 5 4.3 4 7 4
10 1 40.6 41 47 40
10 2 40.8 40 100 40
10 3 40.5 40 54 40
10 4 40.6 40 53 40
10 5 40.6 41 46 40
100 1 401.5 400 433 397
100 2 401.3 400 437 396
100 3 400.6 400 432 396
100 4 401.9 401 431 399
100 5 400.7 400 463 396

Table 4.5: Get Point

Number of Points Test run Mean Median Max Min
(ms) (ms) (ms) (ms)

1 1 2.1 2 34 1
1 2 2.0 2 12 1
1 3 2.0 2 24 1
1 4 2.0 2 32 1
1 5 2.0 2 19 1
10 1 17.9 18 76 17
10 2 17.9 18 89 17
10 3 17.7 18 57 17
10 4 17.9 18 90 17
10 5 17.9 18 25 17
100 1 170.2 170 255 169
100 2 170.6 170 245 169
100 3 170.1 169 244 168
100 4 169.8 169 212 168
100 5 170.2 170 252 167

22

4.2.3 Update
The updating of tracks and points was tested as described in Chapter 3. First
the test data had to be created and then the time to update it in the database
was measured. The times can be seen in Table 4.6 and Table 4.7. The tables
describe the results for 1, 10 or 100 bundled operations respectively, worth
noting is that the bundling of operations does not give an advantage in the
speed of the querying.

Table 4.6: Update Track

Number of Tracks Test run Mean Median Max Min
(ms) (ms) (ms) (ms)

1 1 0.1 0 1 0
1 2 0.2 0 4 0
1 3 0.2 0 4 0
1 4 0.1 0 4 0
1 5 0.1 0 3 0
10 1 16.9 17 81 16
10 2 16.5 16 22 16
10 3 16.7 16 80 16
10 4 16.6 16 128 16
10 5 16.6 16 38 16
100 1 178.0 177 189 176
100 2 176.1 176 199 174
100 3 176.1 175 329 174
100 4 176.3 176 324 174
100 5 176.0 175 326 169

Table 4.7: Update Point

Number of Points Test run Mean Median Max Min
(ms) (ms) (ms) (ms)

1 1 137.1 137 142 136
1 2 139.6 140 167 138
1 3 137.5 137 141 137
1 4 138.1 138 148 137
1 5 138.1 138 144 137
10 1 1374.1 1372 1402 1370
10 2 1386.9 1387 1391 1385
10 3 1366.3 1366 1381 1365
10 4 1370.1 1370 1384 1369
10 5 1377.8 1374 1459 1372

23

24

Chapter 5

Discussion

The reason for investigating the use of a database in a command and control
system was the fact that the data to be stored consists of many different data
types with different kinds of relations between them and the wish to have a
centralized data structure. Furthermore there are many different computing
modules that use the same data for calculations. The stored data has to stay
consistent even though different calculations are performed on it. Functions and
computing modules has to be able to be changed or added without any changes
to the data. The adding and removing of functionality must be easy. The
wish was to create a modular system which is easy to expand and develop new
functionality on. A database makes the storing of different kinds of data in one
place, add on of new functions and removal of old ones easy. A database comes
with a lot of functionality that might not all be needed in this specific case but
it is still a good alternative for storing data. One reason not to use a database
in this specific case could be if it severely slows down the data processing. In
this case the speed of the system is of highest importance, since it represents
moving objects in near real time.

5.1 Analysis

Due to the fact that the system description kept changing during the thesis work
it was difficult to perform the analysis of the system structure. This meant that
the system description had to be reviewed and the result remodelled several
times. To be able to perform the desired tests within the time of the thesis
work a decision was made to model the data as it was described at the time.
This had the effect that the resulting data model does not represent the data
structure as it looks in the final version of the VESP system. This means that
an implementation of the database concept into the system has to be remodelled
because not all relations and data are consistent with the current model.

5.2 Data model and database design

The EER-diagram was chosen as a way to model the information collected in the
analysis phase. The EER model was found to be a good way to visualize the data
and connections between them. It was also a good base to start the database

25

design from. The first database schema was a direct translation of the EER-
diagram seen in Figure 3.3. The testing showed that the data model was too
slow to fulfil the demands on the system due to the fact that there were too many
tables to describe the data. The more tables that have to be searched to find
or store an object, the slower it became. To enhance the speed of the database
some of the tables were combined into larger tables. This meant that a search or
store operation had to make fewer searches and therefore became faster. There
have not been any changes to the data model after it was established that a
database created directly from the model was too slow. Although operations
using the point object does not require the same speed as for tracks they were
also merged into fewer tables to get consistency in the measurements. This
might not have been necessary and is therefore one of the things that need to
be taken under consideration in a future implementation.

The results from Chapter 4 show that there are some questions whether
the structure used in this thesis is fast enough or not. Therefore other options
might have to be taken under consideration. One option could be to store the
data into a file but this makes the access to the data and relations between
data difficult to manage. A regular file is hard to index and search, relations
between different data objects has to be made by adding the extra information
into the file and the specific object related to that information. This makes the
system data redundant and may cause the system to have more than one copy
of the same information and occupy more disk space. An update to only one of
the copies causes the system to contain different versions of the same data and
this could mean that an invalid data value can be wrongly used. To prevent the
creation of corrupt duplicate data, the application has to have a method to check
that every copy of the same data gets updated, this might cause a lot of extra
workload and delays for the application. This also aggravates the development,
change and expansion of the system. Expansions are made more difficult since
an addition of a new relation in a file system has to be made either by adding
a new file containing all the related information or by indexing the files so that
the relation only uses the index to the data instead of duplicating the data, this
would practically be the same as creating a simple database without the DBMS.

Another option might be to store the data in some kind of program language
related alternative. In this case that would mean in the Java application. This
is similar to what is implemented today. Some of the data in this system has
to be persistent and since a Java object loses its memory when the application
is turned off it would have to be complemented with a file. The advantage of
this kind of storage is that it is fast but the disadvantage is that the access from
many different components are hard to manage and the system gets hard to
evolve without having to change the structure.

There might be a possibility to use a combination of a Java solution and
a storing to file or a database to increase the speed of the system. Some of
the data must be updated fast and does not necessarily have to be persistent.
Perhaps this data can be a Java object and the persistent data can be stored in
a file or a database. There is still the problem of relating the different data, this
has to be managed by the Java application and to investigate the possibilities
to use a system of this kind further evaluation has to be done.

The best option in my opinion would be to optimize the database code
so that the data processing gets fast enough. The functions included in the
database may not be used at this time but might be needed further along. Not

26

all functions that could be used at this time are included and tested in the thesis
but has to be evaluated later on if Saab wants to use them in their system.

When using a DBMS like MySQL there are many different storage engines to
choose between and they all have different advantages and disadvantages. The
storage engine can be chosen by looking at what properties and functionalities
the application is in need of. In many cases a combination of storage engines
are possible to use but the speed of the access to the database tables may differ
according to the storage engine type. To increase the speed of data collection
from the database one option could be to use a storage engine that only stores
the data in the memory. The memory storage engine makes the look up in
the tables faster but no entries in the table will be saved if the system goes
down or is turned off. The table structure on the other hand will be saved.
This could be suitable for the track data since this data does not need to be
persistent or accessible after a shutdown. One of the disadvantages with using
a memory table is that it does not support foreign keys that was one of desires
when creating the database.[8] The InnoDB storage engine used in the thesis
work is the only one that supports foreign keys and transactions as asked for
in the specifications. All the tests in the thesis have been performed using the
InnoDB storage engine.

5.3 Populating the database and creation of test
data

The database was populated to better reflect the real system. A populated
database gives a better measurement of the result times for operations in the
actual system since it is known that the system contains information when in
use. The test data was created using a small self written Java program that
created correctly formatted random data to be stored in the database. The
same program also created the data used to test the different operations, which
gave the results seen in Chapter 4. Data used in these tests are random and
may thus differ from the ones created in the real system.

5.4 Tests

Test times were calculated by the self written Java program used to make the
database queries. This might have effected the resulting times and has to be
taken in to consideration when evaluating the results.

Initially there were no access to the computers dedicated to develop the
real system on, therefore the first tests had to be performed on a office laptop
with encrypted hard drive. The encrypted hard drive most likely effected both
the storing and retrieval of data. The size of this effect was hard to estimate
and has therefore not been declared for. The results from these tests did not
measure up to the requirements of the system but they were used to tweak and
optimize the database. The results from this initial test was unfortunately lost
in a computer crash and will therefore not be declared in this report. At the
end of the thesis work the test environment was accessible and the optimized
code could be tested on the VESP system computers.

the system demands. This meant that the data model had to be rearranged
to make the database faster. The new model however are more compact and

27

might not separate the data enough.
As can be seen in Chapter 4, there are big differences in times between the

different operations. This could be explained by the complexity of the queries.
The speed of the create operations can be traced to the auto incremented iden-
tifiers and that no search is required before an insertion. It can also be noticed
that bundling of operations increases the speed of operations. To collect infor-
mation from the database one must find the right data to retrieve and therefore
a search has to be done. The search can be made easier if the database is sorted
in some way but a sorted database also means that the insertion times increases
since a search has to be done here instead. It can be seen from the result table
that the laptop test in this case was faster than the one performed in the cor-
rect environment. This is a result of the fact that the laptop test only collects
informations from one single table using the identifier for that table while the
final test use multi table search. One of the disadvantages of using many tables
and complex identifiers can be seen when comparing the easy queries on the
slow laptop with the complex queries on the faster computers in the laboratory.

28

Chapter 6

Conclusion

When looking at the model of the data to be stored in the database and the
different relations between it there are some major advantages of implementing
a database instead of the current distributed data storage model. This thesis
have investigated if a database could be integrated into the VESP system and
replace the current data storage model and still fulfil the system requirements.

The critical point in the measurements were the speed of the track oper-
ations. After evaluating the results of the track operations the mean of the
achieved times were found to fulfil the requirements. There were some peek
times that only occurred one time out of a thousand that might jeopardize the
overall result. This means that the database would fulfil the requirements but
additional test needs to be done to assure the correctness of this result with the
use of the real data.

There were no requirements that the point operations had to be fast, there-
fore the times achieved in update point operation will not affect the conclusion
that a database could replace the current data storage model. More tests need
to be performed to optimize the point operations and retest them.

29

30

Chapter 7

Future Outlook

The wider idea to actually integrate the database into to the system was a task
that the time available for this master thesis did not allow. To fully understand
the possibility to integrate a database into the VESP system, the database has
to be modelled to fit the present specifications of what data is going to be stored.
Tests must be done in the application where the correct data is used and sent
through the real system. Integration of a database will require changes in the
existing system. The structure of the data handling needs to be evaluated again.
As orders has not been covered by the thesis work they have to be included in
a future implementation.

Some recommendations are to test the different table types (Storage en-
gines) of MySQL and see if there is a distinct difference in speed. The different
storage engines have different advantages and the needs of the system has to
be taken into consideration and the storage engine reevaluated. It would also
be of interest to look into how concurrent access of the database would affect
the performance. There are lot of different components that need access to the
information to be stored in the database.

A system that needs to be run in near real time is affected by the speed of
the computer and therefore will keep getting faster. Because of this the results
will become inaccurate quickly.

31

32

Bibliography

[1] Mysql. www.mysql.com.

[2] Oracle. www.oracle.com.

[3] Saab microwave system ab. www.saabgoup.com.

[4] Saab microwave system internal documentation. Internal.

[5] Suse linux. www.novell.com/linux/.

[6] Giraffe amb. http://www.saabgroup.com/en/ProductsServices/
products_az.htm, Sep 2009.

[7] Gnu general public license. http://www.gnu.org/copyleft/gpl.html,
Sep 2009.

[8] Mysql. http://www.mysql.com/, Sep 2009.

[9] Wikipedia. http://en.wikipedia.org/wiki/Command_and_control, Sep
2009.

[10] Pedersen A. Database design resource. http://www.
databasedesign-resource.com/normal-forms.html, Apr 2008.

[11] Silberschatz A, Korth H, and Sudershan S. Database system concepts.
McGraw-Hill Companies, Inc., fourth edition, 2002.

[12] Silberschatz A, Korth H, and Sudershan S. Database system concepts.
McGraw-Hill Companies, Inc., fifth edition, 2006.

[13] Garcia-Molina H, Ullman J, and Widom J. Database system the complete
book. Pearson Education Inc., 2002.

[14] Joze M, Fras M, and Cucej Z. New approach to the modeling of com-
mand and control information system. Military Communications Confer-
ence, 2008. MILCOM 2008. IEEE, 2008.

[15] Elmasri R and Navathe S. Fundamentals of database system. Pearson
Education, Inc., fourth edition, 2004.

33

www.mysql.com
www.oracle.com
www.saabgoup.com
www.novell.com/linux/
http://www.saabgroup.com/en/ProductsServices/products_az.htm
http://www.saabgroup.com/en/ProductsServices/products_az.htm
http://www.gnu.org/copyleft/gpl.html
http://www.mysql.com/
http://en.wikipedia.org/wiki/Command_and_control
http://www.databasedesign-resource.com/normal-forms.html
http://www.databasedesign-resource.com/normal-forms.html

34

Appendices

A Abbreviations
Abbreviations in alphabetical order

AMB Agile Multi-Beam

API Application Programming Interface

C2 Command and Control

DBMS Database Management System

EER-diagram Enhanced entity-relationship diagram

FCO Fire Control Orders

GAMB Giraffe AMB

JDBC Java Database Connectivity

MCO Mission Control Orders

MMI Man-machine interface

MySQL My Structured Query Language

ODBC Open Database Connectivity

SMW Saab Microwave Systems

SQL Structured Query Language

TDN Tactical Data Network

TDU Tactical Data Unit

TDUN Tactical Data Unit Network

TEWA Threat Evaluation and Weapon Allocation

VESP VSHORADMS Estonian Saab Part

VSHORADMS Very Short Range Air Defence Missile System

35

B Computer Specifications

B.1 Latitude D600
• Latitude D600 Pentium M 1.4GHz +14.1IN

• 1.0GB 266MHz DDRAM memory, (2X512MB)

• 40GB (5,400RPM) 9.5mm ide hard drive

• Operating system: Windows XP

B.2 Optiplex 745 MT
• Optiplex 745 Mt - core 2 duo E6300 1.86GHz

• Memory: 2048MB (2X1024MB) 667MHz DDR2 D

• Hard drive: 80GB (7200RPM) 3.5IN Serial

• Operating system: SUSE Linux Enterprise 10.1

36

C Database Code

Listing 1: Create

CREATE TABLE Miss ions (
miss ion_id BIGINT NOT NULL,
mission_name VARCHAR(10) NOT NULL,
m i s s i on_desc r ip t i on VARCHAR(256) NOT NULL,
va l id_start_date BIGINT NOT NULL,
valid_end_date BIGINT NOT NULL,
f i le_name VARCHAR(10) NOT NULL,
target_type ENUM(’No_Statement ’ ,

’ Mi s s i l e_Car r i e r ’ ,
’ Remotely_Piloted_Vehicle ’ ,
’ He l i c op t e r ’ ,
’ Miscellaneous_Fixed_Wing ’ ,
’Reset_To_No_Statement ’) ,

target_value SMALLINT NOT NULL
) ;

CREATE TABLE Points (
point_id BIGINT NOT NULL,
point_type ENUM(’C2Unit ’ ,

’ Sensor ’ ,
’ Mi s t ra l ’ ,
’ Ant i_Ai rc ra f t_Art i l l e ry ’ ,
’VIS ’ , ’ Supporting_Unit ’ ,
’SAM’ ,
’ Air_Base ’ ,
’ Military_Head_Quarter ’ ,
’Enemy ’ ,
’Enemy_SAM’ ,
’Enemy_Air_Base ’ ,
’ Tactical_Data_Link_Site ’ ,
’Air_Def_Area ’ ,
’ Ref_Area ’ ,
’ Ref_Line ’ ,
’ Re f_c i r c l e ’ ,
’ Ref_single_Point ’) ,

point_name VARCHAR(10) NOT NULL,
i s_defended BOOLEAN NOT NULL,
p rotect ion_value INT NOT NULL,
f o r c e_ t e l l BOOLEAN NOT NULL,
r ad iu s DOUBLE DEFAULT 0 ,
uni t_status ENUM(’ Ava i l ab l e ’ ,

’ Not_Available ’) ,
weapon_control_status ENUM(’Weapons_Free ’ ,

’Weapons_Tight ’ ,
’Weapons_Hold ’ ,
’ No_Status_Statement ’)

DEFAULT ’ No_Status_Statement ’ ,
air_raid_warning_status ENUM(’White ’ ,

’ Yellow ’ ,
’Red ’ ,
’No_Warning_Statement ’)

DEFAULT ’No_Warning_Statement ’ ,
i s_addre s sab l e BOOLEAN NOT NULL DEFAULT false ,
engagement_status ENUM(’ Not_Fire_Unit ’ ,

’ Engage ’ ,
’ Cover ’ ,
’Weapon_Assigned ’ ,

37

’ Covering ’ ,
’ Tracking ’ ,
’ F i e r i ng ’ ,
’ E f f e c t i v e ’ ,
’ Not_Effect ive ’ ,
’ Engagement_Broken ’)

DEFAULT ’ Not_Fire_Unit ’ ,
ammo_left SMALLINT NOT NULL DEFAULT 0 ,
f i r e_un i t BOOLEAN DEFAULT false ,
s tart_date BIGINT NOT NULL DEFAULT 0 ,
end_date BIGINT NOT NULL DEFAULT 0 ,
air_space_control_means_name VARCHAR(10)

NOT NULL DEFAULT ’Not_ADA ’ ,
air_defence_area_usage VARCHAR(256)

NOT NULL DEFAULT ’Not_ADA ’ ,
to_a l t i tude DOUBLE NOT NULL DEFAULT 0

) ;

CREATE TABLE Fi r e_sec to r s (
sector_id BIGINT NOT NULL,
s ta r t_bear ing REAL NOT NULL,
end_bearing REAL NOT NULL

) ;

CREATE TABLE Tracks (
track_id BIGINT NOT NULL,
update_time BIGINT NOT NULL,
p lat form ENUM(’No_Statement ’ ,

’ Mi s s i l e_Car r i e r ’ ,
’ Remotely_Piloted_Vehicle ’ ,
’ He l i c op t e r ’ ,
’ Miscellaneous_Fixed_Wing ’ ,
’Reset_To_No_Statement ’) ,

dimension ENUM(’Dimension_1D ’ ,
’Dimension_2D ’ ,
’Dimension_3D ’) ,

identity ENUM(’ Pending ’ ,
’Unknown ’ ,
’ Assumed_Friend ’ ,
’ Friend ’ ,
’ Neutra l ’ ,
’ Suspect ’ ,
’ Ho s t i l e ’) ,

i d ent i ty_ampl i f y ing_desc r ip to r ENUM(’None ’ ,
’ Faker ’ ,
’ Joker ’) ,

l i v e n e s s ENUM(’ Al ive ’ ,
’ Dying ’ ,
’Dead ’) ,

s imulated BOOLEAN NOT NULL,
i d en t i t y_d i f f e r en c e_ ind i c a t o r BOOLEAN NOT NULL,
s p e c i a l_proc e s s i ng_ ind i ca to r BOOLEAN NOT NULL,
emergancy_indicator BOOLEAN NOT NULL,
f o r c e_t e l l_ i nd i c a t o r BOOLEAN NOT NULL,
t h r ea t_ l eve l ENUM(’No_Threat ’ ,

’Low ’ ,
’Medium ’ ,
’ High ’) ,

manually_added_to_rap BOOLEAN NOT NULL,
included_in_rap BOOLEAN NOT NULL,
s p e c i a l_ i n t e r e s t_ ind i c a t o r BOOLEAN NOT NULL,
iff_mode_1 SMALLINT,
i f f_time_1 BIGINT,
iff_mode_2 SMALLINT,

38

i f f_time_2 BIGINT,
iff_mode_3 SMALLINT,
i f f_time_3 BIGINT,
iff_mode_4 SMALLINT,
i f f_time_4 BIGINT,
iff_mode_c SMALLINT,
i f f_time_c BIGINT,
i f f_mi l i tary_emergancy BOOLEAN NOT NULL,
i f f_c iv i l i an_emergancy BOOLEAN NOT NULL,
i f f_po s i t i o n_ ind i c a t o r BOOLEAN NOT NULL,
i f f_x_pulse_rad iat ion BOOLEAN NOT NULL,
i f f_communicat ion_fa i lure BOOLEAN NOT NULL,
t rack_qua l i ty SMALLINT,
i s_est imated BOOLEAN NOT NULL,
e s t imated_al t i tude REAL,
x DOUBLE NOT NULL,
y DOUBLE NOT NULL,
z DOUBLE NOT NULL

) ;

CREATE TABLE Track_numbers (
track_number_id BIGINT NOT NULL,
track_number VARCHAR(5) NOT NULL,
track_number_type ENUM(’ Sensor ’ ,

’Tdn ’ ,
’ Link ’)

) ;

CREATE TABLE Pos i t i on s (
pos i t i on_id BIGINT NOT NULL,
l ong i tude DOUBLE NOT NULL,
l a t i t u d e DOUBLE NOT NULL,
a l t i t u d e DOUBLE NOT NULL

) ;

CREATE TABLE i n c lude (
miss ion BIGINT NOT NULL,
po int BIGINT NOT NULL

) ;

CREATE TABLE has_point_posit ion (
po int BIGINT NOT NULL,
position BIGINT NOT NULL,
r epor ted BOOLEAN NOT NULL

) ;

CREATE TABLE has_track_posit ion (
t rack BIGINT NOT NULL,
position BIGINT NOT NULL

) ;

CREATE TABLE has_f i r e_sector (
po int BIGINT NOT NULL,
s e c t o r BIGINT NOT NULL,
non_f i re_sector BOOLEAN

) ;

CREATE TABLE track_has_track_number (
t rack BIGINT NOT NULL,
track_number BIGINT NOT NULL,
rr_tracknumber BOOLEAN

) ;

39

CREATE TABLE point_has_track_number (
po int BIGINT NOT NULL,
track_number BIGINT NOT NULL

) ;

CREATE TABLE t rack_track_assoc ia t ion (
track_1 BIGINT NOT NULL,
track_2 BIGINT NOT NULL,
a s s VARCHAR(64)

) ;

CREATE TABLE t rack_po int_assoc ia t ion (
t rack BIGINT NOT NULL,
po int BIGINT NOT NULL,
a s s VARCHAR(64)

) ;

40

Listing 2: Primary Keys

ALTER TABLE Miss ions ADD CONSTRAINT PK_mission
PRIMARY KEY (miss ion_id) ;

ALTER TABLE Miss ions MODIFY COLUMN mission_id
BIGINT NOT NULL DEFAULT NULL AUTO_INCREMENT;

ALTER TABLE Points ADD CONSTRAINT PK_point
PRIMARY KEY AUTO_INCREMENT(point_id) ;

ALTER TABLE Points MODIFY COLUMN point_id
BIGINT NOT NULL DEFAULT NULL AUTO_INCREMENT;

ALTER TABLE Fi r e_sec to r s ADD CONSTRAINT PK_fire_sector
PRIMARY KEY AUTO_INCREMENT(sector_id) ;

ALTER TABLE Fi r e_sec to r s MODIFY COLUMN sector_id
BIGINT NOT NULL DEFAULT NULL AUTO_INCREMENT;

ALTER TABLE Tracks ADD CONSTRAINT PK_track
PRIMARY KEY AUTO_INCREMENT(track_id) ;

ALTER TABLE Tracks MODIFY COLUMN track_id BIGINT NOT NULL
DEFAULT NULL AUTO_INCREMENT;

ALTER TABLE Track_numbers ADD CONSTRAINT PK_track_number
PRIMARY KEY AUTO_INCREMENT(track_number_id) ;

ALTER TABLE Track_numbers ADD CONSTRAINT UNIQUE_track_number
UNIQUE INDEX(track_number , track_number_type) ;

ALTER TABLE Track_numbers MODIFY COLUMN track_number_id
BIGINT NOT NULL DEFAULT NULL AUTO_INCREMENT;

ALTER TABLE Pos i t i on s ADD CONSTRAINT PK_position
PRIMARY KEY AUTO_INCREMENT(pos i t i on_id) ;

ALTER TABLE Pos i t i on s MODIFY COLUMN pos i t i on_id
BIGINT NOT NULL DEFAULT NULL AUTO_INCREMENT;

ALTER TABLE i n c lude ADD CONSTRAINT PK_include
PRIMARY KEY(miss ion , po int) ;

ALTER TABLE has_point_posit ion
ADD CONSTRAINT PK_has_point_position
PRIMARY KEY (point , position) ;

ALTER TABLE has_track_posit ion
ADD CONSTRAINT PK_has_track_position
PRIMARY KEY (track , position) ;

ALTER TABLE has_f i r e_sector
ADD CONSTRAINT PK_has_fire_sector
PRIMARY KEY (point , s e c t o r) ;

ALTER TABLE track_has_track_number
ADD CONSTRAINT PK_has_track_number
PRIMARY KEY (track , track_number) ;

ALTER TABLE t rack_track_assoc ia t ion
ADD CONSTRAINT PK_track_track_ass
PRIMARY KEY (track_1 , track_2) ;

41

ALTER TABLE t rack_po int_assoc ia t ion
ADD CONSTRAINT PK_track_point_ass
PRIMARY KEY (track , po int) ;

42

Listing 3: Foreign Keys

ALTER TABLE i n c lude ADD CONSTRAINT FK_mission_with_point
FOREIGN KEY (miss ion) REFERENCES Miss ions (miss ion_id)
ON DELETE CASCADE;

ALTER TABLE i n c lude ADD CONSTRAINT FK_point_in_mission
FOREIGN KEY (po int) REFERENCES Points (point_id)
ON DELETE CASCADE;

ALTER TABLE has_point_posit ion ADD CONSTRAINT
FK_point_with_position

FOREIGN KEY (po int) REFERENCES Points (point_id)
ON DELETE CASCADE;

ALTER TABLE has_point_posit ion ADD CONSTRAINT FK_position_of_point
FOREIGN KEY (position) REFERENCES Pos i t i on s (pos i t i on_id)
ON DELETE CASCADE;

ALTER TABLE has_track_posit ion ADD CONSTRAINT
FK_track_with_position

FOREIGN KEY (t rack) REFERENCES Tracks (track_id)
ON DELETE CASCADE;

ALTER TABLE has_track_posit ion ADD CONSTRAINT FK_position_of_track
FOREIGN KEY (position) REFERENCES Pos i t i on s (pos i t i on_id)
ON DELETE CASCADE;

ALTER TABLE has_f i r e_sector ADD CONSTRAINT FK_has_fire_sector
FOREIGN KEY (po int) REFERENCES Points (point_id)
ON DELETE CASCADE;

ALTER TABLE has_f i r e_sector ADD CONSTRAINT FK_fire_sector_of_point
FOREIGN KEY (s e c t o r) REFERENCES Fi r e_sec to r s (sec tor_id)
ON DELETE CASCADE;

ALTER TABLE track_has_track_number ADD CONSTRAINT
FK_track_with_track_number

FOREIGN KEY (t rack) REFERENCES Tracks (track_id)
ON DELETE CASCADE;

ALTER TABLE track_has_track_number ADD CONSTRAINT
FK_track_number_of_track

FOREIGN KEY (track_number) REFERENCES Track_numbers
(track_number_id)

ON DELETE CASCADE;

ALTER TABLE t rack_track_assoc ia t ion ADD CONSTRAINT
FK_track_associated

FOREIGN KEY (track_1) REFERENCES Tracks (track_id)
ON DELETE CASCADE;

ALTER TABLE t rack_track_assoc ia t ion ADD CONSTRAINT
FK_track_associated_to_track

FOREIGN KEY (track_2) REFERENCES Tracks (track_id)
ON DELETE CASCADE;

ALTER TABLE t rack_po int_assoc ia t ion ADD CONSTRAINT
FK_track_associated_to_point

FOREIGN KEY (t rack) REFERENCES Tracks (track_id)
ON DELETE CASCADE;

43

ALTER TABLE t rack_po int_assoc ia t ion ADD CONSTRAINT
FK_point_associated_to_track

FOREIGN KEY (po int) REFERENCES Points (point_id)
ON DELETE CASCADE;

44

	Introduction
	Aim

	Theory
	The system
	Data flow
	Command and Control System

	Database
	Database management system - DBMS

	Enhanced Entity-Relationship diagram
	Connecting to the database
	Java Database Connectivity - JDBC

	Stored Procedures

	Method
	Analysis
	System
	Data model
	Missions and Points
	Tracks
	The complete data model

	Database design
	Tests
	Populating the database
	Test data
	Initial Tests
	Querying the database
	Stored procedures

	Results
	Initial tests
	Java Tests
	Create
	Get
	Update

	Discussion
	Analysis
	Data model and database design
	Populating the database and creation of test data
	Tests

	Conclusion
	Future Outlook
	Bibliography
	Appendices
	Abbreviations
	Computer Specifications
	Latitude D600
	Optiplex 745 MT

	Database Code

