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We explore the connections between three classes of theories: Ar quiver matrix
models, d=2 conformal Ar Toda field theories, and d=4 N=2 supersymmetric
conformal Ar quiver gauge theories. In particular, we analyze the quiver matrix
models recently introduced by Dijkgraaf and Vafa �unpublished� and make detailed
comparisons with the corresponding quantities in the Toda field theories and the
N=2 quiver gauge theories. We also make a speculative proposal for how the
matrix models should be modified in order for them to reproduce the instanton
partition functions in quiver gauge theories in five dimensions. © 2010 American
Institute of Physics. �doi:10.1063/1.3449328�

I. INTRODUCTION

The AGT �Alday–Gaiotto–Tachikawa� relation,1 which is a relation between Nekrasov parti-
tion functions2 in �conformal� d=4 N=2 quiver gauge theories and correlation functions in con-
formal field theories �CFTs� in two dimensions, has been studied in several papers over the past
couple of months. The original conjecture1 involves a relation between Nekrasov partition func-
tions in d=4 SU�2� �or A1� quiver gauge theories3 and correlation functions in the Liouville d
=2 conformal field theory. It was subsequently extended4 to a relation between the Ar quiver
gauge theories3 and the d=2 conformal Ar Toda field theories. The proposals in Refs. 1 and 4 have
passed many nontrivial checks, see, e.g., Refs. 5–7. In Ref. 8 the A1 AGT relation was extended by
the inclusion of surface, Wilson and ’t Hooft operators in the A1 quiver gauge theories and
proposals were made for the corresponding quantities in the Liouville theory. Another line of
investigation concerns the extension to nonconformal SU�2� gauge theories.9 A suggestion for how
this approach should be modified to capture the instanton partition function for pure SU�2� gauge
theory in five dimensions was presented in Ref. 10. In Ref. 11, another relation between four-
dimensional and two-dimensional theories was uncovered which is similar in spirit to the AGT
relation.

Recently, Dijkgraaf and Vafa12 presented an argument explaining the AGT relations. �Another
argument, using M-theory, for the validity of the AGT relation was presented in Ref. 13; see also
the followup paper.14� The argument involves relating the relevant quantities in the two theories
via an intermediate matrix model. The first step is to realize the gauge theories in string theory
using geometric engineering15 and then use the relation to matrix models via a large N duality,
together with the relation between matrix models and conformal field theories16,17 to recover the
AGT relation. This chain of arguments removes some of the mystery of the AGT relation. More
importantly, it also implies that there are now three different ways to compute the same quantities:
using the 4d quiver gauge theories, using the 2d Toda theories, or using the 0d quiver matrix
models. In all three cases a Riemann surface plays a crucial role: in the gauge theory the Riemann
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surface is related to the Seiberg–Witten curve, in the Toda theory the Riemnan surface is the
manifold on which the theory is defined, and in the matrix model the Riemann surface is the
spectral curve arising from the loop equations in the large N limit.

The goal of this paper is to develop and exemplify how calculations are performed in the
matrix model framework. We will rederive several known results in quiver gauge theories and
Toda field theories from the matrix model integrals. We also make a speculative proposal on how
the matrix models should be modified to reproduce the Nekrasov partition function for quiver
gauge theories in five dimensions.

In Sec. II we review the AGT relation for the case of the Ar theories, and in Sec. III we
describe the Ar quiver matrix models introduced in Ref. 12. In the two subsequent sections we
then perform several matrix model calculations and compare the results with the Toda theories and
the quiver gauge theories. In Sec. IV we treat the A1 model and in Sec. V we discuss the Ar models
for general r. Finally, in Sec. VI we describe our proposal on how the matrix models should be
modified in order to describe the Nekrasov partition function for quiver gauge theories in five
dimensions. In Appendix some technical details are collected.

II. THE Ar AGT relation

In this section we review the AGT proposal for the class of theories based on the Ar Lie
algebras. We start with a brief recap of the Ar Toda field theories, followed by a summary of the
Ar quiver gauge theories, and then describe the AGT relation connecting the two classes of
theories.

A. The Ar Toda field theories

The Ar Toda field theories are defined by the action

S =� d2��g� 1

8�
gad	�a�,�d�
 + ��

i=1

N−1

eb	ei,�
 +
	Q�,�


4�
R�� , �2.1�

where gad �a ,d=1,2� is the metric on the two-dimensional worldsheet and R is the worldsheet
curvature. The ei are the simple roots of the Ar Lie algebra, 	· , ·
 denotes the scalar product on the
root space, � is the Weyl vector �half the sum of all positive roots�, and the r-dimensional vector
of fields � can be expanded as �=�i�iei. The Ar Toda theory is conformal provided Q and b are
related via

Q = 
b +
1

b
� . �2.2�

The central charge is18

c = r + 12Q2	�,�
 = r
1 + �r + 1��r + 2�
b +
1

b
�2� . �2.3�

The general form of a three-point correlation function in a 2d conformal field theory is19

	V�1
�z1, z̄1�V�2

�z2, z̄2�V�3
�z3, z̄3�
 =

C��1,�2,�3�
�z12�2��1+�2−�3��z13�2��1+�3−�2��z23�2��2+�3−�1� . �2.4�

The Liouville theory is identical to the A1 Toda field theory and has a set of primary fields,

V� = e2��. �2.5�

The correlation function of three primary fields in the Liouville theory is20 �see also Ref. 21�
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C��1,�2,�3� = ���	�b2�b2−2b2
��Q−�1−�2−�3�/b



��b���2�1���2�2���2�3�

���1 + �2 + �3 − Q���− �1 + �2 + �3����1 − �2 + �3����1 + �2 − �3�
,

�2.6�

with 	�b2�=��b2� /��1−b2� and ��x�=1 / ��2�x �b ,b−1��2�Q−x �b ,b−1��, where �2�z �
1 ,
2� is the
Barnes double gamma function.22

In the Toda theories with r�1 �W� primary fields can be defined in analogy with the Liouville
case via

V� = e	�,�
. �2.7�

Recently it was shown23,24 that in the special case when one of the �’s takes one of the two
special values,

� = ��1 or � = ��r, �2.8�

where �1 ��r� is the highest weight of the fundamental �antifundamental� representation of the Ar

Lie algebra and � is a complex number, the three-point function is given by �2.4� with

C��1,�2,�� = ���	�b2�b2−2b2
�	2Q�−�1−�2−�,�
/b 


���b��r�����e�0��	Q� − �1,e
���	Q� − �2,e
�

�ij�
 �

r + 1
+ 	�1 − Q�,hi
 + 	�2 − Q�,hj
� ,

�2.9�

where the product in the numerator is over all positive roots and in the denominator the hi are the
weights of the representation with highest weight �1, cf. �A2�. �The result for �=��r is obtained
by replacing hi by hi�=−hr+2−i.�

Higher-point correlation functions in any CFT can be related to the three–-point function of
primary fields, which therefore determines the entire theory.19 Note that when r�1 knowledge of
the three-point function of W primary fields �2.9� does not determine all higher-point correlation
functions, see, e.g., Refs. 4 and 25.

As an example, consider a four-point function. It is convenient to fix three points to 0 ,1 ,�
and use a bra-ket notation which has the property 	� ��
=1, and is such that

	�1�V�2
�1�V�3

�z���4
 = 	VQ−�1
�0�V�2

�1�V�3
�z�V�4

���
 . �2.10�

Inserting a complete set of states we find

	�1�V�2
�1�V�3

�z���4
 =� d��
k,k�

	�1�V�2
�1���k���
	�k�����V�3

�z���4


	�−k�����−k����

. �2.11�

Here the intermediate states ��k���
 are descendants of the primary state labeled by �. �Through-
out this paper we will label the internal momenta by � reserving the symbol � for the external
momenta.�

In the Liouville case it can be shown that 	�k�����V�3
�z���4
 is proportional to 	��V�3

�z���4

�Ref. 19� and hence �2.11� can be calculated perturbatively. The ratio

�k,k�	�1�V�2
�1���k���
	�−k�����−k����
−1	�k�����V�3

�z���4


	�1�V�2
�1���
	��V�3

�z���4

�2.12�

is called a conformal block. General n-point functions can be dealt with in an analogous manner.
They depend on �n−3� cross ratios.

In the r�1 case the situation is a little more involved, see Ref. 4, for a discussion.
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B. The Ar quiver gauge theories and Nekrasov partition functions

In Ref. 3 a class of conformal 4d N=2 generalized Ar quiver gauge theories were introduced.
This class of theories was denoted T�n,g��Ar�. The simplest example in this class of theories is the
theory with a single SU�r+1� gauge factor with 2�r+1� matter hypermultiplets in the fundamental
representation of the gauge group. But the T�n,g��Ar� class of theories includes many more theories,
not all of which are conventional weakly coupled gauge theories. The T�n,g��Ar� theories can be
viewed as arising from the six-dimensional Ar �2,0� theory26 compactified on C
R4, where C is
a genus g Riemann surface with n punctures. The genus of the Riemann surface depends on the
number of loops in the �generalized� quiver diagram. The punctures are due to codimension 2
defects filling R4 and intersecting C at points, and were argued in Ref. 3 to be classified by
partitions of r+1 �which can be represented graphically in terms of Young tableaux�. One can
therefore associate a Young tableau with each puncture. In the case of the A1 theories there is only
one kind of nontrivial puncture. In the above example �a T4,0�Ar� theory� there are two kinds of
punctures. These are associated with the factors in the U�1�2SU�r+1�2 subgroup of the flavor
symmetry group. The punctures associated with the SU�r+1� factors are called full punctures and
involve r mass parameters each and the punctures associated with the U�1� factors are called basic
punctures and involve one mass parameter each. We refer to Ref. 3, for further details.

A fundamental object in an N=2 gauge theory is the Nekrasov partition function �from which
the prepotential can be obtained�. The partition function factorizes into two parts as

Z = ZpertZinst, �2.13�

where Zpert is the contribution from perturbative calculations �because of supersymmetry there are
contributions only at tree and one-loop level�, and Zinst is the contribution from instantons. The
most efficient method to obtain Zinst is via the instanton counting method of Nekrasov.2 This
approach involves deforming the N=2 gauge theory with two parameters 
1 and 
2 which belong
to an SO�2�
SO�2� subgroup of the SO�4� Lorentz symmetry. We should stress that one needs
the theory to be weakly coupled to be able to apply the instanton counting method.

As an example, the instanton partition function in the SU�r+1� theory with 2�r+1� funda-
mentals can be written as2 �see also Ref. 27�

Zinst = �
Y�

y�Y� � �
m,n=1

r+1

�
s�Ym

P�âm,Ym,s�
E�âm − ân,Ym,Yn,s��E�âm − ân,Ym,Yn,s� − 
�

, �2.14�

where y=e2�i� and the sum is over the �r+1�-dimensional vector of Young tableaux, Y�

= �Y1 ,Y2 , . . . ,Yr+1�, and �Y� � �the instanton number� is the total number of boxes in all the Ym’s. The
âm parametrize the Coulomb branch of the theory and satisfy �i=1

r+1âi=0. It is convenient to write
â=�i=1

r aiei, where ei are the simple roots of the Ar Lie algebra. In the particular case of SU�2� this
translates into â= �a ,−a�. In �2.14� 
�
1+
2 and

E�x,Ym,Yn,s� = x − 
1LYn
�s� + 
2�AYm

�s� + 1� , �2.15�

where s= �i , j� and i refers to the vertical position and j to the horizontal position of the box.
Furthermore, LYn

=kn,i− j and AYm
=km,j

T − i, where kn,i is the length of the ith row of Yn and km,j
T is

the height of the jth column of Ym. Finally,

P�x,Yi,s� = �
f=1

2r+2

�x − �j − 1�
1 − �i − 1�
2 − mf� , �2.16�

where the mf are the masses of the matter fields �suitably defined�.
The perturbative �one-loop� piece in �2.13�, Zpert, is a product of various factors. For SU�r

+1� the gauge field contributes a factor
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�
i�j

r
1

�2�âi − âj − 
2�
1,
2��2�âi − âj − 
1�
1,
2�
, �2.17�

where �2�x �
1 ,
2� is the Barnes double gamma function,22 and each of the massive hypermultip-
lets transforming in the fundamental representation of the gauge group contributes a factor

�
i=1

r

�2�ai − mf + 
�
1,
2� . �2.18�

C. The AGT relation

The AGT relation is a relation between the two classes of theories discussed in Secs. II A and
II B. Up to an overall factor, the instanton partition function of a T�n,g��Ar� theory is �conjectured
to be� equal to a chiral block of an n-point correlation function in the Ar Toda field theory
formulated on a genus g surface. In other words, the punctures correspond to insertions of vertex
operators in the Toda theory. For example, the instanton partition function in the SU�r+1� theory
with 2r+2 fundamentals is equal to the chiral block �in a specific channel� of the four-point
function in the Ar Toda theory on the sphere. The momenta of the vertex operators, �i, are mapped
to the masses mi in the gauge theory. This relation is linear �the exact form depends on conven-
tions for the gauge theory masses�. Furthermore, the internal momenta in the chiral block, �k, are
linearly related to the ak Coulomb moduli. Finally, the parameters 
1 and 
2 in the instanton
partition function are related to the parameter b in the Toda theory via

b =�
1


2
,

1

b
=�
2


1
. �2.19�

The most common choice is to set 
1=b, 
2=1 /b. There is also a slight extension of the above
result where the full partition function including the perturbative piece is related to the full
correlation function including the three-point pieces. For further details about the AGT relation,
see Refs. 1 and 4.

III. THE MATRIX MODEL APPROACH OF DIJKGRAAF AND VAFA

The first step in the analysis of Ref. 12 is to realize the relevant quiver gauge theories in string
theory using geometric engineering15 and then use the results in Ref. 28 to relate the topological
string partition function �which is equal to the Nekrasov partition function� to a matrix model
calculation. This argument works provided 
1=−
2=gs. How to deal with the case of general 
1,2

was also proposed in Ref. 12 and will be discussed later in this section.
In the case of interest to us the relevant geometries are Ar singularities

uv − xr+1 = 0. �3.1�

�There is also a decoupled C factor parametrized by z.� The matrix model corresponding to this
geometry is the so-called Ar quiver matrix model.16,29 It involves r Hermitian Ni
Ni matrices �i

�i=1, . . . ,r� as well as the Ni
Nj matrices Bij. The matrix model partition function is �propor-
tional to�

� �
i

d�i�
i,j

dBij exp�−
1

gs
�
i�j

tr��2�ij − Aij��Bij� jBji − Bji�iBij��� , �3.2�

where Aij is the Cartan matrix of the Ar Lie algebra, i.e., Aij = 	ei ,ej
. In terms of the eigenvalues
of �i, �i

I �I=1, . . . ,Ni�, partition function �3.2� becomes, after integrating out the Bij,
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� �
iI

d�i
I �
�i,I���j,J�

��i
I − � j

J�Aij . �3.3�

Here �i , I�� �j ,J� if i� j or i= j, I�J.
There is a close relationship between the Ar matrix models and conformal field theory.16,17 In

this relation r free bosons, �i, in a 2d conformal field theory are related to matrix model quantities
in the following way:

��i�z� =
1

gs
tr
 1

z − �i
� . �3.4�

�This relation holds when the matrix model potential is zero which is the case we are interested in.
The factor of gs is unconventional but convenient for our purposes.� Because of relation �3.4� the

free boson CFT vertex operator V̂��z�=e�i�i�z� translates into

�
i

det�z − �i��i/gs. �3.5�

Here �i= 	ei ,�
, where �=�i�
i�i �see Appendix, Sec. 1 for a summary of the Lie algebra termi-

nology�. Correlation functions of �free boson� CFT vertex operators can therefore be calculated
using matrix model technology. The correlation function,

	V̂�1/gs
�z1� ¯ V̂�k/gs

�zk�
�0,N, �3.6�

translates into

� �
i

d�i�
i,j

dBij�
i

det�z1 − �i��1
i /gs

¯�
i

det�zk − �i��k
i /gs


exp�−
1

gs
�
i�j

tr���ij − Aij��Bij�JB̃ji − Bji�iB̃ij��� . �3.7�

�In this paper we restrict our attention to correlation functions on genus 0 surfaces.� In �3.6� the
subscript �0 refers to the fact that there is an extra �0 charge at infinity. This means that the
correlation function really involves k+1 vertex operators. Furthermore, in our conventions,

AijNj = �0
i /gs − �

n=1

k

�n
i /gs. �3.8�

To analyze matrix model expression �3.7�, one can use the following relation: det�z−���/gs

=exp��� /gs�tr log�z−���. The insertions therefore effectively induce the matrix model potentials
�of multi Penner type�,

Wi��i� = tr�
a=1

k

�a
i log�za − �i� , �3.9�

and the matrix models can therefore be analyzed using standard techniques.
In terms of the eigenvalues the matrix model correlation function is

� �
iI

d�i
I �
�i,I���j,J�

��i
I − � j

J�Aij�
i,I

�z1 − �i
I��1

i /gs
¯�

i,I
�zk − �i

I��k
I /gs. �3.10�

In this expression we have left the integration contour unspecified. The choice of integration
contour turns out to be quite subtle and will be discussed in later sections. In previous applications
of matrix models to supersymmetric gauge theories,28 the matrix models should properly be
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thought of as holomorphic matrix models with a choice of contour, see, e.g., Ref. 30, for a
discussion. In the present case, there are also additional subtleties since the potentials are loga-
rithmic.

The proposal of Dijkgraaf and Vafa12 is as follows: to connect the chiral correlation functions

of the vertex operators V̂ involving the free scalar fields �i to the correlation functions of the chiral
vertex operators V involving the fields �i in the Ar Toda field theory, one should take the large N
limit and identify the �a’a �including �0� with the external momenta of the Toda theory vertex
operators. Furthermore, matrix model potential �3.9� has stationary points which in the large N
limit expand into cuts. The corresponding filling fractions gsNi

m �subject to the constraint
�m=1

k−2 Ni
m=Ni� are related to the internal momenta �m in the Toda theory �m label the internal

momenta and i label the components of each of the �m�.
This proposal shares many similarities with the earlier work,28 but we should stress that in

Ref. 12, the number of terms in the potential is related to the number of nodes in the gauge theory
quiver, whereas the number of matrices is related to the rank of the gauge group; in Ref. 28 the
roles were reversed.

In Ref. 12 there is also a discussion of the AGT relation using brane probes; this approach will
not be used in this paper.

The analysis so far only involves gs, i.e., 
1=−
2. As mentioned above there is a further
refinement of the matrix model that is needed to treat the case with general 
1,2. In Ref. 12 it was
suggested that the required modification is the so-called � deformation �or � ensemble�.31 This
deformation changes �3.10� to

� �
iI

d�i
I �
�i,I���j,J�

��i
I − � j

J��Aij�
i,I

�z1 − �i
I����1

i /gs
¯�

i,I
�zk − �i

I����k
i /gs, �3.11�

with the identification �=−
2 /
1 and gs=�−
1
2. Also, �3.8� changes to

�AijNj =
��

gs
�0

i −
��

gs
�
n=1

k

�n
i . �3.12�

We should stress that for general � the above integral �3.11� can no longer be viewed as arising
from an integral over matrices in any reasonable way. Therefore, strictly speaking, we are no
longer dealing with a matrix model. Sometimes the model for general � is called a generalized
matrix model, but we will by a slight abuse of terminology continue to call it a matrix model.

In Sec. IV we analyze various aspects of the above matrix model for the case of the A1 theory
and make detailed calculations and comparisons with the corresponding expressions in the 4d A1

quiver gauge theories and the 2d Liouville theory. In Sec. V a similar analysis will be performed
for the Ar theories with r�1.

IV. THE A1 MATRIX MODEL

In this section we perform several calculations in the A1 matrix model. The resulting expres-
sions are compared to the corresponding expressions in the Liouville theory and the A1 quiver
gauge theories.

A. The three-point function

Our first example is the matrix model three-point function,

1

�2��NN!
� �

I

d�I�
I�J

��I − �J�2��
I

��I�2�1/�1�1 − �I�2�2/�1. �4.1�

Note that 1 /�1=�� /gs. �When referring to matrix model quantities we will use the notation �i

rather than 
i since it will turn out that our conventions are such that �i=−
i.� This complicated
looking integral is the so-called Selberg integral32 which can be evaluated exactly with the result
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1

�2��N�
I=1

N
��2�1/�1 + 1 + �I − 1�����2�2/�1 + 1 + �I − 1�����I��

��2�1/�1 + 2�2/�1 + 2 + �I + N − 2�������
. �4.2�

�In Appendix, Sec. 2 we present an alternative derivation of this result when �=1 using orthogonal
polynomials.� In evaluating the above integral we assumed that the choice of integration contour
is such that the �I’s are integrated over the interval �0,1�. �It is possible to perform changes of
variables in the above integral to obtain other integration ranges; see, e.g., Ref. 31, Sec. 17.5.�
Using the result

��z� = �2��− �1�1/2−z �2�− z�1�− �1,− �2�
�2�− z�1 − �2�− �1,− �2�

, �4.3�

where �2�x �−�1 ,−�2� is the Barnes double gamma function,22 together with �=−�2 /�1 and

�
I=1

N

��z + �I − 1��� = �2��N/2�− �1�N/2−Nz�2�− z�1 + �N − 1��2�− �1,− �2�
�2�− z�1 − �2�− �1,− �2�

, �4.4�

we find that �4.2� equals �here �2�x� is short hand for �2�x �−�1 ,−�2� and ���1+�2�


�1
N�−2�+1

����
�N



�2�− 2�1 + N�2 − ���2�− 2�2 + N�2 − ���2�N�2��2�− 2�1 − 2�2 + N�2 − 2��

�2�− 2�1 − ���2�− 2�2 − ���2�0��2�− 2�1 − 2�2 + 2N�2 − 2��
.

�4.5�

Finally, using N�2=−N��1= �−�0+�1+�2� we obtain


�1
N�−2�+1

����
�N



�2�− �0 − �1 + �2 − ���2�− �0 + �1 − �2 − ���2�− �0 + �1 + �2��2�− �0 − �1 − �2 − 2��

�2�− 2�1 − ���2�− 2�2 − ���2�0��2�− 2�0 − 2��
.

�4.6�

In general, the three-point function in a 2d conformal field theory does not factorize into holo-
morphic and antiholomorphic parts so there is no unambiguous meaning to a “chiral three-point
function.” However, after suitably rescaling the vertex operators with multiplicative factors de-
pending on their momenta, Liouville three-point function �2.6� can be written as �recall that �i

�

=Q−�i�

����1 + �2 + �3 − Q���− �1 + �2 + �3����1 − �2 + �3����1 + �2 − �3��−1

= ��b�2Q − �1 − �2 − �3��b�Q + �1 − �2 − �3��2�Q − �1 + �2 − �3��2��1 + �2 − �3��2,

�4.7�

where �b�x� is short hand for �2�x �b ,b−1�. Therefore, for the Liouville theory there is a natural
definition of a chiral three-point function as the “square root” of �4.7�. After a suitable redefinition
of the matrix model vertex operators, we see that matrix model three-point function �4.6� precisely
captures the chiral part of the Liouville three-point function, provided that �0→�3, and we
identify

�1 = − b, �2 = − 1/b . �4.8�

The matrix model expression can also be compared with �the perturbative part of� the Nekrasov
partition function of the corresponding gauge theory, which in the present case is the so-called T2

�or T3,0�A1�� theory—a theory of four free hypermultiplets.3 Redefining the matrix model vertex
operators as above, we are left with the four �2 factors in the numerator of �4.6�. These are of
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precisely the right form to reproduce �the perturbative part of� the T2 theory, cf. �2.18� �with a
suitable definition of the four masses�. �Possibly one can also make sense of �4.6� within the
framework in Ref. 33.�

We should also mention that the derivation in Ref. 20 of the full three-point function in the
Liouville theory was based on an argument which involved a complex version of the above
integral. Although the equations are similar the logic was different.

B. Higher-point functions

One can also consider higher-point functions in the matrix model. A tractable example is a
four-point function, where one of the �i, �3 say, is equal to �1 /2 or �2 /2, i.e., the integral

� �
I

d�I�
I�J

��I − �J�2��
I

�z − �I�2�3/�1��I�2�1/�1�1 − �I�2�2/�1, �4.9�

with �3 equal to �1 /2 or �2 /2. In Ref. 34 it was shown that the above integral satisfies the
hypergeometric differential equation,

z�1 − z�
d2F�z�

dz2 + �C − �A + B + 1�z�
dF�z�

dz
− ABF�z� = 0, �4.10�

where, if �3=�1 /2,

A = − N, B =
1

�
�2�1/�1 + 2�2/�1 + 2� + N − 1, C =

1

�
�2�1/�1 + 1� , �4.11�

and, if �3=�2 /2,

A = �N, B = − �2�1/�1 + 2�2/�1 + 1� + ��2 − N�, C = − 2�1/�1 + � . �4.12�

On the other hand, it is known that in the Liouville theory the four-point function,

	V−b/2�z�V�1
�0�V�2

�1�V�0
���
 , �4.13�

satisfies the equation

��z
2 − b2 2z − 1

z�z − 1�
�z + b2���1�

z2 + b2 ���2�
�z − 1�2 − b2��− b/2� + ���1� + ���2� − ���0�

z�z − 1� �H�z� = 0,

�4.14�

where ����=��Q−��. After writing H�z�=zb�1�1−z�b�2F�z� the above equation reduces to hyper-
geometric equation �4.10� with

A = b��1 + �2 − �0 − b/2�, B = b
�1 + �2 + �0 −
3

2
b −

1

b
�, C = b�2�1 − b� . �4.15�

Using �=−�2 /�1 and −�2N−�0+�1+�2+�1 /2=0 �compared to the corresponding expression for
the three-point function there is now an extra term coming from �3=�1 /2�, we see that �4.11� and
�4.15� agree provided we use identifications �4.8�. This analysis shows that matrix model integral
�4.9� with the above identifications is proportional to the chiral block in the Liouville CFT. Note
that for special correlation function �4.13� the internal momentum is restricted to two discrete
values corresponding to the two solutions to the hypergeometric equation. The case with an
insertion of the vertex operator V−1/b�z� can be treated analogously and compared to �4.12�. The
choice of signs in �4.8� differs from the usual convention and means that �i=−
i, but note that both

1
2 and 
2 /
1 are unaffected. We could make sign changes elsewhere to restore the usual rule, but
this would clutter some of the above formulas.
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One can also check that the above expression agrees with the corresponding Nekrasov parti-
tion function. This was anticipated in Ref. 4 and derived in detail in Ref. 5. We briefly recall the
argument here. The instanton partition function is as in �4.17� with m ,n=1,2 and �â1 , â2�= �a ,
−a�. If we tune the Coulomb modulus a to fulfill P�a�=0 by setting a=m1, then only terms in the
sum with only Y2 nonempty give nonvanishing contributions. If we furthermore set m2=−a−
1

then only those Y2 tableaux that have boxes only in the first column survive �in other words k2,j
T is

only nonzero for j=1, so that i=1, . . . ,k2,1
T and k2,i=1�. Next using the AGT relation in the form

m1 = −



2
+ �1 + �3, m2 =




2
− �1 + �3, m3 = −




2
+ �4 + �2, m4 =




2
− �4 + �2,

�4.16�

one finds �3=−
1 /2 and

Zinst = �
l=0

�
�A���B��

�C��

y�

�!
, �4.17�

where �X�n=X�X+1�¯ �X+n−1� is the Pochhammer symbol and

A = 
�1 + �2 − �4 −

1

2
�/
2, B = 
�1 + �2 + �4 −

3

2

1 − 
2�/
2, C = − �2�1 − 
1�/
2,

�4.18�

which agrees with �4.15� provided �4→�0, 
1=b, and 
2=1 /b. Together with the fact that ex-
pression �4.17� is precisely the series expansion of the hypergeometric function 2F1�A ,B ;C ;y�,
which solves differential equation �4.10� with y=z, this shows that the instanton partition function
agrees with the chiral block �up to an overall factor�.

The matrix integral corresponding to a correlation function with k insertions of V−b/2, i.e.,

� �
I

d�I�
I�J

��I − �J�2��
I

��I�2�1/�1�1 − �I�2�2/�1�
a=1

k

�za − �I� , �4.19�

was also calculated exactly in Ref. 34. The result is �proportional to� the generalized hypergeo-
metric function,

2F1
�
− N,

1

�
��2�1 + 2�2�/�1 + k + 1� + N − 1;

1

�
�2�1/�1 + k�;z1, . . . ,zk� . �4.20�

�Note that it is also possible treat the cases with V̂−�b/2 insertions by setting z1= ¯ =z� in �4.19�
and �4.20�.� The function 2F1

��A1 ,A2 ;B1 ;z1 , . . . ,zk� is defined as

2F1
��A,B;C;z1, . . . ,zk� = �

�

�A��
��B��

�

�C��
�

P�
��z1, . . . ,zk�

���!
, �4.21�

where the sum is over all partitions � with at most k parts,

�X��
� = �

i

X −

1

�
�i − 1��

�i

, �4.22�

and P�
��z1 , . . . ,zk� is a �properly normalized� Jack polynomial. See Ref. 34, for further details

about the notation. It should be possible to show that the corresponding CFT and gauge theory
calculations lead to the same result.
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We should also point out that the treatment of gauge theory surface and line operators in the
Liouville language discussed in Ref. 8 involves the insertion of vertex operators with �=−b /2.
This is precisely the class of operator insertions we have discussed above.

To go beyond the restricted set of correlation functions discussed above, one possible ap-
proach would be to try to mimic the CFT method and determine the correlation functions in a
perturbative expansion in the zi.

An alternative approach is to use matrix model perturbation theory. For the four-point function
one can �at least when �=1� use the method in Refs. 35 and 36; for the multicut and Ar quiver
extensions, see, e.g., Ref. 37. One can also obtain a perturbative expansion within the framework
of Secs. IV C and IV D; see Sec. IV E below for some sample calculations. On the CFT side the
matrix model perturbation theory is a somewhat peculiar expansion and it is not clear what its
relevance is. A drawback of the perturbative matrix model approach is that solving for the sta-
tionary points leads to complicated expressions, but a clear advantage is that one can handle
arbitrary punctures �i.e., arbitrary vertex operator momenta� using this method �both for the A1 and
Ar theories�. Let us also mention that in Ref. 37 another, less direct, matrix model approach to
N=2 gauge theories was discussed; it might be interesting to try to connect it to the present
approach.

C. The curve: One-cut solutions

In this section we analyze the one-cut matrix model spectral curves, focusing on the matrix
model corresponding to the three-point function discussed in Sec. IV A. We start by reviewing
some well-known results. See, e.g., Ref. 38, for further details. In the standard diagonal gauge
�eigenvalue basis� the one-matrix model partition function is

Z =
1

�2��NN!
� �

I=1

N

d�I�
I�J

��I − �J�2exp
−
1

gs
�
I=1

N

W��I�� =
1

�2��NN!
� �

I=1

N

d�I exp�N2Seff������� ,

�4.23�

where

Seff������ = −
1

t
�

C
d�����W��� +� �

C
C
d�d�����������log�� − ��� . �4.24�

�To conform with standard matrix model conventions W in this section and in Secs. IV D and IV E
corresponds to −W elsewhere in the paper. This also implies that the �i differ by a sign.� Here t is
the ’t Hooft coupling t=Ngs and we have introduced the eigenvalue density ����
= �1 /N��I=1

N ���−�I�, normalized as �Cd�����=1. In this expression one still needs to specify the
geometrical nature of the cut, C. In the most general case ���� has compact support, with C a
multicut region with s cuts. For the moment we shall focus on the one-cut case, with C= �a ,b�. If
one now considers the Riemann surface which corresponds to a double-sheet covering of the
complex plane, C, with precisely the above cut, it is natural to define the A-cycle as the cycle
around the cut. In this case, the B-cycle goes from the end point of the cut to infinity on one of the
two sheets and back again on the other.

The generator of single-trace correlation functions is given by the resolvent

��z� =
1

N
�tr

1

z − �
� =

1

N
�
k=0

+�
1

zk+1 	tr �k
 , �4.25�

which has the standard expansion ��z�=�g=0
+� gs

2g�g�z� with
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�0�z� =� d�
����
z − �

. �4.26�

The normalization of the eigenvalue density then implies that �0�z��1 /z as z→+�. Also, observe
that �0�z� is singular for z�C, while it is analytic for z�” C. One may compute �0�z� by making
use of the large N saddle-point equations of motion of the matrix model,

�0�z + i
� + �0�z − i
� =
1

t
W��z� = 2PV�

C
d�

����
z − �

. �4.27�

In a similar fashion, �0�z� is related to the eigenvalue density as

��z� = −
1

2�i
��0�z + i
� − �0�z − i
�� = −

1

�
Im �0�z� . �4.28�

For a generic one-cut solution, the large N resolvent is given by the ansatz

�0�z� =
1

2t
�

C

dw

2�i

W��w�
z − w

� �z − a��z − b�
�w − a��w − b�

, �4.29�

where one still needs to specify the end points of the cut, �a ,b�. An equivalent way to describe the
matrix model geometry is via the corresponding spectral curve, y�z�, which basically describes the
geometry of the Riemann surface we mentioned above. One may write

y�z� = W��z� − 2t�0�z� � M�z���z − a��z − b� , �4.30�

with �this particular expression only holds for polynomial potentials�

M�z� =�
�0�

dw

2�i

W��1/w�
1 − wz

1
��1 − aw��1 − bw�

, �4.31�

where, again, one needs to specify the end points of the cut, �a ,b�. The aforementioned large z
asymptotics of the resolvent immediately yield two conditions for these two unknowns. They are

�
C

dw

2�i

wnW��w�
��w − a��w − b�

= 2t�ns, �4.32�

for n=0,1, fully determining the end points of the single cut s=1.
It is also useful to define the holomorphic effective potential as Vh;eff� �z�=y�z�. The effective

potential is then given by the real part of the holomorphic effective potential, in such a way that

Veff��� = Re�
a

�

dzy�z� . �4.33�

The real part of the spectral curve therefore corresponds to the force exerted on a given eigen-
value. The imaginary part of the spectral curve, on the other hand, is related to the eigenvalue
density via

��z� =
1

2�t
Im y�z� . �4.34�

Finally, it turns out that one may also write the ’t Hooft parameter in terms of the spectral
geometry as

t =
1

4�i
�

A

dzy�z� . �4.35�

082304-12 R. Schiappa and N. Wyllard J. Math. Phys. 51, 082304 �2010�



We now turn to our main point and consider the large N expansion of the matrix model with
potential

W�z� = �
i=1

k

2�i log�z − zi� �4.36�

where k, ��i�i=1
k , and �zi�i=1

k are parameters we shall keep unspecified for the moment. It follows
from �4.36� that

W��z� = �
i=1

k
2�i

z − zi
, �4.37�

implying that the logarithmic terms in �4.36� will not be terribly problematic—one only needs to
take into account extra poles, when moving the contours of integration around the complex plane.
We begin by focusing on the one-cut solution, for which the large N resolvent is given by the
ansatz

�0�z� =
1

2t
�

C

dw

2�i

W��w�
z − w

� �z − a��z − b�
�w − a��w − b�

, �4.38�

where the integrand now has poles at the locations �zi� but, because the potential is purely
logarithmic, any pole of the integrand at infinity is gone. In this case, a straightforward deforma-
tion of the integration contour reduces the integral along the cut to a sum of simple poles as

�0�z� =
1

2t

W��z� − �

i=1

k
2�i

�z − zi���zi − a��zi − b�
��z − a��z − b�� . �4.39�

The large z asymptotics, �0�z��1 /z+¯ as z→�, immediately implies that the end points of the
cut C= �a ,b� are determined by the system

�
i=1

k
2�i

��zi − a��zi − b�
= 0, �4.40�

�
i=1

k 
2�i −
2�izi

��zi − a��zi − b�
� = 2t , �4.41�

and the single-cut spectral geometry is then described by the curve

y�z� = �
i=1

k
2�i

�z − zi���zi − a��zi − b�
��z − a��z − b� . �4.42�

One may also compute the holomorphic effective potential in a simple manner. We obtain

Vh;eff�z� = − 2
2t − �
i=1

k

2�i�log�2��z − a + �z − b�� + �
i=1

k 
2�i log�1 −
�z − a�zi − b
�z − b�zi − a

�
− 2�i log�1 +

�z − a�zi − b
�z − b�zi − a

�� , �4.43�

with a and b determined by the system above. The structure of Stokes lines for this effective
potential will be more complicated than in the usual polynomial cases.

Let us now specialize to the matrix model corresponding to the three-point function, with
potential
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W3pf�z� = 2�1 log z + 2�2 log�z − 1� , �4.44�

and the further constraint

t = �0 + �
i=1

k

�i. �4.45�

Next we turn to the study of the spectral geometry associated with matrix model potential �4.44�
beginning with the “classical” geometry. The critical points are located at the points z�, such that

W3pf� �z�� =
2�1

z�

+
2�2

z� − 1
= 0. �4.46�

In this case, the general solution is

z� =
�1

�1 + �2
. �4.47�

In the classical limit where the ’t Hooft coupling vanishes �i.e., where we choose vertex operators
such that �0+�1+�2=0�, one simply has y�z�=W3pf� �z� and the cut collapses to the critical point of
the potential, �a ,b�→z�. In this particular case,

W3pf�z�� = 2�1 log
�1

�1 + �2
+ 2�2 log

�2

�1 + �2
. �4.48�

Now, the full spectral geometry will be such that the critical point z� opens up into a branch cut,
of size t �and not touching the marked points associated with the vertex operator insertions at
�0,1 ,���. This blown-up geometry of the spectral curve will have its shape determined by the
parameters �0, �1, and �2. Clearly, because there is a single critical point, the spectral geometry
will correspondingly have a single cut—the situation we studied above. The spectral geometry
associated with the matrix model with potential �4.44� is therefore a genus zero one-cut Riemann
surface. From our previous general results it follows that the spectral curve is

y�z� = 
 2�1

z�ab
+

2�2

�z − 1���1 − a��1 − b�
���z − a��z − b� , �4.49�

where the end points a and b are obtained from the solution to the system

2�1

�ab
+

2�2

��1 − a��1 − b�
= 0,

2�2

��1 − a��1 − b�
= − 2�0, �4.50�

with �partial� solution

�ab =
�1

�0
, �4.51�

��1 − a��1 − b� = −
�2

�0
. �4.52�

This immediately simplifies the spectral curve to
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y�z� =
2�0

z�1 − z�
��z − a��z − b� . �4.53�

For completeness we also give the explicit solution to �4.50�,

a =
��0

2 + �1
2 − �2

2 − ���0 − �1 − �2���0 + �1 − �2���0 − �1 + �2���0 + �1 + �2��
2�0

2 ,

b =
��0

2 + �1
2 − �2

2 + ���0 − �1 − �2���0 + �1 − �2���0 − �1 + �2���0 + �1 + �2��
2�0

2 . �4.54�

Spectral curve �4.53� can be written as

y2 =
P2�z�

z2�1 − z�2 , �4.55�

where P2�z� is a polynomial of degree of 2. This expression was also written in Ref. 12; here we
have also explicitly determined the coefficients in P2�z� in terms of the three �i’s.

D. The curve: Multicut solutions

Let us return to the geometrical nature of the cut, C, where C is now a multicut region with s
cuts. There are two cases: when s is smaller or equal to the number of minima of the potential
V���, a typical situation in the standard matrix model context; or when s is equal to the number of
nondegenerate extrema of the potential V���, the situation which arises when dealing with topo-
logical strings which is the case relevant to us. More precisely,

C = �
I=1

s

AI, �4.56�

where AI= �x2I−1 ,x2I� are the s cuts and x1�x2� ¯ �x2s. If one now considers the hyperelliptic
Riemann surface which corresponds to a double-sheet covering of the complex plane, C, with
precisely the same cuts as above, AI, it is then natural to define the AI-cycle as the cycle around the
AI cut, with the BI-cycle following via BI�AJ=�I

J. In this case, the BI-cycle goes from the end
point of the AI cut to infinity on one of the two sheets and back again on the other.

For a generic multicut solution, the large N resolvent is given by the ansatz

�0�z� =
1

2t
�

C

dw

2�i

W��w�
z − w

��
k=1

2s
z − xk

w − xk
, �4.57�

where one still needs to specify the end points of the s cuts, �xk�. An equivalent way to describe
the matrix model geometry is via the corresponding spectral curve, y�z�, which basically describes
the hyperelliptic geometry of the Riemann surface we mentioned above. One may write

y�z� = W��z� − 2t�0�z� � M�z���s�z� , �4.58�

where

�s�z� � �
k=1

2s

�z − xk� �4.59�

and �this particular expression only holds for polynomial potentials�
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M�z� = �
�0�

dw

2�i

W��1/w�
1 − wz

ws−1

��k=1
2s �1 − xkw�

, �4.60�

and where, again, one still needs to specify the end points of the s cuts, �xk�. The aforementioned
large z asymptotics of the resolvent immediately yield s+1 conditions for these 2s unknowns.
They are

�
C

dw

2�i

wnW��w�
��k=1

2s �w − xk�
= 2t�ns �4.61�

for n=0,1 , . . . ,s. In order to fully solve the problem, one still requires s−1 extra conditions for the
full set of �xk�. �Observe that no further conditions were required in the previous one-cut case,
where C= �x1 ,x2���a ,b�. Indeed, in that situation the large z asymptotics fully determined the end
points of the single cut.� These extra conditions depend on whether one wants to consider the
standard matrix model or the topological string case. In the first option one considers all the
different cuts at equipotential lines, where this condition may be written as

�
x2I

x2I+1

dzy�z� = 0. �4.62�

A physical understanding of this expression says that there is no force moving eigenvalues from
one cut to another. In contrast, the topological string option �which is the case relevant to our
analysis� generically corresponds to an unstable situation from a purely matrix model point of
view. In this case one considers the filling fractions,

�I �
NI

N
� �

AI
d�����, I = 1,2, . . . ,s , �4.63�

as parameters, or moduli, of the problem under consideration. Observe that here �I=1
s �I=1, mak-

ing it an actual total of s−1 extra parameters, precisely the number required. By rewriting the
eigenvalue density in terms of the resolvent, and the resolvent in terms of the spectral curve, one
is led to the equivalent definition,

�I =
1

4�it
�

AI
dzy�z� . �4.64�

One may also use as moduli the partial ’t Hooft couplings tI= t�I=gsNI. In this case

tI =
1

4�i
�

AI
dzy�z� , �4.65�

with �I=1
s tI= t, making a total of s−1 moduli.

Let us now return to the large N expansion of the matrix model with potential �4.36� and
associated derivative �4.37� and briefly discuss how one may use standard saddle-point techniques
to address multicut solutions. Again the logarithmic terms are not a problem; as we have seen
before one only needs to take into account extra poles, when moving around the complex plane.
When addressing multicut solutions, with s cuts, the large N resolvent is given by ansatz �4.57�,
where the integrand now has poles at the locations zi and any pole of the integrand at infinity is
gone. As in the single-cut case, a straightforward deformation of the integration contour reduces
the integral along the cut to a sum of simple poles as
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�0�z� =
1

2t

W��z� − �

i=1

k
2�i

�z − zi���n=1
2s �zi − xn�

��
n=1

2s

�z − xn�� . �4.66�

The large z asymptotics, �0�z��1 /z+¯ as z→�, immediately yield s+1 conditions on the 2s
end points of the cuts via the system

�
i=1

k �
C

dw

2�i

2�iw
m

�w − zi���n=1
2s �w − xn�

= 2t�ms �4.67�

for m=0,1 , . . . ,s. This may be written more explicitly as �notice that now the integrand does have
a pole at infinity, when m=s�

�
i=1

k
2�i

��n=1
2s �zi − xn�

= 0,

�
i=1

k
2�izi

��n=1
2s �zi − xn�

= 0,

¯

�
i=1

k
2�izi

s−1

��n=1
2s �zi − xn�

= 0,

�
i=1

k 
2�i −
2�izi

s

��n=1
2s �zi − xn�

� = 2t . �4.68�

Of course in order to fully solve the problem, one still requires s−1 extra conditions for the full set
of end points �xk�. Finally, the spectral geometry is described by the hyperelliptic spectral curve,

y�z� = �
i=1

k
2�i

�z − zi���n=1
2s �zi − xn�

��
n=1

2s

�z − xn� . �4.69�

Having understood the multicut spectral geometry, we now focus on the case corresponding to the
chiral four-point function in the Liouville theory, namely, the matrix model with potential

W4pf�z� = 2�1 log z + 2�2 log�z − 1� + 2�3 log�z −  � . �4.70�

�Here and in Sec. IV E for clarity we use  �z1 to denote the location of the vertex operator
insertion; in other sections z is used.� We begin with the “classical” geometry of the potential. The
critical points are located at the points z� such that

W4pf� �z�� =
2�1

z�

+
2�2

z� − 1
+

2�3

z� −  
= 0. �4.71�

In this case, the general solutions are

z�,1 =
�1 +  ��1 +  �2 + �3 − ���1 +  ��1 +  �2 + �3�2 − 4�1 ��1 + �2 + �3�

2��1 + �2 + �3�
,
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z�,2 =
�1 +  ��1 +  �2 + �3 + ���1 +  ��1 +  �2 + �3�2 − 4�1 ��1 + �2 + �3�

2��1 + �2 + �3�
. �4.72�

Generically, the critical points z�,1 and z�,2 will open up into branch cuts, of sizes t1 and t2 �and not
touching the marked points associated with the vertex operator insertions at �0,1 , ,���. Because
of the two critical points, the most general spectral geometry will correspondingly have two cuts
and the spectral geometry associated with the chiral Liouville four-point function is a genus one
two-cut �elliptic� Riemann surface. This two-cut blown-up geometry of the spectral curve will
have its shape determined by �0, �1, �2, and �3. To be more precise, from the large z asymptotics
of the genus zero resolvent one obtains three conditions on the end points of the two cuts; the
remaining required condition arising from the partial ’t Hooft moduli, t1 or t2 �where t1+ t2= t�. In
Ref. 12 this modulus is actually traded for a= t2− t1, the Coulomb modulus in the gauge theory,
and we shall use this notation henceforth.

Of course there are particular points in the moduli space of the elliptic spectral curve where
the geometry simplifies. One is the degenerate case where both partial ’t Hooft couplings vanish.
Another special point occurs when only one of the critical points opens up into a branch cut, in
which case one is dealing with a one-cut pinched spectral geometry, the pinch at the location of the
critical point that remains “closed.” Let us consider this special case, where

t1 = −
1

2
a +

1

2�
i=0

3

�i = 0, �4.73�

t2 =
1

2
a +

1

2�
i=0

3

�i = t . �4.74�

From our previous �single-cut� result �4.42� we have

y�z� = ��z − a��z − b� 
 � 2�1

z�ab
+

2�2

�z − 1���1 − a��1 − b�
+

2�3

�z −  ��� − a�� − b�
� ,

�4.75�

where the end points a and b are a solution to the system

2�1

�ab
+

2�2

��1 − a��1 − b�
+

2�3

�� − a�� − b�
= 0, �4.76�

2�2

��1 − a��1 − b�
+

 2�3

�� − a�� − b�
= − 2�0. �4.77�

This may be equivalently written as

2�1

�ab
= 2�0 +

� − 1�2�3

�� − a�� − b�
, �4.78�

2�2

��1 − a��1 − b�
= − 2�0 −

 2�3

�� − a�� − b�
, �4.79�

which slightly simplifies the spectral curve to
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y�z� = 
 2�0

z�1 − z�
+

 � − 1�
z�z − 1��z −  �

2�3

�� − a�� − b�
���z − a��z − b� . �4.80�

Generically, however, we are dealing with a system of quartic equations and, although it can be
solved algebraically, its exact solution is not terribly illuminating. In the following, we therefore
choose a different route and solve this system perturbatively in  . This is motivated by the
expansion on the CFT side and simplifies the problem considerably. To first order, we obtain the
solution

�ab =
�1 + �3

�0
−

���1 + �3�2 + �2
2 − �0

2��3 

2�0��1 + �3�2 + O� 3/2� ,

��1 − a��1 − b� = −
�2

�0

1 −

�3 

�1 + �3
+ O� 2�� , �4.81�

or, equivalently,

a =
�0

2 + ��1 + �3�2 − �2
2 − �!

2�0
2 +

�0
2 − ��1 + �3�2 + �2

2 + �!

2�0
2��1 + �3�

�3 + O� 2� ,

b =
�0

2 + ��1 + �3�2 − �2
2 + �!

2�0
2 +

�0
2 − ��1 + �3�2 + �2

2 − �!

2�0
2��1 + �3�

�3 + O� 2� , �4.82�

where we have defined

! � ��0 + �1 + �2 + �3���0 − �1 + �2 − �3���0 + �1 − �2 + �3���0 − �1 − �2 − �3� .

�4.83�

This solution will be important in the perturbative calculations in Sec. IV E below.
From having worked out some degenerate cases of the matrix model associated with the

Liouville four-point function, we have acquired some intuition about what to expect as we move
on to the case with arbitrary vertex operators with conformal dimensions such that, generically,
one will find a two-cut geometry. Let us briefly comment on this geometry. We have previously
computed the spectral curve for a general multicut case and, for the two-cut ansatz associated to
the Liouville four-point function, this is

y�z� = 
 2�1

z�x1x2x3x4

+
2�2

�z − 1���1 − x1��1 − x2��1 − x3��1 − x4�

+
2�3

�z −  ��� − x1�� − x2�� − x3�� − x4�
����z� , �4.84�

with

��z� = �z − x1��z − x2��z − x3��z − x4� . �4.85�

It is simple to see that the end points of the two cuts, �xi�i=1
4 , are now a solution to the system

�x1x2x3x4 = −
 �1

�0
, �4.86�

��1 − x1��1 − x2��1 − x3��1 − x4� =
� − 1��2

�0
, �4.87�
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�� − x1�� − x2�� − x3�� − x4� = −
� − 1� �3

�0
, �4.88�

which immediately simplifies the two-cut spectral curve as

y�z� = −
2�0

z�z − 1��z −  �
���z� . �4.89�

Further notice, as we have discussed before, that above we have three equations for four un-
knowns, and there is still one further moduli to consider; either t1 or t2 �they are not independent
as t1+ t2= t�,

t1 = −
1

2
a +

1

2�
i=0

3

�i, �4.90�

t2 =
1

2
a +

1

2�
i=0

3

�i. �4.91�

E. Some perturbative calculations

We shall now discuss some perturbative calculations in the matrix models considered above.
By perturbative, we mean a ’t Hooft expansion in gs. As a warm up we focus on matrix model
�4.44�. One can compute the partition function exactly �see Appendix, Sec. 2�; the result can be
written

Z =
G2�N + 1�

�2��N

G2�− N − 2�0/gs + 1�
G2�− 2�0/gs + 1�

G2�N + 2�1/gs + 1�
G2�2�1/gs + 1�

G2�N + 2�2/gs + 1�
G2�2�2/gs + 1�

, �4.92�

where G2�z� is the Barnes function. The Barnes function has the asymptotic expansion

log G2�N + 1� =
1

2
N2 log N +

1

2
N log 2� −

3

4
N2 −

1

12
log N +  ��− 1� + �

g=2

+�
1

N2g−2

B2g

2g�2g − 2�
,

�4.93�

with B2g the Bernoulli numbers. However, �4.93� only deals with the N→+�, or gs→0+,
asymptotic region. Depending on the sign of the finite parameters �1 and �2, as gs→0+ one will
have −�i /gs either going to +� or to −�, and one thus needs to also understand the asymptotics of
the logarithm of the Barnes function in the region N→−�. However, it turns out that, from the
point of view of the perturbative expansion, this sign difference is not very relevant. To clarify this
issue, first notice the relation

log G2�1 − N� = log G2�1 + N� − N log 2� + �
0

N

dx�x cot �x . �4.94�

Explicitly evaluating the integral we find

log G2�1 − N� = log G2�1 + N� − N log 2� +
i�

12
�1 – 6N2� + N log�1 − e2�iN� −

i

2�
Li2�e2�iN� ,

�4.95�

where Li2�z� is the dilogarithm. The logarithmic and dilogarithmic contributions can be expanded
as
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N log�1 − e2�iN� −
i

2�
Li2�e2�iN� = − �

m=1

+� 
N

m
−

1

2�im2�e2�iNm. �4.96�

As explained in Ref. 39, this is actually the instanton contribution to the Barnes function, also
describable in terms of Stokes phenomena �across the +� /2 Stokes line�. In other words, this
contribution is purely nonperturbative, and we shall neglect it at this stage, i.e., from a purely
perturbative point of view we may use following result:

log G2�1 − N� � log G2�1 + N� − N log 2� +
i�

12
�1 – 6N2� . �4.97�

From the above discussion it follows that the logarithm of Z, in the ’t Hooft limit, has the
expansion �as usual, we are only considering the real part of the free energy�

F � log Z = �
g

gs
2g−2Fg, �4.98�

where, if we define F=F− 1
2N2 log gs− 1

2N log 2�+log G2�N+1� �essentially amounting to the
Gaussian normalization of the free energy� and use relation �4.45� with k=2, we find

F0
3pf = 1

2 �− �0 + �1 + �2�2�log�− �0 + �1 + �2� − 3
2� − 2�0

2�log�2�0� − 3
2�

+ 1
2 ��0 − �1 + �2�2�log��0 − �1 + �2� − 3

2� − 2�1
2�log�2�1� − 3

2�
+ 1

2 ��0 + �1 − �2�2�log��0 + �1 − �2� − 3
2� − 2�2

2�log�2�2� − 3
2� �4.99�

for g=0,

F1
3pf = −

1

12
log

− �0 + �1 + �2

2�0
−

1

12
log

�0 − �1 + �2

2�1
−

1

12
log

�0 + �1 − �2

2�2
�4.100�

for g=1; and

Fg
3pf =

B2g

2g�2g − 2�
��− �0 + �1 + �2�2−2g − �2�0�2−2g + ��0 − �1 + �2�2−2g − �2�1�2−2g

+ ��0 + �1 − �2�2−2g − �2�2�2−2g� �4.101�

for g"2. As alluded to above, it is also rather straightforward to compute the full nonperturbative
contribution to this result. Because this is far from our present discussion we refer the reader to
Ref. 39, for details, but the main idea essentially follows from the application of

disc log G2�N + 1� = i�
m=1

+� 
 �N�
m

+
1

2�m2�e−2��N�m �4.102�

to the expression for the free energy �where the discontinuity of the free energy will yield the full
tower of multi-instanton corrections�. In this case one simply obtains

discF3pf =
i

2�ḡs
�
m=1

+� 
2��− �0 + �1 + �2�
m

+
ḡs

m2�e−2��−�0+�1+�2�m/ḡs +
i

2�ḡs
�
m=1

+� 
2���0 − �1 + �2�
m

+
ḡs

m2�e−2���0−�1+�2�m/ḡs +
i

2�ḡs
�
m=1

+� 
2���0 + �1 − �2�
m

+
ḡs

m2�e−2���0+�1−�2�m/ḡs

−
i

2�ḡs
�
m=1

+� 
4��0

m
+

ḡs

m2�e−4��0m/ḡs −
i

2�ḡs
�
m=1

+� 
4��1

m
+

ḡs

m2�e−4��1m/ḡs
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−
i

2�ḡs
�
m=1

+� 
4��2

m
+

ḡs

m2�e−4��2m/ḡs. �4.103�

Notice that this is an exact result, to all loops and including all instanton numbers.
Even though we have �for this case� an exact perturbative expression, it is useful to also

compute F1 using a method that generalizes to more complicated situations where exact results are
unavailable. There is a universal formula for F1 which takes the form40

F1 = − 1
24log�M�a�M�b��a − b�4� , �4.104�

where �this follows from �4.30� and �4.54��

M�a�M�b� = 4
�0

6

�1
2�2

2 . �4.105�

�The universal expression was derived for polynomial potentials, but our results indicate that it
also holds for the multi-Penner-type potentials considered in Ref. 12.� It immediately follows,
using �4.54�, that

F1 = −
1

12
log�2�0 + 2�1 + 2�2� −

1

12
log

− �0 + �1 + �2

�0
−

1

12
log

�0 − �1 + �2

�1
−

1

12
log

�0 + �1 − �2

�2
,

�4.106�

reproducing the result we have previously obtained, up to some irrelevant numerical terms �this
expression explicitly includes the Gaussian contribution − 1

12log t�.
Next we turn to the case corresponding to the chiral four-point function in the Liouville

theory, namely, the matrix model with potential �4.70�. In this case we do not have an exact
solution, but as discussed in Sec. IV D we can get tractable expressions if we work order by order
in  .

As an example we consider the special case discussed at the end of Sec. IV D and focus on F1,
which may be computed in a straightforward fashion from universal result �4.104�. We have

M�z� =
2�1

z�ab
+

2�2

�z − 1���1 − a��1 − b�
+

2�3

�z −  ��� − a�� − b�
�

2�1 + 2�3

z�ab

+
2�2

�z − 1���1 − a��1 − b�
+

2�3 

z2�ab
+

2�3�a + b� 
2z�ab�3/2 + O� 2� =

2�0

z�1 − z�
1 +
�3 

z��1 + �3�

+ O� 2�� , �4.107�

leading to

M�a�M�b� =
4�0

2

ab�1 − a��1 − b�

1 +

a + b

ab

�3 

�1 + �3
+ O� 2�� , �4.108�

and further computing

b − a =
�!

�0
2 
1 −

�3 

�1 + �3
+ O� 2�� , �4.109�

where ! was defined in �4.83�, and
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b + a =
�0

2 + ��1 + �3�2 − �2
2

�0
2 +

�0
2 − ��1 + �3�2 + �2

2

�0
2��1 + �3�

�3 + O� 2� �4.110�

it finally follows, after putting all the above expressions together,

M�a�M�b� =
4�0

6

�2
2��1 + �3�2
1 +

4�3 

�1 + �3
+ O� 2�� , �4.111�

�b − a�4 =
!2

�0
8 
1 −

4�3 

2�1 + 2�3
+ O� 2�� , �4.112�

and �here we also included the  2 terms�

F1 = −
1

12
log

2!

�0��1 + �3��2

−
�1�3�− �0 + �1 − �2 + �3���0 + �1 − �2 + �3��− �0 + �1 + �2 + �3���0 + �1 + �2 + �3�

32��1 + �3�6  2.

�4.113�

Notice that, up to numerical constants that we drop, and to first nontrivial order in  , this result is
exactly the same as the result in �4.106�, except for the shift �1→�1+�3. Note also that the order
O� � contribution to F1 vanishes.

The above result can be compared to the corresponding result for the Nekrasov instanton
partition function of the SU�2� theory with four fundamental hypermultiplets. In this case one
easily obtains

F1
inst =

− a6�1�m2� + 2a4�2�m2� − 3a2�3�m2� + 4�4�m2�
128a8 y2 + O�y3� , �4.114�

where �k�m2�=�i1�¯�ik
mi1

2
¯mik

2 . Note that the O�y� term vanishes in agreement with �4.113�
identifying y with  . Furthermore, after implementing the relations,

m1 = �1 + �3, m2 = �1 − �3, m3 = �0 + �2, m4 = �0 − �2, �4.115�

together with a=m1, we see that also the second order terms in �4.113� and �4.114� agree perfectly.
�The definition of a in the Nekrasov expression differs from the one in �4.73�.� This result is
consistent with the analysis in Sec. IV B and supports the approach in Ref. 12.

Computing Fg for g"2 would require heavier machinery, see, e.g., Ref. 41, and will not be
attempted here. Similarly, an explicit example involving the full-fledged two-cut geometry would
take us too far afield. The integrals of the periods associated with the ’t Hooft moduli are generi-
cally hard to evaluate exactly �although it is possible to do so in the present situation� and even
harder to invert in order to find explicit solutions for the end points of the two cuts. A possible way
out is to resort to perturbation theory, along the lines of Refs. 35 and 36, but we shall leave this
question for future work.

Let us close with a comment about the relation to the chiral four-point function in the Liou-
ville theory to leading order in  . In order to reconstruct the full Liouville three-point function at
this order pertubative calculations are not enough, one would also need to add the full set of
nonperturbative corrections and, in general, also let ��1, in order to obtain the desired result. It
seems plausible that a matrix model perturbation theory in  exists �for general �� which is exact
in gs order by order, but we leave this question for future work.
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V. THE Ar MATRIX MODELS

In this section we perform several calculations in the Ar quiver matrix models. The resulting
expressions are compared to the corresponding expressions in the Ar Toda theories and the Ar

quiver gauge theories.

A. The three-point function

The above analysis of the A1 matrix model three-point function �see Sec. IV A� can be
extended to the Ar theory for any r. The relevant integral is

Sr��1,�2,�� =� �
iI

d�i
I �
�i,I���j,J�

��i
I − � j

J��Aij�
i,I

��i
I��1

i /�1�
i,I

�1 − �i
I��2

i /�1. �5.1�

Here �1
i = 	�1 ,ei
 with �1=�1

i �i and similarly for �2 �see Appendix, Sec. 1, for our Lie algebra
conventions�. Integral �5.1� can be explicitly evaluated provided one imposes the restriction �1

i

=��ir �i.e., �1=��r�; the result is42

�
1#i#j#r

�
I=1

Ni−Ni−1 ����2
i + ¯ �2

j �/�1 + j − i + 1 + �I − 1 + i − j���
����2

i + ¯ �2
j + �1

j �/�1 + j − i + 2 + �I − 2 + i − j + Nj − Nj+1���


 �
i=1

r

�
I=1

Ni ���1
i /�1 + 1 + �I − Ni+1 − 1�����I��

����
, �5.2�

where N0=Nr+1=0. Result �5.2� depends on a very particular choice of integration contour, which
is quite subtle and will not be discussed here; see Ref. 42, for further details.

Using various Lie algebra results �see Appendix, Sec. 1, for further details� one can show that
the relation

�1
i + �2

i − �0
i − �2AijNj = 0, �5.3�

where �1=��r �i.e., �1
i =��ir�, implies that

− �2�Ni − Ni+1� = − Air
−1� + Ai+1,r

−1 � + 	�2,hi+1
 − 	�0,hi+1
 . �5.4�

�Note the special case, �2N1=� / �r+1�+ 	�2 ,h1
− 	�0 ,h1
.� Furthermore,

�1
i − Air

−1� + Ai+1,r
−1 � =

�

r + 1
. �5.5�

Using these results together with

�2
i + ¯ + �2

j = − 	�2,uj+1 − ui
, i − j − 1 = − 	�,ui − uj+1
 , �5.6�

and �4.4�, it follows that expression �5.2� can be written �we suppress an unimportant prefactor and
�2�x� is short hand for �2�x �−�1 ,−�2��
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�
1#i�j#r+1

�2
	�2 + ��,hj
 − 	�0 + ��,hi
 +
�

r + 1
��2
− � − 	�2 + ��,hi
 + 	�0 + ��,hj
 −

�

r + 1
�

�2�− 	�2 + ��,eij
��2�− � − 	�0 + ��,eij
�




�2
− � − 	�2 + ��,h1
 + 	�0 + ��,h1
 −
�

r + 1
�

�2�− � − ��


�
i=2

r+1

�2
	�2 + ��,hi
 − 	�0 + ��,hi
 +
�

r + 1
� 
 �

i=2

r
�2�Ni�2�

�2�− � − Ni�2�
. �5.7�

The first thing to note is that the factor on the last line is a phase. As in the A1 case discussed in
Sec. IV A the above expression can be compared to the three-point function in the Ar Toda theory.
After suitably rescaling the vertex operators with multiplicative factors depending on their mo-
menta, the Ar Toda theory three-point function �2.9� can be written

�
i,j=1

r+1 ��
 �

r + 1
+ 	�1 − Q�,hi
 + 	�2 − Q�,hj
��−1

= �
1#i�j#r+1

��b
 �

r + 1
+ 	�1 − Q�,hi
 + 	�2 − Q�,hj
��2


 �
1#i�j#r+1

��b
Q −
�

r + 1
− 	�1 − Q�,hj
 − 	�2 − Q�,hi
��2


��b
Q −
�

r + 1
− 	�1 − Q�,h1
 − 	�2 − Q�,h1
��2


�
i=2

r+1 ��b
 �

r + 1
+ 	�1 − Q�,hi
 + 	�2 − Q�,hi
��2

, �5.8�

where �b�x� is short hand for �2�x �b ,1 /b�. By similarly rescaling of the matrix model vertex
operators, we are left with the factors in the numerators on the first two lines of �5.7�. After using
identification �4.8� together with Q�−�0→−�Q�−�1�, we find complete agreement with the
“square root” of �5.8�. Expression �5.7� should probably also be related to �the perturbative piece
in� the Tr+1=T3,0�Ar� theory where one of the masses satisfies a restriction inherited from �1

=��r via the AGT relation.
We note that in Refs. 23 and 24 a complex version of the above integral was used to derive the

three-point function in the Ar Toda theory when one of the momenta takes the special value ��r.
In the above evaluation of integral �5.1� the condition �1=��r was imposed with �2 left

arbitrary. In Ref. 43 the above integral was evaluated for the rank 2 case with the alternative
restriction: �2=��1− ��+���2, with �1 left arbitrary.

To understand why there is more than one possible choice which allows for an explicit
evaluation of the above integral, we recall that in the A2 Toda theory the condition �=��r

translates into the fact that the corresponding W primary state satisfies �see, e.g., Refs. 4 and 24
and references therein�


W−1 −
3w���
2����

L−1���
 = 0, �5.9�

which implies
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����2
 32

22 + 5c
����� +

1

5
� −

1

5
� −

9

2
w���2 = 0, �5.10�

where

���� =
	2Q� − �,�


2
�5.11�

and

w��� = i� 48

22 + 5c
	� − Q�,h1
	� − Q�,h2
	�� − Q�,h3�
 . �5.12�

In �5.12� the hi are the weights of the fundamental representation of the A2 Lie algebra, cf. �A2�.
If we write �=�1�1+�2�2, then it turns out that there are six one parameter solutions to �5.10�,

� = ��1, � = ��1 + 2Q�2, � = ��2, � = 2Q�1 + ��2,

� = ��1 − �� − Q��2, � = ��1 − �� − 3Q��2 �5.13�

Using that in our conventions �=−Q, we see that both conditions �2.8� as well as the condition
used in Ref. 43 belong to set �5.13�. In addition to these three solutions there are three more which
differ from the other ones only when Q�0. It is known that in the A2 Toda theory these six
possibilities do not correspond to distinct states, rather they are related via the so-called shifted
Weyl group acting on the momenta which changes the corresponding vertex operators by the so
called reflection amplitudes �we thank Yuji Tachikawa for clarifying this point�. Therefore, there
should also be a simple relation between the corresponding matrix integrals; in particular, if one
can be explicitly evaluated then that should also be the case for the others.

B. Higher-point functions

As in the A1 case we can analyze a certain class of four-point correlation functions exactly. We
need the following result:42

� �
iI

d�i
Ie���1� �

�i,I���j,J�
��i

I − � j
J��Aij�

i,I
��i

I��1
i /�1�1 − �i

I��2
i /�1 = Sr��1,�2,��



N1

�
��

i=1

r

�
I=1

�
��2

1 + ¯ + �2
i �/�1 + i + �N1 − I − i + 1��

��2
1 + ¯ + �2

i + �1
i �/� + i + 1 + �N1 + Ni − Ni+1 − I − i��

, �5.14�

where the Ar Selberg integral Sr��1 ,�2 ,�� was defined in �5.1�, �1
i =��ir, and e���1� is the �th

elementary symmetric polynomial defined as

e���1� = �
I1�¯�I�

�1
I1
¯ �1

I�. �5.15�

From result �5.14� it follows that
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Sr��1,�2,�;z� =� �
iI

d�i
I �
�i,I���j,J�

��i
I − � j

J��Aij�
i,I

��i
I��1

i /�1�1 − �i
I��2

i /�1�
I

�z − �1
I �

= Sr��1,�2,���
�=0

N1

z��− 1�N1−�
N1

�
�


 �
i=1

r

�
I=1

N1−�
��2

1 + ¯ + �2
i �/�1 + i + �N1 − I − i + 1��

��2
1 + ¯ + �2

i + �1
i �/�1 + i + 1 + �N1 + Ni − Ni+1 − I − i��

= Sr��1,�2,�;0��
�=0

N1 z�

�!
�− 1�� N1!

�N1 − ��!


 �
i=1

r

�
I=0

�−1 −
1

�2
��2

1 + ¯ + �2
i + �1

i + i�1 + �1� + I + Ni − Ni+1 − i

−
1

�2
��2

1 + ¯ + �2
i + i�1� + I − i + 1

. �5.16�

As above one can show using various Lie algebra results �see Appendix, Sec. 1 for further details�
that

− �2�Ni − Ni+1� = − Ai1
−1�1 + Ai+1,1

−1 �1 − Air
−1� + Ai+1,r

−1 � + 	�2,hi+1
 − 	�0,hi+1
 , �5.17�

where we have used �1=��r and �3=�1�1. Furthermore,

− Ai1
−1 + Ai+1,1

−1 = −
1

r + 1
, �1

i − Air
−1� + Ai+1,r

−1 � =
�

r + 1
. �5.18�

Using these results together with

�2
1 + ¯ + �2

i = − 	�2,hi+1 − h1
, i = − 	�,hi+1 − h1
 , �5.19�

it follows that

Sr��1,�2,�;z� = Sr��1,�2,�;0��
�=0

N1 z�

�!

�A1�� ¯ �Ar+1��

�B1�� ¯ �Br��

= Sr��1,�2,�;0�r+1Fr�A1, . . . ,Ar+1;B1, . . . ,Br;z� , �5.20�

where �X�n=X�X+1�¯ �X+n−1� is the Pochhammer symbol,

Bi = −
1

�2
��2

1 + ¯ + �2
i + i�1� − i + 1 =

1

�2
	�2 + ��,hi+1 − h1
 + 1 �5.21�

and

Ai = −
1

�2

 �

r + 1
+ �1

r

r + 1
+ 	�2 + ��,h1
 − 	�0 + ��,hi
� . �5.22�

Note that �−1��N1 ! / �N1−�� ! = �A1�� and that the sum over � in �5.20� can be extended to � since
�A1��=0 for ��N1.

To compare result �5.20� with the corresponding result in the Ar Toda theory we recall that in
Refs. 23 and 24 it was shown that the correlator
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	V−b�1
�z�V�1

�0�V�2
���V��r

�1�
 �5.23�

satisfies a differential equation of hypergeometric type whose solutions involves

r+1Fr�A1 , . . . ,Ar+1 ;B1 , . . . ,Br ;z�, where

Ai = b
 �

r + 1
− b

r

r + 1
+ 	�1 − Q�,h1
 + 	�2 − Q�,hi
� ,

Bi = 1 + b	�1 − Q�,h1 − hi+1
 . �5.24�

Replacing �1→�2, �2−Q�→−��0−Q�� and using rule �4.8� we see that �5.24� agrees perfectly
with �5.21� and �5.22�.

One can also show that the Nekrasov partition function leads to the same result, see Ref. 6, for
a discussion. It should also be possible to analyze the correlation functions involving the insertion
of V−�1/b as well as the case with several insertions of V−b�1

.
To analyze general correlation functions without imposing the above restrictions on the mo-

menta is much more difficult. However, we stress that matrix model perturbation theory can
handle any correlation function, although this method appears to be somewhat cumbersome and it
is not clear what the meaning of the resulting expansion is in the 2d CFT.

C. The curve

We now turn to the discussion of the loop equations and the large N matrix model curve. In
Ref. 12 and in Secs. IV C and IV D some examples of curves in the A1 case were presented. Here

we mainly focus on the A2 case. We call the two matrices � and �̃ and the associated potentials

W and W̃. The �nonhyperelliptic� curve is known to be of the form16,29

x3 = r�z�x + s�z� , �5.25�

where

r�z� =
1

3
�W��z�2 + W̃��z�2 + W��z�W̃��z�� − gs�tr
W��z� − W����

z − �
�� − gs�tr
 W̃��z� − W̃���̃�

z − �̃
��

�5.26�

and44

s�z� = −
1

27
�W��z� + 2W̃��z���2W��z� + W̃��z���W��z� − W̃��z�� + gs�̃r�z��tr
W��z� − W����

z − �
��

− gs�r�z��tr
 W̃��z� − W̃���̃�

z − �̃
�� − gs

2�tr� d

d�

W��z� − W����

z − �
���

+ gs
2�tr� d

d�

 W̃��z� − W̃���̃�

z − �̃
��� + gs�tr
W��z� − W����

z − �
��

− gs�tr
 W̃��z� − W̃���̃�

z − �̃
�� , �5.27�

where
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�r�z� = 1
3 �2W��z� + W̃��z��, �̃r�z� = 1

3 �W��z� + 2W̃��z�� . �5.28�

�The expressions on the last two lines in �5.27� can be simplified in the eigenvalue basis by using
the saddle-point equations, but we will not need the resulting expression here.�

Inserting the explicit expressions for W and W̃ as sums of logarithms

W��� = �
i=1

p

mi log�zi − ��, W̃��̃� = �
i=1

p

m̃i log�zi − �̃� , �5.29�

and using the above expressions for r�z� and s�z�, we find

x3 =
P2p−2

�2� �z�
�i=1

p �z − zi�2x +
P3p−3

�3� �z�
�i=1

p �z − zi�3 , �5.30�

where P2p−2
�2� �z� and P3p−3

�3� �z� are polynomials of degree 2p−2 and 3p−3, respectively. �Since the
curve is derived in the limit of vanishing � the AGT relation is �i=mi using a suitable definition
of the masses.� This curve is of precisely the right form to agree with the expression in Ref. 3
�which was obtained by starting from the earlier result45�. However, there is a further property that
should to be checked.

Recall that, in the A2 case, there are two types of punctures, one full and one basic. For the
basic �or special� puncture there is a relation between mi and m̃i. In our conventions that relation
is m̃i=0. Now for a special puncture at z=zi, there is a relation between P�2��z� and P�3��z� that has
to be satisfied at that location, see �3.25� in Ref. 3. To check that this condition holds for the matrix
model curve, it is sufficient to focus on a single special puncture which we can take to be located

at zi=0, i.e., W���=m log��� and W̃��̃�=0. We need to check that 4r�z�3−27s�z�2 scales like 1 /z4

�naively it would scale like 1 /z6�. In other words we need

4� 1
3 �W��z�2 + W̃��z�2 + W��z�W̃��z���3

− 27�− 1
27�W��z� + 2W̃��z���2W��z� + W̃��z���W��z�

− W̃��z���2
= 0 �5.31�

and

12� 1
3 �W��z�2 + W̃��z�2 + W��z�W̃��z���2

�f�z� + f̃�z�� + 2�W��z� + 2W̃��z���2W��z� + W̃��z���W��z�

− W̃��z����r�z� f̃�z� − �̃r�z�f�z�� = 0, �5.32�

where

f�z� = − gs�tr
W��z� − W����
z − �

��, f̃�z� = − gs�tr
 W̃��z� − W̃���̃�

z − �̃
�� . �5.33�

Both the above equations are easily shown to hold for the special puncture with m̃i=0, thereby
establishing the equivalence with the results in Ref. 3. �There is also another solution to �5.31� and
�5.32�, viz. mi= m̃i. This solution is precisely the alternative solution discussed at the end of Sec.
V A �note that the curve is derived for �=0�.�

For higher rank curves the general structure of the matrix model curve is also known; see Ref.
46 for the state-of-the-art knowledge. The matrix model curves can be analyzed and compared to
the gauge theory curve as above.

VI. 5d GAUGE THEORIES AND q-DEFORMED MATRIX MODELS

Nekrasov partition functions can also be defined for supersymmetric gauge theories in five
dimensions formulated on R4
S1.2 As an example, in the SU�2� theory with four matter hyper-
multiplets in the fundamental representation, the instanton partition function is
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Zinst = �
Y�

y�Y� � �
m,n=1

2

�
s�Ym

P��âm,Ym,s��

E�âm − ân,Ym,Yn,s��E�âm − ân,Ym,Yn,s� − ��
, �6.1�

where �â1 , â2�= �a ,−a� and

E�x,Ym,Yn,s� = sinh�R�x − 
1LYn
�s� + 
2�AYm

�s� + 1��� ,

P�âm,Yi,s� = �
f=1

4

sinh�R�âm − �j − 1�
1 − �i − 1�
2 − mf�� , �6.2�

with R the radius of the S1. See Sec. II B, for more details about the notation. Expression �6.1� can
also be obtained from topological string considerations, see, e.g., Refs. 47 and 48�. The partition
function also has a perturbative piece whose explicit expression can be found, e.g., in Refs. 2 and
49.

The question we would like to address in this section is: Are there matrix model and CFT
descriptions of partition functions of type �6.1�?

In the recent paper10 a proposal was made for the CFT description of the pure SU�2� theory in
five dimensions. This proposal involved the so called q-deformed Virasoro algebra.50 It is very
natural to expect that there is a CFT description of 5d �conformal� quiver gauge theories which
involves q-deformed Virasoro50 and q-deformed W algebras.51 Unfortunately the representation
theory of these algebras is not very well developed. Analogs of the primary fields and their
quantum numbers are known, but the analog of, e.g., the relation

�Lm,V�� = zm��m + 1�����V� + z�L−1V��� = zm�m����V� + �L0,V��� , �6.3�

is not known �as far as we know�. This fact complicates the analysis and makes direct calculations
of chiral blocks difficult.

Instead, we try to obtain a matrix model description. A natural starting point is to look for a
generalization of the A1 three-point function �4.1�.

There is a known q-deformation of �4.1� in the literature, which can be written

� �
I=1

N

dq�I�
I=1

N

��I�2�1/�1
�q−�2/�1�I;q��

�q�2/�1�I;q��
�
I�J

��J�2� �q−��I/�J;q��

�q��I/�J��

, �6.4�

where 0�q�1 and �dxq is the so-called q-integral �or Jackson integral� defined via

�
0

1

dqxf�x� = �1 − q��
k=0

�

f�qk�qk. �6.5�

In the limit q→1− this expression converges to the Riemann integral �0
1f�x�dx. Furthermore,

�a ;q��=�k=0
� �1−aqk�, and we also use the notation

�a;q�� = �1 − a��1 − aq� ¯ �1 − aq�−1� =
�a;q��

�q�a;q��

. �6.6�

Based on the above expression we tentatively propose the rule

V̂��z� � �
I

�z − �I�2�/�1 → �
I

z2�/�1
�q−�/�1�I/z;q��

�q�/�1�I/z,q��

� V̂�
q�z� . �6.7�

In the limit q→1−, V̂�
q�z�→ V̂��z�. In the special case z=0 we assume that V̂�

q�0�= V̂��0�
=�I��I�2�/�1. Note that when �=�1 /2, V�

q�z�=�Iz��q−1/2�I /z ;q�� / �q1/2�I /z ,q��� reduces to �I�z
−q−1/2�I�.
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The above three-point function can be evaluated �at least when � is an integer� and leads to a
product of q-gamma functions, but since we are not aware of a q-analog of �4.4� we will not
discuss the result here.

Instead we turn to the four-point function with �3=�1 /2. Using the result in Ref. 52 the
resulting expression can be explicitly evaluated,

Sq��1,�2,�;z� =� �
I=1

N

dq�I
z −
�I

q1/2���I�2�1/�1
�q−�2/�1�I;q��

�q�2/�1�I;q��
�
I�J

��J�2�


q−� �I

�J ;q�
�


q� �I

�J�
�

= Sq��1,�2,�;0�2�1�q−�N,q2�1/�1+2�2/��1+2�+�N−�;q2�1/�1+1;q�, z̃� , �6.8�

where z̃=zq−2�2/�1−1/2 and

2�1�A,B;C;q,z� = �
k=0

�
�A;q�k�B;q�k

�C;q�k�q;q�k
zk. �6.9�

�Actually, since N is an integer 2�1 in the above expression reduces to a so-called little q-Jacobi
polynomial.�

Integral �6.8� was also discussed in Ref. 53, albeit in a somewhat different guise. In that paper
it was shown that the integral satisfies a certain difference equation. This is a q-analog of the result
in Ref. 34 �cf. the discussion in Sec. IV B�. However, the analysis in Ref. 52 is more transparent,

although the case corresponding to multiple insertions of V̂�1/2
q is not discussed in Ref. 52.

The above result �6.8� can be rewritten

2�1
q−�N,q�2�1/�1+2�2/�1+2�+�N−���;q�2�1/�1+1�;q�,
z

q2�2/�1−1/2�

= �
�=0

�

�
k=0

�−1 sinh�R�− N + k��sinh
R��−1
2�1

�1
+

2�2

�1
+ 2� + N − 1 + k��

sinh�R��−1�2�1/�1 + 1� + k��sinh�R�1 + k��
�zq1−���,

�6.10�

where we have used q=e−2R/�.
To compare this expression with the one arising from the Nekrasov partition function, we go

through the same steps as in Sec. IV B and make the choices m1=a and m2=−a+
1 which implies
that �6.1� reduces to

�
�=0

�

y��
k=0

� sinh
R�
�1 + �2 + �4 −

1

2
��/
2 + k�sinh
R�
�1 + �2 + �4 −

3

2

1 − 
2�/
2 + k��

sinh�R��
1 − 2�1�/
2 + k��sinh�R�1 + k��
,

�6.11�

where we have also used AGT relation �4.16�. This expression is readily seen to agree with �6.10�
using y=zq1−� and the same arguments as in Sec. IV B, cf. the discussion after Eq. �4.18�.

In Ref. 53 there is also an extension of the above result to the case with multiple insertions of

V̂�1/2
q . In this case the result involves the function 2�1

�q,t��A ,B ;C ;z� which is a q analog of �4.21�
and involves Macdonald polynomials rather than Jack polynomials, see Ref. 53, for further details.
So far we have only considered the A1 case; it should also be possible to consider the Ar case using
the results in Ref. 42.

We close this section with a few words of caution. There are, in general, several possible
q-deformations and the one above may not be the right one. Also, we should mention that in Ref.
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54 another deformation of the matrix model was shown to be related to Nekrasov partition
functions for five-dimensional gauge theories. The deformation in Ref. 54 replaces the Vander-
monde determinant with �I�Jsinh��I−�J�. This possibility was also mentioned in Ref. 12.

VII. DISCUSSION AND OUTLOOK

In this paper we have studied the Ar quiver matrix models which were introduced in Ref. 12
and argued to capture correlation functions �chiral blocks� in the 2d Ar Toda field theories and
Nekrasov partition functions �instanton partition functions� in the 4d Ar quiver gauge theories.

From the point of view of the matrix model the expansion in zi �the locations of the vertex
operators� is somewhat awkward, but we have shown that several known results can be rederived
from the matrix model; some of our checks are quite nontrivial. It would be interesting to develop
the matrix model technology further, and, for instance, to clarify the choice of integration contour
and to develop a perturbation theory in zi.

We also made a proposal for an extension of the matrix model to capture the Nekrasov
partition function of 5d quiver gauge theories. This speculative proposal passed a nontrivial check,
but deserves further study.

One open problem is to extend the analysis to the other ADE Lie algebras. Let us make a
comment about the Dr case. The matrix model curve for the Dr model can be extracted from Ref.
46, Eq. �3.51�, and can be seen �after some changes of notation� to be of the same general form as
the curves in Ref. 55. It would be interesting to study this in more detail.

Note added: After this paper was finished, Refs. 56 and 57 appeared which have some
overlap with some parts of this paper.
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APPENDIX: TECHNICAL DETAILS

1. Ar roots and weights

Here we collect some standard results for the Ar Lie algebras. The root/weight space of the Ar

Lie algebra can viewed as a r-dimensional subspace of Rr+1. The unit vectors of Rr+1 will be
denoted ui �i=1, . . . ,r+1� and satisfy 	ui ,uj
=�ij. The simple roots are ei=ui−ui+1 �i=1, . . . ,r�
and the positive roots are eij =ui−uj �with 1# i� j#r+1�. The Cartan matrix is Aij = 	ei ,ej
, and
its inverse is Aij

−1= 1
r+1min�i , j��r+1−max�i , j��. The Weyl vector � is half the sum of the positive

roots; hence �= 1
2�i=1

r+1�r−2i+2�ui. The fundamental weights �i are defined as

�i = u1 + ¯ + ui −
i

r + 1�
j=1

r+1

uj �i = 1, . . . ,r� �A1�

and satisfy 	�i ,ej
=�ij. Note that �i=1
r �i=�. Finally, the weights of the fundamental representation

can be chosen as

hi = ui −
1

r + 1�
j

uj = �1 − �
j=1

i−1

ej �i = 1, . . . ,r + 1� . �A2�

Note that h1=�1 and � jhj =0.

2. Orthogonal polynomials and the A1 three-point function

Here we present an alternative evaluation method for integral �4.1� in the case �=1 using
orthogonal polynomials. Consider the one-matrix model partition function,

082304-32 R. Schiappa and N. Wyllard J. Math. Phys. 51, 082304 �2010�



Z =
1

�2��NN!
� �

I=1

N

d�I�
I�J

��I − �J�2e1/gs�i=1
N W��I�, �A3�

and introduce orthogonal polynomials, �pn�z��, with respect to the measure

d��z� = e1/gsW�z�dz �A4�

as

�
R

d��z�pn�z�pm�z� = hn�nm, n " 0, �A5�

where one further normalizes pn�z�, such that pn�z�=zn+¯. Noticing that the Vandermonde de-
terminant �I�J��I−�J�2 equals det pJ−1��I�, the one-matrix model partition function may be com-
puted as

Z =
1

�2��N �
n=0

N−1

hn. �A6�

In the case of interest to us, the potential is

W�z� = tr�
a=1

k

2�a log�za − z� , �A7�

which, in principle, forbids the use of standard orthogonal polynomial techniques. However, the
fact that the nonpolynomial structure is logarithmic actually allows us to get around this issue
when k=2, as we shall see now. Indeed, in this case �setting z1=0 and z2=1� the measure asso-
ciated with �A7� becomes

d��z� = �1 − z�2�2z2�1dz , �A8�

and is immediately related to the orthogonal polynomial family of Jacobi polynomials. The com-
bination

Jn
��,	��z� �

n!��n + � + 	 + 1�
��2n + � + 	 + 1�

Pn
��,	��2z − 1� , �A9�

where Pn
��,	��z� is a Jacobi polynomial, is normalized such that Jn

��,	��z�=zn+¯ and satisfies

�
0

1

dz�1 − z��z	Jn
��,	��z�Jm

��,	��z� = hn�nm, �A10�

with

hn = n!
��n + � + 1���n + 	 + 1���n + � + 	 + 1�

��2n + � + 	 + 2���2n + � + 	 + 1�
. �A11�

Using �A6� this immediately leads to the exact result,

Z =
1

�2��N �
n=0

N−1

n!
��n + 2�2/gs + 1���n + �1/gs + 1���n + �2 + �1 + 1�

��2n + �2 + �1 + 2���2n + �2 + �1 + 1�

=
1

�2��N �
n=0

N−1

n!
��n + �2 + 1���n + �1 + 1�

��N + n + 1 + �2 + �1�
. �A12�

which agrees with �4.2� �when �=1�.
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