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ABSTRACT 
 

The claims regarding the usefulness of nanoparticles (NPs) in different applications, such as wound 
dressings, solar cells and soil remediation, has been accompanied by concern that NPs may also pose 
risks to humans and to the environment. Considering the past century, when many substances later 
shown to cause unacceptable damage were manufactured in large amounts, there are reasons to 
thoroughly assess the risks of these NPs. This thesis discusses how the exposure assessment step of a 
risk assessment of NPs may be conducted, focusing on two research aims.  
 
The first research aim considered is the magnitude of NP emissions from society. In order to address 
this aim, the methodology of substance flow analysis (SFA) was adapted to the case of NPs, resulting 
in the particle flow analysis (PFA) methodology. In PFA, particle number is used as flow and stock 
metric instead of mass, which is used in SFA. Moreover, a prospective approach is applied by 
developing an explorative scenario of technology diffusion. This method has been applied for titanium 
dioxide (TiO2) in sunscreen, paint and self-cleaning cement, and silver (Ag) NPs in wound dressings, 
textiles and electronics. The second research aim concerns the fate of NPs in the water compartment. It 
is shown that modeling NP fate using fugacity based on thermodynamic equilibrium, which is 
normally done when assessing the risks of chemicals (i.e. molecules), is not feasible. Instead, the fate 
of NPs was modeled using kinetic equations which were borrowed from colloid chemistry. Particle 
concentration is used as exposure indicator, rather than mass concentration which is normally used in 
risk assessment of chemicals. This method was applied to the case of TiO2 NPs.  
 
The results from the PFA case studies indicate that the currently highest use phase emissions of TiO2 
NPs come from the use of sunscreen, and that this will probably be the case in the future as well. 
However, there is large number of TiO2 NPs in paint, and in the future maybe also in self-cleaning 
cement, which are not emitted during their use but continue to the waste handling phase. Their fate 
during waste handling processes thus remains an interesting topic to investigate. Regarding Ag NPs, it 
is difficult to tell which application that gives rise to the currently largest emissions, but the results 
indicate that the emissions from textiles may be highest in the future. The kinetic exposure modeling 
of TiO2 NPs identified parameters and mechanisms which affect the concentration of TiO2 NPs, and 
the collision efficiency was shown to have the largest effect. Gaps in current knowledge are identifies 
in all three case studies and recommendations for further studies are given. The methods of PFA and 
kinetic exposure modeling constitute important steps towards prospective exposure modeling of NPs.  
 
 
Keywords: Particle flow analysis (PFA), exposure modeling, nanoparticles, environmental risk 
assessment.  
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1 INTRODUCTION 
 

1.1 Nano as System Level 
 
The discussion regarding the definition of the word “nano” in the words nanotechnology, nanomaterial 
(NM) and nanoparticle (NP) is ongoing. Most definitions suggest that a NM is a material with one, 
two or three dimensions in the size range 1-100 nm, see for instance ISO (2008). This implies that a 
NP should have a diameter of 1-100 nm. Some authors, however, have argued that from an 
ecotoxicological point of view, particle sizes up to 500 nm could be of interest (Handy et al. 2008). 
Regardless of the exact upper limit, this much is clear: Nano can be seen as a system level.1 Boulding 
(1954) suggested an approach to a general systems theory: The perspective of the unit of behavior – or 
the individual. In chemistry, individuals are represented by molecules, atoms and ions, and the area is 
much built up around the molecular system level (about 0.1-1 nm). In cell biology, animal, fungi and 
plant cells together with various bacteria represent the individuals, and similarly cell biology is largely 
built around the cellular level (about 1-10 µm). On the nano level, the perhaps most important 
individuals are NPs. Nano represents the latest level of scientific and societal interest, dwelling 
somewhere in between the worlds of atoms and cells (Figure 1).2

 

 This newly appreciated system level 
brings new promises. Silver (Ag) NPs in wound dressings could be used to battle malicious bacteria in 
wounds (Silver et al. 2006), iron NPs could be used to remediate contaminated soil (Schmidt 2007) 
and sintered titanium dioxide (TiO2) NPs are used as electron mediator in Grätzel cells to convert solar 
light to electricity (Greijer et al. 2001).  

The claims about the usefulness of the nano level are hardly surprising. Already in 1914, surface and 
colloid chemistry was referred to as “the world of the neglected dimensions”3

                                                           
1 Sometimes it is added to the definition that a NM must have “properties different from those of molecules or 
bulk materials of the same composition” (Wiesner et al. 2009). But it is unclear how different these properties 
must be, and which properties that should be considered. For instance, the properties “particle diameter” and 
“surface area” should always differ between a bulk material and the same material in nanoparticulate form. Thus, 
this part of the definition is not applied here. Note also that the terms “NP” and “NM” refers to synthetic or 
manufactured NMs and NPs in this context.  

 and its usefulness in 
many applications was highlighted (Ostwald 1914). As described in Paper III, colloid chemistry and 
nanotechnology refers to approximately the same system level. Apparently, however, it took almost 
100 years until the full potential of this dimension or system level was acknowledged, under the new 
name nano. At the nano level, some mechanisms that are not relevant for molecules become important. 
These interactions represent what Boulding (1954) denotes the individuals’ behavior. In systems 
studies contexts, the term mechanisms is often used, meaning about the same as Boulding’s term 
behavior. Different agglomeration mechanisms and sedimentation represent two processes which are 
not relevant for molecules, since molecules generally do not agglomerate and are too small to 
sediment. New components to be highlighted at the nano level are the natural organic matter and 
natural NPs, which represents diverse groups of compounds normally found in natural waters (Buffle 
et al. 1998; Gallego-Urrea et al. 2010). Several of these mechanisms and components give rise to 

2 Note, however, that the system levels presented in Figure 1 which are based on size ranges are not self-evident, 
but should be seen as conceptualizations which have been useful in this context.  

3 ”Die Welt der vernachlässigten Dimensionen“ in the original text. 
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emergent phenomena, such as for instance the potential change in agglomeration rate caused when 
natural organic matter bind to the NP surface. Many of these mechanisms have been well known by 
colloid chemists for a long time, see for instance Elimelech et al. (1995). The NPs can not only 
interact with each other but also with other objects in their environment at different system levels, for 
instance molecules, ions, cells and organisms. Another property which makes NPs differ from 
molecules, and in particular atoms, is that they may be formed or multiply by grinding or weathering, 
or be destroyed by melting. In addition to nano level mechanisms, the effect of the organism level on 
the nano level is important. It is at the organism level where the production and use of NPs is decided 
upon, and original properties of the NPs are given (these may change later due to fate processes in the 
environment).  



9 
 

 
 

Organism level

Cell level

Nano level

Molecule level

 
Figure 1. The nano level and its relation to other system levels. Interactions between components can 
take place within levels and between levels. Note that the system levels outlined here are based on size 
ranges and are not self-evident, but should be seen as conceptualizations which have been useful in 
this context.  
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1.2 Nano Level Hazards 
 
This newly appreciated nano level also brings fear of new risks arising from the material properties at 
that level (Royal Society and Royal Academy of Engineering 2004; Colvin 2003; Swedish Chemicals 
Agency 2007; Maynard et al. 2006). Again, this is not surprising, since interactions that could cause 
harm to organisms exist at all system levels shown in Figure 1. Examples of such interactions between 
the molecular and organism level is the risk of mercury binding to sulfide groups in enzymes, which 
can cause extensive nerve damage. Interactions that can cause harm at a cellular level are for instance 
parasite infections or sickle cell anemia, which causes the afflicted to become excessively tired.  
 
Environmental and health risks related to particles have been addressed for a long time. Particles 
emitted from combustion engines or wear from asphalt or tires have since long been considered an 
environmental problem contributing to urban air pollution. The indicators used to assess the impact of 
airborne particles have been mass concentration of different size classes of particles, such as PM10, 
PM5 and PM2.5, where PM stands for particulate matter and the figure after tells the upper size limit 
in µm (Klaine et al. 2008). These categories, although crude and much focused on effects on 
respiratory systems, reveal the importance of the size of the particles. In addition, the shape of 
particles has been acknowledged as important, for instance for the case of asbestos (European 
Environment Agency 2001). The effects of particle characteristics on their ability to cause harm to 
organisms have thus been acknowledged since long, and risk assessments of their impact on human 
health have been conducted, see for instance Forsberg et al. (2005). Risks related to particles have, 
however, caught new attention in the light of the increased production of synthetic or manufactured 
NPs, and it is the environmental risks related to these novel NPs that are of interest in this thesis.  
 
Andrew Maynard, who is a research fellow of the Woodrow Wilson Institute and an often cited 
researcher on societal aspects of nanotechnology, sometimes takes the example of the knife and the 
frying pan in his oral presentations when explaining the novel risks that may emerge at the nano level. 
A knife and a frying pan can have the same chemical composition, for instance consist of steel. 
However, despite similar chemistry, the risks related to knives and frying pans are quite different from 
each other. It is for instance seldom that one gets burn injuries from a knife, and similarly cut wounds 
from frying pans are rare. So the same chemistry can, even at a macro level, lead to different kinds of 
risks. The same is true at the nano level: Since NPs are not only characterized by their chemistry, they 
have other hazardous properties which can give rise to environmental risks. For instance, the high 
surface area of NPs, which follows from their small size, and the unique surface properties of 
manufactured NPs have been the major potential hazard often put forward in the literature (Christian et 
al. 2008; Handy et al. 2008; Nel et al. 2006; Ju-Nam and Lead 2008), and these properties are 
inherently linked to the nano level. Many authors have highlighted the importance of including NP 
properties and mechanisms when assessing their risk (Wiesner et al. 2009; Nel et al. 2006; Colvin 
2003; Klaine et al. 2008; Handy et al. 2008). Agglomeration and the other mechanisms are inherently 
different from those of dissolved molecules and thus imply that new methods are required to describe 
their potentially hazardous properties (Wiesner et al. 2009). Especially emerging technologies, to 
which many NP applications belong, provides a challenge with regards to estimating production and 
use since these are affected by technology diffusion (Wiesner et al. 2009). Note, however, that it is not 
self-evident that all NPs are hazardous. Naturally occurring NPs have been around for ages in soil, 
oceans, the atmosphere, rivers, glaciers, etc. (Wiesner et al. 2009). Thus, similar to chemicals, of 
which some are harmless even at very high concentrations whereas some are extremely toxic, the risks 
of individual NPs must be assessed.  
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NPs are indeed not the first potentially hazardous substance to be highlighted in the scientific 
literature. The report Late lessons from early warnings describes several cases where scientists issued 
warnings regarding several chemical compounds and activities (European Environment Agency 2001): 
The adverse effects of the solvent benzene; lung damage related to asbestos exposure; ecosystem 
damage due to bioaccumulation of PCB; damage to the ozone layer due to halocarbons; methyl tert-
butyl ether as substitute for lead in gasoline; the antifouling agent tributyltin; hormone disrupters; etc. 
For several of these examples, the adverse environmental effects were due to previously unknown 
mechanisms, such as the ozone-destroying potential of halocarbons and the bioaccumulation of 
lipophilic substances such as PCB. However, although the effects were new, warnings of these adverse 
effects were issued by scientists long before society responded, thus the title Late lessons from early 
warnings. Ulrich Beck writes in his book Risk Society that innovation is the main producer of risk in 
society (Beck 1992), and many of the late lessons above do emanate from innovations, such as new 
chemical compounds or devices such as the trawl for fishing. It should however be noted that many of 
the above mentioned compounds have also proven useful for society, which may also be the case for 
NPs (Schmidt 2007). It has recently been suggested that by assessing the environmental impact of new 
technologies at an early stage of development, the innovation process can be made reflexive and 
hazardous side-effects can be avoided (Fogelberg and Sandén 2008). It is in that spirit the risks of NPs 
are addressed in this work.  
 
1.3 Environmental Risk Assessment 
 
In order to assess the risks connected to NPs, environmental risk assessment (ERA) was applied as the 
overarching methodology. The framework and procedure of ERA are quite standardized, see for 
instance Suter et al. (1993), Burgman (2005), van Leeuwen and Vermeire (2007) and US EPA (1998). 
It is sometimes referred to as ecological risk assessment or risk assessment of chemicals rather than 
environmental risk assessment. Ecological risk assessment is often more focused on the environment 
and identifying several potential hazards to a certain organism or population, whereas risk assessment 
of chemical is more focused on chemical stressors and their effects on several organisms. But these are 
very closely related and represent, in essence, the same methodology. For instance, if one chemical 
and one organism are included in a risk assessment study, it is difficult to say which method is being 
used. Thus no differentiation between them has been made here, and the methodology is referred to by 
the more general term ERA. Assessing the risk of hazardous substances such as various chemicals has 
been a major application of ERA (van Leeuwen and Hermens 2004). One important basis for this 
work is that the method of ERA could be fruitful for assessing the risks of NPs in addition to 
molecules. 
 
The focus of an ERA is always a value at stake, which may be called endpoint or receptor. The value 
at stake is threatened by different stressors, which could be of various kinds (physical, biological, 
chemical etc.). In ERA, the stressor is often a toxic chemical. The stressor can reach the endpoint and 
cause exposure through various pathways. One typical exposure pathway of environmental toxins to 
humans is via food, in which the toxin has been bioaccumulated and biomagnified. The first part of an 
ERA procedure is often called problem formulation. In that stage, hazard identification is performed, 
thus identifying potential hazards such as the use of chemicals known to be toxic. A conceptual model 
is developed, which includes identifying the source of the hazard, the stressor, pathways and receptors 
or endpoints. The second part of an ERA normally includes conducting an exposure assessment and an 
effect assessment, also referred to as dose-response assessment. The exposure assessment includes 
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environmental modeling of the fate of the stressor or measurements to determine the dose to which the 
receptor is exposed. That dose or concentration is referred to as the predicted environmental 
concentration (PEC). Often, different environmental compartments (water, air, soil and sediment) are 
considered, and PECs are calculated for each of them. The effect assessment includes using 
toxicological data to determine the highest dose or concentration at which it is certain that there will be 
no adverse effects to a certain receptor. This concentration is referred to as the predicted no effect 
concentration (PNEC), and is typically derived from toxicological dose-response curves. Such results 
are often expressed as the concentration at which half of the organisms died (LC50, where L stands for 
lethal and C for concentration) or where it was possible to see an effect on half of the organisms 
(EC50, where E stands for effect). These concentrations must then be divided by a security factor4

 

 of 
10, 100 or even 1000 depending on available data in order to obtain a conservative PNEC. If the 
toxicological studies have measured a so called no effect concentration or level (NOEC or NOEL), 
these can be applied directly. However, if the toxicological measurements were not conducted on the 
exact species that one is interested in, or if there are very few studies that differ considerable in their 
results, then again security factors may be applied. In the risk characterization the PEC and PNEC are 
compared. If the PEC is higher than the PNEC, i.e. if the ratio PEC/PNEC is higher than one, it 
indicates risk. If not, there may be no risk. The PEC and PNEC may also be expressed not as single 
numbers but as ranges or even probability distributions in order to conduct a more detailed risk 
characterization. PEC is thus exposure indicator, and PNEC effect indicator, in an ERA. The 
PEC/PNEC ratio then becomes the risk indicator.  

1.4 Nano Level Risks in Previous Exposure Assessments 
 
As shown above, the nano level presents some new mechanisms and components that were previously 
seldom considered in ERAs, and may also require novel risk indicators. It is notable that the early 
ERAs of NPs and NMs performed, such as Mueller and Nowack (2008) and Boxall et al. (2007), 
hardly included any of these nano level mechanisms. In Mueller and Nowack (2008) no specific nano 
level mechanisms are described. Boxall et al. (2007) discusses some of the mechanisms mentioned 
above, for instance agglomeration, but does not include it formally in the exposure modeling. Boxall et 
al. (2007) do, however, consider an increased NP inflow due to increased demand in society. In 
accordance, these models have been deemed to offer “limited guidance” (Wiesner et al. 2009). Later 
studies, such as those by Gottschalk et al. (2010a; 2010b, 2009), have added some environmental 
compartments and applied Monte Carlo simulations to account for uncertainties in data, but not 
included any of the mechanisms specific for the nano level.  
 
In addition, the question of exposure indicator for NPs remains an intriguing one. In environmental 
and chemical risk assessment, mass concentration has mainly been used as exposure and effect 
indicator (PEC and PNEC), often in mg/l or similar units (van Leeuwen and Hermens 2004; Suter et 
al. 1993). A unitless risk ratio of the mass-based PEC and PNEC has been used to estimate the risk. It 
should be noted that in order to estimate a risk, the exposure and effect should preferably have the 
same units, or else it will be like comparing apples and pears. Studies by Günter Oberdörster did 
suggest that the surface area of NPs may be a better effect indicator than mass (Oberdörster et al. 
2005). Handy et al. (2008) looked at both toxicological and environmental fate aspects and ended up 
suggesting particle number as a potential risk indicator. They argued that many important fate 
mechanisms, such as agglomeration, can only be described mathematically in terms of particle 

                                                           
4 Note that there exist other names for this factor, such as safety factor or uncertainty factor.  



13 
 

number. Particle number is also linked to surface area, since the more particles, the higher surface 
area. Other authors have also suggested particle number as a possible relevant exposure indicator (Ju-
Nam and Lead 2008). As shown in Paper I, the choice between particle number and mass have a huge 
impact on the results: 
 
“Consider two flows of 1 and 10 kg of TiO2 NPs respectively, where the second one would normally 
be described as one order of magnitude larger. However, assume that the first flow consists of 1 nm 
particles, and the second one of 100 nm particles. Recalculated into particle number, the first flow 
would be 6·1022 particles and the second one 6·1016 particles, i.e. six orders of magnitude smaller.” 
 
It would be magisterial to claim particle number to be the one and true exposure indicator for NPs. 
However, particle number as risk indicator for NPs does have certain advantages over mass: (1) it 
enables the numerical inclusion of fate processes such as agglomeration (Handy et al. 2008), (2) it 
enables meaningful inclusion of different frameworks for categorization of NPs (see discussion in 
Paper II) and (3) it may reflect the cumulative toxic effect of NPs (Handy et al. 2008). In addition, it 
would not be too strong to say that the usefulness of mass concentration as exposure, and effect, 
indicator for NPs has been seriously questioned (Handy et al. 2008; Oberdörster et al. 2005). Despite 
this, it is the indicator of choice in previous exposure assessments of NPs (Mueller and Nowack 2008; 
Boxall et al. 2007; Gottschalk et al. 2010a; Gottschalk et al. 2009, 2010b). There is, in addition, 
seldom a critical discussion regarding choice of indicator. Similarly, most ecotoxicological studies on 
NPs have measured their results in terms of mass concentration (Kahru and Dubourguier 2010). 
Donella Meadows discussed indicators of sustainability in general, and concluded that one common 
pitfall was to “measure what is measurable, rather than what is important” (Meadows 1998). 
Considering that mass has previously been used extensively as risk indicator and is easy to measure, it 
would be tempting to suggest that the extensive use of mass concentration as indicator for NP risk in 
previous ERAs constitutes an example of this pitfall.  
 
1.5 Methodology and Research Aims 
 
In this thesis, ERA has been applied as overarching methodology, with NPs as stressors rather than 
molecules, see Figure 2. In addition, since most NPs originate from emerging nanotechnologies, a 
prospective approach which takes into account technological change was applied, which was 
suggested by, for instance, Owen and Handy (2007). However, it soon became clear that an ERA of 
NPs could not be performed without adopting the ERA methodology to be relevant for the case of NPs 
(Lubick 2008; Wiesner et al. 2009). In addition, the toxicological and ecotoxicological data is scarce, 
uncertain and points in different directions (Lubick 2008), the fate mechanisms of NPs in the 
environment, which are discussed above, are only partly understood and quantified (Colvin 2003; 
Klaine et al. 2008; Handy et al. 2008) and the production and emissions of NPs within the technical 
system is also very uncertain, which is discussed in Paper III and also noted by other authors (Wiesner 
et al. 2009). The Woodrow Wilson database list several consumer products presumed to contain NMs 
(Project on Emerging Nanotechnologies 2009), but it is unclear how much of each that is produced 
and the NP content of each product.5

                                                           
5 Since the decision of what to include in the database is based on information readily available on the Internet, it 
is even unclear if the products included actually contain NMs.  

 The focus of this work has been put into developing 
methodology for different parts of the ERA procedure relating to the exposure assessment. Further 
studies on the effect of NPs on biota have been left to toxicologists. As the famous Taoist philosopher 
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Lao Tzu said: “A journey of a thousand miles must begin with a single step.” The following two aims 
have been addressed.  
 
1. Estimating the emissions of NPs from emerging technologies from the technical to the natural 

system.  
 

2. Estimating the exposure of NPs from emerging technologies to aquatic organisms given a certain 
emission scenario.  

 
The first research aim was primarily addressed in Paper I-II, and the second one in Paper III, see 
Figure 2. In Paper I-II, the methodology of substance flow analysis (SFA), a common method for 
estimating emissions of chemicals from society (van der Voet 2002), was modified in order to be 
relevant for NPs. Exposure modeling of chemicals was adapted to the case of NPs in Paper III by 
applying colloid chemistry, as suggested by Handy et al. (2008). During the work presented here, in 
particular in the methods developed, there has been an ambition to try to include more mechanisms 
relevant on the nano level in the exposure models, thus avoiding the trap of routine-like application of 
the same methods for NPs as for molecules. There has also been an ambition not to be locked-in to 
mass concentration as exposure indicator, and to take into account that the nano level not only affects 
organisms at a macro level, but also that the synthetic NPs are affected by the organism level since 
they are produced in the technical system, and thus technology diffusion affects what exists at the 
nano level.  
 
The endpoint considered has been aquatic organisms, and thus exposure pathways in aquatic 
environments have been in focus. In order to verify the developed methodology, TiO2 and Ag NPs 
have been used as case studies. These two NPs were selected based on hazard identification: An early 
risk assessment had shown that TiO2 NPs constitute a high risk (Mueller and Nowack 2008) and the 
potential problems of emitting Ag in its nano-form had been highlighted by several studies (Luoma 
2008; Wijnhoven et al. 2009; Blaser et al. 2008). In addition, both these NPs are frequently found in 
consumer products (Project on Emerging Nanotechnologies 2009). Another NP frequently found in 
consumer products is carbon nanotubes (Project on Emerging Nanotechnologies 2009). Caron 
nanotubes had also been noted as potentially hazardous due to properties similar to those of asbestos 
(Poland et al. 2008). However, due to the difficulties of determining the environmental fate of rod-
shaped structures, carbon nanotubes were not included. The applications of TiO2 NPs included were 
sunscreen, paint and self-cleaning cement and the Ag NP applications included were wound dressings, 
textiles and electronics. These applications represent an interesting but none-exhaustive selection of 
products which are frequently mentioned in the literature, see Paper I-II.  
 
Why make the delimitation to exposure of NPs and not include all NMs? Hansen et al. (2007) 
developed a framework to aid hazard identification of NPs, where NMs are categorized as (1) bulk 
NMs, (2) surface NMs or (3) NPs. One example of a TiO2 NM application which does not contain NPs 
is self-cleaning windows produced by, for instance, Pilkington or Saint Gobain (Sanderson et al. 2003; 
Parkin and Palgrave 2004). The NM in that application consists of a 15 nm thick film. Such NMs are 
not included in the exposure modeling conducted here since it has been difficult to identify a stressor. 
Currently, it is not known if any NMs are emitted from such surfaces. Hence, since it is unclear if 
there are any stressors related to the first two NM categories in Hansen et al. (2007), i.e. bulk NMs and 
surface NMs, they have not been included in this work.  
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Figure 2. This thesis deals with the two first steps in an ERA of NPs: The emissions from the 
technical system and the fate mechanisms that lead to exposure to organisms in the natural system. 
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2 METHODS DEVELOPED 
 
There are essentially two methods that have been developed and applied in Paper I-III. As suggested 
by the title of this thesis, both these are parts of an exposure model. However, different modeling 
approaches have been applied for the technical and natural system. Paper I-II deals with the technical 
system, where flows and stocks of materials and substances are managed by humans. Contrary, Paper 
III deals with the natural system, in which the fate of NPs is controlled by the forces of nature.  
 
2.1 Particle Flow Analysis 
 
In order to estimate emissions of NPs from the technical system to the environment on a particle 
number basis the methodology of particle flow analysis (PFA) was developed and applied in Paper I-
II. This was done since particle number was suggested to be a more relevant exposure indicator than 
mass, see the discussion above or in Paper I and III, and Handy et al. (2008). The basis for the method 
of PFA is SFA, which is a methodology adopted for the study of societal flows and stocks of 
chemicals (van der Voet 2002). As in standard SFA, the phases of the substance’s life cycle are 
studied to see where emissions to the environment occur. However, instead of using mass as flow and 
stock metric, particle number was applied. This choice was shown in Paper I-II to have several 
implications. For instance, a larger mass flow containing large particles may be much smaller than a 
smaller mass flow containing smaller particles when using particle number as flow and stock metric. 
In addition, it disrupts one of the basic principles behind SFA, which is the law of mass conservation. 
A certain amount of mass entering a compartment must leave it or be accumulated, if not converted to 
energy by nuclear reactions. But for particles, much less dramatic processes than nuclear reactions 
may erase the equity sign between accumulated particles and the difference between inflow and 
outflow, for instance processes such as grinding, melting and weathering.  
 
Consider, for instance, an inflow of 100 spherical NPs with a diameter of 100 nm and a density of 1 
kg/m3 to a certain compartment. If these NPs where grinded into 1 nm-sized particles, there would be 
1000 000 particles, meaning that 999900 additional NPs emerged. Contrary, consider 1000 000 NPs 
entering a compartment where these are melted, and reduced to zero or maybe one larger particle 
(perhaps along with phase transformations). The possibility that such processes may occur is included 
by using the following equation in Paper I-II: 

soutin nnn
dt
dN

+−= ∑∑      (1) 

where N is the stock of NPs and n is the flow of NPs. The term ns, where the index s stands for source, 
can be both positive and negative and thus accounts for the increase or decrease in particle number due 
to the processes mentioned above and others. Although no such processes occurred for the studied 
phases of TiO2 and Ag NPs in Paper I-II, it is important to include a source factor in the general 
equation. Besides the inclusion of this factor, changing flow and stock metric to particle number 
enables a meaningful inclusion of NP typologies, such as the ones by Hansen et al. (2007) and Jiang et 
al. (2009). See further Paper I-II.  
 
In a standard SFA, much focus lies on finding detailed figures for the current state. But since many 
nanotechnologies are growing rapidly (Wiesner et al. 2009), these figures will have changed 
tomorrow. Thus it may be at least equally interesting to consider a future state of the 
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nanotechnologies, which was done in Paper I-II by applying explorative scenarios of technology 
diffusion. One very basic thought which has guided this work of including technological change in 
exposure modeling is that the exposure of NPs will increase as the use of the NP applications increase. 
The growth of technologies follows a well established pattern. The early, formative phase of a 
technology evolves into a diffusive, growth phase, and later to a mature, saturated phase (Grübler 
1996). The examples in the report Late lessons from early warnings show that the negative 
environmental impact for the different cases included, be it DDT, fisheries or halocarbons, first 
appeared when the substances or activities were used extensively (European Environment Agency 
2001). So when evaluating the environmental impact of substances used in emerging technologies, the 
substance in question may seem misleadingly benign in its early phase. Besides growing, the 
technologies containing the NP of interest may also become dominant designs, which means that 
increasing returns will make it difficult to change their performance (Arthur 1996; Utterback 1994). In 
the light of this knowledge, there are good reasons to not only focus on current exposure of NMs, but 
also consider the potential exposure levels that may arise due to increased flows and stocks.  
 
Technical change aspects has previously been included in another environmental assessment method: 
life cycle assessment (Hillman and Sandén 2008; Kushnir and Sandén 2008). In the paper by Hillman 
and Sandén (2008) different aspects of time and scale on the life cycle environmental performance are 
discussed, such as changes in electricity sources, transport system fuels and by-product usage. Kushnir 
and Sandén (2008) showed that the energy use for production of fullerenes and carbon nanotubes will 
probably become much lower in the future, as the technology develops from lab-based to industrial 
production. These studies and their results highlight the importance of including technical change in 
environmental assessments of emerging technologies. The importance of technical change aspects has 
also been recognized in ERAs of NMs. Boxall et al. (2007) applied different scenarios based on 
different market penetration of products containing NMs: 10, 50 and 100 percent. The percentage of 
market penetration was, however, based on current market sizes. Robichaud et al. (2009) assumed that 
in the future the production of TiO2 NMs will overtake the production of conventional TiO2. They also 
estimated an increase in TiO2 production based on trend analysis and assumed that the TiO2 NMs will 
grow exponentially at the expense of conventional TiO2.  
 
Börjeson et al. (2006) list some typologies of scenario studies which are helpful when considering the 
future: predictive, explorative and normative. The future scenarios in Paper I-II are so called 
explorative scenarios, which answer the question What can happen? (Börjeson et al. 2006). They are 
normally used when the knowledge of the development of the system of interest is poor and often take 
their starting point in the future (Börjeson et al. 2006). Although there exist frameworks to describe 
the development of emerging technologies, see for instance Bergek et al. (2008), these frameworks are 
far from being predictive models. The scenarios for market penetration in Boxall et al. (2007) can be 
regarded as explorative scenarios. However, the scenario in Robichaud et al. (2009) is denoted as a 
forecast and can thus be regarded as a predictive scenario which answers the question What will 
happen?, since the analysis takes the starting point in the present and seems to have quite clear ideas 
on the mechanisms of the system (Börjeson et al. 2006). Considering the difficulties in estimating the 
development of an emerging technology, it seems that explorative scenarios are preferred in this case. 
For instance, nuclear power was once believed to become the world’s major source of electricity, but 
due to unexpected events such as the Chernobyl accident this scenario did not materialize, at least not 
within the expected timeframe (Sandén 2004). Such examples illustrate the difficulty of forecasting 
technological change for technologies in an early phase of development.  
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In Paper I-II, it is assumed in one scenario that the technologies containing NPs grow until they are 
limited by per capita demand. It is assumed that the global per capita use of the application containing 
NPs will be equal to that of today’s high income countries, such as Sweden or the US. Further, a 
population of 10 billion people is assumed, based on a forecast by the United Nations for the years 
2050 and beyond (United Nations 2008). One benefit with this method compared to the one in Boxall 
et al. (2007) is the focus on applications rather than substances, since information regarding which 
applications, products or technologies that have the potential to cause high emissions of NPs will 
guide future research and societal interest to that application.  
 

2.2 Kinetic Exposure Modeling 
 
The fate and exposure of potentially toxic chemicals are often modeled by thermodynamic partitioning 
following the work by Don Mackay and colleagues (Mackay et al. 1996; Mackay et al. 1992). In short, 
these models can provide information of the partitioning of a certain amount of chemicals emitted to 
the environment by assuming that thermodynamic equilibrium will be reached. However, for particles 
this methodology is problematic since colloids, which includes NPs (see Paper III) is never 
thermodynamically stable (Hunter 1987). This is to say that at thermodynamic equilibrium, there are 
no particles. However, the world is not at thermodynamic equilibrium, and thus particles may exist. 
Everyone who has seen, for instance, the Ganges river delta may testify that there is likely a high 
concentration of particles (mostly natural colloids) in that water, indicating that the agglomeration and 
sedimentation of particles may sometimes be slow. Particles exist in nature since they are kinetically 
stabilized by an energy barrier (Elimelech et al. 1995), similar to the activation energy often referred 
to in chemical kinetics introduced by the Swedish chemist Svante Arrhenius (Atkins and Jones 2002). 
For instance, at pH values significantly higher or lower than the point of zero charge of TiO2 NPs the 
electrostatic energy barrier is large enough to stabilize the particles, making the agglomeration rate 
very slow (Dunphy Guzman et al. 2006). There is thus a clear scientific basis showing that kinetics 
may be used for predictions of NP behavior. Although kinetic models hitherto have not been 
frequently applied in environmental modeling of chemicals, for the case of NPs, where 
thermodynamic models fail, applying kinetic models provide an interesting path. In some models the 
existence of particles may be omitted, but modeling of fate and exposure of NPs is obviously not such 
a case. Hence, the exposure modeling in Paper III was conducted using kinetic equations instead of 
thermodynamics, in particular the following equation, which was modified from Grant et al. (2001):  
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where nj is the particle number concentration of particle j (if j equals three, then particle j consists of 
three primary particles that have agglomerated), αi,j and αi,j-i are collision efficiencies, Ki,j and Ki,j-i are 
rate constants, vs is the sedimentation rate of primary particles, β describes the increase in 
sedimentation rate due to increased cluster size (2/3 for spherical particles), d is the depth of the water 
compartment and Ij is the inflow of particles.6

                                                           
6 Note that n in Eq. 1 denotes particle flow [particles/year], whereas the n in Eq. 2 denotes particle concentration 
[particles/m3]. A slight change of nomenclature is thus needed before mending of these methods.  

 Eq. 2 is based on the assumptions that all particles are 
approximately spherical and that merging of two particles is an irreversible reaction. The first term on 
the right side of Eq. 2 describes the formation of particle j through agglomeration of particles i and j-i. 
The second term describes the loss of particle j through agglomeration with other particles i. The third 
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term accounts for the sedimentation, and the last term for the inflow of particles. A particle number 
based PEC can be derived from Eq. 2 by solving the differential equation and summing the particle 
concentrations nj at a time when the system has reached steady state.  
 
Note that Eq. 2 contains several of the nano level fate mechanisms outlined in the introduction. 
However, as stated in Paper III, many additional fate mechanisms remain to be included 
mathematically in this model. The kinetic equations applied in Paper III originate from the early work 
of Smoluchowski (1917) and Friedlander (1977), which have been well known in colloid chemistry 
for long. Other important mechanisms for particle kinetics, such as break-up and the formation of 
fractal agglomerates are also well known, yet difficult to quantify exactly (Elimelech et al. 1995). The 
modest title “Challenges in Exposure Modeling of Nanoparticles in the Aquatic Environment” was 
deliberately chosen. Developing a kinetic model to describe particle fate and exposure was proven to 
be a complex process. As described in Paper III, the lack of formalized equations for many 
mechanisms constituted a problem for deriving a kinetic exposure model. Thus more effort must be 
put into the development of such models, where natural scientists and risk analysts try to develop a 
model which is built on sound knowledge of the behavior of NPs and give relevant information from 
an environmental point of view. The kinetic model in Paper III should be seen as a contribution to 
future work in this field.  
 
Recently, modeling exposure using kinetics has been performed for a somewhat different case. The 
uptake process of environmentally relevant metals, such as heavy metals and radioactive substances, is 
very much linked to dissolved particulate matter and kinetic models have been applied to describe the 
uptake of such contaminants via particulate matter in aquatic environments (Barros and Abril 2008; 
Periáñez 2003). These models share many similarities with the modeling in Paper III. For instance, 
Barros and Abril (2008) address the difficulty in obtaining reliable rate constant values that apply for a 
wide range of environments, which is also stressed in Paper III. This provides the perhaps greatest 
challenge in future exposure modeling of NPs. There is however one significant difference between 
these models and Paper III. Their primary interest is not to model the particle fate itself, but the fate of 
contaminants that may attach to the particles. The particulate matter constitutes a box/compartment in 
these studies, rather than being the stressor of interest, as in Paper III. However, it is clear that the fates 
of NPs and heavy metals can poorly be described without the inclusion of particles in the fate model. 
Thus kinetic exposure modeling is considered a valuable tool for such cases.  
 
The two methods described here, kinetic modeling and PFA, are not necessarily separate, but can be 
linked together as illustrated in Figure 3 in order to perform a full prospective exposure modeling of 
NPs.  
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Figure 3. A description of a prospective exposure model of NMs, with a prospective substance flow 
model linked to a kinetic exposure model. The symbols in the flow chart represent sources and sinks 
of NPs, see further Paper I-II.  



21 
 

3 RESULTS AND DISCUSSION 
 
Two methods, PFA and kinetic exposure modeling, were developed to answer the two research 
questions of this thesis. As shown in Paper I-III, the application of these models has led to interesting 
results. Among other things, it was shown in Paper I that currently, the highest emissions of TiO2 NPs 
occur from sunscreen, which will probably be the case in the future as well. Despite estimated large 
stocks and flows of TiO2 NPs in paint, and of TiO2 NPs from self-cleaning cement in the explorative 
scenario, the estimated use phase emissions from these applications were lower than for sunscreen. For 
Ag NPs, it is difficult to tell which application that gives rise to the currently highest emissions. 
However, it is clear from the explorative scenario that textiles have the potential to cause the highest 
emissions of Ag NPs. See Table 1 for a summary of the estimated emissions in Paper I-II. For the 
cases of TiO2 NPs in paint and self-cleaning cement, and for Ag NPs in electronics, it was shown that 
most NPs probably ended up in the waste handling phase. Regarding the exposure of TiO2 NPs in 
water, no full exposure assessment could be performed in Paper III due to lack of data. However, it 
was shown that some parameters have a major effect on the particle number-based PEC of TiO2 NPs, 
whereas some parameters and mechanisms have only a low effect. The collision efficiency and the 
inflow were the parameters that had the highest effect. The parameters which hardly affected the PEC 
at all were the shear rate, differential settling and sedimentation. In addition to the numerical results, 
the case studies performed had methodological implications. Both developed methods, PFA and 
kinetic exposure modeling, constitute modifications or revisions of methods previously used for 
assessing the exposure of chemicals, i.e. SFA and thermodynamic exposure modeling, which were 
modified to address the exposure of NPs and to answer the research aims of this thesis. Thus, the 
methods developed constitute results as well.  
 
The case studies revealed limitations of both the developed methods described in this thesis, primarily 
the lack of input data and quantified mechanisms. Parameters that have been difficult to quantify 
include the collision efficiency (α in Paper III), the shear rate of water (G in Paper III), NP 
concentrations in various products (x in Paper I-II), emission factors for NPs (k in Paper I-II), lifetimes 
of different products (τ in Paper I-II), current flows and stocks of products (qu and Qu in Paper I) and 
product surface areas (Au in Paper I-II). For some of these parameters, ranges of four orders of 
magnitude were found in the literature. With such uncertainty in input data, modeling becomes 
difficult. Linked to these parameters are uncertainties in mechanisms, such as the emissions of NPs 
from surfaces (Paper I-II, linked to the parameter k), the behavior of sintered particles (Paper II), the 
fate of NPs during waste handling processes such as combustion (Paper I-II), the role of natural 
organic matter and steric stabilizations of NPs in water (Paper III, linked to the parameter α) and the 
fractal nature of NP agglomerates (Paper III). In order to refine the results, more research is needed to 
quantify these mechanisms by measuring experimental parameters and monitoring others, such as 
flows and stocks of products.  
 
It has been argued that the lack of such specific data and quantified mechanisms makes ERA and other 
detailed environmental assessment methods inappropriate for the case of emerging technologies (von 
Gleich et al. 2008). Instead, these authors suggest broader, less detailed, more schematic assessment 
methods. These methods involve making assessments based on combinations of known, inherent 
properties of the substance, preliminary life cycle assessments and visionary statements regarding 
technology development. Although such schematic methods may have their merits, it is seldom that 
input parameters are completely unknown. For instance, data for the thickness of paint layers was 
required in Paper I. It was not possible to find an exact value of this parameter, so 0.001 m was 
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assumed. Although this may not be the true value, it is certainly within the correct order of magnitude. 
Using such reasoning combined with proxy data from the scientific literature, most parameters can be 
estimated. A few parameters, such as the collision efficiency in Paper III and the Ag NP content in 
textiles and wound dressings in Paper II, are both unknown and difficult to “guesstimate”. Often, these 
parameters are measured experimentally and found to vary significantly, sometimes many orders of 
magnitude. For some cases explorative scenarios and ranges of values can account for some 
uncertainty in parameter value. The case when mechanisms are not studied well enough to be included 
in an assessment provides a more difficult challenge. However, if crucial mechanisms are unknown, 
there is a fundamental lack of knowledge for scientific environmental assessments which cannot be 
circumvented by applying more schematic methods. Instead, formal environmental assessment 
methods are recommended, combined with explorative scenarios, ranges of values, and cooperation 
with experimental scientists and others to obtain data.  
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Table 1. Estimated emissions of TiO2 and Ag NPs for a current scenario and an explorative scenario. 
See further Paper I-II for calculations and assumption connected to the explorative scenario.  
 

Nanoparticle Application 

Use phase emissions 

[particles/year] 

Current scenario Explorative scenario 

TiO2 NPs 

Paint 1.1·1019 7·1019 

Sunscreen 2.6·1025 2·1026 

Self-cleaning cement Neg. 3·1021 

Ag NPs 

Wound dressings 4.6·1021 [1·1021, 1·1024] 

Textiles <8.5·1023 [6·1028, 6·1032] 

Electronics <<6.8·1024 <<9·1027 
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4 CONCLUSIONS AND RECOMMENDATIONS 
 
Although no full ERA of Ag NPs has been performed here, these results indicate that Ag NPs from 
textiles may be the NP application which is most urgent to monitor of the ones studied here because of 
the potentially high emissions. In addition, Ag NPs has been shown to be the perhaps most toxic NP to 
several organisms with regards to mass-based PNEC (Kahru and Dubourguier 2010). The methods 
developed have highlighted gaps in current knowledge, and especially the fate of TiO2 NPs and Ag 
NPs during the waste handling processes of paint, cement and electronics require more studies. The 
methods developed here provided interesting insights and knowledge for the cases of TiO2 and Ag 
NPs, and can be used on other NPs as well. Interesting study objects include iron NPs for remediation 
of soil, and cerium oxide NPs in combustion engines.  
 
Obtaining detailed input data and quantification of mechanisms is indeed a multidisciplinary work. It 
may be guided by risk analysts but require the assistance of chemists and other scientists and perhaps 
none-scientific organizations. For instance, much of the data on flows and stock of products in Paper I-
II are obtained from governmental and industry organizations. Deriving toxicological data to use in an 
ERA of NPs remains the task of toxicologists. The choice of exposure indicator has been discussed 
several times in this thesis, and particle number versus mass has been discussed. However, surface 
area is somewhat of the joker in this deck. Besides the frequently cited study by Günter Oberdörster 
showing that surface area yielded a clearer dose-response relationship than mass when mice were 
exposed to TiO2 NPs (Oberdörster et al. 2005), few toxicological studies have been conducted with 
surface area as output. Modeling flows and stocks of surface area, and the fate of surface areas in the 
environment, constitute grand challenges. Case studies using surface area as exposure indicator would 
highlight these difficulties and perhaps overcome them. A recent review paper summarizes much of 
the toxicological studies performed on NPs so far (Kahru and Dubourguier 2010), and the data is only 
provided on a mass basis, and not as particle number or surface area. Obtaining PECs of various units 
is of little use if the PNECs are only given on mass basis, since the risks of hazardous substances is 
estimated by comparing exposure and effect. This point at the importance of investigating the 
relevance of different effect indicators than mass-based.  
 
Note also that the only environmental compartment studied in this thesis is water. Of course, exposure 
to NPs may also occur in air, soil or sediments. Although there are many experimental studies of NPs 
in air and soil, few have performed exposure models including nano level mechanisms which aim at 
estimating a PEC for these compartments. Early work by Elsa Vitorge may prove to be a starting point 
for exposure modeling of NPs in soil (Vitorge 2009). Particles in air (aerosols and particles from 
combustions) have been studied intensively by atmospheric and environmental chemists, indicating 
that there may exist models which can provide starting points for exposure models of NPs in air.  
 
There are, of course, many more NMs than TiO2 and Ag NPs which could pose environmental risks. 
For instance, one example of a currently emerging NM is graphene, a one-atom-thick layer of 
graphite, which is the strongest existing material, has a thermal conductivity twice that of diamond and 
has among the highest charge mobilities ever measured (Segal 2009; van den Brink 2010). The 
production of graphene is expected to increase significantly in the coming years (Segal 2009). 
Unmotivated claims regarding low risks have been made (Segal 2009), but graphene is very stable 
(Wu et al. 2007) and thus likely to be persistent in the environment. It is also fat soluble, and this 
together with the polycyclic aromatic hydrocarbon-like structure (Wu et al. 2007) rises question marks 
regarding its safety, especially if the production will increase as fast as suggested by Segal (2009). 
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Which indicator(s) that would be appropriate to assess the risks of graphene, and which mechanisms 
that are of interest, is yet to be investigated. It is by assessing the risks of such novel NMs that I plan 
to proceed my PhD project.  
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Summary 

Several authors have highlighted the potential risks of nanoparticles (NPs). Still, little is 

known about the magnitude of emissions of NPs from society. Here, the method of 

explorative particle flow analysis (PFA), a modification of the more well-known substance 

flow analysis (SFA), is developed and applied. In explorative PFA, particle number instead of 

mass is used as flow and stock metric and explorative scenarios are used to account for 

potential technology diffusion and associated particle flows. The method has been applied to 

the case of TiO2 NPs in paint, sunscreen and self-cleaning cement. The results indicate that 

the current largest emissions of TiO2 NPs originate from the use of sunscreen. One scenario 

implies that, in the future, the largest flows and stocks of TiO2 NPs could be related to self-

cleaning cement. Gaps in current knowledge are identified and suggestions for future research 

are given.  

Keywords: Substance flow analysis (SFA), nanomaterials, nanoparticles, titanium dioxide, 

explorative scenarios, particle flow analysis (PFA).   
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Introduction 

History shows several cases where early calls for precautionary actions regarding emerging 

technologies have been ignored (European Environment Agency 2001). Several of those 

examples are related to emissions of human-made substances, such as CFCs, tributyltin, 

PCBs, DDT and benzene. Recent studies have identified a potential new environmental risk 

related to man-made substances, which is nanomaterials (NMs) in general and nanoparticles 

(NPs) in particular (Royal Society and Royal Academy of Engineering 2004; Colvin 2003; 

Nel et al. 2006; Klaine et al. 2008). NPs may have toxic effects and mechanisms that are not 

present for ordinary chemical substances (Nel et al. 2006; Oberdörster et al. 2005). There is a 

fear that NP risks will become yet another unheard call for precaution (Allenby and Rejeski 

2009). There are, however, indications that some lessons postulated by the European 

Environment Agency to some extent have been responded to for the case of NMs and NPs. 

For instance, critical questions regarding their risk have been asked, cross-disciplinary 

scientific cooperation are formed and the public has been involved in some cases (Hansen et 

al. 2008). Still, the research performed on NM and NP risks have not yet led to answers to 

critical questions such as which NMs that pose harm to the environment and which toxic 

mechanisms and exposure pathways that are most crucial (Hansen et al. 2008; Lubick 2008).  

The environmental risk assessment (ERA) framework and procedure is well-defined and has 

often been used to assess risks related to chemical substances (Burgman 2005; van Leeuwen 

and Hermens 2004; US EPA 1998; Suter et al. 1993). In general, the ERA procedure involves 

identification of stressors (e.g. chemicals) and quantification of exposure in the form of a 

predicted environmental concentration (PEC) and environmental effects in the form of a 

predicted no-effect concentration (PNEC). The exposure is estimated through quantification 

of the stressor’s sources, emissions and environmental fate, whereas the effects are extracted 

from (eco)toxicological studies. The framework of ERA is generally considered applicable for 

assessing risks related to NP emissions, but authors have stressed the importance of adapting 

the different parts of the ERA procedure in order to apply for NPs as well as for chemicals 

(Wiesner et al. 2009; Lubick 2008; Hansen et al. 2007). In Arvidsson et al. (2010), we discuss 

critical problems of and prospects for improving the exposure assessment step (from emission 

to PEC) for the case of NPs. It was among other things concluded that the inflow of NPs to 

the environment, i.e. the emissions from society, were a highly uncertain yet important 

parameter. The aim of this paper is thus to develop a method to estimate emissions of NPs 
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from society to the environment, i.e. quantify the source of the stressors in the environmental 

risk assessment framework. This task has previously been undertaken as part of risk or 

exposure assessments performed by other authors, see for instance Mueller and Nowack 

(2008), Boxall et al. (2007), Robichaud et al. (2009) and Gottschalk et al. (2010a; 2010b, 

2009). In some of these studies, a substance flow analysis (SFA) perspective is applied. SFA 

has earlier been used to study flows of chemicals related to specific environmental problems 

(van der Voet 2002). To use SFA to quantify the source in an ERA is in line with Shatkin 

(2008) and Sweet and Strohm (2006) who proposed the need for integration of life cycle 

modeling, to which SFA is closely related, and risk analysis. However, we suggest two types 

of modifications to previous estimations of emissions of NPs from society, and by that a 

modification of the SFA methodology itself for the cases of NPs and emerging technologies.  

The first and perhaps most fundamental modification is to acknowledge the particulate nature 

of the substance in question by using particle number instead of mass to describe the 

magnitude of flows and stocks of NPs. In addition, discrimination between different types of 

NPs is of high importance (Hansen et al. 2007; Jiang et al. 2009) and has thus been applied in 

this study. This fundamental modification of SFA requires a different denotation, and thus we 

use the term “particle flow analysis” (PFA) to describe the methodology presented here. The 

second modification is to, in addition to addressing current emissions, also consider scenarios 

of technology diffusion. Authors have stressed the importance of assessing risks proactively 

(Allenby and Rejeski 2009), in particular for the case of NPs (Owen and Handy 2007). Only 

considering current markets and neglecting technology diffusion could greatly underestimate 

the potential environmental impact of an emerging technology (Sandén and Karlström 2007; 

Hillman and Sandén 2008). Explorative aspects are included in Boxall et al. (2007), which 

include one scenario with a 100 percent market penetration of products containing NPs, and in 

Robishaud et al. (2009), which assumes that all TiO2 produced will be in the nano-form in the 

future. However, the methodology presented here gives information regarding which specific 

TiO2 NP applications that may cause large emissions in the future in order to guide scientific 

and societal attention. Together, these two modifications of SFA lead to the methodology 

henceforth referred to as “explorative PFA” which is described below and applied for the case 

of TiO2 NPs in order to estimate the current emissions and emissions in an explorative 

scenario in order to determine which applications that need further attention due to its large 

potential impact. Besides providing some answers regarding current and potential magnitude 

of emissions, this study highlights important gaps in the current knowledge of TiO2 NPs.  
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Method 

TiO2 NPs as Case Study 

In this study a selection of TiO2 NP applications which are frequently mentioned in the 

literature are applied as case study to illustrate the methodology: Paint (Kaegi et al. 2008), 

sunscreen (Nohynek et al. 2007) and self-cleaning cement (Cassar et al. 2003). These 

applications represent different properties possessed by TiO2 NPs. In paint, the white color of 

larger TiO2 NPs and agglomerates is wanted. In sunscreen, the ability of TiO2 NPs to absorb 

and block UV light is used. While basically any material could be coated or mixed with TiO2 

NPs to create a photocatalytic surface, cement is a good example of this application with a 

potential large scale use. Our selection is by no means exhaustive and new commercial 

applications may emerge in the coming decades. The potential environmental risks of TiO2 

NPs has been highlighted in early risk assessments (Mueller and Nowack 2008), which makes 

it an interesting case to study.  

Particle Flow Analysis 

The overarching goal of substance flow models is to estimate the emissions from different 

parts of a substance’s life cycle (van der Voet 2002, see Figure 1). SFA quantifies flows of a 

certain substance throughout society, from extraction of the substance, via the production and 

use of products in which it is contained, to the waste handling phase. SFA has successfully 

been used to quantify diffuse emissions of hazardous substances, such as cadmium, mercury 

and lead (Månsson et al. 2009). That is similar to the aim of this study. In SFA and other 

environmental systems studies, the question of magnitude is often of vital importance, and 

mass is normally used as indicator of magnitude. But mass is a dubious indicator for assessing 

the magnitude of flows and stocks of NPs when they are linked to exposure and risk. Consider 

two flows of 1 and 10 kg of TiO2 NPs respectively, where the second one would normally be 

described as one order of magnitude larger. However, assume that the first flow consists of 

particles with a diameter of 1 nm, while the second consists of 100 nm particles. Recalculated 

into particle number, the first flow would be 6·1022 particles and the second one 6·1016 

particles, i.e. six orders of magnitude smaller. Particle number has been suggested as a more 

relevant exposure and effect indicator than mass for NPs (Handy et al. 2008; Arvidsson et al. 

2010; Ju-Nam and Lead 2008). It may reflect the cumulative toxic effect stemming from the 
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size and shape of the NPs and is possible to measure experimentally (Handy et al. 2008). 

Particle number is thus used as flow and stock metric instead of mass, and this is denoted PFA 

instead of SFA.  

Applying particle number as flow and stock metric has an important implication: The basic 

principle in SFA is the law of mass conservation, which could be expressed as: 

∑∑ −= outin mm
dt

dM      (1) 

where m represents mass flows and M represents the mass stock [kg]. However, Eq. 1 does 

not apply strictly when particle number is applied as flow and stock metric. For particles, 

there are sources and sinks. Sources exist when NPs are produced intentionally for different 

purposes, e.g. when larger particles are grinded into smaller particles, or when NPs are 

formed unintentionally during weathering or combustion. Examples of sinks of particles in 

society are melting of particles or dissociation into molecules, atoms or ions. These sources 

and sinks has been represented in the flow model by arrows perpendicular to the others, 

illustrated by the symbols normally used in electronics to indicate the direction of current in 

long conductors, see Figure 1. Hence, the equation which describes the particle number flows 

and stocks of a compartment can be written as: 

soutin nnn
dt
dN

+−= ∑∑      (2) 

where N represents particle number stock [particles], n particle number flows [particles/yr] 

and the index s stands for sources. The parameter ns can be a source or a sink depending on its 

sign (positive or negative). Due to very limited information about production and waste 

handling processes, the flows and stocks connected to these processes are not estimated in this 

case study. Instead, the use phase is focused, and the stock in use, the inflow to use phase and 

use phase emission (Nu, nu and neu in Figure 1) are estimated, where the inflow to use phase is 

coupled to product consumption. The stock (Nu) and annual use (nu) of particles are calculated 

from 

Quu cQN ×=      (3) 
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and 

quu cqn ×=       (4) 

respectively, where Qu is the product stock [kg], qu is the product flow [kg] and cQ and cq are 

the particle number concentrations of TiO2 NPs in the product stock and product flow 

[particles/kg]. The particle concentrations (both cF and cS) are calculated from 

3

6
d

xc
××

×
=

πρ
  [particles/kg]   (5) 

where x denotes mass concentration, ρ the particle density [kg/m3] which isapproxiamtely 

4200 kg/m3 for TiO2 and d the average primary particle diameter [m]. The average diameter is 

used as proxy for particle size, since detailed size distributions of TiO2 NPs are not availible 

for most products included. Note also that particle number in this case refers to primary 

particle number. 

To calculate emissions a distinction between dissipative and non-dissipative use can be made. 

Since no sinks or sources are present in the use phase of the TiO2 NP applications studied here 

and dissipative use implies that stock changes and waste flows are tiny compared to 

emissions, Eq. 2 can for the case of dissipative use be reduced to  

neu = nu       (6) 

For none-dissipative use, the emissions depend on an emission factor, the particle 

concentration in the medium and the surface area from which NPs may be emitted. The 

equation used here to estimate those emissions is an approximate equation derived to fit the 

only study that has measured TiO2 NP emissions from surfaces: 

Q

u

ref

Q
u

ref

Q
eu l

Q
k

c
c

Ak
c
c

n
ρ×

××=××=     (7) 

where Au is the use stock effective surface area [m2], k is an emission factor obtained from 

Hsu and Chen (2007) [particles/m2/yr], cref is the particle concentration in the medium studied 
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in Hsu and Chen (2007) [particles/kg], ρS is the product density [kg/m3] and l is the product 

depth [m]. As can be seen, the effective surface area, meaning the area from which emissions 

of NPs may occur, has in lack of better estimations been approximated as the total product 

volume divided with an average depth, thus assuming a parallelepiped-shaped stock. Eq. 6 is 

based on equal densities between the reference medium in Hsu and Chen (2007) and the 

product of interest. Data regarding the product stock Qu was not available for paint, and thus 

estimated from 

τ×= uu qQ       (8) 

where τ denotes the product lifetime in steady-state. Further, NPs may be of different types 

and be present in different material types, which affect the magnitude and type of emissions.  

Hansen et al. (2007) have suggested a framework for characterizing NPs, which divides NPs 

into surface bound particles, particles suspended in liquid, particles suspended in solids and 

airborne particles. For particles suspended in liquid Jiang et al. (2009) have suggested a 

nomenclature that differentiates between three different configuration states: primary 

particles, agglomerates and aggregates. Agglomerates, which, for instance, can be formed by 

TiO2 NPs in water (Arvidsson et al. 2010), are defined as particles held together by weak van 

der Waals bonds. Aggregates, on the other hand, are defined as particles held together by 

stronger covalent bonds, and are sometimes referred to as being “sintered”. The material type 

and particle configuration state will affect both how many NPs that are emitted, i.e. k in Eq. 4, 

but also what type of NPs that is emitted which affects the environmental fate and toxicity 

(Baun et al. 2008; Klaine et al. 2008). In addition, the importance of coatings for particle fate, 

bioavailability and toxicity has been highlighted in many studies (Christian et al. 2008; Handy 

et al. 2008; Klaine et al. 2008; Nel et al. 2006) and thus specific attention has been paid to 

determine whether or not the NPs are coated.  

The NP definition of particles 1-500 nm in diameter is chosen since it is the broadest 

suggested range that has been found in the litterature (Handy et al. 2008), although 1-100 nm 

is a more frequently used definition (ISO 2008; British Standards Institution 2007; Swedish 

Chemicals Agency 2007). This implies, for instance, that the TiO2 in paint counts as NPs due 

to its average diameter of about 250 nm (IARC 2006). The modeling have been conducted for 

each product separately.  
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Figure 1. The particle flow model. In the case study, only a part of the system has been 

described in quantitative terms due to lack of data. N stands for particle number stocks, n for 

particle number flows, and the indices p stands for production, u for use phase, w for waste 

handling, s for source, r for recycling and e for emissions. The potential presence of sinks and 

sources is illustrated by arrows perpendicular to the others.  

Explorative Scenarios 

To identify potentially large future sources of TiO2 NPs a scenario-based method was applied. 

Note first that the methodology applied here is not a forecast of technology diffusion. The 

future is to a substantial part unknown, a fact that cannot be circumvented by applying more 

“advanced” forecasting methods. Instead, explorative scenarios have been applied to generate 

potential future flows and stocks of TiO2 NPs, which denotes scenarios which are possible, 

but no claims regarding their likeliness are made (Börjeson et al. 2006). In the explorative 

scenario applied here it is assumed that the world average demand per capita for the TiO2 NP 

applications included will be equal to the current demand in developed countries such as the 

U.S. or Sweden. Further, a world population of 10 billion people is assumed, as is forecasted 

by the United Nations for the year 2050 and beyond (United Nations 2008). Stocks, flows and 

emissions of this scenario have been given index one, whereas the estimates of current flows, 
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stocks and emissions have been given the index zero. Based on these considerations, the 

product flow and stock in the explorative scenario can be estimated from 

i

i
u P

q
Pq ×=1,       (8) 

i

i
u P

Q
PQ ×=1,      (9) 

where P stands for population in the scenario (i.e. 10 billion), qi [kg/year] and Qi [kg] for the 

current product flow and stock, respectively, in a developed country and Pi stands for the 

current population in the same developed country.1

Model Input Data 

 Thus, qi/Pi is the current per capita 

consumption in the developed country in question, and Qi/Pi is the current per capita stock of 

the same country. 

Figures on paint flows (qu) in paint was obtained from the U.S. Geological Survey (2009a), 

and information of NP size, content and properties (d, xq and xQ) are obtained from Tiraks et 

al. (2003) and different producers’ web pages, such as DuPont, Kemira and Tronox. The 

current stock of paint (Qu,0) was estimated by Eq. 8, assuming a lifetime (τ) of 10 years. The 

emissions of TiO2 NPs from paint (neu,0) were estimated using Eq. 7, assuming a thickness (l) 

of 10-3 m. The inflow of sunscreen to the use phase (qu,0) was obtained from BCC (2008) with 

the simplifying assumption that all NPs in sunscreen consist of TiO2 NPs, which may be a 

reasonable assumption since ZnO as sunscreen ingredient is currently banned in the EU. 

Information regarding TiO2 NP properties (d and xq) in sunscreen was obtained from Nohynek 

et al. (2007), González et al. (2008) and Serpone et al. (2007). For self-cleaning cement, 

information of magnitude of inflow to use phase (qu,0 and Qu,0,) and material characteristics 

(d, xQ and xq) are obtained from Cassar et al. (2003) and from the cement company Cementa 

(Nilsson 2009).  

In order to estimate emission factors (k) from the use phase of paint and self-cleaning cement, 

average emission factors obtained from Hsu and Chein (2007) were applied. The average 
                                                      
1 The reader may note the similarity between these equations and the well-known IPAT equation, which is 
described, for instance, in Chertow (2000). 
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emissions rate for a 10 cm2 surface coated with 5 weight percent TiO2 NPs was about 100 

particles per minute for a range of materials and conditions, which corresponds roughly to 

5·1010 particles·year-1·m-2 (Hsu and Chein 2007). Note that the emission factor (k) derived 

from Hsu and Chein (2007) has been used rather loosely here: The measurements performed 

in that study was on TiO2 NPs sprayed onto a surface, whereas the TiO2 NPs in paint and self-

cleaning cement would rather be categorized as particles suspended in a solid. However, the 

particles close to the surface of the paint or self-cleaning could be regarded as surface bound, 

and no specific estimations measurements for the cases of paint or self-cleaning cement have 

been found.2

The future per capita inflow to use phase of paint (qi/Pi) was estimated as the current per 

capita inflow to use phase of paint in Sweden (Swedish Paint and Printing Ink Makers 

Association 2009), and future per capita stock of paint (Qi/Pi) was estimated by again 

assuming a lifetime of 10 years. The accuracy of this estimate was checked by comparing it to 

the per capita façade surface in Sweden in 1984 (Tolstoj et al. 1984), while assuming a paint 

thickness of 0.001 m. The two estimates were in the same range. Hence, the lifetime of 10 

years for paint is considered reasonable. The future per capita inflow to use phase of 

sunscreen (qi/Pi) was estimated as the current per capita inflow to use phase of sunscreen in 

Sweden (Swedish Cosmetic Toiletry and Detergent Association 2009). The U.S. per capita 

cement inflow to use phase in 2008 (U.S. Geological Survey 2009b) was used to estimate the 

future per capita inflow to use phase of TiO2 NPs in cement (qi/Pi) and the U.S. per capita 

stock of cement (Kapur et al. 2008) to estimate the future per capita stock of self-cleaning 

cement (Qi/Pi). The parameter neu,1 for self-cleaning cement was estimated by assuming a 

thickness (l) of 1 m. See Table 1 for numerical values of the input data. Note that xq and xQ 

are the same for most products, except for the case of self-cleaning cement, where the cement 

is mixed with sand and gravel to form concrete, thus changing the concentration of TiO2 NPs. 

Similarly, the product stock (Qu) and the density of the stock (ρQ) does not refer to self-

 It is also assumed that k is independent of particle size and coatings. Hsu and 

Chein (2007) studied a spray with 5 weight percent TiO2 NPs from the company Degussa, 

Inc., indicating that the particles may be the 21 nm-sized P 25 AEROXIDE® from that 

company. The reference particle concentration (cref) can thus be estimated at 3.1·1017 

particles/kg.  

                                                      
2 Kaegi et al. (2008) did measurements on emissions of TiO2 NPs painted facades specifically, but did not relate 
the emitted particles to the amount of paint and can thus not be used in the PFA model presented here.  
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cleaning cement for that case, but to concrete. This is because it is ultimately the surface area 

(Au in Eq. 4) that is of interest for estimating the emissions, and the surface area is in the form 

of concrete.   
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Input Parameter Paint Sunscreen Self-cleaning cement 

d 

[nm] 
250 20 21 

xq 

[kg/kg] 
0.1 0.05 0.05 

xQ 

[kg/kg] 
0.1 - 0.005 

k 

[particles/m2/year] 
5.0·1010 - 5.0·1010 

l 

[m] 
0.001 - 1 

qu 

[kton/year] 
29000 72 Neg. 

Qu 

[kton] 
550000 Neg. Neg. 

qi/Pi 

[kg/capita/year] 
19 0.07 330 

Qi/Pi 

[kg/capita] 
190 Neg. 15000 

τ 

[years] 
10 Neg. 46 

ρS 

[kg/m3] 
1500 - 2400 
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Table 1. Input data to Eq. 3-9. “Neg.” stands for negligible. For references, see Model Input 

Data.  
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Output Parameter Paint Sunscreen Self-cleaning cement 

nu,0 

[particles/year] 
1.0·1025 2.6·1025 Neg. 

Nu,0 

[particles] 
1.0·1026 Neg. Neg. 

neu,0 

[particles/year] 
1.1·1019 2.6·1025 Neg. 

nu,1 

[particles/year] 
7·1025 2·1026 1·1030 

Nu,1 

[particles] 
7·1026 Neg. 5·1031 

neu,1 

[particles/year] 
7·1019 2·1026 3·1021 

 

Table 2. Current inflow to use phase, use phase stocks and use phase emissions for the TiO2 

NP applications included in this study, along with the same parameters estimated for an 

explorative scenario. “Neg.” stands for negligible. For references, see Model Input Data. 
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Results and Discussion  

Based on the values in Table 1 inserted into Eq. 3-9 and data found in the litterature, the 

results in Table 2 have been derived. Note that some of the parameters in Table 2 are derived 

using very approximate equations and data. The aim of this paper is, however, to develop 

methodology to estimate emissions of NPs from society, and the figures in Table 2 should 

thus be seen as indications of magnitude which may help guiding future research. For 

instance, sunscreen was the application which results in the highest current inflow to use 

phase of TiO2 NPs. This is because the NPs in sunscreen are much smaller compared to those 

in paint. The mass concentration of TiO2 NPs is about the same in these two products, i.e. 

about 10-20 percent, and paint is produced in much larger quantities than sunscreen. 

Compare, for instance, the qu values in Table 1, which indicate that the mass flow of TiO2 

NPs is much larger for paint. Applying particle number as flow metric thus gives interesting 

perspectives regarding flow magnitude. Sunscreen dissipates quickly and hence it is the 

inflow to use phase and not the negligible stock that is of interest from an emission point of 

view. Regarding self-cleaning cement, only pilot experiments with buildings made from self-

cleaning cement exist today (Cassar et al. 2003; Maggos et al. 2008), and thus the current 

flow and use phase stock of TiO2 NPs in self-cleaning cement are negligible. However, note 

that the waste handling was excluded due to lack of data. To our knowledge, very little is 

known about the behavior of, for instance, TiO2 NPs during waste handling processes such as 

combustion, landfill or recycling. It is possible that significant emissions of TiO2 NPs in paint 

are emitted during the waste handling phase.  

In the explorative scenario, the estimates in Table 2 indicate that the picture outlined above 

may change significantly. Paint has been produced for many years and is close to its mature 

stage, and thus the inflow to use phase of TiO2 NPs in paint will probably increase with less 

than one order of magnitude. The same appears to be true for sunscreen. Again, the inflow to 

use phase of TiO2 NPs in sunscreen is higher than that in paint. Self-cleaning cement, 

however, is only in the very beginning of its commercialization and may grow significantly in 

the future. The explorative scenario estimations of flows to use phase in Table 2 show that 

due to the flow of cement (compare the qi/Pi value of self-cleaning cement to the others in 

Table 1) and the small particle size, self-cleaning cement may have the by far largest inflow to 

use phase and stock of TiO2 NPs in the future. In fact, the explorative scenario gives a stock 

of TiO2 NPs in self-cleaning cement which exceeds the current reserve base of TiO2 (U.S. 
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Geological Survey 2009c), which indicate the potential of self-cleaning cement as a major 

source of TiO2 NPs even if only a small percentage of the total cement use will contain NPs. 

Regarding future use phase emissions, sunscreen again has the highest emissions of TiO2 NPs. 

The emission factor estimated from data in Hsu and Chein (2007) gives comparatively small 

emissions for the case of paint and self-cleaning cement. For both paint and self-cleaning 

cement, this implies that the majority of the TiO2 NPs are not emitted in the use phase but 

proceed to the waste handling phase. This in turn strongly highlights the importance of 

studying the fate of TiO2 NPs during different waste handling processes.  

Applying the categorization frameworks of Hansen et al. (2007) and Jiang et al. (2009) to the 

TiO2 NP containing applications included in this study reveals a diversity in particle 

properties. The stock of TiO2 NPs in paint consists of particles suspended in liquid, but 

becomes more like particles suspended in a solid in dried paint. When Kaegi et al. (2008) 

conducted measurements on TiO2 NPs emitted from ordinary paint it was concluded that the 

particles were mostly in the form of agglomerates. Also, most pigments, such as R-706, R-

900, R-902+ and R-960 from the leading pigment producer DuPont, have coatings of SiO2 

and Al2O3 to increase durability and dispersibility. TiO2 NPs in sunscreen consist of particles 

suspended in liquid in the form of agglomerates and is often coated with silicon oils, SiO2, 

Al2O3 or ZrO2 to improve their dispersion in the sunscreen and to reduce photosensitivity 

(Nohynek et al. 2007; Serpone et al. 2007; González et al. 2008). Self-cleaning cement 

contain TiO2 NPs that are suspended in a solid. The Degussa P 25 particles used in pilot 

projects of self-cleaning cement (Cassar et al. 2003) are not coated according to the product 

information provided by the producer, and no existence of a coating was reported in 

experimental studies of the P 25 particles (Ohno et al. 2001). This shows that all TiO2 NPs 

currently emitted from the use of sunscreen and paint are coated, which has not been included 

in risk and exposure modeling of NPs (Arvidsson et al. 2010; Mueller and Nowack 2008; 

Boxall et al. 2007; Robichaud et al. 2009). Thus, considering the different coating, summing 

up all TiO2 NP emissions into one figure may not be feasible with regards to fate and toxicity, 

since the coatings may affect these aspects.   

The estimations of stocks, flows and emissions of TiO2 NPs performed in this study may be 

improved in several ways, especially with regards to experimental data. For instance, the 

emissions factor for surfaces estimated here draw heavily upon one single reference: Hsu and 

Chein (2007). Their results need to be confirmed by additional studies, and more similar 
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studies are needed to derive emission factors for the specific products studied in this paper, 

i.e. paint and self-cleaning cement. This study also indicates that currently, and in particular if 

self-cleaning cement gains market shares, a significant amount of TiO2 NPs will end up in the 

waste handling phase. The fate of particles in the waste handling phase is considered an 

interesting and important object of future studies. In addition, several parameters used in this 

study are somewhat uncertain. These include, for instance, particle diameters (d) and 

estimations of future inflow to use phase and stocks (qi/Pi and Qi/Pi). One way to illustrate 

this uncertainty would be to present ranges of values instead of single figures, or to use more 

advanced methods such as Monte Carlo simulations, which was applied in Gottschalk et al. 

(2010a; 2010b, 2009). In general, such methods are considered valuable, but at this stage 

there is such a fundamental lack of data that the value of applying such methods is in doubt. 

Consider, for instance, the estimation of TiO2 NP emissions from surfaces performed in this 

study (k), which was based on Hsu and Chein (2007). To our knowledge, only one 

measurement of that parameter had been performed, and on particles sprayed onto a surface 

rather than paint and self-cleaning cement specifically. Assigning a range or probability 

distribution to such a parameter is considered impossible and would more reflect the 

imagination of the author than actual statistical variations of the parameter. Instead, more 

experimental measurements and closer monitoring is recommended for several of the 

parameters included, such as emission factors, average particle diameters, and societal flows 

and stocks of materials such as paint and cement.  

Conclusion 

In conclusion, this study develops the methodology of explorative PFA and applies it to the 

case of TiO2 NPs in paint, sunscreen and self-cleaning cement. This method is a modification 

of SFA where particle number instead of mass is used as flow and stock metric and 

explorative scenarios are applied to account for the potential diffusion of technologies. The 

results indicate that the current largest emissions of TiO2 NPs originate from the use of 

sunscreen despite other applications having larger mass flows of TiO2 NPs. One scenario 

implies that, in the future, the largest flows and stocks of TiO2 NPs could be related to self-

cleaning concrete. Gaps in current knowledge are identified, and further research is, for 

instance, needed to develop emission factors of TiO2 NPs from paint and self-cleaning 

concrete. In addition, the waste handling processes of paint and cement should be investigated 

with regards to the fate of TiO2 NPs. These conclusions underline the importance of an 
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adequate stock and flow metric and considering technical change, which therefore further 

points to the merits of PFA in combination with explorative scenarios. 
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Summary 

 

Silver has been used for centuries and is well-known for its adverse environmental effects on 

aquatic organisms. More recently, silver in the form of silver nanoparticles (Ag NPs) have 

begun to be produced in increasingly larger amounts as coatings, and several authors have 

highlighted the potential environmental impact of these NPs. In order to contribute to a risk 

assessment of Ag NPs, the method of particle flow analysis is applied to estimate current 

emissions from society to the environment. In addition, explorative scenarios are set up to 

account for potential technology diffusion of the Ag NP applications included. The results are 

uncertain and need to be refined, but they indicate that all applications included may increase 

significantly in the future. Ag NPs in textiles and electronic circuitry may increase more than 

wound dressings due to the limited consumption of that product. Due to the dissipative nature 

of Ag NPs in textiles, the results indicate that they may cause the highest emissions in the 

future, thus partly confirming the woes of both scientists and environmental organizations. 

Gaps in current knowledge have been identified. Especially the fate of Ag NPs during 

different waste handling processes is outlined as an area which requires more research.  

 

Keywords: Silver, particle flow analysis, explorative scenarios, textiles, wound dressings, 

electronics, silver ink.  

  



 

 2 

Introduction 

The element silver has had a large impact on society for at least a thousand years (Green 

1999). For instance, it became one of the main drivers for the colonization of South America 

and a main aid in forming the Venetian empire. It continues to play an important role in 

society today due to (1) it’s shining appearance which makes it suitable for silverware and 

jewelry, (2) its superior conductivity which makes it suitable to use in electronic circuitry, (3) 

its rareness which makes it suitable to use in coins and (4) the sensitivity to light of silver 

halides which is used in photography (The Silver Institute 1990). There has also been 

environmental concerns regarding silver since it is one of the most toxic metals to aquatic 

organisms (Ratte 1999; Eisler 1996; Swedish Environmental Protection Agency 1997) and, 

hence, it is one of the priority pollutants of the US EPA’s Clean Water Act (U.S. Congress 

2010). Recently a new application for silver has emerged: the use of silver nanoparticles (Ag 

NPs). Studies have outlined NPs as a potential environmental risk (Colvin 2003; Klaine et al. 

2008; Ju-Nam and Lead 2008; Baun et al. 2008) and Ag NPs in particular (Luoma 2008; 

Blaser et al. 2008). Nanosilver is today already used in a diverse range of products. According 

to the Woodrow Wilson Project of Emerging Nanotechnologies, nanosilver is by far the most 

frequently found NM in consumer products (Project on Emerging Nanotechnologies 2009). It 

exists as dietary supplements, air purification and antimicrobial dressings (BCC 2008) as well 

as in tableware, chopsticks, food storage containers, washing machines, refrigerators, 

computer keyboards, slippers, sportswear, undergarments, socks, hygiene products, beauty 

soaps, cleansers, cosmetics, disinfection sprays and baby mugs (Luoma 2008), along with 

computer mice, spatulas, toothpaste, pay phones and handrails (Henig 2007). Besides being 

used for antimicrobial purposes, Ag NPs are also used in electronic circuitry, since they have 

the benefits of being easier to apply onto circuitry at low curing temperatures and with a 

lower resource demand compared to bulk silver, with the drawback of a lower conductivity 

(Caglar et al. 2008; Kunnari et al. 2009). This application is often called ‘nanosilver ink’. 

Many of these products are currently limited in use, but the few estimates of Ag nanomaterial 

(NMs) production and consumption show a similar pattern of market growth (Figure 1), 

implying that a “silver-coated future” (Henig 2007) may be a possible scenario.1

                                                           
1 NMs include NPs, but also nanosized surfaces, films, and bulk materials. See further Hansen et al. (2007).  

 Especially 

Ag NPs in wound dressings have gained significant market shares. The global consumption 

was estimated at $25 million in 2007, possessing four percent of the wound dressings market 

and growing with a compound annual growth rate of 31 percent since 2003 (BCC 2008). In 

addition, the use of many of these products, such as toothpaste and cosmetics, is inherently 
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dissipative. The use of antibacterial nanosilver for wound dressings may be motivated 

considering the efficiency of silver against a wide range of bacteria and since it is not 

particularly toxic to humans (Brett 2006; Gibbins and Warner 2005), although it is debated 

whether silver actually improves wound healing (Vermeulen et al. 2009). But the use of 

nanosilver in consumer products such as socks, refrigerators and computer keyboards in order 

to kill bacteria or reduce odor has been suggested to be less motivated, especially considering 

the environmental risks (Henig 2007). The use of these products also threatens the perhaps 

more motivated use of nanosilver in wound dressings, since there is then a risk to induce 

silver resistance (Silver et al. 2006). There is currently no regulation for nanosilver and the 

European legislation REACH does not in general cover NMs and NPs (Hassellöv et al. 2009).  

As part of evaluating the risks of Ag NPs, the aim of this study is to estimate emissions of Ag 

NPs from society to the environment for some product groups. Emissions of Ag NPs has been 

estimated in previous studies, see Mueller and Nowack (2008), Boxall et al. (2007), 

Gottschalk et al. (2010a; 2010b, 2009). Silver exposure due to emerging antimicrobial silver 

applications was studied in Blaser et al. (2008), but that study was not limited to NPs. 

However, as was pointed out in Arvidsson et al. (2010a), these studies have two major 

limitations in common. First, mass is used as indicator of magnitude rather than particle 

number and particle properties are not included. The second limitation is that potential 

technology diffusion is not accounted for. Boxall et al. (2007) do include market diffusion by 

assuming a future market share of 100 percent of the included NPs, but focus on Ag NPs as 

one substance rather than on specific technologies. Thus it gives limited guidance regarding 

where to focus further societal and scientific attention. In order to address these limitations, 

this study applies the method of particle flow analysis (PFA) to estimate emissions of Ag NPs 

(Arvidsson et al. 2010a). In PFA, particle number is used as indicator of magnitude instead of 

mass, which facilitates the inclusion of specific NP properties in the analysis. In addition, 

explorative scenarios are used to account for potential technology diffusion. In a way, this 

scenario accounts for the “silver-coated future”, which was the suggestive term introduced by 

Henig (2007) to denote a world where much Ag NPs and other silver substances would cover 

larger areas than today. Besides estimating current and future potential emissions of Ag NPs, 

this methodology highlights gaps in the current knowledge of Ag NPs, which may be 

addressed by future studies. The none-exhaustive selection of technologies included in this 

study is wound dressings and textiles containing Ag NPs and nanosilver ink in electronic 
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circuitry. The textile materials included is cotton and polyester, which are common textiles to 

be coated with Ag NPs (Geranio et al. 2009).  

 

Figure 1. The market size of Ag NPs or Ag NMs according to some estimates (BCC 2008; 

Pérez et al. 2005; Silver Institute 2008).  
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Figure 2. PFA model applied in this study to quantify the flows and stocks of Ag NPs and the 

emissions of Ag NPs to the environment. N stands for particle number stock, n for particle 

number flow, p for production, u for use phase, w for waste handling, e for emission, r for 

recycling and s for sink or source. Obtained from Arvidsson et al. (2010a).  
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Figure 3. Results from measurements of Ag NP concentrations in antimicrobial textiles in 

two studies. Also shown is the range applied in this study.  
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Methods 

Particle Flow Analysis 

In the method of PFA, particle number is applied as flow and stock metric rather than mass. 

Mass has previously been used to indicate magnitude of flows and stocks of chemical 

substances in substance flow analysis (van der Voet 2002) as well as exposure and effect of 

chemicals in environmental and chemical risk assessments (van Leeuwen and Vermeire 2007; 

Suter et al. 1993). However, there are strong indications that mass may not be a relevant 

indicator of magnitude, exposure or toxic effect for the case of NPs (Handy et al. 2008; Ju-

Nam and Lead 2008; Arvidsson et al. 2010b; Arvidsson et al. 2010a; Oberdörster et al. 2005). 

By applying particle number instead of mass as flow and stock metric, relevant particle 

properties such as size can accounted for. In addition, frameworks describing different types 

and properties of NPs, for instance those by Hansen et al. (2007) and Jiang et al. (2009), can 

be utilized in the analysis. The characterization framework for NPs by Hansen et al. (2007) 

include particles which are surface bound, suspended in liquid, suspended in solids or 

airborne. The categorization framework of NPs by Jiang et al. (2009) divides particles into 

primary particles, agglomerates (primary particles held together by weak, van der Waals 

forces) and aggregates (primary particles held together by strong, covalent bonds). Processes 

that change particle number, such as melting of particles, dissociation of particles into ions, 

and grinding which produces more particles, can be included by adding a source (or sink) 

factor, see Figure 2. Thus, the convenient law of mass conservation on which substance flow 

analysis is based does not apply. Instead, a similar equation can describe the particle flows 

and stocks of a compartment, with the source or sink term included: 

Soutin nnn
dt
dN

+−= ∑∑
   

  (1) 

where N denotes the particle number [particles] stock and n the particle number flow 

[particles/yr]. Note that the source or sink term (nS) can be both positive and negative. Due to 

lack of data, only the NP use phase (same as substance use phase in a substance life cycle) 

and related flows and stocks has been investigated in this study. The production phase relates 

to working environment, and NP emissions in that phase may be more dependent on 

companies’ management practices then on NP properties. The waste handling process is not 

included due to poor knowledge on the fate of Ag NPs during that phase. The parameters 
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estimated in this study are thus the use phase inflow (nu), the use phase stock (Nu) and the use 

phase emissions (neu), see Figure 2. This is done for all three Ag NP applications included. 

However, data on Ag NP use is often reported on a mass basis. In lack of proper size 

distributions, the average particle diameter is used as proxy for particle size, and the following 

equation has been used:  

3

6
d

mn
××

×
=

πρ
     (3) 

where m is the mass flow, ρ is the density [kg/m3] which is 10 500 kg/m3 for silver and d is 

the average particle diameter [m]. Some applications included are dissipative, meaning that 

neu >> nw and Nu ≈ 0. For those cases, neu ≈ nu. Typically, dissipative use applies for particles 

suspended in a liquid or air-born particles, see Hansen et al. (2007). For none-dissipative use 

of applications consisting of NPs suspended in a solid or on a surface, see Hansen et al. 

(2007), emissions can for the general case be estimated according to: 

kcAn Queu ××=      (2) 

where Au is the surface area of the product stock [m2], cQ is the Ag NP concentration in the 

product stock, and k is an emission factor. “Product” refers to wound dressing, textile or 

electronic device in this case. The categorization framework of Hansen et al. (2007) becomes 

useful here, since depending on whether the product contains NPs suspended in a solid or 

bound to a surface, the units of c and k will vary. For NPs suspended in a solid, cQ represents 

the particle concentration in the solid [particles/m3] and k has the unit [m/s]. For particles 

bound to a surface, cQ is a surface concentration [particles/m2] and k gets the unit [1/s]. Often, 

similarly to the case of Ag NP use, concentrations of Ag NPs are given on a mass basis and 

must be recalculated. By assuming spherical particles, the particle number can then be 

estimated using: 

3

6
d

xc
××

×
=

πρ
     (3) 
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where x is the mass concentration. No figures on stocks of electronic circuitry have been 

found, and thus it has been estimated using an approximate equation which assumes that the 

emissions neu << nu: 

τ×= uu nN       (4) 

where τ is the lifetime of electronic circuitry. The typology of Jiang et al. (2009) will also 

affect the emission factor (k) since sintered NPs are held together by hard bonds and should 

have a lower affinity to be emitted, which strengthen the assumption that the emissions are 

significantly lower than the inflow to use phase for Ag NPs in electronic circuitry.  

Explorative Scenario 

Modeling technological diffusion is difficult. The formative phase of a technology or product 

is characterized by various designs, market diversity and high uncertainty (Grübler 1998). 

There are many examples of forecasts of technology diffusion that have not materialized, such 

as the forecast that nuclear power would become the dominant source of electricity by the last 

turn of century (Sandén 2004). To avoid making dubious forecasts, an explorative scenario is 

applied here in order to assess the potential of the included applications. Explorative scenario 

denotes a possible scenario which answers the question of what could happen given a certain 

development (Börjeson et al. 2006). However, no claims are made regarding how likely the 

scenario is. Examples of this include the emissions scenarios applied by IPCC (Börjeson et al. 

2006). The explorative scenario applied here aims at estimating the potential emissions from 

the included Ag NP applications, and thus involve the following features: (1) The Ag NP 

application in question will reach 100 percent market share, (2) the per capita inflow to use 

phase and stock of the applications will be equal to those found in today’s high income 

regions such as the U.S. or Europe, and (3) the world population will increase to 10 billion 

people, as forecasted by the United Nations for the year 2050 (United Nations 2008). This 

scenario has been given the index one, whereas the scenario that represents the current 

situation has been given the index zero. Note that the current situation refers to approximately 

the year 2008. The use phase inflow and stock of Ag NPs for the explorative scenario has 

been estimated as:  
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q
i

i
u c

P
q

Pn ××=1,      (5) 

Q
i

i
u c

P
Q

PN ××=1,      (6) 

where P stands for population in the explorative scenario (i.e. 10 billion), qi/Pi and Qi/Pi for 

the current per capita product flow and stock of product in developed countries respectively, 

cq is the concentration of Ag NPs in the product flow.2

Model Input Data 

 Again, the unites of cq, cQ, qi/Pi and 

Qi/Pi will change depending on application. For surface-bound Ag NPs, the product stock is 

measured in area and for Ag NPs suspended in liquid it is measured in mass. In accordance, 

Au in Eq. 2 becomes equal to Qu for the case of surface-bound particles.  

The current mass based inflow of Ag NPs (mu,0) in wound dressings was found in BCC 

(2008), and information about their particle size (d) in Gibbins (2005). According to 

interviews with practitioners at Swedish hospitals, both wound dressings that contain silver 

and those that do not are changed regularly, from several times per day up to one time per 

week. There is thus no significant stock of wound dressings formed in the use phase. 

However, some Ag NPs are emitted during the use phase, i.e. when the dressing is taped onto 

the wound, and some are still in the dressing when it is thrown away. No data on emission 

factor (k) for Ag NPs in wound dressing has been found, but Gibbins (2005) showed that the 

release of Ag NPs in SilvaGard is at a rate of about 10 percent of the initial loading in 10 

days, given an original concentration of 0.8 µg/cm2. Since most dressings are changed within 

10 days, the release of 10 percent of the particles is considered a worst case and applied in this 

study, i.e. neu ≈ 0.1×nu. Although, the figure 10 percent is probably weight percent, the Ag 

NPs in wound dressings are quite monodisperse with a size range of only 2-7 nm (Gibbins 

2005), making the figure 10 percent fair to use also for particle concentrations. The Ag NP 

concentration (cq) on the product SilvaGard can range from 1 to 32 µg/cm2 (Gibbins 2005), 

and between 0.84 and 1.34 mg/cm2 for the product Acticoat (BCC 2008). This variation in 

mass concentration could be due to the use of smaller particles in SilvaGard, but this has not 

been possible to confirm. Considering this variations, a range of 1 mg/cm2 to 1 µg/cm2 has 
                                                           
2 The reader may note the similarity between these equations and the well-known IPAT equation, which is 
described, for instance, in Chertow (2000). 
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been applied for the parameter cq. The per capita inflow to use phase of wound dressings 

(qi/Pi) in the U.S. was calculated from data provided by BCC (2008). 

No figures on current inflow to use phase of Ag NPs in textiles (mu,0) have been found, but it 

is stated by the Silver Institute (2008) that the total amount of Ag NPs consumed is 4700 kg, 

indicating that the figure must be smaller than that. According to the company Uvex, their 

cloths contain particles <20 nm in size (d), and 10 nm has thus been assumed for Ag NPs in 

textiles. This is supported by the fact that the smallest size of Ag NPs emitted from textiles 

measured by Benn and Westerhoff (2008) was 10 nm. Measurements on Ag NP release from 

textiles indicate that it is reasonable to assume that most particles will be emitted within a few 

washes (Benn and Westerhoff 2008; Geranio et al. 2009), and thus the use of Ag NPs in 

textiles is regarded as dissipative. The per capita inflow to use phase of cotton and polyester 

fiber in the U.S. was obtained from Meyer et al. (2008) and Aizenshtein (2006) respectively 

and added to obtain Qi/Pi for textiles. Regarding the Ag NP concentration in textiles (cq), 

there is a great variety in the measurements performed.3

Similar to Ag NPs in textiles, no figures on the current inflow to use phase of Ag NPs in 

electronic circuitry (mu,0) has been found, but it should be smaller than 4700 kg, i.e. the total 

consumption of Ag NPs estimated by the Silver Institute (2008). The size of the Ag NPs (d) in 

silver ink is obtained from Caglar et al. (2008). The average content of silver in circuit boards 

(cq and cQ) is obtained from Lanzano et al. (2006). However, experts report that for 

applications not requiring high current carrying capability, nanosilver ink use 50-75 percent 

less silver than conventional bulk silver applications (Jablonski 2010). Thus, the silver 

concentration has been reduced by half for the case of Ag NPs. The European per capita 

inflow to use phase of electronic circuitry was obtained from Lanzano et al. (2006). A lifetime 

of 10 years is assumed in order to estimate the stock of Ag NPs in electrical circuits, both 

current and for the explorative scenario. The figure 10 years has not been possible to confirm 

with references, but is probably within the right order of magnitude. No information regarding 

 Results from the concentration 

measurements of the seven products containing Ag NPs included in Benn and Westerhoff 

(2008) and the six out of nine products containing Ag NPs in Geranio et al. (2009) can be 

found in Figure 3. To include this uncertainty, a range of 1-10000 µg/g has been applied. 

                                                           
3 From a technological change point of view this diversity in Ag NP concentration is not surprising: The early 
phase of the technological life cycle is characterized by varying, competing designs (Grübler 1998). In a similar 
manner, there was a great diversity in filament material (bamboo, osmium, tantalum and eventually tungsten) in 
the formative phase of the incandescent light bulb (Smil 2005).  
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surface areas of electronic circuits (Au) or emissions of Ag NPs from such areas (k) has been 

found. The only thing known for sure is that the emissions of Ag NPs from electronic circuits 

must be lower than the inflow to the use phase, and probably a lot lower since the Ag NPs are 

sintered.  
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Input Parameter Wound dressings Textiles Electronic circuitry 

d 

[nm] 
10 10 5 

mu 

[kg/yr] 
254 <4700 <4700 

xq 

0.001-1 

[µg/cm2] 

1-10000 

[mg/kg] 

1 

[mg/kg] 

xQ - - 
1 

[mg/kg] 

k 

[particles/m2/year] 
- - N.A. 

Au 

[m] 
- - N.A. 

qi/Pi 7 cm2/capita/year 32 kg/capita/year 12 kg/capita 

τ 

[years] 
Neg. Neg. 10 

 

Table 1. Input data to Eq. 2-6. “Neg.” stands for negligible and “N.A.” for not available. For 

references, see Model Input Data.  

  



 

 14 

Output Parameter Wound dressings Textiles Electronic circuitry 

nu,0 

[particles/year] 
4.6·1022 <8.5·1023 <6.8·1024 

Nu,0 

[particles] 
Neg. Neg. <6.8·1025 

neu,0 

[particles/year] 
4.6·1021 <8.5·1023 <<6.8·1024 

nu,1 

[particles/year] 
[1·1022, 1·1025] [6·1028, 6·1032] 9·1027 

Nu,1 

[particles] 
Neg. Neg. 9·1028 

neu,1 

[particles/year] 
[1·1021, 1·1024] [6·1028, 6·1032] <<9·1027 

 

Table 2. Current inflow to use phase, use phase stocks and use phase emissions for the Ag NP 

applications included in this study, along with the same parameters estimated for an 

explorative scenario. “Neg.” stands for negligible and “N.A.” for not available. For 

references, see Model Input Data. 
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Results and Discussion 

According to Table 2, the currently highest inflow to use phase of Ag NPs may occur from 

their use in electronic circuitry. This result is primarily due to the smaller particle size of the 

Ag NPs in electronic circuitry compared to those in wound dressings and textiles. However, 

the figures regarding current inflow to use phase of Ag NPs in textiles and electronic circuitry 

constitute upper limits rather than exact figures. It is clear that more detailed monitoring of 

these inflows to use phase rates are needed to accurately assess the emissions of Ag NPs from 

these applications. Regarding the use phase emissions, the results indicate that the currently 

largest use phase emissions of Ag NPs originate from textiles. In fact, this pattern remains in 

the explorative scenario, where the lower boundary of the Ag NP emission from textiles was 

four orders of magnitude higher than the highest upper boundary of Ag NPs in wound 

dressings. This is due to the much higher inflow to use phase of textiles compared to wound 

dressings. It is, of course, much more common to wear cloths than wound dressings, and 

cloths normally cover a significantly larger part of the body than wound dressings for most 

people even in the summer time. The results presented in Table 2 thus indicate that the 

articulated concern regarding Ag NPs in textiles should be taken serious, as suggested by 

other authors (Henig 2007; Blaser et al. 2008). It is, of course, possible that Ag NPs in textiles 

remain a niche product only applied in underwear and sports cloths, but the figures in Table 2 

show that it has the potential to become a large emitter of nanosilver. It should be noted that 

the estimations of Ag NP emissions from textiles are very uncertain due to high variation in 

nanosilver content in experimental studies (Geranio et al. 2009; Benn and Westerhoff 2008). 

Also, different nanosilver textile designs may emit less nanosilver (Geranio et al. 2009). It is 

noted in Geranio et al. (2009) that there is a variation in the incorporation of Ag NPs which 

correlate with the way the silver was attached to the textile and the amount of silver emitted. 

For instance, when the silver was incorporated into the textile fiber matrix, the emissions were 

slower compared to when the silver was merely bound to the fiber surface. But since the 

sample was so small and the correlation not described mathematically, no such considerations 

have been made in this study. Efforts should be put into revealing that relationship and to 

further try to establish an average concentration of Ag NPs in textiles. If one of the designs 

with lower emissions becomes dominant, the emissions may be significantly lower. 

According to Table 2, Ag NPs in wound dressings will probably never be of major 

environmental importance due to the limited use of wound dressings. However, as always, 

effects could arise from locally high emissions.  
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Note also that an increase in Ag NPs in electronic circuitry would result in a decreased use of 

bulk silver for that purpose. As stated above, if bulk silver is used instead of nanosilver ink in 

electronic circuitry, the amount of silver per product may be twice as high or more. This 

implies that switching to Ag NPs in electronic circuitry may reduce the total use of silver. 

However, the results in Table 2 also show that even if Ag NPs are used in electronic, the use 

of Ag NPs may still be as large as that of textiles and larger than that of wound dressings.  

The emissions of Ag NPs were proven to be a formidable challenge to estimate, since the 

effective surface area (Au) may vary depending on the specific application. In addition, the Ag 

NPs in electronic circuitry are sintered, and to our knowledge no measurements of NP 

emissions from sintered particles have ever been made. The fact that sintered particles are 

tightly attached by covalent bonds indicates that emissions may be low, but this needs to be 

confirmed by experimental studies. The Ag NPs in electronic circuitry may also be 

encapsulated in other materials.  

Apart from the importance of Ag NP emissions from textiles, this study points at the 

importance of the waste handling phase. According to one study, only 10 percent of the Ag 

NPs attached to an antibacterial wound dressing are emitted during use (Gibbins 2005). 

Practitioners at Swedish hospitals report that silver-containing wound dressings are disposed 

in the everyday garbage, and the nanosilver still attached to the wound dressing is thus likely 

to end up in an incineration plant. This is probably the fate of most consumer purchased 

textiles with Ag NPs as well.  The fate of Ag NPs during such processes is, to our knowledge, 

not studied. An incineration plant normally reaches temperatures of above 800ºC, which is 

much higher than the temperature used for sintering of Ag NPs (Caglar et al. 2008; Kunnari et 

al. 2009). The Ag NPs may thus undergo a transformation from one configuration state to 

another according to the typology suggested by Jiang et al. (2009). The fate of Ag NPs from 

electronic circuitry in the waste handling phase is also unknown, although the waste handling 

of electronic circuitry has already been acknowledged as a significant environmental problem 

due to the electronic devises’ content of various toxic metals, see for instance Robinson 

(2009). Ag NPs in electronic circuitry may add to this problem in the future, although at the 

same time reduce it due to the lower silver content compared to conventional circuitry. 

According to Morley and Eatherley (2008), silver is a compound that deserves attention due 

to potential resource scarcity. The total mining of silver metal in 2009 was approximately 21 

000 ton (Brooks 2009), and the known silver reserve base, i.e. silver recoverable from base-
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metal ores, is estimated at about 570 000 ton in 2009 (Brooks 2009). If the particle number 

inflow to use phase in the explorative scenario in Table 2 are recalculated into mass flows, 

they would greatly exceed the current total mining of silver and even the reserve base. 

Although this shows that the explorative scenario is possible yet unlikely, it also illustrates 

that the Ag NP applications studied here have the potential to further contribute to the scarcity 

of silver, in particular when considering the dissipative, i.e. non recyclable, type of use. 

Finally, the results in Table 2 also show that for the three applications included in this study, 

significant increases of inflow to use phase and emissions could potentially occur. This 

highlights the importance of applying explorative scenarios or other methods to account for 

technology diffusion.  

Conclusions 

In this paper the methodology of PFA is applied for the case of Ag NPs in wound dressings, 

textiles and electronic circuits to estimate the emissions of Ag NPs from these applications. 

Further, explorative scenarios are developed to account for potential technology diffusion. It 

is assumed in these scenarios that the Ag NP application will reach 100 percent market share 

and that everybody in a world of 10 billion inhabitants will use as much of the products as 

today’s Americans or Europeans. The results indicate that current knowledge of Ag NP 

emissions is very uncertain. However, the results show that textiles may become a large 

source of Ag NP emissions in the future. Wound dressings will probably remain a smaller 

source. The future stock of electronic circuits may contain many Ag NPs, but the emissions of 

these from the use phase are unknown. The waste handling phase was not included in the 

study, but the estimated low emissions of Ag NPs from wound dressings and the presumed 

low emissions of Ag NPs from electronic circuits suggest that the fate of Ag NPs in the waste 

handling phase is an interesting object of study. In addition, effort should be made to derive a 

factor that describe particulate emissions from electronic circuitry.  
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ABSTRACT 

Managing the potential environmental risks of nanoparticles requires methods to link 

nanoparticle properties with macro-scale risks. This study outlines challenges in exposure modeling 

of nanoparticles in aquatic environments, such as the role of natural organic matter, natural colloids, 

fractal dimensions of agglomerates, coatings and doping of particles, and uncertainties regarding 

nanoparticle emissions to aquatic environments. The pros and cons of the exposure indicators mass 

concentration, particle number concentration, and surface area are discussed. By applying colloid 

chemistry kinetic equations describing particle agglomeration and sedimentation for the case of 

titanium dioxide nanoparticles, a limited exposure assessment including some of the factors 

mentioned is conducted with particle number concentration as the exposure indicator. The results of 

the modeling indicate that sedimentation, shear flows, and settling are of less importance with regard 

to particle number based predicted environmental concentrations. The inflow of nanoparticles to the 

water compartment had a significant impact in the model, and the collision efficiency (which is 

affected by natural organic matter) was shown to greatly affect model output. Implications for 

exposure modeling, regulation and science are discussed. A broad spectrum of scientific disciplines 

must be engaged in the development of exposure models where nano-level properties are linked to 

macro-scale risk.  

 

Key Words: fate modeling, environmental risk assessment, nanoparticles, titanium dioxide. 
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INTRODUCTION 

In a report from the European Environmental Agency (2001) case studies show several 

examples of how early calls for precautionary measures regarding emerging technologies have been 

neglected. There is a possibility that the case of nanoparticles (NPs) will become yet another of these 

unheard calls (Hansen et al. 2008). Many studies outline NPs as a potential environmental risk, and 

the importance of understanding the fate and exposure routes of NPs has been stressed (Sweet and 

Strohm 2006; Klaine et al. 2008; Colvin 2003; Maynard et al. 2006). The lack of knowledge is often 

highlighted in these studies; production volumes, emissions to the environment, environmental fate 

and exposure, and toxic effects are stated as highly uncertain. Issues related to fate and exposure 

modeling of NPs in water are addressed in this study. One main difficulty in exposure modeling of 

NPs lies in vertical system integration, that is, linking properties on a nano-scale to macroscopic 

risks. In our terminology, “macro-scale risks” is the outcome in terms of potential effects on defined 

endpoints, such as specific impacts on human health or environmental endpoints such as fish or 

crustacean populations. Previous exposure and risk assessments of NPs have not modeled fate 

processes at the nano level, but at much higher system levels (Mueller and Nowack 2008; Boxall et 

al. 2007; Blaser et al. 2008). In those studies NPs are treated as bulk material and material flow 

analysis is applied, without acknowledging the particulate nature of the material. For instance, fate 

processes such as agglomeration1

Other important properties that affect NP fate and exposure in the water compartment 

include the presence of natural organic matter (NOM), the concentration and type of natural colloids 

(NCs), the fractal dimension of agglomerates and break-up of agglomerates (Christian et al. 2008). 

These properties are nano-level properties that have an impact on particle concentration and size 

distribution; that is, they are examples of vertical system integration where the nano level affects the 

macro level. Also, these properties are not covered by the procedures of chemical risk assessment 

under REACH (Hassellöv et al. 2009).  

 and sedimentation have not been considered, despite the fact that 

agglomeration has been pointed out as an important fate mechanism that could affect the exposure 

and bio-availability of NPs (Velzeboer et al. 2008; Klaine et al. 2008; Handy et al. 2008; Baun et al. 

2008), and sedimentation was suggested to be an important sink for NPs in Baun et al. (2008).  

Chemical risk assessment, however, has a long tradition of relating small-scale 

molecular properties to macro-scale risks. In chemical risk assessment it is normal to calculate a risk 

quotient (RQ) using the predicted environmental concentration (PEC) of a substance and the 

predicted no-effect concentration (PNEC) of the same substance (European Chemicals Bureau 2003; 

van Leeuwen and Hermens 2004). The RQ is calculated according to the formula: 
                                                 
1 Note that sometimes the words “coagulation” or “aggregation” are used instead of “agglomeration” in the colloid 
chemistry literature. Recently, however, an ISO standard has suggested that “aggregation” should denote when the 
particles are bound together by tight covalent bonds (sintered) and “agglomeration” should denote when particles are 
held together by weaker attractive forces such as van der Waals forces (ISO 2008). See also Jiang et al. (2009) for a 
more detailed discussion. 
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PNEC
PECRQ =     (1) 

A risk quotient greater than 1 indicates risk. The PEC is often estimated using exposure 

models, where molecular properties such as Henry’s law coefficient, the octanol-water partition 

coefficient and molecular mass, and environmental properties such as water volumes, wind speed, 

and soil density are inserted into models based on thermodynamically founded natural science 

theories (van Leeuwen and Hermens 2004; Mackay et al. 1996; Mackay et al. 1992). Recently, 

environmental scientists have been encouraged to turn to colloid chemistry to create analogous 

models of the environmental fate and exposure of NPs (Velzeboer et al. 2008; Klaine et al. 2008; 

Handy et al. 2008; Christian et al. 2008). A reason is that colloids are often defined as particles with 

a diameter between 1 nm and 1 µm (Elimelech et al. 1995; Shaw 1992) while NPs are often defined 

as particles ranging in diameter from 1 to 100 nm (Royal Society and Royal Academy of 

Engineering 2004; ISO 2008; Oberdorster et al. 2005; Swedish Chemicals Agency 2007). Even with 

the broad definition of NPs of up to 500 nm suggested by Handy et al. (2008), NPs are well within 

the colloid size range.2

This study outlines the possibilities and difficulties in modeling fate and exposure of 

NPs in water in order to derive a PEC by applying colloid chemistry, using titanium dioxide NPs 

(TiO2 NPs) as an example. TiO2 NPs are among the most frequently used nanomaterials in consumer 

products according to the Project on Emerging Nanotechnologies (2009), and the risk associated 

with TiO2 NPs has been stressed in particular by Mueller and Nowack (2008). Thus TiO2 NPs 

provide a relevant case study. The main question investigated in this study is whether a PEC for NPs 

in water can be derived from colloid chemistry models. Therefore a model is presented, together 

with some results, which form the starting points for a discussion on the further need for research 

and development of exposure models for risk assessments of NPs. Also, difficulties in choosing an 

appropriate exposure indicator for risk assessments of NPs have been discussed (Handy et al. 2008). 

This study thus discusses the pros and cons of three different exposure indicators and the importance 

of finding indicators relevant to both exposure and effect, that is, of identifying which common unit 

the PEC and PNEC should have. Suggestions are also given for future studies and possible 

regulation based on the results from this study.  

 Therefore it seems reasonable to apply colloidal physical chemistry theories 

for modeling NP exposure.  

 

THE KINETIC MODEL 

A kinetic model supporting fate and exposure estimations for NPs can, in principle, be 

constructed since a colloidal dispersion is never thermodynamically stable, but could be stabilized 

                                                 
2 Note, however, that there exist other definitions of colloids, depending on the scientific field (Gustafsson and 
Gschwend 1997). 
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kinetically (Handy et al. 2008). The kinetic laws that describe changes in particle concentration in a 

homogenous fluid have been described by Smoluchowski (1917) and Friedlander (1977), which 

include both sedimentation and three agglomeration mechanisms: (1) perikinetic agglomeration 

caused by Brownian motion; (2) orthokinetic agglomeration caused by shear flows; and (3) 

differential settling caused by sedimentation. A collision efficiency3
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 α is included to take into 

account the electrostatic potential barriers surrounding the NPs due to the electric double layer 

surrounding particles in a fluid, and it obtains values between 0 and 1, with α = 1 meaning that all 

collisions lead to a merging of the NPs and α = 0 meaning that no collisions lead to a merging. A 

continuous inflow of particles Ij is also added, see Equation 2.  

  (2) 

Equation 2 is based on the assumptions that all particles are approximately spherical 

and that merging of two particles is an irreversible reaction. In Equation 2, nj is the particle number 

concentration of particle j (if j equals three, then particle j consists of three primary particles that 

have agglomerated), αi,j and αi,j-i are collision efficiencies, Ki,j and Ki,j-i are rate constants, vs is the 

sedimentation rate of primary particles, β describes the increase in sedimentation rate due to 

increased cluster size (2/3 for spherical particles), d is the depth of the water compartment and Ij is 

the inflow of particles. The first term on the right side of Equation 2 describes the formation of 

particle j through agglomeration of particles i and j-i. The second term describes the loss of particle j 

through agglomeration with other particles i. The third term accounts for the sedimentation, and the 

last term for the inflow of particles. A particle number based PEC can be derived from Equation 2 by 

solving the differential equation and summing the particle concentrations nj at a time when the 

system has reached steady state. An expression for the agglomeration rate constant, which includes 

perikinetic agglomeration, orthokinetic agglomeration and differential settling respectively, is shown 

in Equation 3: 
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where kB is the Boltzmann constant, T is the temperature, μ is the fluid viscosity, ai and aj are the 

radii of particles i and j respectively, G is the shear rate, g is the gravitational acceleration and ρp and 

ρw are the densities of the particles and water, respectively. The sedimentation rate in Equation 2 is 

calculated according to Grant et al. (2001): 

                                                 
3 Note that the collision efficiency is sometimes referred to as the sticking probability or the stickiness coefficient.  
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where a is the radius of the primary particle. In Equations 2–4 above, most parameters, for example 

the water viscosity and the gravitational acceleration, are easy to determine. However, some 

parameters are more difficult to assign a value to and several relevant factors are not included in 

Equation 2.  

In the following, some model parameters and factors are discussed, and then an initial 

sensitivity assessment illustrating their relative importance is presented. The two most notable 

parameters that raise difficulties are the collision efficiency and the shear rate. Also, assigning a 

value to the inflow has been difficult due to lack of information regarding NP production volumes. 

Equation 2 assumes spherical particles, which is doubtful especially after agglomeration when 

fractal agglomerates are often formed. The importance of including not only synthetic NPs but also 

NCs is discussed, and finally the assumption that the agglomerates do not undergo break-up is 

treated along with the effect of coatings and doping. These parameters and processes are discussed in 

more depth below. The conceptual model describing the fate of NPs in water that has guided the 

model construction can be seen in Figure 1.  

 

Collision Efficiency and Natural Organic Matter 

Assigning a value to the collision efficiency (α) is not a trivial matter. Approximate 

equations exist where the collision efficiency depends on pH, point of zero charge, ion valence, 

concentration, and temperature (Reerink and Overbeek 1954), but they only take into account the 

electrostatic forces between pure particles in water without NOM and are generally not supported by 

experimental observations (Wiesner 1992; Ryan and Elimelech 1996). In natural waters the 

existence of NOM creates a different situation. Several studies have shown that NOM interacts with 

NPs and it is clear that NOM can affect the collision efficiency of particles significantly, both with 

regard to electrostatic forces and steric hindrance (Sander et al. 2004; Baalousha et al. 2008; Buffle 

et al. 1998).  

The effect of NOM on the collision efficiency is complex, since it can both enhance 

and reduce agglomeration. Buffle et al. (1998) suggest that agglomeration of natural inorganic 

colloids is enhanced by rigid biopolymers (e.g., peptidoglycans, hemicelluloses, and microbial cell 

walls) due to the attachment of particles to the polymers and by bridging flocculation, and decreased 

by fulvic compounds due to electrostatic and/or steric stabilization. The decreased agglomeration in 

the presence of fulvic acid was also reported by Domingos et al. (2009). Further, the effects of NOM 

are also interconnected with other parameters such as pH and salt concentration (Sander et al. 2004; 

Baalousha et al. 2008; Domingos et al. 2009) and the exact composition of the NOM differs between 

different waters (Buffle et al. 1998).  
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However, the vast majority of natural particles are negatively charged due to NOM 

coatings (Loder and Liss 1985; Beckett and Le 1990). Loux and Savage (2008) showed that NPs 

coated with organic matter have a more negative surface charge than uncoated NPs. According to 

Fang et al. (2009), TiO2 NPs were stabilized by NOM in soil suspensions. In summary, the 

physiochemistry behind the collision efficiency is not yet fully understood and currently no precise 

equations exist for calculating the collision efficiency, and this is especially true in the presence of 

NOM.  

Since the interaction between NOM and NPs is not well enough understood, model 

estimations of the collision efficiency are limited. The collision efficiency must thus be determined 

experimentally in order to get a reliable value (Wiesner 1992; Ryan and Elimelech 1996), which 

creates additional problems from an exposure modeling point of view. First, many experimental 

studies on the effect of NOM on NP fate do not estimate the collision efficiency as output. Instead, 

other properties such as the size distribution, electrophoretic mobility, mean particle diameter, 

diffusion coefficient, and zeta potential are the output of many experimental studies (e.g., Baalousha 

et al. (2008), Domingos et al. (2009)). Second, several studies do not perform measurements at 

conditions close to the conditions in relevant environmental compartments, but at pH values or ion 

concentrations that are very rarely found in nature. For instance, Buffle et al. (1998) studied the 

interaction between hematite NPs and a NOM called polyacrylic acid derivatives, with the collision 

efficiency as output. The pH in the experiment was 3, which is much lower than normally found in 

the environment, which is typically from 5 to 8 (Swedish University of Agricultural Sciences 2008). 

Furthermore, reference to Figure 5 in Buffle et al. (1998) shows that the collision efficiency is very 

sensitive to the concentration of NOM, changing almost four orders of magnitude for a change in 

NOM concentration from 0.03 to 0.04 mg/l. These values are, however, much lower than the average 

total organic carbon content in Swedish waters, which is 12 mg/l (Swedish University of 

Agricultural Sciences 2008).  

Assigning a value to the collision efficiency is difficult from a modeling perspective: 

The complicated dependence of the collision efficiency on NOM and other parameters makes 

calculation impossible at the present state of knowledge. Furthermore, few empirical studies exist 

where collision efficiencies have been determined under relevant environmental conditions. Based 

on current knowledge the only thing that can be said about the numeric value of the collision 

efficiency in general is that it often varies between 0.001 and 1 (Buffle et al. 1998; Chen and 

Elimelech 2007; Elimelech 1994).  

 

Shear Rates and Differences between Waters 

The shear rate G in Equation 3 represents laminar flow, which is unusual under natural conditions. 

Camp and Stein (1943) developed an equation that takes into account theturbulent flow by 
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estimating the mean velocity gradient Gm. Note also that even more refined expressions exist, for 

example, Peddocchi and Piedra-Cueva (2005). However, a major problem is the large variations in 

shear rate due to weather conditions and whether the water is running or not. For instance, a still, 

deep lake should normally have a much lower shear rate than a river. In lakes the shear rate is 

normally about 0.1-3 s-1, and it is 0.01-10 s-1 in oceans (Colomer et al. 2005). No shear rates 

representative for rivers have been found, but they are likely >10 s-1, and thus the shear rate varies at 

least four orders of magnitude in natural aquatic systems. Hence, although the shear rate in principle 

can be determined, it is still difficult to assign a general value that is representative for the whole 

water compartment (contrary to other properties such as water density, which can be assumed to be 

roughly the same throughout the freshwater compartment). 

  

Fractal Dimension 

Synthetic primary NPs can often be regarded as spherical. However, during rapid 

agglomeration fractal agglomerates are often formed (Meakin 1987). Fractal agglomerates are 

characterized by their mass fractal dimension dF, which varies between 1 and 3 for three-

dimensional objects (Wiesner 1992). An aggregate so compact that it had no pores would coalesce 

with a sphere, having a fractal dimension of three. More open aggregates have a fractal dimension 

closer to 1. The difference in bioavailability and toxicity of primary NPs and particle agglomerates is 

largely unknown, although it has been suggested that agglomerates are less toxic (Velzeboer et al. 

2008). However, creation of oxygen radicals has been pointed out as a potential toxicity mechanism 

for TiO2 NPs (Hund-Rinke and Simon 2006) and fractal agglomerates may also be able to generate 

significant amounts of oxygen radicals. The mass fractal dimension is difficult to estimate since it 

depends on material and fluid properties in a complex way, and must be determined experimentally, 

similar to the collision efficiency (Elimelech et al. 1995). However, Wiesner (1992) showed that 

neglecting agglomerate porosity could cause an error of less than 10 percent in the collision 

efficiency, and due to this low impact compared to the range of 0.001-1 as has been reported for the 

collision efficiency, along with modeling difficulties, the fractal dimension has not been included in 

the model calculations of this study. 

 

Inflow and Production Volumes 

For TiO2 nanomaterials, approximately 58,800 kg/year enter the Swiss water 

compartment according to Mueller and Nowack (2008). This figure is based on a company survey 

stating the amount of several different NPs produced in Switzerland (Schmid and Riediker 2008). 

Unfortunately such information is not available for most regions. Another source of NP production 

data in Mueller and Nowack (2008) is a report from the United Nations Environment Program 
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(UNEP 2007). That report, in turn, states that the data originates from “NanoroadSME, a research 

project founded by the European Commission, 2006.” However, no information regarding 

production volumes can be found on the project web page (Project NanoRoadSME 2008), and thus it 

is unclear where the data originate. A report from the Royal Society and Royal Academy of 

Engineering (2004) also reports figures for global production of nanomaterials, for instance TiO2, 

stating as reference “chemical journals and reviews (2003–2004), and market research BCC (2001).” 

However, no information on production volumes of specific NPs or nanomaterials can be found in 

the proceedings of the conference mentioned, that is, BCC (2001). A report from BCC Research 

gives some information, but it includes no references (BCC 2008). This illustrates the difficulties in 

finding reliable information about the inflow of NPs to the water compartment, and even if the 

emissions of NPs to the water compartment could be specified in terms of mass, the input unit in 

Equation 2 is particle number concentration. If production volumes were well known it would still 

be a problem that the fate of NPs from the product to the water compartment is not fully understood, 

such as the fate of NPs in waste incineration plants and in sewage treatment plants. Thus the annual 

produced mass of a certain NP is not equal to the inflow to the water compartment. The same 

difficulties described here for TiO2 NPs apply for other NPs as well.  

 

Natural Colloids 

Another important factor with regard to NP fate is the role of NCs that are likely to 

interact with synthetic NPs (Sweet and Strohm 2006; Klaine et al. 2008; Handy et al. 2008). 

Measurements performed by Gallego-Urrea et al. (2010) suggest that the amount of natural NPs in 

water is in the range of 1014 particles/m3, a result that was similar to those found in other studies. 

Very few particles larger than 500 nm were found. The effect of NCs can be included 

mathematically into Equation 2 by adding a term describing the heteroagglomeration:  
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where γ is the collision efficiency and H is the rate constant for collisions between NCs and synthetic 

NPs, and ci is the concentration of an agglomerate with i primary NCs.  

The problem here lies in the diversity of NCs with regard to shape and chemistry. For 

instance, both organic and inorganic colloids can be found in natural waters. According to 

measurements performed, the average diameter of these is close to 200 nm for many natural waters, 

although the size distribution is wide (Gallego-Urrea et al. 2010). Besides the diversity of the NCs 

themselves, they may also be partly or fully covered by NOM, which affects the collision efficiency 

as described above. To our knowledge, no measurements of the collision efficiency between NPs 

and NCs have been conducted. Another important question in this context concerns how 
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agglomerates consisting of both natural and synthetic NPs should be classified. Such a 

heteroagglomerate of a naturally occurring substance and synthetic NPs, outlined as a potential 

hazard, is indeed difficult to conceptualize from a risk perspective. Are they to be seen as NPs, as 

NCs, or as something else?  

 

Break-Up and Limiting Size 

In Equation 2 the agglomeration is regarded as irreversible in that no agglomerate 

break-up occurs. Zhang et al. (2008) showed that it was very difficult to disaggregate metal oxide 

NPs below 500 nm, which indicates that break-up may not be of importance, at least not for metal 

oxide NPs. However, Wiesner (1992) showed that break-up could be of importance and that it is 

partly controlled by the fractal dimension. Different studies have tried to estimate the maximum size 

of agglomerates, but these estimations are difficult to confirm experimentally and can be highly 

system-specific (Elimelech et al. 1995). One possibility mentioned by Wiesner (1992) was to model 

break-up as a reduced agglomeration rate, but to our knowledge no simple expression that can be 

implemented into Equation 2 exists.  

 

Coatings and Doping 

“Coatings” sometimes refers to a layer of NOM surrounding the NPs, as discussed 

above. More often, however, it refers to a coating that is synthesized along with the particles or right 

after particle synthesis. Surface properties of particles are important since it is a particle’s surface 

that can interact with the surroundings, and thus coatings can affect NP fate and effects (Nel et al. 

2006; Handy et al. 2008). For instance, the TiO2 and zinc oxide NPs in sunscreen are normally 

coated with silicon oils, SiO2 or Al2O3 in order to improve dispersibility and reduce reactive oxygen 

species generation in sunscreen (Nohynek et al. 2007). The exact extent to which the properties are 

modified is not known. Whether a TiO2 NP coated with Al2O3 adopts exactly the same properties as 

an Al2O3 NP, or just more Al2O3-like properties, is currently unknown. “Doping” refers to the 

process of purposely introducing impurities into the NPs, which can be done to enhance the UV 

absorption of TiO2 NPs (Wakefield et al. 2004). The effect of doping on NP behavior is largely 

unknown.  
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Figure 1. The conceptual model describing NP aquatic fate mechanisms, which have guided the mathematical modeling.  
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Table 1. A description of the model scenarios tested in this study along with model input and output variables.  

Scenario 
Shear rate, 

G 
[s-1] 

Collision 
efficiency, α 

Primary 
particle size, 

a 
[nm] 

Temperature 
[K] 

Particle 
density, ρp 

[kg/m3] 

Water 
density, ρp 

[kg/m3] 

Water 
depth, d 

[m] 

Inflow 
relative to 
baseline 

case inflow 

Output 
(PEC) 

relative to 
baseline case 

Baseline case 0.01 1 21 277 4200 1000 3 1 1 

High shear 
rate 10 1 21 277 4200 1000 3 1 1 

High shear 
rate and larger 

particles 
10 1 500 277 4200 1000 3 

1 
1 

Differential 
settling 

excluded and 
larger 

particles 

0.01 1 500 277 4200 1000 3 

1 

1 

Low collision 
efficiency 0.01 0.001 21 277 4200 1000 3 1 10 

Sedimentation 
excluded 0.01 1 21 277 4200 1000 3 1 1 

High inflow 0.01 1 21 277 4200 1000 3 10 2 
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MODEL CALCULATIONS 

Some limited model calculations were performed for the case of TiO2 NPs in order to 

estimate the importance of the collision efficiency (α), shear rate (G), differential settling, 

sedimentation and inflow rate (Ij), of which all except differential settling and sedimentation have 

been discussed above. The material TiO2 NP is chosen as an example since it is one of the major 

nanomaterials produced today and has been shown to constitute a potential environmental risk 

(Mueller and Nowack 2008). Break-up, NCs, fractal dimensions, coating and doping were not 

included in the model due to insurmountable modeling difficulties and lack of data. The model 

(Equations 2–4) was implemented in MATLAB® along with input values from the literature for the 

different parameters.  

 

Input Assumptions 

A temperature of 277 K was applied, since the temperature at the bottom of lakes is 

4°C or 277 K, and it is also a common water temperature during winters in many places in the 

northern temperate zone. The viscosity of water at 277 K is about 1.5 mPa·s. The NP modeled was 

selected to be a TiO2 NP with a primary particle diameter of 21 nm (same diameter as the 

commercial TiO2 NP AEROXIDE® P25 from Degussa/Evonik). This is a smaller particle size than 

the primary particles found in sunscreen and the particles emitted from painted facades, for instance 

(Nohynek et al. 2007; Kaegi et al. 2008). The density of water was set to 1000 kg/m3 and the density 

of the TiO2 NPs was set to 4200 kg/m3. The depth of the water compartment was set to 3 m 

according to the guidelines of the European Chemicals Bureau (2003). Since no reliable figures for 

the inflow have been found in the literature, the inflow was set to a random value in Equation 2. This 

can be done since this study does not seek to determine a PEC, but rather to investigate the 

feasibility of such models and the importance of some parameters and factors.  

Besides the input values listed above, a shear rate of 0.01 s-1 and a collision efficiency 

of 1 have been applied for the baseline case. Regarding shear rate, two additional assumptions were 

tested: One with the shear rate increased to 10 s-1, and one with the shear rate increased to 10 s-1 

along with an increased size of the primary particles in the inflow from 21 nm to 500 nm, but with 

the same number of particles entering the water compartment. The size of 500 nm was chosen since 

it is the highest suggested upper limit for the definition of NPs known to the authors; see Handy et 

al. (2008). The complete exclusion of the differential settling factor was tested in one case, 

combined with increasing the primary particle size from 21 nm to 500 nm but with the same number 

of particles entering the water compartment as for the baseline case, to see the influence on the 

result. In order to estimate the effect of lower collision efficiency, in one simulation it was decreased 

to 0.001. One case with the sedimentation term excluded was also tested. Besides the baseline 

inflow, the impact of a 10-fold increase or decrease in inflow was investigated since existing 
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estimations of annual TiO2 nanomaterial production vary roughly by a factor of ten or one hundred 

(Royal Society and Royal Academy of Engineering 2004; Mueller and Nowack 2008). See Table 1 

for a summary of the scenarios and assumptions. The results are given as the changes relative to the 

baseline case. 

 

Model Calculation Results 

The low effect of an increased shear rate in the model for the case where a particle size 

of 21 nm was assumed is not surprising since the orthokinetic agglomeration was shown to be of less 

importance for small particle sizes (Handy et al. 2008). Not even at a primary particle size of 500 nm 

was the orthokinetic agglomeration significant in the model. The same was true for differential 

settling as well; not even for 500 nm particles was that effect significant in the model, which was 

also suggested by Handy et al. (2008). The sedimentation term also had a negligible impact on the 

calculated PEC even for larger 500 nm particles. For all these model parameters, the changes in 

parameter values or exclusion of factors resulted in a change in PEC at least smaller than 10-4 

compared to the baseline case. However, significantly lower collision efficiency could increase the 

PEC by more than a factor of ten according to the model. Also, a 10-fold increase in the model 

inflow resulted in a twice as high PEC compared to the baseline case, and a 10-fold decrease of the 

inflow resulted in a reduction of the PEC by a factor of four. It can thus be concluded from the 

model calculations that for the case of TiO2 NPs the collision efficiency and the inflow seem to be 

the most influential parameters of the ones tested. See Table 1 for a summary of the results.  

According to Mueller and Nowack (2008) the inflow of TiO2 NPs to the Swiss water 

compartment is 58.8 ton/year and the Swiss water compartment is 3.7 km3. If that inflow is 

recalculated into primary AEROXIDE® P 25 particles and a total and instant mixing of the water 

compartment is assumed, the inflow I in Equation 2 is 2.47·107 particles·s-1·m-3 of P 25. Inserting this 

value into Equation 2 for our baseline case gives a PEC of approximately 2.5·10 12 particles/m3, 

which is two orders of magnitude lower than the concentration of NCs reported by Gallego-Urrea et 

al. (2010). However, due to the many uncertainties in the model and especially in inflow data, the 

authors hesitate to present this figure as a realistic PEC. 

 

EXPOSURE INDICATORS 

 In the calculation above, particle number based PEC was used as the exposure 

indicator, leading to the risk quotient indicator. This is because the processes of agglomeration and 

sedimentation according to Equation 2 are described by the unit particles per volume and also 

because studies have suggested particle number concentration to be a relevant exposure indicator for 

NPs (Handy et al. 2008). In previous risk assessments, however, mass concentrations have been used 

for both the exposure and effect assessment (Mueller and Nowack 2008; Boxall et al. 2007; Blaser et 
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al. 2008). This is similar to chemical risk assessment, where mass concentrations are often used in 

both exposure and effect assessments (van Leeuwen and Hermens 2004). For the case of chemical 

risk assessment, the choice between mass and molar concentration is not that crucial, since there is 

an easy way to convert mass to amount of substance using the molar mass. For particles, this is 

different. For the case of TiO2, the estimated PEC from Mueller and Nowack (2008) was 16 µg/l, 

which can correspond to either one particle per liter with a diameter of 200 µm, or 1 million particles 

per liter with diameters of 2 µm, or 1012 particles per liter with diameters of 20 nm and so on. 

 Toxicological studies have had difficulties confirming the dose-response relationship 

for mass concentration that applies for many NPs; sometimes dose-response relations are obtained 

and sometimes not, and in some studies particle and agglomerate size were found to affect the 

toxicity (Baun et al. 2008). Oberdörster et al. (2005) found that particle surface area was a better 

dosimetric exposure indicator than mass, making dose-response curves understandable. Not knowing 

the proper exposure indicator is a difficulty when performing exposure assessments. The model 

described in Equations 2-4 can, however, be used to obtain not only particle number concentrations 

but also mass concentrations, since the amount of particles in each agglomerate (j) is known. Surface 

area is more complicated to calculate, and is related, for example, to the fractal dimension of the 

agglomerate.  

 Mass concentration is a convenient indicator of risk in exposure assessments due to the 

law of mass conservation and to experimental ease, but problematic for NPs since is cannot 

discriminate between many small particles and fewer larger particles. Surface area or even bio-active 

surface area might be more relevant as an exposure indicator, but it would be difficult to make 

operational since it is difficult to calculate or measure. Changes in surface area along exposure 

pathways would thus be difficult to monitor. One benefit with particle number concentration, as has 

been mentioned, is that it is the unit used in agglomeration kinetics equations, although it is also 

somewhat difficult to monitor along exposure pathways. There is a possibility that an exposure 

indicator that is suitable from an exposure assessment perspective will prove to be less accurate from 

an effect assessment perspective, and vice versa. Whether and when mass concentration, particle 

number concentration, surface area or other indicators of risk are most appropriate is an issue that 

needs to be addressed by further research.  

 

IMPLICATIONS FOR EXPOSURE MODELING 

It is important to notice that an exposure model is not meant to be a perfect 

representation of reality, but is instead meant to provide a reasonable and conservative estimate of 

the exposure. An exposure model should include only relevant properties and exclude factors that do 

not have a large effect on the outcome. Besides the fate processes described above, additional ones 

of presumed less importance can be added, see for example Elimelech et al. (1995). The question 
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posed here thus concerns which of the processes described in this paper and elsewhere are of 

relevance to the exposure modeling. The calculations above indicate that the orthokinetic 

agglomeration can be excluded for NPs that enter the aquatic environment. This is convenient 

considering the variety in shear rate for different waters. Also, differential settling and sedimentation 

seem to be of less importance. Note, however, that the low impact of the sedimentation is in large 

part due to the choice of particle number as exposure indicator, and thus the impact of different 

factors depends partly on the exposure indicator (see discussion above). Changes in collision 

efficiency related to the amount and type of NOM can increase the PEC of TiO2 NPs 10-fold 

according to the model calculations above. Changes in the inflow also had a significant impact, 

although a 10-fold increase of the inflow only resulted in a doubling of the PEC. The influence of 

other aspects such as the fractal dimension, the presence of NCs, agglomerate break-up, coatings and 

doping should be evaluated by models and measurements in order to achieve a reasonably accurate 

exposure model able to predict environmental concentrations of NPs. The first steps would be to 

evaluate the importance of break-up, agglomerate fractal dimension and NCs. Here the complexity 

and diversity of NCs provide perhaps the greatest challenge. In parallel, modeling efforts to estimate 

current and future inflows (i.e., emissions and leakage from society) are of great importance for an 

appropriate risk assessment of nanoparticles. 

Although the calculations above show that the collision efficiency is an important 

parameter for exposure modeling, its complex dependence on type and amount of NOM, pH, salt 

concentration and valence, etc. makes it difficult to calculate using existing equations. Thus more 

accurate equations should be developed. Until then, experimental collision efficiencies relevant for 

environmental conditions must be derived. However, if the collision efficiency varies greatly within 

the water compartment, only emissions that are clearly localized, such as peak emissions or point 

sources, can be modeled with high certainty. For diffuse emissions that are emitted in low amounts 

to several types of waters, reliable exposure modeling will be more difficult. Unfortunately, many of 

the known emissions of NPs that have been outlined in the literature are diffuse. Some examples are 

TiO2 NPs from ordinary paint (Kaegi et al. 2008), TiO2 and zinc oxide NPs from sunscreen, silver 

NPs from textiles, iron NPs for soil remediation (O'Brien and Cummins 2008), silica NPs in 

polishing products and cerium oxide NPs as fuel additives (O'Brien and Cummins 2008). Even if the 

collision efficiency could be calculated by modeling, the question of exposure indicator is urgent and 

requires communication between toxicologists, colloid chemists, and risk analysts. It is important to 

agree on which indicators are relevant for linking exposure and toxic effects. These indicators must 

also be possible to derive from exposure models. The difficulty in modeling changes in surface area 

for NPs in the environment in contrast to the presumed merits of surface area as effect indicator 

(Handy et al. 2008) illustrates this great challenge.  
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Considering the challenges, it is not surprising that previous exposure assessments of 

NPs have not included specific particulate or colloidal behavior and have used mass concentration as 

the exposure indicator for a more convenient exposure modeling. However, although excluding the 

particulate nature of the material makes exposure modeling more feasible, there is no guarantee that 

the results are relevant and they may offer limited guidance (Wiesner et al. 2009). It is thus 

suggested that scientists working at different system levels relevant for exposure modeling of NPs be 

given resources to co-operate to develop integrated models where nano-level properties are linked to 

macro-scale risk.  

 

IMPLICATIONS FOR REGULATION 

The problems in exposure modeling of NPs of course lead to regulatory challenges. 

Several ways to deal with the potential risk of NPs have been suggested. Reinert et al. (2006) 

suggested voluntary information programs similar to the current voluntary program for 

nanotechnologies established and maintained by the U.S. Environmental Protection Agency. Under 

this program the producer of nanotechnology can report material characterization, hazard 

information, use and exposure potential, and risk management practice. However, considering the 

high uncertainties in exposure modeling of NPs discussed above, it seems unlikely that producers of 

nanotechnology or NPs could give reliable information about the potential exposure of their 

products, especially if the products give rise to diffuse emissions. Also, Köhler and Som (2008) 

showed that innovators of nanotechnology in general did not perceive ecotoxicity of NPs to be a 

major risk and that they were not sensitive to early scientific warnings regarding risks of 

nanotechnology. Another option mentioned in Reinert et al. (2006) is to create new precautionary 

regulations, and Köhler and Som (2008) suggested that risk preventive measures should not be 

postponed until more information about NPs is available. The discussion above about the difficulties 

in exposure modeling of NPs supports the conclusion that precautionary measures may be the best 

way to prevent NPs from becoming yet another late lesson. 
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