
 

Chalmers University of Technology 
Department of Computer Science and Engineering 
Göteborg, Sweden, September 2010. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Improvement of “the new agile process for 
distributed projects” 
Master of Science Thesis in the Programme Software Engineering and 
Technology 
 
 
 

MIR MOHAMMAD SAMSUL AREFIN 
DENIS KORZUN 



 

The Author grants to Chalmers University of Technology the non-exclusive right to 
publish the Work electronically and in a non-commercial purpose make it accessible 
on the Internet.  
The Author warrants that he/she is the author to the Work, and warrants that the 
Work does not contain text, pictures or other material that violates copyright law.  
 
The Author shall, when transferring the rights of the Work to a third party (for 
example a publisher or a company), acknowledge the third party about this 
agreement. If the Author has signed a copyright agreement with a third party 
regarding the Work, the Author warrants hereby that he/she has obtained any 
necessary permission from this third party to let Chalmers University of Technology 
store the Work electronically and make it accessible on the Internet. 
 
 
 
 

Improvement of “the new agile process for distributed projects” 
  
 
MIR MOHAMMAD SAMSUL AREFIN 
DENIS KORZUN 
 
© MIR MOHAMMAD SAMSUL AREFIN, September 2010. 
© DENIS KORZUN, September 2010. 
 
Examiner: SVEN-ARNE ANDREASSON 
 
Chalmers University of Technology 
Department of Computer Science and Engineering 
SE-412 96 Göteborg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 
 
 
Department of Computer Science and Engineering 
Göteborg, Sweden. September 2010. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  i 
 

Abstract 
 
Over the last decades more and more software development companies transfer at least a 

part of their development process to the so-called offshore countries. To increase the 

productivity of these projects “the new agile process for distributed projects” was invented. 

The research question of this work is how “the new agile process for distributed projects” can 

be improved. This research uses a case study methodology to identify waste and gaps in the 

process. Studies of other processes, conducted mainly by literature review, are used to fulfill 

the identified gaps. As a result of the research several improvements were proposed and 

questions for the future research were identified.  

 
 
Keywords: Agile development, Global software development, Distributed projects, SCRUM, 
ROPES, RUP, NAPDiP. 
 
 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  ii 
 

Acknowledgement 
 
This Master's thesis report has been written as the final part of the Master's program 

Software Engineering and Technology at Chalmers University of Technology, Sweden. The 

subject was chosen in collaboration with an IT service company in Northern Europe, where 

the thesis also has been performed. 

 

First of all we would like to thanks our supervisors Magnus Klack and Stefan Bryne at the 

company for their guidance and support during this research work. We are grateful for their 

valuable supervision, motivating ideas and never-ending optimism. 

 

We would also like to thank our examiner Sven-Arne Andreasson from Department of 

Computer Science and Engineering at Chalmers University of Technology for his valuable 

advices and support during the work.  

 

Furthermore, we would like to thank those people who helped and supported us time to 

time during the work whose names are not mentioned here. 

 

We would like to thank you all! 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  iii 
 

 

Table of Contents 

Abstract ................................................................................................................................................. i 

Acknowledgement ............................................................................................................................ ii 

List of Figures ..................................................................................................................................... v 

List of Tables ...................................................................................................................................... v 

1 Introduction ............................................................................................................................... 1 

2 Theoretical Background ........................................................................................................ 3 

2.1 Global Sourcing ............................................................................................................................... 3 

2.2 Agile Development ........................................................................................................................ 5 

2.2.1 The Emerging of agile development processes .......................................................... 5 

2.2.2 Manifesto for agile software development. ................................................................. 5 

2.2.3 Principles behind the agile manifesto ........................................................................... 5 

2.2.4 Agile development processes ........................................................................................... 7 

3 Purpose ....................................................................................................................................... 9 

4 Research Approach .............................................................................................................. 10 

4.1 Interview ........................................................................................................................................ 12 

5 “The new agile process for distributed projects” ...................................................... 14 

5.1 Overview ........................................................................................................................................ 14 

5.2 Project responsibilities ............................................................................................................. 15 

5.3 Project Initialization .................................................................................................................. 17 

5.4 The life cycle of “the new agile process for distributed projects” ............................ 17 

5.4.1 Analysis phase ..................................................................................................................... 17 

5.4.2 Design phase ........................................................................................................................ 18 

5.4.3 Implementation .................................................................................................................. 19 

5.4.4 Test .......................................................................................................................................... 20 

5.4.5 Advance .................................................................................................................................. 20 

5.5 Best practices of “the new agile process for distributed projects” .......................... 21 

6 Analysis and Discussion ..................................................................................................... 25 

7 Result: Modifications ........................................................................................................... 34 

7.1 Best Practices ............................................................................................................................... 34 

7.2 Additional Roles .......................................................................................................................... 35 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  iv 
 

8 Conclusion ............................................................................................................................... 37 

9 Future Improvements ......................................................................................................... 38 

10 References ............................................................................................................................... 39 

11 Appendixes .............................................................................................................................. 42 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  v 
 

List of Figures 

Figure 1: ”The new agile process for distributed projects” working framework ................ 15 

Figure 2: ”The new agile process for distributed projects” Process Spiral ............................ 19 

Figure 3: An example of infrastructure of ”the new agile process for distributed projects”

 ............................................................................................................................................................................. 26 

Figure 4: Suggested improvement and practices in different phases of ”the new agile 

process for distributed projects”. ........................................................................................................... 36 

 

List of Tables 

Table 1: List of best practices and their benefits ............................................................................. 23 

Table 2: List of suggested best practices and their benefits ........................................................ 36 

Table 3: List of suggested additional roles and their benefits .................................................... 36 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  1 
 

1 Introduction 
 

Nowadays more and more software development companies transfer at least a part of 

their development process to the so-called offshore countries (e.g. India, China, Ukraine, 

Belarus etc.) It is a very common situation where a team working on the same project, but it 

is scattered around the world. It gives a lot of different benefits to the companies. First of all 

this type of development allows to decrease the cost of the development significantly 

because salaries and taxes usually are lower in these countries. Occasionally these countries 

give preferential tax laws for the software development companies residing there. As well an 

offshore development provides an access to the talents of the offshore countries. 

Sometimes it can be hard to convince the specialist to move to another location or to 

another country. On the other hand, if the company has a department in the country and 

the position that they would offer would look more attractive.  

 

    However, running this kind of projects is a very challenging affair because multinational 

and multicultural projects have to deal with lots of issues that a collocated project does not 

have to deal with. First of all, the huge physical and cultural distances make an enormous 

impact on Global Software Development (GSD). For example several nationalities can have 

similar culture, language and traditions, even common history. If foreign customer would call 

them by the same name, according to their shared history they can be stressed as the 

questions of the national self-consciousness can be important for them and it can cause 

negative effect on the future cooperation. Another example is traditions and ideology 

caused by religion, proposition of a pool party for a mixed gender group as a team building 

activity can offended the members of a traditionally religious country. Physical distances put 

significant limitations on the communication process. Even now with availability of phone- 

and video-conferences the developers can’t be relaxed communicating with another site, 

the developer speaking with his manager may hesitate to ask about unclear statements. 

Second time, as he would not want to show that his English is not excellent. The greatest 

challenge in many offshore projects would be to communicate complex problems with the 

offshore sites [1]. This will sometimes resulted in “hacked” code and violations against the 

product architecture. Other architectural related matters concerned the difficulties to 

benefit the architecture quality attributes such as performance, maintenance, usability, 

scalability and testability [1]. 

 

    On the other hand during the last years agile development processes have shown good 

results in industrial projects. There are several agile processes adapted to the distributed 

development (Scrum for example). Running a global project in an agile manner provides 

significant benefits like reduction of delivery time, boosting knowledge exchange, steadiness 

to requirement change, continuous delivery, interaction with customer, fast feedback from 

teams, sustainable development, test driven development (TDD) benefits. But there are 

certain drawbacks of a “pure” agile approach to the global software development. Projects 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  2 
 

running in an agile manner with minimal documentation will eventually run greater risk of 

frequently breaking the architectural rules. If the architectural rules are not followed, the 

application tends to turn into a piece of hard working material, inviting further violation to 

the architecture. Soon the application will be unnecessarily difficult to maintain resulting 

higher cost, lower quality and longer time spent for each additional fix. In this master thesis 

we focused on the improvement of “the new agile process for distributed projects 

(NAPDiP)”. This process has taken the most appropriate features and best practices from 

Rational Unified Process (RUP), Extreme Programming (XP), Scrum and Rapid Object 

Oriented Process for Embedded System (ROPES) [13], [30]-[35]. 

 

    NAPDiP is a delivery model and a way of working with agile global outsourcing. It is an 

iterative process and each of the iterations is divided into five phases and eighteen steps in 

total. The phases are analysis, design, implementation, test and advance. This process 

doesn’t include initial requirement analysis as part of the development phases. It assumes 

that the team is already gathered and initial requirements are specified. 

 

    The purpose of NAPDiP is to organize the work of international teams while keeping the 

benefits provided by agile way of development, but at the same time taking into account 

communicational, cultural and different level of experience issues. As it was already 

mentioned NAPDiP is a relatively new development process and is therefore eligible for a 

wide range of improvement. 

 

    According to the policies of the Northern European Company where this master thesis was 

initialized authors are not allowed to mention the “real” name of the company and the 

“real” name of the process. As well authors are not allowed to mention the names of the 

projects involved in the case study. 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  3 
 

2 Theoretical Background   
 

2.1 Global Sourcing 
 
    The term global sourcing is used to describe a practice of sourcing from a global market 

for the products or services across political geographical borders and boundaries. The main 

reason for global sourcing is the access to competencies, resource availability and costs 

benefits. Over the last decade global sourcing has major impact on information technology 

in terms of software development [1]. The development activities of large enterprises of 

developed countries are distributed among comparatively low cost locations and 

organizations [2]. Besides cost-effectiveness; the efficient system performance, minimized 

risks and time to market in today’s integrated comprehensive market are the attributes of 

success. That’s why software development is considered as a globally sourced commodity. It 

has also facilitated the use of well-educated and technically competent software engineers 

from low cost countries of Eastern Europe, South Asia and Latin America etc. [3].   

 

    Global software development involves interactive people, organizations and technology 

across the nations with different backgrounds, languages, cultures and working styles. It 

improves the interactions and relationships between individuals and groups. It helps to solve 

complex issues in an efficient way. Adaptation of GSD offers organizations very promising 

benefits [4], [5], [7] and [8]:  

 Cost Savings: The primary benefit of global sourcing is to lower the cost of the 

development. The price of system development in USA, Canada and most European 

countries is higher than it is in Eastern Europe or Asian countries.  

 Access to multi-skilled workforces: It opens the possibility to hire skillful and 

knowledgeable engineers. The companies have the opportunity to expand their 

software development activities for contribution of large number of skilled workers, 

wherever they may be located. As well, it enables the creation of a virtual 

cooperation or teams across the nations. 

 Reduced time to market:  It has an ability to use time zone differences to achieve 

“follow the sun” approach described in details by Carmel [6]. It enables organizations 

to maximize the productivity by usage of multination resources. It improves the time 

to market.  

 Improve quality:  Sharing best practices among business organizations can improve 

the quality of the product.  

 Contiguity to market and customer:  GSD allows to develop the software in tight 

proximity to actual customer and to increase the knowledge of the local market. For 

example an embedded system software development company focused on large 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  4 
 

manufacturing industry based in China, or Enterprise Resource Planning (ERP) system 

Development Company focused on the new market in India.  

 Scalability:  The outsourcing company usually is prepared for increasing or 

decreasing the amount of workers either temporarily or permanently.  

    Beside of these highlighted benefits of the global sourcing, the organizations have other 

bonuses such as an improvement of resource allocation, reduction of supervision cost, an 

extension of experience in application of software development and documentation 

processes.  

 

    However, there are some major challenges organizations need to overcome in global 

software development. Communication, language barriers, social and cultural distances, 

time zone, trust and coordination problem between teams are important issues of global 

software development [4], [5] and [7]:  

 Communication distances; it is the significant obstacle in GSD. There are a lot of 

problems caused by lack of communication among the developers. As well a large 

amount of development time is spent for communication. Despite of different 

technologies available for communicating between teams, for example email, Instant 

Messaging (IM), phone and video conferencing, time differences between two sites 

create barrier for quick communication.  

 Language barrier; language difference is another major barrier of GSD. Despite of 

usage of English as a common language, difficulties in understanding between the 

parts of the teams caused by educational and cultural differences still exists [4]. 

 Social and Cultural differences; it makes difficulties in GSD. For example, people in 

Belarus or India follow and maintain the hierarchy where swedes emphasis on equal 

representations [4].  

 Trust and confidence; sometimes offsite part of the team does not complete the 

tasks in a certain period of time or finishes the task in a different way because of 

misunderstanding of the requirements provided by the onsite part. If it happens 

periodically, the onsite part has difficulties to establish a feeling of trust with the 

offsite and the lack of trust between two sites reduces the confidence [4].  

 Coordination and control; this issue arises when the project tasks are divided 

between the parts of the team. If both sites try to control the project then there will 

be a conflict between the parts of the team. The project could be delayed because 

the lack of management between the team parts and sites [4].  

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  5 
 

2.2 Agile Development 

 

    Over the last years agile development processes has shown a good results when applied in 

software development projects. As a result more and more projects are uses these 

processes.   

2.2.1 The Emerging of agile development processes 

    Agile software development in its current meaning appeared in mid-1990s as an 

alternative to the standard (of that time) heavily regulated and strictly document based 

software development processes. That time in the developer’s community emerged the 

theory that traditional processes require huge amount of paperwork, these papers and 

artifacts slow down the development and are sometimes even useless.  Another very 

important issue for that time was inability of the customer to define the final set of the 

requirements and features for the software from the start of the project which caused 

changes during the development process. A traditional heavily regulated and regimented 

development model (for example the waterfall model) [9] was not able to handle this issue 

properly. Due to that, the focus in the development process was switched from fulfilling 

clearly stated project requirements to continuous delivery up to date value to the customer. 

2.2.2 Manifesto for agile software development. 

    On February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch mountains of 

Utah, seventeen experienced and recognized software development “gurus”, inventors and 

practitioners of different agile software development methods (Kent Beck et al) met to find 

common ground. What emerged was the Agile Software Development Manifesto [10]. This 

manifesto states the main values for Agile Development. 

“We are uncovering better ways of developing software by doing it and helping others does 

it. Through this work we have come to value:  

 Individuals and interactions over processes and tools  

 Working software over comprehensive documentation  

 Customer collaboration over contract negotiation  

 Responding to change over following a plan  

That is, while there is value in the items on the right, we value the items on the left more.” 

[10]. 

2.2.3 Principles behind the agile manifesto 

    Usually Manifesto for Agile Software Development is mentioned together with 12 

principles behind it. We suppose that these principles are valuable source for testing NAPDiP 

concept as an agile software development process. As well following these principles helps 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  6 
 

the authors to make NAPDiP more individual oriented then its “non agile” counterparts. The 

authors do not question validity or sufficiency of these principles and accept them as it is.  

 

Principles behind the Agile Manifesto are [10]: 

1. Satisfy the customer: 

Our highest priority is to satisfy the customer through early and continuous 

delivery of valuable software. 

2. Welcome changing requirements: 

Welcome changing requirements, even late in development. Agile processes 

harness change for the customer's competitive advantage. 

3. Deliver working software frequently: 

Deliver working software frequently, from a couple of weeks to a couple of 

months, with a preference to the shorter timescale. 

4. Motivate individuals: 

Build projects around motivated individuals. Give them the environment and 

support they need, and trust them to get the job done. 

5. Interact frequently with stakeholders: 

Business people and developers must work together daily throughout the 

project. 

6. Communicate face to face: 

The most efficient and effective method of conveying information to and 

within a development team is face-to-face conversation. 

7. Measure by working software: 

Working software is the primary measure of progress. 

8. Maintain constant pace: 

Agile processes promote sustainable development. The sponsors, developers, 

and users should be able to maintain a constant pace indefinitely. 

9. Sustain technical excellence and good design: 

Continuous attention to technical excellence and good design enhances 

agility. 

10. Keep it simple: 

Simplicity, the art of maximizing the amount of work not done, is essential. 

11. Empower self-organizing teams: 

The best architectures, requirements, and designs emerge from self-

organizing teams. 

12. Reflect and adjust continuously: 

At regular intervals, the team reflects on how to become more effective, then 

tunes and adjusts its behavior accordingly. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  7 
 

2.2.4 Agile development processes 

    Overall, software development is a highly complex field with enormous quantity of 

variables involved in the system and all this systems are not perfect as imperfect humans are 

involved. They are heavily dependent on accuracy of the person who specifies the 

requirements, professional skills and previous experience of developer and a lot of other 

factors [12]. If we are going to build a house we can rely on physical laws. Software 

development has no laws or rules defined by its very nature. Another thing is when we build 

software we usually use other software systems, which are already developed and may 

contain their own bugs and (badly written) code artifacts. So, the conclusion is that a 

complicated piece of software cannot be built without changes appearing during its 

development (changes of the requirements or findings of the bugs in “building blocks” which 

prevent a developer from usage of the piece of software). It requires flexibility from the 

development process. “It is therefore fair to say that software development is more akin to 

new product research and development than it is to assembly-line style manufacturing. 

Software development is innovation, discovery, and artistry; each foray into a development 

project presents new and difficult challenges that cannot be overcome with one-size-fits-all, 

cookie cutter solutions.” [11]. 

 

    So, the next step after the waterfall model (which consist of consequent phases with strict 

order and predefined state in the end of each phase) [9] was an iterative development. With 

this approach the development lifecycle is cut up into increments (or iterations), and every 

iteration includes all stages of the traditional “waterfall” model. This solved problem of 

scope changing which are coming late in the process or development. This approach to 

software development allows for multiple “passes”, over a project lifecycle to properly 

address complexities and risk factors. 

    The common feature of the agile development processes is that they break tasks into 

small increments. As well agile methods usually do not include long-term planning. 

Increments (or iterations) in these processes are short (usually 1-4 weeks). Every increment 

includes planning, requirement analysis, design, coding and testing. Usually the whole team 

(including designers, managers, developers, and other roles) is available during a whole 

software development cycle until the moment when a working product is shown to the 

stakeholders or customers. This helps to adapt the software to the changes coming from the 

customer requirements faster and generally adds flexibility to the process. Iteration may not 

add enough functionality to provide a ready-to-shelf product, but at the end of each 

iteration the customer is supposed to be able to see the working piece of software with 

limited functionality. Obviously at the end of the last iteration customer supposed to get full 

version of the software.  

    Usually agile software development process assumes self-organization of the team 

without clear hierarchy (corporate hierarchy or corporate roles) during the development 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  8 
 

itself. In the agile concept there is no such thing as “task assigned to the developer”. Every 

developer selects tasks for himself from the project scope according to his own skills and 

estimations. Usually each team member decides individually how to fulfill the requirements 

stated by the feature he works with. 

    Usually agile methods assume face-to-face communication and comments made inside 

the code instead of written documents. Furthermore, it assumes that the whole team is 

situated in the same location (but unfortunately this is not possible in the international 

projects; just the part of the team situated in one city can exploit this feature). There is an 

opinion that phone call conversations and daily videoconferences can be used instead, but in 

practice the difference is significant [13]. 

    Typically agile teams are small enough to fit one office and to maintain effective 

communication, usually agile team includes 5-9 people. Larger development is considered as 

parted for several agile teams, which are working under centered coordination from 

common manager [13]. 

    The common thing for agile processes is a customer representative role in the team. He is 

appointed by the stakeholders to represent the needs and requirements of the stakeholder. 

He should be available to the team during the development process and should be able to 

answer the mid-iteration questions. At the end of every increment, the stakeholders review 

the progress [13]. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  9 
 

3 Purpose 
 

    There are many best practices and processes available for software development. Some of 

them are not suitable for agile software development and some of them don’t fit to 

distributed projects. Therefore, a set of best practices considered to be a necessity in a 

distributed project development running in agile way. “The new agile process for distributed 

projects” is such approach or a way of work with global outsourcing. This research was 

initiated by its authors and an IT service company in northern Europe. The process provides 

benefits to the domain knowledge spreading and proposes a good branching and release 

management. It also provides a set of best practices, helping to link design, test approaches 

and tools, which help to maintain software architecture. The process emphasizes time to 

market and product quality on an acceptable level. Besides this the approach gives the 

opportunity for evaluation and improvement.  

 

    The purpose of this report is to conduct an extensive research on NAPDiP, explore 

approaches according to agile development models and manifesto, identify the issues and 

challenges of distributed software development projects especially in communication 

because it is vital for success of a global project. Furthermore, researchers aim to finding 

solutions and additional useful practices, redefining of some proposed practices for 

improvement of NAPDiP and appropriate management of distributed software 

development. The final goal is to share the knowledge and apply the proposed modifications 

and practices to the process and used by globally distributed software development 

projects. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  10 
 

4 Research Approach 
 

   In this chapter we will provide to the reader clear and systemized information about 

methodology used and the reasons for selection of this methodology.  As well alternative 

approaches will be mentioned and supported by the reasons why they would not be used. 

 

   According to [14] there are three types of purpose of an academic study: exploratory, 

descriptive, or explanatory. 

 

   Exploratory studies are practical if you wish to clarify your understanding of a problem 

according to Saunders et al [15]. They state exploratory studies as a method of finding out 

“what is happening; to seek new insights; to ask questions and to access phenomena in a 

new light” 

 

   Descriptive studies suite best for description of a phenomenon such as a process or an 

event. As well, this way of research is appropriate in the case of the clearly defined problem, 

but a researcher mainly aims the process itself instead of focusing on connections between 

symptoms and causes. 

 

   Explanatory studies according to Saunders et al [15]; best fit if the researcher wants to 

explore dependencies and correlations between different sub processes and data in the 

research object. The main thing in this sort of study is to examine a given problem in order 

to explain dependencies between initial data and result.  

 

   This paper aims to combine these three approaches. The study is explanatory because we 

are going to find out dependencies between different aspects and practices of NAPDiP 

process. On the other hand it is descriptive as we are interested in studying the process 

itself, finding out new practices, and approaches for modifying the existing process. 

Furthermore, the research is an exploratory study by its nature as we are interested in 

understanding and clarifying what happens when NAPDiP is applied to the international 

project on the current stage. 

 

    According to another gradation, described for example by Bockmon [16] the research is 

mostly qualitative as the intention is not to measure something but to "study things in their 

natural setting, attempting to make sense of, or interpret, phenomena in terms of the 

meanings people bring to them". The only quantitative part of the research is trying to 

investigate and measure the success of software international project running in agile way. 

 

    Another thing, pointing to the qualitative methodology is that this paper does not include 

the questions like “How many hours should be spent for training NAPDiP users?” or “How 

many features should be implemented by a developer to maintain the healthy pace of 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  11 
 

work?” (for these questions quantitative methods have to be applied), our intention is to 

find the solutions of the problems like “What is the best way to convince developers that 

writing unit tests is great solution?”, “Which best practices can be applied to improve 

communication between people working in the different parts of the world with the same 

project?” etc. 

 

According to [17] there are three main methods of qualitative research. These are 

 Participant observation—where the researcher also occupies a role or part in the 

setting, in addition to observing. 

 

 In depth interviews— face to face conversation, to explore the issues or topics in 

detail. Any preset questions are not used, but is shaped by a defined set of topics. 

 

 Focus group— a method of group interview, group interaction is explicitly includes 

and uses to generate data. 

 

Greenhalgh and Taylor in their paper [18] add two more methods to the three mentioned 

above. 

 Documents—study of documentary accounts of events, such as meetings 

 

 Passive observation—systematic watching of behavior and talk in natural occurring 

settings and even more. 

 

 Diary methods - the researcher or subject keeps a personal account of daily events, 

feelings, discussions, interactions etc.  

 

 Role-play and simulation - Participants may be asked to play a role, or may be asked 

to observe role-play, after which they are asked to rate behavior, report feelings, and 

predict further events.  

 

 Case-study - This is an in-depth study of just one person, group or event. This 

technique is simply a description of individuals.  

 

    Unfortunately not all of them are appropriate. It is not possible for researchers to be a 

part of the process which they study if it requires from them to be the part of the team of an 

international project which uses NAPDiP process. As it requires appropriate software 

development and other special skills. So participant observation is not an acceptable method 

on this level of research. As well right now there is no currently running NAPDiP project and 

it causes inability to use passive observation. As the aim is to study the process – there is no 

interest in personal qualities of participant of the process and as a result there is no 

possibility to use diary methods. Also the goal of the research is not to study personal 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  12 
 

relations between developers, as well project is a very time consuming action, so role-play 

and simulation are not appropriate either. So, the main methods of research are documents 

studying and in depth interviews. Focus groups research will be avoided as it requires 

significant expanses to the company. 

 

    Literature reviews and studies are significant part of the research as well because 

improvements of the NAPDiP process can be based on already existing techniques and 

practices which are used in other processes. For example the experience collected by usage 

of XP or Scrum frameworks should not be underestimated. This experience would be applied 

for the research; aiming finding strong points of these frameworks applied to international 

project and adaptation of them to NAPDiP. 

 

    Another very important issue which makes significant influence to the research is the 

quantity of real projects running with NAPDiP. Their number is extremely limited and as a 

result issues appearing in multinational projects would be identified. Due to this, the 

research is based on either projects running with NAPDiP or projects running with Scrum, 

RUP and other processes. The interviews from multinational projects which use different 

processes are collected and analyzed. 

 

 

4.1 Interview 

 

    Interview is a widely used method for collecting qualitative research data because “it is 

perceived as ‘talking’ and talking is natural” *19]. This research is focused on interviewing of 

participants in different projects that run internationally. Main focus of the interviews is to 

get in depth understanding of the projects running in agile manner and to find out the issues 

or difficulties within the project and focus on finding suitable solutions for that. 

 

    Interview strategies are important for pulling out reliable, comparable and qualitative 

data. From different interview strategies the focus is on semi-structured, open-ended 

interview technique which is advantages of high validity by talking detail & depth and also 

complex questions & issues can be discussed or clarified. Semi-structured interview allows 

both researcher and interviewer to be prepared ahead of time and appear competent during 

the interview [20].  

 

    In this research project the aim is to interview different key personnel from different 

multinational projects. The researchers had the intention to interview the project managers, 

team leaders, developers and configuration managers for understanding and finding the 

issues or difficulties that arise during the project run time. The main focus of the interview 

questionnaires is about the development process and its implementation, as it is key 

component for this research project.  



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  13 
 

 

    Verification and validation of data received from the interviews are important for further 

analysis and finding the issues. Hitchcock and Hughes [19] suggest using triangulation and re-

interviewing for validation of interview data, where triangulation is comparing data from at 

least two sources. Triangulation can be done by comparing interview data with project data 

or interviewing same person again by asking some of same questions or interviewing other 

person with the same questionnaires. Re-interviewing has different strategies for validation 

of data and requires significant amount of time to follow the process. Sometimes it is not 

possible to interview the same person several times.  

 

    Interviewing is not just collecting the data. It aims to analyses of the gathered data and 

finding of tangible issues which arises during the process and its application to the project. 

The information is supposed to be analyzed by comparing with project descriptions and 

aims. Findings from the experienced personnel are supposed to help researchers to discover 

best solutions.  

 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  14 
 

5 “The new agile process for distributed projects (NAPDiP)”  
 

5.1 Overview 
 
    “The new agile process for distributed projects (NAPDiP)” is an approach to global delivery 

model in agile way. To fulfill the agile manifesto, NAPDiP has incorporated many of its best 

practices from different agile and iterative development processes such as ROPES, SCRUM, 

RUP, and XP [13], [30]-[35]. NAPDiP involves the customer in the entire process and deliver 

quick prototype for evaluation and an effective alternative way of monitoring progress. 

NAPDiP delivers adequate documentation for each implemented use cases and relevant test 

cases for those use cases. It preserves the framework and prevents the violation of 

architecture. NAPDiP uses spiral model which is used in the ROPES process but the concept is 

different. Its micro spirals concentrating on features next to be integrated and the project 

team together with the customer will decide what features to be integrated next. In NAPDiP 

the design, implementation and test phases are considered as iterative and the next micro 

spiral will not starts until the test phase has been finished and a stable runnable prototype is 

available. An evaluation of previous increment done at the end of each micro spiral that 

reduce the risks and ensure the process is working well.  

 

    According to the authors of “the new agile process for distributed projects”, the core 

ingredients of this process are:  

 NAPDiP is an agile approach to global delivery. 

 NAPDiP is model and test driven. 

 NAPDiP delivers daily runnable prototypes for the customer to download and try 

out. 

 NAPDiP delivers adequate documentation for each implemented use case. 

 NAPDiP delivers relevant test cases to each use case. 

 NAPDiP preserves the framework and prevents architectural violation. 

 NAPDiP continuously integrates new features on a stable base. 

 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  15 
 

Requirements 

From Customer

Customer Project 

Management 

Team

Feature 

Prioritization 

Micro Spiral 

Implementation

ANALYSIS

DESIGN

IMPLEMENTATION

TEST

ADVANCE

Initialization

Project Planning

Scheduling

Resource allocation

Concept

Dev. Stategies

 Prototype

(Increment)

Customer 

Evaluation

Code Review & 

Re-factoring

Process 

Improvement

2-3 weeks

Test Driven 

Development

 
Figure 1: “The new agile process for distributed projects” working framework 

5.2 Project responsibilities 
 
    Due to the large variations in sizes of the development teams the composition of the 

project roles can vary. The most common case is that the same person can represent several 

project roles. According to the authors of NAPDiP, it proclaims that one shall keep the 

number of roles to a minimum level. Unlike SCRUM, NAPDiP needs a specific role definition. 

The core idea of the approach is that each individual takes responsibility for a given activity. 

It also suggests that the responsible subject gives the project management team, time 

estimations for their assigned activities. Following set of roles involved in the process: 

  

 Project manager, this is the person responsible for monitoring the deliveries and to 

handle resources. The project manager shall also arrange feedback meetings with the 

stakeholders. As well this person is involved in the establishment of the time plan, 

being in communication with both the development team and the customer. 

 

 Architect is the person responsible for establishment of one or more architectural 

rules for software providing good performance, testability, scalability, maintainability 

and modularity. An architect shall also interact with the test & quality manager when 

it comes to questions concerning the testability. Moreover, the architects’ most 

important task is to form a strategy, which prevents the executive programmers to 

violate the architectural rules. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  16 
 

 The Test Designer role is responsible for defining the test approach, division of tasks 

related to testing and ensuring its successful implementation. The role involves 

identifying the appropriate methodologies, tools for implementation of the required 

tests [21].  

 

 The Feature Designer is person who is given the very specific task of conceptualizing 

and designing a component (or a group of components) for a system. Normally, this 

includes features, modes, or other parts of software. They normally report to the 

architect. 

 

 Test and Quality Manager incorporates a key role, with responsibility for the quality 

planning process and monitoring the implementation of the relevant quality 

standards. Another meaning of the position of test manager is this is the person who 

ensures the timely delivery of all testing activities and associated data in accordance 

with the prescribed quality standards. 

 

 Executive programmers are persons responsible for development of the software, 

code writing. As well their responsibility includes unit test writing and performing. 

 

 The Configuration Manager role is responsible for configuration of the system and 

environment to the product development team. The CM function supports the 

product development activity so that developers and testers have appropriate 

workspaces to build and their code. The configuration manager role also has to 

investigate and analyze product review, and change and defect tracking activities 

[22].  

 

 Delivery manager is the person responsible for insurance that the deliveries are 

stable and don’t contain any “show stoppers”. 

 

 Requirements Manager's role is to elicit, analyze, specify, and validate the 

requirements received from the customer. 

 

 Risk Manager is the person responsible for evaluation and minimization of the risks 

taken by the team during the development. 

 

 Stakeholder is an integral part of a project. He is the end-users or client, the person 

from whom requirements will be drawn, the person who will influence the design 

and, ultimately, the person who will reap the benefits of completed project. 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  17 
 

5.3 Project Initialization 
 
    During project initialization phase of “the new agile process for distributed projects” 

requirements from the customer/stakeholders are captured through the project manager 

who is an initial contact person for customers. At the very first initial project meeting several 

activities are conducted: project planning and scheduling, allocation of resources, 

development strategies including development plan, configuration management, and 

development of frame base. 

 

    In this initial phase of the project, stakeholders and the project management team 

prioritize the feature lists which are implemented in each micro spirals and integrated to the 

system. Project manager, software architect, test and quality manager, feature designer, 

configuration manager and executive programmers are involved in this phase. NAPDiP aims 

to offshore project information sharing and cross site education.  

 

    NAPDiP implements two or three features from the priority list in each micro spiral which 

is duration of 2-3 weeks. During this short micro spiral detailed analysis, design, 

implementation, test are done for each feature. Quick prototype of the implemented 

features is delivered for customer evaluation at the end of each micro spiral. 

 

5.4 The life cycle of “the new agile process for distributed projects (NAPDiP)” 
 
    According to the authors of “the new agile process for distributed projects”, this process 

uses a similar spiral model as ROPES [34] where each of iterations starts with an advance 

party. Unlike ROPES, NAPDiP doesn’t have the same concept of focus. It has a focus concept 

but differs from ROPES [34]. ROPES divide the process in several micro cycles where one or 

several micro cycles focus on one domain, for example “Focus on key concepts” or “Focus on 

Optimization”. However, NAPDiP has micro spirals focusing on features next to be 

integrated. The project management and developers together with the customer agree upon 

the features to be integrated next. 

 

Domain analysis is not the part of NAPDiP so this activity is not discussed in the report. 

 

5.4.1 Analysis phase 

 

    During the process each of iterations starts from analysis phase. This phase includes 

requirement analysis, architecture analysis and object analysis. 

 

    In the requirement analysis architect, delivery, configuration, quality and test managers 

are involved. Testing is very important to infrastructure during the software development. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  18 
 

To regulate the time plan of the development process managers need to have defined test 

plan. Others modify the formulations of requirements, specified by customer, transform 

“messy” customer wishes into the requirement document, understandable to the designers 

and the developers. For example customer states that administrator should be able to add 

the new user into the system quickly. During requirement analysis phase this should be 

reformulated to “an administrator should be able to add the new user into the system in 

three mouse clicks”. At the end of requirement analysis phase, update of the requirement 

analysis document is delivered. 

 

    The second part of the analysis is Architecture analysis. Obviously architects are involved. 

It can be hardware architect or chief software architect with test manager, according to the 

type of the project. During this period architect creates components and defines relations 

between them. In the end of this phase software architecture document is delivered.  

 

    The last part of the analysis phase is object analysis. Test managers and software 

architects are involved. Main objects are specified and their relations are stated, as well 

packages and namespaces are defined. The test plan is corrected according to the result of 

this phase. Architecture analysis document is updated according to the results of this phase. 

 

5.4.2 Design phase  

 

    After the analysis is completed the process goes to the next stage, design phase. It starts 

from architectural design part. The architect and feature designer collaborate here. Architect 

specifies requirements to the designer and the designer provides algorithms and practical 

solutions to the problems stated by the architect, here attributes of the projects and 

methods are specified. “The new agile process for distributed projects” encourages the 

usage of UML tools for modeling of the program structure, classes and interfaces are defined 

here. The result of this part is stated collaboration rules between different parts of the 

software and general structure of the program. The results are reflected in update of the 

architecture document. When the architecture design is completed it goes back to the 

architect for approval where “The ‘4+1’ view model of software architecture” is applied [23]. 

It follows this micro loop during the whole architectural design part.  

 

    Architectural design is followed by object design. In this part only the feature designer is 

involved. He generates the code, consisting of empty classes and interfaces on this stage 

according to results of the previous phases. The result of this part should be reflected in the 

software architecture document update. 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  19 
 

    Next part of Design phase is impact diagnostics. During this phase designer analyze how 

the newly introduced feature would interact with other parts of software, what impact it will 

make to the other components. 

 

    After Impact diagnostics process goes to test design. Test manager and feature designer 

are involved. Test plans are updated; primary tests are implemented during that phase. As 

well interfaces for test are delivered during this stage. 

 

 
Figure 2: “The new agile process for distributed projects” Process Spiral 

 

5.4.3 Implementation 

 

    The implementation phase provides concrete solutions to the features. Those were 

determined in analysis phase and designed using different modeling tools during the design 

phase. Here developers get the interfaces for their implementation; however they are not 

allowed to start the implementation before completion of the analysis and the design phase. 

It is very important to finish the test implementation and test cases before the unit 

implementation. During this phase designers and implementers are encouraged to work 

closely. It is preferable the same person plays the role both designer and implementer.  In 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  20 
 

NAPDiP every developer is encouraged to write tests before implementation. After unit 

implementation the unit testing and check in & marge activities are performed. The practice 

of test driven development is applied during the implementation phase. Mostly 

developers/programmers and designers are involved in this phase either offsite or onsite.  

 

5.4.4 Test 

 
     The test phase assures that the prototype is already designed and implemented correctly 

and no violation is made to the existing architecture.  This phase starts when all developers 

commit their parts of code into the repository. “The new agile process for distributed 

projects” encourages usage of different automated testing tools. It states that tests should 

be automated. Test results are evaluated and sent back to re-implementation if any tests 

fail. It follows a micro loop until the automated tests are passed. At the end of this phase 

prototype of implemented feature should be available for customer evaluation, which takes 

part on next advance phase. In NAPDiP design, implementation and test phases are 

considered as iterative and next phase (ADVANCE) would not start until test phase would be 

finished and a stable runnable prototype would be available. 

 

5.4.5 Advance 

 
    In the advance phase customer is invited for evaluation. There he gives feedback on 

existing features by downloading the prototype which was finished at the end of test phase. 

Discovered bugs and issues are added and corrected during the next iteration.  

 

    Code reviews are performed during this phase as well. At this stage of NAPDiP the 

architect evaluates the code and notifies the designer if it needs to be changed. As well he 

checks if the code violates the architecture, initiates the re-factoring procedure if it is 

needed.  

 

    During the re-factory part of advance phase last document updates should be done 

according to the changes made during development, tests and code review activities. The 

last part of the iteration is process improvement, where all members of the team are 

involved. They give their feedback and experience from iteration to take it into account 

during the next one. The bugs, issues in the code review and refactoring of this phase are 

transferred to the next increment.  

 

 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  21 
 

5.5 Best practices of “the new agile process for distributed projects (NAPDiP)” 
 

 Continuous Integration 

    According to this software development practice members of a team are obliged to 

integrate their pieces of code into repository. Usually every team member should commit 

something every day. Each committed piece of code is verified by an automated build 

(including test) on server. This procedure helps to detect integration errors as quickly as 

possible. It was proved by practical experience of many software development teams that 

this approach leads to reduction of integration problems and as a result the team is able to 

develop cohesive software more rapidly [24].  

 

 Configuration and Release Management 

    This practice assumes the presence of configuration manager and release manager roles. 

It allows the team (especially its management part) to deal with security features, 

assurances through control of changes made to hardware, software, firmware, 

documentation, test, test fixtures, and test documentation throughout the life cycle of an 

information system. It provides an opportunity to react on the flow changes faster. 

 

 Test Driven Design 

    This practice combines test-first development which assumes writing a test before writing 

just enough production code to fulfill that test and refactoring. In NAPDiP programmers are 

encourages to write test before implementation of code. It provides better structured code 

which is easy to test automatically [25], [26]. 

 

 Time to Market improvement 

    Applying this principle NAPDiP reaches high speed of development according to 

changeable market intensions. 

 

 Interface steering  

    According to this practice software designers should define formal and verifiable 

interfaces for the developers; they should include preconditions, post conditions and 

invariants for the methods. In NAPDiP case it allows on-site part of the team to get an 

assurance that the code, gained from offshore, will be properly structured and would be 

easily maintained [27]. 

 

 Prototyping 

    Prototyping provides the delivery of extremely limited and incomplete version of the 

software early in the development process. Prototype is a kind of a skeleton. It gives an 

opportunity for the customer to track the process easier [28]. 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  22 
 

 Self-Improvement, Waste Reduction  

    In the advance phase the flow of the project is evaluated. It allows the team to improve 

and customise the process according to their current needs. As well the team tracks all steps 

of development and uses its observations for waste reduction. 

 

 Re-factoring 

    Re-factoring is the activity which includes changing a source code without modifying its 

external functional behavior. The intention of this activity is to improve some of the non-

functional attributes of the software. As an outcome, team gets improved code readability 

and internal architecture which results in improved maintainability of the source code and 

extensibility. 

 

 Concurrent Activities 

    This way of work allows the team to analysis, design, write the code, test and improve the 

process in different phases at the same time. During each phase team members are 

occupied according their own responsibilities and it allows application of this practice. 

 

 Automation 

    Applying this practice NAPDiP teams use different modeling tools according to technical 

requirements specified during design phase. Following Test Driven Development, tests are 

also automated. In NAPDiP building prototypes is also automated after success of test in each 

cycle. 

 

 Multi-channel Communication 

     Multi-channel communication practice incorporates messages into different types of data 

representation delivered via two or more media channels, including print, e-mail, Web 

(personalized URLs or Web microsites), and text messaging. It can be documents, notes, 

phone talks, etc. The real value in multi-channel communications campaigns is the use of 

personalization for a more targeted, relevant, one-to-one approach that engages all team 

members in a dialogue. The usage of special software tools offers to the team to feel itself as 

a whole putting the team members closer to each other. 

 

 Proof of Excellence 

     This practice allows onsite staff to control the successes of offshore staff to ensure that a 

customer would get desired quality of the product. Usually it is taken the form of code and 

design reviews, done by onsite part of the team. This activity is usually performed at the end 

of every phase during the iteration and involves participation from both the offshore part of 

the team as well as from onsite part. 

 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  23 
 

 Incremental Design 

    In traditional software development the design phase is conducted in the beginning of the 

project, and as a rule it takes quite a long no-coding or little-coding time. At the end of the 

phase, the design is considered being fixed. However attempts to fix the design well in 

advance often lead to the wrong assumption and sub-optimal solutions. This practice allows 

the team to adjust the design according to on-going process of changing requirements [29]. 

 

 Model Driven Design 

     This software design approach applied to the development of software systems provides 

a set of guidelines for the structuring of specifications, which are expressed as models. 

Afterwards these models are used in engineering of software systems.  

 

 Use of Common Frameworks 

     Use of common architectural frameworks allows NAPDiP project teams to work in 

distributed environment with highest level of quality within limited time scope. It improves 

maintainability of the source code and the architecture.   

 

 Time Boxing 

     Time boxing is a widespread time management technique used in planning projects 

(typically for software development). According to this practice the schedule is divided into a 

number of separate time periods (time boxes, normally two to six weeks long), with each 

part having its own deliverables and deadlines [36].  

 

 Stakeholder involvement 

     Active stakeholder participation is driving force of agile development. In “the new agile 

process for distributed projects” customer is involved in planning activities and evaluation of 

prototypes during each of iteration. Teams are allowed to contact with stakeholders if 

required. Customers’ evaluations are analyzed during the advance phase, each of the 

iteration. This is one of the sources for the improvement in the next iteration.  

Table 1: List of best practices and their benefits 

Best Practice Benefit 

Continuous Integration Early identification of development problems, ease of progress 

tracking. 

Configuration and 

Release Management 

An opportunity to react on the flow changes faster. 

Test Driven Design Better structured code which is easy to test automatically. 

Time to Market 

improvement 

Speed up the development according to changeable market 

intensions. 

Interface steering Increase the quality of the code, code is more structured. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  24 
 

Prototyping Gives opportunity to the customer to track the process easier. 

Self-Improvement, Waste 

Reduction  

Allows the team to improve and customise the process according 

to their current needs. 

Re-factoring Improves maintainability of the source code and extensibility. 

Concurrent Activities Allows the team to write the code, test and improve the process at 

the same time. 

Automation Reduces time spent for testing. 

Multi-channel 

Communication 

Offers to the team to feel itself as a whole putting team members 

closer to each other. 

Proof of Excellence Allows onside stuff to control the successes of offshore stuff to 

ensure that a customer would get desired quality of the product. 

Incremental Design Allows the team to adjust the design according to on-going 

process of requirement changes. 

Use of Common 

Frameworks 

Improves maintainability of the source code and the architecture. 

Time Boxing Simplify the time management during the project. 

Stakeholder involvement Speed up the development process. 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  25 
 

6 Analysis and Discussion  
 

Implementation case study: 

    Software projects, which used “the new agile process for distributed projects”, are an 

important source of research. This process was applied in one software development 

project. The project was distributed between two countries, onsite part of the team was 

located in northern Europe and offshore part was located in south Asia. There were some 

identified challenges beside the technical issues, for example cultural differences and time 

zone differences.  

 

    NAPDiP was applied to development of a software application. This application was 

supposed being able to store retail parts, handle customers and systemize users. This 

application was considered as a user intensive system and therefore usability was one of the 

most important requirements. It was also desired being able to extend the system in a 

simple way. Therefore, two other quality requirements were added, modularity and 

scalability. Finally, to verify the quality and that the architectural rules were followed, the 

testability was considered as a very important quality attribute. The application 

requirements would also help the process strategy to fulfill its purpose by: 

 

 Using a global delivery where it is possible. 

 Guaranteeing that no architectural rules are broken and thereby have a product with 

good quality. 

 

    Project initialization started with a resource allocation, management team in northern 

Europe picked the adequate competence from the offshore. The selection process started 

with curriculum vitae (CV) reviews and thereafter an interview was conducted with the 

individuals of interest. This was considered as enough effort. The project plan was produced 

and a configuration management strategy was also settled and presented in the project 

plan. Infrastructure of the project is shown in the Figure 3. The project plan assigned the 

roles and responsibilities to each project participant. The roles were adapted as described 

earlier. Since the offshore site desired to take more responsibility for the design, the feature 

design team was located in offshore site. A plan for evaluation of the process was also 

scheduled at the second party/spiral. Another issue of importance concerned the way 

information should be shared, therefore a set of templates was defined. 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  26 
 

Onsite Team 

In Europe

Offshore 

Team in Asia

Compila
tio

n and Test

Feedback

B
u

g

Bug Assign

F
e

e
d

b
a

c
k

B
u

g
 A

s
s
ig

n

Bug Report

C
h

e
c
k
-o

u
t

D
e

liv
e

ry

Subversion

CruiseControl

Bugzilla

Delivery

 
Figure 3: An example of infrastructure of “the new agile process for distributed projects (NAPDiP)” 

 

    For information sharing several teleconferences were held at the beginning of the project. 

The Management team strived to give as much information of the process strategy as 

possible. They also wanted to put focus on the most important quality requirements. 

Another activity inspired by SCRUM was that the project should have meetings on a daily 

basis at top level positions. The daily meetings were supposed to give an opportunity to 

share issues, report progress, report the daily workload and give estimation on future time 

expectancy. A deep architectural investigation of frameworks was also initiated at the party 

stage. It was considered necessary to have a framework as a base for the service oriented 

purpose. The framework should also make it easier to deliver self-testing components and 

ease the maintainability, scalability and usability. The process encouraged that the 

“architectural rules” were supposed to be stated as early as possible to move the focus from 

architectural issues to test strategy, features and functions. This strategy could also help to 

ensure that no rules were broken in the final delivery.  

 

    In the first cycle of the project requirements were captured by interviews. The stakeholder 

with domain knowledge addressed the system and the interview team asked questions if 

anything was ambiguous. There was also a seminar held for user interface requirements 

where the customer explained the desired view of the system. These requirements were 

compiled and sent to the feature designers at offshore site. From a management perspective 

the response expected from the offshore site was supposed to be a detailed design and a 

suggestion for modifications to the framework. A response with a detailed design and 

suggestions from the feature design team was submitted to the architecture team, as it was 

expected. In the first feature requirement specification the connection between UI’s and 

data was omitted. This caused several misunderstandings and many mails were sent 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  27 
 

between the sites clarifying how data should be connected to the UI. The whole idea with 

interface steering had not been grasped at the offshore site. Changing an interface would 

have forced the executive programmers to re-implement the declared method in all the 

realizations of the interface. This fact was not noticed at the beginning of the design phase. 

The issues were solved and the architectural rules were clarified. The architecture team 

therefore approved the second design attempt.  

 

    The process required the test cases to be delivered with the design. This test driven 

approach ensures that the new features delivered can be tested properly and eases the 

ability to monitor the daily work. Review of the test cases would also reveal if any business 

logical or architectural principle had been broken. In the first design attempt the offshore 

site did not deliver any test cases. Since no tests were delivered, the test phase was omitted. 

Unfortunately, the code did not compile and the feedback system started to send out mails 

to all involved subjects. If no control were attached to the committed source code, a build 

would fail. In the strategy used by the process, error is addressed immediately. Programmers 

from the onsite and offshore team made the corrections and in a few hours the trunk was 

considered to be stable again. 

 

    After an analysis, several risks were identified during the first cycle. One of the risks was 

that the complexity of the framework would be hard to communicate and it would lead to a 

high time consumption. Another risk, which is very common, is the language barrier. 

Language issues could cause misunderstandings and consume more time than expected. 

Another anticipated risk with high probability was that the core ideas of the process could be 

poorly communicated.  

 

    In the second cycle, the quality manager reviewed the source code for the two features 

and feedback was sent to the offshore site. Corrections were made by the executive 

programmers and the stakeholders were invited to give feedback on a daily build. Due to a 

late modification of the build, the application crashed and the stakeholders were unable to 

perform the scenarios. This fact resulted in many reported bugs and a priority list for each 

bug. The stakeholder assigned a priority to each bug and a desired fix date. The problem 

could have been avoided if the delivery manager had picked a known stable and working 

release for feedbacks. In this case the stakeholders picked the latest available release, which 

wasn’t working. This was the result from a communication failure to the stakeholders. 

Another communication failure seemed to be that the offshore site did not deliver any test 

cases with their design. Language problems could from time to time occur as an issue due to 

bad connections during the morning meetings. It was then decided to e-mail their questions 

as a precaution to avoid confusion. Finally, it was determined to integrate a more complex 

feature for the next increment. 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  28 
 

    The second design phase ran smoother than the first design phase. Still there were some 

violations to the architectural rules, which were quickly corrected. The sequential flow was 

also logically wrong and would have caused future errors. This was corrected by the 

architecture team and after three reworks from the feature team the design was approved. 

The management team wanted to see if a sequence diagram would be enough to 

communicate the design solutions. Another incident happened during this phase as well; the 

chief architect approved a faulty design. This was later discovered and a correction had to 

been communicated to the feature designers in offshore site. During the design phase, the 

offshore team also worked hard to complement the first features with sufficient test cases. It 

turned out that the test approach was unclear to the feature design team and they had 

some troubles to deliver the test cases. After some clarifications they managed to deliver 

sufficient test cases, but no test cases were delivered for the new feature. The omitted test 

cases were most likely the result of communication failures and poor training concerning the 

test approach.  

 

    The entire project has consumed more time than initially calculated and the integration 

took two more days than expected. The principle to check in every day was not followed by 

the feature designers. This was devastating from a progress perspective, since it was 

impossible to determine the current state from day to day. The first delivery did not compile 

and was corrected by the part of the onsite team. Unfortunately the next customer feedback 

meeting had been scheduled and since the delivery was delayed a delivery assurance was 

not possible. Since the deliverance only existed in the three latest builds, the stakeholders 

downloaded the latest build and reviewed the result. 

 

    In the feedback party, architect team reviewed the code and found no violations to the 

architectural rules, but they discovered several errors in the user interfaces and the action 

commands. All errors were reported to the error handling system. There were too many 

errors for the programmers to correct in time for the feedback meeting, due to the short 

time frame. The management team decided to have a feedback meeting even though there 

were known errors. Feedback from the stakeholder was everything but positive. Several 

actions did not work and the screen layout was not as the stakeholder had expected. 

Further, the stakeholder was not able to use the features from the first increment. A time 

frame estimation to correct those errors and settled by the onsite team.    

    During our research, several practices, roles, additional stages were found that can 

improve global development process if they would be applied properly in “the new agile 

process for distributed projects”. In this section we will enumerate them and provide 

analysis of their addition into NAPDiP. 

    (6.1) According to [1] it is impossible to organize proper development process if 

developers from the beginning don’t know which code conventions to use, if the business 

domain is unknown area for them or if they didn’t get the deep insight into the architecture. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  29 
 

In this case an enormous amount of time will be spent by the team just for learning the 

architecture, requirements, etc. On the other hand, properly organized knowledge transfer 

will allow the team to learn more from and about distant members and it will remove 

significant amount of questions about initial requirements, architecture. Knowledge transfer 

conducted at the beginning of the project will allow off-site to gain knowledge about the 

product and business domain. In the case of the off-site personnel being involved in the 

further development of an existing product, knowledge transfer activities should also convey 

information on working and communication practices, as well as on how to use development 

and testing environments and frameworks. 

    The most important knowledge transfer activity should be conducted on the early phases 

of a global software engineering project, but it should be ongoing activity that prevents stuck 

from the beginning of development. on one hand, it might seem logical to do most if not all 

knowledge transfer right up front, but it is important to keep in mind that, for any even 

moderately complex product, it is unlikely that a short up-front training can convey all the 

necessary information to get new people up to speed. 

    According to [1] Initial knowledge transfer is preferably undertaken in co-located hands-on 

training sessions combining theoretical lecture-style teaching with a hands-on learning-by-

doing approach. Working hands-on, preferably on real but simple development tasks, is 

more motivating for the people learning the system than purely theoretical teaching would 

be. Doing knowledge transfer face-to-face, possibly involving parts of both the on-site and 

off-site teams, provides the project team with possibilities to socialize and engage in team 

building activities. Allowing the project members to build trust and personal relationships 

with each other will be very beneficial, as it will enable more active communication between 

the sites once team members are distributed.  

    So, we propose to include knowledge transfer activity at the end of a design phase for 

developers and at the end of an analysis phase for designers.  

    The most important is transfer the knowledge between every site. This should be done by 

having designers moved for a week or two to the onsite and study the business domain. 

After this activity they should be able to deliver this knowledge to all team members. 

    (6.2) The second point to mention is an easily traceable hierarchy. We propose to make a 

stroke on this practice because sometimes according to [1] remote developers can not 

define the person responsible for a certain part of the process or project. That leads to 

incompetent decisions and answers given by “wrong” persons. And as a result this causes 

delays in deliveries, broken architecture and other unwanted consequences. The situation 

when the hierarchy is obvious and every team member can easily find out the person to 

whom he can direct his question allows the project members to work more efficient. This is 

even more so in a distributed environment, as the transparency between sites is always 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  30 
 

limited. In order to efficiently plan the division of work and responsibilities, there should be 

a clear organizational structure that is clear for everyone involved in the project. This can be 

done, e.g. with the help of a project website, the use of social media, as well as by 

encouraging and supporting face-to-face meetings. Right now almost every more or less 

significant development activity has a set of document with the list of persons according to 

the features’ responsibilities, the developer can always find out who his manager is and who 

manager of his manager is, etc. As well code repository tools like SVN allow developers to 

keep track of code updates. However if the offshore developer intends to clarify the 

requirement or he wants to go for vacation he could not find the person responsible for 

these activities onsite with ease. And this modification was proposed to avoid the issues 

caused by nontransparent hierarchy. 

    Consider the situation: a developer has a question according to business domain; first 

person to ask would be designer. But it is common case designer is not an expert in business 

domain. Next the developer would ask the team leader, manager, etc. trying to find the 

expert. Traceable hierarchy would help to annihilate waste in form of involvement additional 

persons. 

    (6.3) During the interview on one of our case study projects developers mentioned that it 

was extremely useful to have a customer representative (or proxy customer, the person 

directly communicating with the customer, this person should be able (either he knows the 

answer or sanctioned to give his point of view as customer’s point) to answer the majority of 

questions appearing amongst developers) as a part of the team. At the same time this 

person was a kind of cultural liaison. So he acted as a link between two sites, leveling the 

cultural differences and breaking language barriers. As well he allowed separating customer 

from the development team as all communication between developers and customer was 

going through him. We will illustrate the usability of cultural liaison by the words from [1]:  

(“In one case project, an off-site team member was moved to the on-site team. This person 

had several contacts at the off-site location and knew most of the people there. Thus, 

whenever someone from off-site had a problem and did not know whom to contact at the 

on-site location, he would instead contact this liaison. The liaison was then able to work as a 

proxy between the sites as he knew most of the people from both sites. Another benefit of 

this liaison was that he was also able to work as a proxy in the distributed meetings between 

the two sites. The developers from offsite were usually unable to understand everything that 

was said in English and sometimes were even afraid of speaking in English. This cultural 

liaison was then able to work as an on-demand translator between the team members 

during the meetings.  

”I think that during training they found that it might be useful for the project if they had 

someone here [from off-site] who knows the situation there [at off-site]. So one of my tasks is 

also to serve as a proxy between [off-site] and [on-site].” 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  31 
 

– Cultural liaison 

The third benefit was that the work at the on-site was becoming more transparent to the 

off-site team. The liaison was able to communicate to the off-site the true feeling of how the 

project was progressing at the on-site.” *1+). 

    (6.4) During our interviews and according to [30] we found that keeping developers 

involved in tasks division is an extremely useful practice. This practice is commonly used in 

most of agile development processes in one or another form. First of all during this process 

developer would get the overview of the task before he will get this task. The second benefit 

is that developer would be able to influence on the time which will be allocated on the task 

and it would take in account his skills and knowledge. The leader would have the possibility 

to allocate the tasks according to the available resources (e.g. senior and junior developers) 

and that would result significant time reduction. The third thing to mention is increasing the 

skill level of developers. Consider the situation. Junior developer receives the task, but 

according to his lack of skills he was allocated some extra time that he would spend on 

learning of new technology or pattern required by the task. And the next time when he 

would receive something similar a smaller amount of time would be required. 

    For now this practice would not be included into the process as the authors of the process 

are satisfied with the effectiveness of the task allocating method used nowadays: 

“We do encourage learning among team members and spread the knowledge among several 

team members so we won’t be disrupted if someone should leave our team. There should 

never be a hero in the team that alone knows part of the design or implementation. We also 

distribute the responsibility of components to groups within the team so they will be 

“experts” dealing with issues concerning that particular component but there should never to 

one single person.” - Initiator of the NAPDiP. 

    (6.5) Another possible way to improve the process is adding the practice which would 

force the developers to communicate onsite part of the team directly, instead of 

communication via local team leader. It can take place due to lack of English knowledge or 

habit of solving all issues and asking all questions to the team leader. This adds additional 

link into communication chain and results increasing the number of misunderstandings 

between onsite and offshore parts of the team. In the same time direct communication 

either via e-mail or phone conference would give to the developer the ability to ask and ask 

once again until a clear answer is given for the question. As well it saves the time that the 

team leader spends to communicate with developer and to pass the word from developer to 

the person onside to whom this question was addressed. However, improper usage of this 

practice could cause inconveniences, mostly due to lack of common language. Problems 

caused by misunderstandings can be revealed later and a significant amount of time could 

be wasted. However on the other hand the easiest way to solve a problem is asking 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  32 
 

someone, sometimes offshore team (according our interviewees) uses the possibility of 

questioning the onsite team excessively. That lead to a waste of resources in form of time 

spent by onsite team answering unnecessary questions (e.g. onsite part of the team provides 

the information to offshore part of the team that offshore part can find itself).  

    (6.6) According to [13] and [1] distributed daily Scrum meetings are extremely useful 

practice for distributed projects. In these books lots of benefits of daily Scrums are 

mentioned. First of all they provide frequent possibilities to share information and 

coordinate work between distributed team members, at second daily meetings help to 

recognize possible problems on the early stages of development, at third they provide a 

possibility to create contacts between different sites of project teams, they encourage team 

members from different sites to communicate more actively, also facilitating off-line 

communication after the meetings. These meetings provide a perfect way for every member 

of the distributed team to get an overview of the project situation. It states: “our 

interviewees reported that it was easier to monitor the offshore situation than before.” [1]. 

Moreover, daily Scrums help to identify different development and testing issues quickly, 

since it provides with daily monitoring from every member of the team. If during the 

meeting any problems or needs for one-to-one discussion are encountered the interested 

team members should set up separate meetings after the daily Scrums and continue 

discussions in smaller groups or one-to-one either by video-, or teleconference, chat or 

email. It states: “In all our case projects, daily Scrum meetings encouraged team members to 

communicate more also outside the meetings, which was seen as one of the greatest 

benefits of these meetings.” [1]. 

 

    However daily Scrums issue several challenges for the “not used to this practice” teams. 

The biggest challenge for international teams is the same as for co-located teams. This 

challenge is to understand what the correct amount of information to report in a Daily 

Scrum meeting is. Obviously it is hard to define even in a co-located project, but in a 

distributed project it is even more difficult. From the beginning of using this practice the 

team members do not know what the others find interesting or important. And usually the 

team needs to practice this with the help of their Scrum master, or in NAPDiP case team 

leader, who plays the role of scrum master in NAPDiP. According to [1], it stated “In one of 

our case projects, the daily Scrum meetings initially lasted only a few minutes, before the 

team members learned to discuss actively and in particular to be open about their 

impediments. The Scrum masters started to encourage everybody to talk and share more 

about their tasks and impediments. Thus, the teams ended up having 15-minute meetings 

that were found very useful by all the participants.” The second challenge is cultural 

differences, because they may have a big impact on what people find appropriate to report 

in a daily Scrum meeting. According to [1] there are huge cultural differences in revealing 

impediments and discussing them in daily Scrum meetings. It stated that  “For example, in 

Scandinavian cultures talking about impediments is much more natural than in Asian 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  33 
 

cultures. Moreover, when team members come from different companies, they are more 

likely to hide problems, in particular in the beginning of a project.” Also there is a large 

difference between projects that had distributed daily meetings and projects with co-located 

daily meetings. According to Guide [1] most of the participants of the distributed meetings 

mentioned the benefits: increased transparency to the other site, getting a good overview of 

what was happening in the project and well-functioning and open communication across the 

sites. However, the participants of the site-specific, non-distributed meetings talked about 

problems: they did not have enough communication and contacts with the other site, nor 

did they know enough what was happening at the other site. So, applying to our case, the 

developers should have daily meetings with designer of their module to give him the 

possibility to correct his estimations, reallocate resources, keep track of progress, as well 

someone from onsite part of the team have to be involved, he would give vectors for 

development, explain expectations from the offshore part and will keep track of the 

progress.   

 

In [1] next Daily Scrum tips are proposed:   

“Provide a good infrastructure for daily Scrums. Meetings should be easy to set up and 

provide as rich communication facilities as possible: virtual reality systems or 

videoconferencing are the best. If unavailable, a good quality voice connection will do, 

perhaps augmented with web cameras. Use text-only meetings only as a last resort. Avoid 

asynchronous ‘meetings’”. 

 

- Work actively with the team by practicing and discussing, to find the optimum type and 

amount of information to report in the daily Scrum meetings. 

- Create an open atmosphere that makes it easy to raise problems and issues without fear.  

- Encourage discussions in small groups or one-on-one after the daily Scrum meetings and 

arrange a technologically good infrastructure for these distributed discussions.” 

 

 

 

 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  34 
 

7 Result: Modifications  
 
    This section presents the summary of the findings and suggestions from section 6 (Analysis 

and Discussion) and describes “the new agile process for distributed projects”, modified 

according to suggested improvements, best practices and future proposals in different 

stages.  

 

7.1 Best Practices 
 
Knowledge Transfer:  according to the section 6.1, it is extremely important activity which 

should be conducted at the early stages of the project. Considering the framework of 

NAPDiP the knowledge transfer activity should be conducted as initial activity at the project 

initialization phase and to be ongoing activity during the whole iteration. The most 

significant stages of it should be conducted at the end of analysis phase for designers and at 

the end of design phase for developers and testers.  

 

Traceable Hierarchy: as a result of analysis presented in section 6.2, this practice allows 

project team members to contact with right person for desired information. It causes 

reduction of misunderstandings and other undesired consequences and as a result improves 

transparency between the sites. It can be achieved by usage of appropriate tools, like project 

website, communication/social media, etc. To follow the design by contract practice more 

precisely and efficiently this practice is introduced. 

 

Team based task division: keeping developers involved into the task division activity is an 

extremely useful practice which is commonly used in agile processes. Every member of the 

team knows more about his own skills than team leader and as a result can estimate the 

time he would spend for the task more precise. It supposed to annihilate waste in the form 

of selection of wrong persons for inappropriate tasks. For now this practice is not supposed 

to be included in the process according to the authors of the process. According to this 

research different approaches of task allocation should be tested in future projects, which 

would help to find the effective way of task allocation.  

 

Direct Communication:  according to the section 6.5 this practice empowers offshore 

developers to communicate with onsite part of the project team directly, instead of 

communication via local team leader. This practice is supposed to minimize the quantity of 

misunderstandings between the sites and build up the team as a whole. This activity should 

be conducted during the entire process especially design, implementation and test phases. 

The research revealed the risk connected with application of this practice: sometimes 

offshore site uses this possibility extremely extensively, causing extra expenses to the 

customer.   



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  35 
 

 

Daily Meetings: according to the section 6.6 it is proposed to implement the daily meetings 

(like: daily scrum meeting) between distributed sites/teams as well as in each site/team. This 

should encourage team members from different sites to communicate more intensive. It 

supposed to improve the efficiency of each team and give possibility to developers to correct 

their estimation, to managers to reallocate resources and keep track of the progress by the 

whole team. 

 

7.2 Additional Roles 
 
Proxy Customer (Customer Representative): it is widespread role in agile development 

processes. This is a person maintaining the direct communication with customer and acting 

as the customer regarding to the development team. He should be able to answer the 

majority questions appearing among developers according to business domain, 

requirements, etc. According to section 6.3 it is proposed to introduce this additional role 

and involve it in the entire spiral. It is especially valuable during design and implementation 

phases. Either project manager or architect can be proxy customer at the same time. 

 

Cultural liaison: cultural differences are one of the key challenges of globally distributed 

projects. Considering the section 6.3 it is proposed to introduce the role of cultural liaison in 

the process. This person is supposed to act as a link between two sites leveling cultural 

differences and breaking language barriers. Anyone from the project team can carry out this 

responsibility in the development process, but this person has to be familiar with traditions 

of both countries and to have large experience of working in international teams. 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  36 
 

Requirements 

From Customer

Customer Project 

Management 

Team

Feature 

Prioritization 

Micro Spiral 

Implementation

ANALYSIS

DESIGN

IMPLEMENTATION

TEST

ADVANCE

Initialization

Project Planning

Scheduling

Resource allocation

Concept

Dev. Stategies

 Prototype

(Increment)

Customer 

Evaluation

Code Review & 

Re-factoring

Process 

Improvement

2-3 weeks

Transfer of 
Knowledge

Task Allocation
Daily Meeting 

Proxy Customer 
Cultural liaison

Transfer of Knowledge
Traceable Hierarchy
Direct Communication

Best practices Additional roles  
Figure 4: Suggested improvement and practices in different phases of “the new agile process for distributed 

projects”. 

 
Table 2: List of suggested best practices and their benefits 

Best Practice Benefit 

Knowledge transfer Allows the project members to build trust and personal 
relationships. 

Traceable Hierarchy Helps to annihilate waste in form of involvement 
additional persons. 

Team based task division The leader has the possibility to allocate the tasks 
according to the available resources. 

Direct Communication Lowers quantity of misunderstandings between sites. 

Daily Meetings Increased transparency to the other site, getting a good 
overview of what was happening in the project and 
well-functioning and open communication across the 
sites. 

 
 

Table 3: List of suggested additional roles and their benefits 

Role Benefit 

Cultural liaison Levels cultural differences and breaks language barriers. 

Proxy customer Gives to the team precise view of customer needs. 

 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  37 
 

8 Conclusion 

    The goal of this research was to systemize and describe the existing stage of “the new 

agile process for distributed projects” and propose suggestions for its modification. The first 

objective of the research was to systemize the practices, phases and other attributes of the 

process and to describe NAPDiP as precisely as possible. Based on the interviews with 

initiator of this NAPDiP process, presentation and project documentation of the process was 

described. The second objective of the study was to identify issues causing negative effect 

on the process. Comparison with other software development processes and analysis of the 

project experience revealed several leaks and weak points of the process. The third objective 

was actual improvement of the process. According to the detected weak points several 

improvements were proposed. They took different forms such as extra roles on the process, 

additional practices or activities which were not performed (or performed on insufficient 

level before). 

     As it was mentioned above the research resulted introduction of several best practices 

and additional roles. It was found that knowledge transfer as initial and ongoing activity 

speeds up the development process. Traceable hierarchy practice helps to avoid 

involvement of indifferent team members in communication within interested party.  As well 

it assists to reduction of misunderstanding and to improvement of transparency between 

the sites. Direct communication empowers the developers to contact with onsite team for 

any unclear requirements without wasting time. Daily meetings encourage the developers to 

communicate actively with others and keep track of the progress.  

 

    It was found that additional roles like proxy customer, (person acting as the customer for 

the development team) and cultural liaison (person performing the link between two sites 

leveling the cultural differences and language barriers) would bring benefits to the process. 

The proposed practices and additional roles are suggested based on key findings in the 

process description and the implemented project documentation. Ideas and approaches are 

based on the agile principles and the agile manifesto [10] and taking into account the issues 

of distributed global software development.   



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  38 
 

9 Future Improvements 

    As “the new agile process for distributed projects” is a very new software development 

process, it is hard to collect appropriate amount of statistical information according to 

proper application of the practices integrated in this process. So, the first thing that can be 

done to improve it in the near future is to use of this process in running software projects 

and gathering data about application of every practice. The attention should be focused on 

gathering the information not only from onsite or offshore, but from both, as this process 

aims to satisfy all the participants of the development.  

     As well it is very important to measure the benefits, brought by one or another activity 

quantitatively and compare the outcome with invested resources. For example, consider the 

knowledge transfer activity. It is obvious, if the whole offshore development team would be 

moved onsite to take part in knowledge transfer activity it would be more efficient than in 

the case when only designers will visit onsite part. But every person transferred from one 

country to another for one or two weeks requires significant investment of resources. 

However, future research can aim to find the dependency of knowledge transfer quality 

from transferred people quantity and find the optimal measure for resource investment in 

this activity. 

    As issues of communication create considerable (or even major) amount of problems 

appearing in global software development, strong impact during future improvement should 

be done to find out appropriate communicating tools. As well tools for tracking of 

development process (for example tool, which enables the developer to check the hierarchy) 

should be found out.  

    As it was mentioned above authors of “the new agile process for distributed projects”, are 

satisfied with the way of task division within the team (tasks are allocated by designer or 

team leader according to his estimations). However, there are other different methods for 

these purposes (for example Scrum poker). Right now there is not enough statistical 

information about success of one or another task division method, so in the future 

appropriate information and statistics could be collected and analyzed. That could result a 

modification of existing method. 

     Addressing to the point 6.5 of analysis and discussion part of this report, the issue of 

excessive or insufficient communication can be identified. As a result the questions such as 

“How to define appropriate amount of communication between two sites?” and “How to 

distinguish the questions that should and should not be addressed from offshore part of the 

team to onsite part of the team?” may arise. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  39 
 

10    References 
 
[1] Maria Paasivaara, Nico Hiort af Ornäs, Peitsa Hynninen, Casper Lassenius, Tuomas 

Niinimäki, Arttu Piri; “PRACTICAL GUIDE TO MANAGING DISTRIBUTED SOFTWARE 

DEVELOPMENT PROJECTS”; Helsinki University of Technology Software Business and 

Engineering Institute Technical Reports C12 Espoo 2010. 
 

[2] Robert Martignoni; "Global sourcing of software development – a review of tools and 

services"; 2009 Fourth IEEE International Conference on Global Software Engineering. 
 

[3] Ita Richardson, Miriam O’Riordan, Valentine Casey, Bridget Meehan ,Ivan Mistrík, 

"Knowledge Management in the Global Software Engineering Environment", 2009 Fourth 

IEEE International Conference on Global Software Engineering. 
 

[4] Juyun Cho, "GLOBALIZATION AND GLOBAL SOFTWARE DEVELOPMENT", Issues in 

Information Systems, Volume VIII, No. 2, 2007, Page 287-90. 
 

[5] Pär J. Ågerfalk, Brian Fitzgerald, Helena Holmström Olsson and Eoin Ó Conchúir, "Benefits 

of Global Software Development: The Known and Unknown", Q. Wang, D. Pfahl, and D.M. 

Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 1 – 9, 2008. 
 

[6] Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones, 1st 

edn. Prentice-Hall, Upper Saddle River (1999). 
 

[7] Erran Carmel, Ritu Agarwal, "Tactical Approaches for Alleviating Distance in Global 

Software Development", IEEE SOFTWARE March/April 2001, Page 22-29. 
 

[8] James D. Herbsleb and Deependra Moitra, " Global Software Development", IEEE 

SOFTWARE March/April 2001, Page 16-20. 
 

[9] The Blending of Traditional and Agile Project Management By Kathleen B. Hass, PMP, 

Project Management Practice Leader, Management Concepts Exclusively for Project 

Management World Today. 
 

[10] Agile Manifesto, http://www.agilemanifesto.org , last accessed: 2010-03-21. 
 

*11+ Ken Schwaber, Mike Beedle, “Agile Software Development with Scrum”, Prentice Hall, 

2001. 
 

*12+ Jay Lundell, Mark Notess “Human factors in software development: models, techniques, 

and outcomes”, Proceedings of the SIGCHI conference on Human factors in computing 

systems: Reaching through technology, New Orleans, Louisiana, United States, Pages: 145 – 

151, year of Publication: 1991  
 

[13] Kniberg, Henrik, "Scrum and XP from the Trenches", 2007. 
 

[14] Yin, R.K. (2003), Case study research – design and methods,Third edn.; Thousand Oaks, 

California: Sage Publication. 

http://www.agilemanifesto.org/


Master’s Thesis: Improvement of “the new agile process for distributed projects”.  40 
 

[15] Sounders, M. Lewis P. & Thornhill A. (2000), Research Methods for Business 

students,Second edn.; Essex; Pearson Education Limited. 
 

[16] Bockmon, D.F., & Rieman, D.J. (1987); Qualitative versus quantitative research; Holistic 

Practice. 
 

[17] Mack N., Woodsong C., Macqueen  K., Guest G., Namey E. (2005), Qualitative Research 

Methods: A Data Collector’s Field Guide (Family Health International, Research Triangle Park, 

North Carolina, USA. 
 

[18] Greenhalgh T., Taylor R. (2006), How to read a paper: Papers that go beyond numbers 

(qualitative research) (Unit for Evidence-Based Practice and Policy, Department of Primary 

Care and Population Sciences, University College London Medical School/Royal Free Hospital 

School of Medicine, Whittington Hospital, London. 
 

[19] Dale T. Griffee, Research Tips: Interview Data Collection, Journal of Developmental 

Education, Volume 28, Number 3, spring 2005. 
 

[20] http://www.qualres.org/HomeSemi-3629.html 
 

[21] Cem Kaner, James Bach, and Bret Pettichord 2001. Lessons Learned in Software Testing. 

John Wiley & Sons, Inc. 
 

[22] Brian White and Geoff Glemm 2000. Software Configuration Management Strategies 

and Rational ClearCase: A Practical Introduction. Addison-Wesley Longman. 
 

[23] Philippe Kruchten; Architectural Blueprints—The “4+1” View Model of Software 

Architecture; Rational Software Corp;Paper published in IEEE Software 12 (6) November 

1995, pp. 42-50. 
 

[24] Ade Miller, "A Hundred Days of Continuous Integration," agile, pp.289-293, Agile 2008. 
 

[25] http://www.agiledata.org/essays/tdd.html#PartingThoughts   
 

[26] Kent Beck; Test Driven Development: By Example  
 

[27] Meyer, Bertrand: Applying "Design by Contract", in Computer (IEEE), 25, 10, October 

1992, pages 40-51   
 

[28] Smith MF Software Prototyping: Adoption, Practice and Management. McGraw-Hill, 

London (1991). 
 

[29] http://agilesoftwaredevelopment.com/xp/practices  
 

[30] Kent Beck, Addison Wesley; Extreme Programming Explained: Embrace Change; 2000.  
 

[31] http://www.extremeprogramming.org/ 
 

[32] http://www.scrum.org 
 

[33] Scrum: Developed and sustained by Ken Schwaber and Jeff Sutherland;scrum.org; 
February 2010. 

http://www.qualres.org/HomeSemi-3629.html
http://www.agiledata.org/essays/tdd.html#PartingThoughts
http://agilesoftwaredevelopment.com/xp/practices
http://www.extremeprogramming.org/
http://www.scrum.org/


Master’s Thesis: Improvement of “the new agile process for distributed projects”.  41 
 

[34] Bruce Powel Douglass;ROPES:Rapid Object-Oriented Process for Embedded Systems;I-
Logix Inc;adapted from Doing Hard Time:Developing Real-Time Systems using UML, Objects, 
Frameworks, and Patterns Reading, MA: Addison-Wesley, 1999. 
 

[35] Rational Unified Process:Best Practices for Software Development Teams; Rational 
Software White Paper TP026B, Rev 11/01. 
 

[36] Eduardo Miranda; Combining Critical Chain Planning and Incremental Development in 
Software Projects; originally published as a part of 2004 PMI Global Congress Proceedings – 
Europe. 



Master’s Thesis: Improvement of “the new agile process for distributed projects”.  42 
 

11    Appendixes 
 

    According to the policies of the Northern European Company where this master thesis was 

performed, authors are not allowed to attach internal documents as appendixes. 

 


	Master of Science Thesis in the Programme Software Engineering and Technology
	Mir mohammad samsul arefin
	DENIS KORZUN

	Mir mohammad samsul arefin
	DENIS KORZUN
	© Mir mohammad samsul arefin, September 2010.
	© DENIS KORZUN, September 2010.
	Abstract
	Over the last decades more and more software development companies transfer at least a part of their development process to the so-called offshore countries. To increase the productivity of these projects “the new agile process for distributed project...
	Acknowledgement
	List of Figures
	List of Tables
	1 Introduction
	2  Theoretical Background
	2.1 Global Sourcing

	2.2 Agile Development
	2.2.1 The Emerging of agile development processes
	2.2.2 Manifesto for agile software development.
	2.2.3 Principles behind the agile manifesto

	2.2.4 Agile development processes
	3  Purpose
	4  Research Approach
	4.1 Interview
	5  “The new agile process for distributed projects (NAPDiP)”
	5.1 Overview

	5.2 Project responsibilities
	5.3 Project Initialization
	5.4 The life cycle of “the new agile process for distributed projects (NAPDiP)”
	5.4.1 Analysis phase

	5.4.2 Design phase
	5.4.3 Implementation
	5.4.4 Test
	5.4.5 Advance
	5.5 Best practices of “the new agile process for distributed projects (NAPDiP)”
	6  Analysis and Discussion
	7  Result: Modifications
	7.1 Best Practices

	7.2 Additional Roles
	8  Conclusion
	9  Future Improvements
	10     References
	11     Appendixes

