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Abstract

Recently, substantial attention has been paid to increase the achievable rates of wireless networks using different

kinds of limited channel quality information feedback. Hybrid automatic repeat request (ARQ) and quantized channel

state information (CSI) feedback are two well-known approaches applied by experts to provide the limited channel

quality information at the transmitter. Considering quasi-static fading channels, this paper aims to provide some

comparisons between the performance of these methods from different points of view. The paper first investigates

the power- and outage-limited performance of hybrid ARQ and quantized CSI schemes under short- and long-term

power constraints. Then, 1) the feedback signaling load, 2) robustness and 3) the complexity of these schemes are

compared under short-term transmission power constraint. Both INcremental Redundancy (INR) and Repetition Time

Diversity (RTD) approaches are considered for hybrid ARQ feedback. Finally, approximate low-complexity solutions

are presented for power allocation in the INR ARQ-based scheme under long-term transmission power constraint.

Analytical and numerical results demonstrate the equivalency or the superiority of these approaches in different

circumstances.

I. INTRODUCTION
A. Backgrounds and motivation

Adaptive resource allocation techniques are useful tools to increase the transmission efficiency and

reliability of wireless networks [1]–[6]. The main idea behind these schemes is to adapt some transmission

parameters, such as the transmitter rate and power, based on the channel quality. Therefore, it is essential to

have good estimates of the channel gain/SNR at both end-points of the communication link. Motivated by

the separate transmission of a training sequence [7], the channel state estimation at the receiver is relatively

simple and incurs negligible loss in the transmission rate, particularly when the channel experiences slow

variations. On the other hand, due to the signaling load caused by reporting the channel information,

assuming perfect channel knowledge at the transmitter is an overly optimistic assumption, which does not
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match with reality. This is the main motivation for the present limited channel quality information feedback

systems such as UMTS/WCDMA1 [8], WiMAX2 [9] and this paper as well.

There are two different approaches, namely, quantized channel state information (CSI) feedback [10]–

[13] and automatic repeat request (ARQ) [14]–[21], providing imperfect channel status information at the

transmitter. In a general quantized CSI feedback scheme, the transmitter is provided with some imperfect

channel quality information obtained by channel gain quantization at the receiver. This rough information

is exploited by the transmitter to select the codewords power and rate such that the system performance is

optimized. Throughput, average rate and outage probability are some yardsticks that might be considered

as optimization criterion.

ARQ, on the other hand, is a well-known approach applied in today’s networks to increase the transmis-

sion reliability in the absence of transmitter CSI. In a general ARQ approach, the transmitter considers some

initial transmission rate and power with no pre-knowledge about the channel quality. Then, with the help of

ARQ, the decoding status at the receiver will be reported back to the transmitter via one bit feedback. The

feedback indicates successful decoding of the received signal by an acknowledgement (ACK) bit and failed

decoding by a negative acknowledgement (NACK) bit. Based on the received feedback, it is decided by

the transmitter whether to retransmit the data or to move on to the next codeword. There are a number of

ARQ protocols, such as Repetition Time Diversity (RTD) and INcremental Redundancy (INR) [14]–[16],

mainly differing in the retransmission and message decoding procedures.

In many applications, ARQ is used in a passive manner where it is treated only as a binary message-

decoding indicator. That is, the ARQ information is not fully exploited by the transmitter, as different

system modules such as channel coding and modulation work as there is no ARQ feedback. However,

as shown by, e.g., [14]–[16], [22] and this paper, the ARQ can be utilized in an active manner helping

the transmitter to optimize the transmission parameters. In this way, roughly speaking, the CSI and ARQ

feedback schemes can be considered as techniques increasing the system throughput by high (low)-rate

transmission in high (low) channel quality conditions.

Along with the average rate which characterizes the long-term limits of transmission efficiency, outage

1Universal Mobile Telecommunication System/Wideband Code Division Multiple Access.

2Worldwide Interoperability for Microwave Access.
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probability, defined as the probability of the event that the transmitted data is not decodable by the receiver

[23]–[25], is another quality-of-service parameter that demonstrates the reliability of a communication

network [19], [23]–[31]. While one of the main motivations of ARQ feedback is to minimize the outage

probability [19], [25], [26], recent studies have emphasized the positive effect of quantized CSI feedback

in reduction of this metric as well [2], [27]–[31]. Therefore, it is interesting to consider the outage as an

additional constraint in the rate optimization problem.

B. Related works

With respect to other related works, the present study mainly roots from the following papers. Following

[10], Liu et al., [32] first found the average rate of quasi-static fading channels in the presence of noise-

free quantized channel signal-to-noise-ratio (SNR) information at the transmitter and perfect knowledge

at the receiver. In their work, in order to have error-free data transmission, the channel SNR is assumed

to be constant, equal to its worst case3 within each quantization interval4. Later, Kim and Skoglund [33]

showed that the worst case is, in fact, the best value which can be considered in each quantization region,

maximizing the total achievable rate. Further, considering noisy feedback channels, Ekbatani et al., [13],

[34] studied the effect of feedback channel noise on the average rate of the quasi-static fading channel.

Implementing noise-free ARQ feedback, on the other hand, [14] and [15] demonstrated the effect of

power allocation on the performance of different ARQ protocols. These works were later extended by Shen

et al., [16] where they showed that5: for any given fading distribution, the maximum average rate of a

quasi-static channel in the presence of M bits INR ARQ feedback is equal to the one obtained with CSI

feedback quantizing the fading distribution into N regions if 1) the feedback channel is noise-free, 2) short-

term power allocation is considered and 3) M + 1 = N . Finally, considering different power allocation

strategies, we extended the results of [16] to the case where both CSI and INR ARQ are simultaneously

available for channel quality information feedback [22].

3Consequently, we denote it ”the worst case approach.”

4In fact, considering a limited number of quantization regions, there will always be a positive outage probability, as the channel may fall in

deep fading conditions [33].

5 [16] has proved the statement for 2N CSI-based quantization regions while the extension to any number of quantization regions is

straightforward.
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C. Contributions

The aim of this paper is to present some comparisons between the two well-known hybrid ARQ

and quantized CSI feedback approaches providing partial channel quality information at the transmitter.

Comparisons are done in different aspects; Section III of the paper focuses on the case where, while the

feedback channel noise is negligible, there is an outage limitation on the forward channel data transmission.

In this case, we first demonstrate the general average rate maximization problem in the presence of hybrid

INR ARQ feedback. Then, we study the problem in more details under two different short- and long-term

power constraints. Finally, the same is done for the quantized CSI feedback approach which is followed by

some discussions about the equivalency of these methods. To be more clear, considering different feedback

schemes, we focus on the following optimization problem

max R̄

subject to P̄ ≤ P & π̄ ≤ πoutage

in which the average rate R̄
.
= E(R(g)) is defined as the expectation on R(g), i.e., the successful

transmission rate when the channel state is g, e.g., [35]. Moreover, P̄ is the average transmission power

limited to some value P and π̄ represents the outage probability constrained to be less than πoutage.6

Furthermore, we present an approximate low-complexity solution for optimal power allocation in the INR

ARQ-based data transmission scheme under long-term transmission power constraint.

The second part of the paper studies the feedback load7 of the quantized CSI and INR ARQ schemes under

different circumstances (Section IV). The results show the superiority of the quantized CSI approach which,

for a given feedback signaling load, leads to higher (or equal) forward channel rates. Then, considering

one bit feedback, Section V studies the robustness of these schemes in noisy feedback channel conditions.

Finally, all results are restudied for the case where RTD approach is implemented for hybrid ARQ feedback

and some discussions on the implementation costs and complexities of the considered schemes are presented

(Section VI).

6With perfect CSI at the receiver, on which we focus, the receiver knows whether the transmitted data in each block is decodable or in

outage. Therefore, the codewords are either supported error-free or lost. That is, while the unreliable packets are disregarded by the receiver,

there will be no transmission errors from this perspective. Consequently, the outage probability constraint considered in this paper is not the

symbol (or bit) error probability but can be interpreted as a quality-of-service requirement guaranteeing successful data transmission in a

percentage of the time slots. This scenario is normally studied under the topic of receiver-aware outage constraint, e.g., [23], [25], [36].

7Here, feedback load is defined as the average number of bits considered for imperfect channel quality information feedback.
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In summary, the paper proves the following analytical points:

• The worst case condition: Implementing noise-free quantized CSI feedback, the maximum outage-

limited average rate of the channel is obtained when the channel gain is considered to be its lowest

value in each quantization interval except the first one (Lemma 1).

• Equivalency: Under noise-free feedback channel assumption and for any outage probability constraint,

the optimal outage-limited average rate of the channel with 1) M bits INR ARQ feedback and 2) CSI

feedback quantizing the fading distribution into N regions are the same if short-term power allocation

is implemented and M + 1 = N (Theorem 1).

• Extreme outage conditions: Under short-term power constraint, the channel average rate with N CSI-

based quantization regions (or N−1 INR ARQ feedback bits) and an extremely hard outage probability

constraint tends to the same average rate as the case with N − 1 CSI-based quantization regions (or

N − 2 INR ARQ feedback bits) and no outage probability constraint (Corollary 1).

• Feedback load: Whether outage-limited or not, the same average rate is achieved with less quantized

CSI feedback load in comparison to the considered ARQ schemes if 1) the feedback is error-free and

2) a short-term power constraint is considered (Theorem 2).

• Robustness: For any feedback channel bit error probability, 1 bit INR ARQ feedback leads to the same

average rate as 1 bit quantized CSI feedback if short-term power allocation is considered (Theorem

3).

• Complexity: With the same packeting complexity, quantized CSI approach outperforms the considered

hybrid ARQ schemes. Also, INR ARQ wins in competition with RTD in all considered aspects,

although it leads to higher implementation complexities (Theorem 4).

II. CHANNEL MODEL

As illustrated in Fig.1, we consider a scalar quasi-static fading channel in which the power-limited

input message X , E|X|2 ≤ P , multiplied by the random variable h is summed with an independent and

identically distributed (iid) complex Gaussian noise Z ∼ CN (0, N0) resulting in the output

Y = hX + Z. (1)
Let us define g = |h|2 as the channel gain random variable. The channel gain remains constant for a

duration, generally determined by the channel coherence time, and then changes independently according to

the fading probability density function (pdf) fG(g). This period, normally called fading block, is supposed
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to be much larger than the length of the codewords containing K nats information8. Further, with no loss

of generality, we consider N0 = 1.

It is assumed that there is perfect instantaneous knowledge about the channel gain at the receiver, which

is an acceptable assumption under quasi-static condition [16], [33]. Also, as in most previous related

papers [14]–[16], [22], [33], [34], the partial channel quality information is assumed to be delivered at the

transmitter delay-free. Again, this is an acceptable assumption under long fading block conditions. Finally,

we focus on infinite backlogged systems where there is an infinite amount of information to be transmitted

and so the communication is continuous [37]. In this way, multiple packets, each one having, e.g., several

ARQ rounds, are sent within one coherent period. When the channel is good, many packets can be sent

within the coherent period, while only few can be transmitted within the same period for bad channels.

Therefore, each fading state has the same number of channel uses, and the empirical channel distribution

matches the true one. Consequently, as discussed in [16, Section IV], we can consider the channel average

rate as a valid performance yardstick. Further, as each transmission experiences an AWGN channel, all

results are restricted to Gaussian input distributions. This is a good model of stationary or slow-moving

users such as Wireless Local Area Networks (WLANs) [38]. Particularly, since long-block-length capacity-

approaching codes can be implemented in such systems, the results can provide realistic insight about the

performance bounds of the considered schemes.

Ultimate system performances: Considering different levels of channel quality information available at

the transmitter, the average rate of such a channel has been studied in many reports; having full knowledge,

it is well accepted, e.g., [16], [33], that the maximum achievable rate can be calculated by9

RFull =

∫ ∞

0

fG(g) log(1 + gP (g))dg (2)

where P (g) is the optimal power allocation function maximizing the average rate based on the power

constraint. On the other hand, with no information about the channel gain realization g, a fixed value g∗

is selected and data transmission is done at rate r∗No = log(1 + g∗P ). The data is successfully decoded if

8All results are presented in natural logarithm basis. Also, in all simulations results the average rate is presented in nats-per-channel-use

(npcu).

9In an AWGN channel with constant gain g and input power P , the maximum rate is obtained by log(1 + gP ) [16], [33].
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g ≥ g∗ = er∗No−1
P

. Consequently, the expected rate is obtained by

RNo = r∗No Pr{g ≥
er∗No − 1

P
} = r∗No

(

1 − FG(
er∗No − 1

P
)
)

(3)

in which FG(.) is the gain cumulative distribution function (cdf). Setting ∂RNo
∂r∗No

= 0 yields a necessary

condition for a r∗No to be optimal in the sense of average rate10.

III. OUTAGE-LIMITED CHANNEL AVERAGE RATE

In this section, we address the rate optimization problem under a noise-free feedback channel assumption

when there is an outage limitation on data transmission. The results are obtained for both INR ARQ and

CSI feedback approaches under different power allocation constraints.

A. INR ARQ feedback

As one of the best hybrid ARQ feedback schemes, reaching the highest average rates [16], we mainly

focus on the INcremental Redundancy (INR) ARQ protocol where, at each retransmission round, the

transmitter sends new redundancy bits and the receiver combines them. In this way, considering M + 1

maximum allowable ARQ rounds, i.e., maximum M bits ARQ feedback, K information nats is encoded

into a codeword of length T (M+1). Then, the codeword is punctured into M +1 sub-codewords with powers

Pm and strictly decreasing rates

Rm =
K

∑m

k=1 Tk

, m = 1, . . . , M + 1. (4)

Here, Tm and Rm are the channel uses and the equivalent transmission rate in the m-th time slot, respectively.

Moreover, T (m) =
∑m

k=1 Tk denotes the total number of channel uses at the end of the m-th slot.

At the end of each (re)transmission, 1 bit ARQ feedback is sent back which informs the transmitter

about the message decoding status. (Re)transmission continues a maximum of M + 1 times, in practice

determined by the system delay requirements, where finally the data is transmitted at rate RM+1 = K

T (M+1)

with no ARQ feedback. Outage occurs if the channel instantaneous gain can not support RM+1.

Let us define Sm as the event that the transmitted data is correctly decoded by the receiver at the m-th

slot. This event happens if and only if the previous (re)transmissions have been unsuccessful and reducing

the rate to Rm the receiver can decode the message. Therefore, the average rate and the outage probability

can be calculated by

R̄INR =

M+1
∑

m=1

Rm Pr{S̄1, . . . , S̄m−1, Sm} (5)

10In order to study more about this rate optimization problem, the readers are referred to [33], where the Karush-Kuhn-Tucker condition is

derived.
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and

π̄INR = Pr{S̄1, . . . , S̄M+1}, (6)

respectively, where S̄m is defined as the complement of the event Sm and S0 = ∅. Implementing random

coding and typical set-based decoding, the results of [23], [39, chapter 15] can be used where Pr{Sm} is

simplified to the Time Division Multiple Access (TDMA)-type equation11

Pr{Sm} = Pr

{ m
∑

k=1

Tk
∑m

j=1 Tj

log(1 + gPk) ≥ Rm

}

. (7)

Note that, based on (4), we have
Tk

∑m

j=1 Tj

= Rm(
1

Rk

−
1

Rk−1
) (8)

and so Pr{Sm} is found as a function of Rk’s.

The optimal transmission powers Pk, maximizing the outage- and power-limited average rate, are deter-

mined based on the power constraint; with unequal power allocation, the actual average power up to the

end of different ARQ rounds is a discrete random variable given by12

P (g) = P (m) if S̄1, . . . , S̄m−1, Sm, P (m) =

∑m

k=1 PkTk
∑m

k=1 Tk

= Rm

m
∑

k=1

Pk(
1

Rk

−
1

Rk−1
) (9)

where P (m) is the average power up to end of the m-th slot. Therefore, the average transmission power is

obtained by

P̄ INR =
M+1
∑

m=1

P (m) Pr{S̄1, . . . , S̄m−1, Sm} + P (M+1) Pr{S̄1, . . . , S̄M+1}. (10)

In this perspective, considering P̄ INR ≤ P and π̄INR ≤ πoutage as the transmission power and the outage

probability constraints, respectively, the general power- and outage-limited rate optimization problem can

be stated as
R̄INR

max = max
{Pk , Rk, k=1,...,M+1}

R̄INR

subject to P̄ INR ≤ P & π̄INR ≤ πoutage

(11)

which is a complex non-convex optimization problem even in its simplest cases [16], [33]. In the following,

we solve (11) under two different interpretations of the power constraint.

11As mentioned in Section II, the results are obtained under the assumption that the fading value g is constant over all ARQ (re)transmissions.

12Note that the transmission rates and powers are fixed after optimization.
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1) Short-term power constraint: Due to, e.g., hardware or complexity limitations, there are cases where,

independently of the feedback index, the power allocated can not exceed a maximum value P [16], [22],

[33], [34]. In this case, as the transmission rate of AWGN channels is an increasing function of the SNR

[40], [41], the optimal powers maximizing the average rate are obtained by Pk = P, ∀ k = 1, . . . , M + 1,

normally denoted short-term power allocation. Therefore, based on (4) and (5), the achievable rate is a

random variable given by

R(g) =







Rm+1 if {Rm+1 ≤ log(1 + gP ) < Rm}, m = 0, . . . , M

0 if RM+1 > log(1 + gP )
(12)

where R0
.
= ∞. Consequently, the average rate is found as

R̄INR =

M
∑

m=0

Rm+1

(

FG(um) − FG(um+1)
)

, um
.
=

eRm − 1

P
(13)

and the outage probability is simplified to

π̄INR = FG(uM+1). (14)
Inserting (13) and (14) in (11), the rate optimization problem can be solved numerically (Fig. 3 and 7).

Note that, in contrast to the transmission power, the channel average rate is not a monotonic function of

the outage probability. Consequently, its constraint can not be considered as an equality and so, although

implementable, gradient-based algorithms are not efficient in this case. In order to tackle this problem, we

propose an iterative algorithm illustrated in Algorithm 1.

The proposed algorithm has been shown to be efficient in complex non-convex optimization problems

dealing with local minima issues, although, depending on the number of optimization parameters, may be

slow in convergence [42]. Finally, note that, with proper modifications, the proposed algorithm can be used

for other optimization problems as well.

2) Long-term power constraint: Equation (13) provides the channel average rate under the assumption

that the transmit power is constant during the entire M + 1 transmissions. Intuitively, using optimal power

allocation among the (re)transmissions the transmission efficiency can be improved. In this case, (11) should

be solved in its most general case which, as mentioned before, leads to a complex optimization problem.

In the following, we first study the simplest case of (11) where, using 1 bit ARQ feedback, the effect of

power allocation on the average rate of the channel is investigated both analytically and numerically. Later,

we present an approximate solution for optimal power allocation under low SNR regime and with arbitrary

number of INR-based retransmissions.

November 4, 2011 DRAFT



10

Considering (7)-(10) and M = 1 bit INR ARQ feedback, the average transmission power, i.e., (10), can

be rewritten as
P̄ INR = P1 Pr{S1} +

P1T1 + P2T2

T1 + T2
(1 − Pr{S1})

(a)
= P1 Pr{S1} +

P1R2 + P2(R1 − R2)

R1

(1 − Pr{S1}) (15)

in which (a) is based on (4) and, from (7), Pr{S1} is determined by P{S1} = 1 − FG( eR1−1
P1

). Moreover,

using (4), (5) and (7), the average rate of the channel can be calculated as

R̄INR = R1 Pr{log(1 + gP1) ≥ R1} + R2 Pr

{

log(1 + gP1) < R1 &
T1

T1 + T2

log(1 + gP1)

+
T2

T1 + T2
log(1 + gP2) ≥ R2

}

= R1(1 − FG(
eR1 − 1

P1
)) + R2(FG(

eR1 − 1

P1
) − FG(χ)),

χ
.
= arg

g

{y(g) = R2}, y(g) =
R2

R1
log(1 + gP1) +

R1 − R2

R1
log(1 + gP2). (16)

Note that, as R1 ≥ R2, it is easy to show that y(0) ≤ R2 ≤ y( eR1−1
P1

) and y(g) is a monotonic function of g.

Hence, χ is unique for any given R1, R2, P1, P2. Also, the outage probability is obtained as π̄INR = FG(χ).

In this way, the rate optimization problem (11) is changed into

R̄INR
max = max

{P1,P2, R1, R2}
R1(1 − FG( eR1−1

P1
)) + R2(FG( eR1−1

P1
) − FG(χ))

subject to P1 Pr{S1} + P1R2+P2(R1−R2)
R1

(1 − Pr{S1}) ≤ P & FG(χ) ≤ πoutage

(17)

which, with proper modifications in algorithm 1, can be solved numerically (See Fig. 4).

Finally, in order to reduce the problem complexity, we propose an approximate solution for (11); In

general, it is difficult to find the probabilities Pr{Sm}, particularly for large M . However, by using (4) and

log(1 + x) ≈ x under low SNR assumption, (7) can be approximated by

Pr{Sm} ≈ Pr{g
m

∑

k=1

TkPk
∑m

j=1 Tj

≥ Rm}
(b)
= 1 − FG(zm), zm =

Rm

P (m)
(18)

where (b) is based on (9). Consequently, the rate optimization problem (11) is simplified to

R̄INR
max = max

{Pm,Rm,m=1,...,M+1}

∑M+1
m=1 Rm(FG(zm−1) − FG(zm)), z0 = ∞

subject to
∑M+1

m=1 P (m)(FG(zm−1) − FG(zm)) + P (M+1)FG(zM+1) ≤ P, FG(zM+1) ≤ πoutage

(19)

which is much less complex, in comparison to (11). Note that implementing log(1 + x) ≈ log(x) the

optimal transmission powers can be obtained at high SNRs. However, as the effect of optimal power

allocation diminishes at high input powers, see e.g., [14]–[16], [33], [34], we do not discuss it any further.

November 4, 2011 DRAFT



11

B. Quantized CSI feedback

Considering CSI feedback quantizing the fading pdf into N regions, an encoding function

C(g) = ci, g ∈ Gi = [gi−1, gi), i = 1, . . . , N, g0 = 0, gN = ∞ (20)

is implemented by the receiver and the symbol ci is sent back to the transmitter [32]–[34]. Getting ci, due

to the quasi-static fading assumption, the channel gain is assumed to be some fixed value g∗
i ∈ [gi−1, gi)

and the data is transmitted at rate r∗i = log(1 + g∗
i Qi) where Qi is the power allocated to the i-th input

distribution. If the instantaneous gain realization supports the rate, i.e., g ≥ g∗
i = er∗i −1

Qi
, the transmitted data

is successfully decoded, otherwise outage occurs. Therefore, for a given quantization output ci, the outage

probability πi and the expected rate are

πi = Pr{outage|C(g) = ci} =
1

pi

[

FG(
er∗i − 1

Qi

) − FG(gi−1)

]

(21)

and

r̄i =
1

pi

[

FG(gi) − FG(
er∗i − 1

Qi

)

]

r∗i , (22)

respectively. Here, pi =
∫ gi

gi−1
fG(g)dg is the probability of the gain belonging to the i-th region, i.e., Gi.

Therefore, the channel average rate is determined as

R̄CSI =
N

∑

i=1

pir̄i =
N

∑

i=1

[

FG(gi) − FG(
er∗i − 1

Qi

)

]

r∗i (23)

and the outage probability would be

π̄CSI =
N

∑

i=1

piπi =
N

∑

i=1

[

FG(
er∗i − 1

Qi

) − FG(gi−1)

]

. (24)

Finally, the average transmission power is simply found as P̄ CSI =
∑N

i=1 piQi.

In order to maximize the average rate with an outage probability and an average transmission power

constraint, i.e., solving
max R̄CSI

subject to P̄ CSI ≤ P &π̄CSI ≤ πoutage

, (25)

we use the Lagrangian criterion

RCSI
max = max

α,gi,g
∗

i ,Qi,i=1,...,N
φ(α, g1, . . . , gN , g∗

1, . . . , g
∗
N , Q1, . . . , QN)

φ(α, g1, . . . , gN , g∗
1, . . . , g

∗
N , Q1, . . . , QN) =

∑N

i=1 [FG(gi) − FG( er∗i −1
Qi

)]r∗i

+λ
∑N

i=1 piQi + ρα

∑N

i=1 [FG( er∗i −1
Qi

) − FG(gi−1)],

(26)
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where λ and ρα are the Lagrange multiplier coefficients determined based on the constraints P̄ CSI = P

and π̄CSI = α ≤ πoutage. Kim and Skoglund [33] have previously shown that with no outage probability

constraint the maximum average rate is obtained by considering the channel gain to be equal to its worst

case within each region, i.e., g∗
i = gi−1, i > 1. The following lemma extends this result to the case when

the data transmission is constrained to have limited outage probability.

Lemma 1: (The worst case condition) Under noise-free feedback channel assumption, the optimal outage-

and power-limited average rate of the channel with CSI feedback quantizing the fading distribution into N

regions is obtained by the worst case approach.

Proof: Taking the derivative of φ, in (26), with respect to gi ∈ [g∗
i , g

∗
i+1], i ≥ 1 leads to

∂φ

∂gi

= fG(gi) {r
∗
i + λ(Qi − Qi+1) − ρα} (27)

whose sign does not depend on gi. Hence, for any value of α, the average rate is found as a monotonic

function of gi and its maximum is obtained by either gi = g∗
i or gi = g∗

i+1. However, selecting gi = g∗
i

will eliminate the i-th rate term of (23) and thereby increase the outage probability, which is obviously

suboptimal. Therefore, it is concluded that for any given outage probability constraint, i.e., ρα, the optimal

average rate is obtained by g∗
i = gi−1, i > 1.

In this way, the channel average rate can be rewritten as

R̄CSI =
N

∑

i=2

pi log(1 + gi−1Qi) + (FG(g1) − FG(g∗
1)) log(1 + g∗

1Q1) (28)

and the outage probability constraint is simplified to FG(g∗
1) = α ≤ πoutage. Moreover, setting ∂φ

∂Qi
= 0, the

optimal transmission powers, in terms of (25), are obtained by the water-filling [23], [33] equations

Qi =







⌈

FG(g1)−FG(g∗1)

−λp1
− 1

g∗1

⌉+

, i = 1
⌈

−1
λ
− 1

gi−1

⌉+

, i > 1
(29)

where dxe+ .
= max(0, x). Also, the parameters g∗

1 and gi are optimized by appropriate modifications in

algorithm 1. (For simulation results, see Fig.5 and 7). Finally, the following theorem demonstrates the

equivalency of the INR ARQ and the quantized CSI feedback schemes under outage-limited conditions.

Theorem 1: (Equivalency) Under a noise-free feedback channel assumption and for any outage probability

constraint π̄ ≤ πoutage, the same outage-limited average rate is obtained by M bits INR ARQ feedback

and CSI feedback quantizing the fading distribution into N regions if 1) short-term power allocation is

implemented and 2) M + 1 = N.
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Proof: Using (13) and (14), the fixed-power outage-limited average rate optimization problem of the

channel with M bits INR ARQ feedback, i.e., (11), is rephrased as

R̄ARQ
max = max

α,Rm, ∀m
(
∑M+1

m=1 Rm Pr{Rm ≤ log(1 + gP ) < Rm−1})

subject to FG( e
RM+1−1

P
) = α < πoutage

(30)

in which R0
.
= ∞. On the other hand, considering CSI feedback with N quantization regions, short-term

power constraint and Lemma 1, (25) and (28) can be used to show that the optimal outage-limited average

rate of the channel is found by

R̄CSI
max = max

α,βm,∀m
(
∑N

m=1 βm Pr{ eβm−1
P

≤ g < eβm+1−1
P

})

subject to FG( eβ1−1
P

)=α < πoutage

βm =



















log(1 + g∗
1P ) m = 1

log(1 + gm−1P ) m = 2, . . . , N

∞ m = N + 1

. (31)

Comparing (30) and (31) under M + 1 = N condition, the equivalency of the two methods is obvious. In

this case, we have Rm = βM+2−m, m = 0, . . . , M + 1. Finally, note that, removing the outage probability

constraint, i.e., πoutage = 1, the theorem is simplified to [16, Lemma 3].

Corollary 1: Let R̄N (πoutage) be the maximum short-term power-limited average rate of the channel with

N quantization regions (or equivalently, with N − 1 INR ARQ feedback bits) under an outage probability

constraint π̄ ≤ πoutage. Then, lim
πoutage→0

R̄N(πoutage) = R̄N−1(1). In words, the average rate for the case when

the outage probability tends to 0 is equal to the average rate with no outage constraint, with one less region

in the quantizer (one less ARQ retransmission round).

Proof: Letting πoutage → 0, the outage probability constraint FG(g∗
1) ≤ πoutage implies g∗

1 → 0. Therefore,

based on (28) under short-term power constraint Qn = P , we have

lim
πoutage→0

R̄N (πoutage) = max
g1,...,gN

{
N

∑

n=2

(FG(gn) − FG(gn−1)) log(1 + gn−1P )}. (32)

However, (32) is the same as the outage-unlimited average rate maximization problem

R̄N−1(1) = max
_
g 1,...,

_
g N−1,

_
g
∗

1

{
N−1
∑

n=2

(FG(
_
gn) − FG(

_
gn−1)) log(1 +

_
gn−1P ) + (FG(

_
g1) − FG(

_
g
∗

1)) log(1 +
_
g
∗

1P )}

in which the optimization parameters are renamed as _
g
∗

1 = g1,
_
gn = gn+1, n ≥ 1.

This corollary simply means that under extremely hard outage probability constraints (almost) no data

is transmitted when the channel is in deep fading conditions. Therefore, the average rate is obtained by
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summation of the n ≥ 2 regions expected transmission rates which, based on Lemma 1, are always decodable

at the receiver. Considering the INR ARQ approach, on the other hand, the arguments indicate that under

hard outage probability constraints the transmission rates are selected such that in the last retransmission

round the equivalent transmission rate is extremely low, and the data is decoded with probability of (almost)

1. Finally, this result is further investigated through Fig.7, as stated in the following.

IV. FEEDBACK LOAD

Along with the system complexity and commercial issues, one of the most important aspects that affects

the system performance is the feedback load caused by reporting the channel quality information [1], [3]–

[6]. In general, considering this issue as one of the optimization constraints will lead to a totally different

rate maximization problem where it will change the feedback coding, particularly under a noisy feedback

assumption. However, the following theorem shows that, under a noise-free feedback channel assumption

and for uniform power allocation, the same average rate is obtained with less (or equal) CSI feedback load

in comparison to INR ARQ13.

Theorem 2: (Feedback load) Whether outage-limited or not, the same average rate is achieved with less

(or equal) noise-free quantized CSI feedback load in comparison to INR ARQ.

Proof: Utilizing maximum M bits INR ARQ feedback, the feedback load is obtained by

l̄INR =
M

∑

m=1

m Pr{S̄1, . . . , S̄m−1, Sm} + M Pr{S̄1, . . . , S̄m−1, S̄M} (33)

which, using (7) under short-term power constraint, can be written as

l̄INR =
∑M

m=1 m Pr{Rm ≤ log(1 + gP ) < Rm−1} + M Pr{0 ≤ log(1 + gP ) < RM}

=
∑M+1

m=1 lINR
m Pr{µm ≤ g < µm−1}

lINR
m =







m, m = 1, ..., M

M, m = M + 1
, µm =



















∞ m = 0

eRm−1
P

m = 1...M

0 m = M + 1

. (34)

Here, considering FG( e
RM+1−1

P
) = α < πoutage as the outage probability constraint, the optimal values of

µm’s are obtained by (30). Using the CSI-based quantization boundaries 0 = g0 < g1 < g2... < gN = ∞,

on the other hand, the feedback load of the transmission system can be formulated as

13It is worth noting that the arguments of the paper are valid only for the considered channel quality feedback schemes and conclusions are

not necessarily valid for other quantized CSI or hybrid ARQ approaches.
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l̄CSI =

N
∑

m=1

lCSI
m Pr{gm−1 ≤ g < gm} (35)

in which lCSI
m is the length of the codeword used for encoding the m-th quantization region symbol, i.e.,

cm in (20). The optimal quantization boundaries are determined based on (31). However, considering

M + 1 = N and the optimal values of µm’s and gm’s, Theorem 1 implies µm = gM+1−m, m = 0, ..., M +1

and RM+1 = β1 = log(1 + g∗
1P ). That is, using optimal ARQ or CSI feedback, the sets of points {µm}

and {gm} partition the fading distribution into the same nonoverlapping regions and the probability terms

of both (34) and (35) can be replaced by the set of {pi|i = 1...N, pi =
∫ gi

gi−1
fG(g)dg}. In this way, the

statement
l̄CSI =

N
∑

m=1

lCSI
m pm ≤

N
∑

m=1

lINR
m pM+2−m = l̄INR (36)

becomes obvious where, while the code lengths lINR
m are fixed and not necessarily optimal, we can use

optimal coding techniques, e.g., Huffman coding [43], to find the optimal lengths lCSI
m . These code lengths,

that are determined based on the probabilities pi, i = 1...N , lead to minimum feedback load while the

forward channel average rate is kept the same as with M bits INR ARQ feedback. Note that, although the

values of RM+1 and g∗
1 do not directly appear in (34) and (35), respectively, they will change the other

boundaries based on the outage probability constraint. However, as stated in Theorem 1, the modifications

are the same keeping the probability terms of (34) and (35) equivalent. Finally, since the case with no

outage probability constraint is an special case of the general outage-limited problem, the proof is valid in

that case as well.
V. ROBUSTNESS

In practice, the feedback signals reach the transmitter through a communication link experiencing different

levels of noise and feedback channel fading. Hence, it is probable to receive erroneous signals at the

transmitter which, if not handled suitably, can degrade the system performance severely and make it

even worse than an open-loop system. Therefore, it is interesting to study the channel performance under

noisy feedback conditions. However, as using multi-bits feedback the forward channel performance of the

quantized CSI-based scheme in noisy conditions is highly dependent on the feedback coding and detection

[13], [34], we focus on the case of 1 bit feedback which requires no specific feedback coding. The solution

to this case can give valuable insights in other cases as well.

Here, it is assumed that the transmitter is unaware of the presence of feedback channel noise and,

consequently, it trusts the received feedback signals. Therefore, the transmission rates are selected such
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that Theorem 1 holds. That is, introducing the noise in the feedback channel, we are interested in studying

the robustness of ARQ and CSI feedback approaches in working at realistic conditions. Under such a

condition, Theorem 3 shows the equivalency of the quantized CSI and INR ARQ feedback under short-

term power constraint.

Theorem 3: (Robustness) For any feedback channel bit error probability, 1 bit INR ARQ feedback leads

to the same average rate as 1 bit quantized CSI feedback if short-term power allocation is considered.

Proof: Let pe be the feedback channel bit error probability. As illustrated in Fig.2a, implementing

1 bit quantized CSI feedback the fading pdf is divided into two regions and the transmission rates are

selected based on the worst case condition (Lemma 1). In this way, provided that the transmitter decodes the

quantized CSI feedback as c1 (or c2), the data is transmitted at rate r∗1 = log(1+g∗
1P ) (or r∗2 = log(1+g1P ))

which is received if g > g∗
1 (or g > g1). Therefore, the average rate is found as

R̄CSI = r∗1 Pr{g ≥ g∗
1|c1 is decoded at transmitter} + r∗2 Pr{g ≥ g1|c2 is decoded at transmitter}

= r∗1{(FG(g1) − FG(g∗
1))(1 − pe) + (1 − FG(g1))pe} + r∗2(1 − FG(g1))(1 − pe). (37)

Now, consider Fig.2b. Utilizing 1 bit INR ARQ, two cases can happen if the gain instantaneous realization

satisfies g ≥ eR1−1
P

; in the cases where the ARQ feedback is correctly decoded at the transmitter, K nats

information is successfully transmitted via T1 channel uses and the transmission rate would be R1 = K
T1

.

On the other hand, if the ARQ feedback is wrongly decoded, while still K nats information is received by

the receiver, T2 channel uses are wasted for sending more parity bits and so the transmission rate reduces to

R2 = K
T1+T2

. Therefore, the average transmission rate obtained in this case would be R̄INR|
g≥ eR1−1

P

= R1(1−

pe)+R2pe. Further, given that the gain instantaneous realization is within the region g ∈ [ eR2−1
P

, eR1−1
P

), the

data is successfully decoded if and only if the ARQ feedback bit is correctly received by the transmitter.

Consequently, the expected transmission rate in this case is R̄INR|
g∈[ eR2−1

P
, eR1−1

P
)
= K

T1+T2
(1−pe) = R2(1−pe)

and the channel average rate is obtained as

R̄INR = (R1(1 − pe) + R2pe)(1 − FG(
eR1 − 1

P
)) + R2(1 − pe)(FG(

eR1 − 1

P
) − FG(

eR2 − 1

P
)). (38)

Now, based on the fact that, with no knowledge about the feedback channel noise, the transmission rates

are optimized such that R2 = r∗1 and R1 = r∗2 (Theorem 1), one can use (37) and (38) to show that

R̄INR = R̄CSI.
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This is an interesting conclusion particularly when we remind that in many applications 1 bit CSI feedback

has been shown to be enough to reach (almost) peak performance of the data transmission system [3], [4],

[6]. Also, note that using 1 bit feedback leads to the same feedback load in both methods, keeping the

comparison fair.
VI. PACKETING COMPLEXITY

Talking about the system implementation complexity, different practical aspects should be considered.

This section presents some discussions on the coding complexity of the quantized CSI and hybrid ARQ

schemes as follows.

In contrast to the INR ARQ feedback, the quantized CSI approach is among the fixed-length coding

techniques where, regardless of the channel conditions, the length of transmission packets is constant.

Moreover, considering INR ARQ, in each retransmission new parity packets should be generated based

on the message decoding status. Hence, the quantized CSI is better than the INR ARQ approach in terms

of packeting complexity. Adding any code length constraint in the INR ARQ approach will deteriorate

its efficiency leading to lower transmission rates, in comparison to the quantized CSI scheme. However,

it is interesting to investigate the system performance when utilizing fixed-length-code HARQ techniques,

among which the RTD is one of the best ones, e.g., [14]–[16], [25].

Using RTD ARQ feedback, the same packet is retransmitted in each retransmission and the receiver

performs maximum ratio combining of all received packets. Therefore, it leads to substantially less packeting

complexity, as not only the code lengths are the same in all retransmissions but also no new parity packet

needs to be generated in the retransmission rounds. Under such conditions, the transmission parameters are

obtained as follows; considering fixed power P in all (re)transmissions14, at the m-th RTD (re)transmission

round the received SNR increases to mP and the effective rate reduces to R
m

in which R is the original

code rate. Therefore, one can use the results of, e.g., [14]–[16], [25], to show that the achievable rates

random variable, i.e., (12), is changed to

R(g) =







R
m

, log(1 + (m − 1)gP ) ≤ R < log(1 + mgP )

0, R > log(1 + (M + 1)gP )
. (39)

In this way, the noise-free average rate, outage probability, feedback load and the average rate with 1 bit

noisy feedback, i.e., (13), (14), (33) and (38), are respectively changed to

14The effect of power allocation on the performance of RTD ARQ scheme can be studied in, e.g., [25].
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R̄RTD =

M+1
∑

m=1

R

m

(

FG(
eR − 1

(m − 1)P
) − FG(

eR − 1

mP
)
)

, (40)

π̄RTD = FG(
eR − 1

(M + 1)P
), (41)

l̄RTD =
M

∑

m=1

m
(

FG(
eR − 1

(m − 1)P
) − FG(

eR − 1

mP
)
)

+ M × FG(
eR − 1

MP
) (42)

and
R̄RTD = (R(1 − pe) +

R

2
pe)(1 − FG(

eR − 1

P
)) +

R

2
(1 − pe)(FG(

eR − 1

P
) − FG(

eR − 1

2P
)). (43)

Theorem 4: (INR vs RTD ARQ feedback) Comparing RTD and INR hybrid ARQ feedback schemes under

short-term power constraint, the following statements hold:

(I): With the same number of maximum retransmission rounds, INR outperforms RTD in the sense of

outage-limited average rate.

(II): With the same feedback load (the average number of retransmissions), the INR ARQ scheme leads to

higher forward channel average rates, in comparison to RTD.

(III): For any feedback channel bit error probability, higher rates are obtained by 1 bit INR than by 1 bit

RTD hybrid ARQ.

Proof: Here, we only prove part (II) while the other parts can be proven with the same arguments. Let

R̃ be the optimal transmission parameter maximizing (40). Then, we set the INR transmission rates such

that eRm−1
P

= eR̃−1
mP

. Note that these values are not necessarily the optimal ones maximizing (13). In this

way, the probability terms of (34) and (42) will be the same leading to the same feedback load in the INR

and RTD ARQ schemes. Then, as the probability terms of (13) and (40) are equal, the statement (II) is

proven if we show that Rm = log( eR̃+m−1
m

) ≥ R̃
m

. However, defining the function h(R̃) = log( eR̃+m−1
m

)− R̃
m

,

it is easily found that h(0) = 0 and ∂h

∂R̃
≥ 0. Therefore, we have h(R̃) ≥ 0, ∀R̃ ≥ 0, i.e., Rm ≥ R̃

m
.

Consequently, from (13) and (40), higher rates are obtained by INR scheme than by RTD ARQ feedback.

The statements (I) and (III) can be proven with the same technique.

Finally, because of the equivalency between CSI and INR ARQ, it is obvious that the quantized CSI

outperforms the RTD ARQ approach in all considered comparison yardsticks. However, focusing on

implementation issues, there are other practical aspects that should be considered as well; Quantized CSI

feedback belongs to the physical layer techniques and, in order to exploit its properties, needs some

additional designs, particularly at the transmitter [44]. This point increases the system implementation

November 4, 2011 DRAFT



19

costs. ARQ, on the other hand, is a technique in the data link layer which is already provided in most of

wireless protocols. Therefore, it needs no additional closed-loop design which introduces it as a cost-efficient

approach in the current communication systems.

VII. SIMULATION RESULTS

The simulation results are obtained for Rayleigh-fading channels, i.e., fG(g) = ωe−ωg, g ≥ 0, where

we set ω = 1. Considering no outage probability limitation and short-term power constraint, Fig.3 shows

the system average rate in the presence of M bits INR ARQ or, equivalently, quantized CSI feedback

scheme with N = M + 1 quantization regions (Theorem 1). As it can be seen, substantial rate increment

is achieved with limited number of feedback bits. Then, Fig.4 demonstrates the effect of one bit INR ARQ

feedback on the channel average rate with different power and outage probability constraints. Also, Fig.5

evaluates the effect of different power allocation strategies and outage probability constraint on the average

rate of the system utilizing quantized CSI feedback. The figures indicate that while the long-term power

allocation increases the transmission rates, its effect diminishes as the transmission power increases. Then,

Fig.6 studies the system average rate in the presence of RTD ARQ feedback. Finally, considering short-term

power constraint P = 2, Fig.7 verifies the effect of outage probability constraint on the system performance

when utilizing different quantized CSI or hybrid ARQ feedback schemes. While the figure indicates the

validity of Corollary 1 for quantized CSI or INR ARQ feedback, the RTD-based achievable rates converge

to zero under hard outage probability constraints. Also, the figure emphasizes the superiority of INR ARQ

(or quantized CSI) scheme in comparison with RTD ARQ protocol.

VIII. CONCLUSION

This paper presented some comparisons between the performance of data transmission systems utilizing

standard hybrid ARQ and quantized CSI feedback schemes. Comparisons were done in different aspects.

Particularly, we showed that:

• Under a short-term power constraint and with proper selection of quantization regions and the ARQ

feedback bits, the same outage-limited average rate is achieved by the quantized CSI and the INR

hybrid ARQ schemes.

• With the same forward channel average rate, the quantized CSI scheme outperforms the INR protocol

in terms of feedback load.
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• Considering noisy feedback channels, the same average rate is obtained by 1-bit quantized CSI and

1-bit INR-based hybrid ARQ feedback.

• The quantized CSI and the INR hybrid ARQ approaches outperform the RTD hybrid ARQ protocol

in terms of average rate, feedback load and robustness.

Finally, selecting the best approach is not easy since the decision depends on several parameters such as

complexity and commercial issues.
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