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Abstract

In this report we address the well known problem of estimating the Direction Of
Arrival (DOAs) from sensor array data, and discuss it as a linear regression problem
by assuming a narrow band, far field model of the sources. Recently, the Least Ab-
solute Shrinkage and Selection Operator (LASSO) is proposed for such a problem
as an approximation to the computationally hard, but precise solution of Maximum
Likelihood (ML). We explain the implementation using convex programming tools,
and show the superiority of this method by discussing the theoretical bounds of
consistency and comparing the results to that of conventional estimators. Further-
more, we give two different solutions for selecting the regularization parameter in the
LASSO method. First, by viewing the problem as a model order selection and using
Minimum Description Length (MDL) principle and second, by taking the Bayesian
nature of regularization into account and deriving an ML estimator for the regular-
ization parameter. Finally, we discuss about the theoretical consistency of such a
method for the DOA estimation in some extreme cases. We particularly show that
for the noiseless case the method may not be consistent for very close sources. This
shows the fundamental resolution of LASSO for the DOA estimation.

Keywords: DOA, Localization, Linear regression, LASSO, Regularization, Con-
sistency analysis, Compressed sensing, Sparse Analysis, Convex programming etc.
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1 INTRODUCTION

Estimating the direction of signal waves arriving from a set of relatively far sources is
a well-studied problem in the literature. This problem might be applied to a variety
of applications such as radar and sonar (Trees 1968), wireless communications (Poor
and G. W. Wornell 1998), and seismology (Robinson and Treitel 1980). These signals
are measured by an array of sensors with a relatively small dimensions. According to
the nature of the signals, there exists a variety of methods to treat such a problem.
From the frequency spectrum point of view, the signal might be classified as a
narrow-band or wide-band signal. However, there is always the possibility of dividing
a wide frequency band into many narrow sub-bands, and treat the resulting multiple
narrow-band signals either jointly or separated. Thus, in this work we focus on the
narrow-band far field model of the received data.

Forming a linear regression estimation problem, the DOA in the desired scenario
has been studied by a variety of techniques such as Maximum likelihood (Schweppe
1968), subspace methods (Viberg and Ottersten 1991), and beamforming techniques
(Van Veen and Buckley 1988, Viberg and Krim 1997). In this work we investigate
the newly introduced method of LASSO (Tibshirani 1996) as a solution to the DOA
estimation problem which has been proposed in (Malioutov et al. 2005). The LASSO
method is also know as Basis Pursuit, first introduced in (Chen and Donoho 1994).
We view the estimation problem as a shrinkage-operator-approximation to the ML
estimation, by reformulating the DOA problem in a sparse framework. Later we
will discuss about another insight into the method as a Bayesian estimation.

Because the shrinkage operator is a regularization in essence, the choice of the regu-
larization parameter is one of the fundamental obstacles to implement this method.
To overcome this restriction, we view the problem as a model order selection for
which many methods have been proposed, such as Generalized Likelihood Ratio Test
(GLRT)(Stoica et al. 2004), Generalized Information Criterion (GIC)(Akaike 1973),
Minimum Description Length (MDL)(Rissanen 2006), etc. We propose using MDL
to treat the problem as a separated detection-estimation problem, and illustrate its
performance by simulation. We also propose an ML estimation of the parameter
which is more beneficial in small sample size.

Finally we examine the behavior of the method by a mathematical analysis in two
extreme cases of noiseless data and large number of sensors respectively. We show
that the method is not consistent for any choice of directions and we will give a
consistency conditions which is in a close relationship to the concept of resolution.
By this method we prove the superiority of LASSO as compared to the conventional
beamforming methods but also that it is inferior to, e.g. subspace methods at high
enough SNR.
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2 NOTATION

Abbreviations

AIC Akaike Information Criterion
BIC Bayesian Information Criterion
DOA Direction Of Arrival
FFT Fast Fourier Transform
GIC Generalized Information Criterion
LLN Law of Large Numbers
LTI Linear Time Invariant
MAP Maximum a Posteriori Probability
MDL Minimum Description Length
ML Maximum Likelihood
MUSIC Multiple Signal Classification
NML Normalized Maximum Likelihood
PDF Probability Density Function
SC Stochastic Complexity
SML Stochastic Maximum Likelihood
SNR Signal to Noise Ratio
SOC Second Order Cone
USC Universal Stochastic Complexity

Notations

a(θ) steering vector at direction θ
A matrix of steering vectors
Ag matrix of steering vectors sampled at the grid
m number of sensors
n number of sources
N number of gridpoints
n noise vector
s source waveform
sg sparse generalized source vector
x received data value
θi direction of source i
θgi direction of grid point i
θ vector of true directions
Θ the set of all possible θ vectors
φ electrical angle
λ regularization parameter
σ2 noise variance
ˆ estimation of the variable
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3 MODELING

In this chapter we discuss the models for the data generated by an array of sensors
in different physical scenarios. We also review some popular estimators and their
theoretical performances.

The data model is a mathematical representation of the physical process of generat-
ing the data. This model may contain stochastic (e.g. noise) as well as deterministic
parameters. The deterministic parameters might be known or unknown beforehand.
On the other hand, the estimator is an algorithm aimed to estimate an unknown pa-
rameter in the model using the known parameters including the received data. Such
a problem sometimes is referred as an inverse problem. Normally, an exact estima-
tion is impossible due to the fact that generally, the total number of the unknown
parameters (stochastic and deterministic) is greater than the number of equations
provided by the model. However, if the number of equations is at least equal to the
number of unknown deterministic parameters, it is possible to define and compute
a stochastic grade of accuracy (e.g. error variance). In this case we can talk about
the best estimator in a certain stochastic sense. Such a model might be referred as
a well-behaved model. For the real application, an inexact nature of the data model
increases the inaccuracy of the estimation which is known as the model noise.

3.1 Data Model

Our model is based on the far-field representation of the narrow band signal. A
narrow band signal can be expressed as u(t) = Re(ũ(t)ejωt) where ũ(t) is a baseband
complex signal known as complex envelope, and ω is the carrier frequency. Figure 3.1
shows the structure of sources and receivers in a linear, and constant medium. For
the case of multiple sources the received data can be modeled as the superposition
of the received data for each individual source. Assuming a far field source, the
wave about the receiver array can be approximated by a plane wave traveling from
the source to the origin. Denoting the complex envelope field at the origin by s(t),

the field at a location ~x is related to that at the origin by ũ(~x, t) = ũ(0, t)e−j~k.~x =

s(t)e−j~k.~x, where ~k is the wave vector, and ~k.~x is the scalar product. Also note that
due to the linear nature of the medium, the field at the origin is the output of a
Linear Time Invariant (LTI) system with a narrow band source input. This response
is an attenuation and time shifting of the original signal, which does not distort it.

Next, suppose a set ofm sensors at locations ~x1, ~x2, . . . , ~xm. The sensors are assumed
to be ideal except for an additive noise term. We assume a special configuration of
the sensors, all of which are oriented along a unique axis. We set this direction as
the x coordinate. The sensor locations can then be written as ~xi = di~ux where ~ux,
is the unit vector of x axis, and di is the separation between the ith sensor and the
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4 Chapter 3 Modeling
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Figure 3.1. The plane wave of a far field source arround the origin

origin. Such an array may be referred to as a linear array . The received data at
this sensor array can be written as,

x(t) =








x1(t)
x2(t)
...

xm(t)







=








e−j~k.~x1

e−j~k.~x2

...

e−j~k.~xm







s(t) =








ej
2π
λ
d1 cos θ

ej
2π
λ
d2 cos θ

...

ej
2π
λ
dm cos θ







s(t) = a(θ)s(t) (3.1)

where λ is the wavelength. The vector a(θ) is known as the steering vector. For the
case of n sources on directions θ1, . . . , θn, the received data will be

x(t) =
n∑

i=1

a(θi)si(t)

= [a(θ1) a(θ2) . . . a(θn)]








s1(t)
s2(t)
...

sn(t)







= A(θ)s(t) (3.2)

where θ = (θ1, . . . , θn). We are also interested in a special, but important case of the
Uniform Linear Array, in which dk = (k − 1)∆ for an arbitrary positive separation
factor ∆, in which case, for simplicity, we introduce φ = 2π

λ
∆cos θ. A common choice

for the separation factor is ∆ = λ
2
, in which case we deal with a half-wavelength

array with φ = π cos θ. Finally, due to the model and the physical receiver noise the
overall model of the received data can be written as

x(t) = A(θ)s(t) + n(t) (3.3)

where the noise vector n(t) is a stochastic, unknown complex variable. We assume
that it is a zero-mean, circularly symmetric, Gaussian vector with the covariance
matrix equal to σ2I.



3.2 Conventional Estimation Techniques 5

The number of the unknown deterministic parameters (i.e. source signals and direc-
tions) in such a model is 3n (the directions and the real and imaginary parts of the
source waveforms1). Thus, according to the discussion in the introduction of this
chapter, this model is well-behaved model if n ≤ 2m

3
. This is a general assumption

we make through the rest of this work. However, if the source signals were treated
as stochastic parameters the criterion would change to n ≤ m. In this case there
exists a stochastic prior knowledge about the sources.

3.2 Conventional Estimation Techniques

One of the most straightforward and accurate estimation techniques for unknown
deterministic parameters in (3.3) the is Maximum Likelihood (ML) principle. The
ML method uses the likelihood function, f(x; s, θ) due to the stochastic model of
the noise and maximizes it over the all possible deterministic parameters. Assuming
a temporally uncorrelated received data, the likelihood function for the model (3.3)
is given by

f(x; s, θ) =
1

√

π(σ2)m
T
e−

∑T
t=1 |x(t)−A(θ)s(t)|2

σ2 (3.4)

and the ML estimator is given by

({ŝ(t)}Tt=1, θ̂) = arg min
{s(t)}Tt=1,θ

T∑

t=1

|x(t)−A(θ)s(t)|2 (3.5)

Denoting the trace operator by tr(. ), this can be further simplified as

ŝ(t) = A†(θ̂)x(t),

θ̂ = argmin
Θ

tr(Π⊥
A(θ)R̂) (3.6)

where R̂ =
∑T

t=1 x(t)x
H (t)

T
is the sampled correlation matrix. Further, Π⊥

A(θ) and

A†(θ) are the perpendicular projection and pseudo inverse matrices of A = A(θ)
respectively, defined as

A†(θ) = (AHA)−1AH

Π⊥
A(θ) = I−AA† (3.7)

Although ML gives a high-performance estimation of directions and sources, it is
computationally inappropriate because the cost function, tr(Π⊥

A(θ)R̂) in (3.6) pos-
sesses many local minima on its domain. Accordingly, many suboptimal methods

1Note that here we treated the noise variance, σ as a known parameter. However, in many
practical problems and even later in this work σ is unknown and the number of unknown parameters
will be 3n+ 1.



6 Chapter 3 Modeling

have been proposed to solve the DOA estimation problem. Note that if a good es-
timation of directions is available, the sources are evaluated by the first equation in
(3.6), which can be interpreted as a zero forcing signal separation method. In this
work we discuss the Beamforming and Subspace methods briefly as popular methods
of avoiding ML complexity. It is worth noting that there exist some variations to
ML which increase the applicability of it such as Nonlinear Least Squares (NLLS)
implementation methods which may be implemented by Space-Alternating Gener-
alized Expectation-Maximization Algorithm (SAGE) (Fessler and Hero 1994) and
Stochastic ML (SML)(Ottersten et al. 1992).However the computational problem is
still dominant for these methods.

3.2.1 Beamforming Techniques

The idea of beamforming is inspired from the time domain signal processing accord-
ing to the similarity between time and uniform sampling in a ULA. Consider the
inner product of different steering vectors of the array

|aH(θ1)a(θ2)| =
|ejm∆φ − 1|
|ej∆φ − 1| =

| sin m∆φ
2

|
| sin ∆φ

2
|
= e(∆φ) (3.8)

where ∆φ = φ2−φ1. The function e(∆φ) can be seen to decrease when the directions
get far from each other. We can therefore find the energy component received from
a certain direction, θ in space by computing the inner product of the data to the
steering vector, a(θ) and its average energy. For many snapshots (T → ∞), we have

P (θ) =
1

T

T∑

t=1

|aH(θ)x(t)|2 = aH(θ)Rxa(θ) = aH(θ)A(θ)RsA
H(θ)a(θ)+mσ2 (3.9)

where Rx and Rs are the covariance matrices of x and s respectively. Thus, consid-
ering approximately perpendicular steering vectors we claim that the peak points
of the spatial spectrum, P (θ) are at least close to the true directions of the sources.
However, the quality of method is limited because of firstly, the bias introduced by
superposition of the shifted patterns in Figure 3.2.1 and secondly, the resolution
limitation due to the beam width of the antenna pattern. The latter may cause two
peaks to merge if the true directions are too close to each other.

3.2.2 The MUSIC Method

The multiple signal classification (MUSIC) method is based on the fact that the ML
criterion in (3.5) can be viewed as the problem of finding the best n-dimensional sub-
space describing the data in an m-dimensional space. The received data snapshots
form a cloud of an ellipsoid around the subspace of noiseless received data which
is the range space of A(θ). For high SNRs the minor axis of the ellipse, known as
the noise subspace, is related only to the components of noise while the major axis,
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Figure 3.2. Beam pattern for 8 sensors of a ULA array versus the electrical
angle separation

known as signal subspace, is related to both signal and noise components. It can be
deduced that the signal subspace is approximately formed by a linear combination of
the directions in which the data has a maximum-variance component, also known as
principal components. This directions can be found by the following maximization.

ŵ = arg max
‖w‖2=1

∑

t

|wHx(t)|2 = arg max
‖w‖2=1

wHRxw (3.10)

where Rx is the sampled covariance matrix. It is easy to show that (e.g. in
(G. H. Golub 1996)) the solution for this maximization given by the eigenvector
related to the maximum eigenvalue of Rx. We conclude that the signal subspace
is approximately the span of the eigenvectors related to the dominant values in the
spectrum of Rx. This space can be found using the eigenvalue decomposition of it
which can be implemented by Singular Value Decomposition (SVD). As the result,
Rx can be written as

R = UHΣU (3.11)

where U is the orthogonal matrix of eigenvectors and Σ is a diagonal matrix whose
diagonal elements are the singular values, σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

m. Suppose σ1, . . . , σn

are the dominant singular values and U = [Us Un] where Us is an m × n matrix.
Then the MUSIC spectrum is written as

PMU(θ) =
1

aH(θ)UnUH
n a(θ)

(3.12)

The directions of the signals then can be estimated by locating the peaks in the
spectrum.



4 SPARSE MODELING

In the previous chapter we reviewed some popular methods for DOA estimation.
In this chapter we show that by reformulating the model in (3.3) it is possible to
get a different approximation of ML estimation. This new approximation is based
on the fact that the solution of an optimization problem containing the ℓ1 norm is
most likely to be sparse because of the singularity of the absolute value function
at zero. On the other hand, due to the convex nature of the ℓ1 norm it is possible
to perform the ℓ1 optimization problems in a computationally efficient way using
convex optimization techniques. The main benefit of such a treatment is that the
Nonlinear Least Squares (NLLS) problem of the maximum likelihood is transformed
to a linear one by introducing a large dictionary matrix of all possible basis vectors.
In the last part of this chapter we show the result of applying this new method to
the simulated data which shows that the sparse solution given by ℓ1 optimization
is a ”good” estimation of the actual data. However, the theoretical discussion is
postponed to the next chapter.

4.1 Discretization and Grids

The problem of finding directions from a continuous interval of the real numbers
can be solved by choosing a finite, discrete subset of index points in the interval
and finding the closest index point to the real value. The precision of this method
is directly related to how close the index points are. We give a formal definition of
such a tessellation.

Definition 1. A gridG = {θ(g)i }Ni=0 is an increasing sequence ofN+1 directions with

θ
(g)
0 = 0 and θ

(g)
N = π. We also denote the maximum distance between consecutive

grid points (i.e θ
(g)
i+1 − θ

(g)
i ) by d(G) as a measure of fineness of the grid.

Obviously, for every direction θ ∈ [0 2π] there exists a grid point, θ
(g)
i so that

|θ(g)i − θ| ≤ d(G)
2

.Thus for a half-wavelength ULA sensor array,

∆φ = π |cos θgi − cos θ| ≤
∣
∣
∣
∣
π sin

d(GN)

2

∣
∣
∣
∣

∣
∣
∣
∣
sin (θ +

d(GN)

2
)

∣
∣
∣
∣
≤ π

d(GN)

2
(4.1)

According to the definition (3.8) we obtain

|aH(θ)a(θgi )| ≥ e(
d(GN)

2
) (4.2)

This means that in (3.3), by projecting each basis vector (a(θk)), can be written as

a(θk) =
1

m
a(θgik)

(
aH(θk)a(θ

g
ik
)
)
+ bk (4.3)

8



4.2 Sparse Representation 9

for some θgik ∈ G where bk is the orthogonal projection of a(θk) on a(θgik). We alos

have ‖bk‖ ≤
√

1− e2(d(GN )
2

). Then, (3.3) can be written as

x(t) =

n∑

k=1

a(θgik)
(
aH(θk)a(θ

g
ik
)
)
sk(t)

︸ ︷︷ ︸

s′
k
(t)

+

n∑

k=1

bksk(t) + n(t)

︸ ︷︷ ︸

n′(t)

(4.4)

The discretized estimation is actually the estimation of the set of indexes I =
{i1, i2, . . . , in} corresponding to the closest basis vectors in the grid G to the ac-
tual basis vectors. We call these indexes and their corresponding basis vectors the
active indexes and active basis respectively. When N → ∞, if d(GN) → 0 it can
be seen that bk → 0, thus n′(t) → n(t), and θgik → θk. From now on we assume
that the real directions are on the grid and use the model in (4.4). For simplicity,
we denote θgik and a(θgik) by θk and ak respectively. Later we will discuss the overall
performance of the estimation by looking at the true directions which may not be
on the grid. Finally, note that for every grid, GN we have d(GN) ≥ π

N
because we

have

d(GN) = max
i

θ
(g)
i+1 − θ

(g)
i ≥

∑N−1
i=0 θ

(g)
i+1 − θ

(g)
i

N
=

π

N
(4.5)

4.2 Sparse Representation

As described above we are going to estimate the set of n indexes I = {i1, i2, . . . , in}
by assuming (4.4) as a model. The corresponding directions will be the estimates of
the true directions in (3.3). Now, (4.4) can be written as

x(t) =
∑

i∈I

a(θgi )s
′
k(t) + n′(t)

=
∑

i∈I

a(θgi )s
′
k(t) +

∑

i/∈I

a(θgi )0 + n′(t) (4.6)

Defining

sgi (t) =

{
s′k(t) i = ik ∈ I
0 i /∈ I

(4.7)

(4.6) can be simplified as

x(t) =

N∑

i=0

a(θgi )s
g
i (t) + n′(t) (4.8)

Roughly speaking, although the received vector, x(t) is very close to the span of
n basis vectors, it can also be interpreted as a linear combination of all N basis
vectors. Note that because N > m the set of all basis vectors1 are not linearly

1Such an overcomplete basis is usually called a frame, but here we stick to the more informal
nomenclature.
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independent which indicates that the linear decomposition is not unique. However,
in the desired decomposition most of the components, sgi are equal to zero. More
precisely, the number of nonzero elements in the vector sg = [sg1 sg2 . . . sgN ]

T , known
as the ℓ0 norm and denoted by ‖sg‖0 is equal to n. Such a vector with many zero
entries may be referred to as a sparse vector. The nonzero elements of sg are known
as active sources or active indexes. In summary the sparse representation of the
model (3.3) can be written as

x(t) = Agsg(t) + n′(t) , ‖sg(t)‖0 = n (4.9)

where Ag is the matrix of all basis vectors in the grid. Under which constraints is
(4.9) a well behaved model? To answer this question we first introduce the following
definition.

Definition 2. A matrix A is said to be k-ambiguous iff

• The submatrix of any k columns of A is full-rank.

• There exists a submatrix of k + 1 columns of A which is rank deficient.

Note that a model is well-behaved if for each realization of the stochastic parameters
the unknown deterministic parameters has a unique solution in terms of the known
and stochastic ones. However, the whole unknown parameters may not have a
unique solution in terms of the known ones. The following theorem gives a criterion
for the uniqueness of sg in (4.9).

Theorem 1. Suppose Ag is a k-ambiguous matrix. In (4.9), sg has a unique solution
in terms of x and n′ if and only if n ≤ k

2
.

Proof. First assume that n ≤ k
2
and there exists two different vectors, sg1, and s

g
2

satisfying the model. Then we have

x(t)− n′(t) = Ags
g
1 = Ags

g
2 (4.10)

which implies that Ag(sg1 − s
g
2) = 0. On the other hand

‖sg1‖0 = ‖sg2‖0 ≤
k

2
→ ‖sg1 − s

g
2‖0 ≤ k (4.11)

This means that the vector Ag(sg1 − s
g
2) = 0 is a linear combination of at most k

columns of Ag. Because Ag is k-ambiguous, these columns are linearly independent
so s

g
1 − s

g
2 = 0.

Next, suppose n > k
2
. Then, there exists a set of k + 1 linearly dependent columns

in Ag. In other words there exists a vector dg with ‖dg‖0 = k + 1 and Agdg = 0.
Now because n > k

2
we can easily construct two vectors sg1, and s

g
2 so that ‖sg1‖0 =

‖sg2‖0 = n and dg = s
g
1 − s

g
2. As can be seen, both of these vectors are equivalent in

the model (4.9) which proves the converse part.

Remark. For the case of m sensors in a ULA, Ag is m-ambiguous because each
m columns of Ag form a Vandermonde matrix (Horn and Johnson 1991) which is
always full rank. In this case the criterion is n ≤ m

2
as stated in Chapter 3.
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4.3 Maximum Likelihood in Sparse Framework

It is now natural to express the ML estimator introduced in (3.5) in terms of the
new vectors of sparse representation. Note that (3.5) combines the data generated
in different snapshots by adding up the noise magnitudes. However, the desired
directions, θ are temporally constant. On the other hand, the ℓ0 norm of sg(t)
does not give any information about the places of the sources. We are not only
concerned about the number of active sources at each snapshot, but also the places
of them. In other words we require an inactive index to be zero at all times and
if a vector is active at some time it should be treated as an active source for all
times. Accordingly, we call an index, a generally active if it is active at least in one
snapshot. Introducing

γi =

√
√
√
√

T∑

t=1

1

T
|sgi (t)|2 (4.12)

it can be seen that an index, i is generally active if and only if γi 6= 0. Thus, the
number of generally active sources is equal to ‖γ‖0 where γ = [γ1 γ2 . . . γN ]

T .
Using this definition we can express the ML estimator as follows

ŝg = argmin{sg(t)}Tt=1

1
T

∑T
t=1 ‖x(t)−Agsg(t)‖22

subject to

‖γ‖0 = n

(4.13)

To solve this optimization one may attempt to perform an exhaustive search over
all possible sets of generally active basis, and for each set compute the least square
solution using the first equation of (3.6). The estimated active indexes are those
that minimize (4.13) among all possible choices. However, this method is computa-
tionally costly, especially as the number of grids and sensors increase. Note that by
reformulating ML as (3.6), the problem of local minima is not solved. Each combi-
nation of active sources in the exhaustive search basically gives a local minimum in
ML.

4.4 Solution Based on ℓ1 Regularization

The optimization introduced in (4.13) can be viewed as a regularization, which is
basically adding more constraints in order to make the solution unique. Note that
the sparsity condition in (4.9) is essential because without it the uniqueness of the
model is lost. This also can be seen in the ML equation (4.13), where without the
constraint ‖γ‖0 = n the least square criterion can be driven to zero because the
range space of Ag is the whole of Rm. Thus, it an be said that (4.13) is a linear
least square method regularized by the constraint ‖γ‖0 = n. In this chapter we first
give a brief introduction to the regularization technique.
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4.4.1 Regularization

A regularization is an additional constraint, usually in the form of a cost function
which can be expressed in different equivalent forms. However, there always exists
a so called regularization parameter, which controls the relative importance of the
additional cost. Suppose a function F (θ) is to be optimized under an additional
constraint of G(θ) = µ, where µ is the regularization parameter. Common methods
of expressing the regularization are

min
G(θ)=µ

F (θ) (4.14)

and

min
θ

F (θ) + λG(θ) (4.15)

The term F (θ) +λG(θ) = L(θ, λ) is known as the Lagrangian form of the optimiza-
tion. There is a close relationship between the solutions of (4.14) and (4.15), which
is stated as follows.

Theorem 2. Suppose for some value of λ the solution of (4.15) is θ = θ0. Then
the solution of (4.14) with µ = G(θ0) is θ = θ0 as well.

Proof. Suppose the solution to (4.14) with µ = G(θ0) is θ = θ1 then G(θ1) = µ =
G(θ0) and

F (θ1) ≤ F (θ0) (4.16)

On the other hand

F (θ0) + λG(θ0) ≤ F (θ1) + λG(θ1) → F (θ0) ≤ F (θ1) (4.17)

combining the two above results, we see that F (θ0) = F (θ1). This result shows that
θ = θ0 is a global minimum point for (4.14) as well. Further note that if we know
that the global minimum is unique then θ0 is the unique one. Otherwise, there might
be other global minima, θ1 with F (θ0) = F (θ1).

To illustrate the result of Theorem 2 we apply it to the sparse ML optimization. In
this case the linear expression (4.15) can be written as

min
{sg(t)}Tt=1

T∑

t=1

‖x(t)−Agsg(t)‖22 + λ‖γ‖0 (4.18)

By changing λ we are able to change the solution of the above equation. If for some
λ the number of generally active indexes, ‖γ‖0 is equal to n, then it is also the
solution to the sparse ML, problem, (4.13). However, there might not exist any λ
giving ‖γ‖0 = n. The next theorem equips us with a tool to search efficiently for a
suitable regularization parameter, λ.
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Theorem 3. In (4.15), G(θ) is a decreasing function of λ meaning that if θ1 and
θ2 are the solutions for λ1 and λ2 respectively with λ1 ≤ λ2 then G(θ2) ≤ G(θ1).

Proof. From the minimality of θ1 and θ2 we can conclude

F (θ1) + λ1G(θ1) ≤ F (θ2) + λ1G(θ2) (4.19)

and
F (θ2) + λ2G(θ2) ≤ F (θ1) + λ2G(θ1) (4.20)

Manipulating these two equations we find the following result.

λ1(G(θ1)−G(θ2)) ≤ F (θ2)− F (θ1) ≤ λ2(G(θ1)−G(θ2)) (4.21)

Because λ1 ≤ λ2 we conclude that G(θ1)−G(θ2) ≥ 0 which proves the theorem.

4.4.2 Regularization Using the ℓ1 Norm

The ML estimator introduced in (4.13) and (4.18) is still computationally inappro-
priate. Hence, an approximation to these optimization problems should be made.
The relation between the ℓ1 and ℓ0 norm has been known and studied for a long
time. The ℓ1 norm of a vector is the sum of the absolute values of its components

‖s‖1 =
n∑

i=1

|si| (4.22)

The ℓ1 norm has been used for some basic linear regression problems. Basically,
what to do is to substitute the ℓ0 norm with the ℓ1 norm, and it is expected to get a
sparse solution due to the singularity of the absolute function at zero. The behavior
and consistency of this method will be discussed in the next chapter in details. The
ℓ1 regularization may be written either as

ŝg = arg min
{sg(t)}Tt=1

∑T
t=1 ‖x(t)−Agsg(t)‖22

subject to ‖γ‖1 ≤ µ

(4.23)

or

ŝg = min
{sg(t)}Tt=1

T∑

t=1

‖x(t)−Agsg(t)‖22 + λ‖γ‖1 (4.24)

The main advantage with this approximation is that both (4.23) and (4.24) belong to
the class of convex optimization problems, which are generally solvable in a quite fast
way. More accurately, both can be reformulated to the Second Order Cone (SOC)
programming framework, which provides the opportunity for implementation using
SOC toolboxes such as the SEDUMI toolbox (Sturm 1998).
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4.4.3 The overall algorithm

Because the ℓ1 regularization is an approximation of the ℓ0 one, once the estimation
problem is solved by (4.23) or (4.24), the generally active indexes can be obtained
from this solution. Note that the γ vector is the estimated RMS value received
from each direction, and can be treated as the spatial spectrum of the data. So,
the directions can be found by finding the peaks of this spectrum and thresholding.
The regularization parameter should be chosen so that the number of the generally
active sources is equal to n. Although Theorem 3 states that for these optimization
problems, ‖γ‖1 is a decreasing function of the regularization parameter, λ we expect
the ‖γ‖0 to be decreasing as well. This fact enables us to perform the search for
the appropriate λ faster using a bisection method. In summary the method can be
explained as follows

1. Choose an initial regularization parameter and a threshold, τ .

2. Use (4.23) or (4.24) to get an estimate of sg(t).

3. Evaluate the γ vector using (4.12) and locate its peaks.

4. Choose the peaks in γ which are greater than τ . If the number of peaks is not
equal to n, modify λ due to the monotonicity property and go to Step 2.

5. Given the estimated directions, the source waveforms are estimated using the
first equation of (3.6).

6. It is also possible to modify γ using the newly estimated sources, and re-
compute peaks and go to step 4 until the estimated active indexes are not
changed anymore.

7. End.

4.5 ℓ1-regularization as a MAP estimator

Many regularized conditions can be viewed as Maximum A Posteriori (MAP) crite-
ria, by assuming the additional cost function as a result of a prior knowledge about
the data. This context is commonly referred to as a Bayesian estimation. Follow-
ing the work of (Tibshirani 1996), in this section we give a stochastic view of the
ℓ1-regularization for later use. First we introduce the complex Laplace distribution

Definition 3. A complex random variable S is said to be distributed according to
a complex Laplacian distribution if

fS(s) =
α

2π
e−α|s| (4.25)
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For a vector, S, of k independent Laplacian random variables the joint p.d.f will be

fS(s) =
( α

2π

)k

e−α‖s‖1 (4.26)

Suppose in the model (4.9) the sources are Laplacian and the noise is Gaussian.
Then the a posterior probability of S given X can be written as

fS|X(s|x) =
fX|S(x|s)fS(s)

fX(x)
∝ e−

‖x−Ags‖2

2σ2 −α‖s‖1 (4.27)

The MAP estimate is defined as the maximizing argument of the a posteriori dis-
tribution. In this case the MAP estimator can therefore be written as

ŝ = argmin
s

‖x−Ags‖2 + 2ασ2‖s‖1 (4.28)

The relation to (4.15) is obvious by putting λ = 2ασ2. Note that the real sparse
source, sg is in general not a Laplacian random vector, and this shows the main
difference between ℓ1 and ℓ0 optimization. How can the solution to a MAP estimator
be different from the prior distribution? The answer is that although the MAP
estimator is designed to combine the prior information by the ML estimator to get a
typical solution by this prior knowledge, its performance is guaranteed only when the
known variables are typical by the given model. As can be seen the observed vector,
x in our model is actually made by a sparse vector, sg which would be unlikely to
occur if sg were a Laplace vector. In other words ℓ1 regularization utilizes MAP in
a data space region where the performance of MAP is not guaranteed. However it
still works well. The intuition we made in this chapter will be used later on.



5 IMPLEMENTATION ISSUES

In this chapter we will review some practical issues related to the ℓ1 regularization
method for linear regression problems. In the previous chapter we introduced some
logical steps to devise this method and gave a complete procedure of implementing
such an algorithm. In this section we focus on the method of implementation within
the SOC framework, and then we discuss the choice of regularization parameter
when the number of sources is an unknown deterministic parameter.

5.1 SOC Adaptation

Now, we are going to explain how to represent the ℓ1 regularization in a SOC frame-
work. We first need to define a Second Order Cone (SOC)(Boyd and Vandenberghe
2004):

Definition 4. An m-dimensional second order cone, C is a generalization of the
ordinary 3-dimensional cone as follows

C =

{

(x1, x2, . . . , xm)
T |

m−1∑

i=1

|xi|2 ≤ ρ2|xm|2
}

(5.1)

Definition 5. Given a block vector x =
[
xT
1 xT

2 . . . xT
k

]T
, where each of the vectors

xi is either a free vector or it is confined to a second order cone. An SOC program
is an optimization over such an x of the form

min
x

cTx

subject to Ax = b and xi ∈ Ci

(5.2)

Such an optimization can be solved efficiently using computer toolboxes such as
SeDuMi, which we will use for generating the simulation in Chapter 7. The question
is how to represent the optimization problem in (4.23) and (4.24) within the SOC
framefork. To do so we write down the sparse model as

x(t) = Asg(t) + n(t) = [A I]

[
sg(t)
n(t)

]

(5.3)

which forms the linear constraint in (5.2). Now, for each direction index i = 1, . . . , N
we introduce the following cones

Ci =















sgi (1)
sgi (2)
. . .

sgi (T )
γi









:
T∑

t=1

|sgi (t)|2 ≤ γ2
i







(5.4)
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and also

CN =

{

(n(1),n(2), . . . ,n(T ), ν) :
T∑

t=1

‖n(t)‖22 ≤ ν2

}

(5.5)

For (4.14) an additional linear equation of the following form should be added to
the linear constraints

N∑

i=1

γi = µ (5.6)

and the minimization (4.14) is easily written as

ŝ = arg min
s,n,{γi}ni=1,ν

ν

subject to x(t) = Asg(t) + n(t) ,
∑N

i=1 γi = µ.
(5.7)

The minimization (4.15) can also be written as

ŝ = arg min
s,n,{γi}ni=1,ν

ν + λ
∑N

i=1 γi

subject to x(t) = Asg(t) + n
(5.8)

5.2 SVD Based Dimension Reduction

Although ℓ1 regularization reduces the complexity of estimation dramatically, its
complexity grows fast as the number of snapshots grows, because the number of
constraints grows fast. For a large number of snapshots, it is practically impossible
to implement such a method. In this case it is proposed in (Malioutov 2003) to
construct a small set of snapshots by linearly combining different snapshots and use
these transformed snapshots as an input to the ℓ1 regularization procedure. As can
be seen from the model of the data, any linear combination of the sources results in
a data with the similar model but a different noise level:

∑

α(t)x(t) = A
∑

α(t)s(t) +
∑

α(t)n(t) (5.9)

for any set of coefficients α(t). By a wise choice of these coefficients it is possible to
increase the SNR, which will compensate the decrease in the number of snapshots. In
other terms, we are to remove the noise subspace while keeping the signal subspace
constant. This might not be possible, especially when the number of sources is
unknown. However, it is possible to form a candidate signal subspace wider than
the real one by assuming an upper bound for the number of the sources. This upper
bound is dented by K. As proposed in (Malioutov 2003), we can use the SVD of
the matrix X = [x(1) x(2) . . . x(T )] to find the candidate signal subspace. Note
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that in the noise-free case, X is in the range space of A(θ), RA. Let us compute the
SVD of the data matrix X:

X = UΣVH (5.10)

For low noise or a large number of snapshots we expect the dominant sources to be
in relationship with the signal subspace, while the smaller singular values form the

noise subspace. Introducing a matrix D =

[
IK×K

0

]

, the signal subspace can be

written as the range space of the following matrix.

X′ = UΣD = XVD (5.11)

We use each of the K columns of X′ as one snapshot of data.

5.3 Choosing the regularization parameter

The relation between the regularization parameter and the number of sources is
an unsolved problem, which might be regarded as a point for further research. As
discussed in Chapter 4, the regularization parameter can be found by recursive use
of the convex regularized optimization and updating the parameter, λ by a suitable
method such as bisectioning search. Generally, such a method is computationally
fast, because of both the fast implementation method of convex programming in
each recursion, and fast convergence of the bisection method. Normally, there exists
an interval of suitable parameter, λ in which the ℓ1 regularization gives exactly the
same n active basis. In such an interval, changing λ may only cause a change in
the estimated waveforms, s(t). However, when the number of sources is unknown, it
should be estimated first. From this point of view the estimation of the regularization
parameter with an unknown number of sources is fundamentally a model order
selection problem.

There is a variety of methods for model order selection such as the General Informa-
tion Criterion (GIC)(Stoica et al. 2004), Bayesian Information Criterion (BIC)(Akaike
1973) , Minimum Description Length (MDL)(Wax and Ziskind 1989), etc. All of
these methods result in an additional optimization, which is basically a least-square
criterion regularized by some function of the estimated number of the sources. In
this section we explain the MDL method in details, and then apply it to the ℓ1
estimation framework. Finally we will discuss the possibility of modifying the MDL
criterion by taking the MAP point of view of the ℓ1 regularization into account.

5.3.1 Minimum Description Length

MDL is a method for choosing a model that best describs the received data among a
set of possible models. There exists a variety of intuitions behind this method all end-
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ing up with the same formulation. The initial idea, introduced by (Rissanen 2006), is
to find a minimum-length expression, with which the original data is reconstructible.
A general formulation of such a problem is to find the minimum-length input code
to a universal Turing machine (Boolos and Jeffrey 1989) which gives the desired
data as the output. This minimum length is known as the Kolmogorov complex-
ity (Cover and Thomas 2006). However, it is shown that such a general problem
is unsolvable (Li and Vitanyi 1997). Thus, Rissanen introduced a more confined
question of the minimal addressing for a piece of data using a set of predefined
models (Rissanen 1986). This minimal address is well-known as the Universal Com-
plexity of the data associated with the given model. The goal is then to find the
model with minimum universal complexity among a set of models. To give a formal
representation we introduce the following definitions.

Definition 6. A model M = {f(x; θ)|θ ∈ Θ} is an indexed set of distributions.
The index set Θ can vary from a finite set to R

n. In our case of discretized DOAs,
it can be the set of all n distinct indexes.

Now we define a class of encoding techniques for the received data and give the
length of the representations due to this encoding. For a continuous set of data,
the encoder first quantizes the message to N levels. Although for our encoders the
length of the encoded data, L(N)(x) tends to infinity as N grows, but its difference to
the constant-length coding length, LCL(x) = logN tends to a finite number, which
may be called the differential length of x. The differential length shows how many
bits in length we gain by a special encoding scheme.

Our scheme is actually the prefix codes introduced and discussed in (Cover and
Thomas 2006). For such a code we can find the differential length as follows.

Definition 7. Related to each p.d.f f(x; θ) of the model M , the Stochastic Com-
plexity Lθ(x) is the differential length of the optimal prefix code according to f(x; θ),
and is given by

Lθ(x) = − log f(x; θ) (5.12)

The definition of stochastic complexity brings some new interpretations to the pre-
viously discussed stochastic methods. For instance, the ML estimate can be in-
terpreted as finding the minimum-length representation of data over all possible
likelihoods. Note that for a model M , ML gives the best index, θ matching the
data. To sum up, from a compression point of view, ML estimation implies that
a model is matched to the data if its representation length is as small as possible,
which is a scientific statement of Occam’s Razor1.

5.3.2 Universal Coding and Universal Modeling

As discussed in the previous section, there is a close relationship between the code
length of a data set and the best parameter selection for it. It is also possible to

1Occam’s razor is a principle that the simplest explanation is usually the true one
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talk about how much a data is related to a model when the parameter is unknown.
From the duality, it is identical to ask how much this data can be compressed in
the model in the same situation. It turns out that by choosing an appropriate
distribution fX(x), we should construct a ”best” universal code regardless of the
parameters, and find the stochastic complexity of the data, L̄(x) due to this code.
We are not going to probe the details carefully here. However, in (Shtarkov 1987)
it is shown that the best universal code in the sense of two-stage-addressing is given
by the Normalized Maximum Likelihood (NML) as follows

fNML(x) =
f(x; θ̂(x))

∫
f(x; θ̂(x))dmx

(5.13)

where θ̂(x) is the ML estimate of the parameter θ based on the data, x. The NML is
a natural universal model for the data, since it assigns the highest possible likelihood
to each data vector x. Because the resulting function does not have the identity
integral it should be normalized. For the optimal universal model, the stochastic
complexity of x is called the Universal Stochastic Complexity (USC), and is given
by

USC(x) = − log fNML(x) = − log f(x; θ̂(x)) + log

∫

f(x; θ̂(x))dmx (5.14)

From the duality of the description length and model fitting, one can propose the
USC as a measure of the fit of the model to data. If there exists a set of models for
a given data, the one with the smallest USC should be chosen. This is exactly the
MDL model order selection principle.

5.3.3 MDL for DOA Estimation

Now we apply the MDL criterion derived in (5.14) to our problem of interest. First
we give a theorem first developed by Risannen to approximate the second term in
(5.14).

Theorem 4. For the case of an ν-dimensional continuous parameter vector and an
µ-dimensional observation vector we asymptotically have

log

∫

f(x; θ̂(x))dµx ≈ ν

2
log

µ

2π
+

∫
√

|I(θ)|dθ (5.15)

where |I(θ)| is the determinant of the Fisher information matrix, I (Cover and
Thomas 2006) evaluated at θ.

Proof. The proof is given in (Rissanen 1996).
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In spite of the above approximation, computing the Fisher information and the
integral is complex. Instead, the whole stochastic complexity can be approximated
by the following expression for a large number, T of m-dimensional observed vectors
as shown in (Rissanen 1996).

USC(x) = log f(x; θ̂(x)) +
1

2
ν log µ

= −
∑T

t=1 ‖x(t)−Ags(t)g‖22
σ2

+mT log (2πσ2) +
1

2
nT logmT

(5.16)

Closely related to Bayesian Information Criterion (BIC), This approximation is
widely used, and gives very good result when the number of snapshots is high
enough for the asymptotic code length assumption to hold. In this equation the
noise variance, σ2 is treated as a known variable. However, in many problems this
is not true and the MDL criterion should be recomputed using the ML estimator of

σ2. The new MDL is easily computed by substituting σ̂2 =
∑T

t=1 ‖x(t)−A
g
s(t)g‖22

mT
into

(5.16). Neglecting the constant terms, the MDL criterion can be expressed as

MDL(x, n) = mT log
T∑

t=1

‖x(t)−Agsg(t)‖22 +
1

2
nT logmT (5.17)

5.4 A New ML Estimator of λ

In the previous chapter we gave a method for choosing a proper regularization
parameter using its relationship to the number of sources. The MDL technique used
for this purpose is based on the model fitting to the data, which requires a large
number of received data. However, the MAP condition introduced in chapter 4 can
help to get an alternative estimate of the regularization parameter. As discussed
before, the ℓ1 regularization method can be expressed in terms of a maximum a
posteriori probability with a Laplacian prior on the data. We also mentioned that
because of the mismatch between the sparse model of the data and the Laplacian
assumption, our MAP estimator is utilized in a data region which is not designed
for. To overcome this problem we introduce a truncated prior as follows:

fSg(sg) =

{
Ke−µ‖sg‖1 ‖sg‖0 = n
0 ‖sg‖0 6= n

(5.18)

where K is a proper normalization scalar. When sg is a complex n-dimensional
vector, K = (λ

2

2π
)n. The negative logarithm of the MAP criterion for T = 1 can be

written as

− log
[
fX|S(x|s)fS(s)

]
=

‖x−Agsg‖22
σ2

+ µ‖sg‖1 − n log
µ2

2π
+m log πσ2 (5.19)
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This expression can also be written in terms of an alternative parameter λ = µσ2 as

− log
[
fX|S(x|s)fS(s)

]
=

‖x−Agsg‖22 + λ‖sg‖1
σ2

− n log
λ2

2πσ4
+m log πσ2

=
‖x−Agsg‖22 + λ‖sg‖1

σ2
+ (m+ 2n) log σ2 − n log

λ2

2π
+m log π (5.20)

Let us denote
K (λ) = min

sg
‖x−Agsg‖22 + λ‖sg‖1 (5.21)

which can be computed by convex optimization methods (Boyd and Vandenberghe
2004). The Maximum a posteriori probability is obtained by minimizing (5.20) over
the unknown parameters, λ, σ2

λ̂, σ̂2 = argmin
λ,σ2

K (λ)

σ2
+ (m+ 2n) log σ2 − n log

λ2

2π
(5.22)

Solving with respect to σ2 we get

σ̂2 =
K (λ)

m+ 2n
(5.23)

and substituting into (5.22) we have

λ̂ = argmin
λ

(m+ 2n) log
K (λ)

m+ 2n
+ n(2− log

λ2

2π
) (5.24)

Note that since n is implicitly a function of λ, all terms in (5.24) are needed. The
minimization in (5.24) is our prosed new method to estimate λ, and at the same
time the number of sources. If is important to note that in practice a threshold
must be used to select n as the number of significant values in sg.



6 CONSISTENCY ANALYSIS

We introduced the ℓ1 regularization technique as an approximation to the exact ℓ0
one. Many questions may arise concerning the performance of this new method. In
this section we are going to discuss the general behavior of the ℓ1 regularization by
analyzing its solution for some asymptotic cases. We also give a detailed discussion
on the consistency of this method in two asymptotic cases, namely large number of
sensors and high SNR respectively.

6.1 Mathematical Representation of the Solution

In this section we focus on the solution of (4.13). One may try to minimize this
using standard differentiation. However, because the absolution function is non-
differentiable at zero, this method fails. Although in (Malioutov 2003), a closed
form differential solution is given, it is beneficial from neither a practical nor an
analytical point of view. Note that the ℓ1 regularization is valuable because of its
singularity at zero, since most of the optimum parameters will be zero. Alternatively,
assuming nonzero values for some special indexes and fixing others to zero we can
solve the optimization by differentiating. Then, for each choice of active indexes
a minimum is obtained and the global one is chosen later. Mathematically, one
can propose for each choice, I = {i1, i2, . . . , in} of n indexes and the corresponding
θ = {θgi1 , θ

g
i2
, . . . , θgin}, to solve

{ŝ(t, θ)}Tt=1 = argmin
s(t)

1

T

T∑

t=1

‖x(t)−A(θ)s(t)‖22 + λ
n∑

i=1

γi (6.1)

where

γi =

√
√
√
√ 1

T

T∑

t=1

|si(t)|2 (6.2)

with nonzero components of s(t). This might be interpreted as a marginal minimum
for (4.13). Then the minimum cost function for this choice of active indexes can be
computed as

VLASSO(θ) =
1

T

T∑

t=1

‖x(t)−A(θ)ŝ(t, θ)‖22 + λ

n∑

i=1

√
√
√
√ 1

T

T∑

t=1

|ŝi(t, θ)|2 (6.3)

Then, the active basis vectors of the solution to (4.13) are given by the minimum
point of VLASSO(θ). Practically, this method is equivalent to the exhaustive search
introduced in Chapter 3 which is not favorable. On the other hand, we will get a
good analytical overview of the method. Also, note that due to the convex nature of
(4.13) there exists a unique local minimum which is also the global one. This shows

23
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that for a certain choice of active basis different from that of the global minimum,
either local minima over the waveform, s do not exist (which means that some
indexes should be neglected) or this minimum value can be reduced more by adding
more indexes. We summarize the result of the minimization for each active index
set in the following theorem.

Theorem 5. Consider the optimization problem (6.1). For each generally active in-
dex I = {i1, i2, . . . , in}, and the corresponding active directions θk = θgik the solution
for ŝ(t, θ) is given by

ŝ(t, θ) =

(
λ

2
I+ ΓAH(θ)A(θ)

)−1

ΓAH(θ)x(t) (6.4)

= ΓA(θ)

(
λ

2
I+A(θ)ΓAH(θ)

)−1

x(t) (6.5)

where Γ is a diagonal matrix with Γii = γi ≥ 0 which are given in (6.2). Denoting
λ
2
I+A(θ)ΓAH(θ) = Λ and to compute Γ we also have

aH(θi)Λ
−1RxΛ

−1aH(θi) = 1 i = 1, 2, . . . , n (6.6)

where Rx = 1
T

∑T
t=1 x(t)x

H(t).

Proof. Equating the derivative with respect to the real and imaginary parts of s(t)
to zero and using the definition (6.2) we have

2AH(θ)(x(t)−A(θ)s(t)) = λΓ−1s(t) t = 1, 2, . . . , T (6.7)

which implies that

s(t) =

(
λ

2
Γ−1 +AH(θ)A(θ)

)−1

AH(θ)x(t)

=

(
λ

2
I+ ΓAH(θ)A(θ)

)−1

ΓAH(θ)x(t) (6.8)

from the identity

(I+PQ)−1
P = P (I+QP)−1 (6.9)

(6.8) can also be written as

s(t) = ΓAH(θ)

(
λ

2
I+A(θ)ΓAH(θ)

)−1

x(t) = ΓA(θ)Λ−1x(t) (6.10)

Now, from the definition of γi we have

γ2
i =

1

T

T∑

t=1

|si(t)|2 =
1

T
γ2
i

T∑

t=1

|aH(θi)Λ
−1x(t)|2 (6.11)
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which also implies that

1

T

T∑

t=1

aH(θi)Λ
−1x(t)xH(t)Λ−1a(θi) = 1 (6.12)

This proves the theorem by taking the constant terms with respect to t out from
the summation.

From Theorem 5, we can reach the solution of the exact maximum likelihood method
by letting λ tend to zero in (6.4). We can infer that the regularization parameter, λ
plays a contradictory role in the model. On one hand, it reduces the computational
complexity by introducing a convex measure of the sparsity. On the other hand,
it is expected that by introducing λ, the solution departs from the optimal ML
solution. To discuss this behavior clearly, we try to simplify the solution in (6.4) for
the special case of the orthogonal steering vectors.

6.1.1 The Case of Orthogonal Basis Vectors

Suppose all the basis vectors in the array manifold are orthogonal. This might be
obtained by letting m go to infinity. Note that for such a situation to be possible,
the number of steering vectors at the grid, N , should be less than the number of
sensors, m. In this case, (4.9) is not under determined anymore and the exact ML
estimate can be found using the fact that

Π⊥
A(θ) = I− 1

m

n∑

i=1

a(θi)a
H(θi) (6.13)

where we have used that ‖a(θ)‖22 = m. After some manipulations, the second
equation of (3.5) can be written as

θ̂ = argmax
θ

n∑

i=1

aH(θi)Rxa(θi) (6.14)

which is solved by finding the n highest maxima (peaks) of the function aH(θ)Rxa(θ).
This shows that for a fixed grid, the conventional beamforming method is asymp-
totically identical to ML as the number of sensors goes to infinity.

The general solution to the ℓ1 regularization approach, given in (6.4), can also be
simplified in the case of orthogonal basis vectors as follows.

Theorem 6. If all steering vectors are orthogonal with ‖a(θ)‖2 =
√
m the active

basis of the solution to (4.15) is given by the set

θth(λ) =

{

θgi |
√

aH(θgi )Rxa(θ
g
i ) ≥

λ

2
, i = 1, 2, . . . , N

}

(6.15)
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Proof. We remind that estimating the directions is performed by first computing the
marginal minima over waveforms, ŝ(t, θ) for each possible active direction combina-
tion θ, then computing the cost function for each marginal minimum, and finally
exhaustive search over all possible active direction combinations for the minimum
value of the cost function, VLASSO(θ) at the marginal minimum point. For some ac-
tive directions there might not be any minimum, ŝ(t, θ). Note that because for the
directions related to the global minimum there exists a marginal one, we limit our
exhaustive search to the active sets for which the marginal minimum exists. Such
a direction set, θ, might be referred to as a candidate active set. In the case of
orthogonal basis vectors, for every choice of θ we have

AH(θ)A(θ) = m I (6.16)

where I is the identity matrix of a proper size. Then (6.4) can also be written as

ŝ(t, θ) =

(
λ

2
I+mΓ

)−1

ΓAH(θ̂)x(t) (6.17)

which further can be simplified as

ŝi(t, θ) =
γi

λ
2
+mγi

aH(θi)x(t) = ηia
H(θi)x(t) (6.18)

From the definition of γi we can after some manipulations write

(
λ

2
+mγi

)2

=
1

T

T∑

t=1

|aH(θi)x(t)|2 = aH(θi)Rxa(θi) (6.19)

Note that we are limited to γi > 0 which also means that a certain choice of active
basis, θ with the corresponding indexes, I is a candidate set if and only if

∀i ∈ I
√

aH(θgi )Rxa(θ
g
i ) ≥

λ

2
(6.20)

Or alternatively, θ ⊂ θt(λ). Besides, for a candidate set, θ, one can compute the
cost function at the local minimum, ŝ(t, θ) in (4.15) as

VLASSO(θ) =
1

T

T∑

t=1

‖x(t)−A(θ)ŝ(t, θ)‖22 + λ
n∑

i=1

γi

=
1

T

T∑

t=1

‖x(t)−
n∑

i=1

ŝi(t, θ)a(θi)‖22 + λ

n∑

i=1

γi

=

T∑

t=1

∥
∥
∥
∥
∥
∥
∥
∥
∥







I−

n∑

i=1

ηia(θi)a
H(θi)

︸ ︷︷ ︸

P







x(t)

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

+ λ

n∑

i=1

γi

= Tr
[
PRxP

H
]
+ λ

n∑

i=1

γi = Tr
[
PHPRx

]
+ λ

n∑

i=1

γi

(6.21)
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Because the steering vectors are orthogonal we get

PHP = I+

N∑

i=1

(mη2i − 2ηi)a(θi)a
H(θi) (6.22)

Also note that from (6.19) we have

mη2i − 2ηi = m

(
1

m
− ηi

)2

− 1

m
=

λ2

4m

(λ
2
+mγi)2

− 1

m
=

λ2

4m

aH(θ̂i)Rxa(θ̂i)
− 1

m
(6.23)

Combining this results with the previous form of the cost function we get

VLASSO(θ) = Tr[Rx] +
λ2n

4m
− 1

m

n∑

i=1

aH(θi)Rxa(θi)

+
λ

m

n∑

i=1

√

aH(θi)Rxa(θi)−
λ2n

2m
= Tr[R]

− 1

m

n∑

i=1

(
√

aH(θi)Ra(θi)−
λ

2

)2

(6.24)

Let us denote the active direction set containing the global minimum by θ̂. It is
actually the DOA estimates at the grid. Earlier, we showed that the DOA estimate,
θ̂ is a subset of θth(λ) because it contains a local minimum. Note that in (6.24) the
terms related to different directions θi, are decoupled, so that adding more directions
from θth(λ) may decrease V (θ), because each element of θth(λ) satisfies the criterion
(6.20). Thus,

∀θ ⊂ θt(λ) V (θ) ≥ V (θth(λ)) (6.25)

which shows that θt(λ) is the set of active basis related to the global minimum.

The above theorem shows that the behavior of the ℓ1 regularization method when
the steering vectors are orthogonal is to form the spatial power spectrum, P (θ) =
aH(θ)Ra(θ) and threshold it by λ2

4
. By changing threshold it is possible to control

the number of active directions. The higher the λ is the fewer sources are chosen. In
order to get the true sources θ0, within the active directions set, λ should be chosen
so that

max
θ/∈θ0

P (θ) <
λ

2
≤ min

θ∈θ0
P (θ) (6.26)

It is also worth noting that the solutions for the signal values in (6.18) are not
equal to the true ones due to the scaling factor ηi. The scaling factor vanishes
only when λ tends to zero. However, due to the criterion (6.26) this is generally
impossible. Hence, we generally conclude that the ℓ1 regularization method is not a
good estimator of the waveforms, while it may detect the directions precisely. That
is why in Chapter 4 we propose the LS estimate for the signal values after estimating
the directions. Here, we introduce some examples of such a situation which may
help to get more insight into the overall method.
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Example 1 In the absence of noise, the model of the received data can be written
as x(t) = A(θ0)s. Then, we have

P (θ) =
√

aH(θ)A(θ0)RsAH(θ0)a(θ) (6.27)

where Rs = lim
T→∞

1
T

∑T
t=1 s(t)s

H(t), and from the orthogonality (6.27) can be sim-

plified as

P (θ) =

{ √
1
T

∑T
t=1 |si(t)|2 θ = θi ∈ θ0

0 θ /∈ θ0
(6.28)

Then the criterion for correct estimation in (6.26) becomes

0 < λ < 2minP (θi) (6.29)

It is better to chose a smaller value of λ so that the scaling factor ηi in (6.18) gets
close to 1. However, it can not be zero.

Example 2 If the number of snapshots is large we can use the benefit of the Law
of Large Numbers (LLN). Note that when T → ∞ the matrix Rx converges to the
true correlation matrix

Rx = A(θ0)RsA
H(θ0) +Rn (6.30)

where Rs =
1
T

∑T
t=1 n(t)n

H(t). Denoting

Pn(θ) =
√

aH(θ)Rna(θ) (6.31)

we can write the criterion as

max
θ/∈θ0

Pn(θ) <
λ

2
≤ min

θ∈θ0

√

P (θ)2 + Pn(θ)2 (6.32)

Here, Pn(θ) is the spacial power spectrum of the noise, and it usually assumed to
be uniform over all angles. In such a situation there always exists a proper λ for a
consistent estimation.

6.1.2 Noiseless Solution

Another important limiting case is when the noise in the model is zero. It is generally
expected for a ”good” estimator in a well-behaved model to give the true estimate
when the stochastic parameters are known. The noise-free case is such a situation in
which the stochastic noise parameters are known to be zero. When the basis vectors
are nonorthogonal, analyzing the method using the solution in (6.4) is complicated.
Instead, for the noise free model another important method is proposed based on
the uncertainty principle (Donoho and Huo 2001). Here we explain the main result
for a general sparse linear regression problem, which can also be found in (Elad and
Bruckstein 2002).
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First, note that in this case the ℓ1 regularization algorithm in (4.9) can be written
as follows, due to the fact that the noise is known to be zero

ŝg(t) = argmin
sg(t)

‖γ‖1
subject to Agsg(t) = x(t)

(6.33)

First, we develop a condition for the one snapshot case (T = 1). The generalization
to the multiple snapshots case is straightforward. Suppose the received data x(t) is
the linear combination of n distinct bases in Ag with indexes, I = {i1, i2, . . . , in}.
The following theorem of (Elad and Bruckstein 2002) gives a condition for the true
estimation. Before introducing the theorem we define a new notation as follows

‖s‖I =
∑

i∈I

|si| (6.34)

Note that
‖s‖1 = ‖s‖I + ‖s‖Ic (6.35)

where Ic is the complement set of I.

Theorem 7. (Donoho and Huo 2001) For a given set of active basis, I of the true
data, the solution to (6.33) is correct regardless of the signal values if and only if

∀x ∈ NAg , ‖x‖I ≤ ‖x‖Ic (6.36)

where NAg is the null space of Ag.

Proof. First suppose for an index set, I the condition is satisfied. Suppose there
exists a signal vector, sg with active vectors at I for which the solution is some
different vector, sg ′. Then we have Agsg = Agsg ′ and ‖sg ′‖1 < ‖sg‖1. Introducing
x = sg ′ − sg we note that x ∈ NAg and

‖x+ sg‖1 < ‖sg‖1 (6.37)

This can be also written as

‖sg‖I > ‖x+ sg‖I + ‖x‖Ic > ‖sg‖I − ‖x‖I + ‖x‖Ic (6.38)

The last inequality is the result of the triangle inequality. This means that ‖xg‖Ic <
‖xg‖I which is in contradiction with the assumption.

Second, suppose there exists x ∈ NAg so that ‖xg‖Ic < ‖xg‖I . Let us denote the
active basis for this vector by J . Assume a vector sg with I as active indexes, and
the additional property that its elements at the indexes in I ∩ J are the negative of
the corresponding elements in x so that ‖x+ sg‖I∩J = 0 and also ‖sg‖I∩J = ‖x‖I .
Then

‖x+ sg‖1 = ‖x+ sg‖I−J + ‖x+ sg‖J−I

= ‖sg‖I−J + ‖x‖Ic < ‖x‖I + ‖sg‖I−J

= ‖s‖I∩J + ‖sg‖I−J = ‖sg‖1 (6.39)

This shows that there exists a signal vector for which the estimate is different from
the true one both in directions and values.
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The criterion (6.36) of the above theorem can also be restated as the maximum of
‖x‖I
‖x‖1

to be less than 1
2
. Finding all suitable active bases for which the theorem is

satisfied has not been done yet. However, it is expected that the criterion is a trade
off between the number of active basis vectors and the minimum angle of them. The
less the number of sources is, the closer they can be.

To find the maximum of ‖x‖I
‖x‖1

in the null space we can assume without lose of

generality that ‖x‖1 = 1. Now the problem is reformulated as finding the maximum
of ‖x‖I in the intersection, S of the Null space hyper plane and the convex polygon
of ‖x‖1 = 1 in an N -dimensional space.Note that S is a convex polygon and ‖x‖I
is a piecewise linear function. Hence, its maximum occurs on one of the vertexes of
S . But each vertex of S is a vector x in the null space with at most m+ 1 active
indexes. We conclude that to search for the maximum value we only need to search
the null space over the vectors with at most m + 1 nonzero elements. Suppose Ag

is m-ambiguous which means that each vertex point contains exactly m+1 nonzero
elements. Corresponding to each set, J = {j1, j2, . . . , jm+1} of m+ 1 active indexes
the vertex can be found as follows

[aj1 aj2 . . .ajm]







xj1

xj2

. . .
xjm






= −xjm+1ajm+1 (6.40)

This time we can assume without lose of generality that −xjm+1 = 1 and jm+1 /∈ I.
Thus, the above equation will admit a unique solution and the criterion can be
written as

T (J, I) =

∑

jk∈I
|xjk |

∑m
k=1 |xjk |+ 1

(6.41)

where xjk is given by (6.40). One important conclusion is that consistency for σ2 = 0
cannot be guaranteed for all scenarios. In Section 7.3 we get an empirical graph of
the consistency region by ℓ1 regularization.

6.2 Consistency Conditions

In this chapter we are going to analyze the conditions under which the ℓ1 regulariza-
tion is guaranteed to have a solution sufficiently close to the actual DOA parameters.

Orthogonality and the case of large number of sensors

We earlier stated that the distinct basis vectors become orthogonal as the number
of sensors grows. On the other hand, in the previous section we showed that the
ℓ1 regularization method gives the true directions for the case of orthogonal basis
vectors. Now, we discuss the consistency for a large number of sensors by giving a
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more accurate definition for this case. The main question in this chapter is weather
or not the case of large number of sensors and orthogonality are equivalent in a
ULA.

Assume an infinite sequence of ULA sensor arrays, all with the same separation
distance, d between sensors. Suppose the number of sensors for the mth array is
m. Suppose a grid G with N points is used for all arrays. We denote the steering
vectors for these arrays as

am(θ) =










1
ejφ

ej2φ

...
ej(m−1)φ










m = 1, 2, . . . ,∞ (6.42)

where we assumed that the reference point is on the first sensor and φ = 2π d
λ
cos θ.

We also define φi = 2π d
λ
cos θgi which are the electrical angles for the points on the

grid. We assume that the sources are on the grid points. The other case should be
treated differently. This set of problems are solved by the ℓ1 regularization method
with a sequence of regularization parameters, {λm}∞m=1. Note that for any two
distinct indexes i, and j it is easy to see that

lim
m→∞

1

m
|aH

m(θ
g
i )am(θ

g
j )| = 0 (6.43)

For any choice of active basis for the mth ULA we can write

AH
mAm = mI+mEm(θ) (6.44)

Where for simplicity the argument for A is neglected. Due to (6.43), for every ǫ > 0
there exists a sufficiently large M for which for every choice of the active indexes, θ̂

m > M ⇒ ∀i, j ǫi,j = (Em)i,j ≤ ǫ (6.45)

This also can be written as

lim
m→∞

sup
θ

‖Em(θ)‖ = 0 (6.46)

For each direction, θ we also introduce

ym(θ, t) =
1

m
aH
m(θ)x(t) (6.47)

We denote the true and the estimated DOAs by θ0 and θ̂ respectively. Now, ac-
cording to the model of the signal in (3.3) it can be inferred that

lim
m→∞

ym(θ
g
i , t) = lim

m→∞

1

m
aH
m(θ

g
i )

[
n∑

j=1

am(θ0j)sj(t) + nm(t)

]

=

{
sj(t) θgi = θ0j ∈ θ0

0 Otherwise

(6.48)
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Note that the term related to the noise goes to zero almost surely as explained in
(Stout 1974). Then, the solution (6.4) can be written as

ŝ(θ, t) =

(
λm

2m
Γ−1 + I+ Em

)−1

ym(θ, t) (6.49)

where ym(θ, t) = [y(θ1, t), y(θ2, t), . . . , y(θn, t)]
T . To state the theorem we need a

lemma to be proved before hand.

Lemma 1. For every ǫ > 0 there exists an M so that for every direction set θ and
m > M we almost surely have

‖ŝ(θ, t)‖2 ≤
√

∑

j|θj∈θ∩θ0

|sj(t)|2 + ǫ ≤ C (6.50)

where C is a constant not relating to any of the variables.

Proof. Equation (6.49) can be written as
(
λm

2m
Γ−1 + I+ Em

)

ŝ(t) = ym(t) (6.51)

Then we can write

‖ym(t)‖2 ≥ ‖ŝ(t)‖2σmin

(
λk

2mk
Γ−1 + I+ Em

)

≥ ‖ŝ(t)‖2σmin (I+ Em) (6.52)

where σmin(. ) is the minimum singular value of its argument. The last inequality
holds because λm

2m
Γ−1 is positive definite. Now note that for each x,

xH(I+ Em)x = ‖x‖22 + xH(Em)x ≥ (1− ǫ)‖x‖22 (6.53)

Where the last inequality is due to (6.45). this shows that the minimum eigenvalue
is greater than 1− ǫ and so according to (6.48) we have

‖ŝ(t)‖2 ≤

√∑

j|θj∈θ
|sj(t)|2 + ǫ

1− ǫ
≤

√
∑

j|θj∈θ

|sj(t)|2 + ǫ′ ≤ C (6.54)

where ǫ′ tends to zero as ǫ does and C can be for example
√∑

j |sj(t)|2 + 1.

In the above lemma we showed that for a sufficiently large number of sensors, m.
The estimated source vector is always bounded regardless of the estimated position
of sources. Now the following theorem shows the consistency.

Theorem 8. Consider a sequence of arrays satisfying 6.43. Assume that the point
sources are exactly on the grid points, then there exists a corresponding sequence of
regularization parameters {λm}∞m=1 for which the solutions to the ℓ1 regularization
problem converges to the exact signals and directions.
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Proof. Writing Ek = [e1 e2 . . . en]
H , from (6.51) we have

∀r,
(

λm

2mγr
+ 1

)

ŝr(θ, t) = ym(θr, t)− eHr ŝ(θ, t) (6.55)

It turns out that

(
λm

2mγr
+ 1

)2 T∑

t=1

|ŝr(θ, t)|2 =
T∑

t=1

|ym(θr, t)− eHr ŝ(θ, t)|2 (6.56)

According to the definition of γr we can write

lim
m→∞

(
λm

2m
+ γr

)

= lim
m→∞

√
√
√
√ 1

T

T∑

t=1

|ym(θr, t)− eHr ŝ(θ, t)|2 (6.57)

Now, due to Lemma 1, for sufficiently large k, ŝ(θ, t) is bounded and according to
(6.45) the term eHr ŝ(θ, t) tends to zero at infinity. Also from (6.48) we have

lim
m→∞

(
λm

2m
+ γr

)

=

{ √
1
T

∑T
t=1 |si(t)|2 θr = θ0i

0 Otherwise
(6.58)

Note that as a part of the marginal solution, Γ is a function of the choice of the
active sources, θ. We here showed that the Γs of all marginal solutions uniformly
converge to their limits. Suppose λm is chosen so that limm→∞

λm

m
= 0 Then we get

the limit of the γr(θ) as the left hand side of (6.58). Note that because ŝ(θ, t) is a
continuous function of λ, Γ, and yk, from (6.49) it can be derived that

lim
m→∞

ŝ(θ, t) = lim
m→∞

ym(θ, t) (6.59)

On the other hand the cost function of the ℓ1 regularization methods can be written
as

VLASSO(θ) =
1

T

T∑

t=1

‖x(t)−Aŝ(θ, t)‖22 + λm

n∑

i=1

γi(θ)

=
1

T

T∑

t=1

‖x(t)‖22 +m

[

1

T

T∑

t=1

(
ŝH(θ, t)(I+ Ek )̂s(θ, t)

− 2Re(yH(θ, t)̂s(θ, t))
)
+

λm

m

n∑

i=1

γi

]

(6.60)

Because the maximum does not change by shifting and scaling, according to (6.59)
and (6.45), and the fact that lim

m→∞

λm

m
= 0 we get

lim
m→∞

VLASSO(θ) ∝ − lim
m→∞

T∑

t=1

yH
m(θ, t)ym(θ, t) (6.61)



34 Chapter 6 Mathematical Analysis

From (6.45) it is obvious that there exists a sufficiently large M such that for every
m > M the global maximum occurs at the true directions (θ̂ = θ0). Also, from
(6.45) and (6.59) it can be seen that for the true directions ŝ(t) tends to the true
values.

There are some key points in the proof of the above theorem. Firstly, the large m
approaches the situation of orthogonality, where it is possible to explain the behavior
of the method by beamforming and thresholding. Secondly, according to the term
AHx in (6.4), the noise term vanishes as m grows, which allows the threshold λ to
be chosen small so that the scaling factor ηi in (6.18) tends to 1.

What if one of the source directions is not on the grid points? If the grid is constant
this means that the received signal term a(θi)si will become orthogonal to all basis
vectors and will be disappeared from AHx. In the other words, the sensitivity range
of each basis vector to its adjacent directions decreases by growing m, so that a
source with a certain distance from the grid points eventually becomes invisible by
the basis vectors. To cope with this problem one may propose to increase the density
of the grid gradually by m so that the point can be seen at least by one basis vector,
but this implicitly means that the consecutive basis vectors gradually get closer and
will not be orthogonal anymore even if m tends to infinity!

To sum up, we can judge that generally, the large number of sensors case is not
equivalent to an orthogonal basis set. Instead, it achieves the true values of the
parameters by a remarkable increase in the effective Signal to Noise Ratio (SNR)
through a growing diversity of the received data. From this point of view it can be
inferred that the general consistency for a large number of sensors is related to the
noise-free case as well as the orthogonal case.

6.3 High SNR Consistency

We bring this chapter to conclusion by giving a discussion about the consistency of
the regularization method when the SNR is high enough. In Section 6.1.2 we learned
the condition under which a set of active indexes can be recovered by the method.
Here we show that with the same condition it is possible to recover the directions on
a grid for sufficiently small noise by thresholding the estimated power spectrum, γ.
We adopt the equivalent form of ℓ1 regularization similar to (6.33) and we confine
ourselves to the case of one snapshot. Consider the following formulation

ŝδ(x) = argmin
s

‖s‖1
subject to ‖As− x‖ ≤ δ

(6.62)

We show the consistency for such an optimization but before that we need some
observations.

Lemma 2. Given a matrix A and a vector y ∈ RA there always exists a vector x
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such that Ax = y, and

‖x‖2 ≤
‖y‖2

σmin(A)
(6.63)

where σmin(A) denotes the minimum nonzero singular value of A.

Proof. Using Singular Value Decomposition (SVD), we can writeA = USVH , where
U and V are two orthogonal matrices and S can be written as

S =

(
Σ 0
0 0

)

(6.64)

where Σ is the diagonal matrix of nonzero singular values. Then, Ax = y implies

USVHx = y (6.65)

defining x′ = V
H
x and y′ = U

H
y we get

(
Σ 0
0 0

)

x′ =

(
Σ 0
0 0

)(
x′
t

x′
b

)

=

(
y′
t

y′
b

)

(6.66)

where we divide x′ and y′ into two blocks of suitable dimensions. It can be seen in
(6.66) that y′

b = 0 and Σx′
t = y′

t. To get the smallest norm we can choose x′
b = 0

and x′
t = Σ−1y′

t. Then, we have

‖x′‖2 = ‖x′
t‖2 ≤

‖y′
t‖2

σm(A)
=

‖y′‖2
σm(A)

(6.67)

Because U and V are orthogonal, ‖x′‖2 = ‖x‖2 and ‖y′‖2 = ‖y‖2, which implies
(6.63).

Note that for a ULA with a uniform grid we can find the nonzero singular values by
computing the eigenvalues of AgAgH . We have

1

N
(AgHAg)p,q =

1

N

N∑

i=1

ej(p−q)φi (6.68)

which for a large N , is a Riemann sum for the integral
∫ π

0
ej(p−q)φdφ = πδp,q. This

shows that for a large value of N the minimum singular value of Ag is about
√
Nπ.

Now we can state the consistency condition as follows

Theorem 9. Assume that the active indexes for the true sources at the grid points
satisfy the condition of Theorem 7 with strict inequality. Then, for every ǫ > 0 there
exist a pair of µ, δ > 0 such that if ‖n‖ ≤ µ we get ‖ŝδ(x)− s‖1 ≤ ǫ, where ŝδ(x) is
defined in (6.62)
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Proof. If we choose µ ≤ δ, then we are sure that

‖x−Ags‖2 = ‖n‖2 ≤ µ ≤ δ (6.69)

which shows that the actual source vector, s is in the feasible region of (6.62). Thus,

‖sδ(x)‖1 ≤ ‖s‖1 (6.70)

Now we show that the difference, d = s − sδ(x), between the true value and the
estimated one can be decomposed into two vectors (d = ∆+ ν) for which ∆ ∈ NA

and ‖ν‖2 is small. We have

‖x−Agsδ(x)‖2 = ‖Ags+ n−Agsδ(x)‖2 ≤ δ (6.71)

which implies that

‖Ags−Agsδ(x)‖2 ≤ δ + µ (6.72)

Due to Lemma 2 there exists a vector ν so that Aν = Ad and ‖ν‖2 ≤ ‖Ag
d‖2

σm(Ag)
and

from (6.72)

‖ν‖2 ≤
‖Ag

d‖2
σm(Ag)

≤ δ + µ

σm(Ag)
= δ′ (6.73)

Also note that ∆ = d− ν ∈ NA.

Now we can write (6.70) as

‖s− d‖1 ≤ ‖s‖1 (6.74)

Using the notation introduced in (6.34), (6.74) becomes

‖s− d‖I + ‖d‖Ic ≤ ‖s‖I (6.75)

and by the triangle inequality we get,

‖s‖I − ‖d‖I + ‖d‖Ic ≤ ‖s− d‖I + ‖d‖Ic ≤ ‖s‖I (6.76)

which leads to

‖d‖Ic ≤ ‖d‖I (6.77)

Substituting the decomposition for d, we get

‖∆+ ν‖Ic ≤ ‖∆+ ν‖I (6.78)

Again, using the triangle inequality and simplifying, we have

‖∆‖Ic ≤ ‖∆‖I + ‖ν‖1 (6.79)

Now according to the fact that ‖ν‖1 ≤
√
m‖ν‖2 and due to (6.73) we have

‖∆‖1 ≤ 2‖∆‖I +
√
mδ′ (6.80)
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If Theorem 7 holds true with strict inequality, then because of the discrete nature
of the grid there exists a sufficiently small but constant bound κ such that we have
‖∆‖I
‖∆‖1

≤ 1
2
− κ. Combining this result with (6.80) we have

‖∆‖1 ≤
√
mδ′

2κ
(6.81)

and finally, since s− ŝδ((x)) = ∆+ ν, we obtain

‖sδ(x)− s‖1 ≤ ‖∆‖1 + ‖ν‖1 ≤
(
1

κ
+ 1

)√
mδ′ (6.82)

And the result follows.



7 COMPUTER SIMULATIONS

In this chapter we discuss the results for the previously introduced LASSO-based
DOA estimation using simulated data. All the simulations are performed in the
MATLAB software using the SeDuMi toolbox. For the case of multiple snapshots
we used the dimension reduction technique introduced in section 5.

7.1 Comparison to the Classical Methods

In this section we present the result of comparing LASSO to the conventional well-
known methods of MUSIC and beamforming. LASSO is not expected to provide a
better performance as compared to the ML criterion. However, as we stated, the
superiority of the new method is clear when we compare the computational effort
for ML and LASSO. Figure 7.1 shows a typical spectrogram for the LASSO method.
The regularization parameter is chosen as the smallest value giving true number of
sources which is also correspondent to the smaller noise term, ‖x−As‖. As can be
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Figure 7.1. The spatial spectrum of LASSO for one snapshot, and SNR=10dB.

seen, if a source point is not exactly on the grid there always exists a set of nonzero
values around the true direction. This problem can be overcome by first choosing
the peak points of the spectrum and then thresholding.

Resolution

The resolution is the minimum angle separation between different sources which can
be recovered by the method. We investigate the resolution of the LASSO method by
introducing three sources at 70◦, 80◦, and 108◦ degrees and running the simulation
with both one and multiple snapshots for a ULA of 8 sensors and half-wavelength
separation. Figure 7.2 shows the resulting spatial spectra for LASSO and beam-

38
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Figure 7.2. The spatial spectra of LASSO and beamforming. True sources at
θ = {70◦, 80◦, 180◦}, 8-element standard ULA,T=1 snapshot.

Figure 7.2 shows that the LASSO technique can resolve the sources with 10◦ sepa-
ration, while two peaks will merge in the beamforming spectrum. Figure 7.3 shows
the effect of applying LASSO to multiple snapshot data. The vertical lines show the
true DOAs.
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Figure 7.3. Spatial spectra for LASSO comparing to a) Beamforming and
MUSIC with θ = {50◦, 80◦, 108◦}. b) MUSIC by closer sources. Scenario as in
7.2 but T = 100 and SNR=7dB.

Investigating the multiple snapshot case with T = 100, Figure 7.3(a) shows that the
LASSO method works well when the sources are sufficiently separated. However, as
the angle between sources gets smaller, a bias appears in the estimated angles (Figure
7.3(b)). As we show later in this section this bias is a result of non-consistency in
the method.
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Effect of noise

In this section we show the effect of decreasing the SNR by simulating the scenario
of Figure 7.2 but increasing the noise power. Note that it is known that for both
beamforming and MUSIC methods, the effect of noise will decrease with a large
number of snapshots, so we choose a relatively small number of snapshots T = 10.
The result is shown in Figure 7.4. In this figure note that although the LASSO
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Figure 7.4. Spatial spectra of the LASSO ,beamforming, and MUSIC methods.
SNR=0dB.

method can resolve 3 sources unlike the other methods, there is still an error due to
the low SNR.

7.2 Regularization Parameter Selection

In this section we show the result of applying the regularization parameter selection
methods previously introduced.

Multiple snapshot case

As proposed in Chapter 5, for a large number of snapshots the MDL criterion can be
used to find a proper value of the regularization parameter, λ. For this purpose, we
set up a simulation of 3 sources with T = 100, and performed LASSO for different
values of λ. For each such a result we compute the USC given in (5.16) and plot it
versus λ. The result is shown in Figure 7.5. Note that the region between vertical
lines with triangle mark is the region where the true number of sources is obtained
i.e. n = 3.
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Figure 7.5. The universal stochastic complexity for 3 sensors and SNR=3dB.
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Figure 7.6. The MAP and MDL criteria for one snapshot and SNR=10dB.

One snapshot case

For the one snapshot case we apply the same procedure as the MDL simulation but
this time compute (5.24) for each optimization for different λ. The result is given
in (7.6). As before the region between the vertical lines shows the true detection
area. As it can be seen unlike the MDL criterion, MAP has a the tendency to chose
the largest possible λ corresponding to the most sparse solution. It is also worth
noting that the MAP estimation for λ is sensitive to the distribution of the source.
For a pdf with tails stronger than Laplacian distribution the method may loose its
precision. Here we used a Gaussian variable to generate the result.

7.3 A Theoretical Resolution Bound

Finally we try to find the consistency region of all active sets, I satisfying theorem
7. To do so we solve the optimization problem

min
x∈NA,‖x‖I=1

‖x‖1 (7.1)
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which using the regularization equivalence conditions in chapter 4 can be written as

min
x∈NA

‖x‖1 + λ‖x‖I (7.2)

with a small value of λ. This problem is convex and can be done using convex
optimization techniques. The result is shown in figure where we find the closest
separation between two sources at different angles resolvable by the method i.e. the
resolution. We compared this result to the beam width of the beamformer for dif-
ferent number of sensors, which is approximately the resolution of the beamforming
technique.
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Figure 7.7. The fundumental resolution of LASSO compared to Beamforming.

It can be seen that for T = 1 and very high SNR the LASSO method has a much
better resolution than the beamforming method. Also, note that the resolution for
both method depends on the DOA, but for beamforming it neither depends on the
SNR nor the number of snapshots.



8 CONCLUSION

In this report we discussed the DOA estimation solution by viewing the unknown
parameters as a sparse vector and using the Least Absolute (ℓ1) norm as a Shrinkage
and Selection Operator, which justifies the terminology LASSO (??). The main
idea is to replace the abstract functional form by the mechanism of an operator
choosing from a sufficiently large look-up table. As described in Section 4, this can
be shown mathematically as a product of a very large look-up matrix, Ag to a sparse
selection vector sg. Forming a sparse regularization problem, the solution can be
found by the LASSO method using convex programming. Next, we addressed the
question of selecting the regularization parameter λ, in the LASSO method, and
showed that it can be solved by a two-stage procedure of detecting the number of
sources and estimating their directions. We introduced MDL as a strong criterion
for detecting the number of sources based on the estimation of directions and signals.
We also viewed LASSO as a Bayesian estimator with a truncated Laplacian prior,
and devised an ML criterion for selecting λ. From a mathematical analysis we found
that:

• For the asymptotic case of orthogonal bases, the method is merely a com-
bination of beamforming and thresholding by λ. Note that in this case the
beamforming gives a perfect solution if the noise is almost spatially white (its
spatial spectrum is approximately constant).

• For the case of a large number of sensors, if the source point is on the grid the
method is consistent through the asymptotic orthogonality of the bases both
to each other and to the noise vector. We proved uniform convergence for such
a case by increasing the number of sensors.

• For the high SNR case we showed that the method is not consistent. We intro-
duced a previously devised criterion for consistency and provided a numerical
(but not analytical) method of implementing it using convex programming.
This criterion is used to find the fundamental resolution of the LASSO method
for DOA estimation.

• We showed that if the point is not on the grid the case of large number of sen-
sors resembles the noiseless case. However, the noiseless case with an arbitrary
source is not discussed.

From a simulation study, we found that:

• The LASSO method for DOA estimation is a high resolution method com-
pared to the beamforming technique. It also does not depend to the source
correlation compared to MUSIC, and is less sensitive to the noise level.
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• For a large number of snapshots, the SVD-based dimension reduction reduces
the computation time for LASSO dramatically.

• The MDL criterion is suitable for a large number of received data. For less
number of snapshots, the MAP criterion might be used but it is sensitive to
the true distribution of the sources.

• There is a fundumental resolution limit for this method which can be com-
puted.

8.1 Suggestions For Future Work

The LASSO-based technique for DOA estimation has a great potential as demon-
strated herein as well as in (Malioutov 2003). However, much work remains before
its properties are fully understood. The following lists a few suggestions:

• According to the fact that we are only interested in special solutions to the
LASSO problem is it possible to perform the search for the regularization
parameter by a faster method?

• What is the behavior of the method when the DOA is not on the grid?

• What is the theoretical performance of the method with stochastic waveforms?

Finally, a deeper investigation about the bias introduced by the dimension reduction,
the Bayesian interpretation of the LASSO as well as the theoretical discussion for
an arbitrary source direction, and an analytical performance analysis is proposed by
the author as interesting topic for future research.
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