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Abstract: This paper describes the development of a tool for automatic generation of optimal
power management strategies. Given the user inputs, which are dynamic vehicle model, driving
cycle and optimization criterion, the tool first produces a simplified powertrain model in the
form of static maps, before dynamic programming is used to find an optimal torque split which
minimizes the chosen criterion. The tool does not require a transparent vehicle model, which
makes it possible to work on models hidden for intellectual property reasons.
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1. INTRODUCTION

The interest of alternative powertrain solutions has in-
creased during the last decade due to fuel economy and
environmental reasons. Hybrid electric vehicles (HEVs)
are one group of such alternatives where the traditional
combustion engine is complemented with one, or several
electric motors, and an energy buffer, typically a battery.
This gives the vehicle two power sources, where the electric
one can also be used in reversed mode, ie, as generator. The
potential fuel savings mainly depend on 1) the possibility
to re-generate brake energy by using the electric motors
as generators and storing the energy in the buffer, and
2) the possibility to run the engine at more efficient load
conditions while storing the excess energy in the buffer.
See, eg, Guzzela and Sciarretta (2007) for an overview on
hybrid vehicles.

Given the torque command originating from the driver’s
gas pedal, the control algorithm has to decide how the
demanded torque should be divided into contributions
from the two power sources. This is a delicate control
problem where the optimal solution depends not only
on vehicle design parameters. The dominating external
information which influences the best power split is the
future driving scenario, ie, speed and altitude as a function
of time. This information describes the need of energy in
the near future, and with help of this information it can be
decided, eg, if the battery should be emptied because of an
expected inflow of re-generated energy. See Johannesson
(2009) for more insight on this.

At the end, the vehicle performance, eg fuel consumption,
depends on the configuration including the design and
sizing of the components of the HEV and the torque split
control algorithm. This work describes the development
of a tool to assess the first of these issues, ie to estimate
the potential of the parallel HEV configuration without
? This work was supported by Volvo Trucks, Volvo Cars, Saab
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developing a control algorithm. Such a tool is useful for
gaining information of the potential of a certain parallel
powertrain, and to evaluate reasonable sizing of different
subsystems, such as the battery.

Hence, given a vehicle model and a driving cycle, the tool
generates the optimal power-split strategy. The approach
is deterministic since the demanded torque and vehicle
speed trajectories are perfectly known and the strategy is
optimal only for the given driving cycle. This control is not
to be implemented in real time, but used for assessment of
powertrain capabilities to meet the targets and constraints
early in the powertrain design process.

The optimization is based on dynamic programming, Bell-
man (1957), Naidu (2002). A weakness of this algorithm is
that the computational time increases exponentially with
the number of state variables (curse of dimensionality,
Bertsekas (2000)). For this reason, in place of dynamic
vehicle model, a simplified powertrain model is produced
where fast states are removed. This can be done since
transients typically do not influence fuel consumption and
emissions significantly, Kolmanovsky et al. (1999), Pisu
and Rizzoni (2007), Koot et al. (2005).

The simplified powertrain model is represented with a
static map in the form of look-up tables. The tool produces
these maps automatically by performing series of simula-
tions of the dynamic vehicle model at gridded values of the
input signals until steady state has been reached. Hence,
the production of the maps includes long simulation and
special measures are taken not to exaggerate this time,
Murgovski et al. (2010).

The methodology, to simplify a dynamic model and then
apply dynamic programming, is not new in connection
to evaluating HEV configurations. See for example Kang
et al. (1999), Kolmanovsky et al. (2005), Guzzella and
Amstutz (1999), Lin et al. (2003), Sundström et al. (2008).
There are also tools for modeling and simulation of HEVs
which support the evaluation of the size of the design



Fig. 1. Block diagram of the tool. Vehicle model, driving
cycle and optimization criteria are given by the user.

parameters, JANUS by Bumby et al. (1985), SIMPLEV
by Cole (1991), ADVISOR by Wipke et al. (1999), Markel
et al. (2002), QSS-TB by Guzzella and Amstutz (1999),
HYSDEL by Torrisi and Bemporad (2004), CAPSim by
Fredriksson et al. (2006), ADAMS/Car, CARSim and
others, Kolmanovsky et al. (2005), Butler et al. (1999),
Mierlo and Maggetto (2001), Hayat et al. (2003), Liu and
Peng (2008). Instead, the contribution of this paper is the
automation of the configuration evaluation. This is done
by concatenation of the two main steps into one tool. No
interaction from the user is needed in the intermediate
step to set values for the algorithms, which they might
not know.

The paper is outlined as follows: tool overview and prob-
lem formulation is discussed in Section 2, description of
the tool is given in Section 3, an example of minimization
of fuel consumption is given in Section 4 and the process
of optimizing other optimization criteria is explained in
Section 5.

2. TOOL OVERVIEW AND PROBLEM
FORMULATION

The tool is implemented in Matlab/Simulink environment.
It is composed of two modules, one for generation of a
quasi-static powertrain model and the other for power
split optimization, see Fig. 1. Input data to the tool
is supplied by the user and these are dynamic vehicle
model, driving cycle r(t) = [vdem(t) h(t)]T (a vector of
demanded speed vdem(t) and altitude of the driving profile
h(t)) and optimization criterion. Depending on the chosen
criterion, the requirements on the model change. In this
presentation, for didactic reasons, we choose the criterion
to be fuel consumption. Later, in Section 5, we will explain
what changes for other criteria.

After user info is supplied, a quasi-static model is auto-
matically obtained from the dynamic model where most
of the dynamics are removed. This is done by simulating
at gridded constant input values. The purpose of using a
quasi-static model in the second step, where the actual
optimization takes place, is to obtain faster simulation
without losing much of the model accuracy. This led to
non-trivial technical issues that need to be solved, which
is a contribution of this paper:

• Generation of a map of the vehicle powertrain without
taking components apart such as engine, el. machine,
battery, gearbox... This also makes it possible to work
with hidden models, further explained in Section 3.2.

• Obtain map values at non-stationary points. For
example, the derivative of battery state of charge

Fig. 2. Structure of the dynamic model, the quasi-static
model and how signals relate to each other. The dy-
namic model comprises a controller fctrl, vehicle dy-
namics fveh and output gveh. The quasi-static model
consists of a torque split and two lookup tables fICE

and fEM .

˙soc(t) is a function of, among other signals, soc(t).
The state soc(t) is constant only for ˙soc(t) = 0, but
evaluation is needed for other values of ˙soc(t), which
then, by definition, gives a non-constant soc(t). A
work around this contradiction is further explained
in Section 3.2.

3. TOOL

3.1 Dynamic Vehicle Model

This subsection describes requirements on the dynamic
vehicle model for it to be used by the optimization tool.

The dynamic vehicle model, given in the upper part of Fig.
2, comprises a controller fctrl, consisting of a driver model
and torque split, vehicle dynamics fveh and available
outputs gveh. The vehicle dynamics include a model of a
parallel powertrain, see Fig. 3, and possibly other vehicle
components. In general this is a nonlinear model and can
be expressed as

ẋ(t) = fveh(x(t), u(t), r(t), Tload(t))

y(t) = gveh(x(t), u(t), r(t), Tload(t))

u(t) = fctrl(x(t), y(t), r(t))

(1)

where y(t) = [vveh(t) Tveh(t) ṁf (t)]T is model output
consisting of the vehicle velocity vveh(t), traction torque
Tveh(t) and fuelflow ṁf (t) needed in the optimization
criterion; x(t) = [soc(t) xr(t)T ]T is a vector of continuous
states in the dynamic model consisting of a battery state
of charge soc(t) kept in the quasi-static model and states
xr(t) that will be removed in the quasi-static model;
u(t) = [γ(t) TICE(t) TEM (t) Tbrk(t)]T is a control
signal consisting of gear γ(t), combustion engine torque
TICE(t), electric machine torque TEM (t) and braking
torque Tbrk(t); r(t) is the driving cycle; and Tload(t),
which can be considered as disturbance in the longitudinal
vehicle dynamics in gveh(t), is an external torque load
which is zero normally, but is used by the tool to add
an extra load in simulations.



Fig. 3. Illustration of generation of a quasi-static model,
given a dynamic model with parallel hybrid elec-
tric powertrain. The tool gives gridded values for
γ(t), vdem(t), Tload(t) and soc(t), and decides when
to ground the control signals TICE(t), TEM (t) and
Tbrk(t).

The states xr(t), the functions fveh, gveh and fctrl in (1)
can be hidden from the user, as long as the following re-
quirements, further explained in Section 3.2, are satisfied:

(1) Access to the derivative of the battery state ˙soc(t)
and the output y(t) during simulation.

(2) Possibility to disconnect the controller. This involves
manual selection of pure electrical or pure combustion
operation by TICE(t), TEM (t), manual gear selection
γ(t) and ability to deactivate the brakes Tbrk(t).

(3) Possibility to add fuel. This signal is not of impor-
tance later in the paper and notation is omitted.

(4) Ability to add additional value to the battery state
soc(t). This corresponds to charging/discharging the
battery and is used to keep the soc(t) value constant
although energy is taken out of the battery.

(5) Possibility to add external torque load Tload(t).

The process of generation of a quasi-static powertrain
model including requirements on the dynamic vehicle
model is illustrated in Fig. 3.

3.2 Quasi-static powertrain model

The quasi-static model, see Fig. 2, comprises a torque split
and two lookup tables, fICE and fEM , describing the two
cases where the dynamic model (1) is powered only by the
internal combustion engine (ICE), or only by the electric
machine (EM)

T̃ICE(t) =

{
Tveh(t) − T̃EM (t) if Tveh(t) ≥ 0

0 otherwise

ṁq
f (t) = fICE(γ(t), vveh(t), T̃ICE(t))

˙socq(t) = fEM (γ(t), vveh(t), T̃EM (t), socq(t))

(2)

where T̃ICE(t) is the torque at the wheels produced by

ICE, T̃EM (t) is the torque at the wheels produced by EM,
ṁq

f (t) and ˙socq(t) are outputs of the quasi-static model

that resemble the outputs ṁf (t) and ˙soc(t) of the dynamic
model and γ(t), vveh(t) and Tveh(t) are input signals.

The only states retained in the model are those needed
in the optimization criterion, ie, in our case only socq(t).
The quasi-static model is open and all variables within
are accessible. Its simulation entails linear interpolation
of the underlying multidimensional maps fICE and fEM ,
accomplished by the Matlab function interpn.

Generation of lookup tables: The map fICE is generated by
simulating the dynamic model over a set of gridded values
of the input variables γ(t), vdem(t) and Tload(t). These
values are produced by the tool, as illustrated in Fig. 3,
having only ICE to power the vehicle, ie TEM (t) = 0.
Equation (1) then gives us

u(t) =

 γ(t)
TICE(t)

0
Tbrk(t)

 , r(t) =

[
vdem(t)

0

]
[
TICE(t)
Tbrk(t)

]
= fctrl(x(t), y(t), r(t))

(3)

where we choose to rely on the controller and let the
rest of the control signals, TICE(t) and Tbrk(t), keep the
values set by the controller fctrl. The driving cycle r(t),
generated by the tool, has zero altitude throughout the
whole simulation, since instead of the longitudinal slope,
the tool uses Tload(t) to give extra load to the vehicle. The
tool keeps the gridded values constant until equilibrium is
reached, followed by reading the dynamic model outputs
y(t), after which a new gridded combination is being
generated. More information on the steady-state detection
can be found in Murgovski et al. (2010).

Values saved as map inputs are γ(t), vveh(t) and Tveh(t),
as in (2).

For the generation of fEM the vehicle is propelled only by
EM, ie TICE(t) = 0. The tool gives gridded values for γ(t),
vdem(t), Tload(t) and soc(t)

u(t) =

{
[γ(t) 0 TEM (t) Tbrk(t)]T if Tload(t) ≥ 0

[γ(t) 0 TEM (t) 0]T otherwise

r(t) =

[
vdem(t)

0

]
,

[
TEM (t)
Tbrk(t)

]
= fctrl(x(t), y(t), r(t))

(4)

where values for soc(t) are set through an external signal
for charging/discharging the battery, assuming that the
vehicle model posses such a signal as was stated in Require-
ment 4) in Section 3.1. For negative torque load the tool
deactivates the friction brakes, ie Tbrk(t) = 0, to obtain the
maximum braking torque of the electric machine. Values
saved as map inputs are γ(t), vveh(t), Tveh(t) and soc(t),
as in (2).

Non-stationary points: For the generation of fEM , simu-
lations are needed with constant soc(t), while energy is
taken out of the battery. A work around this problem is
to charge/disharge the battery with an external amount
ν(t), such that

soc(t+ 1) − soc(t) = ˙soc(t)∆t− ν(t) = 0 (5)

satisfied for ν(t) = ˙soc(t)∆t, as illustrated in Fig. 3.

3.3 Optimization

The second step in the tool, after model simplification,
is optimization of the energy management problem. The



optimization problem is formulated by the optimization
criterion, eg fuel consumption, and a driving cycle chosen
by the user. Then, the tool generates control T̃ ∗

EM , optimal
for that cycle, that minimizes the cost defined by the
criterion

T̃ ∗
EM (t) = min

T̃EM (t)

∫ tf

0

ṁq
f (t)dt

subject to

Tveh(t) = T̃ICE(t) + T̃EM (t) + Tbrk(t)

socq(0) = socq(tf )

T̃ICE,min(t) ≤ T̃ICE(t) ≤ T̃ICE,max(t)

T̃EM,min(t) ≤ T̃EM (t) ≤ T̃EM,max(t)

socmin ≤ socq(t) ≤ socmax

socl ≤ socq(t) ≤ soch

(6)

where tf is the final time, TICE,min(t), TICE,max(t),
TEM,min(t), TEM,max(t), socmin and socmax are torque
and battery state boundaries obtained automatically from
the quasi-static model and socl and soch define the desired
range of the battery state that could be given by the user
and is used to avoid excessive wear of the battery. The tool
approaches (6) as a constraint satisfaction problem, Bert-
sekas (1996), and dynamic programming, Bellman (1957),
is used to find a numerical solution.

4. EXAMPLE: OPTIMIZATION OF FUEL
CONSUMPTION

The tool operation is demonstrated on a dynamic HEV
model of a passenger vehicle with a torque-assist paral-
lel powertrain, see Fig. 3. The torque assist HEV have
mechanically coupled engine and electric machine, which
speed is imposed by the instantaneous vehicle velocity.

The chosen optimization criterion is minimization of fuel
consumption over the ”New European Driving Cycle” and
constant road altitude. Assuming, for simplicity, that the
gear shifting strategy is given in advance as the highest
gear capable of delivering the demanded vehicle speed, the
only control signal in the vehicle model is the torque split.

The first step in the tool operation is model simplification.
As was described in Section 3.2, the dynamic model is
to be simulated over a set of gridded values. The vehicle
has 5 gears and we provide custom gridded values for the
other inputs, see Table 1. Note that gridded values do not
need to be provided by the user, but the default ones can
be used that already exist in the tool. Moreover, the tool
automatically detects the operational regions and speeds-
up the map generation process, see Murgovski et al. (2010).
The tool then simulates the vehicle model with one power
source at a time and two maps fICE and fEM are obtained,
as in (2).

The second step in the tool operation is optimization.
The tool first simulates the dynamic model on the given
driving cycle to obtain the true velocity vveh(t), torque
at the wheels Tveh(t) and gear γ(t). Then, these signals
are used as inputs to the quasi-static model during the
optimization. The energy management problem is defined
as in (6), where the desired range of the battery state is
chosen [socl soch] = [0.4 0.6]. The engine is switched
off whenever the torque demanded by the engine is zero.

Table 1. Gridded values for the generation of
the quasi-static model.

map fICE values # unit

γ(t) = {1, 2, 3, 4, 5} 5

vdem(t) = {0, 1, ..., 50} 51 [m/s]

Tload(t) = {0, 20, ..., 1000} 51 [Nm]

map fEM values # unit

γ(t) = {1, 2, 3, 4, 5} 5

vdem(t) = {0, 1, ..., 50} 51 [m/s]

Tload(t) = {−1000,−980, ..., 1000} 101 [Nm]

soc(t) = {0.2, 0.267, ..., 0.8} 10

4.1 Results and discussion

The maps fICE and fEM in the quasi-static model are
multidimensional, and studying them can be a cumber-
some process, since they are not easy for illustration. Given
gearing and wheel radius of the dynamic vehicle model, the
tool can present these maps as two-dimensional, see Fig.
4 - 6. Map inputs are the ICE torque, T q

ICE and the ICE
speed ωq

ICE (T q
EM and ωq

EM for EM respectively), acting
on the drive-shaft between the gearbox and the power-
split unit. These are not maps of ICE and EM, but could
be considered as such if there were no powertrain losses.
Indeed, it could be noticed in Fig. 4 - 6 that because
of the powertrain losses the maximum torque per vehicle
speed from the quasi-static model is lower than the actual
torque limits from the dynamic vehicle model. Similarly,
the minimum EM torque from the quasi-static model in
Fig. 6 is higher than the minimum torque limit in the
dynamic model. Another difference with an actual ICE
map is that the map in Fig. 4 has operating points below
the idle engine speed (about 750rpm). The reason is that
when the map fICE was generated, low vehicle velocities
could be achieved because of the slipping clutch. The ICE
and EM torque limits of the dynamic vehicle model are
used here only for comparison and are not needed by the
tool otherwise.

In Fig. 4 and Fig. 5 the brake specific fuel consumption
(BSFC) of the engine is given and Fig. 6 illustrates
the normalized efficiency of the electric machine. The
operating points in Fig. 4 are obtained when the vehicle is
run without using the electric machine. In Fig. 5 and 6 the
optimal operating points of ICE and EM are given when
both ICE and EM can propel the vehicle. Five operational
modes are considered, which are 1) pure combustion,
the vehicle is run by ICE only and EM is turned off,
2) boosting, ICE is assisted by EM, 3) discharging, EM
propels the vehicle with ICE turned off, 4) recharging, ICE
generates more torque than needed and the surplus is used
to recharge the battery and 5) regenerative braking, EM
is used to charge the battery with ICE turned off.

When the torque demand is low and the battery is not
fully charged, the vehicle is run in recharging mode. An
extra torque is delivered from ICE to shift the operating
points toward the higher efficiency regions. The efficiency
of EM decides the quantity of surplus torque, and this is
the reason why ICE is not run with higher torque, where
it is most efficient, see Fig. 5. Choosing electric machine
with higher efficiency for lower torque load or downsizing



Fig. 4. Non-optimal operating points when only ICE pro-
pels the vehicle. The maximum torque limit, obtained
by the map fICE , is lower than the actual torque
limit of the dynamic engine model, which is due to
the powertrain losses included in fICE .

Fig. 5. ICE operating points of the optimal power manage-
ment strategy. Most of the operating points are shifted
toward higher torque operation where the engine is
most efficient and the excess torque is used to charge
the battery. Lower torque demands are achieved by
the electric machine, while the engine is turned off.

the engine could lead to increased fuel economy. It is inter-
esting to note that no operating points belong to boosting
mode. This perhaps justifies the idea of downsizing the
engine and use EM assistance when needed.

The optimal control, resulted in approximately 6.1 l/100km
fuel consumption compared to about 8 l/100km when the
vehicle is operated by ICE only. The improvement in fuel
consumption will be lower if the problem of cold start of
the engine is considered, or if transients in engine torque
or the frequent switch between fuel and electric operation
mode are penalized, see Sciarretta et al. (2004). The result
nevertheless shows the advantage of the hybrid electric
vehicle over the conventional fuel-cell vehicle.

Fig. 6. EM operating points of the optimal power man-
agement strategy. For negative torque demands, the
electric machine is used for regenerate braking as
much as possible. EM propels the vehicle only for
small torque demands and is used in recharging mode
only in its most efficient region.

5. OTHER OPTIMIZATION CRITERIA

The tool offers several optimization criteria, fuel con-
sumption, pollutant emissions, or combinations of both,
for the user to choose from. Corresponding cost func-
tion and constraints (6) are prepared in the tool and
automatically loaded for each chosen criterion. The out-
puts and states kept in the quasi-static model will also
change by the chosen criterion and the dynamic model
must provide access to them. For example, minimization
of pollutants, such as NOx, HC, CO2, CO, will require
the model to provide the flow of the pollutants yk(t) as
outputs y(t) = [vveh(t) Tveh(t) yk(t)T ]T . Access to the
derivative of states xk(t), such as battery state, boost
pressure, engine temperature and catalyst temperature, on
which the output yk(t) mainly depends on, should also be
provided by the model, as well as ability to externally add
value to xk(t) to keep the states constant, as was stated
in Requirement 4) in Section 3.1 and further explained in
Section 3.2.

The quasi-static model depends on the chosen criterion
and in (2) it was given for the case when fuel consumption
was to be minimized. For a general choice of criterion,
instead of only one state socq(t) and one output ṁq

f (t), the

quasi-static model will have xqk(t) states and yqk(t) outputs[
yqICE(t)
ẋqICE(t)

]
= fICE(γ(t), vveh(t), T̃ICE(t), xqICE(t))[

yqEM (t)
ẋqEM (t)

]
= fEM (γ(t), vveh(t), T̃EM (t), xqEM (t))

xqk(t) = [xqICE(t)T xqEM (t)T ]T

yqk(t) = [yqICE(t)T yqEM (t)T ]T .

(7)

where xqk(t) and yqk(t) resemble the states xk(t) and
outputs yk(t) of the dynamic model.



6. CONCLUSIONS AND FUTURE WORK

This paper describes a tool that can be used for generation
of optimal power management strategies for a given HEV
model with a parallel powertrain. The model details can
be hidden from the user as long as the model satisfies
the requirements stated in Section 3.1. The process is
automized as much as possible, so that user insight in
vehicle modeling and simulation is not necessary.

There is a potential for future extension of the tool opera-
tion on other powertrain configurations and optimization
criteria. Additionally, the possibility of generating opti-
mal controller for real-time usage, see Johannesson et al.
(2005), is to be investigated.
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