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This paper describes solutions to a number of problems related to the automatic optimization
of hybrid electric powertrains. A tool has been developed which for a given dynamic vehicle
model, driving cycle and optimization criterion, produces a simplified powertrain model in
the form of static maps, before dynamic programming is used to find an optimal torque split
that minimizes the chosen optimization criterion. The tool decides automatically upon the
operating range of the vehicle and can also operate on non-transparent vehicle models.
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1. INTRODUCTION

Hybrid electric vehicles (HEVs) belong to the
group of alternative powertrain solutions, potentially
beneficial in aspect of fuel economy and environmen-
tal reasons. The traditional internal combustion en-
gine (ICE) in HEVs is complemented with one, or
several electric motors (EMs), and an energy stor-
age unit, typically a battery. This gives the vehicle
two or more power sources, where the electric source
can also be used as a generator. See, eg, [1] for an
overview on hybrid vehicles.

In comparison to conventional vehicles, HEVs re-
quire an additional control algorithm to decide how
the demanded torque, originating from the driver gas
pedal, should be divided into contributions from the
two power sources. This is a delicate control prob-
lem where the optimal solution depends both, on the
vehicle design parameters, and the dominating exter-
nal information which influences the best power split
in the future driving scenario, ie, speed and altitude
as a function of time. This information describes the
need of energy in the near future, and with help of
this information it can be decided, eg, if the battery
should be emptied because of an expected inflow of
re-generated energy. See [2] for more insight on this.

The tool developed in this work assesses the po-
tential of the parallel HEV configuration by evalu-
ating reasonable sizing of different subsystems, such
as the battery. Hence, given a vehicle model and a
driving cycle, the tool generates the optimal power-
split strategy. The approach is deterministic since
the demanded torque and vehicle speed trajectories
are perfectly known and the strategy is optimal only
for the given driving cycle. This control is not to be
implemented in real time, but used for assessment
of powertrain capabilities to meet the targets and

constraints early in the powertrain design process.

The optimization is based on dynamic program-
ming, [3]. A weakness of this algorithm is that the
computational time increases exponentially with the
number of state variables. For this reason, in place
of a dynamic vehicle model, a simplified powertrain
model is produced where fast states are removed.
The simplified powertrain model is represented with
a static map in the form of lookup tables. The tool
produces these maps automatically by performing a
series of simulations of the dynamic vehicle model
at gridded values of the input signals until steady
state has been reached. Hence, the production of
the maps includes long simulation and special mea-
sures are taken not to exaggerate this time. The
automation of this process relies on the solutions of
a number of problems which is a contribution of this
paper. These include decision of the range of grid
points in the generation of the maps, decision of nec-
essary simulation time to obtain the map values, as-
sess the quality of the approximate map and a strat-
egy to make it possible to work with non-transparent
models.

2. TOOL OVERVIEW AND PROBLEM FOR-
MULATION

The tool is implemented in Matlab/Simulink en-
vironment. It is composed of two modules, one for
generation of a quasi-static powertrain model and
the other for power split optimization, see Fig. 1.
Input data to the tool is supplied by the user and
these are dynamic vehicle model, driving cycle r(t) =
[Vaem (t)  h(t)]T (a vector of demanded speed v e )
and altitude h(t) of the driving profile) and optimiza-
tion criterion. Depending on the chosen criterion,
the requirements on the model change. In this pre-
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Fig. 1: Block diagram of the tool.

sentation, for didactic reasons, we choose the crite-
rion to be fuel consumption. See [4] for more details
on what changes for other optimization criteria.

2.1 Dynamic Vehicle Model

The dynamic vehicle model, given in the upper
part of Fig. 2, comprises a controller f.;.;, consist-
ing of a driver model and torque split controller, ve-
hicle dynamics fy.p and available outputs gyen. The
vehicle dynamics include a model of a parallel pow-
ertrain, see Fig. 3, and possibly other vehicle com-
ponents. In general, the vehicle model is nonlinear
and can be expressed as

i(t) = [soc(t) Erem(t)T])T
= foen((t), u(t),7(t); Tioad(t))

y(t) = [vven(t) Toen(t) myp(t)]" (1)
= guen(@(t), u(t),r(t); Tioad(t))

u(t) = [y(t) uren(t) upnm(t) uprk(t) west(t)™)"

- fctrl( ( ) (f;),T'( ))

where y(t) is model output consisting of the vehicle
velocity vyen(t), traction torque Tyer(t) and fuelflow
mf(t) needed in the optimization criterion; x(t) is
a vector of continuous states in the dynamic model
consisting of battery state of charge soc(t) kept in
the quasi-static model and states Zyem (t) that will
be removed in the quasi-static model; u(t) is a con-
trol signal consisting of boolean variables urcg(t)
and ugps(t) that control the availability of the power
sources, boolean variable wup,,(t) that is used to dis-
able the friction brakes, gear v(t) € {0,1,...,n},
where n., is the number of gears, and all other in-
accessible control signals uyest(t); r(t) is the driving
cycle; and Tjoqq(t), which stands for disturbance in
the longitudinal vehicle dynamics in gyep (), is an
external torque load which is zero normally, but is
used by the tool to add an extra load in simulations.

The states @yem(t), the control signals wres:(t)
and the functions fien, gven and fer in (1) can be
hidden from the user, as long as the dynamic model
provides 1) access to the derivative of the battery
state soc(t) and the output y(t) during simulation;
2) possibility to manually decide gear ~(¢), selection
of pure electrical, urcg(t) = 0, or pure combustion,
uppn(t) = 0, operation and ability to deactivate the
brakes, up 1 (t) = 0; 3) ability to add additional value
to the battery state soc(t) (this corresponds to charg-
ing/discharging the battery and is used to keep the
soc(t) value constant although energy is taken out
of the battery); and 4) possibility to add external
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Fig. 2: Structure of the dynamic model, the quasi-
static model and how signals relate to each other.
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Fig. 3: Tlustration of generation of a quasi-static
model, given a dynamic model with parallel hybrid
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torque load Tjyaq(t) in simulation.

The process of generation of quasi-static power-
train model including requirements on the dynamic
vehicle model is illustrated in Fig. 3.

2.2 Quasi-Static Powertrain Model

The quasi-static model, see Fig. 2, comprises a
torque split and two lookup tables, ficrp and fgas,
describing the two cases where the dynamic model
(1) is powered only by ICE, or only by EM

T’ueh (t) - TEM (t) if T’ueh (t) >0
0 otherwise

TICE(t) = {

(2)

Toa(f) = Tyen(t) — Tear(t)  if Tyen(t) <0
brk 0 otherwise

m(t) = froe(y(t), voen(t), Tice(t))
s0c¢1(t) = faar(Y(t), voen(t), T (t), soct(t))

where Trcp(t) is the torque at the wheels produced
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by ICE, Tga(t) is the torque at the wheels pro-
duced by EM, Ty, (t) is the braking torque at the
wheels, m‘; (t) and soc?(t) are outputs of the quasi-
static model that resemble the outputs ry(t) and
soc(t) of the dynamic model and (t), vyen(t) and
Tyen(t) are input signals. The only states retained in
the model are those needed in the optimization cri-
terion, ie, in our case only soc?(t). The quasi-static
model is open and all variables within are accessi-
ble. Its simulation entails linear interpolation of the
underlying multidimensional maps frcgp and fgar,
accomplished by the Matlab function interpn.
Generation of lookup tables: The map frop is
generated by simulating the dynamic model over a
set of gridded values produced by the tool fise, as
illustrated in Fig. 3, of the input variables ~(¢),
Vdem (t) and Tjoeq(t), having only ICE to power the
vehicle, ie ugp(t) = 0. Equation (1) then gives us

ut) =[y(t) 1 01 urest(t)T]T
Urest (t) = fctrl(m(t)7 y(t)a T(t))

(1) = [oaen(t) 07 )
(1)
Vdem (t) - ftool (mf (t)a ’Uveh(t)v Tveh (t))

,‘Tload (t)

where we choose to rely on the controller and let the
control signals u,..s; (¢) keep the values set by the con-
troller. If this controller, which may not be known,
is good, equilibrium will be reached fast. The driv-
ing cycle r(t), generated by the tool, has zero altitude
throughout the whole simulation, since instead of the
longitudinal slope, Tjoqq(t) is used to give extra load
to the model.

The tool keeps the gridded values constant until
equilibrium is reached, followed by reading the dy-
namic model outputs y(t), after which a new gridded
combination is being generated. Values saved as map
inputs are y(t), vyer (t) and Tyep(t), as stated in (2).

For the generation of fgj; the vehicle is propelled
only by EM, ie urcp(t) = 0, over gridded values of
Y(), Vaem (t), Tioad(t) and soc(t)

[Y#) 0 1 0 upest(t)T]T, otherwise
Urest (t) = fctrl (.’ﬂ(t), y(t), ’l”(t))

u(t) = {[V(t) 011 Urest(t)T]Ta Tioad(t) >0

r(0) = e (1) 0] @
Y(t)
%lj:;((g = ftoot(80¢(t), Vyen(t), Tyen(t)).
soc(t)

For negative torque load the tool deactivates the
friction brakes, ie upr(t) = 0, to obtain the max-
imum braking torque of the electric machine. Val-
ues used as map inputs are y(t), vyen(t), Tven(t) and
soc(t), as in (2).

Non-stationary points: For the generation of fgay,
simulations are needed with constant soc(t), while
energy is taken out of the battery. A work around
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Fig. 4: Default set of gridded values.

this problem is to charge/discharge the battery with
an external amount v(t), such that

soc(t + 1) — soc(t) = soc(t)At —v(t) =0  (5)
satisfied for v(t) = soc(t)At, as illustrated in Fig. 3.

2.3 Gridded Values and Simulation Speedup

Since no knowledge about the operating regions
of the power sources is assumed, the default set of
gridded values used by the tool is chosen wide, to
cover the operation of both, light and heavy vehicle
models, see Fig. 4. The grid density is characterized
by the number of grid points 1, n,, ny and 1., for
the map inputs, which are gear, demanded velocity,
torque load and battery state, as in (2). The default
values for n,, ny and ng.., chosen by the authors’
experience, are trade-off between small interpolation
error and simulation time. This may give a large
set of different input values, and to simulate for all
these would take a long time. Hence, some special
measures are taken to shorten this time.

First, operational velocity is automatically de-
tected prior the map generation. The dynamic model
is simulated with high reference velocity to obtain
maximum velocity per gear. The number of per-
formed tests is equal to the number of gears n..
Input values with torque request outside the oper-
ational region are automatically detected during the
map generation. This is done by identifying that ref-
erence velocity cannot be met, which is recognized in
the scenario where 1) the vehicle velocity in steady-
state condition has dropped more than half of the
velocity step size in the grid, when no change in ve-
locity is demanded, or 2) the vehicle starts moving
backwards. The number of performed tests needed
to obtain the torque boundaries is n,n,. Torque re-
quests outside the operational region, shaded in Fig.
4, are removed automatically.

Second, the input combinations are sorted in as-
cending order so that for each selected gear the de-
manded power gradually increases. The only ex-
ceptions are the negative torque values, sorted in
descending order. Input combinations are changed
from one stationary value to another without restart-
ing the simulation, so that the kinetic energy of the
dynamic model is preserved. For a new grid point
we start from the neighboring one, so that the dy-
namics between two close stationary points needs to
be simulated.

The set of gridded values is fully customizable, in
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the case where the user has prior knowledge of the
operating regions. For example, to gain simulation
time, low demanded velocities in higher gear, which
are not likely to go into, can be removed manually.

2.4 Simulation Stop-Time

In this section, the problem of detecting station-
arity is investigated for dynamic models that use
fixed step-size solver and a method is proposed and
implemented in the tool for detection of steady-state.

When the dynamic model is simulated for the
different, constant, input signals, it must be decided
upon when the model has reached equilibrium, ie
Z(t) = 0. Access to all states z(¢) in a non-transparent
system is infeasible and investigation over incom-
plete set of states could lead to incorrect results.
To overcome the problem, the steady-state detec-
tion is based on the mean value of the available sig-
nals over a predefined period of time (a time win-
dow). There is higher expectation that the changes
of all states will show up as changes in the avail-
able signals within the time window. Awvailable sig-
nals used for the steady-state detection are z(t) =
[f(t) vpen(t) Tyen(t)]T for the generation of frop
and 2(t) = [s0c(t)  Vpen(t) Toen(t)]” for the gener-
ation of fga;.

Using a time window for detecting stationarity is
common for many methods in literature, but most
of them are based on the assumption that only noisy
measurements are available and the problem then
condense to detecting changes in presence of noise.
Since simulations are noise-free, these methods can-
not be used straight away, but could be a good start-
ing point for the development of an accurate and ef-
ficient algorithm. For example, the F-test method of
statistics [5] investigates the ratio of the mean square
deviation from the mean in a time window to the
mean of squared differences in successive data. A
method presented by Narasimhan [6] is based on a
two-stage composite statistical test to detect depar-
tures from steady-state. Consecutive time windows
are considered and first the equality of the covariance
matrices is tested and then a second test establishes
whether the means of the two periods are equal using
the Hotelling’s T?-test [7].

Alternatively, methods have been developed that
do not require a time window, see [8]-[11]. According
the authors, these methods are faster, but typically
also applicable only to noisy measurements.

T-test variant for steady-state detection: A di-
rect approach to steady-state detection, known as
T-test [12], investigates the linear regression slope
over a time window. If the slope is close to zero, a
steady-state condition is indicated. The steady-state
detector used in this work is a variant of the above
mentioned and is a measure based on the mean of
the absolute values of consecutive derivatives z;(t)
in the time window.

A steady-state index, a;(t), is defined as a mea-

nuad(t) = 07vdem(t) = 3m/S7Nw =10,e=1x 1073
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Fig. 5: Steady-state detection for a step in reference
velocity. All variables are normalized to 1.

sure of the derivative of the state variable z;(t),

t+(Ny—1)At

a; (t) :% >

T=t

4T, =123 (6)

where N,, is the number of samples in the time win-
dow (window size), and z(t) are the available signals.
The constant K is used for normalization,

K = NyZjmaz, Zj,mas = max{|z;|} (7)
where 2; maqz is a signal magnitude automatically found
by the tool. The absolute value in (6) prevents cases
such as sinusoidal signal within the window being
detected as steady.

Replacing the derivative with the difference

. Azi(t
Zj(t)% Ajt()7

valid for small At, and with some manipulation, (6)
can be rewritten as

ij(t + At) = ij (t)+
! A N,A A ©)
o (A2t + Ny )|~ |85 (1)),

The final equation (9) requires lower storage and
fewer operations than (6) and thus saves simulation
time. For each observed signal, the method requires
one variable to be stored and four additions and two
absolute values to be performed. It is only at ¢ =0
that equation (6) is computed resulting in 2/N,, — 1
additions and NV, absolute values.

Steady-state investigation of the dynamic model
(1) is characterized by combining probabilities of the
signals z;(t) being steady, decided by the steady-
state index 1 — a;(t). The dynamic model is consid-
ered steady if the boolean variable, 3(t), computed
following the Dempster’s rule of combination, [13], is
within an acceptable tolerance ¢

3 0,

B(t) =11 —a;(1)=7 <e (10)

Jj=1
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where 60; indicates the level of significance of the sig-
nal z;(t) and can be customized by the user, together
with the window size N,,. By default, all signals are
considered equally significant §; = 1, the window
size is 10 samples and the tolerance is e = 1 x 1073,

The suggested T-test method described above is
compared to a simpler method that indicates station-
arity when the derivatives of all three components of
z(t) are close to zero, H 1(JZj(t)| < €). This com-
parison is shown in Flg 5 and the difference is vis-
ible for a step in the reference velocity. The T-test
method, used by the tool, avoids faulty detection of
stationary condition at ¢t = 2s and ¢ ~ 3s, where the
derivative of all three signals is close to zero. Equi-
librium is correctly indicated after ¢ Z 12s.

2.5 Validation of the Quasi-Static Model

The tool gives the user possibility to perform val-
idation of the quasi-static model by simulating both
models over a chosen driving cycle that will be used
later in optimization. The dynamic model outputs
mf(t), soc(t), are compared to the outputs of the
quasi-static model, 1 (t), soc?(t), obtained by sim-
ulating the quasi-static model with the true output
velocity vyen(t) and torque Thep(t) of the dynamic
model, see Fig. 2. The percentage of the output
variation is expressed as the Euclidean norm of the
difference between the outputs, normalized by the
standard deviation of the dynamic model output

VL (i (1) — 1 (1))?
\/Zt o (g (t) —mg)? ) (11)

m Zt Omf()
= v A

Fit=100(1—

The fit between the derivatives of the battery
states, soc(t) and soci(t), is computed in the same
manner.

The user can also visually inspect the quality of
the signals and depending on the required accuracy
of the predicted fuel consumption, the user can de-
cide upon the required fit. In particular, high accu-
racy is expected in non-transient regions and if this is
not the case, the input set of discrete values should
be refined by 1) increasing the number of discrete
values, changing their distribution within the inter-
val, or increasing the interval in which the discrete
values vary and 2) including additional input signals
to the maps in the quasi-static model that replace
the dynamics taken away.

The grid density works a little bit like the step
size by numeric solution of differential equations. If
the grid is made denser, but the fit does not im-
prove any further, then the grid is dense enough and
the remaining miss-fit can be expected to be due to
transients. Measures for automatic decision of grid
density for the desired interpolation error are cur-
rently not implemented in the tool. Thus, if there is
a need for smaller interpolation error, the user will
need to manually increase the grid density. A draw-
back in such case is the longer simulation time that

Table 1: Gridded values for the generation of the
quasi-static model.

map ficgp values # unit
N(t) = {1,2,3,4,5} 5

vaem(t) = {0,1,...,50} 51 [m/s]
Thoaa(t) = {0,20,...,1000} 51 [Nm]
map fgy  values # unit
~y(t) = {1,2,3,4,5} 5

vaem(t) = {0,1,...,50} 51  [m/s]
Tioaa(t) = {—1000,—980,...,1000} 101 [Nm]
soc(t) = {0.2,0.267, ...,0.8} 10

may arise from the choice of a denser grid.

3. EXAMPLE: OPTIMIZATION OF FUEL
CONSUMPTION

The tool operation is demonstrated on a dynamic
HEV model of a passenger vehicle with a torque-
assist parallel powertrain, see Fig. 3. The torque
assist HEV have mechanically coupled engine and
electric machine, which speed is imposed by the in-
stantaneous vehicle velocity.

The chosen optimization criterion is minimiza-
tion of fuel consumption over the "New European
Driving Cycle”, see Fig. 6, and constant road alti-
tude. To simplify the problem we choose the gear se-
lection strategy from the dynamic model previously
simulated over the given driving cycle and we leave
the torque split as the only control variable.

The tool first simplifies the dynamic model, as
was described in Section 2.2. The vehicle has 5 gears
and we provide custom gridded values for the other
inputs, see Table 1. Note that gridded values do not
need to be provided by the user, but the default ones
can be used that already exist in the tool. Moreover,
minimum velocity per gear is given, [0 0 4 8 13]m/s,
thus all combinations with the respective gear and
smaller vehicle velocity are manually removed. We
leave the other combinations outside the operational
region to be automatically removed by the tool, as
was described in Section 2.3. The tool then simulates
the vehicle model with one power source at a time
and two maps frocg and fg are obtained, as in (2).

Details on the optimization, which is the next
step in the tool, are further explained in [4].

3.1 Results and Discussion

For the generation of the quasi-static model (2),
the dynamic model is simulated over a set of grid-
ded values given in Table 1. Although custom grid-
ded values were chosen to decrease the simulation
time, still there are more than 220000 input combi-
nations for the generation of fgas. The tool’s au-
tomatic detection of the operating region resulted
in 53920 operating points for fgjs, which together
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Fig. 6: Validation of the quasi-static powertrain
model.

with the number of performed tests for obtaining
the velocity and torque boundaries, see Section 2.3,
gives 54180 = 53920 + n, + n,n, input combina-
tions for which the dynamic model was simulated.
With the steady-state detector in use, the total sim-
ulation time for the generation of fgjs was about
35 minutes. Only for comparison, the same oper-
ating points were simulated on the same computer,
but without a steady-state detector. The simulation
time for each operating point was set equal to the
slowest step response time for which any operating
point would reach equilibrium. With this setup, the
total simulation time was about 4 hours, which is
about 7 times longer simulation.

After the quasi-static model is obtained, it is val-
idated as was described in Section 2.5 and the results
are given in Fig. 6. The maps, ficg and fga, are
validated by simulating the dynamic and the quasi-
static model with one power source at a time. Hence,
for the validation of fgas, when EM propels the vehi-
cle, the battery may deplete and whenever this hap-
pens, the battery level is reset to the highest soc(t)
value in Table 1. The maps validation shows that
the quasi-static model describes the behavior of the
dynamic model well and not only in steady-state con-
ditions, but also in transients, see Fig. 6.

4. CONCLUSIONS

This paper describes a tool for automatic pow-
ertrain simplification of a given HEV model with
a parallel powertrain, to be used later in optimiza-
tion. The model details can be hidden from the user
as long as the model satisfies a set of requirements
stated in Section 2.1. The process is automized as
much as possible, so that user insight in vehicle mod-
eling and simulation is not necessary.

The tool first simplifies the dynamic vehicle model

into a quasi-static powertrain model, after which dy-
namic programming is used to optimize the criterion
chosen by the user. A predefined set of gridded input
values that could be customized by the user, is used
for the map generation and the tool decides auto-
matically upon the operating region, thus speeding
up the simulation. A time-efficient method is pre-
sented and implemented in the tool for detection of
steady-state.

A possible future extension of the tool is to adapt
it to other powertrain configurations and other opti-
mization criteria. The map generation process could
be furthermore improved by automatically deciding
on the necessary grid resolution to obtain certain in-
terpolation accuracy.
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