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Implementing Multi-touch screen for real-time control of a robotic cell
MARTIN EDBERG, PETER NYMAN

Department of Product and Production Development

Division of Production Systems

Chalmers University of Technology

Abstract

Today Multi-touch technology are being developed to fit many different applications on the
consumer market, but it is still something new and quite unknown in the industrial sector. The
technology has expanded a lot during the latest years and compared to other control devices,
such as a mouse or a keyboard, it has the ability to allow more intuitivism to be implemented.

The objective of this thesis is to make use of a Multi-touch screen to create an intuitive interface
for industrial robot controlling. An operator shall be able to understand it with as little training
as possible. A camera shall be mounted on the tip of the robot arm and the robot shall be
completely controlled by inputs (touches, motions and gestures) made on the Multi-touch
screen. One example of application can be to use it for inspection purposes by integrating the
video stream from the camera in the user interface.

The thesis was performed at the Department of Design and Manufacturing (Instituto de Disefio
y Fabricacién) at the Polytechnic University of Valencia (Universidad Politécnica de Valencia) in
Spain. The thesis is a part of a larger project with the goal to make a working demonstrator.
Included in the thesis work was also an evaluation of the whole concept, which was done by
performing a series of different usability tests. This test was done on a group of 20 people with
different ages, sexes and backgrounds.

The results of the usability tests showed that the use of Multi-touch technology for controlling
industrial robots could increase the intuitivism of the user interface compared to conventional
controls. This conclusion is drawn from the fact that all users were able to complete the first
usability test without any instructions, regardless of their background. The test also showed that
using this technology could significantly decrease the learning period for an operator, even
without experience of robot controlling or multi-touch technology.

Keywords: Multi-touch, industrial robots, human machine interface, intuitivism, real-time
control, usability
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Abbreviations

KRL
ul
HMI
XML
RSI
HD

TCP/IP

UDP/IP

CH

End

effector

Syntax

LAN

KUKA Robot Language

User Interface

Human Machine Interface

Extensible Markup Language

Robot Sensor Interface

High Definition

Transmission Control Protocol/Internet protocol; Communication protocol for
networks

User Datagram Protocol used for network communication

C —sharp, Object-oriented programmation language, a part of the .NET platform
The "tool" placed on the end of the robot arm. For example Grip-tool or camera
Principles and rules for constructing sentences in natural languages. Normally a

simplified description of a program

Local Area Network

VII



VIII



Table of Contents

R 14 1o T VLot f Lo T TSRS 1
1.1 PUrpose and OBjJECHIVE ....cciiiiiieuueiiiiiiiiiiiiiiiieeniinnrinsnsssseestteesssssssssesssesessssssssssssssassssnssssssssssssssnns 1
O o U T o Yo LT PSP UPPPTPTNN 1

0 0 0 oY [=To1 £ V7 U PUUUPPRR 1

1.2 BACKBIrOUNM .....iiiiiiiinniiiiiiiiiiiennniieniitteressssssssessteesssssssssssssseessssssssssssssssssssssssssssssssesssnsssssssssssssnnns 2
002 N S oY =Tt ll o T= Yol 4=d o 101 o IR U S PUSURPR 2

1.3 ThEOKY cceueeiciiiiiiiiiinisecetitrereeaasssee st teesaassssseessteesssssssssssssseesssnssssssssssesessnssssssssssssssssnssssssssssasennnn 2
1.4 DelimitationsS. . .cciiiieeuiiiiiiiiiiiieniiieetiitereanesseestttttssssssssesssteetrsnssssssssssesesssssssssssssseesssnsssssssssssssnnns 3

2. Theoretical background ..........ccoiveeeuiiiiiiiiinniiiiiiiiniiniieeiresssiiiressesssssmresssssssneens 5
2.1 INAUSEFIAl FODOTS .....uiiiiiiiiiiiiiiiiee it ee s e s s s s e e snassssssssssssessssssssssssssssssnnsssssssssssssnnnnsssss 5
0 0 A 13 o] USSP 5

2.2 HUMAN Maching iNterface .....ccccciiiiiiiieuniiiiiiiiiiiiiiiinnineesnnssssiisssiseesssssssssssssssssssssssssssssssssssssssns 6
2.3 Multi-touch teChNOIOBY ..ccevuuueiiiiiiiiiiiiiiiiiieiirrrrs e s s s rssesaassssssssssssssnsnssssssssssssnnnasssns 6

P T8 A o 113 o] o PSPPI 6
2.3.2 Different tECHNOIOGIES. ..ceuieii e e e e e e e e e e e sttt aba e e e e aaaeeeeeeannsenes 8

8 200 o A 0o T 4 o PPN 10
2.4.1 ConVENtioNal CONTIOL....cciiiiii ittt e e e e et e e e e e e e e e e es e aatbraeeaeeaaaeeseesnnsnnns 10
2.4.2 Programming of KUKA robots (KRL) .....ceiiiiiiiiiiiiiiiiiieeee ettt e e e e e e anvrraeese e e e e e e e e eaannnnns 11
2.4.3 REAI-TIME CONTION ..uuiiiiiiiiiii ettt e e e e e e e e e et b et e e e e e aaeeeeseeanstssassaeeaaaeeesesnnrnnes 12
2.4.4 KUKA.EThEIrNET RSIXIML...cciiiieiiiie e e ettt e sttt ettt e ettt e et e e st e e saaeaetaeesnteeesaeesnnseesnneesnnsasennsenan 12

3. Hardware and software prerequisites......cccccccciiiiirruniiiiiiiieniiiiiniiieniii. 18
0 0o < T PP 18
30 8 200 o] Aot o Y4 X o | =T PPN 18
Y o /== o N 18
3.3 EXEErNal COMPULENLS ....ciiiiiiinniiiiiiiiiiiiiiuiiiieeiieeetennssssssestesesnnsssssssssssssssssssssssssssssssnssssssssssssssnnnnsss 19
38 SOTEWANE. .. ciiiiiiiieiiieieiiiitrreseee st rer s sss e e st s eesaaasssssssstasessssssssssssstesssnssssssssssseesnnnsssssssssssesnnnnses 19

L 3 1V =1 3 Vo T (o] -4V 20
L 300 T 1 114 X e N 20
L7 Y= 1 T o Y 20
4.3 Establishment of cOMMUNICAtIoN ......eeiiiiiiiiiiiiiiiiiii s ss s s s s s s s nsassssans 20
4.4 INtErface deSIZN....cciiiiiiieuuuiiiiiiiiiiiiiiiieetiietieaniseestteessassssisssssesssssssssssssssssssssssssssssssssssnsnsssssss 21
4.5 CoNCEPL EVAIUALION....cciieeeeeiiiiiiiiiiieiiiieiiiiiiresnnsesieesititesssssssssssssistessssssssssssssssssssssssssssssssssnnnnses 21
5. System developmeENt ProCESS .....cccuuiiiiiiiieeneiiiiiinermsiiiniineesssissiimressssssstmmssssssssssissssssssssnns 22
5.1 Interface DeVelOPMENT....cccuuiiiiiiiiiiiiiiiiiieetiteetenissieestteesssnsssssssssssessasssssssssssssssnssssssssssssssnnnnnss 22
L0 0 B - 1Yo 1 U PO PPPTTPR 28
5.1.2 PrOPOSEA GESTUIES....uutiiiiiieeeeeeieeiiitttteeeeeeeeeeeeeseettrraaaeeaaaeeeeaaaaassssasssseaaaessssaassstsssssssaaaesssnananssnnes 29

5.2 Robot Controller Programming.......ccceeuiiiiiiiiiiiiimmniiiiniiiieimmmmssiiisiimeesssssssimssssssssssssssssssssssss 30
LI 2000 T 014 0 11T 4T or= 1 4 T o T 34
6. EMPIrical StUAY ..cceeueeiiiiiiiiiiiiiiiiiiiiiiiniineeeessnnnnessssssssieessssssssssneenssssssssnsesssssssssssssnssssssnes 36

IX



6.1 USability teStS . cieeuueeiiiiiiiiiiiiniiiiiiiiiiiiienneiieeetitetesnssssssestieetsssssssssssssteessnssssssssssssesssnssssssssssssssnnnes 36

728 30TV 38
L T T o1 T3] ' o N 40
TR 7o T 1] (1 o T 42
3= T =T 3 o 44

Appendix A - Instructions for usability tests
Appendix B — Tables of the collected data from log files
Appendix C — User manual for Robotic cell at IDF

Appendix D - Complete code for IDF_RSI_XML.src
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1. Introduction

Today Multi-touch technology is being implemented to fit many different applications. A lot of
research is being done as the technology is being developed. Since the touch technology allows
more intuitivism to be implemented than with normal control devices, such as a mouse or
keyboard, it is an interesting area that has expanded a lot during the latest years.

Real-time control of industrial robots is today usually done using a so called teach-pendant (see
explanation under the section ”Industrial robots”), with single motions in directions or axis, or
multiple direction movement using a mouse. Regarding the programming there is often a need
of experienced programmers to be able to move the robot in the desired way. The available
tools for helping programmers are mostly simulators developed normally by the same company
as the robot manufacturer, which require special training and a learning period before one can
start using the software for its purpose.

The following text describes the purpose of the thesis, the background, the hardware and
software prerequisites, methodology, system development process and the empirical study.
From these the results of the thesis are discussed and conclusions are drawn.

1.1 Purpose and objective
This section discusses the purpose and the objective of this thesis.
1.1.1Purpose

The purpose of the project is to investigate the possibilities with a Multi-touch screen when
controlling an industrial robot, especially when used for inspection purposes like quality control
with a camera mounted on the robot arm. This is done by transforming the motions and
gestures of fingers made on the screen into motions of the robot.

1.1.2 Objective

The objective of the project was to develop a real-time connection between a Human-Machine
interface (HMI), running on a commercial Multi-touch screen, using PQ Labs’ overlay on an
industrial full HD 42-inch LG monitor, and an industrial KUKA-robot. The interface on the Multi-
touch screen should be easy to handle and display real time information about what is
happening in the cell such as the position of the robot arm in space and tool position. The
outcome of the project shall be a demonstrator that is going to be tested and later investigate
its possibilities and limitations. The Multi-touch screen shall be evaluated and tested to see
whether it is a good platform for this type of control.

The robot shall be able to follow a trajectory drawn on the Multi-touch screen in both online
and offline modes. This means that the system must be fail-safe and not allow any collisions or
movement that could cause failures. The interface on the Multi-touch screen needs to have a
design that is easy to understand and has clear warning signals. Latency and safety issues must
be considered. In order to guarantee an accurate control on real-time operations, it is necessary
to retrieve real-time feedback from the robot cell to the Multi-touch user interface.
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1.2 Background

Multi-touch applications is still something new and quite unknown in the industrial sector. The
technology became available to the consumer market when the first version of the Iphone
entered the market in 2007[1], and it was a real breakthrough for the technology. It set new
standards when it came to how to handle and control an electronic device. After that, many
other manufacturers realized that they also needed to utilize Multi-touch technology in order to
stay competitive. Several gestures started to spread among different plattforms such as the
two-finger spread motion for zooming and the one finger drag motion used for panning. On the
field of robotics, there are at the moment few examples of Multi-touch applications. One
interesting application can be controlling industrial robots used in production systems.

1.2.1 Project background

The "Instituto de Disefio y Fabricaciéon" (refered to as "IDF") at the Universidad Politécnica de
Valencia in Spain holds a new research line about Multi-touch control for industrial applications.
The department has recently invested in a 42-inch Multi-touch overlay from PQ labs, a US-based
company specialized in touch-technology. In order to use this overlay they also purchased a 42-
inch industrial full HD monitor from LG. Since the department has a KUKA KR 5 sixx R650
industrial robot, the research has been aimed towards the combination of these two
technologies. The controlling of robots via a Multi-touch screen is a relatively new application of
use, so the benefits of using it may not be fully explored. The Multi-touch interface enables
several inputs to be done simultaneously, which can make it to a powerful tool when controlling
complex systems. Since the screen used in this project is relatively large (42 inch) it allows a
collaborative Ul (user interface) so that more than one people can be working on it at the same
time.

1.3 Theory

Studies have been carried out on how the communication methods work and which was the
best suited method for this application. When it was decided which type of communication
method to use, the theory was to learn more about that specific method and its advantages, so
that it could be exploited as much as possible for this specific purpose. Since the thesis has been
a part of a larger project (see section ”Delimitations”), a lot of decisions has been taken through
discussions with all group members. Regarding the communication, the KUKA robots
understand a language that is called KUKA Robot Language (KRL) and at the end all signals needs
to be transformed into this, so that the robot interpret the code and thus perform the
corresponding motions.
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1.4 Delimitations

The devices to work with were one Multi-touch screen controlling one industrial KUKA robot
model KR 5 sixx R650. The tool to work with was primarily a camera used for inspection of
products. This thesis was a part of a larger project, which includes programming of the Multi-
touch screen controls and graphic design as well as the communication between the Multi-
touch screen and the robot. The focus of this project was to establish and make sure that the
communication between the robot and the computer with the Multi-touch screen runs
smoothly. Specifically this means taking the signals from the Multi-touch screen and transfering
it into real motions of the robot. This means that programming of the robot controller itself was
needed.

The actual programming of the screen was not included in this part of the project, but a good
understanding was necessary to retrieve a deeper knowledge of the communication in the
human-machine interface. However this thesis work had a great influence of the graphic design
since investigating the Multi-touch screen’s usability is a part of the thesis.

The thesis had to be carried out and finished within the set timeframe, that had a due date the
30™ of June 2010.
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2. Theoretical background

This section describes the theoretical background, first in general and then more detailed about
this specific project.

2.1 Industrial robots

It has to be clearly stated that there is a difference between robots in general and industrial
robots. When talking about robots in general, that includes all types of robots which can have
special purposes, humanoids (robots that are constructed to act as a human), cleaning robots,
etc. However this report focus is on robots used within the industry.

By ISO definition an industrial robot is an automatically controlled, reprogrammable
multipurpose manipulator that can be programmed in three axes or more [2]. The expression
"field of robotics” is often used and that includes everything related to the robots, normally
when used in industrial appplications typically for production. Robots can be adapted and used
for a lot of different tasks. Typical applications for industrial robots can be welding, assembly,
painting, inspection etc, performed at a high speed and and with high precision.

Normally the robot is connected through a controller to a laptop, or desktop computer in which
the programming takes place. Almost all industrial robots come with a so called tech-pendant
which can be used in order to move and control the robot. In other words the robot can be
taught to go to specific points in space and then perform the trajectory that it has been taught.

2.1.1 History

The first real robot patents were applied by George Devol in 1954 [3] Two years later the first
robot was produced by a company called Unimation, founded by George Devol and Joseph F.
Engelberger. In these first machines the angles of each joints were stored during a teaching
phase and could then later by replayed. The accuracy was very high 1/10000 of an inch. Worth
to notice is that the most important measure in robotics is not accuracy, but repeatability. This
is due to the fact that normally the robots are taught to do one task over and over again.

The first 6-axis robot was invented in 1969 by Victor Scheinman at Stanford University, named
"the Stanford arm" and could substitute the motions of an arm [3]. The Stanford arm made it
possible to make arbitrary paths in space and also permit the robot to perform more
complicated tasks, such as welding and assembly.

In Europe the industrial robots took off around 1973 when both KUKA and ABB entered the
market and launched their first models. Both came with six electro-mechanically driven axes.

In the late 1970's the consumer market started showing interest and several American based
companies entered the market. The real robotics boom came in 1984 when Unimation was sold
to Westinghouse Electric Corporation. Few Japanese companies managed to survive, and today
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the major companies are Adept Technology, Staubli-Unimation, the Swedish-Swiss company
ABB Asea Brown Boveri and the German company KUKA Robotics.

2.2 Human Machine interface

An interface is a point of interactions between two systems or work groups, hence the Human
machine interface (referred as HMI from here) is the interaction point between the human (in
this case the user) and the machine. The machine can be all kinds of electronic devices that are
controlled by the human user. A lot of research has been done over the years on how to make
the HMI as easy and self explainatory as possible. A keyword when designing Human-Machine
interfaces is transparency, which means that they should be as self-explanatory as possible. It
should be easy to learn how to use it, with as little training as possible, and it should also be
difficult to do something wrong.

In this project knowledge achieved by studying previous experiments have been applied when
designed the HMI, see further explanation under the section "Methodology".

2.3 Multi-touch technology

Multi-touch is an extension (enhancement) of the touch technology, which allows the user to
point or make gestures, normally with a stylus (small pen) or directly with the finger, on
different objects on a screen with one contact area. The definition of Multi-touch is that you can
use three or more contact areas when interacting with the device [4]. The use of Multi-
touch technology opens up many possibilities for researching new ways of controlling complex
systems in a more natural and intuitive way, allowing collaborative scenarios (two or more
people controlling a robot), which can be difficult with conventional controls (like joystick or
mouse). The Multi-touch screen’s degrees of freedom when it comes to the graphic design of
the interface allows customization the interface for a specific user or situation since it has the
possibility to have many different interfaces on the same screen. Since the screen has the
ability to handle many different inputs simultaneously it could be a really powerful tool when
controlling complex systems such as the motions of an industrial robot, which has been the
main objective with this thesis work.

The touch technology has in the latest years revolutionized many electronic devices with
analogue input, especially when Apple introduced the Iphone to the market in 2007. Since you
can point directly on the screen, on the object you want to affect, there is a great possibility to
get a Multi-touch interface very intuitive. This can result in a short learning period for the end-
user if the design of the interface is carefully prepared by the designer (see the section below
about interface design).

2.3.1 History

When looking at interface design for computers in a historical perspective, the first designers
only had a keyboard and lines of text to deal with. Then came the mouse which made it possible
to implement more easy-to-use applications. In the recent years technology with Multi-touch
has been developed a lot on both the software and the hardware. First it was a really expensive
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and bulky technology only available for a few. The real breakthrough that made the technology
available to the consumer market (large-scale) was when the Iphone was released in 2007. This
changed the paradigm on how a user interface (Ul) should be designed and how to navigate
through menus etc.[5]

Most people are probably not aware of the fact that the history of touch-sensitive control
actually pre-dates the age of the PC [6]. The Iphone that some might think of as the first real
Multi-touch device was actually the result of many years advancements within the field of touch
devices and definitely not the first product [1]. The first single-touch none pressure sensitive
screens were developed as early as the late 1960's and by 1971 researchers had discovered a
number of different techniques for touch screens. Figure 1 shows the terminal, a 16x16 array, to
the PLATO IV computer assisted education system, released in 1972, which is one of the first
touch systems to be generally known. Similar systems like the PLATO IV are infact used today in
cashpoints, ticketing machines, medical instrumentation etc. [1]

Figure 1: The Plato IV terminal with its touch-sensitive screen [1].

The University of Toronto's Input Reasearch Group developed the first human-input Multi-touch
technology that dates back to 1982 (Macintosh released its first computer in 1984) and the now
so common and well known pinch gesture (see table 1, in section 5.1.2, for description) dates
back to 1983 [6].
This first system was not like todays Multi-touch screens where you click on the actual object,
but a pad with a frosted glass that had a camera behind it. The camera detected the fingers
pressed on the screen as black dots on an otherwise white background [6]. The system was also
said to be somewhat pressure sensitive since the size of the dot depended on how hard the
person was pressing on the glass. The system was used for simple image processing like drawing
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etc. Already when this interface was created, the use of a projector together with a camera was
discussed, much like a lot of Multi-touch systems use today, like for example the Microsoft
Surface table-top touch platform (see more under "Different technologies").

The first real Multi-touch screen was developed during 1984 by Bell Labs and the first system to
use capacitance sensing system was developed during 1985 by the Input Research Group at the
University of Toronto [6].

Figure 2: The first multi-touch system to use capitance was a tablet developed at the University
of Toronto in 1985 [6].

Today, many Multi-touch manufacturer use some kind of capacitance system, since it allows a
slimmer design than the bulky optical system, which requires projectors and sensors (see next
section), and because it eventually allowed a transparent capacitance sensing screen to be
placed in front of a regular LCD or LED screen. The optical system is still widely used though
primarily beacuse it is a lot cheaper and easier to build for large applicaton where space is not
limited.

2.3.2 Different technologies

This section will present the basics for the two most common Multi-touch technologies of
today; optical sensing systems and capacitance sensing systems. Optical sensing systems use a
projection of the screen onto a surface with sensors detecting where on the screen you are
touching. A capacitance sensing system carry an electrical charge and can sense where on the
screen the charge gets interupted (like the Iphone) [7]. The technology to use depends mostly
on the size of the screen (also how much space that is available) and the type of interface the
application shall have. The principal data processing though, is the same for both technologies.
The input signals, created by fingers or other objects touching the screen, gets processed by a
software that recognizes whether it is a just a touch, multi-touch or some kind of gesture and
then translates the signals and excecutes the corresponding commands.
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Touch tables and touch walls are examples of optical sensing systems and they usually use
projectors that sends images through an acrylic or glass that faces the viewer. When the screen
is touched by fingers or other objects, the light gets scattered and the reflection is sent back to
sensors or cameras that reads the change and send it to the software, see figure 3 and 4. The
software interprets the change and, depending on the reading, takes the appropriate action [8].
In order to create the reflection, LEDs are used to send light bouncing through the acrylic sheet
or glass.

.— Reflection

sensor

Projector

Computer

Figure 3: Principal function of a touch wall [8]. A touch table works in a similar manner.

Pressure-sensitive Internal reflections
polymer :

Light
scattered
toward
reflection
sensor

—— Acrylicwaveguide

Image from
projector

Figure 4: When a Multi-touch system using optical sensors is touched by a finger or object the
light created by the led gets scattered and sent toward a reflection sensor [8].
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A touch sensitive overlay on a screen and a built in touch panel are examples of capacitance
sensing systems. The main technologies are mutual capacitance or self-capacitance [9]. The
difference is that the mutual capacitance system has two separate layers for the electrodes, one
carrying the small current, and the other is the sensing circuit that measures on which node on
the electrodes that the current gets interrupted by a touching object. The self-capacitance
system on the other hand, has electrodes that can measure the capacitance change caused by
an object directly. [9]

2.4 Robot Control

In this chapter it will be explained the common practice in industrial robot control. First section,
programming, explains how to make the robot perform a task by writing a robot code that are
read by the robot controller computer. Further down in the section "Programming of KUKA
robots" it will be explained more specific about how the controlling is done with KUKA robots
and how the robot language code works. Then it will be explained more about what type of
controlling method that was used in this project, and what type of tools that were used for that
under the sections "Real-time control" and "KUKA Ethernet RSI XML".

2.4.1 Conventional control

The common practice for industrial robot control is either to move the robot manually with the
robot’s teach pendent, or with a program written in the robot’s language, in this case KUKA
Robot Language (KRL), that is run on the robot controller. Either the program has been written
directly in the specific robot language or the programmer has used some kind of post processor
in combination with CAD/CAM software.

The programming of industrial robot can be divided into two categories, online-, and offline
programming. Offline programming means that the robot code is created offline with no
connection to the physical robot. The generated program is later transferred to the robot and
executed in the real environment. Normally a verification of the code is made in some sort of
simulation software before transferring the program. Online programming includes
programming when the software is directly connected to the physical robot. This can be done
with a teach pendant (See the section about Industrial robots) used for moving the robot to
certain positions where they are stored, and then a trajectory is created between the stored
points. The process when adjusting a position in space is commonly referred to as "jogging" or
"inching" the robot.

Most industrial robots have a similiar programming structure, telling them how to act. You
define points in space and then how the robot is supposed to reach the specific points, normally
called P1, P2, P3 etc. An example of a program syntax is shown below in figure 5.

10
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Move to P1 (a general safe position)
Move to P2 (an approach to P3)
Move to P3 (a position to pick the object)
Close gripper
Move to P4 (an approach to P5)
Move to P5 (a position to place the object)
Open gripper
Move to P1 and finish
Figure 5: Example of short robot program syntax.

Many industrial robot manufacturers offer a simulation software package for their robots which
eases the programming and at the same time makes it possible to perform offline programming.
The benefits from using offline programming are many; it prevents costly damages to happen in
the real world, it can save money since you dont have to interrupt the production while
programming, it speeds up for example ramp-up time when switching to production of a new
models etc [10].

2.4.2 Programming of KUKA robots (KRL)

For programming of a KUKA robot, a specific language called KRL (KUKA Robot Language) is
used. The structure of the code is similar to most other robot languages; Points are specified in
space and commands are used to express how the robot are suppose to reach these points, see
example under section "General programming". When programming in KRL, a .SRC-file is
created containing the real program code that will be read by the robot controller and a .DAT
file containing the declaration of variables, and other prerequisites that are read and stated
automatically before executing the .SRC-file. The name of the two files shall always be the same
to be identified as the same program by the robot controller. A small example of the contents in
a .SRC-file is shown in figure 6.

DEF FR_VERS ()

jmmmmmee Declaration section -------

EXT BAS (BAS_COMMAND :IN,REAL:IN)

DECL AXIS HOME ;Variable HOME of type AXIS

O Initialization ----------

BAS (#INITMOV,0 ) ;Initialization of velocities,
;accelerations, $BASE, $TOOL, etc.

HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}
fmmmmmmm - Main section ----------

PTP HOME ;BCO run

; Motion relative to the $BASE coordinate system
PTP {POS: X 540,Y 630,Z 1500,A 0,B 90,C 0}

PTP HOME

END

Figure 6: An example of KRL-code [11].

11
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The declaration and initialization part can also be located in the .DAT file, but are here showed
in the same program to more clearly explain the different steps. The PTP HOME in the main
section makes the robot perform a point-to-point motion to the defined home position, which is
defined in the initialization part. The first instruction to the robot is normally called a BCO-run
(Block Coincidence), which makes the robot go to a predefined point in space. This is done in
order to set the correspondence between the current real robot position and the programmed
position. The next line makes the robot go to the specified point, which in this case is defined
directly in the same row as a point in the base coordinate system specified by six values. The six
values are; X, Y, Z that defines the point in a 3D-space and A (rotation around Z-axis), B (rotation
around Y-axis) and C (rotation around X-axis) that defines the tool orientation [11].

2.4.3 Real-time control

Normally industrial robots are programmed to perform a single task, for example welding the
same part over and over throughout the day; hence it is not controlled in real-time. However,
real-time control can be used for tasks that are none-repeatable and require the user to alter
the robot’s movement from time to time. Example of this can be inspection with a camera,
place a gripper as the end-effector in order to be able to pick up and move different objects etc.

2.4.4 KUKA.Ethernet RSI XML

The KUKA.Ethernet RSI XML software package is required to control the robot externally in real
time. The term external system is often mentioned and refers to the computer(s) that are
connected to the robot controller (in this case the computer that holds the server that the robot
controller is communicating with).

The KUKA.Ethernet RSI XML is an add-on technology package with the following functions [12]:

* Cyclical data transmission from the robot controller to an external system in the
interpolation cycle of 12ms (e.g. position data, axis angles, operating mode,

etc.)

* Cyclical data transmission from an external system to the robot controller in the
interpolation cycle of 12ms (e.g. sensor data)

* Influencing the robot in the interpolation cycle of 12ms

* Direct intervention in the path planning of the robot

The characteristics of the package are the following:

* Reloadable RSI-object for communication with an external system, in conformity
with KUKA.RobotSensorinterface (RSI)
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2. Theoretical background

* Communications module with access to standard Ethernet
* Freely definable inputs and outputs of the communication object
* Data exchange timeout monitoring

* Expandable data frame that is sent to the external system. The data frame
consists of a fixed section that is always sent and a freely definable section.

The KUKA.Ethernet RSI XML enables the robot controller to communicate with the external
system via a real-time-capable point-to-point network link. The exchanged data is transmitted
via the Ethernet TCP/IP or UDP/IP protocol as XML strings. For this thesis the Ethernet TCP/IP
was used since it makes a more secure communication with response from the destination to
the host, while the UDP/IP lacks this response.

Programming of the KUKA.Ethernet RSI XML package is based on creating and linking RSI-
objects. RSI-objects are small pieces of pre-programmed code that can be executed and has
additional functionalities than the normal KRL-code. To be able to communicate externally
through Ethernet, a specific standard object (ST_ETHERNET or ST_COROB) needs to be created.
The code line for creating for example the ST_ETHERNET is typically:

err=ST_ETHERNET (A,B,config_file.xml)

Where,

err is a type of string used by the RSI XML (called RSIERR) containing the error code
produced when creating the object (normally #RSIOK when it works),

Ais an integer value that contains the specific RSl-object ID so that it is possible to locate
and refer to,

B is an integer value for the container to which you want the RSI-object to belong in
order to create a group of different objects containing to the same container,

config_file.xml is a configuration file located in the INIT folder (path
C:/KRC/ROBOTER/INIT) on the robot controller that specifies what should be sent and received
by the robot controller.

The content of this file will be explained further down.

ST_ETHERNET and ST_COROB are objects that can be influenced by external signals, and also
send data back to the external system in form of XML files, containing different tags with data.
The data can be for example information about the robot’s actual axis positions, Cartesian
actual positions etc. This data shall sent to the server and back within each interpolation cycle of
12 ms. ST_ETHERNET has the same functionality as ST_COROB but with additional
functionalities; one of these object always need to be created and correctly linked in the KRL
code in order to establish communication with the external system. In this project, the
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2. Theoretical background

communication object ST_ETHERNET was used. When one of these objects is created and linked
correctly, the robot controller connects to the external system as a client.

There are a lot of different types of RSl-objects and depending on what you want to do, you
have to create and link the correct objects to each other. Besides the standard Ethernet card, an
additional card (3COM) was needed, to be able to handle the speed of the transferred data [12].

Figure 7: Functional principle of data exchange [12].

The robot controller initiates the cyclical data exchange with a KRC data packet and transfers
further KRC data packets to the external system in the interpolation cycle of 12 ms. This
communication cycle is called a IPO-cycle (Input Process Output) and can be seen in figure 7
above. The external system must respond to the KRC data packets with a data packet of its own.
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ST_COROB
ST_ETHERNET

Open
>

ST_ON KRC-Data

External Data

KRC-Data

External Data

ST_OFF External Data

KRC-Data

v ST_RESET \ 4 Close \ 4

Figure 8: Data exchange sequence [12].

To be able to influence the robot, one needs to initiate an RSl-object for the movements. There
are mainly two objects used for this. First an object called ST_AXISCORR(A,B) for specific
movements in axis Al to A6, where A is the specific ID of the created object, and B is the
container that the object belongs to. The second object is called ST_PATHCORR(A,B) for
movements in Cartesian coordinates, where A, B are the same as for the ST_AXISCORR object. A
coordinate system is also needed (normally BASE, TCP, WORLD) as a reference for the
movements. This is done by creating a RSl-object called ST_ON1(A,B) where the parameter A is
a string containing the coordinate system that is supposed to be used (expressed as #BASE,
#TCP or #WORLD) and B is an integer value, 0 if the correction values sent to the robot shall be
absolute or 1 if they shall be relative. A schematic picture of the data exchange sequence with
the different RSI-objects is shown in figure 8 above. When the robot is delivered from the
factory, the BASE coordinate system is the same as the WORLD and both are located in the base
of the robot by default. BASE is normally moved to the base of the work piece on which the
robot is working. The differences between the different coordinate systems can be seen in
figure 9 below. NOTE: For the robot used in this thesis, all three systems; WORLD CS, ROBOT CS
and BASE CS have the same origin located on the base of the robot.
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| Tool CS

T4
Base CS .

Robot CS

X

Figure 9: The different coordinate systems [11].

Though it was discovered that when starting the WORLD coordinate system, the origin where
set on where the robot were standing when starting the system. This only applies for the
communication to the robot controller, so that the starting position shall always be set as 0
before starting to move the robot. The response sent back to the external system was in real
coordinates with the WORLD coordinate system starting at its standard position on the base of
the robot.

When the robot controller communicates with the external system it interchanges XML Strings.
The content in the XML strings for the demo program provided by KUKA, is decided and defined
in a file called ERX_config.xml (the configuration file, mentioned above), which is located in the
robot controller, inside the INIT folder. A typical example of the content in this file is shown in
figure 10 below.
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<ROOT>
<CONFIG>
<[P_NUMBER>192.0.1.2</IP_NUMBER>
<PORT>6008</PORT>
<PROTOCOL>TCP</PROTOCOL>
<SENTYPE>ImFree</SENTYPE>
<PROTCOLLENGTH>Off</PROTCOLLENGTH>
<ONLYSEND>FALSE</ONLYSEND>
</CONFIG>
<SEND>
<ELEMENTS>
<ELEMENT TAG="DEF_RIst" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_RSol" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_AIPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_ASPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
</ELEMENTS>
</SEND>
<RECEIVE>
<ELEMENTS>
<ELEMENT TAG="DEF_EStr" TYPE="STRING" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDX="1" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDX="2" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDX="3" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.A" TYPE="DOUBLE" INDX="4" UNIT="0" HOLDON="1" />
<ELEMENT TAG="RKorr.B" TYPE="DOUBLE" INDX="5" UNIT="0" HOLDON="1" />
<ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDX="6" UNIT="0" HOLDON="1" />
</ELEMENTS>
</RECEIVE>
</ROOT>

Figure 10: The structure of ERXconfig.xml.

As can be seen in figure 10 above, the IP address and port to which the robot controller will
connect, when establishing the connection, are set in this file. The sub tags under <SEND> are
what the robot controller sends to the external system. The most important tags for sending to
the external system for this project are the tags called DEF_RIst, which is the real position of the
robot’s end-effector, and DEF_RSol that is the set position received from the external system.
The DEF_AIPos and DEF_ASPos are real axis position and set axis position respectively. Under
the tag RECEIVE is described what the robot controller expects to receive from the external
system. In this case only corrections in six values (X, Y, Z, A, B and C) are included, tagged as
RKorr. The meanings of these six values are described above under the section "programming of
KUKA robots".

17
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3. Hardware and software prerequisites

3.1 Robot

The robot used in this project is a KUKA KR 5 sixx R650 together with a KUKA KR C2 sr controller.
This compact robot is a light-weight, fast and reliable robot for its size. Since this robot is able to
be mounted on the ceiling it was beneficial for our project. A ceiling mounted robot is suitable
for inspection purposes since you can get the best overview and can also go around objects in
an easier way without touching them.

Robot specifications
(Source: KUKA webpage, www.Kuka.com):

Model: KR 5 sixx R650
Payload: Skg

Max. reach: 650mm
Speed: 375° /s
Controller: KR C2sr
Number of axes: 6
Repeatability: <+0,02 mm
Weight: 28 kg
Mounting positions: Floor, ceiling
Speed max.: 8,2 m/s

Figure 11: KUKA KR 5 sixx R650 robot with its specifications [13].

3.2 Robot controller

The robot controller used in this projectisa KR C2 sr controller. The KR C2 sr uses an embedded
version of Windows XP as operating system. This means that the operating system is a special
version of Windows XP built to be run in parallel with KUKA's own controller application.

3.2 Screen

The Multi-touch screen used in this thesis is a Multi-touch overlay for a 42-inch monitor, called
G3 Basic (Figure 12). The overlay is produced by a company called PQ Labs situated in Silicon
Valley, USA. The company is a provider of Multi-touch solutions, developing both hardware and
software in the field of broadcast, digital signage, defense, geo-intelligence, product
presentation and interactive education etc.:
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‘ 3. Hardware and software prerequisites

Specifications:

* 6 touch points

* 42" screen size

* 3mm tempered glass

* No touch activation force required
* 7-12ms touch response time

* Powered by USB

Figure 12: PQ Labs G3 Multi-touch overlay and LG 42” full HD screen [14].

3.3 External computers

Since the applications that were run in this project need a lot of resources to work the way it is
intended, computers with a relatively high performance with today's standards were necessary.
The whole system consists of three computers (including the robot controller computer); one
running the interface, one running the server and the last one is the robot controller. The
computer running the server (see explanation under system development) was a quad
processor (4 cores) of 2,73GHz with 4GB RAM. This computer was needed since almost all CPU
could be dedicated only for the communication (response to the controller was needed every
12 ms) which we found to be stable with this solution. The computer running the interface also
needed to perform well since a smooth communication with the server was desired. For this
purpose a computer with a dual core processor of 2,7GHz, and 4 GB of RAM was used.

3.4 Software

In this project a lot of different softwares have been used. Since the focus of this Master thesis
is on the robot communication, only a short description will be presented of what softwares
that were used for programming the interface. The first version of the interface was
programmed in Flash with ActionScript3 (AS3) built in Adobe flex 4 together with Unity 3D. The
second version was built using Windows Presentation Foundation (WPF), specifically Microsoft
Visual Studio 2010, running on windows 7. The language used for second version was XAML for
Ul components and C-sharp for the logic. The reason why it was transferred to C-sharp was that
the new Visual Studio with built-in support for Multi-touch interfaces came out during the work
with the project.
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4 Methodology

In this section the experimental methodology that was used during the project is described. The
methodology is divided into the parts Initiation, Setup, Establishment of communication,
Interface design and Concept evaluation.

4.1 Initiation

A comprehensive literature study was initially carried out in order to document the different
domains of shared control, human-machine interface and real-time control. In this study basic
knowledge in the following was also included:

* How to program the Multi-touch screen using Adobe Flash Builder (for the visual touch
controls and video feeds) and Microsoft Visual Studio 2010 in combination.

* The specific robot used in the project, namely a KUKA KR 5 sixx R650 robot.

* Ways to remotely control the robot with an external device using direct connection
through serial port, Ethernet, OPC (OLE for Process Control) etc.

4.2 Setup

A demonstrator was developed in order to illustrate and study some vital functions of the
system setup. The safety solution was limited in the demonstrator, which means that extra
arrangements for personal and machine safety were integrated so that all necessary
precautions were taken when operating the demonstrator robot.

The two different areas of the project was commenced in parallel and will from here on be
referred to as "Interface" and "Robot control" respectively. These two parts of the project were
later coupled together.

4.3 Establishment of communication

To establish the communication some different options were studied. There were for example
communication via a OPC-server, communication via serial port and ethernet communication
via XML-strings. Since this project's objective was to control the robot in real time, a fast and
responsive way of communication was needed. The fastest way of communicating was the
ethernet communication with XML-strings that had a communication interpolation cycle of 12
ms, which should be more than enough for this project. To get this to work, the KUKA RSI XML
1.2 (described above in the section “Theoretical background”) was used. Also an extra ethernet
card allowing high speed data interaction was needed in the controller computer to be able to
establish the communication. In the case of this thesis, at first a demo program developed by
KUKA was run on the robot controller, together with KUKA:s demo server in order to establish
and test the communication with an external system.
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4.4 Interface design

When designing the interface, data based on how people act is needed to be able to make it as
user friendly and intuitive as poossible. In this project a study of the documentation of previous
human experiments with Multi-touch screens was made in order to collect as much knowledge
as possible. Then this knowledge was applied in the interface design and common commands
and gestures were used for controlling the different objects. For example the study revealed
that the two-finger spread motion to zoom and the single finger drag for panning had been
proved to be very intuitive in previous studies. A sketch of how the interface were supposed to
look like when finished was made after meetings and discussions of what could be the best way
of designing the interface. It was not necessary to follow paradigm on how a Ul should be
designed, so new inventions were also discussed.

4.5 Concept evaluation

The method used to evaluate the developed concept and the built demonstrator has been to
perform usability tests. User tests were chosen as evaluation method because it gives a good
picture of the intuitivism of the screen from the users point of view. After the tests were
performed the results were collected, analyzed and conclusions were drawn, see "conclusion"
section".
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5. System development process

The project is divided into 3 main parts:

* Interface Development
* Robot Controller Programming (KRL)
¢ Communication

These parts will be explained under the following sub-sections.

5.1 Interface Development

This project has aimed to get the user interface (Ul) as intuitive as possible. A lot of research
has been done about previous experiments and knowledge achieved from those, to see which
design could be most suitable for this specific project. Mostly the research was focused on
shared control and design of human-machine interfaces (HMI). The appearence of the interface
and the function was discussed and evaluated before deciding the final concept of Ul to use.

Through discussion, with the members of the group who were responsible for the programming
of the Multi-touch screen, different possibilities of how to design the first beta-version of the
interface were investigated. It was agreed initially that the most important part of the project
was not to find the absolute best way to design the interface, but rather see what was possible
to do and whether it was possible to establish a good communication. The development of the
interface layout when it comes to intuitivism and user friendliness was initially of second nature,
depending on success of the communication part of the project. What was of greater
importance however, was what sort of data packages that had to be sent to the controller and
via which ports.

The first step in building of the interface was to be able to move the robot in the X-Y-plane with
a simple 2D interface, see figure 13. When that was solved, the project moved on to developing
the interface further and implementing control of the other robot movements, such as the z-
direction, tool orientation and individual rotation of the robots Al-joint (First joint counting
from the base of the robot). This programming was done in flash language using flash builder at
a mini-MAC that was connected to the Multi-touch screen.

22
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Figure 13: XY and Z controls in the first version of the interface.

Then a conceptual sketch showing how the layout of the interface was created. This can be seen
in figure 14. This concept was never fully tested since the recording area was left for later
implementation.

Log 3d Slmulatmn Video Feeds
console Views
Setup - Recording Area
Tool Control Orientation Control XYZ Controls

Figure 14: Conceptual sketch of the first version of the interface that never was created.
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Figure 15: Photo of the first version of the interface.

One important thing when designing the Ul was how to interpret the tool orientation. Two
different concepts or a combination of the two were considered for the solution of the tool
orientation control. The first concept was a ball, which could be rotated in all three axes
simultaneously using one finger touch and movements; this can be seen in figure 15 above. The
second was a ball, which could be rotated in only two directions (B and C) with one-finger touch.
For the second concept, the rotation of A (around the Z-axis) was done by a different module
other than the ball. The theory behind this solution is that the user might find it more intuitive
and easier to control the A rotation separately since controlling all three rotations with the
same module might be considered as to complex. Early tests with the first concept proved that
it was hard to move the first ball back to its original position after moving it around for a bit,
something that was easier with the second concept. On the other hand the second concept
needed two modules and the first only one, which might seem to add a bit more complexity to
the interface.

These two concepts or rather a combination of the two was then decided to use as the final
version of the tool orientation, which is described further down in this section.

The HMI that was created in this project has the aim to move a robot in a 3D-space from a 2D-
interface. The problem was to get it as intuitive as possible with controllers and commands from
the 2D-space that should be transferred into 3D-motions. In other words, movements in the 3"
direction must be substituted by some kind of motion or gesture that is easy to understand and
as self-explanatory as possible.
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After testing the interface built in Flash, figure 15, it was realized that after some use it started
lagging and was not as smooth as wanted. Therefore experiments were made on controls made
in Visual Studio 2010 in programming language C#, and it seemed to be smoother for this kind
of purpose. Hence a translation of the code from flash to C# was made. Also experiments were
made with other layout of the controls since it was discovered by tests that the controls could
be improved from the first version. The first conceptual sketch of the second version of the
interface can be seen in figure 16 and figure 17 below:

3D Visualization
of
Log/Connection / Setup/ Robot
Recording Area

Information

Angles
Al A2 A3 A4 A5
A6 Position
Control
ALERTS (Global XYZ)

Camera on robot

Orientation
Control

(Global
ABC)

Figure 16: Conceptual sketch of the second version of the interface.
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Figure 17: Photo of the second version of the interface.
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After more discussion and testing, the final version of the interface for this project was decided
and a conceptual sketch from the interface is shown in figure 18 below:

3d Simulation
Connect/disconnect

buttons
Log X,Y,Z,A,B,C
real values Position
Control
CAMERA ON ROBOT Orientation (Global XYZ)
=+ Control
Global
Local coor. control ey

XYZ+BC

Figure 18: Conceptual sketch of the third and final version of the interface.

As can be seen, the ability to move the robot in the Al axis separately was never used. This was
due to the fact that the meaning was to get it as simple as possible, especially for the user tests.

A screenshot is shown in figure 19 below:

] IDF ROBOT_MULTITOUCH =& sl

wtiognie | [ swptogie |

Figure 19: The third and final version of the interface.
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The interface now consists of one area for movements in XY, one slider for movements in Z, one
“video control” for movements in local coordinates, one ball for orientation of the tool
maintaining the same point in space and a graphical visualization of the robot position based on
the real feedback from the robot. Besides that, an area with the real values of X, Y, Z, A, Band C
are shown in the middle of the screen, and connect/disconnect buttons in the upper left corner.

The controlling with respect to the local coordinate system is placed as an overlay control over a
video stream coming from the camera mounted on the tool tip. The idea was that controlling it
in this way should be intuitive since it can directly be seen what is being controlled. To control
the camera locally in the plane, one finger is used to “snap” the background and then dragging
to move it in the desired direction. To go forward and backward (direction of the lens) a pinch
motion is used (see section “proposed gestures”).

At the end it was decided that all movements on the interface should be translated into X, Y, Z
and A, B and C coordinates respectively. Therefore to do the movements in local coordinates,
these are translated into the global coordinates before sending them to the robot. This is done
by checking the orientation of the camera and then calculating the projection in each axis,
before sending the target coordinates.

As mentioned above, to control something in 3D- from a 2D-interface is complex, so one
direction needs to be interpreted and translated to a motion in some way. To be more self-
explanatory, a redesigning of the 3D-ball (orientation of the camera) was done. At the beginning
it was just a 3D-ball controlled by one finger in all directions. When tested it was realized that it
must be better to have one finger controlling rotation around X and Y (B and C respectively) so
that the ball can “snap” to the finger that is touching. This results in a more precise controlling
of the orientation. The last direction A (rotation around Z) is then separated and controlled by a
two-finger rotation on the same controller. In previous tests [15] most users chose two fingers
for rotation. For an explanation of all gestures used in this project, see section “Proposed
gestures” further down.

The intention has been to make the controls that are natural for the user. The grid control
includes both the XY-control and the Z-control, and work in the same manner. When touching
the blue ball with one finger and moving it, it snaps to the finger and the robot follows your
finger. The white dot in the center of the blue ball is the real position of the robot so when
moving it, one can directly see the latency of the commands according to the robot’s actual
position.

The final step to evaluate the interface was to perform a usability test of the interface with a
small test group containing people with different backgrounds, age and sex, see section
”Usability tests”.
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5.1.1 Layout

Main components with pictures from the first version of the Ul are described here

Main visualization area

3D Simulation views

Video feeds from a webca located _Elose to the robot.

Main control area.
Multi-touch controls compiled W|th Flex

Y/XZ Position, Orientation and Tool Controls

Log console. A simple white space to show log-data.
Show the data sent and received

Figure 20: Different areas on the Multi touch screen’s interface.
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5.1.2 Proposed gestures

Gestures do not have a global meaning; each Multi-touch device (like the Iphone) associates
different gestures to fixed actions, simple or complex ones. In most cases the same gesture is
reused in different contexts to perform specific functions, which also has been done in this
project. (Otherwise many different gestures are needed, which make it complex and hard to
remember) Table 1 shows a list of gestures and the contextual meaning on the Ul.

Table 1: Proposed gestures for robot control.

Gesture Graphics Context Meaning
DRAG Control Area Move XY and/or Z
j ‘ ﬁ{\ Position Handlers: xy + | positions of the end-
z effector

(1 or 2 hands)

Control Area Move the Grid to
&\ @ Grid reframe the Control
Area
- Orientation Control Move TrackBall to
) Q\“\ Area Orientate the end-
Rotation Handler (B+C) | effector.

Simulation View Area Orbit (Tilt/roll)
3D Perspective Camera | around the targeted
robot on the 3d view.

Setup Area Buttons Switch on/off safe
Buttons slider buttons.

| | (Not implemented in

the demonstrator)

i

Gesture Graphics Context Meaning
ROTATE Orientation Control Rotate the tool of the
/f Area robot arm.
(&\ Rotation Handler (A) (1 or 2 hands)
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Gesture Graphics Context Meaning

PINCH ﬁ Position Control Area Zoom in/out the Grid
SCALE /ﬁﬁ\“\ @ Position Grid to change the scale
Z00M ; of the coordinates

Position Control Area
% Tool Handler

system on the
Control Area and the
3d views.

(1 or 2 hands)
Open/close the tool
if itis a claw

5.2 Robot Controller Programming

The different ways of controlling the robot in real time were investigated (since this is not a
common practice for controlling an industrial robot) in parallel with research about Multi-touch
screens and research in the different domains of shared control, human-machine interface and
real-time control.

In order to establish the communication via Ethernet, the add-on software package called KUKA
Ethernet RSI XML 1.2 (described above in the section “Theoretical background”) was required.
Hence, this software together with latest KUKA robot simulator software, SimPro v.2.1, and
KUKA'’s virtual controller, Officelite v.5.4, was ordered from KUKA. When SimPro and Officelite
are run in parallel this can be used as a virtual setup of the real robot and its controller. The
purpose is that it should work and behave as similar as possible to the reality.

SimPro was used in the early stages of the project in order to test the functionality of the
Ethernet RSI.XML in a virtual environment first, in order to learn how to use it before
commencing the testing with the real robot. The Ethernet RSI XML package came together with
demo programs from KUKA as example of how the package could be used. While waiting for the
software packages to arrive, the documentation of the software was studied.

In order to get everything to work, licenses needed to be ordered separately after receiving the
software. When that was done, experiments started on how to control the robot real-time in
the virtual world. This was done by first installing all software on the same computer, then
importing a virtual model of the robot in SimPro and then trying to connect SimPro with the
virtual controller in OfficeLite. When that connection was stable, it was possible to move the
robot manually through the virtual teach pendant in Officelite. Then the sample program for
KUKA Ethernet RSI XML was run, together with the sample server provided in the Ethernet RSI
XML package. At first a lot of problems were experienced, such as unstable communication,
problems with moving the robot in all directions, problems with exceeding allowed speeds in
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the joints that caused the robot communication to break etc. All these problems and the causes
are explained in table 2 below.

Table 2: Encountered problems that caused the communication to break.

Problems Solutions
* Speed exceeded in several joints, * Changing the system variable
especially joint A4 SCP_VEL, from #CONSTANT to

#VAR_ALL

* Too high forces on robot axis. * Changing the system variable
SCP_VEL, from #CONSTANT to
#VAR_ALL

* Work envelope exceeded * Limit the workspace by using RSI-

object ST_SETPARAM

* Software limit switch reached, all * Limit the workspace by using RSI-
joints object ST_SETPARAM

* Set a new starting position, that are
outside risk of singularity

* Communication randomly was * Moving the server to a more
interrupted powerful computer, able to response
within the IPO cycle of 12ms

Once the programming of the demo programs was understood and a stable communication
with the virtual robot was established, the project moved on to trying to control the real robot.
As mentioned before the real robot required a special 3COM card to be installed on the
controller computer in order to connect via Ethernet to an external computer. This was not
required on the computer running the virtual controller and the simulator since it had the same
IP address and communicated internally. So this had to be ordered as well and was later
installed by a technician from KUKA. The reason why it was not sent from the beginning was
that this technology is so new that very little information on how to use it was to be found and
the person that received the order of the XML package at KUKA was not aware of that it was
needed. Once the card was installed and tested together with the RSI XML demo program and
the sample server provided by KUKA, the connection could finally be established.

A MATLAB toolbox was also studied for inverse kinematics to use for a 3D simulation of the
robot. Inverse kinematics can be simplified as: given the real position of the end-effector, it
calculates the joint angles that are needed to reach this point. It was later realized that this was
not required, since full feedback is received from the robot in form of all angles and real
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positions of each joint, according to the coordinate system that is used for reference (in this
case WORLD coordinate system).

During the first tests, KUKA’s own demo-server was used for communication with the robot
controller. It was almost directly discovered that joint A4 in the robot had too much speed in
many movements, so that software switches built-in in the robot controller interrupted the
robot communication. In order to get the real time control to work with KUKA’s own server in a
satisfying way, the values of an RSl-object called SETPARAM needed to be altered to prevent the
software limit switches to be activated and hence stop the communication. SETPARAM sets the
upper and lower limits of each moving axis and rotation angles, hence creating the work
envelope. The work envelope is the area where the robot is allowed to move within. The
communication remains stable even if these limits are reached and only causes the robot to
stand still, until a value within the set limits are received. Worth noticing is that to be able to not
exceed any limits of the orientation of the tool, the A, B and C values needed to be set to 20
degrees of movement in all directions. The limits set for X, Y and Z were -130 — 130, -130 - 130, -
25— 20 in mm respectively. The speed of the A4 joint were also exceeded at various occasions
and that was eventually solved by changing a system parameter, SCP_VEL, from #CONSTANT to
#VAR_ALL. The effect of this is that when the robot controller receives a command that will
cause any of the axes to move too fast, it will slow down the movement to avoid any movement
that will cause interruption (failure). The software limit switches are only preset limits set to
avoid any hardware damages.

When starting the coordinate system with the parameter ST1_ON (A,B), one can also decide if
the values received by the robot controller should be incremental from the start position or
absolute values, also referring to the start position of the robot. After discussing with the other
group members it was decided to use the base coordinate with absolute values instead of
incremental values, since the staring position always remains the origin for the movements.

When using the interface it was realized that the robot would have much larger work envelope
if the single joints could be moved separately. First this was implemented for Joint A1, since this
would make the whole robot turn. After testing the demonstrator, it was realized that when
moving this joint, the whole coordinate system moves in accordance with the movements in Al.
The control for the Al-joint was disabled during the usability tests due to that the fact that it
would have been one more control for the users to learn. The goal was to perform the test with
a simple but still fully working interface.

In order to make the tool orientation rotate around the lens of the PS3-camera, mounted on the
tool tip of the robot, the Tool Center Point (TCP) had to be moved. The TCP has its own
coordinate system and by default the origin is located at the tip of the robot, shown in figure 21
below. This transformation of the TCP, were made directly in the program by first measuring the
real displacement of the PS3-camera lens from the default origin (compare Tool CS in figure 9
and figure 21). The coordinates of the lens were then introduced in the KRL code of the robot
controller.
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Figure 21: Default Tool CS [11].

When running the robot using the Multi-touch screen, it was discovered that sometimes the
robot made a very fast rotation of the A4-joint and sometimes tried to rotate the A4-joint too
much (thus triggering the software limit switches), causing the communication to break. This
phenomena is caused by something that is called singularity. Singularity occurs when two of the
robot's axis are lined up, causing the robot to have an infinite number of possible solutions to
reach the target position. For example, if axis 4 and 6 are lined up, see figure 22, and the
robot's target position requires a roll of 20 degrees, the robot could use an infinite number of
combinations to satisfy that roll value: (30 deg, -10 deg), (50 deg, -30 deg), (0 deg, 20 deg) etc.
This results in high speeds and unpredictable movements of the axes in between. The singularity
problem was solved by changing the system variable SCP_VEL, from #CONSTANT to #VAR_ALL
(limits the speed by slow down the end-effector movement in order to not exceed any axis
angle velocity), and by changing the home position (start position, in this case) to a safer
location. Also the problem with the software limit switches was solved, as shown in table 2
above, by using the ST_SETPARAM object to limit the motions.

Figure 22: Singularity occurs when two joints are lined up, in this case joint 4 and 6.
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5.3 Communication

The communication between the interface and the robot goes via Ethernet from the robot
controller to an external computer( running only a small efficient server with two two-way
communication) and then to the interface. The purpose of the server is to maintain a stable and
fast communication to the robot controller. It should just take the data and send it to the other
end, both interface to controller and controller to interface.

After development of the interface it was discovered that it was not possible to have a stable
communication with the robot controller if the server was integrated and run on the same
computer. The reason for this was that when the robot controller runs the program used for
Ethernet communication and has created the RSI-object ST_ETHERNET (described above in
section “KUKA.Ethernet RSI XML”) it expects communication within each interpolation cycle of
12ms. If answer is not recieved whitin this time, the communication will be interrupted, and a
restart is needed. Therefore it was decided to develop a small server that required minimum
resources. This server was placed on a separate computer in order to maintain a stable
communication to the robot controller. The connection was physically established using
Ethernet cables connected to a hub, creating a LAN (Local Area Network). Fixed IP needed to be
set on all computers in the network since the robot controller connects to the preset IP, defined
in the ERX_conifig.xml (described above, in section “Theoretical background”). The addresses
used were for the controller 172.16.18.200, for the server 172.16.18.210, and for the interface
172.16.18.100. Different ports were also defined in order to use different ports for
communication server to robot controller (6008) and server to interface (6012)

The purpose of the server is just to forward all communication in both ways, only that the
communication between the interface and the server does not need as fast communication as
the one between the server and robot controller. A schematic picture of the communicaton is
displayed in figure 22 on the next page.
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Interface

sends target
values

N EIRVELIES

Server

updates target
variables,
sends real var.

updates real
variables,
sends target
var.

Controller

sends real
values

gets target
values

Figure 22:

35

Schematic picture of the communication.



‘ 6. Empirical study

6. Empirical study

In order to evaluate how this concept worked and the usability of the interface, a diverse test
group was needed. The people used for the test were randomly picked and had various
backgrounds. It is important to notice is that most of the users in this study were academics.

6.1 Usability tests

The tests consisted of 7 different tasks. The main purpose of each test was to use a laser pointer
that was placed on the end-effector in order to point, and follow different points or trajectories.
First the test persons had to answer questions about age, sex, education, computer experience,
earlier experience with touch/Multi-touch and robots. Also a list was made to see whether the
user had a technical- or a non-technical background.

In order to test whether the interface had a good usability, or "intuitivism", a number of
different tests were performed. It is important to note that due to time limits this thesis does
not include research and utilization of all the available tools for measuring the intuitivism. The
usability tests are just an initial step to see the possibilities that could lie within the use of Multi-
touch interfaces when controlling a robot.

In total 7 tests were performed on a group of 20 people. The people had different backgrounds
in respect to education, country and sex. The tests were performed with the think aloud
protocol [15] and were recorded with a video camera. This protocol means that the users are
asked to say what they are thinking in every moment. In addition to this the user touches and
gestures on the Multi-touch screen were also logged in log files in order to analyze the usage of
the screen, mostly to see how the controls were used and which control the user preferred.

After the tests, the persons were given a small form to fill in, in order to give their opinion of
what was good, what could be better etc. This was also taken into account when analyzing the

results.

The instructions for the usability tests and pictures of the mazes are shown in appendix A.
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7. Results

After the test was performed the logs were analyzed and the most interesting data were
extracted and put in a database using Microsoft Access. From there, different formulas could be
introduced in order to plot the most interesting data. The following graphs show the results of
the usability tests. The first test mission was to use whatever control (without instruction) to
follow a trajectory that was drawn on a paper sheet with the laser pointer. This test was mainly
to see how self-explanatory the interface was.

Tests 2, 3 and 4 were to follow the same trajectory using only one control (X-Y-control,
orientation and last the local coordinate control, placed over the video stream from the
camera). In these test instructions were given on how to use the different controls. Test 5 was
to follow a longer trajectory that was outside the limits for the X-Y control, so that to complete
it correctly it was necessary to use the orientation control to tilt the camera. Test 6 was to
follow a thinner trajectory, with the purpose that the users should use the zooming function in
the grid control to increase the accuracy of the control. Test 7 was a 3D space with hidden
pictures of different kinds of bugs, and the point was to use the different controls in order to
point out the two hidden butterflies.

Below is the distribution of the usage in percentage of each control for each test, shown in
figure 23.

Global Use of Controls by Test in Percentage

Testl Test2 Test3 Testd

@ Camera
@ iDF_PosControl_xY
O iDF_PosControl_Z

@ Orientation

Figure 23: Global use of controls by test in percentage.
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Global Use of Controls divided in actions by Test in Percentage
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Figure 24: Global use of control divided in gestures by test in percentage.

Figure 24 above shows the percentage of use of each control divided into the different actions
that could be performed on the different controls. For the orientation control, the available
actions were one-finger translation, or two-finger rotation. For the Z and X-Y position control
respectively, it was two-finger zoom (for the grid resolution), one-finger pan (to move the grid)
and one-finger movement of the blue ball, ellipse (for movements of the robot). For the local
coordinate control, it was the two-finger zoom (making the robot go in the direction of the lens)
and the one-finger pan (to “snap” the background to the finger, making the robot go the

opposite direction of the finger movement).
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8. Discussion

Multi-touch interfaces are today developed to fit a lot of different applications. Since the
technology has not been available for the consumer market for so long, most likely it has not yet
reached its full potential.

The usability tests were performed in order to evaluate this specific concept, using the
demonstrator that was made. The goal is that a normal person with little or none experience of
robots should be able to control and handle the robot.

Interesting information that the usability tests revealed was the difference in use, comparing
test 1 and test 5. Before the controls were explained (test1) the use of the camera control and
the grid control (XY-control) were almost identical. After the controls had been explained (test
5), more or less the double amount of time was spent with the grid control. This shows that
when the user has got every control explained, it is more likely that they chose the grid-control
to use when performing actions that require relatively high accuracy, like following a drawn
trajectory. Even more time was spent on the grid control in test 6, where the objective was to
follow a thinner trajectory.

It is important to note that more extensive usability tests would be needed to see wether the
Multi-touch is preferable compared to other possible robot controls, like a joystick, mouse or
wheel etc. It would have been interesting to compare with a state of the art joystick control for
example, which was not possible within this thesis due to time limits. The result of such a
comparison will most likely conclude that it depends on the application which one that is to
prefer. One thing that is for sure though is that the research in the possibilities of how to use
Multi-touch for robot control has only begun and this thesis is just a part of this.

From the interviews that were performed after the tests it was revealed that a lot of persons
were very positive to the usage of the Multi-touch screen for this purpose. After all controls
were explained, most users found it relatively easy to use the interface as it was supposed to be
used. A lot of people commented on the fact that the robot movements were limited, and the
orientation control was limited to +-20 degrees angle in all three rotation-directions. They
meant that it would have been easier to complete the different missions if there were no limits,
stopping them from doing free motions in space.

Furthermore some people had comments regarding the position and layout of the interface. For
example it would have been better to have the video stream in a more central location, since
this was more or less the only feedback from the robot controller that was used by the test
persons. The visualization of the robot was shown and explained but hardly used. Maybe this
would have been more utilized if the user not had been able to see the real robot while
controlling it.
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‘ 8. Discussion

Since the design and layout was chosen by the developers and not chosen by the users, it is not
necessarily that the users would have chosen this concept if there were several options
available. Another thing that is implemented in other multi-touch devices but not this case is
inertia (for example that an object with speed continues after releasing the finger). This was not
implemented in this project, since the movements had to be exact, and this concept was not
considered to be safe when controlling a robot.

Furthermore the multi-touch function was only used in “zooming”-function of the grid and the
rotation of the orientation control. As can be seen in figure 25 in the results section, the relative
time spent on using these functions was very low, in all of the tests. In future experiments, one
possibility could be to take more use of the real multi-touch features so that its potential can be
fully exploited.
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9. Conclusions

For robot control, Multi-touch is very useful since it can make complex controlling more lucid
and easier to use than with conventional handling objects, such as mouse or keybord. The
interviews with the test persons revealed that most people found the interface relatively easy
to understand and used it the way it was intended.

Moreover there are a lot of changes that can be made to improve and make this concept even
better. Examples from what was realized from the usability tests were mostly:

Ability to increase the sensitiveness (resolution) of the orientation control, in order to be
able to do more accurate motions.

More central located video stream.

Increased workspace of the robot.

Increase the structure holding the robot in place, since it was trembling a bit making the
tests harder to perform successfully.

Ability to customize the interface to fit different user needs (i.e drag and drop controls)

Multi-touch is definitely something that is going to be more used in the future, probably both
within the robotics, but also in other applications, since it can ease the usage and decrease the
learning period to almost none, if combined with a user-friendly interface. This can save a lot of
time and money when companies choose to invest in this kind of technology.
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Appendix A - Instructions for usability tests

You are now going to be requested to perform seven different tests. We will record your
attempts with cameras. It is very important for us that you remember to think aloud at all
time while performing the tests. After the tests are finished we are going to give you a short
interview.

1St

Here you can see a Multi-touch screen, with which you can control the industrial robot
inside the robotic cell in front of you. As you can see, the robot has a laser and an USB-
camera mounted on it. We will not give you any instruction at this point about how to use
the interface. Please, do this first test, feel free to try to control it in whatever way you think
is possible and remember to think aloud!

MISSION: Try to make the laser follow the black trajectory printed on the sheet located on
the top of the box inside the robotic cell.

an

Before starting the 2" test we will now show you how the grid controls, located to the right
on the interface, works. Please, touch the blue ball with one finger and move the camera
forward, backward, left and right. Now, put two fingers on the grid and do a pinch motion to
zoom in and out. Try to zoom in to the maximum, and touch the grid with one finger to pan
the grid. On the left there is a control with the same functionalities to move the camera
move up- and down.

MISSION: Please, use only these controls to follow the trajectory on top of the box.

3rd

Now we will show you how to use the camera orbit controls, which are located in the lower
center of the screen. Touch the sphere with one finger to tilt the camera up, down, left and
right. The red alert means that you have reached a limit. Touch the sphere with two fingers
and rotate to rotate the camera.

MISSION: Please, use only these controls to follow the trajectory on top of the box.

4th

Now we will show you how to control the video controls, located in the lower left of the
screen. Touch the video with one finger and drag, to move the camera accordingly. Do a
two-finger pinch motion to move the camera forward and backward.

MISSION: Please, use only these controls to follow the trajectory on top of the box.

5" and 6

Now a new labyrinth is placed on the box. Feel free to try to control the robot in whatever
way you think is possible. Remember to think aloud!

MISSION: Use whichever controls you want to follow the trajectories on the two following
sheets.
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7th

We have now blocked your view over the robot so you have to rely on the interface for
feedback on where it is. One thing that may help you is the simulation showed in the top
center of the screen. You can rotate it by touching with one finger and drag.

MISSION: Tell us how many butterflies there are on the sheet and point the laser on them.
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Figure 2: Maze used for test 5.
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Figure 4: 3D-environment used for test 7.
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Appendix B - Tables of the collected data from log
files

Total mean percentage of use

Mission Control Percentage
Testl |Camera 34,2071029102185

Testl |iDF_PosControl XY| 40,9588339949832

Testl |iDF_PosControl _Z |0,215055827973797

Testl |Orientation 24,6190072668244

Test2 |iDF_PosControl_XY| 99,6901537488586

Test2 |iDF_PosControl_Z |0,309846251141375

Test3 |Orientation 100
Test4 |Camera 100
Test5 |Camera 19,6683583002466

Test5 |iDF_PosControl XY| 61,2331348187504

Test5 |iDF_PosControl Z | 2,72853269150522

Test5 |Orientation 16,3699741894978

Test6 |Camera 8,17517702265131

Test6 |iDF_PosControl XY| 83,4734872865737

Test6 |iDF_PosControl _Z |0,435307561538511

Test6 |Orientation 7,91602812923651

Test7 |Camera 12,406933218874

Test7 |iDF_PosControl _XY| 68,5772233539666

Test7 |iDF_PosControl _Z 1,5939756962578

Test7 |Orientation 17,4218677309016

Total mean percentage of use divided by action

Mission Control Action Percentage

Testl |Camera Pan 31,2462213214951
Testl |Camera Zoom 2,96088158872345
Testl |iDF_PosControl XY |Elipse 33,7321328558272
Testl |iDF_PosControl_XY|Pan 6,46175040019018
Testl |iDF_PosControl XY |Zoom 0,76495073896585
Testl |iDF_PosControl _Z |Elipse 0,123633466260736
Testl |iDF_PosControl_Z |[Pan 0,079604559087578
Testl |iDF_PosControl Z |Zoom 1,18178026254827E-02
Testl |Orientation Rotation 2,05413641187154
Testl |Orientation Translation 22,5648708549529
Test2 |iDF_PosControl XY |Elipse 65,2488946684412
Test2 |iDF_PosControl_XY|Pan 28,2470235568751
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Total mean percentage of use divided by action

Mission Control Action Percentage

Test2 |iDF_PosControl_XY|Zoom 6,19423552354235
Test2 |iDF_PosControl_Z |Elipse 0,309846251141375
Test3 |Orientation Rotation 7,42451991516356
Test3 |Orientation Translation 92,5754800848364
Test4 |Camera Pan 89,12476166779
Test4 |Camera Zoom 10,8752379833222
Test5 |Camera Pan 17,8679163807719
Test5 |Camera Zoom 1,80044191947469
Test5 |iDF_PosControl XY |Elipse 33,4909390232709
Test5 |iDF_PosControl_XY|Pan 21,56161008874
Test5 |iDF_PosControl_XY|Zoom 6,18058570673954
Test5 |iDF_PosControl _Z |Elipse 0,453199742555866
Test5 |iDF_PosControl_Z |[Pan 2,27533294894935
Test5 |Orientation Rotation 2,26652164235404
Test5 |Orientation Translation 14,1034525471437
Test6 |Camera Pan 7,43654247968302
Test6 |Camera Zoom 0,738634542968288
Test6 |iDF_PosControl XY |Elipse 36,4868214887463
Test6 |iDF_PosControl_XY|Pan 30,7999096846242
Test6 |iDF_PosControl_XY|Zoom 16,1867561132031
Test6 |iDF_PosControl_Z |Elipse 0,435307561538511
Test6 |Orientation Rotation (6,31212835546742E-02
Test6 |Orientation Translation 7,85290684568184
Test7 |Camera Pan 10,8132916428543
Test7 |Camera Zoom 1,59364157601976
Test7 |iDF_PosControl XY |Elipse 35,1787624745325
Test7 |iDF_PosControl_XY[Pan 25,1149731975724
Test7 |iDF_PosControl_XY|Zoom 8,28348768186174
Test7 |iDF_PosControl_Z |Elipse 1,54260429718658
Test7 |iDF_PosControl_Z |[Pan 4,82929797420555E-02
Test7 |iDF_PosControl Z |Zoom 3,07841932916919E-03
Test7 |Orientation Rotation 3,64771628011909
Test7 |Orientation Translation 13,7741514507825
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1. Introduction

This user manual is created in order to ease the use of KUKA’s real time control package
called KUKA.Ethernet RSI XML. These instructions are for the KR C2 sr robot controller
together with the KR 5 sixx R650 robot at the Instituto Disefio y Fabricacidn in Valencia,
Spain. For more information about the variables and functions mentioned in this document,
see the references.

Below are the instructions to install and run KUKA.Ethernet RSI XML with the demo
programs Demo_1, for the RSI object ST_ETHERNET, which comes with the package, without
any modifications. For modifications, see the chapter “Modifications”.

A special KUKA network card (brand 3COM) is needed to make the communication to work.
This is due to the speed of data that is required. The card is designed for KUKA only and can
only be ordered via their support.

2. Installation and running of Demo programs

The first step is to install the 3COM card in the robot controller, since the real-time control
will not be possible otherwise [1]. The same would have been applied for a KR C2 ed 05
robot controller but not for a KR C2 or a KR C3 robot controller where you can use the
Ethernet connection on the Robots multi-function card (if the card is of the model MFC2 or
MFC3). In order to install the network card and to retrieve the correct model and brand, the
KUKA support has to be contacted. A certified technician from KUKA must install the
network card due to warranty issues.

2.1 Installation

The second step is to install the software package including the demo programs and data
files on the robot controller, following the installation procedure for the Demo_1.src in the
software manual KUKA.Ethernet RSI XML 1.2 [1].

The third step is, in order to run the demo program that comes with the package, to install
the server program on an external computer. After that, make sure that the firewalls, anti-
virus software and similar software are turned off on the external computer, disable the
wireless and make sure that the only Ethernet connection that exist is the one going
between the computer and the robot controllers 3COM Ethernet card.

2.2 Setup Connection

When the computer and the robot controller are connected with an Ethernet cable, go to
the settings of the active Ethernet connection on the external computer. In the TCP/IP
settings (Ipv4) choose a fixed IP address and write a new address manually (for example
172.16.18.210).

Now, locate the file ERXconfig.xml on the robot controller, open it with notepad and write
the IP address that you just created in the field after “<IP_NUMBER>" (default port shall be
6008 on the row below). Save and close the file.



Appendix C — User manual for robotic cell at IDF

Change the IP address of the network card on the robot controller in a similar matter as on
the external computer. A smart way of choosing IP would be to have the same IP as the
external computer except for the last three digits (for example 172.16.18.210 and
172.16.18.110 respectively).

Note: Do not use the IP address range 192.0.1.x since this will create a system error in the
KUKA software and will make it impossible to boot the robot controller [1]. This range is
used by other parts of the system and will therefore cause a conflict.

2.3 Establish Connection

Open the server program on the external computer, choose TCP/IP and ST_Ethernet and
click on “Listen”. The port shall be set on the default value (1).

When the server program is listening, open the “demo_1.src” on the robot controller and

run it. NOTE: The operation mode of the robot controller must be set to AUT (automatic). A
special key is required to change the modes.

“

Figure 1: The operation mode switch [2]

As you can see in figure 1, the operation mode switch has four modes which are 1: T2
(manual high velocity), 2: AUT (automatic), 3: AUT EXT (automatic external), 4: T1 (manual
reduced velocity). For description of the different modes, see the manual for the robot
controller [2].

Now the program should stop on “ST_SKIPSENS” and the message “ERX Message! Free
config!” should be visible in the message console of the robot controller. This means that it
should now be possible to move the robot, using the buttons in the server program. The first
time the connection is made, the program in the robot controller might need to be restarted
a few times before it works.

NOTE: The default allowed movements of the robots are set to 5 millimeter [3], after that
you will get the message that the maximum range is reached (for example “Xmin is
reached”) and you will have to move the robot the other way to continue moving it. See
chapter 3.1 for instructions in how to change the range of the robot.
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2.4 Troubleshooting if experiencing connection problems:

In the start menu in windows, choose “run” and then type CMD to open the command
console. Type “ping IP”, where “IP” shall be the IP address of the computer that shall be
connected. If no response, make sure that all cables are connected correctly and that they
are not broken, that anti-virus software and firewalls are turned off on both computers and
that no other applications are blocking the communication.

3. Modifications

This section describes possible modifications to the demo program.

3.1 How to change the allowed range of the robot with the server:

In the code of the demo_1.src program, after creating the ST_PATHCORR, type in:
err=ST_SETPARAM(PATHCORR,S,L)

Where,

PATHCORR is the name of the object,

S is the corresponding object parameter of the axis that is to be changed [3]
and

L shall be the new limit value.

The values for X, Y and Z are translation in millimeters and the values for A, Band C is
rotation in degrees around Z, Y and X respectively.
NOTE: If the values are not changed, they will be set to their default values.

The corresponding object parameters (S) are [3]:

1 (REAL): Lower bound of correction in X, Default: -5
2 (REAL): Lower bound of correction in Y, Default: -5
3 (REAL): Lower bound of correction in Z, Default: -5
4 (REAL): Lower bound of correction in A, Default: -5
5 (REAL): Lower bound of correction in B, Default: -5
6 (REAL): Lower bound of correction in C, Default: -5
7 (REAL): Upper bound of correction in X, Default: 5
8 (REAL): Upper bound of correction in Y, Default: 5
9 (REAL): Upper bound of correction in Z, Default: 5
10 (REAL): Upper bound of correction in A, Default: 5
11 (REAL): Upper bound of correction in B, Default: 5
12 (REAL): Upper bound of correction in C, Default: 5

The first 6 parameters are the lower limits of X, Y, Z, A, B and C respectively, and the upper
limits are the parameters 7 to 12, following the same order.

For example, to set the maximum allowed movement in negative X-direction to 300
millimeter for the object hPath, the corresponding code will be:

err=ST_SETPARAM(hPath,1,-300)
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For positive x-direction direction, the corresponding code will be:
err=ST_SETPARAM(hPath,7,300)

The same procedure is applied for the RSI object ST_AXISCORR, if this object is used instead
of the ST_PATHCORR object (see chapter 8 for more info on how to use the ST_AXISCORR).
The corresponding object parameters for ST_AXISCORR are [3]:

1 INTEG (INT): Integration mode
->0: Absolut

-> 1: Relativ (Default)

2 (REAL): Lower bound of correction A1, Default: -5
3 (REAL): Lower bound of correction A2, Default: -5
4 (REAL): Lower bound of correction A3, Default: -5
5 (REAL): Lower bound of correction A4, Default: -5
6 (REAL): Lower bound of correction A5, Default: -5
7 (REAL): Lower bound of correction A6, Default: -5
8 (REAL): Lower bound of correction E1, Default: -5
9 (REAL): Lower bound of correction E2, Default: -5
10 (REAL): Lower bound of correction E3, Default: -5
11 (REAL): Lower bound of correction E4, Default: -5
12 (REAL): Lower bound of correction E5, Default: -5
13 (REAL): Lower bound of correction E6, Default: -5
14 (REAL): Upper bound of correction A1, Default:
15 (REAL): Upper bound of correction A2, Default:
16 (REAL): Upper bound of correction A3, Default:
17 (REAL): Upper bound of correction A4, Default:
18 (REAL): Upper bound of correction A5, Default:
19 (REAL): Upper bound of correction A6, Default:
20 (REAL): Upper bound of correction E1, Default:
21 (REAL): Upper bound of correction E2, Default:
22 (REAL): Upper bound of correction E3, Default:
23 (REAL): Upper bound of correction E4, Default:
24 (REAL): Upper bound of correction E5, Default:
25 (REAL): Upper bound of correction E6, Default:

v L L L1

NOTE: Axis E1 to E6 is the parameters for an external system, if one exists. How to use an
external system will not be covered in this document.

The units for parameter 2 to 25 are the rotation of the specific axis in degrees. The
difference is that the first parameter in ST_AXISCORR, sets the integration mode to absolute
or relative. If the parameter is set to absolute, the correction value received by the robot
controller will be interpreted as the number of degrees from the robots home position. If the
set to relative the value will be interpreted as the number of degrees relative the current
position of the robot, no matter its previous position.
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3.2 How to change the coordinate system

To start the RSI execution the following line must be executed:
err =ST_ONZI(TSYS:IN,INTEG:IN)

When the RSl execution is started, all RSI objects are executed in calling order every sensor
cycle [1]. The object parameters for ST_ON1 defines the correction processing for the RSI
object ST_PATHCORR and they are the following [3]:

IN TSYS (TECHSYS): Correction coordinate system
-> #BASE

-> #TCP

-> #TTS

-> #WORLD

IN INTEG (INT): Integration mode

-> 0: Absolute

-> 1: Relative

The in-data parameter TSYS defines which correction coordinate system that ST_PATHCORR
shall use, which are #BASE, #TCP, #TTS or #WWORLD (see figure 2). #TTS can only be used for
welding or adhesive applications and will not be explained here, for more information, see
the Expert Programming Manual from KUKA [4].

World CS

z

Figure 2: The robots different coordinate systems. [4]

Note that the Robot CS (Robot coordinate system) cannot be used together with KUKA
Ethernet RSI XML [3]. Base CS and Tool CS are free for the user to define but not the World
CS, which is write-protected [4]. By default the origin of Robot CS, Base CS (sometimes
referred to as Workpiece coordinate system) and the World CS are the same, with their
origin located at the base of the robot (like the Robot CS in figure 2). The Tool CS is by
default located on the flange of the robot with the Z-axis being identical to axis A6 and
pointing out from the flange, see figure 3 [4].



Appendix C — User manual for robotic cell at IDF
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Figure 3: Default Tool CS [4]

INTEG defines the integration mode [3] that defines how the robot controller unit shall
interpret the coordinates sent to it. There are two different integration modes, the first
being relative, which means that the new coordinates sent to the robot controller are always
calculated from the actual position of the robot, no matter its previous coordinates. This
means that each new position will have the coordinates:

[X=0,Y=0,2=0,A=0,B=0,C=0]

Note that the absolute coordinates always use the start position as origin. This means that
no matter the robot’s previous position, the robot will go back to its start position if the
following coordinates are sent to the robot controller:

[X=0,Y=0,2=0,A=0,B=0,C=0]

3.3 How to control the axis angles instead of the Cartesian coordinates

To add the control of the axis A1, A2, A3, A4, A5 and A6 to the system, modifications must
be made in both the program running on the robot controller and the server.

3.3.1 Modifications on the program on the robot controller

To control the robot axes manually, it is necessary to use the AXISCORR [3]. In order to do so,
one needs to extend the demo_1.src program.

First an ST_AXISCORR RSI object needs to be created. This is done in the code of the
demo_1.src after the creation of ST_PATHCORR and in the same manner. Below is the code
for creating a ST_PATHCORR object named hPath and a ST_AXISCORR object named hAxis.

;FOLD RSI-Objects to link out of ST_Ethernet
; link RKorr to correction on path
err = ST_PATHCORR(hPath,0)
IF (err <> #RSIOK) THEN

HALT
ENDIF
; link AKorr to movement of axis
err = ST_AXISCORR(hAXis,0)
IF (err <> #RSIOK) THEN

HALT
ENDIF
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When the object is created, the object parameters (lower and upper limit of motions of each
axis, see rsiCommands.chm(3]) can be set:

err = ST_SETPARAM(hAXxis,1,0)

err = ST_SETPARAM(hAXxis,2,-170)
err = ST_SETPARAM(hAXxis,14,170)
err = ST_SETPARAM(hAXxis,3,-170)
err = ST_SETPARAM(hAXxis,15,170)
err = ST_SETPARAM(hAXxis,4,-170)
err = ST_SETPARAM(hAXxis,16,170)
err = ST_SETPARAM(hAXxis,5,-170)
err = ST_SETPARAM(hAXxis,17,170)
err = ST_SETPARAM(hAXxis,6,-170)
err = ST_SETPARAM(hAXxis,18,170)
err = ST_SETPARAM(hAXxis,7,-170)
err = ST_SETPARAM(hAXxis,19,170)

After that, the outputs of the RSI object ST_ETHERNET named hEthernet, which is created
earlier in the code (how this is done will not be explained here, see KUKA.Ethernet RSI XML
[1]), must be linked to the inputs of the RSI object hAxis. The corresponding tag in the XML
string must also be defined [1]. The resulting code will be (outputs 1-6 of hEthernet is
already linked to the inputs of hPath):

err =ST_NEWLINK_OUT(hEthernet,7,hAxis,1,"AKorr.A1")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,8,hAxis,2,"AKorr.A2")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,9,hAxis,3,"AKorr.A3")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,10,hAxis,4,"AKorr.A4")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,11,hAxis,5,"AKorr.A5")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,12,hAxis,6,"AKorr.A6")
IF (err <> #RSIOK) THEN

HALT
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ENDIF

Last thing that has to be done is to map the outputs of hEthernet to the system variables
SSEN_PREA[7...12]. The data received by the robot controller will be saved in these variables

[1](5].

err =ST_MAP2SEN_PREA(hmap,0,hEthernet,7,7)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,8,8)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,9,9)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,10,10)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,11,11)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,12,12)
IF (err <> #RSIOK) THEN
HALT
ENDIF

3.3.2 Modifications on the server

The XML string received by the robot controller from the server contains the target values
for the robot. Exactly how these values are updated by from the inputs on the interface and
sent to the robot controller will not be explained here but the principal function will. For
detailed description see the document explaining the software of the interface and the
server.

Figure 4 shows the XML string received by the robot controller and includes all the target
values for the robot. Basically what the server does is that it finds the location of these
target values, erases them and replaces them with new ones before it sends them to the
robot controller. The server does this for the Cartesian coordinates which means that it
replaces the values on the line that starts with “<RKorr” and ends with “/>”. To add the
functionality of controlling the each axis separately, the target axis values need to be found,
erased and replaced. These values are found on the line that starts with “<AKorr” and ends
with “/>”.
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<Sen Type="ImFree">

<EStr>ERX Message! Free config!</EStr>

<RKorr X="0.0000" Y="0.0000" Z="0.0000" A="0.0000" B="0.0000"
Cc="0.0000" />

<AKorr Al="0.0000" A2="0.0000" A3="0.0000" A4="0.0000" A5="0.0000"
A6="0.0000" />

<EKorr E1="0.0000" E2="0.0000" E3="0.0000" E4="0.0000" E5="0.0000"
E6="0.0000" />

<Tech T21="1.09" T22="2.08" T23="3.07" T24="4.06" T25="5.05"
T26="6.04" T27="7.03" T28="8.02" T29="9.01" T210="10.00" />
<Di0>125</DiO>

<IPOC></IPOC>

</Sen>

Figure 4: Structure of XML string received by the robot controller [1]

3.4 How to not exceed maximum allowed speed in the joints

All robot axes have a certain maximum speed that they can operate at. By default it moves
at 100 percent of its maximum speed. A problem can arise when operating in cartesian
coordinates, since the motion is translated to certain axis speed by the robot. When the
robot is moving at 100 percent to follow a certain trajectory and has to rotate an axis in
order to maintain the same trajectory speed, it may exceed the maximum allowed speed in
an axis, causing the robot communication to break. An error message will be displayed,
saying that the maximum axis velocity has been exceeded, and the robot stops.

This problem occurs mostly for the axis A4, when axes A4 and A6 arelined up. In other words
when the robot is getting close to singularity.

To avoid this problem there is a system variable called SCP_VEL_TYPE [5] located in the file
Steu\Mada\Scustom.dat on the robot controller. The default value of this variable is
#CONSTANT which means that there is no reduction of the speeds. If this value is changed to
#VAR_ALL this will make the robot slow down whenever a maximum speed limit is reached,
and not break the communication. This means that the limits can never be exceeded,
resulting in that the communication will not break due to this [5].

4. How to run IDF_RSI_XML.src together with the IDF RobotServer
and the Multi-touch Interface

The steps are similar to those for the Demo programs from KUKA, with the exception that
the Interface is also connected via Ethernet and running on a different external computer
than the server. To connect this there has to exist a LAN connection, for example via an
Ethernet HUB, instead of direct connections as for the Demo_1 program. It will have the
same setup for the TCP/IP on the computer running the interface but the address shall be
different of course, for example 172.16.18.100.

The first step is to start the server program and click “Conectar”. Then the program
IDF_RSI_XML.src needs to be started on the robot controller and executed. These two steps
might need to be repeated the first time before a stable connection is established.

The last step is to run the interface software and then click connect.
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Appendix D - Complete code for IDF_RSI_XML.src

&ACCESS RVP

&REL 58

&PARAM TEMPLATE = C:\KRC\Roboter\Template\vorgabe
&PARAM EDITMASK = *

DEF IDF_RSI_XML( )

; EXAMPLE OF: ST_ETHERNET
; Type: RSI Object

; NAME

; KUKA.Ethernet.RSIXML
; COPYRIGHT

; KUKA Robter GmbH

;ENDFOLD
:FOLD INI
:FOLD BASISTECH INI
GLOBAL INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ( )
INTERRUPT ON 3
BAS (#INITMOV,0)
;ENDFOLD (BASISTECH INI)
:FOLD SPOTTECH INI
USERSPOT(#INIT)
;:ENDFOLD (SPOTTECH INI)
:FOLD GRIPPERTECH INI

USER_GRP(0,DUMMY,DUMMY,GDEFAULT)
;ENDFOLD (GRIPPERTECH INI)
;FOLD USER INI

;Moving the TCP origin to the tip of the camera

STOOL ={X-102,Y 0,2 15,A 0,B -110,C 0}
;ENDFOLD (USER INI)

;ENDFOLD (INI)

HALT
; The current position will be used as SAK movement!
;PTP SPOS_ACT

;Setting the home position of the robot to desired position
HOME = {AXIS: A1 0,A2 -109,A3 106,A4 0,A5 33,A6 0}
PTP HOME
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; Create RSI Object ST_Ethernet, read object configuration .../INIT/ERXConfig.xml
err = ST_ETHERNET(hEthernet,0,"ERXconfig.xml")
IF (err <> #RSIOK) THEN

HALT
ENDIF
; err = ST_SETPARAM(hEthernet,eERXmaxLatePackages,1) ; after "value" to late packages the
robot stopps
; err = ST_SETPARAM(hEthernet,eERXmaxLatelnPercent,10) ; RSIWARNING if the limit
reached
; err = ST_SETPARAM(hEthernet,eERXmaxFieldOfView,1000) ;reset every 'value' statistics.
err = ST_SETPARAM(hEthernet, eERXFastCycle, 0) ; FALSE: Time to answer 11ms / TRUE: Fast
cycle: answer <2ms necessary!
; err = ST_SETPARAM(hEthernet, eERXerrorFlag, 1) ; SFLAG[1] will be set in case off errors

;FOLD RSI-Objects to link in ST_Ethernet
; read SIN[1-16]
err = ST_DIGIN(hDin,0,1,2,0)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err = ST_NEWLINK_IN(hDin,1,hEthernet,1,"Dil")
IF (err <> #RSIOK) THEN
HALT
ENDIF

; read SOUT[1-3]
err =ST_DIGOUT(hDout1,0,1,0,0)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_DIGOUT(hDout2,0,2,0,0)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_DIGOUT(hDout3,0,3,0,0)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_NEWLINK_IN(hDout1,1,hEthernet,2,"Digout.o1")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_NEWLINK_IN(hDout2,1,hEthernet,3,"Digout.02")
IF (err <> #RSIOK) THEN

HALT
ENDIF
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err = ST_NEWLINK_IN(hDout3,1,hEthernet,4,"Digout.o3")
IF (err <> #RSIOK) THEN

HALT
ENDIF

; make sine signal
UNIT_RSI =3601
err = ST_SOURCE(hsource,0,UNIT_RSI)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_SETPARAM(hsource,1,1)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_SETPARAM(hsource,3,50)
IF (err <> #RSIOK) THEN
HALT
ENDIF
err = ST_NEWLINK_IN(hsource,1,hEthernet,5,"ST_Source")
IF (err <> #RSIOK) THEN
HALT
ENDIF
;ENDFOLD

;FOLD RSI-Objects to link out of ST_Ethernet
; Creating RSI object ST_PATHCORR named hPath
err = ST_PATHCORR(hPath,0)
IF (err <> #RSIOK) THEN
HALT
ENDIF

; Creating RSI object ST_AXISCORR named hAxis
err = ST_AXISCORR(hAXis,0)
IF (err <> #RSIOK) THEN
HALT
ENDIF

;Defining the allowed movementsin X, Y, Z, A, Band C
err =ST_SETPARAM(hPath,1,-130)

err = ST_SETPARAM(hPath,2,-130)

err = ST_SETPARAM(hPath,3,-25)

err = ST_SETPARAM(hPath,4,-20)

err = ST_SETPARAM(hPath,5,-20)

err =ST_SETPARAM(hPath,6,-20)

err = ST_SETPARAM(hPath,7,130)

err = ST_SETPARAM(hPath,8,130)
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err = ST_SETPARAM(hPath,9,20)

err =ST_SETPARAM(hPath,10,20)
err =ST_SETPARAM(hPath,11,20)
err =ST_SETPARAM(hPath,12,20)

;Defining integration mode and allowed rotations of axes
err = ST_SETPARAM(hAXis,1,0)

err = ST_SETPARAM(hAXis,2,-170)
err = ST_SETPARAM(hAXxis,14,170)
err = ST_SETPARAM(hAXis,3,-170)
err = ST_SETPARAM(hAXxis,15,170)
err = ST_SETPARAM(hAXis,4,-170)
err = ST_SETPARAM(hAXxis,16,170)
err = ST_SETPARAM(hAXis,5,-170)
err = ST_SETPARAM(hAXxis,17,170)
err = ST_SETPARAM(hAXis,6,-170)
err = ST_SETPARAM(hAXxis,18,170)
err = ST_SETPARAM(hAXis,7,-170)
err = ST_SETPARAM(hAXxis,19,170)

;linking rKorr to correction on path and hAxis to rotation of axes
err =ST_NEWLINK_OUT(hEthernet,1,hPath,1,"RKorr.X")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,2,hPath,2,"RKorr.Y")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,3,hPath,3,"RKorr.Z")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,4,hPath,4,"RKorr.A")
IF (err <> #RSIOK) THEN

HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,5,hPath,5,"RKorr.B")
IF (err <> #RSIOK) THEN

HALT
ENDIF

err = ST_NEWLINK_OUT(hEthernet,6,hPath,6,"RKorr.C")
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,7,hAxis,1,"AKorr.A1")
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IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,8,hAxis,2,"AKorr.A2")
IF (err <> #RSIOK) THEN
HALT
ENDIF
err =ST_NEWLINK_OUT(hEthernet,9,hAxis,3,"AKorr.A3")
IF (err <> #RSIOK) THEN
HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,10,hAxis,4,"AKorr.A4")
IF (err <> #RSIOK) THEN
HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,11,hAxis,5,"AKorr.A5")
IF (err <> #RSIOK) THEN
HALT
ENDIF
err = ST_NEWLINK_OUT(hEthernet,12,hAxis,6,"AKorr.A6")
IF (err <> #RSIOK) THEN
HALT
ENDIF

; DIO map to SOUT[8-24]
err =ST_MAP2DIGOUT(hMapDio,0,hEthernet,19,2,2)
IF (err <> #RSIOK) THEN
HALT
ENDIF

; show RKorr on SSEN_PREA[1-6] and AKorr on SSEN_PREA[7-12]
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,1,1)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,2,2)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,3,3)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,4,4)
IF (err <> #RSIOK) THEN

HALT
ENDIF
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err =ST_MAP2SEN_PREA(hmap,0,hEthernet,5,5)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,6,6)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,7,7)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,8,8)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,9,9)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,10,10)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,11,11)
IF (err <> #RSIOK) THEN

HALT
ENDIF
err =ST_MAP2SEN_PREA(hmap,0,hEthernet,12,12)
IF (err <> #RSIOK) THEN

HALT
ENDIF

; show DiO on $SEN_PINT[1]
err =ST_MAP2SEN_PINT(hmap,0,hEthernet,19,1)
IF (err <> #RSIOK) THEN
HALT
ENDIF
;ENDFOLD

;Setting the coordinate system
err = ST_ON1(#BASE,0)

;err = ST_ON1(#TCP,0)

;err =ST_ON1(#WORLD,1)
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IF (err <> #RSIOK) THEN
HALT
ENDIF

PTP SPOS_ACT

END



