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ABSTRACT 

Present guidelines for multipactor susceptibility assess-

ment (e.g. ECSS) are based on a simplified representa-

tion of the actual device design in terms of a parallel 

plate geometry. When applied to open structures, e.g. 
balanced transmission lines and quadrifilar helix anten-

nas, this produces overly conservative estimates of the 

multipactor susceptibility. 

 

A simplified TEM transmission line geometry consist-

ing of two cylindrical conductors has been studied. The 

convex conductor shape is shown to lead to a geometri-

cally induced dilution of the electron density during 

successive passages between the conductors. This effect 

is equivalent to a loss of electrons and significantly re-

duces the probability of multipactor. 

 

A simple susceptibility chart has been constructed that 

shows the parameter combinations for which multipac-

tor cannot occur and gives an estimate of the suscepti-

bility as compared to the simplified parallel plate case 

approximation. 

 

 

1. INTRODUCTION 

The present trend towards higher data rates in all kinds 

of space communication applications necessitates higher 

RF power levels to maintain a sufficient carrier-to-noise 

ratio. The increase of carrier power combined with the 

demanding space environment results in serious power 

handling issues in antennas, transmission lines, and re-

lated components. 

 

Microwave breakdown due to multipactor and corona 

has long been recognized as a potential problem in RF 

space applications. Breakdown can occur during am-

bient pressure ground testing, during the launch ascent 

phase, or in the high vacuum environment in orbit. 

Multipactor in high vacuum will typically be dimen-

sioning for the design, except for the case when the 

transmitter is switched on during ascent and thus inter-

mediate pressure corona can occur. 

 

A considerable amount of research and development has 

been put into analyzing and mitigating multipactor. 

Much of the effort has been directed to model the sur-

face physics of the materials involved, especially the 

secondary emission yield (SEY). In order to maintain as 

few parameters as possible in the analysis, the canonical 

case of a parallel plate structure is typically considered. 

 

A few transmission line and filter component structures, 

such as coaxial lines [1, 2], rectangular [3, 4] and cir-

cular waveguides [5], and irises [6], have been studied 

in detail. For more complicated structures, ad hoc nu-

merical models are needed to investigate the specific 

problem. 

 

Guidelines, such as the ECSS standard [7], exist for the 

analysis and testing of multipactor. The guidelines are 

heavily dependent on the parallel plate assumption, and 

would typically lead to overly conservative estimates 

regarding the breakdown susceptibility. Not having reli-

able prediction tools could lead to non-optimal trade-

offs during the engineering design phase, and could lead 

to unnecessary testing with consequences to project 

schedule and budget. 

 

Hitherto, little has been published on multipactor in 

open structures, such as the balanced two-wire TEM 

transmission line and the helix antenna shown in Fig. 1. 

 

There are some important factors that distinguish this 

type of geometry from the canonical parallel-plate one: 

 

• The structure is open, and there is a high probability 

for electrons being ejected and not impacting on the 

structure again. 

• The field strength is inhomogeneous in the direction 

of the line between the conductor centers. 

• The field strength is inhomogeneous in the direction 

perpendicular to the line between the conductor 

centers. 



 

All these factors will contribute to a significant increase 

in the multipactor breakdown threshold voltage, which 

will be established in the following sections. 

 

           

Figure 1. Examples of open structures:  
Two wire transmission line (left) and 
quadrifilar helix antenna (right). 

 

 

2. THE TWO-WIRE TEM LINE 

The circular cross-section two-wire TEM transmission 

line is a very convenient choice for a canonical struc-

ture. The field is known in closed form from logarithmic 

potential theory (see e.g. [8]). In Fig. 2, the equipoten-

tial curves for two parallel filamentary sources are 

shown. The equipotential curves and field lines are cir-

cles (or straight lines in some limit cases). 

 

 

 

Figure 2. The equipotential curves (blue) and field lines 
(red) for a pair of filamentary line sources. 

By a judicious choice of the circles it is seen that the 

dual filament case can be used to model all circular 

cross-section two-wire and coaxial lines, including vari-

ous combinations of eccentricity and asymmetry (see 

Fig. 3). The parallel plate case can also be included as a 

limiting case. 

 

 

Figure 3. A judicious choice of equipotential curves can 
model symmetric (top left) and asymmetric two-wire 
lines (top right), line over ground-plane (bottom left), 

and eccentric coaxial lines (bottom right).  
 

 

One advantage with using the TEM line approach is to 

separate the problem into a wave solution in the direc-

tion of the line, and thus just having a two-dimensional 

problem in the transversal direction, viz. 
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Using the notation in Fig. 4, one can show that 
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and the electrical field is given by 
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V is here denoting the voltage between the conductors, 

and ρl is the filamentary linear charge density. 
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Figure 4. The two-wire TEM line geometry definition. 
 

 

The circular cross-section two-wire geometries can be 

presented in a parameter plane, representing the con-

ductor radii in terms of the conductor distance, see 

Fig. 5. By allowing the radii R1 and R2 in Eqs. 3-4 to 

assume negative and/or infinite values, it is also possi-

ble to include symmetric and eccentric coaxial lines, 

line over ground-plane, as well the parallel plate case. 

 

The parametric contour for the symmetric coaxial line 

case is given by 

 ( )( )1 2
1 1 1d R d R+ + =  (5) 

and the parallel plate case by 

 
1 2

0d R d R= ≡  (6) 

The area below the coaxial line contour in Fig. 5 is a 

“forbidden” region, since the conductors would intersect 

for those parameter combinations. 
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Figure 5. The parameter plane for  
various two-wire geometries. 

 

 

3. ANALYSIS 

 

3.1. A Ponderomotive Model 

When analyzing the motion of the electrons, the com-

plete approach would be to use Newton’s law of motion 

together with the Lorentz force created by the electric 

and magnetic fields, viz.  

 ( ) ( )( ), ,m e t t= − + ×r r r rɺɺ ɺE B  (7) 

Typically one can neglect relativistic effects and the 

magnetic field component, since multipactor would oc-

cur for much lower velocities. However, a fully numeri-

cal approach gives little insight into the multipactor 

physics, and a semi-analytical approach is conveniently 

used. In this approach, the motion of the electron is se-

parated into an oscillatory part, the amplitude of which 

will be dependent on the spatially averaged field 

strength, and a slow drift velocity part, viz. 
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It is convenient to introduce an oscillation peak velocity 

vω: 
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In the parallel-plate case the drift velocity is constant, 

but in the general case the field inhomogeneities create 



 

a so-called ponderomotive acceleration that will be pro-

portional to the gradient of the square of the electrical 

field strength, viz. 
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The vector square notation is here understood as: 

 
2 *=E E Ei  (11) 

A simplistic explanation of the ponderomotive force is 

that the oscillating electron moves farther during the 

half-cycle when it is moving from a region with a strong 

field to a region with a weak field than vice versa, re-

sulting in a net drift when averaged over a cycle. 

 

The ponderomotive approximation is generally good 

when the oscillation amplitude is small compared to the 

structure size and the field inhomogeneity scale length. 

 

The square of the electrical field and the related ponde-

romotive force lines for the two-wire line are plotted in 

Fig. 6. The curves are known as Cassini ovals and stel-
loïdes, respectively. 

 

 

Figure 6. The isophotes for the field strength (blue) and 
the ponderomotive field lines (red) generated by two 

filamentary line charges. 
 

 

Knowing the field and thus the equations of motion 

enables a semi-analytical approach where a numerical 

solution of the ponderomotive part is used. 

 

However, there is a higher-level analytical approach that 

can be used to gain even more insight into the electron 

ballistics. 

By integrating the equations of motion we get an energy 

conservation relation: 
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The drift velocity can now be found as a function of the 

initial conditions and the local electrical field strength. 

The time has disappeared as an explicit parameter, 

which is very convenient. 

 

 

3.2. Secondary Emission Yield (SEY) Model 

A necessary, but not sufficient, condition for multipac-

tor breakdown is to have a net gain in the number of 

electrons for a round-trip. Essentially this is the condi-

tion that the product of the secondary electron emission 

yields of the two surfaces should exceed any electron 

losses due to geometrical factors. 

 

An empirical SEY model similar to one devised by 

Vaughan [9] has been used in our analysis: 
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The parameter ε here represents a normalized impact 

energy, wherein the normalization energy, Wm, corres-

ponds to the maximum secondary emission yield, σm. 

 

Representative empirical parameters for silver are 

Wm=519 eV and σm=2.22, and the resulting SEY curve 

is shown in Fig. 7. A range of impact energies will gen-

erate an SEY larger than unity. 
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Figure 7. The SEY model for silver. 



 

3.3. Geometrical Dilution Model 

At the emission of a secondary electron from the sur-

face, the initial conditions are mainly set by the surface 

electric field. In our two-wire case we assume perfect 

electric conductors (PEC), and then it is known that the 

tangential E-field is zero on the conductor. Hence, the 

E-field, and thus the initial acceleration, will be normal 

to the conductor surface. With the circular cross-section, 

all initial velocity lines converge on the center of the 

conductor, see Fig. 8. 

 

 

Figure 8. The electrical field lines (red circles) on the 
conductor surfaces appear to emanate from the center 

(surface normals). 
 

 

We now consider a bunch of electrons emitted from an 

infinitesimal surface element dAemi. When impacting the 

other surface the electron bunch will cover a surface 

element dAimp (see Fig. 9). Our simplistic model of 

straight trajectories normal to the surface thus trivially 

gives the ratio between the electron densities, nA, at the 

two surfaces as: 
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For a round-trip along the symmetry line in our two-

wire geometry we would thus have an equivalent total 

dilution of 
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Figure 9. The geometrical dilution effect  
on a bunch of emitted electrons. 

 

 

For the coaxial case, the equivalent dilution factor col-

lapses to unity due to focusing from the outer conductor 

(the radius is negative). 

 

The question is now how realistic this simplistic model 

is. By plotting the ponderomotive force field lines as in 

Fig. 10, we can see that these field lines appear to ema-

nate from a point that is located closer to the surface. 

The ponderomotive forces would increase the deflection 

of the electrons away from the nominal trajectory, and 

the straight line approach is hence a conservative bound 

for the geometrical electron dilution. 

 

 

 

Figure 10. The ponderomotive field lines (stelloïdes) on 
the conductor surfaces appear to emanate from a point 

that is located closer to the surface. 
 

 



 

The geometrical dilution is essentially a measure of the 

walk-off that is produced by the field inhomogeneity 

across the structure. 

 

A conservative condition for multipactor would thus be: 
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Since the maximum SEY is limited, we can assign an 

upper limit to the relation: 
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Assuming the same SEY properties for both surfaces, 

we can now plot the limiting lines in the parameter plot 

as in Fig. 11: 
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Above these lines the geometrical dilution will prohibit 

multipactor. 
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Figure 11. The SEY limit curves  
for geometrical dilution. 

 

 

One should note that the geometrical dilution factor can 

be extended to a three-dimensional case as well. A 

doubly curved surface with the principal radii of curva-

ture denoted by ρξ and ρη will yield a one-way dilution 

factor of 
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3.4. Double-Sided Multipactor Conditions 

We assume that the emission velocity is negligible, i.e. 
the sum of the instantaneous oscillation velocity and the 

initial drift velocity is approximately zero: 

 
, ,
sin 0

emi o d emi
v v
ω

ϕ− + ≈  (20) 

The initial drift velocity is then limited by: 
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The energy conservation relation in Eq. 12 yields: 
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Combining these relations gives the following bound: 
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From this follows that the drift velocity will be zero if 
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Thus, if the ratio of the field strengths on the conductor 

surfaces exceeds this limit, the electron will not impact 

with the second surface. The conditions for double-

sided multipactor along the symmetry line for the two-

wire line are then given by: 
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These conditions are conveniently plotted as straight 

lines in the parameter plot, see Fig. 12. 

 

Combining the above graph with the previous graph of 

geometrical dilution, we get Fig. 13. The curves enclose 

an area outside which double-side multipactor is im-

possible for the parameter ranges considered in this pa-

per. 
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Figure 12. The allowable region  
for double-sided multipactor. 
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Figure 13. The combined graph for the various regions. 
 

 

3.5. Multipactor Threshold Calculations 

The previous sections have dealt with the different limit 

cases, but it is also possible to analytically compare the 

multipactor threshold to that of the parallel plate case. 

The methodology of this solution is detailed in [10], and 

only the main points will be repeated here for conveni-

ence. 

 

The round-trip condition will be given by the products 

of the geometrical dilutions and SEYs in each direction: 
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The normalized impact energies ε1 and ε2 are here ge-

ometry dependent functions of a parameter ψ, which is 

the ratio of the multipactor threshold voltage compared 

to the one for the parallel plate case. Numerical root 

search is used to find the ψ that solves Eq. 26 together 

with the SEY model σ(ε) as defined in Eq. 13. 

 

We now need to find the geometry dependent impact 

energy functions. A conservative bound for the impact 

velocity could be the sum of the drift velocity and the 

peak oscillation velocity. However, a more suitable ap-

proach would be to average the impact velocity for all 

possible phase angles. The averaged impact velocity as 

a function of the drift and peak oscillation velocities can 

in that case be shown to be: 
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Using this estimate for the impact velocity, the normal-

ized energies for the two-wire case can be written as: 
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The parameter εpp in Eq. 28b is the normalized impact 

energy for the parallel plate threshold case. It is not ge-

ometry dependent, and is found by numerical root 

search of the following equation: 

 ( ) 1 1
pp pp
ε εσ <=  (29) 



 

The numerical results for the two-wire TEM line multi-

pactor threshold as a function of the geometrical para-

meters are shown in Fig. 14. The SEY limit curve (as in 

Fig. 11) is also plotted in the figure. It is seen that the 

solution does not “fill” the region entirely. This is due to 

the fact that both SEY functions cannot be at the maxi-

mum value simultaneously for an asymmetric case. 
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Figure 14. The relative two-wire TEM line multipactor 
susceptibility (compared to the parallel plate case) for 
the presented model with σm=2.22. Pseudo-color plot 

with a logarithmic scale: 
10

20 log
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4. CONCLUSIONS 

An analysis methodology has been developed to assess 

the multipactor susceptibility of two-wire TEM trans-

mission lines. The model provides an excellent insight 

into the geometry dependent multipactor mechanisms, 

and the formalism is likely to be possible to be extended 

to other structures. 

 

The presented model introduces several new effects that 

are present in curved geometries. Using the pondero-

motive force concept, one can rule out double-sided 

multipactor for two-wire systems with large differences 

in radii, simply because electrons ejected from one side 

will not reach the other. For convex geometries, a bunch 

of electrons will undergo spreading between successive 

rounds of impact, emission, and transport between the 

surfaces. For a given secondary emission yield, this di-

lution effect makes double-sided multipactor impossible 

for conductor radii less than a limit value. 

 

Future work will be concentrated on numerical corrobo-

ration of the presented theory, as well as experimental 

verification by tests on reference structures of the two-

wire line type.  
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