
 

Department of Computer Science and Engineering 
CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Göteborg, Sweden,  August 2010 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Integrated Circuit Yield Enhancement  
Redundant Multi Core DSP Cluster 

Master of Science Thesis  

in Integrated Electronic System Design 
 
 
 

MIKAEL ANDERSSON 



 1 

 
The Author grants to Chalmers University of Technology and University of Gothenburg the 
non-exclusive right to publish the Work electronically and in a non-commercial purpose make 
it accessible on the Internet.  
The Author warrants that he/she is the author to the Work, and warrants that the Work does 
not contain text, pictures or other material that violates copyright law.  
 
The Author shall, when transferring the rights of the Work to a third party (for example a 
publisher or a company), acknowledge the third party about this agreement. If the Author has 
signed a copyright agreement with a third party regarding the Work, the Author warrants 
hereby that he/she has obtained any necessary permission from this third party to let Chalmers 
University of Technology and University of Gothenburg  store the Work electronically and 
make it accessible on the Internet. 
 
 
 
 
Integrated Circuit Yield Enhancement 
Redundant Multi Core DSP Cluster 
 
Mikael L. Andersson 
 
© Mikael L. Andersson, August 2010. 
 
Examiner: Lars Svensson 
 
Chalmers University of Technology 
University of Gothenburg 
Department of Computer Science and Engineering 
SE-412 96 Göteborg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 
 
 
Department of Computer Science and Engineering 
Göteborg, Sweden August 2010 



 2 

Abstract 
 
The manufacturing of integrated circuits is not a perfect fault-free process. The constant 
downscaling of integrated circuits requiring higher accuracy each generation also allows the 
designer to fit more transistors in the same area. From a manufacturing point of view, this 
downscaling introduces additional possible sources of error, which forces a constant struggle 
to keep the yield or ratio of successfully manufactured chips high enough to be profitable. The 
manufacturing success ratio, or yield, is a major component of what determines the time and 
material cost it takes to manufacture an integrated circuit. 

To increase yield a common approach is to add redundant or spare parts to the system 
requiring only enough of them to work.  

Redundancy has long been a common concept in memories. For random logic blocks, the 
overhead cost has been too large to be reasonable. But for multi core systems, with several 
instances of the same logic block, the situation is starting to resemble the case of a memory. 

The manufacturing yield can be predicted by statistical models. Such models may consist of 
analytical expressions based on very low level information such as the exact layout features of 
every transistor and wire of the entire chip. However the addition of a spare core for a multi 
core cluster is an architectural decision that has to be made in the early stages of the design 
where low level details are not readily available.  

The modeling approach taken in this project uses a collection of simplified models previously 
used for yield calculations for memories. The model results in estimates of the yield before 
and after the addition of redundant cores. The input parameters to the model are based on gate 
counts and global routing estimates of an early floor plan together with information about the 
manufacturing process in the form a fault density. 

When sources of defects are found and suppressed, the yield ramps up. The yield model 
presented here also shows the effect the redundancy has on the yield ramp, pushing it towards 
an earlier volume production date, potentially decreasing the product time to market. 

 



 3 

Acknowledgement 
 

I would like to thank my supervisor at Chalmers, Lars Svensson and my supervisors at 
Ericsson AB, Edvin Catovic and Per Ingelhag. 

I thank you for sharing with me your expert knowledge, theoretical insight, great suggestions, 
feedback and everything that made this project possible. 

Also I would like to thank Ulf Gmoser and staff at the ASIC & Advanced FPGA department, 
and everyone else at the Lindholmen office site.  

I thank you all for your constant guidance and support throughout this entire project!  

 

 

 

 

 

This thesis work was carried out for Ericsson AB, at their site Lindholmen, Gothenburg 
Sweden during the spring 2010. 

About Ericsson: 

Ericsson is a world-leading provider of telecommunications equipment and related services to 
mobile and fixed network operators globally. Over 1000 networks in more than 175 countries 
utilize Ericsson’s network equipment and 40% of all mobile calls are made through their 
systems. Ericsson is one of the few companies worldwide that can offer end-to-end solutions 
for all major mobile communication standards. 

 



 4 

Abbreviations 
 
ASIC Application Specific Integrated Circuit 
BIST Built-In Self Test 
CMP Chemical Mechanical Polishing 
DFM Design for Manufacturability 
DFY Design for Yield 
DSP Digital Signal Processor 
GCPW Good Chips per Wafer 
GDPW Good Dice per Wafer 
IC Integrated Circuit 
IRR Internal Rate of Return 
NoC Network on Chip 
NPV Net Present Value 
SPC Statistical Process Control 
SoC System on Chip 
STA Static Timing Analysis 
SSTA Statistical Static Timing Analysis 
 



 5 

 

1 INTRODUCTION............................................................................................................................................... 6 

1.1 BACKGROUND ............................................................................................................................................. 6 
1.2 PURPOSE ..................................................................................................................................................... 7 
1.3 GOALS AND SUBTASKS ............................................................................................................................... 8 

2 PROBLEM DESCRIPTION – PRODUCTIVITY ........................................................................................... 9 

3 POTENTIAL NUMBER OF CHIPS PER WAFER ..................................................................................... 11 

4 YIELD PREDICTION MODEL ...................................................................................................................... 13 

4.1 RANDOM DEFECTS..................................................................................................................................... 13 
4.2 DEFECT LIMITED YIELD MODELING ............................................................................................................ 14 

4.2.1 The first part: statistical distribution function.................................................................................. 14 
4.2.2 The second part: the average number of faults ................................................................................ 16 
4.2.3 Critical Area....................................................................................................................................... 17 
4.2.4 Defect density ..................................................................................................................................... 19 
4.2.5 Combining critical area and Defect density...................................................................................... 21 

4.3 PARAMETRIC YIELD LOSS – STATIC POWER AND FREQUENCY ................................................................. 23 
4.4 BLOCK YIELD ............................................................................................................................................. 25 

5 YIELD ENHANCEMENT TECHNIQUES .................................................................................................... 27 

5.1 REDUNDANCY ............................................................................................................................................ 27 
5.1.1 Redundancy in memories .................................................................................................................. 29 

5.2 WIRE SPREADING AND DUMMY FILLING ..................................................................................................... 30 
5.2.1 Wire spreading ................................................................................................................................... 30 
5.2.2 Dummy filling .................................................................................................................................... 30 

6 THE PROPOSED YIELD MODELING APPROACH ................................................................................ 31 

6.1 STEP I  – BREAKING DOWN A SYSTEM INTO BLOCKS ................................................................................. 31 
6.2 STEP II  – SCALING THE BLOCKS WITH CONTENT ...................................................................................... 33 
6.3 STEP III  – GLOBAL ROUTING ..................................................................................................................... 34 
6.4 STEP IV  – PUTTING IT ALL TOGETHER ......................................................................................................36 

7 APPLICATION OF THE MODEL ON AN EXAMPLE SYSTEM AND  RESULT ANALYSIS .............. 38 

7.1 AN EXAMPLE SYSTEM ................................................................................................................................ 38 
7.2 RESULT AND ANALYSIS ............................................................................................................................. 40 

8 DISCUSSION AND RELATED TOPICS ..................................................................................................... 43 

8.1 YIELD LEARNING /RAMP UP ........................................................................................................................ 43 
8.2 MODELING YIELD LEARNING ...................................................................................................................... 45 

9 FUTURE WORK ............................................................................................................................................. 46 

10 CONCLUSIONS/SUMMARY ...................................................................................................................... 47 



 6 

1 Introduction 

1.1 Background 
Application specific integrated circuits (ASIC) consist of nanometer-sized components which 
are intuitively very difficult to manufacture.  

The ratio of the number of circuit chips that pass the post manufacturing tests over the total 
amount of manufactured chips is what is referred to as manufacturing yield.  

in total edmanufactur chips

lysuccessful edmanufactur chips
yield =  ( 1 ) 

 
Yield is a major component in calculating ASIC manufacturing cost. Yield prediction is 
therefore an important issue. The standard method to model yield is by attempting to separate 
mechanisms contributing to yield loss. Manufactured chips are either discarded because they 
fail the functional tests or the non-functional tests, such as speed and power tests. 

The most common source of failure in the functional tests is random defects, caused by 
particles interfering with the manufacturing procedure. The discarded chips are said to be in a 
category usually referred to as defect limited yield, or simply defect yield loss. 

The most common source of failure in the non-functional tests is the limited accuracy in the 
manufacturing procedure, which causes parameter variations in different layers of the design. 
These chips are categorized under parametric yield loss, but are usually divided further into 
process systematic yield loss and design systematic yield loss. The former is caused by for 
example lithography misalignment, or uneven manufacturing steps. The magnitude of the 
process systematic yield loss is reduced as the manufacturing process matures over time.  

Design systematic yield loss causes chip designs that follow the specified design rules still to 
be difficult to manufacture. This yield loss category is expected to dominate in the lower 
nanometer era [1], but little documentation regarding this subject has been found.  

The effects of both defects and parametric yield loss are increasing with the constant 
downscaling of feature sizes. At each new technology node, small defects previously 
considered harmless are becoming a threat, and previously acceptable accuracy for varying 
performance is no longer enough. The manufacturing process therefore has to continuously 
improve to keep yield at a reasonable level.  

Another way of trying to improve yield is to design more robust systems, less susceptible to 
defects and parametric variations. The engineering fields striving to suppress yield loss from a 
design point of view are referred to as Design for Manufacturability (DFM) or Design for 
Yield (DFY).  

Figure 1: Conceptual illustration of the characterization 
of yield loss mechanisms  



 7 

1.2 Purpose 
The purpose of this project is to examine the possibility of improving ASIC manufacturing 
cost from a design perspective, assuming minimum insight into a specific manufacturing 
process implementation. 

Currently, for a chip to pass the post fabrication tests, all circuit blocks needs to be 
functionally correct and remain so at least above or below some limit in both timing and 
power analysis. 

Recent trends, however, show chip performance scaling through the use of multiple 
functionally identical logic units working in parallel. This trend may allow a reduction in the 
manufacturing test acceptance level by introducing redundant copies of system components. 
The redundant copies may replace faulty originals, and thereby increase the probability that 
the manufactured chip fulfils the system requirements. If the yield can be modeled and 
predicted, then it will be possible to derive the number of redundant units required to reach 
the desired yield target.  

The added redundant units will, however, increase the area needed per chip. This in turn 
might increase the raw yield loss as well as increase the overall fabrication cost for the chip 
design.  

In summary, both low yield and a large chip area affect the ASIC fabrication cost in a 
negative way. Tradeoffs between the two will have to be examined. Is it possible to find a 
sweet spot where the overall cost is at a minimum? 



 8 

1.3 Goals and subtasks 
1. Develop a yield model: 

To be able to examine the effects of redundancy on the yield of a system on chip (SoC) 
design, a model estimating the yield has to be developed first. Subjects and tasks that need to 
be examined are the following: 

• What are the main contributions to yield loss?  

• What statistical theories are needed to model the different yield loss mechanisms 
behavior? 

• How early in the design can the yield model be used? Can the model provide 
useful results with only a netlist of standard cells?  

• Can the model details be hidden from a user at a higher abstraction layer? An 
example could be to estimate the effects of routing for a given net list, before a 
particular routing tool has been used. 

2. Expand the yield model to account for redundancy.  

Assuming the yield model developed is accurately predicting the ratio of chips per wafer that 
have been manufactured with all components functional; how can the model be expanded to 
account for having only a sufficient number of instances of functional subsystems pass the 
test, instead of all of the instances passing the test? An example would be if a chip has 2 MB 
of memory, but only 1 MB have to be functionally correct to fulfill the system specification. 

3. Improving yield through redundancy on block level. 

Apply the yield model to a case study to evaluate overall trends of redundancy added to a 
system. 

4. Find a way to express the optimal amount of redundancy. 

Increasing the chip area of a design reduces the number of chips per wafer, thus decreasing 
the parallelism in the manufacturing steps, and in the end increasing the cost per unit. 

Increasing the yield of a design increases the ratio of useful dice per wafer, so in the end 
reduces the cost per unit. 

When does it pay off using redundancy and to what extent? 

The procedure for testing chips with redundancy might increase in difficulty or time spent. At 
least an additional configuration step should be expected to determine which sub-components 
should be used to represent logical topology of the system. 



 9 

2 Problem description – Productivity 
 
The main underlying goal of the project is to examine possibilities to increase the potential 
profit for a System on Chip (SoC) based product. Many variables affect the profit of a 
product, for example time to market, gross margin, and labor and material cost. The efficiency 
of the silicon foundry is hard to influence, and this report will focus on reducing the 
manufacturing cost per chip from the ASIC designer’s point of view. But what knobs can be 
turned to reducing the overall cost?  

It is well known that many manufacturers set a price on a chip design based on its size: the 
larger the design, the higher the price [2]. There are two main reasons behind this.  

First, the integrated circuits are produced not one-by-one, but instead several chips are 
fabricated in parallel on a thin circular silicon wafer to increase the throughput. The 
manufacturers can only fit a certain number of chips on the wafer at one time, so the larger the 
chip design is, the fewer copies can fit on the wafer, and so fewer copies can be manufactured 
simultaneously. The price is affected since the number of wafers required to produce a certain 
number of units increases as well as the time required to produce them. 

Example 1.  
Assume an ASIC-design company which has two chip designs D1 and D2 and wants 
to produce 1000 of each product at a manufacturer with an advertised 100 % yield. 
D1 is twice the size of chip design D2.  
If 100 instances of D1 fit per wafer, then 10 wafers are needed to reach the desired 
volume.  

If the number of chips that fit on a wafer is assumed to decrease proportionally as a 
linear function of growing chip size, then D2 should be able to fit 200 chips on a 
wafer and so only 5 wafers are needed to reach the desired volume of 1000 units.  

If the manufacturing company sets the price per wafer then it will cost less to 
produce 1000 units of design D2 than D1. 

The example above shown above is a great simplification and a more accurate relation 
between chip size and the number of chips that fit on a wafer will be examined in more detail 
in section 3. 

The second reason that price increases with a larger area is that the many manufacturing 
process steps are not perfect, and typically several chips per wafer are not successfully 
manufactured. The results of the successfully manufactured chips over the total number of 
chips attempted can be monitored and translated into a probability. The probability that a 
circuit element is manufactured correctly is commonly referred to as the empirical yield 
model of that circuit element. 

The manufacturer assumes a certain worst case circuit density. For a fixed circuit density, the 
larger a chip area is, the more circuit elements potentially fits into the area, and must be 
manufactured correctly for the chip to pass the functional post-fabrication tests.  

Commonly, the yield for a chip with N circuit elements is modeled as the product of the yield 
for each individual circuit element. The chip yield is a probability function and thereby also 
defined to be between zero and unity, so the yield monotonically decreases as the number of 
required circuit elements per chip increase (see section 5.1). The chip yield thereby limits the 
number of chips that will be manufactured in parallel. 

 



 10 

Example 2. 
Assume the company has developed two additional chip designs D3 and D4 of equal 
area. Again 1000 units should be produced. The manufacturer this time has a yield 
model predicting D3 to have a chip yield 20% and D4 with a chip yield of 40%. 
Looking at the definition of yield once more and inputting the desired target of 1000 
units to be manufactured successfully and the yield predictions to estimate the 
number of chips that need to be produced and thereby also see how much time and 
material would be spent. 

yield

 targetdesired
   volumeedmanufactur

} target desired ly successful edmanufactur {
 volumeedmanufactur

lysuccessful edmanufactur
  yield

=

⇒=

=

 

Then D3 requires 5000 chips on average to be manufactured to compensate for the 
yield loss while D4 requires 2500 to reach 1000 functional units. 

A wafer can therefore be seen as both as a material cost and a time cost. A difference between 
how chip yield and chip size affect the number of good chips per wafer is that after 
manufacturing the chips have to be tested thoroughly. The size of a chip does not affect the 
number of chips that go through the testing stage, and thereby indirectly does not increase the 
time spent on testing. But for a lower yield, the number of chips that will go through the test 
stage to reach target number of units increases; the testing stage is where the defective chips 
are detected. 

The discussion above motivates an ASIC designer to strive for a small chip area to minimize 
manufacturing cost. This report will examine more complex statistical expression for 
determining yield in the next few sections, and show that a low yield is not always the result 
of a large total chip area.  

More generally, the productivity problem could be described as maximizing the number of 
sellable chips per wafer [3,33].  

In the formula below, the yield factor does not include the packaging process, when relatively 
small chip input and output pins are connected to the larger pins used to connect the chip to 
the outside world. This processing step can also be said to have a separate yield factor of its 
own, yet the chip designer has very little influence on the success rate. The packaging yield 
will not be covered in this report. 

To sum up what has been covered above: 

per wafer chips potential  yield chip  per wafer  chips good ofnumber ⋅=  ( 2 ) 
 
Yield determines the probability of manufacturing a “good” chip. 

Chip area determines the number of “potential chips per wafer”. 

The number of chips that fits on a wafer is a deterministic function of the chip area and will 
be covered in the following section. 



 11 

3 Potential number of chips per wafer 
 
The first part of the productivity formula shown in section 2 deals with answering the 
question: How many chips fit on a wafer?  

The basic intuitive formula for estimating the number of chips, with area A, that fits on a 
wafer is the ratio of the wafer’s circular area and the chip’s rectangular area: 

area dier rectangula

areaafer circular w usable
estimateper wafer  chips ofnumber 

2

==
A

Reffπ
 ( 3 ) 

where Reff represents the effective wafer radius which is the total wafer radius with the outer 
edge of the wafer subtracted because it is known to have higher sensitivity to failure  

edgetoteff RRR −=  ( 4 ) 
The chip area A is formed by (chip width + s)·(chip height + s) where the s variable is 
determined by the precision of the separation process, dicing the wafer into individual chips. 

de Vries has observed [4] many similar attempts to improve the above estimate and has 
categorized approaches as improving accuracy either through multiplying by a correction 
factor or through subtracting a correction term.  

Some formulas take aspect ratio of the chip area into consideration, and some do not, 
depending when the estimate is intended to be used.  

height} min{width,

height} max{width,
  ratioaspect =  ( 5 ) 

Earlier in the product development stage only a rough estimate of the chip area might be 
achievable. Examples of estimate formulas [4]: 

effRAeffeff e
A

R

A

R /
22

factor correction estimateper wafer  chips ofnumber −==
ππ

 ( 6 ) 

AcR
A

R

A

R
eff

effeff / termcorrection estimateper wafer  chips ofnumber 
22

−=−=
ππ

 ( 7 ) 

 
However, the above formulas ( 6 ) and ( 7 ) are not quite accurate since each chip is a discrete 
instance, and only chips that are fully within the effective wafer area can be counted towards 
the total. The formulas also fail to distinguish two half chips on the edge from one complete 
chip, so it will overestimate the number of chips that fit on a wafer.  

To get a more accurate estimate, a small detail must be considered. Because the wafer will be 
diced, cutting the wafer into separate chips, a regular grid is preferred to reduce the area 
needed for the separation process, so all rows and columns must be aligned, indicating that 
either all rows contain an even number of chips or all rows contain an odd number of chips 
and not a mix of both.  

The problem could be viewed as a grid with equal row and column spacing corresponding to 
the chip dimensions, and trying to fit a circular area on top, cutting as few chip corners as 
possible. 



 12 

 
 

       
 a)      b)                 c)  

Numerical algorithm 

A numerical algorithm was presented by de Vries [4] to calculate the exact count of chips per 
wafer, given the wafer radius and chip dimensions.  

The algorithm can be summarized in the following steps:  

1. Start with a fixed number of chips in a row. Then assume this same row is pushed 
up until the outmost chips are as close to the edge of the wafer as possible.  

2. Calculate how many dice that can fit in a row “above” the current row. This is 
repeated until the combined row height of adding another row, from the center, would 
reach outside the wafer edge. 

3. Calculate how many dice that can fit in a row “below” the current row. And this is 
further divided into two cases when the outermost chip is limited by the 
  A. top corners 
 B. bottom corners 
Step 3 is repeated until the combined row height from the center would reach outside 
the wafer edge. 

Steps 1 to 3 are repeated for all reasonable number of dice in the starting row, from 1 
to when the width of the start row would exceed the wafer diameter.  

The maximum result among all the alternatives is then returned as the estimate for the 
number of chips per wafer. 

 

Overestimating the number of good chips per wafer will lead to an unexpected decrease in 
potential profit, either when it is discovered that the number of sellable products are less than 
expected if a fixed number of wafers was purchased, or when the number of wafers required 
to reach a target volume is higher than expected, leading to a higher cost.  

The main focus of the next section will be on predicting the functional yield, the other factor 
of the “number good chips per wafer” formula ( 2 ). 

Figure 2: Illustrations of the steps in the numerical algorithm. a) Step 1, pushing the row of chips towards the top of the wafer, until 
the top corners hit the wafer edge. b) Step 2, adding more chips until the top corners cut the wafer depicted by the red lines. c) Step 3, 
same as b) except for the lower half wafer the chip’s bottom corners are checked to be inside the wafer edge 



 13 

4 Yield prediction model 
 
In section 2, about productivity, it was mentioned how the manufacturer had a model to 
predict the yield of a chip design. It is a very powerful tool to estimate the expenses in 
material and time cost. This section will focus on different yield loss mechanisms and on how 
they have been modeled.  
The two main contributors causing a loss in manufacturing yield are defect generated faults 
and parametric variation. 

4.1 Random defects 
The yield losses caused by defects originate from the raw materials that might include 
impurities which interfere with the manufacturing process. Another source of defects is from 
the outside environment: dust particles or gas clouds from the process equipment or the 
human operators. Defects are the main reason why the IC manufacturing takes place in so 
called clean-rooms where the air is filtered to minimize the number of defect generated faults. 

Defects can cause unwanted “bridges” between conductive lines: short circuits which cause 
nodes in the circuits to be permanently connected to either the voltage supply or to ground. 
These faults are known as stuck-at-one or stuck-at-zero, respectively. Defects can also cause 
open circuits because of missing conductive material, and can leave nodes floating [5]. 

Both opens and short circuits can be caught because they cause incorrect outputs. During 
functional testing, the circuit is fed with input vectors and produces output vectors. These are 
compared to a known desired result; any deviation is considered a functional fault and is a 
strong indicator that a defect has occurred.  

Some defects might not directly alter the output of the circuit. An example is an inverter with 
a resistive short between the voltage source to the output [5]. The resistance of the short is too 
high to pull the output to a logical high value at an expected low output, but instead causes the 
circuit to draw orders-of-magnitude higher current by causing a resistive path directly from 
the voltage source to ground. 



 14 

4.2 Defect limited yield modeling 
Not every defect causes a fault in the manufacturing process. If a dust particle lands in an area 
of the chip that is basically empty or free of circuitry, there is no harm done. The area in 
which a defect will lead to a fault occurring is usually referred to as a circuit’s sensitive or 
critical area.  

According to Stapper [6], a random defect model consists of two main components. The first 
part is the statistical distribution of the number of faults across the area in question. There 
have been many different opinions about the appropriate distribution to use. The second part 
is a parameter for the statistical distribution, but needs careful definition of its own: the 
average number of faults. 

4.2.1 The first part: statistical distribution function 
Poisson model: 

A common method to model faults caused by defects is to use a Poisson-based random 
variable. The Poisson distribution is derived from the Binomial distribution taken to a limiting 
case. Let X represents the Poisson random variable taking on different possible values x 
denoting the number of faults on the integrated circuit during manufacturing. 

Pr(X = x) = 
!x

e xλλ−

 ( 8 ) 

In a chip yield prediction formula there is only one interesting special case of ( 8 ), when the 
chip in question is fault-free. The Poisson expression for the case when the circuit is fault-
free, or equivalently the probability of zero faults, is then described as follows 

Chip yield = probability of zero fault of type i = Pr(X = 0) = ie λ−  ( 9 ) 
 
The variable λ, called the average number of events, is both the expected value and variance 
for a Poisson random variable. The very same variable contains information about the specific 
case for describing its usage, and so it needs to be scaled accordingly; but more on that in 
section 4.2.2.  

The Poisson distribution is also commonly used to model reliability R as  
t

s eXtPtR λ−==== )0Pr()()(  ( 10 ) 
 
where Ps is the probability of success. Notice however the time dependence, which does not 
apply for manufacturing yield modeling, since any defective units are disposed of before they 
are put into use. 

Negative binomial model: 

The most commonly used statistical distribution for modeling defect based yield seems to be 
the negative binomial model. Stapper describes the negative binomial model to be the result 
of many approaches such as starting from a binomial model [6]. Below in ( 11 ) is the general 
expression of the negative binomial model. 

Pr(X = x) = 
x

x

x

x
++Γ

+Γ
ααλ

αλ
α

α
)/1(

)/(
)(!
)(

 ( 11 ) 

Again, the computation of defect based yield deals with the case of zero events or faults, 
which greatly simplifies the expression just as in the case of the Poisson expression. The 



 15 

following equation ( 12 ) describes the negative binomial model expression for the probability 
of zero faults. 

Pr(X = 0) = ααλ )/1(

1

+
 ( 12 ) 

The negative binomial model takes defect clustering into account with the coefficient α 
(alpha). With an increase in the α coefficient, less clustering of defects is assumed by the 
model; as α goes towards infinity, the model reduces to the Poisson model, which assumes no 
clustering at all. Figure 3 shows the Negative Binomial model with a fixed value for the 
average number of faults, while varying the clustering coefficient. 

 

Correlation between process steps can be taken into consideration with the negative binomial 
distribution to produce a yield model, which computes the probability of zero faults on a chip. 
As shown in [6], correlated process step will be treated mathematically as though they were 
independent.  

The negative binomial model was in a subsequent article by Stapper [7] shown to be poorly 
scaling with circuit area when the feature sizes were reduced in the technology nodes during 
the early 1990s. Designs with the same chip area were found to have widely different yield. 
The simple yield formula used λ, the average number of faults, which was obtained from 
thorough analysis of one design in a particular technology node, figuring that it would be a 
decent representative of the process, and then rescaled by areas:  

old

new
oldnew A

Aλλ =  ( 13 ) 

Stapper found that a better fit was acquired if the yield model was scaled based on the number 
of circuits, assuming a different model parameters are used for each different type of circuit 
elements such as DRAM, SRAM, and random logic. This scaling seem intuitively correct 
when considering for example random logic standard cells where an area is increased to twice 
the size is not always the case that it will contain twice the number of standard cells as the 
interconnect gets more complex and needs more room. 

Both the Poisson and Negative binomial model are derived from an approach where Murphy 
showed a yield model, developed during the 1960s, described by a Poisson random variable 
compounded with a distribution function of the average defect density variable [8]. The 
compounding function seemed to have served the purposed of describing the fluctuation 

Figure 3: Negative Binomial distribution function for a fixed λ = 0.5 
and a varying α. 



 16 

across the wafer, from wafer to wafer or from lot to lot. Murphy’s yield model described this 
compounded yield model as 

Y = Pr(X = 0) = ∫
∞

−

0

)( dDDfe Da  
( 14 ) 

where a represented the critical area and D was the defect density.  

Murphy showed three different potential candidates for the f(D) function; the Dirac or δ-
function, a triangular function as a simple estimate of the Gaussian distribution function, and 
lastly a uniform distribution.  

Later it was shown by several researchers that a really good fit of the model to the test data 
was observed if the compounding function was a gamma distribution. The resulting yield 
formula was then the negative binomial model ( 12 ) described in the beginning of the section.  

4.2.2 The second part: the average number of faults 
In the case of modeling defect generated faults, the variable λ (lambda) describes the average 
number of faults per chip or circuit. How can λ be broken down into defect generated faults? 

Recall how the Binomial random variable is the origin of the Poisson random variable [9]: 

xnx pp
x

n
xX −−








== )1()Pr(  

( 15 ) 

The Binomial variable itself is described as a number of n statistically independent Bernoulli 
trials with probability p for one of the two possible mutually exclusive outcomes of the 
Bernoulli trial. The variable λ is the expected value of the Binomial distribution, which is the 
product of n and p [37]. Then conversion to describe the average number of faults can be seen 
as simply letting: 

[ ] pnXE ⋅==λ  ( 16 ) 

where  

X: the number of faults 
n: number of defects 
p: the probability that a defect becomes a fault 

The number of defects n is generally described per unit and is scaled to fit the specific 
problem instance. A general model for computing the average number of faults is:  

n = D·U ( 17 ) 
In ( 17 ) the D represents the defect density per unit and U for the number of units in question.  

Each different fault type might need a different way to represent and model them.  

The most common forms would be the calculation of the average number of short circuits 
between conductive lines, including cross layer shorts or so called pinholes, and open circuit 
faults. In this case, it seems like the most common approach is to let the D represent average 
defect density per area and U represents A, the total circuit area.  

To derive the p variable, it is commonly implicitly assumed that inside an independent circuit 
area the defect locations have a uniform distribution or rather an equal chance of occurring 
across the chip’s surface. The probability that a defect becomes a fault differs depending on 
defect size, and is represented as a function θ, commonly known as probability of fault given 
a certain defect of size x: 



 17 

p = θ = Pr(defect becoming a fault | defect) = 
A

Acr  
( 18 ) 

An example of an independent circuit area is a cluster as assumed by the Negative Binomial 
distribution. For the Poisson distribution, the whole chip can be seen as an independent area.  

Because of how both n and p depends on the total area, A can be cancelled out of the 
equations 

[ ] cr
cr AD

A

A
ADpnXE ⋅=⋅⋅=⋅==λ  

( 19 ) 

and so defect density is equivalently scaled with the Acr function representing the circuit’s 
critical area.  

4.2.3 Critical Area 
The critical area is generally defined as the area of a circuit design’s layout that will cease to 
function correctly if a defect would occur on it [10]. Defects can have many shapes and 
forms, but for computational simplicity it is commonly assumed that a defect is to be 
represented by a circular area with a diameter x. The location of the defect is represented by 
the coordinates of the centre of the circular shape.  

The critical area for a break off or an open conductive line as an example is the area where the 
defect of size x can land on a wire to reduce the resulting effective width below a 
predetermined critical minimum width value wmin, when the resistance of the conductive 
material would simply be too high to be considered functionally correct.  

Let wmin = 0 for simplicity; then, for a defect with a diameter equal to the wire width w, the 
defect centre has to be positioned perfectly in the middle of the wire to cause an open fault, 
however the defect can be located anywhere along the wire length L. The chance of a defect 
occurring there and therefore the critical area is defined as zero for defects sizes less than the 
wire width. 
 

0 )( =xAopen                                x < w ( 20 ) 
 

 

 

 

 

If the diameter of defect is instead larger than the wire width, the defect has some leeway. 
When the defect is positioned across the wire, Stapper [11] observed that 
 

( )wxxAopen −= L )(                     x ≥ w  ( 21 ) 
 
An illustration of ( 21 ) can be seen in Figure 5.

Figure 4: conceptual illustration of a blue conductive wire with a defect of 
harmless size to the left and a harmful defect size to the right  



 18 

 

 

 

 

 

 

 

The critical area of a bridging or short between two conductive lines can be expressed in a 
similar way, by considering the break of the isolating space instead. The width of the spacing 
is denoted s. However the length of the spacing is the length of the area where the two wires 
run in parallel.  

The critical area of a circuit is defined to be less than the total area of the circuit in question. 
When the theoretical critical area grows larger, the critical area remains capped at the 
maximum total area even for larger defect sizes. The mathematical expressions get a bit more 
complicated since placement of the wire on the chip needs to be taken into consideration; 
since a wire displaced from the middle will have its associated critical area stop growing at 
one side but still continue at a reduced growth rate at the other side.  

For more than one wire, a similar approach can be taken. The critical area is simply multiplied 
with the number of parallel wires.  

( )wxNxAopen −⋅= L )(         x ≥  w ( 22 ) 

However at a certain defect size the area between the wires join together as a large area, and 
only continues to increase not as N areas but as one wire, with a constant factor of all the 
wires and spaces between. Again Stapper [11] formulated the following expression 

( )sNwxxA

sNNww
x

xA

open

open

1)-( )2(N L )(

1)-(   )
2

( 2L )(

+−+=








 ++−⋅=
           w < x ≤  2w+s 

 
( 23 ) 

More complex structures require more elaborate equations, and research in critical area 
analysis has focused on deriving the critical area for larger designs. Fortunately straight lines 
are difficult enough to manufacture that at sub-100-nm technology nodes, there are 
recommended design rules for layout, stating that all wires on a layer should go in the same 
direction, and every layer alternates between horizontal and vertical as the preferred routing 
direction. So to make an L shape in layout you would have to change layer to go in the other 
direction. For 45 nm or below, these recommended rules have become mandatory rules for at 
least the poly layer [12,13]. Although it is unfortunate that straight lines themselves are 
difficult to manufacture, it should simplify the critical area analysis to the point when parallel 
wires are the only cases left to consider for open and short circuits caused by defects. 

Figure 5: a conductive wire and a harmful defect size, shows how the difference 
between diameter and width converts into critical area 

Figure 6: multiple parallel conductive wires. Shows how the critical areas have grown 
together and continues to expand only from the top and bottom most wires. 



 19 

4.2.4 Defect density 
Defect density, just as critical area, also depends on defect size x. It is described by the so 
called defect size distribution function, which describes the probability of a certain defect size 
occurring together with D , the average number of observed defects per area unit regardless 
of size. 

maxmin            )()()( xxxxdsdDxpdfDxD defect ≤≤⋅=⋅=  ( 24 ) 

 
The function is truncated for defect sizes below a certain value; defects smaller than xmin will 
not harm wherever it may occur. Defect sizes above xmax have such miniscule probability of 
occurring that it is rounded down to zero for simplicity. 

The defect density per area reflects the manufacturing process cleanliness. With each new 
step scaling down feature sizes, the defect density have to constantly strive to improve. The 
previously considered harmless defect sizes will now cause opens and shorts. Also the 
previously harmful defect sizes now cover a larger critical area of the circuit and thereby have 
a larger probability of becoming a fault. The aim of the manufacturer is to have at least as low 
average number of faults as the previous process node, and this requires a constantly cleaner 
manufacturing process [12].  

The defect density has to be determined empirically by manufacturing test structures. The test 
structures are tested and faults are recorded. Techniques exist to map the test results of the 
Built-In-Self-Test (BIST) from real designs or test chips to individual fault types on different 
layers [14]. Then indirectly it can be determined that the faults must have occurred in an 
associated critical area. 

Thus, given fault test data and the critical area for the test circuit layout, the defect density can 
be determined for every defect size x at a desired resolution.  

)(/)()( xAxxD crλ=  ( 25 ) 

The defect densities determined with these techniques are then reused to predict yield in other 
chip designs.  

If empirical testing is out of the question, there are models that describe the defect density 
based on data fitting of past measurements.  

Defect size distribution general form is modeled for example by Stapper [11]: 











∞≤≤
+

−

≤≤
+
−

= −

xx
xn

xDn

xx
xn

xDn

xD

n

n

0

1
0

02
0

,
)1(

)1(2

0,
)1(

)1(2

)(  

 
 

( 26 ) 

Here D describes the average defect density or the average number of defects per area unit. 
The variable n is process dependent; empirical results in the past indicate that n = 3 give 
results that match observed test data very well [6,11]. 










∞≤≤

≤≤
=

xx
x

xD

xx
x

xD

xD

03

2
0

02
0

,

0,
)(  

 

 
 

( 27 ) 



 20 

The variable x0 is the peak value of the distribution or in other words the most probable defect 
size. A typical defect size distribution function is plotted in Figure 7. 

 
Figure 7: Non-truncated defect size distribution. 



 21 

4.2.5 Combining critical area and defect density 
Both the critical area and the defect density depend directly on defect size; and to obtain the 
total probability of a fault in the circuit in question, it is necessary to sum the effect of all 
defect sizes.  

The average number of faults or the expected number of faults can be calculated to be 

 λ = Average number of faults =  

= Average number of defects⋅ Probability that a defect become a fault= 

= {Average number of defects = Average number of defects per unit area⋅ Area in question} 

=⋅=

=⋅=

=⋅=

∑

∑

∑

∀

∀

∀

x

x

x

AD

AD

AD

on(x)distributi sizedefect    x)sizedefect  | area criticalin  locatedPr(defect  

on(x)distributi sizedefect    x)sizedefect  | area criticalin  locatedPr(defect 

  x)size of Pr(defects  x)sizedefect  |fault  a becomePr(defect 

 

 = {assuming locally uniform distribution of defects over the area in question} =  

=⋅=⋅= ∑∑ ∫
∀∀ ∈ x

D
cr

x
D

xAa

xf
A

xA
ADxfds

A
AD

cr

)(
)(

)(
1

)(

  {Infinite number of sizes x}= 

= dxxfxA
A

D
x

Dcr∫
∀

⋅ )()(
1

A  ( 28 ) 

From here there are two main alternatives to represent λ: 

Alternative 1  

dxxxAdxxfxAD
x

cr

x

Dcr ∫∫
∀∀

⋅=⋅= )(D)()()(λ   ( 29 ) 

The alternative should be the most commonly used together with critical area analysis tools. 
These tools aim to extract the critical area directly from the layout of the design for all 
possible defect sizes. 

Alternative 2  

λ = θAD    ( 30 ) 

whereθ represents the average probability of failure over all possible defect sizes. 

Expression ( 30 ) is the one used by Stapper who worked closely with IBM and is therefore 
also commonly seen in IBM articles related to yield prediction [6]. There was much secrecy 
in the 1970s involving methods for indirectly determining critical area which is a 
computationally very heavy task. Later, the principles were published in scientific 
articles [15]. The main idea was the use of computer simulations to estimate θ, the probability 
that a defect becomes a fault,  by placing defects at random across the layout and analyze if 
any damage was caused. The process was repeated for all known defect sizes until a desired 
resolution had been achieved. 

The second alternative representation of λ ( 30 ) can mislead the user into believing that 
lambda scales with the circuit area; but this is not the case as seen in the previous steps. The 
total area which houses the circuitry is irrelevant, and the important thing to remember is that 
the equation only scales with the critical area. 

For predicting the yield of new products early in the design stage, when the final layout is not 
yet available and thereby also any critical area analysis is out of the question, it is useful to 

assume a constant θ  and make your early economic assessment based on a scaled area. 



 22 

Using Alternative 2 and simplifying the expression further by letting θA  denoting an average 

critical area crA results in a commonly seen expression: 

DAAD cr =⋅=λ  ( 31 ) 

This expression looks like a simplification of Alternative 1 of expressing the average number 
of faults, just as in the beginning of this chapter when defect size was not an issue. Note again 
that care must be taken to not misinterpret what the variables represent and how the 
expression is meant to be used. 

Multiple fault types 
Fault types are plenty and can have different origins, and each type would need a separate λ to 
accurately describe them. The principle for deriving critical area is identical for all layers, but 
what differs is the feature sizes of the layout such as the line width and spacing between lines. 
Also, the defect distribution is modeled differently depending on the process steps involved 
with each layer. Each has different minimum-maximum range of interesting defect sizes as 
well as the shape of the defect size distribution, all depending on the materials used in the 
process steps.  

The most commonly seen approach to combine the faults of all the different layers associated 
with a particular area is to simply sum them together [6]. 

λtot = λL1_open+ λL1_short+ λL1-2_short+ λvia1-2_open  λL2_open+ λL2_short+ λL2-3_short+ λvia2-3_open λL3_open+  

+ λL3_short+ λL3-4_short+ λvia3-4_open … ( 32 ) 
That concludes the defect yield modeling theories that are needed to understand the approach 
taken to scale up the yield model and to later include redundancy. 



 23 

4.3 Parametric yield loss – static power and freque ncy 
 
Unlike defects which cause the circuit design to divert from its intended functional behavior, 
parametric yield loss is referring to chips that fail to live up to the non-functional 
requirements. These chips are considered not to be manufactured correctly because they do 
not meet the performance requirements of for example speed and power consumption. 

The name “parametric yield loss” refers to the parametric variations that are a natural part of 
the manufacturing process. Examples of the parameters in question that tend to vary are the 
thickness, width, and height of the layout features. These parameters are known to vary and 
the manufacturing process itself is characterized by so called three sigma window commonly 
used in statistical process control (SPC) [16]. A parameter for example a width w is then 
modeled as a random variable 

σ3  ][ ±= wEw  ( 33 ) 
where σ (sigma) is the standard deviation. For a normal or Gaussian distribution, the random 
variable has a 99.73% probability to be within the three sigma window.  

Example 3.  
A circuit’s critical path is determined to be Gaussian and has a standard deviation of 
5 ns. Assume a simplified case where the only requirement is that the final product 
needs a clock period no greater than 65 ns or: 

ns65maxclock ≤t  

Setting the design goal to be 65 ns would without regarding the standard deviation 
then 50% of the manufactured product to be above the mean. If instead subtracting a 
safety margin of 3 σ to the requirement  

ns6550ns 53ns 653ns 65max design ≤=⋅−=−≤ σt  

This then results in a probability of less than 0.135% that the manufactured circuit 
has a period above 65 ns. 

Unlike defect limited yield loss, which has been documented since the 1960s when the basic 
circuit elements (the transistors) were manufactured one per chip [8], the parametric yield loss 
has not received as much attention over the years. But over 50 years of constant scaling down 
the feature sizes of the transistors to keep up with Moore’s law [17], the parametric variations 
have gone from variations happening across wafer batches called lot-to-lot, to wafer-to-wafer 
variations, to across the wafer or chip-to-chip variations and finally to intra-chip 
variations [20].  

The traditional methods for designing circuits have been to ensure that the worst case 
performance is still adequate, for example using static timing analysis (STA) [18]. However, 
those methods assume deterministic parameters, and then it is enough to consider only one 
case that is the bottleneck of the system. When timing is modeled to have a statistical 
distribution, then every path, even the designed shortest path, has a non-zero probability to be 
the bottleneck and must be considered. Statistical static timing analysis (SSTA) has evolved 
from STA to model non-deterministic gate delays.  

Theoretically, the sum of several uncorrelated Gaussian random variables is known to be 
Gaussian as well [9]. Paths might share gates leading to their delays to be correlated 
increasing the complexity. The maximum value of Gaussians is known to not have a Gaussian 
distribution, estimating it is a more difficult problem [18]. 

When considering power analysis, things are a slightly simpler since only the sum of the 
power consumption needs to be considered, and there are no alternative paths. A logic block 



 24 

on the chip with unusually high power consumption might be acceptable if it occurs with a 
block that has lower power consumption. Analytical models for static power consumption 
have been reported to exist for gate level calculations [19]. 

Unfortunately, the complex nature of both statistical power and timing analysis makes it 
impossible to do more than just scratch the surface of the subjects in a short project such as 
this. There are books with several chapters that cover the variation of each manufacturing 
process step that causes the variation of one transistor [20].  

A really good overview on the subject of parametric yield modeling is given by Agarwal et al 
[21]. The authors show how the parameters that vary during manufacturing actually affect 
both timing and power.  

Power consumption consists of both dynamic and leakage power. The critical dimension or 
the minimum feature size of an IC is the transistor’s effective gate length Leff. The gate delay 
of an IC is proportional to 1/ Leff

2. The dynamic power consumption also known as the 
switching power is linearly dependent on capacitance and the capacitance is linearly 
dependent on Leff. When dynamic power is the dominant power component the downscaling 
of  

↓↑↓⇒
>>

↓↓↓⇒

>>

delay  AND power

dynamic leakage :caseII

delay  AND power 

leakagedynamic :I case

eff

eff

L

L
 

A statistical yield model would in the end look somewhat like 

{ } ) delaymax   nconsumptioPower Pr(Yield Parametric maxi
i

max
i

i tP <∩<=
∀∀

∑  ( 34 ) 

No further attempts to develop a parametric yield model were made in this project, and in the 
analysis in the rest of the report, the parametric yield will only be represented by a constant 
yield factor YP. The parametric yield variations were handled in a similar fashion in the past. 
All the unknown yield loss mechanisms that had yet to be modeled were collected in a single 
yield factor Y0, also known as the gross yield factor (e.g. in [6]). 

The parametric yield loss is reported [1,19]to become the dominant yield loss mechanism in 
processes below 100 nm even though no real numbers dividing yield loss into parametric 
yield loss compared to defect limited yield have been found.  



 25 

4.4 Block yield 
 
The statistical distribution and the average number of faults explained in the previous sections 
are used to represent the manufacturing yield for the area in question. The area itself does not 
have to be the whole chip at once, and can instead represent partial blocks or sub-chips. The 
yield expression for these blocks can then be reused if the blocks occur in another design, for 
example an adder, shifter or cache. For defect generated yield, the following would be an 
expression for a single block: 

α

α
λ







 +

=
block

blockY

1

1
 

 
( 35 ) 

The traditional way of combining multiple yield source factors have been to simply multiply 
the yield factors [6]:  

iations
parametricdefectsblock YYYY
var

0=  ( 36 ) 

where the yield terms correspond to the gross yield, the defect limited yield and the 
parametric variation limited yield respectively. The defects and parametric variation limited 
yield have been discussed above, but the gross yield represents all the other miscellaneous 
failure types that either have no associated yield model or unknown causes. The unknown 
gross yield factor is usually represented by a constant, to fit the model prediction closer to the 
observed test results once it is known.  

The same approach for combining yield source factors has also been used for combining 
block yield factors into expressions for bigger designs. 

∏
∀

==
i

iblockfuncfuncfuncMEMDSPchip YYYYYYYY  0321  ( 37 ) 

There are more complex variations of block yield models that include correlations between 
the blocks [22, 23], but the yield model expressions become unnecessarily large with a 
constant representing the statistical dependence between every pair of blocks. Also, statistical 
tests for correlation requires large amount of test data for each pair of blocks and since no test 
data is available in this project that would be a large number of options that could potentially 
do more harm than good.  

Therefore, the correlation considerations between blocks have been left out, but is a part of 
the yield model that could be improved if the predicted yield would end up completely off 
target. The assumption of independent yield factors and independent blocks have shown to be 
sufficient by Müller [24]. 

A simplified explanation would be to state that when blocks are fully correlated their “average 
number of fault” parameters are simply added together as if they were part of the same block.  

)( 212&1 blockblockblock YY λλ +=  ( 38 ) 

In contrast, when they are uncorrelated, their yield factors are multiplied as in ( 37 ) above. In 
this report the blocks are considered uncorrelated and independent. 

On a side note, when combining blocks using the Poisson model ( 8 ), correlation makes no 
difference since the defects themselves are considered independently distributed as can be 
seen below: 

)()(   )( 21
)(

212&1
2121

blockblockblockblockblock YYeeeYY blockblockblockblock λλλλ λλλλ ===+= −−+−  ( 39 ) 

For the Negative Binomial random variable this is not the case because of the clustering.  



 26 

 

( 40 ) 

αα

α

α
λ

α
λ

λλ

α
λλ

λλ








 +






 +
=








 ++
=+

21

21

21

21

1

1

1

1
   )()(

)(
1

1
  )(

blockblock

blockblock

blockblock

blockblock

YY

Y

 

( 41 ) 

 
The first expression ( 40 ) is sometimes referred to as a large-area Negative Binomial 
distribution and the second ( 41 ) small-area Negative Binomial distribution. In an article 
Koren, Koren and Stapper developed a more general expression for every case in 
between [25].  

This section has shown the theories needed to form a yield expression that requires everything 
in the chip to work. The statistical distribution Poisson and the Negative Binomial model have 
been introduced briefly with their common and most defining parameters, the average number 
of faults, which is very important but also very difficult to derive in practice. The block 
expressions have shown how to express the yield of different blocks when all blocks are 
required. The next section will show how this basic expression can change with added 
redundancy.  



 27 

5 Yield enhancement techniques 

5.1 Redundancy 
Improving yield by introducing redundant copies was proposed by Murphy [8] only a short 
while after the theoretic benefits of producing more than one circuit elements per integrated 
chip had been established.  

The general idea behind the concept of added redundancy is to lower the acceptance level of 
the final product tests. Stated in another way, the redundancy increases the number of 
acceptable outcomes that represents the product fulfilling its specified requirements.  

To illustrate the basic concept, take for example a chip design that requires N identical circuit 
elements, at an arbitrary abstraction level, to function. Let the probability of manufacturing 
one circuit element successfully be 

Y = Pr(circuit element X is fault free)  

With no redundancy added, the probability of the entire chip being manufactured correctly 
can be expressed as the only acceptable outcome, when all of the circuit elements are 
manufactured correctly. 

Y = Pr(chip is fault free) =  
= Pr( N circuit elements are fault free) 
= Pr(circuit element X1 fault free AND circuit element X2 fault free AND… 
         …AND circuit element XN fault free) 

Assuming that each of the probabilities that a circuit element is being manufactured are 
statistically independent from the rest, this simplifies into 

Y = Pr(chip fault free) =  
= Pr(circuit element X1 fault free) Pr(circuit element X2 fault free)…Pr(circuit element XN fault free) 
= Pr(circuit element Xi fault free)N  

The last step follows if the circuit elements are identical from the models point of view. 

A problem occurs when the number of components grows. Each generation gives room for 
additional logic blocks. In the case of multi core architectures, of course some of the 
additional blocks might be more cores, since it requires little to no extra development time to 
add another copy of an already designed block.  

Figure 8 shows the yield of an imaginary system of only one type of blocks; each block is 
represented by a constant yield factor. The plot shows how the system yield changes when the 
number of blocks increases. Figure 8 contains ten different cases each with a block yield from 
left to right of 90 to 99 %. 

Figure 8: The combined yield of a system with multiple cores requiring all the cores to work 



 28 

As can be seen, the total yield rapidly falls towards zero even for the case when 99% yielding 
blocks are used.  

Considering instead that R redundant copies are added to the design for a total of N+R number 
of identical circuit elements. Let X denote the number of circuit elements manufactured 
incorrectly. The probability that at least N copies are manufactured correctly with redundancy 
becomes 

Y =Pr(chip fault free) = Pr( X ≤ R)  =  Pr( X = 0) OR Pr( X = 1) …OR Pr( X = R) 

When calculating each of the probabilities, it is necessary to consider the number of possible 
combinations of each of the acceptable outcomes.  

The problem starts to resemble what is known as the Binomial random variable [9]. The 
definition of the binomial probability mass function (PDF) can be written as follows: 

Binom(n,p) : Pr(X = k) = ( ) ...2,1,0 where,1 =−






 − kpp
k

n knk  ( 42 ) 

And the Cumulative Distribution Function (CDF) : 
 

( ) ( )∑
=

−−







=≤

x

k

knk pp
k

n
xX

0

1Pr  ( 43 ) 

 
To modify the binomial PDF to correspond to the example above, let  
 

n = N+R  
p = 1 - Pr(circuit element xi fault free) 

( )( ) ( )∑
=

−+−






 +
=

R

k

kRN
i

k
i xx

k

RN
Y

0

freefault  is element ciruit Prfreefault  is element ciruit Pr1  ( 44 ) 

 
The circuit elements or blocks need to be identical and exchangeable with the redundant 
copies. In this project, the interesting circuit elements are the identical cores in a multi-core 
DSP cluster, and the following is an example of how the yield expression would look for such 
a multi-core DSP cluster. 

∑
=

−+−






 +
=

R

k

kRN
DSP

k
DSP YY

k

RN

0

)(
core multi )1(Y

 

 ( 45 ) 

 
The multi core yield factor will enter the equation representing the yield of the whole chip just 
like the other yield factors as follows 



















−







 +
== ∏∑

∀=

−+

i
iblock

R

k

kRN
DSP

k
DSPfuncfuncfuncMEMcoremultichip YYY

k

RN
YYYYYYY  

0

)(
0321 )1(  

For more advanced expressions that take correlations between blocks into consideration, see 
references [22] or [25]. 



 29 

5.1.1 Redundancy in memories 
Redundancy is commonly used in memory circuits such as in large SRAM and DRAM arrays 
[23, 26]. Memory arrays are good examples of matrices of identical circuit elements.  

In the 1980s, companies such as IBM sold partially good memory chips [27], that is, products 
containing faulty elements with functionality redefined by treating part of the chip as 
redundant. These memory chips contained a certain number of non-redundant memory cells. 
If the post-fabrication tests showed that the chip contained a fault of some sort, it was not 
discarded. Instead, the chip went through additional configuration to lock out the faulty chip 
regions, and thus a 128 k bit memory could be sold as a 64 k or 32 k bit memory. Even 
though the partially good products might not sell for as much as a fully functioning product, 
they still contributed to the return of investment for the product, which it would not have if it 
would have been discarded.  

A similar approach is taken with processor cores of the same architecture and design that are 
sold rated at less than maximum capacity, for example with different nominal clock 
frequencies. 

However, even though some circuit elements on a chip are replicated with several identical 
copies, and redundancy might be an effective approach to increase the potential yield, one 
must not forget that all components share some infrastructure such as the clock and power 
distribution networks. If faults during manufacturing occur in these areas, no amount of 
redundancy will save the chip from being discarded and adding to the yield loss statistics. 
Those types of faults are usually referred to as “chip kill” faults. 

 

 

 

 

 

 

 

 



 30 

5.2 Wire spreading and dummy filling  
Two redundancy techniques have been saved for last: wire spreading and dummy filling.  

5.2.1 Wire spreading 
As the name implies wire spreading aims to spread conductive wires further apart. The idea is 
to try to reduce their sensitivity to defects which would cause short circuits. Care needs to be 
taken because when wires are spread apart they may need to make additional turns or corners 
that are more difficult to manufacture than a straight line. Therefore, even if the critical area is 
reduced and the associated defect limited yield increases, the parametric yield might be 
affected by the new hard-to-manufacture layout structures; this effect might not be taken into 
account by the algorithm spreading the wires.  

There is also a similar approach to reduce the open critical area by instead widening the wires 
to make them less sensitive to smaller defects. When the wires are widened, the available area 
is exactly the same as before which means that the spacing between wires decrease, in other 
words an inverted wire spreading occurs indirectly which increases the critical area of shorts 
[1,20].  

Both wire spreading and wire widening are usually applied after the routing stage. The routing 
stage determines the shape of wires in a way that has been optimized to reach a timing goal. 
Afterwards, the wire spreading and widening will change the shape of these wires to optimize 
yield, which at the same time can not avoid having a possible negative effect on timing. The 
timing of the whole system must therefore be rechecked and perhaps invalidated and rerouted.  

Because of the uncertain net gain of using wire spreading and widening, these methods should 
be used with care so as to not introduce unnecessary repetitions of the design phase. 

5.2.2 Dummy filling 
Dummy filling is a method used to even out the chemical-mechanical polishing (CMP) step in 
the manufacturing process. The polishing step is meant to even out the all the bumps and 
achieve a uniform thickness across the entire wafer. 

The problem is that the process is not completely uniform; deviations are mainly caused by 
the varying metal density across the chip. When depositing material, for example the copper 
constituting the different metal layers, the whole wafer is processed at once. This causes metal 
to be deposited in both the etched metal lines and also everywhere else, and leads to a jagged 
uneven metal surface, which the following CMP step is meant to even out. The areas on the 
chip devoid of metal lines have a close to even area already and will risk ending up over 
polished, which affects the processing steps for the layers above [20]. The phenomenon is 
called dishing, and to avoid it, metal areas with no function, so called dummy fills, are 
inserted in hope of reducing the chances of over-polishing.  



 31 

6 The proposed yield modeling approach  

 
In this section, a method to create a yield model for a system-on-chip is proposed. One of the 
main requirements was to be able to predict the yield as early in the design phase as possible. 
The steps described in the following section have been chosen with this requirement in mind, 
so the abstraction level is kept at system level as much as possible. Similar approaches have 
been described in the past by Stapper [6], Koren [22], and Khare [29], then primarily with 
memories in mind. 

6.1 Step I – breaking down a system into blocks 
The yield enhancement method of choice for this project is redundancy. A block that is a 
candidate for having spare redundant copies available to replace them is considered a 
repairable block. 

The first natural step is to separate the system design into repairable and non-repairable 
blocks. An example of a repairable block could be a small memory block, or anything that can 
be replicated with reasonable implementation penalties.  

∏∏
∀∀

=
j

rep
i rep

non YYY j 
i 

 ( 46 ) 

What is reasonable or not is of course something that is not set in stone, but differs from 
system to system. In a chip with only a single core, the whole core might be considered 
irreplaceable or non-repairable since duplicating the core would essentially mean an area 
twice the size of the original design. For a SoC with a multi-core cluster, which is the focus of 
this report, the individual cores are considered repairable.  

Example 4. 
Assume a system with a DSP multi-core cluster and five miscellaneous functional 
blocks f0, f1, f2, f3 and f4. The multi core cluster is considered repairable, but the 
functional blocks are unique and so must be considered in separate yield terms. The 
functional blocks could be considered repairable though, if as in the below 
illustration the f4 block could be a memory containing redundant sub-blocks.  

 

If the DSP cores themselves contain regular components, these can also be marked as 
repairable; prime examples are the memory areas such as instruction and data cache.  

The method is repeatable for every distinguishable level of abstraction. The best example is 
memory blocks that can be divided into quadrants that can consist of several arrays consisting 
of sub-blocks further consisting of groups of words. Each abstraction level could have its own 
possible redundancy solution, redundant quadrants, redundant arrays, redundant sub-blocks or 
redundant rows and columns as described by Hampson [26].  

Figure 9: An imaginary system with a multi core cluster, divided into repairable 
and non-repairable blocks on the right 



 32 

Example 5.  
Assume the same system as in example 4. The multi core cluster DSP units have an 
imaginary architecture like the illustration below with an instruction cache, data 
cache, addition/subtraction unit, instruction decode, shifting unit, some registers, a 
flow control unit and a multiplier/division. The DSP would then have the following 
yield expression 

div
mulreg

ctrl
flowShiftdecodeI

sub
addcacheDcacheIDSP YYYYYYYYY −−−=  

 

The redundancy needs extra configuration circuitry that redirects the non-faulty blocks to the 
correct outputs which effectively masks the defective blocks. The extra configuration circuitry 
adds additional critical area regions, and more specifically non-repairable critical area, that 
need to be taken into consideration in the yield model.  

Next, use the binomial random variable to form the resulting repairable yield factors. Assume 
no correlation between different blocks; the resulting expression should be of the form 

k

block
sub

kNR

block
sub

R

k
configrep YY

k

RN
YY )1(

0
−

−+
−

=

−






 +
= ∑  

 
( 47 ) 

 
N represents the required number of units that are required to work in the system 
specification, or in other words the number of units that would be in the non-redundant 
system. The variable R representing the number of redundant units. 

Example 6.  
Looking back at the system from example 4 again shown in Figure 9. The yield 
expression for the total System on Chip with the multi core cluster and the five 
functional units 

k

block
sub

kNR

block
sub

R

kconfig

k
DSP

kNR
DSP

R

k

DSPDSP

config
DSP

cluster
core
multi

i
i

cluster
core
multiSoC

YY
k

RN
YY

YY
k

RN
YY

YYYY

DSPDSP

DSP

)1(

)1(

4f4f
0

4f4f
4f4f

0

3

0
f4f

4f4f

4f

−






 +
=

−






 +
=

=

−+

=

−+

=

=

∑

∑

∏

 

There is no real limit to in how much detail the model can describe a single block. Even 
though yield could be derived from a single layout structure and its corresponding critical 
area, it is probably more practical to choose a higher level of abstraction whenever possible, 
especially since the layout is more or less considered an unknown part of the yield expression.  

Figure 10: imaginary DSP architecture logic floor plan 



 33 

6.2 Step II – scaling the blocks with content 
In section 4.2, the theories of block yield were described for defects. The yield expression was 
described by a statistical distribution, either Poisson ( 9 ) or Negative Binomial ( 12 ). The 
Negative Binomial distribution gives a somewhat more optimistic yield estimate, assuming 
that defects cluster together and therefore affect fewer chips on the wafer [22].  

This section uses the Negative Binomial model as it is the more general one. The parameters 
of the statistical distribution were the clustering parameter α and the average number of 
faults λ.  

The clustering parameter must be received from the manufacturer and there is no real short 
cut or simple way to estimate it. 

Deriving the average number of faults is achieved by critical area analysis by developing 
geometric expressions or simulations on the final layout [15]. Performing a critical area 
analysis for a complete system design is quite time consuming. Also, the final layout is not 
available when making architectural choices about adding redundant blocks to the floor plan. 

However recognizing that a chip design consists of multiple identical copies of standard cells, 
each with the same or similar critical area, making an estimate of the critical area scaled by 
the number of gates in the design should be possible and intuitively a very close guess. 

Therefore, the approach chosen in this report is to describe functional blocks in terms of the 
average number of faults for each distinguishable logic block scaled by n the number of 
standard cells the block consists of.  

∑
∀

⋅=
i

cell
std

cell
stdblock n i 

'

i 

λλ  ( 48 ) 

Example 7. 

...'''
logic
rnd'

logic
rnd +⋅+⋅+⋅+⋅= −

− flops
flip

flops
flipROMROMSRAMSRAMblock nnnn λλλλλ  

The largest source of error in this critical area estimate is not really accounting for the exact 
routing between the gates, which is most likely not equivalent in all designs unless the 
structure of the layout is really regular like a memory cell matrix. The intermediate routing 
part has to be accounted for in the “per standard cell” average number of faults most probably 
by an average of previous designs.  

The type of yield model described in this section is meant to be used long before the final 
layout has even started — maybe even before the standard cell library have been developed, 
so the “per standard” cell average number of fault to be used to describe a block needs the 
ability to be rescaled based on a previous technology node’s data. An example of such a 
scaling was shown in [7]: 

           
2

old
new

old

old

new
new K

w

w

A

A λλ 







=  ( 49 ) 

A representing the area, w the minimum design feature and K a complexity factor which 
mysteriously is not mentioned in great detail, either because it is considered proprietary or 
because it is simply another free variable used for data fitting.  

To support the approach described in this section, it must be assumed that the design will be 
thoroughly analyzed at the end of the design cycle, when the number of changes affecting the 
final layout have been reduced to almost nothing, otherwise the time consuming critical area 
extraction has to be repeated for every little change.  



 34 

The average number of faults obtained from the critical-area analysis of the different layers is 
then used to derive the per-gate average number of faults by minimizing the mean square 
error of the difference between the two fault-rate equations as shown below: 

( 50 ) 














−

⋅−








=− ∑∑ ∫

∀∀ ∀

])[(min

)()(

2

i 
'

i 

gate
std
block

area
crit
block

i
cell
std

cell
std

j x

crit

gate
std
block

area
crit
block

E

nxDxA

λλ

λλλ

 

( 51 ) 

 
Where j in the left summation of ( 50 ) is the index of every layer from diffusion to the top 
metal layer, and i in the right summation of ( 50 ) is the index of the standard cell type.  

Note that the gate count in ( 50 ) should be that of the same design that is the target of the 
critical area analysis. 

This circuit content scaling approach was first showed by Stapper in [7, 15] and reported in 
2007 to still be in use by IBM [29]. IBM’s method to capture yield apparently does not 
distinguish between different types of logical gates such as NAND, OR, and inverters. The 
reason may be that certain types of gates are used for all logic in that particular example, such 
as multi-level NAND gate nets. Another reason could be that the differences in critical area 
for the different standard cells are small enough to have insignificant effect on the total chip, 
consisting of billions of standard gates.  

The approach described in this section assumes that λ values for the different types of 
standard cells are readily available from the silicon foundry. The reasons for choosing this 
abstraction level is again that the layout is not available when the yield model is to be used, 
and even if the full layout were available, then the details needed to get a yield estimate from 
it might reveal a bit too much information about the fabrication process through the defect 
density at each step. The manufacturing process is what the foundry makes its money from so 
the foundry might be unwilling to reveal any details regarding its implementation. The 
average number of faults is still a quality metric, but it is a product of both the fabrication 
process and the layout for the standard cell library used, making it harder to decipher any 
details.  

The idea is to hopefully obtain a single parameter with the influence of many process steps 
lumped together, describing an individual standard cell from the active diffusion layer up to 
and including the intermediate routing layers.  

6.3 Step III – global routing 
The global routing which interconnects two blocks across the chip is treated differently from 
the standard cells in the blocks. It is difficult to associate the global interconnects with a 
particular standard cell, since most likely the top metal layers are reserved for the global 
routing [20].  

Articles on critical area extraction usually describe the process with simple examples of a 
single straight wire, or multiple straight parallel wires of equal length [11]. 

In the recent technology nodes of 45 nm, each metal layer has a dedicated direction of 
routing, either horizontal or vertical, with little to no opportunities for notches or routing in 
the other directions. With the single routing direction coupled with the number of conductors 
which are known very early in the design process through interface specifications, the global 



 35 

interconnects are simply multiple parallel wires with similar length. If the routing length in 
each layer can be estimated, then the critical area for the global interconnects can be almost 
exactly determined by the expression for N parallel conductors, as described previously in 
section 4.2.3 and repeated below:  









+≤≤−
≤≤−+−+

=
otherwise ,                                                        0

2for    ,                                         )(

0for    ,              ))1()2((

)( swxwwxNL

wxsNwNxL

xAopen  

 
( 52 ) 

In expression ( 52 ) the w and s represents the conductive wire width and the space between 
the wires respectively.  

Something to keep in mind when estimating critical area is that it cannot be larger than the 
total area of the circuit. Extensions exist for the above expressions which take the chip width 
and height into consideration, by looking at the wire displacement from the middle of the 
circuit area. When the critical area expands until it reaches the edge of the chip, it stops 
expanding in this direction and continues to expand only in the opposite direction. The exact 
displacement from the centre of the chip for every wire might not be readily available, so 
instead taking the minimum of the critical area estimate and the total area will give a decent 
result. 

min{Acr, Atot} ( 53 ) 
 
The critical area is only part of the equation; the full detail of the defect size distribution is 
then required together with the average defect density for each layer. 

dxxDxAcr∫
∞

=
0

)()(λ  
 

( 54 ) 

Stapper has shown [11] that the above expression can be evaluated for N parallel conductors 
and simplified into the following expression 

s)  2w(2w

xD

s)  2w(2w

xD)(

s)  2w(2w 

xDNs)  1)wL((N
 

2
0

2
0

2
0

+
+

+
+

⋅=
+

++
=

wsw
NLλ  

 
( 55 ) 

The expression ( 55 ) contains a variable for the average defect density of the associated layer, 
which might be out of reach from the manufacturer, but there are estimates on defect density 
provided in ITRS 2007 [30]. 

Even though all of these expressions are old and simplified examples, because of the strict 
constraints in routing in the <45 nm era, these simple expressions should be enough to fully 
describe most of the higher metal layers that are commonly devoted to the global 
interconnects. The interfaces between blocks should have been determined relatively early 
and a preliminary floor plan should be enough to approximate its effect on layout [31].  

As an example, consider a SoC with (N+R) DSP cores and M miscellaneous functional 
blocks. All blocks, both functional blocks and DSP cores, share a larger memory block on 
chip for performance reasons, and each of them has an individual memory interface. If the 
memory interface consists of an A-bit-wide buss for addressing and a D-bit-wide bus for data 
transfer during a read or write operation, then the number of wires that contributes to the 
critical area is (N+R+M)(A+D) bits. An average wire length could be estimated from visual 
inspection of the floor plan, or a length distribution function for each layer, as the derived by 
de Gyvez et al [32]. Let metal layer 8, 9 and 10 have length distribution functions L8, L9 and 
L10. The general idea would be for the model to be able to predict the critical area from these 
basic parameters.  



 36 

6.4 Step IV – putting it all together 
A decision needs to be made whether or not to associate the global routing yield with its 
corresponding DSP block. The situation might be that the global interconnects are routed on 
top of the neighboring DSP blocks to reach the intended destination for most cases.  

The DSP block yield based on standard cells is treated as being statistically independent 
because it makes the yield expressions much simpler and no test data is available to prove 
otherwise. The simplification seems somewhat justified since the blocks are spatially 
separated. The global routing on the other hand spans several blocks which was just assumed 
to be independent. Indeed, it is difficult to intuitively justify that a few of thousands of 
parallel data paths are independent when they are separated only by name and a few nano 
meters.  

Alternative 1- associate the global routing with its corresponding block 

i routing globalipart  cell std YYYDSPi =  ( 56 ) 

1nblock  funcnblock  funcblock memcluster DSP += YYYYYchip  ( 57 ) 
Alternative 2 - bunch all global routing into a separate yield term 

( 58 ) 

∏
∀

+

=

=

k

chip

YY

YYYYYY

k routing global totrouting global

 totrouting global1nblock  funcnblock  funcblock memcluster DSP

 
( 59 ) 

The positive aspect of using the first alternative is that it makes sure that the global routing is 
included in the redundancy calculation; and powering down a whole faulty block such as a 
DSP core should also affects its interconnects, including the global interconnect. The more 
parts considered repairable in the model, the better the estimated yield will be. The second 
alternative could be used if the global routing is shared, for example for a time slotted bus 
used for communication between blocks. 

The yield expression, either ( 57 ) or ( 58 ), for the chip should now be combined with the 
number of chips per wafer as in ( 2 ) from section 2. For this task, the numerical algorithm 
described briefly in the section 3 was chosen, based on an implementation described in the 
original article [4]. The algorithm tries to fit as many chips as possible based on the chip 
width and height and the effective wafer diameter, while still obeying a few simple rules 
about the allowed chip placements on the wafer. 
 

Number of chips per wafer = numerical algorithm(w, h, d) ( 60 ) 

Number of good chips per wafer = Number of chips per wafer chipY⋅  ( 61 ) 

 
Now from the above equation if the cost per wafer is known, the average cost per chip can be 
easily calculated. 

per wafer chips good ofNumber 

per wafercost 
chipper cost =  ( 62 ) 

 
To add an area cost for any redundant part, the area per redundant block Ared multiplied with 
the number of redundant blocks R is added to the total area by breaking it down into a 
resulting total chip width and height increase that will keep the aspect ratio of the original 
chip design without any redundancy. 



 37 

ratioaspect 

ratioaspect 
2

⋅=

⋅+=

newnew

red
oldnew

wh

RA
ww

 ( 63 ) 

Both the number of chips per wafer and the manufacturing yield of the chip can now be 
evaluated for different amounts of redundancy. 

 



 38 

7 Application of the model on an example system and  result 
analysis 
 
In this section, the yield modeling approach described in sections 3 to 6 will be applied to an 
example SoC design containing a multi core DSP cluster. Before diving head first into the 
results, a few assumptions about the example SoC are listed along with motivations. 

7.1 An example system 
The focus of this project was to examine the profitability of using redundant cores as a yield 
enhancement strategy. In order not to divert attention away from the multi-core clusters effect 
on the number of good chips per wafer, the rest of the chip’s sub-blocks will be assumed non-
repairable and appear as a constant yield factor together with a gross yield.  

constantf0 ⋅== ∏
∀

cluster
core
multi

i
i

cluster
core
multiSoC YYYYY  

 
( 64 ) 

This assumption does not mean that the rest of the chip’s content yield is trivial to the end 
result. The non-repairable chip content will put a cap on how much the yield can increase with 
added redundancy. The cap is a fundamental limitation to probabilities which are values 
between zero and unity, and the product probabilities can therefore not become larger than the 
smallest factor. 

 

 

 

 

 

 

 

The DSP cluster will be examined at different sizes. The number of required cores NDSP = {1, 
2, 4, 8, 16, 32, 64} corresponds to the case without any redundant cores included. The DSP 
cluster area without any redundancy is assumed to be equivalent for all examples.  

( 65 ) 

DSP

cluster
core
multiDSPSoC

cluster
core
multi

misc

cluster
core
multitot

NAAAA

AAA

/%08 =⇒⋅=

+=

 

( 66 ) 

The assumption is made to more easily compare the different cases; but it does mean that the 
area penalty will be different from case to case. Hopefully this assumption is not overly 
unrealistic: it could correspond to the downscaling from one process node to the next, with 
enhanced performance through additional DSP cores that take up the same area as the 
previous generation. 

The content of each DSP is assumed to be generic and the only visible part to the model is the 
standard cell count of each type.  

Figure 11: The example SoC topology for 9 and 16 cores. The area for the multi 
core cluster remains the same for both cases before redundant cores are added. 



 39 







mem

logic
rnd

n:cells standardmemory 

n :cells standard logic random
:ofnumber 

:content  DSP  

Two different categories of standard cell are assumed: one for memory cells and one for 
random logic. One variant would represent the types of standard cells such as NAND, NOR-
gates etc. for logic and the other variant would represent Flip-Flops, SRAM or ROM cells for 
memory. 

The standard cell types could of course be divided up in any number of categories. It depends 
on the level of detail provided by the early gate count estimations. For blocks reused from 
previous designs, the exact gate-count of every type of inverter, NAND, half-adder might be 
known, but for blocks not yet implemented, a rough estimate of the total gate count and the 
approximate ratio of memory might be all that is available. 










⋅=

⋅−=

totmem

tot
logic
rnd

tot

nn

n)1(n      

n :count gate total

:contentblock  new 

β

β  

Regardless how the values are obtained, they will be used together with the average number 
of fault per standard cell variables.  

mem
'
mem

logic
rnd

'

logic
rnd

cell
std nn λλλ +=  ( 67 ) 

Example 8. 

( ) ( ) ( ) ( )6767

cell
std 10101.210105.1 ⋅⋅+⋅⋅= −−λ  

These scalable “average number of fault” variable values are assumed to be readily available 
from the manufacturer.  

No actual design with a gate count can be shown in this report, but assuming a specific value 
might have shown results that would only have been true for that specific value. Instead ten 
values on the average number of faults that represent a DSP core is used in the a range below 

]1.0;01.0[ DSP =λ  average number of faults per chip 



 40 

7.2 Result and analysis 
 
When putting the assumptions about the model and the example system from section 7.1 all 
together, the model will estimate the number of good chips per wafer. The illustrations below 
were created by implementing a simple version of the yield-modeling approach described in 
section 6 in Matlab. The results will be shown for the example system with different numbers 
of cores in the multi core cluster. In the following parts of this section, the example system 
will be referred to as “N core system” with N equal to the number of cores required according 
to the system specification. 

The first two illustrations in Figure 12 show the single or 1 core system on the left and the 2 
cores system on the right. The results for the 1 core system are somewhat expected because 
when blocks of mainly random logic are unique instances the yield benefit of added 
redundancy is overshadowed by excessive overhead of increasing to the area for the multi 
core to twice the size. Moreover, this simple example does not even take the extra 
configuration logic into account. Similarly for the system with 2 cores required to work the 
overhead is less but the trend undeniable with the constant reduction in chips per wafer the 
more redundancy added. The best amount of redundancy in these two configurations is none 
at all. 

 

The next two illustrations in Figure 13 are the 4 core system on the left and the 8 cores system 
on the right. Just as in Figure 12, the area penalty is quite large and the maximum number of 
chips per wafer is being reduced quite rapidly when more redundant cores are added to the 
system. However a few things are worth noting. The yield for the original configurations 
without any redundancy cores are both above 50% for all but the worst cases of the 8 cores 
system.  

  
Figure 12: The number of good chips per wafer with different amount of redundant cores for example system 
configuration for 1 and 2 required cores.  



 41 

The 4 core system is the first system configuration which shows any hint of benefit from 
adding redundant cores, but not for every case, and adding redundant cores might be a risky 
business investment considering how steeply the curve slopes downwards for adding too 
much redundancy.  

The 8 cores system shows improvement on the number of good chips per wafer for all but one 
case. The 8 cores system is a case similar to the IBM Cell processor that originally had 8 
cores but when used in the Playstation 3 only had 7 cores visible to the software [34]. 

The next two system configurations shown in Figure 14 are the 16 core system to the left and 
32 core system to the right. These plots are quite similar to each other, but there are a few 
changes from the previous plots in Figure 12 and Figure 13.  

The two most noteworthy differences are that the starting number of good chips per wafer 
without redundancy is now really low, which on the other hand is not too surprising since 
each new core is an additional source of possible error, and for every plot shown in this 
section the number of cores are doubled. The second thing to note is that the right side of the 
peak value for both systems in Figure 14 the downward slope does not look as risky as being 
on the left side. In other words, choosing to not have any redundancy or even adding too few 
redundant cores appears to be a much greater risk than having too much redundancy. 

The last example shown is for a 64 core system in Figure 15. Having redundant cores in the 
system seems almost mandatory at this point. The number of good chips per wafer is 
increased in the best case shown from a little less than 300 chips to 500 chips with only 2 
redundant cores added to the system. As noted above there is a greater risk of having too little 
redundancy.  

  

  

Figure 13: The number of good chips per wafer with different amount of redundant cores for example 
system configuration for 4 and 8 required cores. 

Figure 14: The number of good chips per wafer with different amount of redundant cores for example system 
configuration for 16 and 32 required cores. 



 42 

Multi core clusters beyond 64 cores continue in the same fashion as shown in these few 
examples. The general trend seems to be that for systems with at least 8 cores in their original 
configuration, redundant cores should definitely be considered. For larger number of cores, 
the question is not whether redundancy should be used or not, it is instead a question of how 
many redundant cores to use.  

Do remember that in this section, only a small interval of values for the average number of 
faults is shown; but these values have been chosen so that the even in the worst case the yield 
for a single core should be above 90%.  

It is also worth reiterating that many of the assumptions in this section were made to give 
clear examples of the effects of introducing redundant cores to a multi core system, but should 
be carefully considered when modeling a real system. 

The red line, or the fourth graph from the top, in the plots shown in Figure 12 to Figure 15 
above corresponds to a value mentioned in a report by Weber [38] that some manufacturers 
use as a signal to stop improving their manufacturing process when the average number of 
faults reaches this value for their test chips. Any further optimizations were simply not cost 
efficient, and thus, the red line could be seen as the best case actually achievable. 

The last paragraph hints that the average number of faults variable and thereby also 
manufacturing yield is actually a function of time. The next section 8 will briefly consider the 
time aspect of yield, and how redundancy will affect it. 

  
Figure 15: The number of good chips per wafer with different amount of redundant 
cores for example system configuration for 64 required cores. 



 43 

8 Discussion and related topics 
 
This section describes a few topics closely related to the yield modelling approach described 
in section 6. It discusses the added redundancy’s effect in time, and how the model could be 
updated to capture this behaviour. At the end of the section, there is a brief discussion of the 
limitations of the model and some aspects that could be improved upon in future work.  

8.1 Yield learning/ramp up 
Yield learning is when the manufacturing yield is increased because of effort on the foundry 
side. For example, for defect limited yield, the defect density is decreased. 

When the yield learning curve is increased during the initial months of close to zero yield, it is 
commonly referred to as the yield ramp phase of a manufacturing process. The aim is to have 
the yield ramp as early in time as possible to allow the mass production to start as soon as 
possible.  

The importance of getting an early yield ramp originates in the field of economics, regarding 
a project investment’s early budget which has probably set a preliminary price on the chip, or 
on the product of which it is a part.  

Discussion in this section is based on Baker [35]. 

The core issue is that there is a difference between selling the product and receiving the 
income right at this moment, and receiving same amount at any time thereafter. The 
difference is the cost of lost opportunity of the income received later. If the income had been 
received as of this moment it could have been reinvested to increase its value compared to the 
unchanged value if the income was delayed. 

Example 9. 
Assume the yield ramp for a hypothetical product occurred 1 year after schedule but 
the products were sold and 100 units of currency worth of income were received. 

Comparing the above scenario to if the yield ramp would have happened as planned 
and sold for the exact same amount of 100 units of currency. At that time the income 
could have been invested in a bank account with an annual interest rate of for 
example 1%, which would have increased its value to 101 units by the time the late 
yield ramp would have given only 100 units.  

The effect of reduction in income value is usually a key part when discussing the net present 
value concept (NPV). The net present value is the sum of all incomes, both positive and 
negative (expenses) over time for a particular project.  

∑
∀

=
i

i tI )(IncomeNet  ( 68 ) 

Every project has a starting point in time t = 0, and all incomes for t > 0 are affected by a so 
called discount rate, which is the same as the interest rate in the example above, only this time 
in the denominator.  

∑
∀ +

=
i

a
iI

NPV
)ratediscount 1(

  
( 69 ) 

Here a represents the frequency with which the discount rate is evaluated; for example, for an 
annual discount rate, a represents the number of years from the start of the project.  

NPV indicates the project relative worth. When the NPV becomes zero, the project has paid 
off as much as if the invested money had been put into a bank account with interest equal to 



 44 

the discount for the duration of the project time. To maximize profit, the project should be 
terminated when the NPV is at its highest value. 

If the variables in the NPV equation stay fixed and the discount rate is changed ,the discount 
rate at which the NPV is zero is called a project’s Internal Rate of Return (IRR). The IRR 
seems to represent an arbitrary projects irregular income stream transformed in to an 
equivalent bank account investment. This transformation is done to be able to compare the 
profitability of similar projects.  

The bank account example is a no effort investment, and is used as a base example. Another 
possible alternative is to dig a hole and hide your investment until you need it, this would 
represent an IRR = 0 and the projects NPV would most likely never gain a positive value. 
Thus, a project with an IRR less than that of the interest rates offered by banks and similar 
safe investments are considered more or less a waste of time. For the basic case, the higher 
valued IRR the better, although there are exceptions [35]. 

The important thing to remember when looking at the NPV equation is that delaying an 
income term in time increases the value of the a-parameter and therefore decreases the 
resulting magnitude. When manufacturing chips, the later the yield ramp the later the products 
can be sold and lower the positive income’s effect towards the NPV.  

Also before the yield starts to increase to levels when you can start mass-producing your 
integrated circuit, as a company you have no project-related products to sell and therefore 
have no income while still keeping the manufacturing facility and machinery running. The net 
income will stay negative until there is something to sell. If the yield stays low for long 
enough, the products sold will have been reduced so much in value over time that the net 
project worth will be relatively negative.  

Other reasons to strive for as early a yield ramp as possible include the presence of a 
competing company. If there is a company A whose product provides similar service to a 
product of another company B, and there is a supply shortage on the market for this particular 
service, or the demanded quantity of products is higher than the quantity supplied, then 
company that launches its corresponding product first will be able to set the prices, since there 
is simply no other alternative available. 



 45 

8.2 Modeling yield learning 
The yield learning that results in a ramp up effect refers to the process engineers working to 
detect and suppress defect sources. Defects are found by manufacturing test structures.  

Common test structures are memory arrays, which are used because of their high fault 
visibility. Knowing the content of the memory, each separate memory cell can be addressed 
individually and checked for error. 

Suppressing the defect sources results in a lower defect density, and as seen in previous 
sections a lower defect density results in a yield increase.  

In the early stages of a new technology process, there should be multiple possible sources of 
defects for a given fault. As the number of possible defect sources decreases, it should be 
easier to determine which sources are the most critical ones and spend the learning time on 
the right thing.  

The only yield ramp modeling approach found is one described by Müller [24]: 

)0,() per  rate learning1())1(,(

),()per  rate learning1( ))1(,(

xDttnxD

tnxDttnxD
n ⋅∆−=∆⋅+

∆⋅⋅∆−=∆⋅+
 ( 70 ) 

Updating the timeless defect density discussed in previous sections with these simple 
functions will affect the average number of faults variable both the one for the global routing 
and the ones that are scaled with the standard cell gate counts. 

Also for the simple example system shown in the results section will be affected by this 
change. Repeated here is the 64 core system from section 7 shown for a select few redundant 
configurations. 

 The black line represents not chips per wafer, but the defect density and how it changes over 
time. The left vertical line shows where the defect density stops improving as mentioned in 
previously at the end of section 7.2. 

Figure 16: yield ramp for a 64 core DSP cluster, 3 configurations of 
redundancy. Black line defect density over time  



 46 

9 Future work 
 
The main goal of this project is to develop a yield model which can help to determine the 
appropriate amount of redundancy. The problem could be seen as an optimization problem. 
But what performance metric is the correct one to optimize?  

A problem with adding redundancy in some form to the current functional yield model is that 
the yield increases the more redundancy you have, although with diminishing returns. 
According to the model, the cost increase caused by the larger cluster and chip size is 
compensated by the higher number of sellable chips.  

However, the total cost of the redundancy is more difficult to establish. In this project, the 
focus has been on optimizing the number of good chips per wafer, but there are other issues to 
consider. 

How much testing time will be added to detect and configure, for every single chip 
manufactured, the cores which are functional and should be used? This extra processing step 
will increase the manufacturing cost, but it will probably be a non-reoccurring cost regardless 
of the number of redundant cores in the system. Hampton [26], reported a time increase in 
testing per good chip, but there were no real information to what factors led up to the 
additional time or exactly how it was determined. 

How much extra research and development time will be needed to implement the 
reconfiguration logic and verifying that that all possible architectural configurations fulfill the 
original requirement specification?  

How can the non-functional units or extra functioning units be prevented from interfering 
with the rest of the systems? How can the use of redundant cores be made invisible to the 
software? 

What performance degradations will there be on a multi core cluster with R redundant cores? 
The physical topology will differ from chip to chip, although they represent the same product. 
This will lead to varying system performances: for example in the network on chip, a token 
ring network has to deal with the delay from R extra nodes, compared to a system with no 
redundancy. A multi hop network will have different node to node delays depending on which 
cores are actually used [36]. 

How much extra delay or power consumption will the configuration logic and the redundant 
copies add? Can the defective or extra unit blocks be shut off completely without affecting the 
rest of the system and consume little to no additional power consumption?  

The above questions are difficult to answer in such a short project as this one and therefore 
must be considered to be outside its scope. However it is important to mention the existence 
of additional cost so as to not be misled by the reduction in manufacturing cost per wafer 
alone. 



 47 

 

10 Conclusions/summary 
 
The purpose of the project was, as defined in section 1, to examine the concept of redundancy 
for a multi core DSP cluster, in order to evaluate the profitability of adding redundant cores.  

As explained in section 2, both manufacturing yield and the area of a chip directly affects the 
manufacturing cost of the product, which was chosen as the quality metric. 

The cost function for chip area was studied in section 3 to capture the negative influence of 
added redundancy. The cost function estimates the maximum number of chips that can fit on a 
wafer for a particular chip size. When redundant cores are added, the chip area will increase, 
which will results in fewer chips fitting on the wafer.  

To measure the positive effects of redundancy, a yield model was required. The modeling 
approach chosen was described in sections 4 to 6. The model focuses on defect limited yield 
and divides the yield into two main factors. One yield factor is based on the number of 
standard cells in a block. The other yield factor represents the global interconnects which are 
more difficult to associate with a single block.  

Together, the yield model and the area cost function were used to compute the number of 
good chips per wafer. The fewer number of good chips per wafer, the higher the cost per chip 
will be. 

In section 7, the model was applied to an imaginary system example with a multi core cluster 
of varying size. The individual DSP core blocks used in the multi core cluster had a yield 
above 90%. Even though the values used were not based on real product designs, the results 
show a clear trend.  

The results in section 7.2 showed that systems with a requirement for 8 or more functional 
cores could benefit from adding redundant cores. The highest number of good chips per wafer 
was achieved when having between 10% and 20% additional redundant cores. For systems 
with 16, 32 and 64 cores in the basic configuration with no redundancy, there was a greater 
negative impact for choosing too few redundant cores than choosing too many.  

In section 8 it was shown that the redundancy, while making the circuit more resilient to 
defects, also pushes the yield ramp back in time. The yield ramp determines the start of the 
mass volume production phase and so redundancy can potentially decrease the product time to 
market. 

There are, however, still some unexplored areas that need to be researched, as seen in 
section 9. The nonrecurring cost and details of implementing the redundancy has not been 
taken into account. Future work could also focus on extending the yield model to account for 
parametric variation if higher abstraction level models are developed.  

To use the model to produce accurate estimates would require close collaboration with a 
manufacturing company who would be willing to provide the required input parameters. 

All in all, the concept of redundancy seems to fit perfectly in a multi core system. For a 
system with cluster sizes larger than 8 cores, adding redundant cores would almost have to be 
considered mandatory to achieve reasonable manufacturing cost. 



 48 

References  

In order of occurrence:  

[1] Dragone, N., Guardiani, C., Strojwas A. J. (2006) Design for manufacturability in the 
nanometer era. In EDA for IC Implementation, Circuit Design, and Process Technology, 
Lavagno, L., Scheffer L., Martin G. (editors), pp 19-1 – 19-27. Taylor Francis Group, LCC 

[2] MOSIS (2010) http://www.mosis.com  

[3] Melzer, H. (2006) Smaller is Better? Maximization of Good Chips per Wafer by Co-
Optimization of Yield and Chip Area, IEEE/SEMI Advanced Semiconductor Manufacturing 
Conference 

[4] de Vries, D. K. (2004) Investigation of Gross Die per Wafer Formulas, IEEE Transactions 
on Semiconductor Manufacturing, vol. 18. No. 1. 

[5] Pessah, J., Digital Test Methods: Iddq tutorial, Test Technologist Team, inc 
www.ttt.com/downloads/iddq.pdf (2010-05) 

[6] Stapper, C. H. (1983) Integrated Circuit Yield Statistics, Proceedings of the IEEE, vol. 71, 
no. 4. 

[7] Stapper, C. H. , Patrick, J. A. , Rosner, R. J. (1993) Yield Model for ASIC and Processor 
Chips, International Workshop on Defect and Fault Tolerance in VLSI Systems 

[8] Murphy, B. T. (1964) Cost Size Optima of Monolithic Integrated Circuits, Proceedings of 
the IEEE, vol. 52, pp. 1537-1545 

[9] Miller, S. L. Childers, D. G. (2004) Probability and Random Processes With application to 
signal Processing and Communications. Elsevier Academic Press, 84 Theobald’s Road, 
London WCTX 8RR, UK 

[10] Maly, W. , Deszczka, J. (1983) Yield Estimation Model for VLSI Artwork Evaluation, 
Electronics Letters, Vol. 19, No. 6 

[11] Stapper, C. H. (1984) Modeling of Defects in Integrated Circuit Photolithographic 
Patterns. IBM Journal of Research and Development, vol. 28, no. 4 

[12] Webb, C. (2008) 45 nm Design for Manufacturing, Intel Technology Journal, Vol. 12, 
Issue 02. 

[13] Santarini, M. (2007) A look at 45-nm-IC-design challenges, ElectronicsWeekly.com 
http://www.electronicsweekly.com/Articles/2007/10/01/42290/a-look-at-45-nm-ic-design-
challenges.htm 

[14] Nelson, J. E. , Zanon, T. , Brown, J. G. , Poku, O, Blanton R. D. S. , Maly, W. (2006) 
Extracting Defect Density and Size Distributions from Product ICs, IEEE Design & Test of 
Computers. 

[15] Stapper, C. H. , Rosner, R. J. (1995) Integrated Circuit Yield Management and Yield 
Analysis: Development and Implementation. IEEE Transactions on Semiconductor 
Manufacturing, Vol. 8, No. 2.  

[16] Statistical Process Control, www.siliconfareast.com/spc (2010-04) 

[17] Moore, G. (1965) Cramming more components onto integrated circuits. Electron, Vol. 
38. pp 114-117 



 49 

[18] Sapatnekar, S. S. (2006) Static Timing Analysis. In EDA for IC Implementation, Circuit 
Design, and Process Technology, Lavagno, L., Scheffer L., Martin G. (editors), pp 6-1 – 19-
16. Taylor Francis Group, LCC 

[19] Kong, J-T. K. , (2004) CAD for Nanometer Silicon Design Challenges and Success, 
IEEE Transactions on VLSI Systems, Vol. 12, no. 11.  

[20] Chiang, C. C. , Kawa, J. (2007) Design for Manufacturability and Yield for Nano-Scale 
CMOS, Springer, P.O Box 17, 3300 AA Dordrecht 

[21] Agarwal, K. , Rao, R. , Sylvester, D. , Brown, R. (2007) Parametric Yield Analysis and 
Optimization in Leakage Dominated Technologies, IEEE Transactions on VLSI Systems, Vol. 
15, no. 6 

[22] Koren, I. , Koren, Z. (1998) Defect Tolerance in VLSI Circuits: Techniques and Yield 
Analysis, Proceedings of the IEEE, Vol. 86, no 9 

[23] Ramadan, N. H. (1997) Redundancy Yield Model for SRAMS, Intel Technology Journal 
Vol 1, Issue 2 

[24] Müller-L, G. E. (2009) A General Yield Model from Design to Product Engineering, 
IEEE Transactions on Semiconductor Manufacturing. Vol. 22, no 4 

[25] Koren, I. , Koren, Z. , Stapper, C. H.(1993) A Unified Negative-Binomial Distribution 
for Yield Analysis of Defect-Tolerant Circuits, IEEE Transactions on Computers, Vol. 42, 
No. 6 

[26] Hampson, C. W. (1997) Redundancy and High-Volume Manufacturing Methods, Intel 
Technology Journal, Vol. 1, Issue 2 

[27] Stapper, C. H. , McLaren, A. N. , Dreckmann, M. (1980) Yield Model for Productivity 
Optimization of VLSI Memory Chips with Redundancy and partially Good Product, IBM 
Journal of Research and Development, Vol. 24, No. 3 

[28] Khare, J. Feltham, D. B. I. , Maly, W. (1993) Accurate Estimation of Defect-Related 
Yield Loss in Reconfigurable VLSI Circuits, IEEE Journal of Solid-State Circuits, Vol. 28, 
No. 2 

[29] Barnett, T. S , Bickford, J , Weger, A. J (2007) Product Yield Prediction and Critical 
Area Database, IEEE/SEMI Advanced Semiconductor Manufacturing Conference 

[30] Yield Enhancement (2007) The International Technology Roadmap for Semiconductors, 
http://www.itrs.net 

[31] Koren, I. Koren, Z. (2000) Incorporating Yield Enhancement into the Floorplanning 
Process, IEEE Transactions on Computers, Vol. 49, no. 6 

[32] de Gyvez, J. P. , Christie, P. (2001) Pre-Layout Prediction of Interconnect 
Manufacturability, Proceedings of the 2001 international workshop on System-level 
interconnect prediction 

[33] Kumar, R. (2007) The Business of Scaling, IEEE SSCS Newsletter 

[34] Sperling, E. (2006) Executive Insight: Turn Down the Heat…Please, Electronics Design, 
Strategy, News, http://www.edn.com/article/465456-Turn_Down_the_Heat_Please.php 

[35] Baker, S. L. (2007) Economics Interactive Tutorials, 
http://hadm.sph.sc.edu/Courses/Econ/tutorials.html 



 50 

[36] Zhang, L. Han, Y. , Xu, Q. , Li, X. W. , Li, H. (2009) On Topology Reconfiguration for 
Defect-Tolerant NoC-Based Homogeneous Manycore Systems, IEEE Transactions on VLSI 
Systems, Vol. 17, No. 9 

[37] Milton, J. S. , Arnold, J. C. (2003) Introduction to Probability and Statistics: Principles 
and Applications for Engineering and the Computing Science, 4th Edition, McGraw-Hill 
Higher Education 

[38] Weber, C. (2004) Yield Learning and the Sources of Profitability in Semiconductor 
Manufacturing and Process Development, IEEE Transactions on Semiconductor 
Manufacturing, Vol 17, No 4  

 


