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Abstract

This thesis deals with the behaviour of particles in a stochastic model of turbu-
lence. Special attention is given to clustering and collisions of particles.

A stochastic model of turbulence is implemented and used to perform simulations
of particle dynamics. Both advected particles, and particles with inertia are con-
sidered, as well as both incompressible and partly compressible flow.

The behaviour of the dynamics is quantified by studying the Lyapunov exponents,
and their relation to clustering is discussed. Simulations of the advective dynamics
are used to estimate the exponents for different degrees of compressibility. The simu-
lations are shown to be in agreement with theory, and the theory’s regime of validity
is discussed in brief.

Collision rates are computed for particles advected in incompressible flow. The
results agree with previous numerical studies, as well as with theoretical estimates for
the initial transient and the long time steady state.

It is demonstrated that clustering of particles can occur both as result of compres-
siibility in the field and of particle inertia.
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1
Introduction

The topic of this thesis is the movement of particles in a randomly stirred fluid. A
simplified model emulating near turbulence is implemented and studied numerically.

Two model properties associated with clustering are chiefly considered. The first
is compressibility of the fluid. In a compressible fluid, particles will follow the pressure
gradient and escape from regions of higher pressure, thus gathering in low pressure
areas. The other, perhaps less intuitive effect, is that of the particles’ inertia. The
relation of particle inertia to clustering is discussed below. A third phenomenon
leading to clustering is the formation of so called caustics. This occurs when particles
with a small separation in position space have a large separation in momentum space,
so that faster particles catch up with and pass slower [1, 2]. This phenomenon is not
studied in this thesis.

One suggested explanation for the effect of inertia, is that areas of high vorticity
tend do expunge particles trough centrifugal forces [3]. For this mechanism to be
significant it is required that the particles are sufficiently massive compared to the
damping action of the fluid medium. If this holds, the result is a tendency for higher
particle density where the flow is more laminar. It has been suggested that the
centrifuge mechanism cannot fully account for the clustering however, as it it cannot
explain clustering in the limit of small damping [4]. When damping is small the inertia
of the particles plays a considerable role. Thus particles moving through the fluid will
experience much too rapid fluctuations in their local velocity field to be caught in the
eddies.

In [4], the proposed mechanism is instead the clustering of particles onto fractal
sets, as a result of random stirring. The dimensions of the fractal sets are determined
by the so called Lyapunov exponents.

The two effects, to which attention is given here, are of notably different natures.
The first is due to a property of the fluid, whereas the second stems from the inter-
action of fluid- and particle-properties, as quantified by the damping. They can be
expected to factor out and are hence studied separately.

Also of interest in this thesis is how the rate at which particles collide varies over
time. In this context particles of negligible inertia in an incompressible fluid are
studied.

1
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2
Background

2.1 Fluid dynamics

In the study of fluid dynamics one leg inevitably stands on the Navier-Stokes equa-
tion (2.1) [5].

ρ∂tu + ρu · ∇u = −∇p+ µ∇2u + F (2.1)

Here, and throughout this thesis, ∂i is taken to mean differentiation with respect to
the variable i. Analogously ∂ij gives the derivative with respect to i andj, and ∂i2

means twice differentiating with respect to i.

The Navier-Stokes equation governs the flow of a fluid built of infinitesimal fluid
elements. Hence the terms in equation (2.1) have the dimension dimN/dimm3 and
not dimN . Each term has a physical interpretation. The left hand side of equa-
tion (2.1) describes how the flow’s velocity changes with time, as well as in space.
The terms on right hand side describe the forces driving this change.

The term ρ∂tu on the left hand side of equation (2.1)is simply the acceleration of
the fluid element, while the second left hand term ρu ·∇u is know as the inertia force.
External forces, such as gravity, are described by the term F , and −∇p describes the
force from the pressure gradient. More elusive is the second term of the right hand
side, µ∇2u. This is descriptive of the viscous forces in the flow. These are forces
opposing the deformation of fluid elements, brought about by the shearing motions of
vortices and other fluctuations. The coefficient µ is known as the fluid’s viscosity [5].
It is a constant for the so called Newtonian fluids with which this thesis is concerned.

Much of a fluid’s behaviour is tied to a dimensionless number know as the Reynolds

number. It is denoted Re, and is defined

Re ≡ ρu0R

µ
=
u0R

ν
, (2.2)

where u0 is a typical velocity and R a typical length for the flow. The quantity ν ≡ µ/ρ
is known as kinematic viscosity. This is used when it is convenient to combine the
viscosity and density of the fluid into one parameter.

The Reynolds number can be given a physical interpretation through

3



4 Chapter 2 Background

Re ∼ inertial forces

viscous forces
. (2.3)

This can be seen by reviewing the terms of the Navier-Stokes equation described
above. Given typical the values u0 and R, the inertial and the viscous term should
comply to |ρu · ∇u| ∼ u2

0/R and |µ∇2u| ∼ µu0/R
2 respectively. Dividing the former

similarity by the latter, the Reynolds number is recovered on the right hand side, as
seen in equation (2.4) [5].

|ρu · ∇u|
|µ∇2u| ∼ ρu0R

µ
= Re. (2.4)

As equation (2.1) is highly nonlinear, its application more often than not requires
some simplifications. A first step in this thesis is assuming that the external forces
F are negligible. It is, however, often very costly to model the simulated fluid on
even a simplification of the Navier-Stokes equations. Moreover, in this thesis the fluid
is but the canvas on which the real objects of interest, the particles, move about.
Considering this, it is justified turning to more drastic measures than dropping a
few terms. The route taken here is shifting the focus from the dynamics themselves,
trying instead to replicate their emergent statistical properties using a vastly simpler
model. The fluid is modelled as a random but spatially and temporally correlated
velocity field, with a stochastic time evolution. The spatial correlation is Gaussian
and the temporal correlation is exponentially decaying.

There is only one time- and one length-scale characterising the modelled field.
The latter fact points to one of the more obvious deviations from an exact model
of turbulence, as one feature of turbulence is a multitude of associated characteristic
distances, and the interaction between length scales [5]. Despite being a simplification
in the extreme, it has been demonstrated in [4] that this method captures most of the
features essential to the topics of interest in this thesis.

The equation of motion for the particles is derived taking less liberty with the
foundations. Assuming that the flow is not turbulent at length scales comparable to
the size of the particles, a known analytical result can be applied directly for the force
exerted by the fluid on the particles.

2.2 Advection

The act of advecting something is the act of bringing a quantity of something some-
where1. Advection refers to transport by the macroscopic motions of a fluid, as
opposed to diffusion which is due to microscopic fluctuations. These two are the
principal components constituting convection.

What is advected by the flow depends on the context. Often the commodity is
heat2, or some other continuously distributed quantity. When effects of inertia can be
neglected, in what is called the advective limit [7], the currents can instead carry small
particles. These could for example be drifting plankton [5], dust particles in stellar
accretion discs [8] or miniscule water droplets in clouds [9]. The various particles can
be modelled as continua by focusing on particle density, but in this thesis they are
regarded as discrete, localised spheres with small but finite radius. This approach can

1“Latin advection, advectio act of bringing, from advehere to carry to, from ad- + vehere to
carry” [6]

2In the context of heat, the word conduction is often used instead of diffusion. Both terms refer
to the same process.
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easily be augmented to account for deviations from the advected limit, and is much
more convenient when studying collisions.

2.3 Collisions

Collisions in advection or near-advection is a widely studied topic. It is important
since collision rates can limit the speed at which other processes can take place. Ex-
amples of areas where detailed knowledge of the underlying processes is of importance
range in size from the very small to the astronomical. At the lower end of the spec-
trum are chemical reactions and at an intermediate stage the formation of rain drops
from smaller droplets in clouds. On a far greater length scale, and at a far greater
distance from the everyday workings of man, is the formation of planets from the dust
in the accretion discs around young stars.

One of the earliest accounts of such collisions was presented in [9] in 1956. The
authors considered water droplets of equal size in an initially uniform distribution.
These were suspended in a turbulent airflow, where the smallest eddies were much
larger than the individual drops. An expression for the collision frequency was derived,
and the change from an equilibrium distribution due to collisions was studied numeric-
ally. Inserting physically plausible parameters, the model was applied to study the
effect of turbulence on the initiation of rain showers for different cloud types.

The validity regime of the result in [9] for the collision frequency, is studied in [7].
The conclusion is that the change from a uniform distribution will change the rate
at which collisions occur, which was anticipated also in [9]. A theoretical estimate
of the long time collision frequency is presented, and the transition between the two
regimes is investigated through numerical simulations for a variety of velocity fields.
When particles do not cluster, the result from [9] is shown to be an upper bound on
the collision frequency. Compressibility in the background field, on the other hand,
may lead to a larger rate of collisions as time progresses, and the geometry of particle
set changes.

The importance of turbulence for the onset of rain is revisited in [10]. The focus
there is the importance of caustics in increasing the collisions frequency and con-
sequently the rate at which larger drops are formed.
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3
Model

3.1 Description and parameters

3.1.1 Parameters

Table 3.1: Essential parameters

symbol: dimension: comment:
a m particle radius
m kg particle mass
η m correlation length of velocity field
τ s correlation time of velocity field
u0 m/s mean speed of velocity field
β − relative strength of compressible

component of velocity field (see sec-
tion 3.4.2)

L m size of system simulated
γ s−1 Stokes’ damping constant
d − number of spatial dimensions
n0 m−d number density of particles

The model for the flow and the particles is described by the parameters presented
in table 3.1. The system modelled is characterised by the side length L and the
number density of particles n0. Periodic boundary conditions are assumed.

Table 3.2: Dimensionless combinations of parameters

symbol: definition: comment:
Ku u0τ/η Kubo number
St (γτ)−1 Stokes number
− n0a

d packing fraction
− a/η
− η/L

7



8 Chapter 3 Model

In table 3.2 the most important dimensionless combinations of parameters are
presented. Of special interest in this thesis are the so called Kubo and Stokes numbers.
The Kubo number is a dimensionless velocity, while the Stokes number is related to
damping in such a way that a small St corresponds to strong damping [2]. When
St → 0 the advective dynamics come into play (see section 3.3).

The packing fraction and the ratios a/η and η/L are all taken to be small. If
n0a

d is not small enough, particles will cover a large proportion of the available area,
and there will be little space to move. There will also be a high probability of the
particles overlapping after initialisation, which should be avoided for technical reasons
(see section 6). Requiring a/η � 1 is necessary for the equation of motion to be a
fair approximation of reality, as outlined in section 3.3. Finally, due to the finite size
of the simulated system, too large a value of η/L might induce artefacts.

3.2 The particles

A particle is characterised by its radius a, mass m, position r and momentum
p = ṙ/m. In the advective limit the particles act as ‘passive tracers’, meaning that
they follow the flow along the streamlines exactly without neither affecting it nor each
other. Their trajectories provide a map of the flow’s time evolution. In this limit the
momentum and mass of the particles are of no consequence.

Effects of inertia come into play when γ is finite. The particles then remain
passive in the sense that the flow is still just a backdrop, untouched by the particles
themselves, but because the momentum of the particles is no-longer negligible they
will deviate from the tracer trajectories.

For simplicity, all particles are considered to be identical spheres, with the same
mass and radius. The implementation does, however, allow for the possibility of using
heterogeneous values for both of those parameters (see section 4).

3.3 Equations of motion

Stokes’ law for the drag force on a sphere moving in a fluid reads

D = 6πµa(u − ṙ) = mγ(u − ṙ), (3.1)

where µ is the fluid’s viscosity, ṙ is the velocity of the sphere and u the velocity of
the fluid near the sphere [5]. The law is derived as a solution to the approximation
of the Navier-Stokes equation (2.1) known as the equation of creeping motion, which
reads [5]

−∇p = µ∇2u. (3.2)

In the dimensionless formulation of the Navier-Stokes equation, the neglected term
is of order 1, while the remaining terms are of order Re−1. Therefore the approxi-
mation is valid only for Reynolds numbers strictly smaller than 11 [5]. For the flow
around a particle with radius a the Reynolds number of equation (2.2) becomes

Rea =
ρu02a

µ
=

12πρu0a
2

mγ
, (3.3)

1Experimental data compiled in [5] suggests that Stokes’ law is applicable for Re < 0.5.
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where ρ is the density of the fluid. In the second step of equation (3.3), the second
identity in equation (3.1) has been used. The density is not a parameter specified
in the model, but it can be assumed to be much smaller than the mass density of
the particles. A small ρ means that viscous forces dominate the inertial forces, thus
guaranteeing a small Re [5]. This may seem to be in conflict with the expressed
purpose of studying turbulence, since turbulent flows are characterised by large Re.
For the fluid system as a whole, however, the relevant length scale is not the particle
diameter a, but the length associated with the stirring of the fluid. This length is
at least as large as the Kolmogorov length η, though generally it is much greater2.
Since η is much larger than a, there is no conflict in requiring laminar flow around
the particles and near turbulence on system scale.

The derivation of Stokes’ law further requires the fluid to have uniform ambient
velocity in the sphere’s immediate surroundings. This translates to the condition
a� η, which has to be fulfilled if equation (3.1) is to be used as an approximation of
the forces acting on the particles. The equation of motion obtained is [1]

r̈ = γ(u − ṙ). (3.4)

In this thesis, the concern is for the most part with the case of strong damping.
Letting γ → ∞, corresponding to St → 0, particle inertia will have a negligible effect
and it is easily verified that in this limit the equation of motion (3.4) simplifies to

ṙ = u. (3.5)

This implies that the particles follow the flow of the fluid’s currents perfectly; this is
the advective limit.

3.4 Modelling the flow

The velocity field u is generated as the combination of a compressible and an incom-
pressible part. Both components are generated in essentially the same way through
random Fourier sums. The resulting velocity field has a spatial correlation length η.
It changes smoothly over time, with correlation time τ .

The flow has only one defining length scale, the correlation length η. This is inter-
preted as the Kolmogorov length [2], which is the characteristic size of the smallest
vortices in the turbulent flow. In real turbulence there is a spectrum of relevant length
scales associated with the flow [5].

In [2] it is argued that for fully developed turbulence Ku ∼ 1. Further it is argued
that the model for the flow, described in section 3.4.1 below, can only be valid in the
regime where the Kubo number conforms to Ku ≤ 1. This implies that the model is
not applicable to fully developed turbulence.

3.4.1 Incompressible component

The incompressible, or solenoidal, part of the velocity field is created from a ‘stream
function’ ψ(r), so named because it is constant along streamlines [5]. Dealing here
exclusively with two dimensional flows, this part of the velocity field is found as the

2In clouds, for example, the air is set in motion by convection currents, not uncommonly many
kilometers in diameter.



10 Chapter 3 Model

curl of ψ multiplied with a vector orthonormal to the plane in which fluid is modelled3.
This yields

usol = ∇× ψ(r)n̂z =

[

∂yψ
−∂xψ

]

. (3.6)

The stream function is constructed as a normalised Fourier sum,

ψ(r) = u0

√
π
η2

L

∑

k

ak exp

(

ik · r − η2k2

4

)

, (3.7)

where the circular wave number k = 2π
L

[

nx

ny

]

. The coefficients ak are complex

valued random numbers from a Gaussian distribution with the properties (3.8).

〈ak〉 = 0

a∗k = a−k (3.8)

〈ak a−k′〉 = δk,k′

3.4.2 Compressible component

To accommodate for compressibility, a function ϕ is constructed from the same recipe
as ψ (equation (3.7)). This function is given its own set of Fourier coefficients, un-
correlated to those of ψ. The irrotational part of the velocity field is then defined as
the gradient of ϕ, so that

upot = ∇ϕ(r) =

[

∂xϕ
∂yϕ

]

. (3.9)

The function ϕ is referred to as the ‘velocity potential’. It should be noted for clarity
that it is not a physical potential in the same sense as the gravitational or electrostatic
potentials, ϕ not sharing their close relation to energy [5].

The two components are combined giving a total velocity field

u =
usol + βupot
√

1 + β2
, (3.10)

where the parameter β is used to tune the relative strengths of the two components.
Letting β = 0 thus recovers the solenoidal velocity field of equation (3.6), whereas
letting β → ∞ creates a pure potential velocity field, as described in equation (3.9).
Following [4], a parameter Γ is introduced such that

Γ =
β2 + 3

3β2 + 1
. (3.11)

This parameter is bounded and takes values between 1
3 (potential flow) and 3 (solenoidal

flow). It characterises the degree of compressibility more conveniently than β.

3The same method can be employed in three dimensions as well, if ψ(r)n̂z is complemented with
components in the two other Cartesian directions. The three components need not be correlated,
depending on the physical situation being modelled.
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3.4.3 Time dependence

The smooth time evolution of the field is approximated by subjecting the Fourier
coefficients ak to a discretised Ornstein-Uhlenbeck process, as described in [11] and
[12]. The time evolution is written

ak(t+ dt) = ak(t)

(

1 − dt

τ

)

+

√

2
dt

τ
dwk, (3.12)

where dwk are complex Gaussian numbers, sharing the properties of ak established
in equations (3.8). It is easily verified that this process preserves these properties for
ak, and results in an exponentially decaying correlation over time with half-life τ−1.
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4
Simulation

For more on the implementation, see appendix A.

4.1 Design overview

The simulations were implemented in C. Effort was put into making the program easy
to use, as well as computationally efficient. At the heart of the design are the two
structs1 particle and simulation, which between the two of them keep track of all
relevant parameters and variables for the particles. For collision detection they were
joined by a struct called box.

Most operations to be performed on the particles have been implemented in such
a way that they only have to be called with a pointer to the relevant simulation as
an argument.

The particles are represented as elements in an array of particle structs. Each
element thus keeps track of its own position and momentum, as well as radius and
mass. In this thesis the latter two are kept constant and homogeneous for the entire
ensemble, but in practice they could be changed dynamically, for example as particles
collide.

For added flexibility, routines for reading parameter values from standardised
settings-files were implemented.

4.2 Initialisation

The particles were assigned random initial positions uniformly in an box with side
length L centered on the origin. The particle momenta were initialised to zero.

To avoid an extreme number of collisions the very first time step, the particle
ensemble was checked for overlaps before the dynamics were switched on. Just as
when checking for collisions (see section 4.4 below), one member of an overlapping
pair was picked at random, but assigned a new position instead of removed from the
simulation. The process was repeated until no particles overlapped. For consistency,
overlaps were removed with the same relentless scrutiny for pairwise and test particle
collisions both.

1See e.g. [13] for an introduction to C programming terms.

13
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4.3 Movement

The particles move about in a box with side length L. Periodic boundary conditions
are enforced, in order to conserve the number density of particles n0. To avoid
artefacts stemming from the finite size of the system, it is important to choose η � L.

The equations of motion are integrated in the simplest conceivable way using
Euler’s forward method, which reads [14]

r(t+ dt) = r(t) + dt · ṙ(t). (4.1)

In the advective limit (see section 3.3) ṙ = u(r(t)). When inertial dynamics of
equation (3.4) apply ṙ = p(t)/m. In this case, the momentum is also updated using
Euler integration, so that

p(t+ dt) = p(t) + dt · ṗ(t) = p(t)(1 − γdt) +mγu(r(t))dt. (4.2)

The forward Euler method was chosen, despite it’s notorious numerical instability
[14], for the ease of implementation as well as for its transparency. Suspicions of
numerical artefacts are easily verified or cast aside by decreasing the time step.

Care was taken to compute quantities in common for all particles, especially time
independent factors, only when necessary. As the velocity of a particle depends only
locally on the velocity field u, this was only computed at the location of each particle.
The Fourier sum was cut off at a maximal wave number ±kmax = ±(2π/L) d2L/ηe,
corresponding to a weight ≤ e−4π2

for the least significant Fourier component. The
maximal wave number is inversely proportional to the size smallest features regarded
in the simulation.

Heeding a resource saving piece of advice from [12], the complex exponential in
equation (3.7) was rewritten as trigonometric functions. Euler’s formulae and trigono-
metrical identities [15] were applied in order to obtain an expression where the spatial
dimensions where separated. This allowed for creating a table of evaluated trigono-
metric terms depending on only one spatial variable. Thus, when evaluating the sum
for each particle, instead of evaluating the exponential explicitly for every single ak,
the table can be consulted, and the appropriate terms combined.

4.4 Collisions

If two particles, both with their respective collision flag ξ = 1, come within a distance
less than the sum of their radii, a collision is noted.

In principle the particles can have any radius, but for this simulation all particles
have the same radius a. It is important to choose parameters so that a� u0dt, oth-
erwise particles may jump through each other, when they should really have collided.

At a collision event, one of the involved particles is always removed from the sim-
ulation. In practice removing a particle means setting the internal flag ξ = 0 in the
corresponding particle struct, telling the functions that it is to be skipped hence-
forth. The test particle is always left untouched, but when checking pairwise collisions
the particle to remain is chosen by the toss of a fair coin. No new particles are added
to compensate this loss, as this could not be done in compliance with the emergent
statistics of the ensemble. It was found however, that for the small fraction of removed
particles (about 4% for test particle and 17% for pairwise collisons2 at t = 100000 τ )

217% might seem very much, but bearing in mind that the crucial quantity is the available number
of pairs this is in no way alarming.
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the resulting decrease in collision frequency R was negligible. Decreasing the number
of particles also decreases the computational intensity as a welcome synergetic effect.

The removal of one particle from the system upon collision can be thought of as
the two drops merging into one particle of comparable size as in a completely inelastic
collision. As noted in both [9] and [12], the removal of particles changes the spatial
particle distribution and affects the collision rate directly as time progresses. When
allowing particles to collide with each other many times, for example by resetting ξ
when the particles have steered clear of each other, the transient result from [9] never
ceases to be accurate [12].

The actual implementation of collisions is severely unphysical away from the ad-
vective limit, since it conserves neither mass nor momentum. It would be a simple
matter letting the particle which remains after the collision have the combined mass
and inertia of the pair. Further, the particle’s position could be shifted to the centre
of mass coordinates of the two, and perhaps its radius increased. Whether such cor-
rections would significantly influence the collision rates is, however, beyond the scope
of this thesis.

In order to save resources when checking for collisions, the system containing the
particles is divided into a lattice of Nd d-dimensional boxes. In each time step the
particles are put in the appropriate box. When using a test particle, the box in which
this resides and the surrounding boxes (eight in total in two dimensions) are checked
for particles. In the case of pairwise collisions the boxes are traversed in order and
collisions are checked for each resident particle with particles in the same box and in
surrounding boxes. Checking all eight neighbouring boxes would be redundant, only
three need be checked to cover all combinations.

The idea behind this boxing is that, instead of having to check collisions with every
particle, it is only necessary to calculate the distance to the few particles residing in the
neighbouring boxes. If the number of boxes is chosen so that there is approximately
one box for every particle, then only an average of 8 checks are needed for collisions
with a test particle in two dimensions. As a comparison, checking collisions between
the test particle and every other particle would require n0 − 1 checks. For pairwise

collisions, only 4n0 checks are needed on average when boxing, in contrast to n0(n0−1)
2

checks when checking between every pair. This is of course based on the assumption
that the particles are uniformly distributed, which they in general are not. Therefore
this gives an upper bound for the number of operations which can be saved by this
method. It is notable though that the number of operations needed with this method
is one order of n0 lower than that of the näıve implementation. The boxing algorithm
itself is of order n0.
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5
Lyapunov exponents

5.1 Definition and significance

The Lyapunov exponents are quantities describing how quickly trajectories (of e.g.
particles), initially infinitesimally close in phase space, will separate or coalesce under
the dynamics governing their time evolution. The exponents have dimension s−1

and are termed rate constants [2]. The separation of two trajectories roughly obeys
equation (5.1) [16].

|dr(t)| ≈ |dr(0)|eλ1t (5.1)

For two dimensions, two Lyapunov exponents λ1 > λ2 are defined. The first
exponent is related to the time evolution of the short distance dr, which is the length of
the vector pointing between two trajectories near to each other. Two such separation
vectors span a parallelogram with the small area dA. The second exponent is related
to how this area changes with time1 [1]. The relations are

λ1 = lim
t→∞

1

t
ln

∣

∣

∣

∣

dr(t)

dr(0)

∣

∣

∣

∣

, (5.2)

λ1 + λ2 = lim
t→∞

1

t
ln

∣

∣

∣

∣

dA(t)

dA(0)

∣

∣

∣

∣

. (5.3)

A trajectory’s sensitivity to perturbations in the starting conditions, for which
chaotic systems are notorious, is captured by the Lyapunov exponents. Thus they
can have utility as a measure of how chaotic a given system is. A positive Lyapunov
exponent λ1 is characteristic of a chaotic system, whereas a negative value means
that nearby trajectories will converge [16]. In the context of this thesis, it means that
particles will tend to cluster.

The sum in equation (5.3) is positive iff λ1 > 0, but it can be negative regardless
of the sign of λ1. If this quantity is negative, it means that the area dA is stretched

1For three dimensions, a third exponent, λ3 < λ2, is defined. In analogy with the lower dimen-
sional cases, λ3 is related to dV , the small volume of a parallelepiped defined by three separation
vectors.
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and compressed to a line, onto which the trajectories converge [1]. This is also a cause
of particle clustering.

A theoretical estimate of the first Lyapunov exponent, valid for small Ku, is pre-
sented in [4]. The theoretical result is for the equation of motion (3.4) in a partly
compressible field. By letting γ → ∞ the advective case is recovered. In this limit
the Lyapunov exponent is given by

λ1τ = Ku2, (5.4)

or, allowing for compressibility, by

λ1τ = −2
1 + 3β2

1 + β2
(1 − Γ) Ku2 = 2

Γ − 1

Γ + 1
Ku2. (5.5)

For the derivation of these formulae, see appendix B.1.
In the incompressible case the dynamics must be area preserving. From the dis-

cussion above, this translates to λ1 + λ2 = 0 ⇔ λ2 = −λ1. The second Lyapunov
exponent for compressible fields is not studied in this thesis.

For a thorough review of the Lyapunov exponents and other statistical properties
of turbulent fluids see [17].

5.2 Method

The Lyapunov exponents are sought as dynamical averages over long time. The idea
behind this is that any typical trajectory will, given time, explore the entire phase
space [16]. Following equation (5.1) it is tempting to numerically estimate the first
Lyapunov exponent by

λ1 = lim
n→∞

1

ndt
ln

|drn|
|dr0|

, (5.6)

where drn ≡ dr(ndt) and dr0 is ideally infinitesimal. As is hinted by the d in the dr of
equation (5.1), however, the Lyapunov exponent is descriptive of the local behaviour
of trajectories. Estimating it by observing a single trajectory’s separation from it’s
initial coordinates as t → ∞ is therefore not an appropriate method, though for
particularly well behaved systems it is plausible. More reliable and computationally
efficient methods, capturing more explicitly the local properties of the Lyapunov
exponents, can be devised by noting that

ln
|drn|
|dr0|

= ln
n−1
∏

l=0

|drl+1|
|drl|

=
n−1
∑

l=0

ln
|drl+1|
|drl|

=
n−1
∑

l=0

ln |Jl|. (5.7)

Here |Jl| ≡ |J(drl)| is the determinant of the Jacobi matrix Jl, evaluated at drl. This
describes the mapping between consecutive points in phase space by the discretised
dynamics [16]. For the advective dynamics of equation (3.5) this is

J(r) =

[

∂xn
xn+1 ∂yn

xn+1

∂xn
yn+1 ∂yn

yn+1

]

=

1
2×2

+ dt

([

∂xyψ ∂yyψ
∂xxψ −∂xyψ

]

+ β

[

∂xxϕ ∂xyϕ
∂xyϕ ∂yyϕ

])

/
√

1 + β2, (5.8)
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and for the dynamics with inertia, described by equation (3.4), it is

J̃(r,p) =

[

∂rn
rn+1 ∂pn

rn+1

∂rn
pn+1 ∂pn

pn+1

]

=







1
2×2

m−1 1
2×2

mγ

(

J(r) − 1
2×2

)

−γdt 1
2×2






. (5.9)

Here 1
m×m

denotes the identity matrix of dimension n.

The next step is to compute the QR-factorisation of the matrix product of all n
Ji. Letting this product be denoted by J(n), this means splitting J(n) into a matrix
Qn and an upper-triangular matrix R, such that QnR = J(n). Following [18], let
Q0 = 1

m×m
. The factorisation can then be performed in steps, so that

J(n) = Jn−1Jn−2 . . .J1J0 =

n−1
∏

l=0

Jl =

(

n−1
∏

l=1

Jl

)

J0Q0 =

(

n−1
∏

l=2

Jl

)

(J1Q1)R1 =

(

n−1
∏

l=3

Jl

)

(J2Q2)(R2R1) = ... = Qn

(

n
∏

l=1

Rl

)

= QnR. (5.10)

The QR-factorisation JlQl = Ql+1Rl+1 is computed on the fly in each time step.
The diagonal elements of R are the products of the corresponding diagonal elements
of the Ri matrices, owing to their upper-triangular form. Now, assuming that the
initial separation dr0 → 0, the approximate Lyapunov exponents are extracted from
R in the manner of equation (5.11) [18].

λi ≈
1

ndt
ln |R[i, i]| =

1

ndt

n
∑

l=1

ln |Rl[i, i]| (5.11)

The diagonal elements of R can grow very large. Therefore, in order to avoid
rounding errors [14], computing the sum in equation (5.11) is numerically sounder
than estimating the exponents directly from R.

The method employed for the QR factorisation was Gram-Schmidt orthogonali-
sation. It was chosen mainly because it is simple to implement. As discussed in [18],
this may not be the best choice of method. This is because, despite being up to par
with other methods in computational efficiency, it can exhibit numerical instability.
Since the results (see section 5.3) agree very well with theoretical predictions, however,
this instability cannot have had a significant impact on the simulations. Nonetheless,
this is a factor worth keeping in mind if designing a Lyapunov exponent calculator,
since such numerical errors are notoriously hard to debug.

For details on the Gram-Schmidt recipe for QR-factorisation, and for examples of
other methods, see e.g. [14].

5.3 Results

The Lyapunov exponents λ1 and λ2 were calculated using the program. The results,
showing the dependence of λ1 on Ku, are presented in figures 5.1–5.2 for various
degrees of compressibility.

Even though the first Lyapunov exponent λ1 > 1 for flows dominated by the
solenoidal component, as seen in figures 5.1(a)–5.1(c), clustering is still observed when
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a compressible component is present. This is evident in figure 7.1(a), and implies that
λ1 + λ2 < 0 due to shearing forces in the fluid. No such clustering is seen in flows
lacking a compressible component.

When Γ < 1 the compressible component of the velocity field dominates. Just as
expected, Γ = 1 is the limiting case where λ1 changes sign, as can be observed in
figures 5.1(d)–5.2(c).

The area preservation property of the incompressible field lends itself as a tool for
assessing, qualitatively, the numerical stability of the program. In figure 5.3(a) the
computed value of λ1 +λ2 is shown as a function of Ku for an incompressible velocity
field. As can be seen , the deviation from theory is small compared to the values of
λi. At worst, the deviation and the exponents are still separated by two orders of
magnitude. This indicates an acceptable stability, even away from the limit of small
Ku, which is of primary interest. Since Euler’s method is only first-order accurate,
the global error is expected to be proportional to dt [14]. By fitting a polynomial to
the data, however, the deviation from theory is observed to have a definite quadratic
dependence on the time step dt, which suggests a better stability than the expected.
This behaviour can be seen in in figure 5.3(b). Fore more on the accuracy and stability
of Euler’s method, see [14].
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(a) Γ = 3, purely solenoidal field
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(d) Γ ≈ 0.63

Figure 5.1: Logarithmic plots of the Lyapunov exponent λ1 showing the deviation
from theory (—) as Ku increases, with η = 0.1 and τ = 4 · 10−3 fixed. Each data
point (•) is an average of 100 runs up to t = 125000 τ , with dt = 5 · 10−5. Error bars
show a confidence interval of two standard deviations. A dashed line indicates that
the error bar extends below the x-axis, and therefore cannot be shown in a logarithmic
plot.
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(c) Γ = 1.0, theory predicts λ1 = 0

Figure 5.2: Logarithmic plots of the Lyapunov exponent λ1 showing the deviation
from theory (—) as Ku increases, with η = 0.1 and τ = 4 · 10−3 fixed. Each data
point (•) is an average of 100 runs up to t = 125000 τ , with dt = 5 · 10−5. Error bars
show a confidence interval of two standard deviations. A dashed line indicates that
the error bar extends below the x-axis, and therefore cannot be shown in a logarithmic
plot.
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(a) Comparison of −(λ1 + λ2)τ (4) and the
respective values of λ1τ (©) and −λ2τ (×), as
functions of Ku with η = 0.1 and τ = 4 · 10−3

fixed. Theoretical estimate |λi|τ = Ku2 (—)
included for comparison. Each data point is an
average of 100 runs up to t = 125000 τ with
dt = 5 · 10−5.
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(b) The sum λ1 + λ2 in the limit of large Ku
(u0 = 51.2, η = 0.1, τ = 4 · 10−3 → Ku =
2.048) for different values of dt. Data (•) is
compared to a curve fit y = Ax2 (- - -). Each
data point is an average of 200 runs up to t =
125000 τ .

Figure 5.3: Logarithmic plots of the sum of the Lyapunov exponents for Γ = 3, a
purely solenoidal field. Theory predicts that the sum λ1 + λ2 = 0 in the solenoidal
limit. Error bars show a confidence interval of two standard deviations. A dashed
line indicates that the error bar extends below the x-axis, and therefore cannot be
shown in a logarithmic plot.
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Collisions

6.1 Preliminaries

Simulations were performed in order to study the time dependence of the collision
frequency R(t). This collision rate was defined as the accumulated number of collisions
at time t divided by t. Due to time constraints, the simulations were restricted to
advection in incompressible flows. Both pairwise collisions and collisions with a test
particle have been studied and compared to theory, as well as to a previous numerical
study in [7].

6.2 Predictions

Collision frequency for the short time transient, which was first studied by Saffman
and Turner [9], as well as for the long time steady state, were presented in [7]. They
are presented in equations (6.1) and (6.2) respectively. The expressions are valid
for collisions with a test particle. For pairwise collisions, the density of pairs is the
relevant quantity, not the number density. The total number of possible pairs that

can be formed from n0 particles is n0(n0−1)
2 . Consequently, the equations should be

multiplied with (n0 − 1)/2 when applied to pairwise collisions.

R0 =
8
√
π√

Γ + 1

n0a
2u0

η
= {Γ = 3} = 4

√
π
n0a

2u0

η
(6.1)

R∞ = 4π
Γ − 1

Γ + 1
Kun0u0

(

2a

η

)D2

=

{

D2 = Γ − 1,
Γ = 3

}

= 8π
Kun0u0a

2

η
(6.2)

6.3 Practice

The results of the simulations comply with both theoretical predictions and the results
presented in [7].

Acquiring reliable data for short times required considerably more runs than for
longer times. It was also necessary to use a shorter time step for the initial transient,
in order to avoid numerical artefacts. Therefore dt was divided by ten for t < τ .
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When checking pairwise collision frequencies, the radius proved another obstacle.
It was found that using too large a radius gave extremely unreliable short time statis-
tics. This was solved by using a radius one tenth of that specified for collisions with
a test particle when checking pairwise collisions.
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(a) Collision rate over time for collisions with a
test particle, with a = 0.003. Error bars show
a confidence interval of one standard deviation.
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(b) Collision rate over time for pairwise col-
lisions, with a = 0.0003. Error bars show a
confidence interval of two standard deviations.

Figure 6.1: Logarithmic plots of collision frequencies for particles moving in an in-
compressible flow (Γ = 3), under advective dynamics (St = 0). For both simulations
u0 = 1.0, η = 0.1 and τ = 4 · 10−3 ⇒ Ku = 0.04. Short time theory (- - -) from equa-
tion (6.1) and long time theory (· · · ) from equation (6.2). For 6.1(b), both equations
have been multiplied by (n0 − 1)/2 (see section 6.2).
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Discussion

7.1 Lyapunov exponents

As seen in figures 5.1–5.2, the data produced by the program shows a good corre-
spondence with the theory derived in [4] for the advective case, and presented here
as equations (5.4)–(5.5). The deviation from theory is more appreciable for velocity
fields with Γ > 1, meaning that the solenoidal component dominates. The deviation
becomes significant for Ku & 0.1. A deviation is expected as Kubo increases, since
the theoretical prediction is derived for small Ku. From figure 5.3, along with the
discussion in sections 5.3 and 7.4, it can be surmised that the deviation observed is
the true deviation, and not a numerical artefact.

7.2 Collisions

The collision frequencies measured by the program are consistent with those of pre-
vious studies, and the results are in accord with theoretical estimates for both the
short and the long time limit [7], as can be seen in figure 6.1. For the parameter
values used, the short time theory, equation (6.1), is valid for t . τ . The transition to
a steady state, in agreement with the long time theory of equation (6.2), is completed
for t & 1000 τ .

7.3 Clustering

Two instances of clustering are seen in figure 7.1. Figure 7.1(a) shows clustering
in the advective limit, due to a compressible component in the background field.
Figure 7.1(b), on the other hand, shows clustering away from the advective limit.
Here the flow is purely solenoidal, and the clustering is instead due to finite damping.

The Stokes number for the simulation portrayed in figure 7.1(b) is as high as
St = 100, meaning that the damping is slight. This agrees with the position held
in [4], that the centrifuge mechanism of [3] cannot fully account the clustering, as the
regime where that explanation is valid is supposedly St ∼ 1.

Though the snapshots in figure 7.1 are similar, they have quantitative differences.
One of the more apparent dissimilarities is that, in the advective limit (figure 7.1(a)),

25
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(a) Clustering of advected particles due to the
compressibility of the flow.
Γ = 2.08, γ = ∞ ⇒ St = 0

(b) Clustering of particles in an incompressible
flow, due to particle inertia.
Γ = 3, γ = 2.5 ⇒ St = 100.0

Figure 7.1: Particles suspended in different flows. Similar clustering of particles occurs
in all cases, despite very different contexts. Parameter values in common for the two
plots are τ = 0.04, η = 0.1 and u0 = 1.0 ⇒ Ku = 0.04. Snapshots are from simulation
time t = 10000τ , with time step dt = 4 · 10−4.

the lines, onto which the particles cluster, do not cross. This is not the case when the
inertial dynamics are at work. The reason behind this is that, in the advective limit,
a particle’s velocity is determined solely by its position in the velocity field. Therefore
the future time evolution of the particle trajectories must be uniquely specified by the
coordinates the particles are at. If trajectories crossed, they would have to merge, or
else the velocity would be ambiguous at their point of intersection. Trajectories can,
however, intersect at points where the velocity u = 0 [5]. Away from the advective
limit each particle also has two independent coordinates in momentum-space1, which
are relevant for determining the velocity. Figure 7.1(b) shows only a projection of
the particles onto physical space, and the projected trajectories can cross without
ambiguity.

7.4 The time step

As discussed in section 5, in the case of advection in an incompressible medium, there
is no mechanism bringing particles of negligible inertia together. Still, when looking
at the quantity λ1 + λ2, this can appear not to hold for the simulations. The sum
of the two first Lyapunov exponents quantifies what becomes of the area of an small
fluid element over time. As seen in figure 5.3 λ1 + λ2 < 0, implying that shearing
forces in the fluid causes the area to shrink, and consequently particles to cluster.
It is easily verified, by varying the time step dt, that this phenomenon is due to the
imperfect Euler integration.

If deliberately choosing much too large a time step, patterns strikingly similar to
those shown in figure 7.1 can be observed. Analysing how a numerical error can give
results so similar to what is indeed expected and observed for other parameters, can

1In the advective limit, the coordinates in momentum-space are uniquely determined by the
coordinates in ordinary space.
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give valuable insights into how future errors can be avoided.

One explanation for these artefacts is that the integration introduces ‘inertia–like’
effects. When the background velocity field changes direction too quickly, the finite
step size of the Euler integration causes the integrated trajectory to overshoot its
target, and spiral out from its true path. Particles thus tend to diverge from areas of
high vorticity quicker than they ought to. This is similar to the centrifugal mechanism
for particles with inertia, suggested by Maxey in [3].

The quantity to keep in check here is the average distance a particle travels each
time step, namely u0dt. Combining this with the η, the defining length scale in the
system2, gives the dimensionless ratio u0dt

η , which resembles the Kubo number (see

table 3.2). If this is large, particles will tend skip across the velocity field. Like stones
skipping on a water surface, they interact with the bakcground only at distinctly
separated points in space. In a sense, the finer details of the field are missed, due
to sampling it at too large intervals. This is reminiscent of the sampling theorem of
Fourier analysis [19]. Applying this theorem to the system would imply choosing dt
so that u0dt

η ≤ 1
2 , but this was concluded not to guarantee the absence of numerical

artefacts. A more sensible advice is quite simply u0dt
η � 1.

Even though the artefacts cannot be removed completely, the knowledge of their
nature can be used to get a qualitative measure of the validity of the simulations. If
it is observed that |λ1 +λ2| � |λi| does not hold, then the time step is not sufficiently
small. Such a comparison is presented in figure 5.3(a). There it can be seen that the
error, even at its worst, is several orders of magnitude smaller than the Lyapunov
exponents. Furthermore, as seen in figure 5.3(b), this error is quadratic in dt. This
knowledge may be of use when considering which time step to choose.

The natural solution for keeping this faulty integration in check is decreasing the
time step. Since this unavoidably leads to an increase in computational intensity, a
more attractive idea is the use of an adaptive time step, dependent on the current local
magnitude of u. Since the velocity field changes randomly over time, however, having
different time steps for different particles in the ensemble would be impractical, unless
the time evolution was calculated in advance. Instead, not recalculating u every time
step, for particles in tranquil regions of the velocity field, might be a plausible way of
saving resources.

7.5 Improvements

A way of saving computations, based on the properties (3.8) of the Fourier coefficients
of the field, is suggested in [12]. There the symmetry a∗k = a−k is utilised in order to
skip calculating the imaginary part of ak entirely. This effectively cuts the number
of Gaussian deviates to be drawn in half. Because the construction of such deviates
is a costly procedure, this could ostensibly improve the run time a lot if implemented
correctly.

An increased the computational efficiency of the integration could also be achieved
by implemented some sort of adaptive time step. It is argued above that a relevant

quantity to keep in check, in this context, is the ratio u(r(t))dt
η , evaluated at the

location of the individual particles. If this is too large, the finer structure of the
flow is not captured. On the other hand, if this is small, there may be leeway for
time saving schemes. In sufficiently still areas of the flow, it may not be necessary to

2Another possible choice of length would be the system size L, but having u0dt in the order of L
is wholly implausible.
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recalculate the u(r) every time step for all particles. When designing the adaptive
algorithm, the data indicating how the error depends on the time step, presented in
figure 5.3(b), may be of use. Other principles for choosing the time step are discussed
in [14].

In order to increase the numerical stability of longer simulations, it may be worth-
while implementing a more stable integration algorithm than Euler’s forward method,
as well as a more physically plausible collision routine. For more on the stability and
accuracy of Euler’s method, and of other numerical methods, see e.g. [14].

When calculating Lyapunov exponents, a method other than Gram-Schmidt ortho-
gonalisation should ideally be used, since that is not numerically stable [18]. It need,
however, only be modified slightly to achieve a boost in numerical stability, as de-
scribed in [14], wherein there are also several examples of how to implement other
algorithms for finding the QR-factorisation.
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Conclusions

A stochastic model of turbulence was implemented and used to perform simulations of
particle dynamics. Both advected particles, and particles with inertia were considered,
as well as both incompressible and partly compressible flow.

In order to asses the behaviour of the dynamics quantitatively, the Lyapunov
exponents were studied. These were estimated from the simulated advective dynamics
for different degrees of compressibility. The results were shown to be in agreement
with theory valid for the limit of small Ku. The deviation from theory was observed
to be more pronounced for fields where the solenoidal component dominates the flow,
but was found to be slight for Ku . 1 regardless of compressibility.

Collision rates for particles advected in incompressible flow were computed. The
results agree very well with previous numerical studies, as well as with theoretical
estimates for the initial transient and the long time steady state. The transient
theory was found to be valid for times t . τ . Steady state was reached at about
t ≈ 1000τ .

Clustering of particles was demonstrated to occur as a result of compressibility
in the field, as well as of particle inertia. The two phenomena were studied sepa-
rately. Inertia-induced clustering was observed in the regime of small damping, which
strengthens the position that the centrifugal mechanism presented in [3] cannot fully
explain observations. A comparison of the contribution from this mechanism and
from the fractal clustering presented in [4] remains to be done.
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A
Program documentation

For the programs used in this thesis three function libraries have been implemented.
Below is a documentation of the data types and functions contained in each of them,
as well as a brief example of how they can be implemented. For more on the imple-
mentation see section 4.

A.1 The Simulation library

The Simulation library is a library containing functions for simulating particles moving
in stochastic, time correlated flows, as discussed in this thesis.

A.1.1 Data types

struct particle;

The contents of struct particle are presented in table A.1. For technical reasons
the value of DIM is by default defined to 3 in simulation.h and need not be changed.

Table A.1: Contents of struct particle

name: type: description:
pos double[] array of size DIM for storing particle position
momentum double[] array of size DIM for storing particle momentum
u double[] array of size DIM for storing the velocity field at the

particle’s position
radius double particle radius
mass double particle mass
chi int collision parameter, set to 0 after collision
Box box * pointer to the box keeping the particle when check-

ing collisions (see section A.2)
next particle * pointer to next particle in the same box, NULL for

last particle in list (see section A.2)
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struct simulation;

The contents of struct simulation are presented in table A.2.

other types

Aside from the more complicated structures, the library also defines the enumerated
type boolean with values false (= 0) and true (= 1) and the structure complex

which contains two doubles Re and Im.

A.1.2 Functions

Below are descriptions of the functions available in the Simulation library. They are
presented with their function prototype and brief note on their use. The functions
use pointers to objects of types particle and simulation. Hence, a reference in the
text to e.g. a “variable beta in S” should be understood as meaning “variable beta

in simulation pointed to by S”.

void init sim(int n0, int k max, simulation *S);

Sets parameters n0 and k max in S and then allocates space for ak, ak phi and PsiC

according to values of k max, beta and dim. If 0.0 < β < 10000.0 Fourier coefficients
ak and ak phi are both initialised. For β = 0.0 memory is prepared only for ak, and
for β ≥ 10000.0 only for ak phi. All three arrays are of size (2kmax + 1)dim.

void reset particle(particle *P, simulation S);

Radius of P is set and then a position is drawn randomly from a uniform distribution
in a box with width and dimension specified by S. Initial momentum is set to 0.0 and
collision parameter χ is set to 1. Pointers Box and next (see section A.2) are both
initialised to NULL.

void reset particles(simulation *S);

Calls reset particle() for each of the n0 particles in S.

particle *init particles(simulation *S);

Reads parameters from S and then allocates memory for n0 objects of type particle.
Calls reset particles() to set initial values or all particles. Function returns pointer
to the initialised array.

void free sim(simulation *S);

Frees space occupied by simulation pointed to by S.

void free particle(particle *P);

Frees space occupied by particle pointed at by P.

void new ak(simulation *S);

Fills ak and/or ak phi (see init sim above) in S with Gaussian random numbers
with the properties presented in (3.8). This function uses the NRrand library.
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Table A.2: Contents of struct simulation

name: type: description:
L double width of system
radius double radius of particles
mass double mass of particles
eta double correlation length for velocity field
tau double correlation time for velocity field
u0 double mean velocity of velocity field
dt double time step
t max double maximum simulation time
beta double parameter for setting compressibility (details in sec-

tion 3.4.2)
gamma double damping constant (details in equation (3.4))
t double current simulation time
A double constant coefficient for velocity field
Ku double Kubo number (see table 3.2)
St double Stokes number (see table 3.2)
Gamma double measure of compressibility (see section 3.4.2)
PsiC double ** array of size (2kmax +1)dim for storing k-dependent

coefficients of velocity field
ak complex ** array of size (2kmax + 1)dim for storing Fourier co-

efficients for ψ
ak phi complex ** array of size (2kmax + 1)dim for storing Fourier co-

efficients for ϕ
n0 int number of particles initially
dim int number of spatial dimensions considered
n int for storing number of particles at a given time
k max int When calculating Ψ and Ψ only Fourier coefficients

with |k| ≤ (2π/L)kmax are included in the sum. It
is recommended to choose kmax ≥ 2L/η.

pairwise boolean set to true to check pairwise collisions
testparticle boolean set to true to check collisions with test particle at

the origin
timecorrelated boolean toggles time correlation in the velocity field
periodic boolean toggles periodic boundary conditions
intertial boolean toggles inertial dynamics (see equation (3.4) for de-

tails)
synthetic boolean toggles advection in synthetic field
P particle * points to the particle array containing the simu-

lated particles
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void update ak(simulation *S);

Subjects ak and/or ak phi (see init sim above) in S to an Ornstein-Uhlenbeck pro-
cess as described in section 3.4.3, which introduces a random drift with correlation
time tau, still keeping the properties of the distribution the same. This function uses
the NRrand library.

void make Psiconst(simulation *S);

Fills array PsiC in S with values calculated from settings stored in S. This function
has to be called before simulation starts, but only this once as long as the physical
parameters u0, L or η remain unchanged.

void get velocity(particle *P, simulation *S);

Calculates the velocity field u, described in section 3.4, at the position of P using
specifications from S.

void get velocities(simulation *S);

Goes through all n0 particles in S and calls get velocity() for each particle with
χ = 1.

void move particle(particle *P, simulation *S);

Moves particle P using Euler integration, equation (4.1). Depending on the value of
inertial in S, either inertial (equation (3.4)) or advective dynamics (equation (3.5))
are used.

void move particles(simulation *S);

Goes through all n0 particles in S and calls move particle() for each particle with
χ = 1.

void print sim(FILE *target, simulation *S);

Prints simulation parameters stored in S to the file specified by stream target. Data
is stored in a format designed to be interpretable by Matlab.

void args from file(FILE *settings, simulation *S);

Reads simulation parameters from the file specified in stream settings into simulation
S. Settings file has to follow the specifications detailed in section A.1.3.

A.1.3 Standard settings file

The format for settings files is presented below. The values are taken from the file
defaultsettings.set which should be included with the library. When making a
new settings file, care must be taken not to change the order of the arguments or add
extra spaces. Settings are read starting on the first line, and consequently comments
should be restricted to below the last argument. Even if comments are left out, please
note the line break after the last argument.
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L = 1.0;

radius = 0.003;

mass = 1.0;

eta = 0.1;

tau = 0.004;

u0 = 1.0;

dt = 0.0004;

t = 0.0;

t_max = 4.0;

beta = 0.0;

gamma = 1.0;

n0 = 100;

dim = 1;

pairwise = 0;

testparticle = 0;

timecorrelated = 1;

periodic = 1;

inertial = 0;

synthetic = 0;

% Simulation settings. Do not remove or change order of arguments.

% No extra spaces. Remember line break after last argument.

% Restrict comments to below last argument.

A.2 The MPC library

The MPC1 library contains functions for checking collisions between particles, and
for sorting the particles into boxes depending on their spatial coordinates.

A.2.1 Data types

struct box;

The contents of struct box are presented in table A.3.

Table A.3: Contents of struct box

name: type: description:
np int number of particles currently in box
N int box array is of size Ndim, should be chosen so that

Ndim ≈ n0

I, J int coordinates of box in box array, 0 ≤ I, J < N

residents particle * pointer to first particle in a linked list of particles
currently in the box, NULL for empty boxes

1Macroscopic Particle Collider
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A.2.2 Functions

box **init boxes(int N, simulation *S);

Allocates memory for a box array of size Ndim and sets internal parameters of each
element to appropriate values. Initialises np to 0 and residents to NULL. Returns a
pointer to the initialised box array.

void box it(box *Box, particle *P);

Inserts P as top element of the linked list of residing particles by letting next in P point
to current top element, and then letting residents in Box point to P. Increments np
in Box.

void box them(box **Boxes, simulation *S);

Goes through all n0 particles in S and calls box it() for each particle with χ = 1,
after having calculated which box it should belong to based on size of array Boxes

and parameters in S.

void empty box(box *Box);

Empties Box by setting np = 0 and residents = NULL.

void empty boxes(box **Boxes, simulation *S);

Calls empty box() for all Ndim boxes in array Boxes.

int collide it(particle *P, box *Box, simulation *S);

Checks collisions between P and the particles with χ = 1 in Box. Unless P is contained
in Box collisions are checked against all residing particles. If P is a resident, however,
collisions are only checked with consecutive members in the linked list of residents.
Returns number of collisions.

int collide box(box *Box, box **Boxes, simulation *S);

Calls collide it() for all particles with χ = 1 in Box, checking collisions against
members of Box and the neighbouring boxes in array Boxes. Note that only three out
of eight (one quadrant) neighbouring boxes are checked. This is to avoid duplicate
checks when traversing the Boxes array in collide them(). Returns number of
collisions.

int collide testparticle(box **Boxes, simulation *S);

Checks boxes surrounding a test particle (index 0 in particle array) for particles
colliding with it. Returns number of collisions.

int collide them(box **Boxes, simulation *S);

Depending on the settings specified in S this functions checks all boxes in array Boxes

for collisions and/or checks collisions with a test particle by calling collide box()

and collide testparticle() respectively. Returns number of collisions.
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int remove overlaps(box **Boxes, simulation *S);

Used before starting a new simulation to make sure that no particles overlap in the
initial time step. In particle pairs overlapping one particle is assigned a new random
position and the check is restarted. Returns number of restarts.

A.3 The NRrand library

The NRand library contains functions for producing various types of random numbers.
The methods used are taken from Numerical Recipes [20].

A.3.1 Functions

Except for next Grand() all functions in this library are from [20] and were imple-
mented originally by Björn Andersson in [12].

float nextFloat(void);

Returns a floating point number in the range [0, 1[.

int nextInt(int upper limit);

Returns an integer number in the range [0, upper limit[.

float nextGauss(void);

Returns a Gaussian deviate created using the Box-Muller method. The resulting
number has mean µ = 0 and standard deviation σ = 1.

double next Grand(double mu, double sigma);

Gets Gaussian deviate from nextGauss and transforms it to give it mean µ = mu and
standard deviation σ = sigma. The resulting transformed deviate is returned.

long rand seed(long seed);

Seeds the random number generators above with rand seed. An appropriate seed is
time(NULL).

A.4 Example of implementation

The program below initialises a simulation and and array of particles based on
parameters from a settings-file called defaultsettings. The actual simulation con-
sists of moving the particles about in the velocity field, updating it each time step.
The program should be quite self explanatory. As in the program below, the first
time that functions from the NRrand library are used will probably be when calling
init particles(). Please remember seeding the random number generator before
this.

#include <stdio.h>

#include <time.h>

#include "NRrand.h"
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#include "simulation.h"

#include "mpc.h"

int main(void)

{

// It is more convenient to work with pointers

// to both _simulation_s and _particle_s:

simulation Sim, *S = &Sim;

particle *P;

box **Boxes;

char filename[] = "defaultsettings.set";

FILE *file;

int collisions = 0;

// Getting and setting settings:

if(!(file = fopen(filename, "rb"))) {

fprintf(stderr, "Could not read from file %s!\n", filename);

exit(-1);

};

args_from_file(file, S);

fclose(file);

S->k_max = (int)ceil(2.0*S->L/S->eta);

// Initialising simulation:

rand_seed(time(NULL));

init_sim(S->n0, S->k_max, S);

P = init_particles(P, S);

make_Psiconst(S);

Boxes = init_boxes((int)ceil(sqrt(S->n0)), S);

// Start simulation:

new_ak(S);

for(S->t = 0.0; S->t <= S->t_max; S->t += S->dt) {

get_velocities(S);

move_particles(S);

box_them(Boxes, S);

collisions = collide_them(Boxes, S);

empty_boxes(Boxes, S);

update_ak(S);

};

printf("Collisions: %d", collisions);

return 0;

}



B
Mathematical details

B.1 Lyapunov exponents

In [4] a theoretical estimate of the Lyapunov exponent, valid in the limit of small Ku,
is presented

λ1 = −γ(1 − Γ)ε2. (B.1)

Here ε2 = D1/(m
2γ3). The diffusion constant D1 is defined by

Di =
1

2

∫ ∞

−∞

dt〈Fi1(t)Fi1(0)〉, (B.2)

with Fij(t) = ∂fi

∂rj
and f = γmu. The results presented in equation (5.4) and the more

general (5.5), where a potential component of relative strength β has been included
in the velocity field (section 3.4.2), are derived below.

As a first step, the force is inserted into the expression (B.2) for D1. The time
dependent part is separated and evaluated, yielding

D1 =
1

2

∫ ∞

−∞

dt〈F11(t)F11(0)〉 =
m2γ2

2

∫ ∞

−∞

dt〈∂xux(t) ∂xux(0)〉 =

m2γ2

2
〈∂xux(0) ∂xux(0)〉

∫ ∞

−∞

dt e−|t|/τ = m2γ2τ〈∂xux(0) ∂xux(0)〉 (B.3)

When proceeding to calculate the correlation in B.3 above, no assumptions will be
made regarding where u is evaluated, except that it is at two points r1 and r2 such
that r = r1 − r2 is well defined. When evaluating D1, r = 0 is implied.

Inserting the definitions of the velocity field from section 3.4, the bracketed part
of (B.3) becomes
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〈∂xux(0) ∂xux(0)〉 =

1

1 + β2
〈(∂xyψ(r1) + β∂xxϕ(r1))(∂xyψ(r2) + β∂xxϕ(r2))〉 =

1

1 + β2

(

〈∂xyψ(r1) ∂xyψ(r2)〉 + β2〈∂xxϕ(r1) ∂xxϕ(r2)〉
)

(B.4)

In the last step the fact that ψ and ϕ are uncorrelated is used to kill off the mixed
terms. The terms can now be evaluated separately. Inserting the definition of ψ, and
the properties of the Fourier coefficients from section 3.4 yields

〈∂xyψ(r1) ∂xyψ(r2)〉 =
u2

0η
4π
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, (B.5)

where in replacing the sum with with an integral, multiplication with the density of

states in k-space is needed, hence the factor
(

L
2π

)2
.

The expression in (B.5) can be evaluated using a standard trick from mathematical
physics. The first step is solving the integral

I0(x) =

∫ ∞
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. (B.6)

The integral (B.5) can now be written in terms of derivatives of I0, obtaining



B.1 Lyapunov exponents 41

〈∂xyψ(r1) ∂xyψ(r2)〉 =
u2

0η
4

4π
(−∂xxI0(x)) (−∂yyI0(y)) =
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In the same way the second component of (B.4) can be calculated. This yields

〈∂xxϕ(r1) ∂xxϕ(r2)〉 =
u2
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Using the results above, and letting r = 0, the equation (B.3) becomes

D1 =
m2γ2τ

1 + β2

(

〈∂xyψ(r1) ∂xyψ(r2)〉 + β2〈∂xxϕ(r1) ∂xxϕ(r2)〉
)

=

m2γ2τ
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0

2η2

1 + 3β2

1 + β2
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2τ

u2
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Ku2 1 + 3β2

1 + β2
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Γ =
β2 + 3

3β2 + 1
⇔ β2 =

3 − Γ

3Γ − 1

}

=
2

τ

m2γ2Ku2

Γ + 1
(B.9)

Finally, inserting D1 in (B.1) produces the theoretical expression for the Lyapunov
exponent

λ1 = −γ(1 − Γ)ε2 = (Γ − 1)
D1

m2γ2
=

2

τ

Γ − 1

Γ + 1
Ku2. (B.10)
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B.2 Answer

As a side result, it has been confirmed that the answer [21] is indeed

42. (B.11)
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