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Abstract 

 
Sampling theories lie at the heart of signal processing devices and communication systems 

[1]. To accommodate high operating rates while retaining low computational cost, efficient 

analog-to digital (ADC) converters must be developed [1]. Many of limitations encountered 

in current converters are due to a traditional assumption that the sampling state needs to 

acquire the data at the Nyquist rate, corresponding to twice the signal bandwidth [1].  

In this thesis a method of sampling far below the Nyquist rate for sparse spectrum 

multiband signals is investigated. The method is called periodic non-uniform sampling, and 

it is useful in a variety of applications such as data converters, sensor array imaging and 

image compression.  

Firstly, a model for the sampling system in the frequency domain is prepared. It relates 

the Fourier transform of observed compressed samples with the unknown spectrum of the 

signal. Next, the reconstruction process based on the topic of compressed sensing is 

provided. We show that the sampling parameters play an important role on the average 

sample ratio and the quality of the reconstructed signal. The concept of condition number 

and its effect on the reconstructed signal in the presence of noise is introduced, and a 

feasible approach for choosing a sample pattern with a low condition number is given. We 

distinguish between the cases of known spectrum and unknown spectrum signals 

respectively. 

One of the model parameters is determined by the signal band locations that in case of 

unknown spectrum signals should be estimated from sampled data. Therefore, we applied 

both subspace methods and non-linear least square methods for estimation of this 

parameter. We also used the information theoretic criteria (Akaike and MDL) and the 

exponential fitting test techniques for model order selection in this case. 

In the area of spectrum sensing for cognitive radio, there is a tendency towards the 

wideband sensing. The main bottleneck for this desire is the requirement of a high sample 

rate ADC. Hence, we propose a model for the wideband spectrum sensing from non-

uniform samples that are taken by a low rate non-uniform ADC. Depend on the application, 

the wideband of interest is divided into a finite number of channels and the presence of a 

primary user in each channel is examined. We show how to design and specify the model 

parameters. Also we evaluate our model performance by computing the detection 

probability in terms of the SNR and compression ratio.  
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1. Background and Theory 

 

1.1 Introduction 

Reception and reconstruction of analog signals are performed in a wide variety of 

applications, including wireless communication systems, spectrum management 

applications, radar systems, medical imaging systems and many others. In many of these 

applications, an information-carrying analog signal is sampled, i.e., converted into digital 

samples. The information is then reconstructed by processing the digital samples [35]. 

 The classical sampling theorem states that a real low-pass signal, band limited to the 

range (-fmax, +fmax) can be reconstructed from its uniform samples, provided the sampling 

rate satisfies the Nyquist rate that is fnyq=2fmax.  

While the uniform sampling theorem is suitable for low-pass signals and an efficient 

sampling with minimum rate is attained, it seems quite inefficient in case of signals with 

multiple bands with sparse spectrum [3]. These signals do not occupy the whole frequency 

band and uniform sampling can become very redundant [4]. This comes from the fact that 

multiband signals have some gaps between each band that tempts one to work with a rate 

lower than Nyquist rate [3]. Following this vision, a clever way of sampling the signal that 

is called “multicoset sampling” or “periodic non-uniform sampling” is used at a rate lower 

than the Nyquist rate, that captures enough information to enable perfect reconstruction. 

This project studies the periodic non-uniform sampling and reconstruction of multiband 

sparse spectrum signals. The outline of the article is as follows: first the signal model and 

some of the definitions are described. Then the Non-uniform sampling method is 

introduced and the reconstruction model is expressed. In Section II, the discussion focuses 

on the known spectrum signals to find the suitable parameters and their effect on the 

reconstruction of the signal. Section III covers the spectral recovery of unknown spectrum 

signals. In Section IV we used the idea of non-uniform sampling in the spectrum sensing of 

cognitive radio systems. The last part is the summary and conclusions.  

 

1.2 Signal Model and Definitions 

Let В(F) denote the class of continuous complex-valued signals of finite energy, 

bandlimited to a subset F of the real line (consisting of a finite union of bounded intervals) 

[5][3]: 

                                  
                                              (1.1) 

where  

          

 

   

 

                                                            (1.2)  
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the subset F   [0, fmax] is called the spectral support of signal, and 

                        

 

  

 

                                            (1.3) 

is the Fourier transform of     . 

To quantify the sampling efficiency for signals with a given spectral support F, we define 

the spectral occupancy as  

 

  
    

    
                        

   

                    (1.4)  

where fmax is the highest frequency and λ (.) denotes the Lebesgue measure [3]. The 

Lebesgue measure is the standard way of assigning a length, area or volume to subsets of 

Euclidean space [6]. The Lebesgue measure for the set F defined in (1.2) is 

             

 

   

 

                                          (1.5) 

The Nyquist rate for signals with spectral support F is defined as the smallest uniform 

sampling rate that guarantees no aliasing [3]  

                                   

              (1.6) 

where  

              
    

(1.7) 

is the translation of the set F by θ. Then, the Nyquist sampling rate satisfies 

                     

                                              (1.8) 

We say that F is packable if            , and nonpackable otherwise             . The 

general case of interest is when the signal is totally nonpackable, that is           [3]. 

Landau [7] showed that the sampling rate of an arbitrary sampling scheme for the class of 

multiband signals with spectral support F is lower-bounded by the quantity λ(F), which 

may be significantly smaller than the Nyquist rate. Thus the spectral occupancy is a 

measure of the efficiency of Landau’s lower bound over the Nyquist rate. Because Ω can be 

low for certain nonpackable signals, uniform sampling is highly inefficient for such signals.  

Fig. 1.1 illustrates a typical case of such a nonpackable multiband signal. The spectral 

support is F={[0.5,2],[4,5],[8,8.5]},the Nyquist rate for this signal is fnyq=fmax=12 (hence it 

is totally nonpackable), whereas the Landau lower bound from (1.5) is  

λ(F)=(2-0.5)+(5-4)+(8.5-8)=1.5+1+.5=3 . 

http://en.wikipedia.org/wiki/Length
http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Euclidean_space
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The spectral occupancy from (1.4) for this signal, Ω=3/12=0.25, suggests that it might be 

possible to sample the signal four times as efficiently as the Nyquist rate [3]. 

 

 

Fig.1.1: Spectrum of a multiband signal, with fmax=12, N=3, F={[0.5,2],[4,5],[8,8.5]} 

 

1.3 Non-uniform sampling 

Uniform sampling is not well suited for nonpackable signals. However, it turns out that 

there is a clever way of sampling the signal x(t) called “multi-coset sampling” or “periodic 

non-uniform sampling” at a rate lower than the Nyquist rate, that captures enough 

information to recover x(t) exactly [3].   

Let x(t)   B(F). In multi-coset sampling, we first pick a suitable sampling period T (such 

that uniform sampling at rate 1/T causes no aliasing), and a suitable integer L > 0, and then 

sample the input signal x(t) non-uniformly at the instants                for            

          and    , (Fig.1.2). The set      contains p distinct integers chosen from set                   

             .  
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Fig.1.2: Multi-coset sampling operation 

This process of sampling can be viewed as first sampling the signal at the “base sampling 

rate” of 1/T, and then discarding all but p samples in every block of L samples periodically. 

The samples that are retained in each block are specified by the set      [3].  

For a given ci, the coset of sampling instants                       is uniform with            

inter-sample spacing equal to LT. We call this the i-th active coset. The set C={ci} is 

referred to as the (L,p) sampling pattern and the integer L as the period of pattern where 

[3],[8] 

                            

                                             (1.9) 

Fig.1.3 shows two mulicoset sampling patterns corresponding to parameters (L,p)=(20,5). 

In the Fig 1.3(a), when n=0 the first block of samples at times ti(0)={0,4,7,12,16}, and 

when n=1 the the second block of samples of times ti(1)={20,24,27,32,36} are kept. The 

corresponding sampling times for Fig 1.3(b) are ti(0)={2,6,11,15,18}and 

ti(1)={22,26,31,35,38} respectively. 

 
Fig.1.3: Two different sampling patterns for (L,p)=(20,5), (a) C={0,4,7,12,16}.(b) 

C={2,6,11,15,18}. 
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One possible implementation of the Non-uniform ADC is illustrated in Fig.1.4. It is   

composed of p parallel ADCs, each working uniformly with a period of Ts=LT and a 

sampling time offset by {ciT}. The clock generator block takes the input sample clock Ts 

and provides the required p sample clocks for each ADC according to the sampling pattern 

such that 

                           
  

 
      

  

 
               

                                                                                                                                   (1.10) 
The implementation follows the structure of interleaved ADC converters with the exception 

that in the interleaving converters, the ADCs are triggered sequentially. 

 
Fig.1.4: A parallel implementation of Non-uniform ADC and its clock timing 
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Define the i-th sampling sequence for 1 ≤ i ≤ p as [8] 

                                
                  

           
  

                                                                      (1.11) 

The sequence of xi[n] is obtained by up-sampling the output of the i-th ADC with a factor 

of L and shifting in time with ci samples. Fig.1.5 shows the sequences of x1[n], x2[n], x4[n], 

for the signal of Fig 1.2(b). 

 
Fig.1.5: The first, second and forth sampling sequences x1[n],x2[n],x4[n], with p=5 

 

Direct calculations link the known discrete-time Fourier transform     
        of xi[n] to 

the unknown Fourier transform X(f) of x(t) [8]: 

    
                         

  

    

 

 

 
 

  
      

  

 
        

 

  
 

   

 

                                                                     (1.12) 

which, using the fact that X(f)=0 for f   [0,fmax], gives us [3] 
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                                                      (1.13) 

for every          , and every f in the interval [8] 

      
 

  
   

                                           (1.14) 

Let us express (1.13) in matrix form as 

                             

                                              (1.15) 

where y(f) is a vector of length p whose i-th element is     
      ,  

        

 
 
 
 
    

      

    
      
 

    
       

 
 
 

              

and AC is a       matrix with  il-th element given by [5],[8]  

 

          
 

  
    

      

 
                 

                                                     (1.16) 

Note that AC is a sub-matrix of the complex conjugate of the     discrete Fourier 

Transform (DFT) matrix, consisting of the p rows indexed by the sampling pattern C [5]. 

According to (1.16) AC is given by 

     
 

 

  

 
 
 
 
 
 
   

     
    

          
 

  
     

    
          

 

     
     

  
     

    
          

  
 
 
 
 
 
 

 

                                           (1.17) 

and the vector      contains L unknowns as [5],[8]                       

        

 
 
 
 
 
 

    

    
 

  
 

 

    
   

  
  
 
 
 
 
 

              

   (1.18) 

 



8 
 

The relation (1.18) states that the unknown elements of vector       are created by first 

bandpass filtering of the original signal to the range 
 

  
      

   

   
  , and then frequency 

shifting to the left by 
 

  
  units [3]. In the other words, if the spectrum of signal, X(f) is 

sliced into L cells indexed from 0 to L-1, then each cell corresponds to the associated row 

of the vector           . Fig.1.6 illustrates the spectrum of a typical multiband signal 

that is sliced into L=5 cells indexed from 0 to 4, the third element of      that is indexed 

by 2 is highlighted in the figure.  Denoting the inverse Fourier transform of     
 

  
  by 

xr(t),it is evident from the above definition that  

                 
     

  
 

   

   

 

                                                   (1.19) 

 
Fig.1.6: Frequency representation of a 2-bands signal that is sliced into L=5 cells. The 

spectral index set is k={1,2,4} 

 

The problem of recovering x(t) is then equivalent to solving the linear system of equations 

(1.15) for every f   F0. This process is explained in the next section. 
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1.4 Reconstruction   

The goal of the reconstruction scheme is to perfectly recover x(t) from the set of sequences 

xi[n],      , or equivalently, to reconstruct      for every f   F0  from the input data 

y(f) [8]. The relation (1.15) states that for each f   F0, the vector y(f) has p known elements 

while the vector      has L unknown elements and as p < L, then the number of equations 

is less than the number of unknowns [5][8]. This is the case in the compressed sensing 

problem that we briefly review it below. 

Compressive sampling (CS) is a method for acquisition of sparse signals at rates 

significantly lower than Nyquist rate. Let the analog sparse signal x(t), be represented as a 

finite weighted sum of basis functions (e.g. Fourier)       as follows  

             

 

   

 

                                                 (1.20) 

where only a few  basis coefficients si are non-zero due to sparsity of x(t) [27].  

In a discrete time framework, N samples of x(t) in a     vector can be represented in 

matrix form as  

     

                                                                                                                                         (1.21) 
where   is the      representation basis matrix with ψ1,…, ψN as columns and s is an 

     vector with     non-zero entries si [28]. 

The samples of x(t) in a standard form are given by 

 

                               

                                                (1.22) 

where       is the sensing waveform. If the sensing waveforms are Dirac delta functions 

(spikes), for example, then y is a vector of sampled values of x in the time or space domain 

[28]. The measurement vector y can be written in matrix form as  

            

                                                   (1.23) 

where Φ is the     sensing basis matrix that is, in general, incoherent with  . An 

example construction of Φ is by choosing elements that are drawn independently from a 

random distribution, e.g., Gaussian or Bernoulli.  

 The reconstruction is achieved by solving the following l1-norm optimization problem 

  

         
 

                      

                                            (1.24) 

It follows that with the proposed multi-coset periodic sampling scheme, the sampling 

problem for continuous-time signals has been reduced, for each fixed f, to a CS problem for 

signals in    that are sparse in the DFT sense [5]. 



10 
 

Therefore by using the fact that some cells are free of energy, the number of unknowns 

can be reduced in (1.15). Fig.1.6 shows the spectrum of a multi-band signal where the cells 

indexed by 1, 2 and 4 contain nonzero parts of the spectrum and the cells with indices 0 and 

3 are free from energy. Hence, it is enough to solve (1.15) for only three unknowns rather 

than five.  The cells of signal that contains the nonzero part of spectrum are termed active 

cells. Denote the number of such active cells by       [5]. To reduce the order of equation 

(1.15) we need to know which cells those are active. The set k is defined as the spectral 

index set of the signal [8], and it indicates the cells that are nonzero, such that 

                             ,   

                                          (1.25) 

Define the reduced signal vector  

     

 
 
 
 
 
 
 
 
     

  

 
 

    
  

 
 

  
  
  

     
  

 
  
 
 
 
 
 
 
 
 

      

                                            (1.26) 

that contains only the q active cells indexed by the set k, and the reduced measurement 

matrix               is derived by choosing the columns of AC that are indexed by the 

spectral index k={k1,k2,…,kq}.  

         
 

  

 
 
 
 
 
 
  

       
  

       
    

       

 

 
       

  
        

    
       

 

     
     

 
       

  
       

    
       

  
 
 
 
 
 
 

 

                  (1.27) 

 Equation (1.15) then reduces to [5],[9] 

 

                             

                                              (1.28) 

If AC(k) has full column rank, the unique solution can be obtained using a left inverse,e.g. 

the pseudo-inverse of AC(k) that we simply denote by   
 

  [5],[9]: 

         
                    

                     (1.29) 
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After finding z(f), the time domain representation of each cell is achieved by taking inverse 

Fourier transform, and with proper combination according to (1.19) the signal, x(t) is 

reconstructed.  

A simple time domain solution for the recovery of x(t)  involves filtering of the sequences 

xi[n],i=1,…p to produce xhi[n] and linear combination of filtered sequences using   
 
 

producing x(nT) [5],[9]. The interpolation filter h[n] with cut off frequency at    
    

 
  

filters the sequence xi[n] that is upsampled with L as defined in (1.11), i.e. 

xhi[n]= h[n] * xi[n]   

                          (1.30) 

The reconstruction formula is then  

           
  
  

  
 

 

   

 

   

             
     

 
  

   (1.31) 

This is the Nyquist-rate sampled version of the desired continuous-time signal x(t), so that 

x(t) can be recovered by a standard D/A [9]. Fig.1.7 shows the reconstruction of x(t) from 

sequences xi[n]. All filters have the same low pass response, which is advantageous for 

implementation.  The coefficients are           
      

 
    

 
Fig.1.7: Reconstruction of uniformly sampled x[n] from the non-uniformly sampled xi[n] 

sequences 
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2. Known Spectral Support Signals 

If the band locations of the multiband signal are given as (1.2) we encounter with the 

known spectrum case. The spectral index set and the sampling parameters can be obtained 

by exploiting this prior information about the spectrum of signal. The process is described 

as follows: 

 

 2.1 Spectral index set k 

As previously mentioned the spectrum of the signal is divided into L cells with width of  
    

 
 and indexed from 0 to L-1. Therefore, each band of the signal located at [ai ,bi) as    

Fig. 2.1 shows can be overlapped by grouping of cells indexed by   

                   
    

    
        

    

    
               

                                                     (2.1) 

where    is floor function and ki is the set of indices for each band. After finding the set ki 

for all bands, the spectral index set is      

     

 

   

 

                                                 (2.2) 

The number of active cells is the cardinality or length of the spectral index set  

q=|k|                     (2.3) 

Example: The signal in Fig.1.6 has 2 bands, with spectral support of 

F={[1.2,2.2),[4.1,4.5)}, with L=5, fmax=5, the cells that are occupied by each band are 

respectively  

                       =>  1 ≤  k1 ≤ 2  =>  k1={1,2} 

                       =>  4 ≤  k2 ≤ 4  =>  k2={4} 

     
 
    {1,2,4} and q=3 

 
Fig: 2.1: The i-th band of the signal located at [ai,bi] occupies a group of cells determined by (2.1) 
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2.2   Sampling Parameters 

In the non-uniform sampling, the parameters T, L, p and C should be selected properly for a 

perfect and optimal reconstruction. The most useful criteria to choose these parameters are 

minimum sampling rate, minimum error and perfect reconstruction. In fact, it turns out that 

unless the sampling and reconstruction system is very carefully designed and optimized, the 

sensitivity to small errors can be so great that although perfect reconstruction is possible 

with perfect data, the signal is corrupted beyond recognition in most practical situations 

[11].We consider selecting these parameters in the following sections. 

 

2.2.1  Base Sampling time T: 

The base sampling rate T could be chosen equal to the Nyquist rate, i.e.,T=1/fnyq, but never 

lower. However, we choose  

  
 

    
 

                                          (2.4) 

because sampling at this rate always guarantees no aliasing for any F [11]. 

  

2.2.2   L and p: 

As we saw in Fig.1.4, the output of each ADC is periodic with the period of Ts=LT. This 

makes a lower bound for choosing L based on the capability of hardware and ADC 

sampling time such that 

   
    

 
 

                                           (2.5) 

In a Non-uniform sampling with (L,p) parameters, the average sampling rate when 

choosing T=1/fmax is [5] 

     
 

 
       

                                                       (2.6) 

Then, it is clear that a large L and small p is desired for a minimum sample rate close to 

Landau lower bound. The parameter p is selected with respect to the number of active cells 

q, such that p ≥ q to have enough known equations in (1.28). Therefore, choosing a large L 

introduces more active slots, and then it needs using higher p or equivalently higher number 

of ADCs and hardware according to Fig.1.4. Also, the computations for reconstruction 

depends directly on the dimensions of  y(f) and AC that grow with large L and p.    

While it seems that a large L results in a lower sample rate, this is not a general rule. As 

(2.1) and (2.2) show, the number of active cells depends on F, L and T. Hence, we may 

choose a larger L and still have the same or even higher sample rate. Comparing Fig.2.2 (a) 

and (b): in the first case L=5 and number of active cells is q=2, then     
 

 
 . By increasing 

to L=10, the number of active cells is q=4, then     
 

  
 

 

 
 .Thus, in this case increasing L 

and then p costs more in term of hardware and computation, but it gains no sampling rate 

reduction. 
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Therefore the parameters L and p in the known spectrum case could be optimized based on 

an intuitive consideration of computations, hardware capabilities and achieving minimum 

sampling rate with minimum value of L and p. Because small values of L may often suffice, 

and larger L increases the computation cost of the reconstruction of the signal, small to 

moderate values of L (e.g., in the tens to hundreds) are of interest [8]. When L is selected, q 

is obtained from (2.1)-(2.3) hence p ≥ q is selected. This condition also satisfies the Landau 

lower bound, that is         . 
 

 

Fig. 2.2: Active cells and minimum sample rate (a) L=5,     
 

 
    (b) L=10,     
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2.2.3  Sample pattern C 

The sample pattern is the selection of p out of L numbers from 0 to L-1 that should be 

chosen after fixing L and p. We will see that finding a good sample pattern can optimize the 

aliasing error bounds and sensitivity to noise in the reconstruction process.  

In the reconstruction part we saw that the pseudo-inverse of AC(k) exists if AC(k) is full 

column rank. Hence, a sample pattern C that yields a full column rank AC, also called 

universal [8], results in AC(k) full rank too. This is the first criterion for choosing the 

sample pattern C. 

Since in practice the left hand side of equation (1.28) will be perturbed owing to x(t) 

being imperfectly band-limited to F, and due to quantization errors or phase noise, the 

numerical stability or conditioning of AC(k) is a very important issue. Therefore, a 

sampling pattern that results in a well-conditioned AC(k) is highly desirable as the second 

criterion [9].  

A system of equations is considered to be well-conditioned if a small change in the 

coefficient matrix or a small change in the left hand side results in a small change in the 

solution vector [10]. This is achieved by choosing a coefficient matrix with low condition 

number. The condition number of matrix A is defined as  

                     

 
       

       
 

                                          (2.7) 

where || || is the norm operation and σmax and σmin are the maximum and minimum singular 

values respectively. An ideal sample pattern is defined to give the cond(AC(k))=1 among 

all patterns that are universal (at a fixed resolution L) for the target set of spectral supports 

[9].  However, depending on the spectral index set, k it is not possible to achieve condition 

number of one, then a pattern with the smallest cond(AC(k)) is desired. Such a sampling 

pattern can be found as the solution to the following minimization problem [9]: 

           
       

              

                                          (2.8) 

where the symbol |C| gives the cardinality or length of the set C. Solution of (2.8) by 

exhaustive search would require  
 
 
  evaluations of the condition of AC(k), which is 

feasible only for small values of  L and p. Invariance to circular shifts and mirroring 

(modulo L) of C and k can be used to reduce the search [5].  

For a typical case when L=16, p=5 and k={3,4,5,10,11} with  
  
 

       evaluations, 

the result in table I is achieved. The worst pattern has a huge condition that can explode the 

result. Also, a random pattern and a bunch pattern which contains p consecutive numbers 

such as C={0,1,…,p-1} are created to compare with maximum and minimum values . The 

value of the condition number for a random pattern shows a reasonably low condition 

number, and for the bunched pattern it is moderate, but they can influence the reconstructed 

signal depending on the noise level and error bounds.  
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The probability of generating a random pattern with a certain condition number is related to 

the distribution of the condition number that is discussed in [36]. The distribution of 

cond(AC(k)) for a typical case is shown in Fig.2.3. For example, the probability of taking a 

pattern with a condition less than 5 is in this case calculated to be 0.29. 

  

Table I: various sample patterns and their condition numbers, L=16,p=5 

Type cond(AC(k)) C 

Optimal pattern 2.06 {2     3     9    10    14} 

Worst pattern 8.35e+16 {1     5     7    11    15} 

Random pattern 13.32 {5     8     9    10    15} 

Bunch pattern 24.14 {1     2     3     4     5} 

SFS pattern 2.06 { 0    6     7    11    15} 

 

Fig.2.3: A typical distribution of the condition number, for L=16, p=5 

 

Exhaustive search is infeasible for large values of L and p; then we are looking for other 

search strategies to mitigate the cost of the search. The sequential search algorithms are 

practical for this desire. These algorithms add or remove features sequentially, but have a 

tendency to become trapped in local minima [13]. Representative examples of sequential 

search include sequential forward selection, sequential backward selection, plus-L minus-R 
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selection, bidirectional search and sequential floating selection [13]. We used the sequential 

forward selection for choosing the sample pattern as follows. 

 

Sequential forward selection (SFS):  

Sequential forward selection is the simplest greedy search algorithm. Given a set                      

             , we want to find the subset C={c1,c2,…,cp}, with p < L that minimizes 

the objective function cond(AC(k)). It starts from the empty set and sequentially adds the 

feature c
+
 that results in the minimum objective function when combined with the set Ci 

that have already been selected [13]. The algorithm for choosing the sample pattern with 

minimum condition number is summarized below: 

1. Start with the empty set        
2. Select the next best future 

                       
     

                         

3. Update             ; i=i+1 

4. Go to step 2 if i < p 

 

The search space is drawn like an ellipse to emphasize the fact that there are fewer states 

towards the full or empty sets. The main disadvantage of SFS is that it is unable to remove 

features that become obsolete after the addition of other features [13].  

Nevertheless, the algorithm is easy to implement and much faster than exhaustive search. 

The total number of comparisons for choosing p number out of L in this way is derived 

with arithmetic progression as below:  

The number of comparisons for the first element: L 

The number of comparisons for the second element: L-1 

. 

. 

. 

The number of comparisons for the p-th element: L-p+1 

Then total number of comparisons for the arithmetic progression is  

        
      

 
 

                                          (2.9) 
For evaluation of the SFS algorithm we randomly generate M=1000 spectral supports and 

find the corresponding SFS patterns and condition numbers and plot the histogram in Fig. 

2.4. The result shows that the sample pattern achieved from the SFS search has a low 

condition number or sometimes the best one. Table I shows a SFS search where that the 

sample pattern gets the same condition number as the optimal one.  

As an example when L=32 and p=10, an exhaustive search needs  
  
  

  

         comparisons and with SFS search only 275 evaluations is needed. This shows a 

huge reduction in computations. The sample pattern derived in this approach for the 

spectral support of k= {3     4     6     7    12    13    18    19    21    22} is 

C={0     1     3     5     6    16    17    19    21    22} 
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with  cond(AC(k))=2.8, that is one of the best condition numbers.   

 

Fig.2.4: Distribution of the Cond(AC(k)) when sample pattern is selected with SFS 

algorithm  

 

2.3 MATLAB simulation  

The mentioned approach is used in a MATLAB simulation to sample and reconstruct a 

known spectrum multiband signal. The signal x(t) is generated as 

        

 

   

                            

                                               (2.10) 

where                      and N=3 is the number of bands. The i-th band of x(t) has 

width Bi, time offset ti and carrier frequency fi . Fig.2.5 shows the time and frequency 

representations of the signal. The band locations are given as a set 

F= {[0.7,1.3), [2.45, 2.75), [3.8 ,4.2)}   and  fmax=5.  

The Lebesgue measure or Landauu lower bound for this signal is  

         
 
    =0.6+0.3+0.4=1.3 

  The occupancy ratio is  

Ω= λ(F)/ fmax =1.3/5 =0.26 
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The parameters T, L, p and set C should be selected to start the sampling. We set 

T=1/fmax=0.2  and arbitrarily L=32 as a moderate number. To set the parameter p, the 

spectral set should be derived based on (2.1) and (2.2) that results in      

k={4     5     6     7     8 ,   15    16    17,    24    25    26} 

with q=|k|=11, so selecting p=12 is enough for a perfect reconstruction. The sampling 

pattern C that is obtained with the SFS search as 

C={  0     1     2     6    11    12    13    18    22    23    24    28} 

that corresponding condition number with this sample pattern is cond(AC(k))=2.8. 

The average rate of sampling is     
 

 
                    , that is close to Landau lower 

bound  as Ω fmax= 0.26 fmax. 

The process of simulation generates M=1024 samples of x(t) uniformly with T=0.2 

according to (2.10), and then the sequence of       for i=1,…12 is created by picking the 

ci-th sample and zero padding inter sample distance by L-1=31 zeros (1.11). The sequences 

are filtered with a low-pass filter with cut off frequency of fc=fmax/L. We used the 

MATLAB command  

 

hr=fircls1(Nh,1/L,0.02,0.008) 

 

to create a real-valued (non-ideal) low-pass filter hr[n] of length Nh=383 , with normalized 

cut off frequency at fc=1/L, pass-band ripple of 0.02 and stop-band ripple of 0.008, which is 

frequency shifted to obtain the complex filter                       [8]. The operation 

of filtering with h[n] introduces a delay of td at the output that is equal to td=(Nh+1)/2=192 

samples, hence the correct samples are started at sample number td+1=193. 

Moreover, the matrix AC from (1.17) and then AC(k) is computed from (1.27), and then 

  
 
 is obtained by using the MATLAB command “pinv”. Finally, x(nT) is reconstructed from 

(1.31). Fig.2.5 shows the original and reconstructed signal in the time and frequency 

domains. The simulation result is excellent. The relative reconstruction error defined as 

     
             

      
 

                                              (2.11) 

is computed to be  about 1.9%, while there is no non-ideality or noise. 
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Fig.2.5: Input and reconstructed signal in the time and frequency domains. The relative 

reconstruction error is 1.9%. 

 

2.4  Non-ideality effects 

As non-ideality in uniform sampling is a limitation, here the reduced sampling rates 

afforded by non-uniform scheme can be accompanied by increased error sensitivity [3]. 

Non-idealities such as signal mismodeling, quantization error and jitter noise are sources of 

these errors. We model these non-idealities as an additive white sample noise; the sampled 

signal can be modeled as  

                       

                          (2.12) 

where       is the noise process with  

                           

                          (2.13) 

and x(nT) is the actual signal we would like to be sampling [3]. 

Owing to linearity, the output noise is derived from (1.28) as 
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                                                (2.14) 

Therefore, the input error will be amplified by   
 

. From (2.7) the condition number and the 

inverse operation are directly related. Hence we appreciate the need for having a low 

condition number on the output noise. 

To see the effect of non-ideality we repeat the above simulation with added quantization 

noise of an 8-bit ADC with input full range of VFS=1.2V. According to (2.14), the level of 

noise at the output can vary depending on the sample pattern. Therefore, two distinct 

sample patterns with low and high condition numbers are used. The first one is the SFS 

sample pattern with a low condition number equal to 2.8 that, results a relative 

reconstruction error of 2.5%. The second one is a bunched sample pattern as 

C={ 1     2     3     4     5     6     7     8     9    10    11 12} 

with a condition number of 128, that results a relative reconstruction error of 36%. Fig. 2.6 

depicts a comparison between the reconstruction error for both the cases of SFS search and 

the bunch pattern.  Also, the reconstructed signal with quantization noise and the two 

different sample patterns are illustrated in Fig. 2.7. 

 

 

Fig.2.6: Output error in presence of quantization noise (a) SFS pattern, cond(AC(k))=2.8 (b) 

bunched pattern and cond(AC(k))=128. 
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Fig. 2.7 Reconstructed signal in the time and frequency domains, in the presence of 

quantization noise (a),(b) SFS pattern, the relative error is 2.5% (c),(d) bunch pattern, the 

relative error is 36% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

3. Unknown Spectral Support Signals 

 

3.1 Introduction 

If the information of the signal’s spectral support is not available we encounter with the 

blind reconstruction problem. Actually, handling a minimum rate sampling and perfect 

reconstruction without any prior information of the signal spectrum is difficult. Therefore, 

we have to simplify our discussion with some assumptions about the signal to be sampled. 

Although these assumptions limit the discussion, they are not unrealistic. 

In this way, in the case of unknown spectral support the band locations of the signals are 

not given as a set F such as in the previous case. However, we assume to know the number 

of bands, N, such that each band is no wider than B, and the maximal possible frequency of 

the signal fmax. Fig.3.1 shows a typical communication application that follows this 

structure. The values of N, B, fmax depend on the specifications of the application hand at 

[12]. In the example of Fig.3.1, N=3 and B is dictated by the widest transmission 

bandwidth. The multiband model does not assume knowledge of the carrier locations fi, and 

these can lie anywhere below fmax.  

 
Fig.3.1: Three RF transmissions with different carriers  fi. The receiver observes a 

multiband signal [8]. 

 

3.2 Sampling Parameters  

 

3.2.1   L, p and q 

The selection of parameters L, p and C are more important in the unknown spectral case. In 

the first place the number of active slots is needed to discover but owing to unknown band 

locations it cannot be achieved exactly. With given L the number of active slots for the 

above model can be formulated as  

 
   

    
        

  

    
  

                                (3.1) 

where    is the ceil function. Depending on the band locations the number of active slots 

can be any value between the two above bounds. For example in Fig. 3.2(a), the bands are 

such that they occupy minimum number of active cells that is qmin=3. While the band 

contents keep constant the carriers deviate such that they fill maximum number of active 

slots that is qmax=6 in Fig.3.2 (b).  
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Fig. 3.2: The number of active slots changes with the band locations (a) Minimum number 

of active slots qmin =3 (b) Maximum number of active slots qmax=6 

 

According to this, the parameter p is chosen such that is bigger than the maximum number 

of active slots   

           
  

    
  

                                          (3.2) 

If choosing L as 

      
    

 
       

then                                        (3.3) 

                       
                                          (3.4) 

and 

    
 

 
           

 

 
     

                                          (3.5) 
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where   
  

    
  is the occupancy of signal. Therefore by choosing L according to (3.3) and 

a large d the Landau lower bound can be achieved. 

Although in the known spectrum case with choosing p ≥ q, the equation of (1.28) is 

solvable but in the case of unknown spectrum, depending on the approach that is chosen for 

recovery of spectral support we may need bigger values. This is discussed in Section 3.3. 

 

3.2.2  Sample pattern 

Choosing an appropriate sample pattern in the case of unknown spectral support is a 

bottleneck. The problem arises from the dependency of matrix AC(k) on both sample 

pattern C and spectral index set k , as the rows of matrix are selected with C and columns of 

matrix are selected with k elements (1.27). Then it may happen to find a suitable sample 

pattern for a specific spectral index set while it is worst when spectral index set changes. 

An optimal sample pattern can be found as the solution of the following min-max problem 

[9] 

  

           
            

   
           

            

       (3.6) 

where the symbol |  | is the cardinality of the set or measure of the number of elements of 

the set.    

This is a difficult combinatorial optimization problem, which is very likely NP-complete. 

Solution of (3.6) by exhaustive search would require  
 
 
 
 

 
 evaluations of the condition 

number of     AC (k), which is infeasible for anything but the smallest problems [9]. To 

bypass the difficulty, the reference [9] suggests a combination of random search, heuristics 

and exhaustive testing. However, this approach is still feasible for small problems. 

Therefore, we use some heuristic tests and based on the observations give an algorithm to 

choose an optimal sample pattern that is more easily achieved and feasible. 

 

3.2.2.1 Blind-SFS algorithm 

First, we want to know how the condition number changes while the band location changes. 

For this desire, next scenario is applied: A suitable sample pattern is found by the SFS 

algorithm for a typical known spectral support. Next we move the band locations randomly 

and compute the condition number with the selected sample pattern and the new spectral 

support that is obtained after location movement. The histogram of these condition numbers 

is shown in Fig.3.3. Although the condition number changes after movement, still the result 

is not disruptive. This observation suggests that choosing an initial appropriate sample 

pattern by SFS algorithm reduces the dependency of cond(AC (k)) on the k, efficiently.  It is 

noticeable that the value of condition number with an inappropriate sample pattern can 

reach infinity in this case. 

http://en.wikipedia.org/wiki/Element_%28mathematics%29
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Fig. 3.3: Distribution of the condition number with varying band locations. The initial 

condition number is 2.2 and it may reach 13 after movement  

 

Another interesting observation in this experiment is that as the distance between the bands 

reduces or they are overlapping the condition number increases. Using the fact that in 

practice we are facing with non overlaping bands and there are enough distance between 

carriers, we can be more hopeful to produce a general sample pattern with a low condition 

number. 

On the other hand, given N, B, fmax and computing the maximum and minimum number 

of active cells, the following simplification can be attained. Assume N=3, B=1, L=fmax=20. 

The number of active cells is in the range of 3 ≤ q ≤ 6, therefore the spectral index set k can 

be any of the following sets 

k1= {a, b, c} 

k2= {a, a+1, b, c} 

k3= {a, b, b+1, c} 

k4= {a, b, c, c+1} 

k5= {a, a+1, b, b+1, c} 

k6= {a, a+1, b, b+1, c, c+1} 

the values of a, b and c are integers and such that the spectral index set      for 1 ≤ i ≤ 6. 

  In a testing scenario, the values of a, b and c are chosen uniformly and a sample pattern 

with the SFS search for the spectral index k6 is found. This sample pattern is then applied 
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to the other possible spectral index sets k1 to k5. The condition numbers for all other 

spectral index set is then less than the condition number for k6, see Fig.3.4. In other words, 

if we choose a sample pattern that has a low condition number with the biggest possible 

spectral index set, here k6, it won’t be worse for any other possible spectral index set that 

can be happen with the same parameters, here k1 to k5. 

 
Fig 3.4: Sample pattern C is designed for k6 but it works well for other spectral index set 

too. 

Summarizing the results we give following instructions as a Blind-SFS algorithm for 

choosing the sample pattern in the case of unknown spectral support. Assume N, B and fmax 

are given: 

1- Set       
    

 
  

2- Compute qmax= N(d+1) and set  p=qmax+1 

3- Set the spectral index set 

k={a1,a1+1,…,a1+d,a2,a2+1,…,a2+d,……,aN,aN+1,…,aN+d}  

where the coefficients  a1,a2,…,aN are selected uniformly random such that 

 a1+d < a2, a2+d < a3, … , aN+d  < L          (3.7) 

4- Select the sample pattern with SFS search with the derived parameters L, p and k 

 

The algorithm is fast even with large values of L, p and qmax and the results are reasonable. 

To evaluate the performance of the method we use it for a signal with N=3, B=1.5 and 

fmax=20. Using the algorithm 
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1- d= 1 and      
  

   
     

2- qmax=N(d+1)=3*2=6 and p=7 

3- Uniform random selection of a1=2,a2=5,a3=8 => k={ 2     3     5     6     8     9} 

4- The resulting sample pattern is  C={ 0     3     6     8     9    10    11} 

The selected sample pattern is applied to the signal with the same number of bands and 

different band locations that are chosen randomly. The histogram of condition numbers is 

shown in Fig.3.5. As the figure shows, the condition number is low and most of the time it 

is close to the desired value. However, we may get some moderate values, but hopefully 

these values are not disruptive and the probability of getting such values is small.  

 
Fig 3.5: Selected sample pattern from the blind-SFS algorithm is applied to random signals 

and the distribution of the resulting condition number is displayed here. 

 

3.3 Estimating the spectral index set 

In contrast with the known spectrum case, where the spectral index set of the signal is 

computed easily using the band locations from (2.1) and (2.2), in the unknown spectrum 

case, the spectral index set should be determined based on the coset sampled data. In other 

words Equation (1.28) that is repeated here: 

 

                      

 

should be solved for finding both unknowns k and z(f).  Therefore, given y(f) the problem is 
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to find the vector k with minimum length q, subject to (1.28) for some z(f) [5]. In a real 

situation there are some non-idealities that we can model by adding an additive noise vector 

of n(f) of size     to (1.28) as 

y(f)= AC(k) z(f)+ n(f) 

                     (3.8) 

For simplicity, we assume that n(f) is a Gaussian complex noise with distribution N(0,σ
2
I), 

which is also uncorrelated with the signal. Fortunately, this problem has the same form 

arising in Direction of Arrival (DOA) estimation in array processing and sinusoidal 

retrieval [5],[9]. To see the connections we briefly review the DOA model here.  

 
Fig.3.6: An antenna array system, one source and several antennas are indicated 

  

In DOA estimation, d signal sources, sk(t), k=1,…d, are sampled by m  antennas in different 

locations, see Fig.3.6. The received signals have different delays depending on the DOA 

[14], which are equivalent to phase shifts assuming narrowband signals . The model of 

received signals in matrix form can be expressed as 

                    

                                           (3.9) 

Where θ=[θ1,…,θd]
T 

contains the signal parameters and s(t)=[s1(t),…,sd(t)]
T 

is composed of 

the signal waveforms, A(θ) is the steering matrix as 

        

 
 
 
 
 
                                

                                

     
     

                                 
 
 
 
 

 

                                           (3.10) 

Where ωc is the carrier frequency and τk(θ) denotes the propagation delay from the 

reference to the k-th element [14].   

 Compare (3.9) and (1.28) if q=d and p=m, reaches following equivalency:   
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                                           (3.11) 

That shows that each active cell,       , i=1,…,q, in (1.28) corresponds to a signal source, 

sk(t), in (3.9); and each coset sample sequence in the frequency domain yi(f) , i=1,…,p, 

corresponds to an the output of an antenna xi(t). In other words, each active cell acts as a 

signal source located in the spectral index of                , and generates the band 

frequency of       
    

 
 . Also the steering matrix, A(θ), and measurement matrix, 

AC(k),  have the same structure, the rows of A(θ) are associated with the locations of 

sensors as the rows of AC(k) are with the sample pattern, whereas the columns of A(θ) are 

specified by angles θ and the columns of AC(k) by the spectral index set k. 

Assuming a flat signal in each cell, the quantity of SNR is directly related with the 

occupancy and amplitude of the signal in that cell. For illustration, consider Fig.3.7, where 

each signal band is divided into two slots with unequal occupancies, and they act as two 

different signal sources with unequal power. The cell with the bigger occupancy has the 

higher power. Modeling the blind system in this way takes the advantageous of having a 

good SNR even with low signal occupancy in each cell. This is because of reducing the 

noise power with a factor of L in each cell. 

 
Fig.3.7: Sliced frequency representation of a wideband signal, each active cell acts 

as an independent source 
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Several approaches for solving this problem are suggested in the sensor array processing 

literature. All are based on the correlation matrix R defined as  

                         
           

                                        (3.12) 

where ( )* denotes the Hermitian transpose, and Z is the correlation matrix of the signal 

vector z(f) [5],[14],[16] as 

               

                                           (3.13) 

Depending on weather Z is full-rank or not, different methods would be applied. We 

consider some of these methods in the next section. 

 

3.3.1 Subspace methods 

If Z is full rank of q, that means the signal vector z(f) are not coherent, the geometrical 

properties of the correlation matrix can be used. From (3.12) it can be seen that any vector 

that is orthogonal to AC(k) is an eigenvector of R with corresponding eigenvelue σ
2
. The 

remaining eigenvectors are all in the range space of AC(k), and are therefore termed signal 

eigenvectors. The eigen-decomposition of R is partitioned into a signal and a noise 

subspace as [14] 

         
 

 

   

        
         

 

 

     

 

   

 

         
         

  

                                                                                                                                        (3.14) 

where  

     
  

      
     
    
     

             
  

        

    
     

    

                                                      (3.15) 

here                , are the signal eigenvalues and              is the matrix 

of the corresponding q eigenvectors. Further                , are noise eigenvalues 

and                 is the matrix of the corresponding (p-q) noise eigenvectors 

[14],[5]. The signal eigenvectors in Es span the range space of AC(k), which is termed the 

signal subspace [14]. For the noise eigenvector we have instead,          . Then, from 

the spectrum of R with eigenvalues in decreasing order, it becomes easy to discriminate 

between signal and noise eigenvalues, and hence determination of the number of active 

slots q would be attained [16],[14],[5]. In this way the first step in the subspace methods is 

to find the number of signal eigenvalues. This issue is underlying the model order selection 

problem and will be considered later. 
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As the distribution of signal is unknown the real correlation matrix R cannot be achieved. 

Then R is estimated from the measured data as   

               

    
 

 

 

                                        (3.16) 

with the dimension of    , the ( )* denotes the Hermitian transpose [5]. Substituting y(f) 

from (3.8) to (3.16), we have [5] 

                      
       

    
 

 

 

      

                    

    
 

 

    
     

            
        

                                           (3.17) 

where Z ≥ 0 is a      matrix given by  

              

    
 

 

 

                                           (3.18) 

Z is a Gram matrix of the functions            defined in (1.26). It follows that Z has 

full rank if these functions are linearly independent [5].   

From Parseval’s identity the correlation matrix can be computed directly in the time 

domain from the filtered sequences xhi[n] in (1.30) using the formula [5],[8],[9] 

                                 
    

    

    

   

                                        (3.19) 

where     denotes the inner product operation. Therefore the computation cost is linear in 

the amount of data [5]. In practice the number of samples is limited and therefore a sample 

correlation matrix is defined based on M available samples as 

     

    
  

 
 

 
           

    

   

   

   

                                        (3.20) 

Under suitable assumptions      when     . 
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3.3.1.1 Estimating the number of active slots 

As we mentioned before the number of active slots is the order of the model in (3.8) that 

can be estimated from ordered eigenvalues of sample correlation matrix. Suppose the p 

sequences xhi[n], i=1,…,p according to (1.30) are provided. The sample correlation matrix 

   is computed from M samples according to (3.20), and the eigendecomposition will be   

 

              
             

  

                                             (3.21) 

The p ordered eigenvalues are as follows   

            

where q eigenvalues are significant and (p-q) eigenvalues are ideally in the range of the 

noise. Fig. 3.8 depicts a typical case of p=10 ordered eigenvalues, with seven significant 

and three small eigenvalues. As we see, there is a gap between    and    that depends on 

the SNR, and the total number of eigenvalus. Therefore, choosing q significant eigenvalues 

out of p needs the subjective judgment in selecting the threshold levels for the different 

tests [17].  

 
Fig. 3.8: Typical ordered eigenvalues. Note that there is a gap between the signal and noise 

eigenvalues that should be detected by subjective judgment, p=10 and q=7 
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Information theoretic criteria (ITC) approaches have been widely suggested for this kind of 

problem. The best known of this test family are the Akaike information criterion (AIC) and 

the minimum description length (MDL) [16]. The number of active cells is determined as 

the value for which the AIC or the MDL criteria is minimized [18]. The number of active 

slots using the AIC is the integer    which satisfies [16][17][18]: 

          
 

           
    

    
                                            

                                            (3.22) 

Here M is the number of samples, g(r) is the geometric mean of the eigenvalues [18] 

       
 

 
 

   

 

     

  

                        (3.23) 

and  a(r) is the arithmetic mean of the eigenvalues [18] 

     
 

   
   

 

     

 

   (3.24) 

The number of active slots using the MDL criterion is given by 

         
 

           
    

    
  

 

 
                            

                                           (3.25) 

Above, we have assumed that the noise samples are white. But the samples involved in 

computing the correlation matrix are filtered by the interpolating filter (h), and then the 

corresponding noise samples may be correlated after filtering. However, the correlation 

among the noise samples is only related to the interpolating filter. Thus, the noise 

correlation matrix can be found based on the interpolating filter, and pre-whitening 

techniques can be used to whiten the noise samples [19]. 

The probability of correct detection of number of active slots, that is              , 

depends on the number of samples   M, SNR and the noise distribution, and it is not equal to 

one all the time. But it could be enhanced by using the operation of peak detection which is 

used in MUSIC detection. Fig.3.9 illustrates the detection probability of the number of 

active slots for a typical signal. It is seen that MDL has a better performance than AIC in 

this case.  

The article [16] introduces another technique of model order selection called exponential 

fitting test (EFT) that is claimed to be effective for short data. This method exploits the 

exponential profile of the ordered noise eigenvalues. For white Gaussian noise and short 

data it is shown that the profile of the ordered noise eigenvalues is seen to approximately fit 

an exponential law [16]. Assuming that the smallest eigenvalue is the noise eigenvalue, this 
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exponential profile can then be used to find the theoretical profile of the noise-only 

eigenvalues. Starting with the smallest eigenvalue a recursive algorithm is then applied in  

 
Fig. 3.9: Detection probability of number of active slots for a typical multi-band signal 

 

order to detect a mismatch greater than a threshold value between each observed eigenvalue 

and the corresponding theoretical eigenvalue. The occurrence of such a mismatch indicates 

the presence of a source, and the eigenvalue index where this mismatch first occurs is equal 

to the number of sources present [16]. 

The profile of the theoretical noise only eigenvalues is compared with the profile of the 

signal in presence of white additive noise in Fig. 3.10. In the case of noise only, the profile 

keeps the exponential form, while the profile of the signal with noise starts deviating from 

the exponential form at λ7. The main idea of the test is to detect the eigenvalue index at 

which a break occurs between the profile of the observed eigenvalues and the theoretical 

noise eigenvalue profile provided by the exponential model [16]. The break point is 

detected by comparing the relative difference between the theoretical noise eigenvalue and 

the observed eigenvalue with a determined threshold. Fig. 3.10 shows the relative 

difference for the profile of Fig. 3.9. As expected the difference becomes small when index 

reaches i=7, which suggests seven significant and three noise eigenvalues in the spectrum 

of the signal. 
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Fig. 3.10: Profile of the ordered noise and signal eigenvalues. The first mismatch occurs at 

index i=7 

 

3.3.1.2 Location of active slots using a MUSIC-Like algorithm 

After estimation of the number of active slots,   , the location of the active slots can be 

recovered according to a MUSIC-Like algorithm as  

 

       
       

           
                       

                                           (3.26) 

where k is the spectral index and a(k) is the k-th column of AC , given by  

 

     
 

  

 
 
 
 
  

       
 

 
       

  
 

 
       

  
 
 
 
 

   

                                                (3.27) 
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The relation (3.26) will generate L values for L spectral indices such that if k is an active 

cell, the value of PMU is significant in that point, and otherwise it will be smaller than a 

threshold. The location of the active slots is then specified by choosing    significant values 

of the computed PMU:   

                         

                                            (3.28)                                                                    

Fig.3.11 depicts the computed values of PMU for a typical signal with      and L=32. 

As seen in the figure there are seven significant values and their locations specify the 

spectral index set of the signal, that is  

                        

 
Fig. 3.11: Spectrum and the PMU values of a typical 3-bands signal. The locations of the 

significant values specify the spectral index set of the signal, L=32,     , 

k={4,5,11,12,13,24,25} 

 

3.3.2 Least squares-based spectral estimation 

In case of coherent signals, the matrix Z is not full rank anymore. Consider the model 

(1.28) again                 . The problem of finding a spectral index k with q 
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elements for some signals z(f) can be solved by using a Non-Linear Least-Squares (NLLS) 

approach as [14] 

                 
      

                      

    
 

 

  

                                             (3.29) 

This is a separable least-squares problem, and for fixed (but unknown) k, the solution with 

respect to the linear parameter z(f) is [14] 

         
         

                                           (3.30) 

Substituting (3.30) into (3.29) leads to the concentrated NLLS formulation 

                  
      

                                           (3.31) 

with 

            
      

   (3.32) 

The above interpreted as the power error between the measurements data and the estimated 

signal that should be minimized for a correct estimation, and  

  
                

 
 

                                            (3.33) 

is the orthogonal projection onto the nullspace of   
     [14],[5].     

As the exhaustive search for solving (3.31) needs choosing q active cells out of L, that is 

solvable only for small q and L [5]. A practical approach at a reasonable cost is to employ a 

sequential search where one cell of the spectral index is selected at the time to minimize the 

criterion in (3.31) [14]. The procedure is the same as mentioned in section 2.2.3.1, but with 

a different target function this time. It starts from the empty set and sequentially adds the 

cell that produces the minimum value of the criterion in (3.31). As the exact number of 

active cells q is unknown, the sequential selection should be repeated qmax times. The total 

number of searches in this way as calculated in (2.9) is less than (L qmax). Meanwhile, the 

correct active cell is augmented to the set; the value of least square criterion diminishes 

monotonically and it becomes zero at the perfect estimation point. After this point, adding 

any other cell does not reduce the criterion. Fig.3.12 shows a typical result of the least 

square operation for a signal with six active cells and qmax =9. As seen, the error decreases 

rapidly toward q=6 and after that it becomes constantly a small value close to zero. 

Therefore, with choosing a threshold,   ,as a reasonable residual error based on noise 

model, the procedure of search can be shortened before qmax. In summary, the algorithm is 

as below 

1- Start with  the empty set        

2- Select the next cell such that                         
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3- Update           ; i=i+1  

4- Go to step 2 if  i < qmax or                                      

 

   
Fig.3.12: The Least square error monotonically decreases with q and k 

 

In contrast with independent signals, when choosing p ≥ q+1 is enough for a perfect 

recovery of the spectral index set and signal; if Z is not full rank we need to choose a 

higher value to compensate for this deficiency. In the article [5],[8], it is proved that 

choosing p ≥ 2q guarantees the recovery even in the worst case where rank(Z)=1. As q is 

unknown, we have to choose p ≥ 2qmax .   

 In summary, rank deficiency of Z or linear dependency imposes a very special restriction 

on x(t), in addition to its spectral sparsity [5] that is almost impossible to meet in practical 

applications.  Therefore, we can assume the matrix Z is always full rank, and the subspace 

method can be used for almost all signals, although the least-square algorithm works for all 

signals, regardless of rank of Z, or equivalently, of the shape of the spectrum of the signal 

over its support [5].  

 

3.3-3 Other methods: 
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In the article [8] two other methods are suggested to find the spectral index set that we 

mention here: 

The naive approach for solving the equation (1.28) is to discretize the frequency interval 

F0 to an equally spaced finite grid        
 

 and then solve the equation only for z(fi). The 

resulting finite dimensional problem can be solved within the regular compressed sensing 

framework [8].  

The other approach is again based on the correlation matrix. It changes the problem into a 

problem of Multiple Measurement Vector (MMV) and then uses the solution of the MMV 

system from compressed sensing. The algorithm is given as: 

1- Compute the sample correlation matrix R from (3.20) 

2- Decompose R= V V
H
 , where V is a     matrix, where r= rank (R) 

3- Solve the linear system V= AC U for the sparset solution U0 

4- The spectral index set is then k= I (U0), where I(U0), the support of U0 indicates the 

rows of U0 that are non-identically zero. 

The algorithm needs to find the sparsest solution U0 in the third step, which is known to be 

an NP-hard problem [8]. The MMV solvers such as the brute-force method, multi-

orthogonal matching pursuit (M-OMP) are addressed in the compressed sensing literature 

[20]-[24] for finding U0 [8]. 

 

3.4 MATLAB Simulation 

The process of blind spectrum sampling and reconstruction is implemented in MATLAB and 

presented here. The signal is generated according to the model of (2.10) with N=3 bands, 

fi=[4.8,10.45,15.4], Bi=0.9, ti=[6,13,17] and fmax=20. The N, Bi and fmax are assumed to be 

known. The parameters are selected as follows 

1- From (3.3), d=1 and    
    

  
   

  

   
       

2- From (3.4), qmax= N(d+1)= 6, p= qmax+1=7 

3- Choosing sample pattern using the Blind-SFS algorithm results in  

C= {0     5     6     8    11    16    17}, with cond (AC(k))=2 

4- Compute the sample correlation matrix        from (3.20) 

5- Compute the eigenvalues λ1 to λ7 and eigenvectors of R. Tthe plot of the ordered 

eigenvalues is shown in Fig.3.13 

6- From (3.22) or (3.25), estimate the number of active cells, which gives        

7- Find the noise eigenvectors Un=[e6,e7] from (3.14) and (3.15) 

8- The estimated spectral index from (3.26) and (3.28) is                        

9- After finding the spectral index, the procedure of reconstruction is the same as for 

the case of a  known spectrum  

Fig.3.14 illustrates the input and the reconstructed signal, the relative MSE error is around 

2.7%. 
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Fig. 3.13: (a) Ordered signal and theoretical noise eigenvalues, (b) relative error from the 

EFT algorithm (c) spectral index set by the MUSIC algorithm (d) spectral index set by the 

NLLS algorithm (e) frequency representation of the signal and its active cells 
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Fig.3.14: Time domain and frequency domain views of spectrum blind signal 

reconstruction  
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4. Application to cognitive radio 

 

4.1  Introduction 

Cognitive radio is a new paradigm for designing wireless communications systems, which 

aims to enhance the utilization of the radio frequency (RF) spectrum. The motivation 

behind cognitive radio is the scarcity of the available frequency spectrum and the 

increasing demand, caused by the emerging wireless applications for mobile users [25]. 

Fig.4.1 illustrates a cognitive network that contains primary or licensed users and secondary 

or cognitive users. The primary or licensed users are the systems that have been already 

assigned to a frequency band, whereas the secondary users are the systems that use the 

licensed bands when it is idle. 

 
Fig.4.1: A network of cognitive radios that sense the radio frequency spectrum for spectrum 

opportunities and exploit them in an agile manner [31] 

 

Due to the current static spectrum licensing scheme, spectrum holes or spectrum 

opportunities (Fig.4.2) arise. Spectrum holes are defined as frequency bands which are 

allocated to, but in some locations and at sometimes not utilized by, licensed users, and, 

therefore, could be accessed by unlicensed users [25]. 
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Fig.4.2: Spectrum holes or spectrum opportunity [25]  

 

The main goal of cognitive radio is to provide adaptability to wireless transmission through 

dynamic spectrum access so that the performance of wireless transmission can be 

optimized, as well as enhancing the utilization of the frequency spectrum [25]. As such, the 

first cognitive task is to develop wireless spectral detection and estimation techniques for 

sensing and identification of the available spectrum [26].  

 

4.2  Spectrum sensing 

Spectrum sensing is an important function to enable CRs to detect the underutilized 

spectrum of primary systems and improve the overall spectrum efficiency [37]. Some well-

known spectrum sensing techniques are energy detection, matched filter and 

cyclostationary feature detection that have been proposed for narrow band sensing. In all of 

these techniques the received signal is filtered with narrowband band-pass filters, sampled 

uniformly at Nyquist rate and then one of the above techniques is applied to decide between 

the two hypotheses H0 and H1. The hypothesis H0 represents the case that no primary user 

is present and H1 represents that a primary user exists. Fig. 4.3 shows the general 

implementation of narrow band spectrum sensing with conventional methods [37]. 

 
Fig.4.3: Conventional narrowband spectrum sensing techniques: Energy Detection, 

Matched Filter, Cyclostationary Detection  
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Future cognitive radios should be capable of scanning a wide band of frequencies, in the 

order of few GHz [27]. In the wideband regime, the radio front-end can employ a bank of 

band-pass filters to search a frequency band and then exploit the existing techniques for 

each narrow band, but this method requires a large number of RF components [26].  

A conventional approach in wideband sensing is wavelet detection [25]. In order to 

identify the locations of vacant frequency bands, the entire wideband is then modeled as a 

train of consecutive frequency sub-bands where the power spectral characteristic is smooth 

within each sub-band, but changes abruptly on the border of two neighboring sub-bands. 

By employing a wavelet transform of the power spectral density (PSD) of the observed 

signal x[n], the singularities of the PSD, S(f), can be located and thus the vacant frequency 

bands can be found [37]. The digital implementation of a wavelet detector for spectrum 

sensing is shown in Fig.4.4. The major implementation challenge then lies in the very high 

sampling rates and high resolution ADCs with large dynamic range which have to operate 

at or above the Nyquist rate [26].   

 
Fig.4.4: Digital implementation of a wavelet detector [37] 

 

 By using the fact that the wireless signals in open-spectrum networks are typically sparse 

in the frequency domain, the articles [26] and [27] introduced a compressive wide-band 

spectrum sensing with a combination of compressed sensing and wavelet transform. In this 

approach the received analog signal at the cognitive radio sensing receiver is transformed in 

to a digital signal using an analog-to-information (AIC) converter. The autocorrelation of 

this compressed signal is then used to reconstruct an estimate of the signal spectrum [27]. 

However as we mentioned above this approach is limited for detection of smooth spectral 

signals.  

As considered in this project, the periodic non-uniform sampling can be used to 

overcome the problem of high sampling rate. Moreover, we showed how to estimate the 

spectral index set from the obtained compressed samples. In this way we introduce a 

wideband spectrum sensing model based on non-uniform sampling with sampling rates 

well below the Nyquist and effective for a wide range of signals [30]. 

The proposed architecture for spectrum sensing part of cognitive radio is illustrated in 

Fig.4.5. The operation of the system is as follows: 
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Fig.4.5: Proposed wideband spectrum sensing for cognitive radio based on Non-Uniform 

sampling 

 

The analog received signal at the cognitive radio antenna is directly discredited by   the          

Non-uniform ADC at a lower sample rate fs= (p/L) fmax, compared with the maximum input 

frequency fmax. One possible implementation of the Non-uniform ADC is illustrated in Fig. 

1.4. It is composed of p parallel ADCs that each work uniformly at a sample rate of fs /p 

with different trigger times that are specified by the sample pattern C. In the articles 

[32],[33],[34] other architectures and practical issues are discussed. The Non-uniform ADC 

provides p sequences of uniform sampled data where each sequence is configured 

according to (1.11) and then low-pass filtered with      
    

 
 at interpolation stage. The 

signal model at this point in the frequency domain was shown to be (3.8) 

y(f) = AC (k) z(f)+ n(f) 

THis is a well-known classical signal model with some solutions based on the correlation 

matrix. For reducing the cost of computations, the sequences are down-sampled with a 

factor of L and then using (3.20) the correlation matrix is computed. After computing the 

correlation matrix R, as we discussed in the spectral recovery of blind spectrum signal, the 

number of active channels and also the location of them is determined by effective methods 

such as MUSIC or NLLS. Finally, the complement set of the recovered spectrum is the 

holes of spectrum and specifies the locations that the cognitive radio can start using for 

transmission. 

 

4.3 Specification and simulation of a cognitive radio network: 

Assume the cognitive network of Fig.4.1, with some primary users in the area and unknown 

frequency operation that can be placed anywhere inside the range of interest. The wideband 

system that should be the scanned by cognitive radio is assumed to be a frequency range of       
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[0, fmax] with occupancy of Ω. Depending on the resolution B (specified by application), the 

considered system is divided into   
    

 
  spectral bands or channels. From (3.1) the 

number of active channels is in the interval 

 

                

                                              (4.1) 

However the maximum number of q is 2LΩ, but for large enough of L the number of 

simultaneously active channels can be estimated by  

         
                                          (4.2) 

and then with choosing          the system will work fine. This also suggests that the 

sampling rate is reduced by the factor of the system occupancy as 

   
 

 
               

                                            (4.3) 

Fig. 4.6 illustrates the spectrum of a typical cognitive system in the range of [0, 2]GHz with 

three primary users respectively, a TV channel [470-500] MHz, GSM-900 uplink           

[824-849] MHz and downlink [869-894]MHz and a DECT system [1880-1900] MHz.  

  
Fig. 4.6: Spectrum of a signal received at a cognitive radio, with three primary users 

occupying the corresponding bands 
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Fig.4.7: The occupied channels of the wideband system are detected by spectrum sensing  

 

The cognitive radio needs to detect the holes of the spectrum with a resolution of 

B=10MHz, so L=2GHz/10MHz=200 should be chosen. The worst case occupancy is 

assumed to be Ω=0.1, and then p= 200*0.1=20 is selected for the Non-uniform ADC. The 

up-sampling is done with a factor of 200, and then the signal is filtered at 

fc=2GHz/200=10MHz. Next, the down-sampling with a factor of 200 is applied. After 

computing the correlation matrix, the spectral recovery obtained with the MUSIC algorithm 

is shown in Fig.4.7. The indexes that do not have a peak can be treated as a free channel, 

and the location of the channel is in the interval 

    
 

 
  

   

 
                              

                                          (4.4) 

where the kfree is the complement of the spectral index set. 

 The performance of the method is evaluated by computing the probability of detection Pd, 

that is the probability of correct detection of an active channel: 

             
                                          (4.5) 

The Pd, depends on the SNR of the channel and the compression ratio. The compression 

ratio (CR) is the factor of sampling frequency reduction as 
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                                          (4.6) 

Hence, we set up a simulation test with a single frequency input as in Fig.4.8, with different 

SNR and compression ratio of CR=0.1,0.2,0.3 and compute the Pd. The result of the 

simulation is shown in Fig.4.8. As the compression ratio increases, a higher Pd is achieved 

at a lower SNR. 

 
Fig.4.8: Frequency domain of input signal for probability detection test, L=20 

 
Fig.4.9: Probability of detection versus SNR and CR, Pd increases with CR. 
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5- Summary and conclusions 
This thesis investigates a clever way of sampling named multi-coset sampling to achieve a 

lower rate than the Nyquist rate for sampling of multiband signals. The Landau lower 

bound can be achieved by proper selection of sampling parameters. The model of the 

sampled data and the reconstruction formula were given. The relative reconstruction error 

for a typical case is found to be around 2.5%. The sampling parameters and their effect on 

the reconstructed signal were discussed. One of the most important parameters is the 

sample pattern. We propose an algorithm to find a suitable sample pattern. For unknown 

spectrum signals the methods of model order selection and spectral estimation based on the 

sampled data and the provided model were considered. The result of the model order 

process and spectral recovery depends on the number of sampled data, SNR and the 

compression ratio and is almost reliable even for low SNR, small number of sampled data 

or compression ratio.  

Following the vision of sampling at lower rate and spectral recovery from fewer data, we 

noticed that the new paradigm of cognitive radio is looking for efficient and fast methods 

for wideband spectrum sensing. Hence we introduced a method for wideband spectrum 

sensing for cognitive radios based on periodic non-uniform sampling and evaluate it in 

terms of SNR and compression ratio.  
 Moreover, future studies can be focused on the issues such as: the implementation aspects 

of non-uniform analog to digital converters, formulation of a general sample pattern for any 

signal, consideration of general blind spectrum signal recovery with less information about 

the signal spectral support, and consideration of signals where the number of active slots is 

equal to the parameter L, but they have a low occupancy. Also, the detection probability 

can be theoretically investigated in terms of the SNR and compression ratio.  
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