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AbstractThe activated sludge process for degradation of organic matter is one of the mainprocesses commonly used in biological wastewater treatment, and aeration in thatprocess stands for a large part of the energy consumed in a plant. Hence, there hasbeen many attempts to optimize the operation of the activated sludge process, whichrequires a model of the process. The advanced models used has in general their ori-gin in IWA (former IAWQ) activated sludge model no 1 (ASM1). Unfortunately,feasible optimization is limited because several of the most important variables, forexample bacterial biomass (XBH), readily biodegradable soluble substrate (SS) andslowly biodegradable particulate substrate (XS), cannot be reliably measured onlinebecause of their complexity hiding behind their notation. One way to resolve thisproblem is to estimate these concentrations using an observer and other online mea-surements at hand. Here we have developed an Extended Kalman Filter (EKF) thatestimates the relevant concentrations in the ASM1 based on oxygen measurementsand supplied air. For faster convergence, measurements of totally suspended solidsin the in�uent �ows are included in the algorithm. It is concluded that estimationdoes not work for one stirred tank alone, but when the activated sludge process isdescribed by several tanks in series with oxygen measurements in each of them, theestimates converge. The �lter has interesting convergence properties, and to explainthese observability properties are investigated. For an implementation of the ob-server, it is necessary to estimate the oxygen mass transfer function and methodsfor this are evaluated and further developed. One of these and the EKF were evalu-ated for the wastewater treatment plant Ryaverket in Göteborg. The EKF is foundto be divergent for this plant, which can be explained by the many uncertainties re-garding the model. A more simple observer for estimation of the important measureoxygen uptake rate (OUR) was evaluated, and this was found to be convergent forplant data. Optimization of the aeration is considered brie�y and is solved for onecontrol variable. Results based on real data are presented.Keywords: observer, extended Kalman �lter, ASM1, activated sludge.
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SammanfattningAktivslamprocessen för nedbrytning av organiskt material är en av de vanligasteprocesserna för biologisk avloppsvattenbehandling och luftningen av de aeroba zon-erna i processen står för en stor del av den förbrukade energin på ett verk. Det hardärför gjorts �ertalet försök att optimera processen vilket kräver en modell av den.De avancerade använda modellerna har i regel sitt ursprung i IWA (tidigare IWAQ)activated sludge model no 1 (ASM1). Tyvärr, är optimering av processen begrän-sad eftersom �era av de mest viktiga variablerna i ASM1, tex bakteriekoncentration
XBH , lättillgängligt substrat SS och partikulärt svårnedbrytbart partikulat substrat
XS, ej kan mätas förtroligt i realtid. En möjlig lösning är att använda en obser-vatör och mätningar av andra tillgängliga processvariabler. I detta arbetet har enobservatör - Extended Kalman Filter(EKF) utvecklats som estimerar de relevantakoncentrationerna i ASM1 modellen baserat på syremätningar och tillförd luft. Detvisar sig att estimeringen inte fungerar för endast en tank, men om processen beskrivsav �era efterliggande tankar med syremätningar i var och en konvergerar estimaten.För en implementering av observatören är det nödvändigt att estimera en funktion,
KLa-funktionen, vilken beskriver syreöverföringen från di�usorerna till vattner i deaeroba zonerna. Metoder för att göra detta evalueras och vidareutvecklas. En avdessa och EKF:en har testats på data från reningsverket Ryaverket. Tyvärr, kon-vergerade inte �ltret i detta fall vilket kan förklaras av de många osäkerheter som�nns i modellen. En mer simpel observatör för den viktiga indikatorn oxygen uptakerate (OUR) utvärdares också, och var konvergent för datan från Ryaverket. Opti-mering av processen undersöks övergripande och mer ingående för en styrvariabel,och resultat baserat på riktig data presenteras.
Nyckelord: observatör, extended Kalman �lter, ASM1, aktiv slam.
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1 INTRODUCTIONThe activated sludge process (ASP) is one of main processes commonly used inbiological wastewater treatment. In this process, bacterial biomass grows as ammo-nium, phosphor and organic substances are degraded. ASP:s are costly to operateand their largest cost is for the energy required for aeration of the aerobic compart-ments.To optimize the process modeling is needed. The most widely used model for mod-eling of the reactions in ASP:s is the Activated Sludge Model NO.1 (ASM1) (Henzeet al. 2000), and its successors ASM2 and ASM3 (Henze et al. 2000). ASM1 mod-els removal of degradable organic matter and nitrogen compounds. ASM2 includesmodeling of biological phosphorus removal. ASM3 is a more comprehensive andextended version of the ASM1. Unfortunately, these models contain several con-centrations that cannot reliably be measured online. This is in particular true forsome of the main variables, such as dissolved and particulate organic substrate, andbiomass concentration. Substrate analyzers have been available for several years butthese have historically been considered unreliable (Olsson and Newell 1999), and donot di�erentiate between particulate and dissolved substances as in the ASM1. To-tally Suspended Solids (TSS) measurements though give an indication of biomassconcentration though.A general remedy for absence of online measurements is to �nd an observer toestimate unmeasured variables based on a dynamic model and online measurementsof other variables. In the literature, there are few examples of observers based on theASM1 or its successors implemented at a real plant, but at the Ejby Mølle WWTPin Odense Denmark, an observer based on these models predicts the ammoniumand nitrite plus nitrate concentration in real-time, based on ammonium and redoxpotential measurements (Cecil and Kozlowska 2009). Other implemented observersfor ASP:s described in the litterature are for estimation of reaction rates (Lindberg1997). Observers to estimate biodegradable substrate based on the ASM1 have beenformulated by Benazzi et al. (2007) and Boulkroune et al. (2009). Both of these arefor one aerobic reactor in the COST benchmark model (Copp 2001, Alex et al. 1999),assuming constant and known bacterial concentration. In practice this is a highlyrestrictive assumption since proper measurement of the bacterial concentration ishardly feasible. Benazzi et al. (2007) used an extended Kalman �lter but foundthat for the estimates to converge it was necessary that at least the in�uent ofsoluble substrate was also measured. Boulkroune et al. (2009) used another LMIbased nonlinear observer also based on a simpli�ed version of the ASM1. Theylumped soluble and particulate degradable substrate into one variable XDCO, sincethe presumed measurement did not make it possible to distinguish them. Further,they concluded that the system becomes unobservable if the in�uent concentrationin XDCO is unknown. This is solved by feeding the observer with the daily meansubstrate level based on a presumed lab analysis. The drawbacks of these methodsare that they rely on data for bacterial concentration and in�uent concentrations of1



2 Chapter 1 Introductionbiodegradable substrates. Further, the latter method does not distinguish betweensoluble and particulate substrate, although this is very important since the e�ectsand kinetics for the two are very di�erent. Neither is the robustness to model errorsevaluated.As a basis for the simulation model, and to evaluate designs on, the WWTP Ryaver-ket in Gothenburg in Sweden is considered. The work has resulted in an EKF thatestimates all relevant concentrations in the ASM1, including unknown inputs of sub-strate and biomass based on measurements in two or more aerobic tanks, and TSSmeasurements in the in�uents. The �lter has been evaluated in simulation withgood results, and it is also shown that the Runge Kutta 4 method can be used foran implementation of it. For the case with two tanks there are however restrictionson certain variations in the concentrations, and this property is analyzed based onobservability conditions. The success of this �lter compared to the �lters by Benazziet al. (2007) and Boulkroune et al. (2009) relies on the following features:� Contrary to the work mentioned above, the process considered here is preden-itrifying with post nitri�cation. This means that nitri�cation stands for a verysmall portion of the aerobic reactions in the ASP, which in turn leads to thatfewer concentrations in the ASM1 need to be included in the observer. Theseare SO (oxygen), SS (readily biodegradable substrate), XS (slowly biodegrad-able substrate) and XBH (heterotrophic biomass). Among these, only oxygenis measured.� Instead of assuming the in�uent concentrations known, they are considered asstochastic processes and are estimated by the observer.� By including more than one tank additional measurements of oxygen are avail-able and a better coupling between the states is achieved.� The biomass concentration is modeled as a product of the sludge concentrationand a variable (parameter) γXBH
, which denoted the fraction of the sludgebeing heterotrophic bacteria. The sludge concentration can vary fast whenthe operators change the �ows but it can then be estimated from measuredTSS in the recycled sludge �ow and measured water �ows. The estimatedsludge concentration is thus fed to the observer and the slowly varying γXBHis estimated.� By describing a correlation between measured TSS in the in�uent to the ASPand XS in the observer model, the convergence of the �lter can be made faster.The extension of the method to a mixed aerobic process should be straightforward.Another method for estimation of the parameter γXBH

, based on estimation of reac-tion rate expressions with a linear Kalman �lter for the anoxic tanks has also beendeveloped. In the anoxic compartments, rate expressions are often saturated in thesoluble substrate SS. With this knowledge, and estimated sludge concentrations,
γXBH

is estimated. This can be further used for estimation of substrate in the aer-obic tanks, which is is evaluated for SS, again based on estimated rate expressions.



3The method is useful but shows to be quite sensitive to errors in the estimatedparameter.For implementation of the developed estimators, it is necessary to have an estimateof the oxygen mass transfer function, i.e. the KLa function. It describes the transferof oxygen from di�used air to the water, and is not known for Ryaverket. There aremethods to estimate it, and two of these are evaluated and further developed to besuitable for the considered plant. These includes excitation of the air �ow, whichis costly, which implies that allthough the function is known to be timevarying in anon modeled way it is not possible to estimate it on a continuous basis. On threeoccasions, experiments to estimate the function were performed at the plant.Due to properties of the considered plant, only the EKF approach with measure-ments in two tanks for estimation of the ASM1 variables could be evaluated for realdata. Unfortunately, the estimates are found to diverge. One possible reason is thatconcentrations vary too little in reality, and another possible reason are deviationsbetween the real process and the internal model of it in the observer. One source oferrors is the parameters in the ASM1. Another is the model of the activated sludgebasin as a series of tanks, and this model is further analyzed. This also leads to er-rors in the estimation of the KLa function, and it is known from sensitivity analysisby simulation that the EKF is especially sensitive to such errors. The unmodeledtime variation of the KLa function is another source of errors.There are many possible control variables to optimize in an ASP, such as the air�ows in the aerobic compartments, the oxygen set point, the in�uent �ows, TSSin the return sludge �ow, and the volume used for anoxic processes versus aero-bic processes. In Lindberg (1997), Samuelsson et al. (2007) and Chachuata et al.(2005) these kind of problems were considered without taking substrate and biomassmeasurements/estimates into account. Dynamical optimization of the process is acomprehensive problem since many of the control variables need to be optimized us-ing a model involving at least parts of the AS basin. This goes for the in�uent �ows,TSS in the return sludge �ow, and the aerobic volume. The problem of optimizingthese for the aerobic compartments under the assumption that this can be donewithout taking into account upstream processes is considered brie�y. The oxygenset point can, according to the mathemical model, be optimized independently forthe aerobic compartment. The model also says that it is reasonable that a constantoxygen setpoint can be used that is identically lower than that used today, but thecurrent value is based on properties not included in the ASM1. It is therefore con-cluded that it should not be varied continuously based on this model. Optimizationof the induvidual air �ows was solved and results based on real data for half a year ispresented. 5 % of the total aeration cost could be saved with the developed method.The validity of the result is, however, dependent on that the tank model is valid andon the shape of the real KLa function.



2 NOTATIONAbbreviationsAS activated sludgeASP activated sludge processBOD biochemical oxygen demandCOD chemical oxygen demandCSTR continuously stirred tank reactorDO dissolved oxygenEKF extended kalman �lterNUR nitrate (and nitrite) uptake rate (mgNO−1
3 l−1d−1)OUR oxygen uptake rate (mgO2l

−1d−1)S-function state space function in SimulinkTSS totally suspended solidsWWTP wastewater treatment plant
Capital Letters
D dillution rate - Q

V
(d−1)

I tank index set I = {d1, d2, t, 1, . . . , 8}
Kz half saturation coe�ecent in Monod expressions for the concentration z
Mz Monod expression in the concentration z
Q volumetric water �ow rate (m3d−1)
Qrec water �ow from the trickling �lters
Qin in�uent �ow to the plant (m3d−1)
QX sludge recycle �ow
R1 process noise covariance matrix
R2 measurment noise covariance matrix
S dissolved matter
SS readily biodegradable substrate (mg(COD)l−1)
SNH NH4+4 +NH3 nitrogen (Ammonium)
SNO nitrate and (nitrite) nitrogen mgNO−1

3 l−1

SO dissolved oxygen concentration (mgO2l
−1)

T temperature (◦C) or transformation matrix
V tank volume (m3)
X particulate matter
XBH hetertrophic baceterial biomass mg(COD)l−1

Xin sludge concentration originating from Qin (mgTSSl−1)
XX sludge concentration originating from QX (mggTSSl−1)
XS slowly (particulate) biodegradable substrate (mg(COD)l−1)4



5Small Letters
d day
g impulse response
h sampling time, or hour
k1 KLa function parameter (d−1)
k2 KLa function parameter (m−3h)
q volumetric air �ow rate (m3(air)h−1)
t time
u input vector in observer models
v measurement noise
x state vector in observer models
y measurement vector in observer modelsGreek Letters
γXBH

fraction of XX being heterotrophic biomass (gCOD/gTSS)
µ̂H maximum speci�c growth rate for heterotrophic biomass (d−1)Subscripts
d1, d2 indexes for the deox tanks
m measurement of
t index for the transport volume (tank)
in input to an arbitrary tank, but is also used for the in�uent �ow QinDiacritical marks
˜ sample mean
ˆ approximation or estimate
¯ scaled



3 THE PLANT AND MODELINGRyaverket is owned by GRYAAB who treats wastewater from its joint owners, themunicipalities of Ale, Göteborg, Härryda, Kungälv, Mölndal and Partille. GRYAABalso operates a 120 km long tunnel system, which transports wastewater from withinthe region to the plant. There are mainly three kinds of waste that is removed inthe process:� Particles, such as sand, co�ee grounds, potato peel and toilet paper.� Organic degradable substances. When they enter natural waters, such as lakesor seas they are naturally degraded. However, the oxygen needed for the degra-dation is taken from the water and the result are lowered oxygen concentrationsand increased bacterial biomass.� The nutrients phosphor and ammonium. They can cause increased growth ofalgiers, reed and other plants in watercourses. When the algiers die, they aredegraded and oxygen is consumed. This can lead to oxygen depletion resultingin dead bottoms.The treatment process is illustrated in Figure 3.1. The water reaches the plant froma tunnel system. Before it enters the primary sedimentation step it has gone throughseveral steps of mechanical cleaning. Di�erent gratings are used to remove sands,gravels and other larger particles. In the primary sedimentation step the water �owsthrough large tanks, commonly called primary clari�ers. The �ow is low enough, toallow particles that are heavier than water to sink to the bottom and subsequentlycollected and pumped to further sludge treatment stages where energy is extractedfrom it. The water also contains grease and oils that are lighter than water and forma layer on the surface that is skimmed o�. At Ryaverket, phosphor removal is nota biological- but a chemical process. Iron sulphate is added to the water, which ispositively charged, while phosphor is negatively charged. The chemical reaction isthat the nutrients and chemicals attract each other. In this way �ocks are formedin the water that grow in size. These are bounded to the sludge in the Activatedsludge process (ASP).The ASP is centered about the activated sludge basins which contains both anoxic-(oxygen free environment) and aerobic (environment containing oxygen) processes.In this biomass grows with degradation of ammonium and mainly soluble degradableorganic substances. The process at Ryaverket is predenitrifying with post nitri�ca-tion, which means that degradation of nitrate (denitri�cation in the anoxic com-partments) comes before the aerobic processes, and that nitri�cation (degradationof ammonium in trickling �lters) comes after the AS basins. To make this possible,the e�uent of the basins is recirculated via the trickling �lters back to the in�uent.To sustain a high enough bacterial biomass population in the basins, there is also a6
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Figure 3.1. The treatment process at Ryaverket.recirculation of the sludge containing the bacterias. Approximately half of the e�u-ent is recirculated. There are two kinds of bacterias in the process. Heterotrophs areresponsible for the main reactions in the AS basin. For growth, these need solublecarbon and a nutrient. In the anoxic compartments the nutrient is nitrate, and therest product is nitrogen gas. In the aerobic compartments the nutrient is oxygen,and the rest product is carbon dioxide. Oxygen is here added to the water throughdi�usors at the bottom. Because this is costly, it is desired to degrade as muchas possible of the soluble organic compounds by denitri�cation, since nitrate is anutrient source formed in the process that also must be degraded. The nitrate thatcannot be degraded in the basins is treated in moving bed reactors (MBR), whichis a separate denitri�cation process in which an external carbon source is added tothe water, which is also costly. Nevertheless this isnecessary when the concentrationof the natural carbon source in the in�uent to the ASP is not high enough.The trickling �lters is an aerobic process in which the second kind of bacterialbiomass (autotrophs) grows with the degradation of ammonium and oxygen intonitrate. The reason why nitri�cation is separated from the rest of the ASP atRyaverket is because high water �ow and that heterotrophs grow much faster thanautotrophs. The heterotrophs will therefore outcompete the autotrophs and, hencelimit the potential nitri�cation in the ASP. Still, there are some nitri�cation in the



8 Chapter 3 THE PLANT AND MODELINGaerobic parts of the AS basins have been observed.The purpose of the secondary clari�er is to allow the biological �ocs and particulatecompounds in the water to settle and produce sewage water containing low levelsof nutrients and organic matter. A large part of the super�uous sludge is pumpedback to the primary sedimentation step and treated further. To be able to handlestricter e�uent standards disc �lters has newly been installed. The purpose of theseis to further remove particulate compounds.Figure 3.2 gives a more detailed picture of the ASP. The focus of this work is withinthe dashed line, and it de�nes what is included in the simulation model. The water
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Figure 3.2. Model of the activated sludge process at Ryaverket.from the trickling �lters is saturated in oxygen, and the purpose of the deox tanksis to lower the oxygen level in the water to close to zero before it enters the anoxiccompartments of the basins. In reality there are two deox tanks, recycled sludge�ows and trickling �lters. In simulation, the two �ows QX and Qrec are divided overtwo equal deox tanks. Vt is a transport volume which is non neglible. The points m1to m4 are measurement points. The �ows Qin (in�uent wastewater), QX (recycledsludge �ow), Qrec (water from the trickling �lters) are all measured. These are mixedand divided over three AS basins, or lines, that are equal and therefore only one lineis included in the simulation model. The �ow through one line is symbolized with
Q. The AS basin is illustrated in Figure 3.3. As indicated in the upper part of the�gure, the process have nine zones, where the two �rst ones (40 % of the process)are always anoxic, and at least the last 4 zones (also 40 % of the process) are alwaysaerated. In the middle there are three zones, comprising 20 % of the process thatcan be either anoxic and mixed, or aerated. The normal case is that 40% of the basinis aerated. The dissolved oxygen (DO) concentration in the aerobic compartmentsis feedback controlled to 2mgl−1 every second month and 4mgl−1 every other. The



3.1 Tanks 9di�usors in the aerobic compartments are illustrated with the dashed line at thebottom of the basin. The di�usors are in reality a long chain of pipes and the totalair �ow through these can be controlled and measured individually per zone. Theoxygen- (SO) and nitrate (SNO) sensors are also illustrated in the upper part ofFigure 3.3. Regarding the nitrate sensors, the given positions are where there arecontacts to plug in a sensor and there are not always two sensors plugged in.
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zone 1 zone 2 zone 3 zone 4 zone 5 zone 6 zone 7 zone 8 zone 9PSfrag replacements
SNOSNO SO2 SO2

SO2

SO2

Figure 3.3. Division of the basin into zones and tanks.
3.1 TanksLithium tracer tests carried out on the sludge basin indicated that it could be ap-proximated by 8 ideally stirred tanks. This is illustrated in the lower part of Figure3.3. The division into tanks is treated further in Chapter 5.2. In simulation, alsothe deox tanks and the transport volume Vt are assumed to be described by ideallystirred tanks. The volumes of the tanks are given in Table 3.1. Parameters, concen-trations, variables, and functions are indexed based on which tank they belong to.The index set is I = {d1, d2, t, 1, . . . , 8}, where t, d1 and d2 represents the transportvolume and the deox tanks. The concentration of nitrate in the �rst tank in the ASbasin is for example SNO:1. When discussing an arbitrary tank, no index is given,and the in�uent concentration is indexed with in. For the simulation model, it isassumed that the air �ows are controlled and measured per tank, and the same goesfor nitrate and oxygen.Table 3.1. Volumes of the bioreactors (m3).

Vd Vt V1 − V4 V5 − V83960 1700 11930/12 3310



10 Chapter 3 THE PLANT AND MODELING3.2 BOD and CODDescribing the organic content of waste water is not trivial, since we are not dealingwith one certain substance. One usually measures it as chemical oxygen demand(COD) or biochemical oxygen demand (BOD). COD expresses how much oxygenthat is needed to chemically oxidize all organic substances. Chemical degradationof a substance means degradation by burning it. BOD expresses how much oxygenthat is needed to biologically degrade all biodegradable organic substances in acompound biologically. In laboratory, BOD in a water sample can be analyzed bymeasuring the amount oxygen that the sample consumes in a speci�ed time period.There are di�erent BOD measurements depending on the time of analysis. The twomost common are the BOD5(5-day BOD), and the one used in Sweden BOD7(7-dayBOD).3.3 The in�uents and the e�uentIn the cleaning steps preceeding the ASP, as much as possible of the particulate com-pounds in the water are removed. All can, however, not be removed and the �ow Qincontains particulate compounds in the form of heterotrophic biomass, biodegradableorganic matter and inert (non biodegradable) organic matter, where the latter onesare dominant. Relevant dissolved compounds in Qin are ammonium, biodegradable-and inert organic matter. During rainy periods, due to nitri�cation in the tunnels,the concentration of nitrate in this �ow is also signi�cant. Qrec, the e�uent fromthe trickling �lters is very clear and contains little particulate matter. Except fornitrate, Qrec holds a small concentration of autotrophs, and the water is saturatedin oxygen. The particulate concentration in QX is large, and consists in addition toheterotrophs of biodegradable- and inert organic matter. The exact composition ofthe sludge is not well known, but approximately 70 % are organic compounds. It isalso reasonable that this �ow holds concentrations of dissolved organic matter butthe biodegradable part should be small (because of the high bacterial concentration).3.4 Measurements and data storageThe measurements in the measurement points in Figure 3.2 are listed in Table 3.2.Daily samples of COD are taken in measurement point m1 (Qin) and in the e�u-ent in measurement point m4. Totally suspended solids is a measurement of theconcentration of particles in the water. Weakly samples from the e�uent are alsoanalyzed for BOD. The restriction on the e�uent in mean organic content over ayear is 10mg(BOD)l−1. If the plant cannot live up to this GRYAAB must pay apenalty fee. For a less noisy signal, the output of the oxygen sensors are means ofmeasurements for the last 60 seconds. In addition to this, the data of all measure-ments in the central data storage system are means of the signals for the last 30



3.5 Mathematical modeling 11seconds. According to the plant sta� the nitrate sensors may be drifting, i.e. themeasurement error may be biased. Water temperature is also measured online.Table 3.2. Measurements in the measurement pointsMeasurment|Measurement point in Figure 3.2 m1 m2 m3 m4Daily measurement of COD * *Suspended solids * * * *Ammonium * *Nitrate *
3.5 Mathematical modelingThe basic block in the simulation model is the model of one single tank. For a fullmodel, the tank models are linked by massbalances. Below, the model of Tank i isgiven.

d

dt
Zi = Di(Q)(Zi−1 − Zi) + ξ(q, Zi), i ∈ I (3.1)

Zi is the concentration vector and Di =
Q
Vi

is the dillution rate (day−1). ξ describesthe mass transfer of oxygen from the di�users and the reactions in the tank. qi isthe air �ow of the di�users in the tank. Zi−1 is the concentrations in the previousupstream tank or in the in�uents. In the complete model the mixing of the threein�uent �ows in Figure (3.1) is included.3.5.1 The activated sludge model NO.1To describe the reactions occuring in the tanks, the activated sludge model NO.1(ASM1) is chosen. It was described by Henze et al. (2000). It is physically basedand is a good compromise between simplicity and accuracy. The concentrations inthe model are listed in Table 3.3. Eight of these describe organic compounds mea-sured in mg(COD)l−1. This includes readily- (dissolved) and slowly (particulate)biodegradable substrate, inert organic matter, and heterotrophic- and autotrophicbiomass. The rest of the variables in the model are nitrogen compounds and Alka-linity. The concentrations denoted by an S are soluble, and the ones denoted byan X are particulate. The reactions in the ASM1 are described by process ratesand stochioemtry. The stochiometry describes the quantitative relations betweenthe compounds in the reactions. It describes for example how much oxygen (SO),and readily biodegradable substrate (SS) that is needed for the growth of 1g het-erotrophic biomass. The reactions in the ASM1 are given with a matrix notation,the ASM1 matrix. This matrix is given in Table 3.4.
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Table 3.3. Concentration variables in the ASM1Symbol Name Dimension
SO Oxygen M(−COD)L−3(negative COD)
SS Readily biodegradable substrate M(COD)L−3

XS Slowly biodegradable substrate M(COD)L−3

XBH Active heterotrophic biomass M(COD)L−3

SNO Nitrate and nitrite nitrogen M(N)L−3

XBA Active autotrophic biomass M(COD)L−3

SNH Ammonium M(N)L−3

SI Soluble inert organic matter M(COD)L−3

XI Particulate inert organic matter M(COD)L−3

XP Particulate products arising from biomass decay M(COD)L−3

SND Souluble biodegradable organic nitrogen M(N)L−3

XND Particulate biodegradable organic nitrogen M(N)L−3

SALK Alkalinity Molar units
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Table 3.4. Process kinetics and stoichiometryComponent i 1 2 3 4 5 6 7 8 9 10 11 12 13 Process Rate ρjProcess j SI SS XI XS XBH XBA Xp SO SNO SNH SND XND SAlk1 Aerobic growthof heterotrophs −
1

YH

1 −
1−YH
YH

−iXB
iXB
14

µH
SS

KS+SS

SO
KO,H+SO2 Anoxic growthof heterotrophs −

1
YH

1 −
1−YH
2.86YH

−iXB
1−YH

14·2.86YH
µH

SS
KS+SS

KO,H
KO,H+SO

−
iXB
14

×
SNO

KNO+SNO
ηgXBH3 Aerobic growthof autotrophs 1 YA−4.57

YA

1
YA

−iXB −
1

YA
−

iXB
14

µA
SNH

KNH+SNH

SO
KO,A+SO4 'Decay' ofheterotrophs 1 − fp −1 fp iXB − fpiXB bHXBH5 'Decay' ofautotrophs 1 − fp −1 fp iXB − fpiXB bAXBA6 Ammoni�cationof soluble 1 -1 1

14
kaSNDXBHorganic nitrogen7 'Hydrolysis' of 1 -1 kh

XS/XBH
KX+XS/XBH

(

SO
KO,H+SOentrapped +ηh

KO,H
KO,H+SO

SNO
KNO+SNO

)

XBHorganics8 'Hydrolysis' ofentrapped 1 -1 ρ7XND/XSorganic nitrogen Observed Conversion Rates (g/m3d): ri =∑8
j=1 νijρj



14 Chapter 3 THE PLANT AND MODELINGIn the upper part of the matrix, the concentrations are listed. The mid part describesthe stochiometry while the right hand column gives the process rates. The name ofthe processes is given in the left column. To get the reaction rate of a concentration,we should multiply each stochiometric coe�cient in its column with the process rateon the same row and sum them up. The reaction rate of oxygen is for example
−1 − YH

YH
ρ1 −

4.57− YA

YA
ρ3.Concentrations enter the reactions in the ASM1 mainly in Monod expressions. AMonod expression in a concentration z is either z

Kz+z
or Kz

Kz+z
. The �rst one modelsthat a process rate is strictly monotonically increasing with z, but is bounded. Theother kind models the same for 1

z
. The parameter Kz is called the half saturationcoe�cient for z and de�nes the value of z for which the Monod expression equals

0.5. The concentrations in the upper part of Table 3.3 stands for the dominatingpart of the reactions in this kind of ASP. The variables in the mid of the table,
XBA and SNH are included in the simulation model but stands for only a smallportion of the reactions. Mathematically, this follows from that they enter thereactions as SNH

KNH+SNH
XBA, and the concentration of autotrophs is small. These willbe considered as disturbances in observer models derived later and it is thereforeuninteresting how they are formed. The variables in the lower part of the table onlya�ects the variables in the upper part via XBA and SNH or not at all. These are thusexcluded from the simulation model by setting them to zero in the in�uent. As seenin Table 3.3, SNO is used to refer to both nitrate and nitrite in the ASM1. Thereis no measurement of nitrite at the plant, but the concentration can be assumed tobe small and is not considered in the model. SNO, thus further on refers to Nitrate.The degradation of SO and SS, and the growth of heterotrophic biomass XBH in anaerobic tank is described by the process rate Aerobic growth of heterotrophs (ρ1), andis limited by the same variables. Degradation of slowly biodegradable (particulate)substrate (XS) into SS is described by the process rate 'Hydrolysis' of entrappedorganics (ρ7), and is limited by SO, XS, and XBH . It is also limited by SNO, butthis applies mainly to the anoxic compartments. Biomass not only grows, but ofcourse also dies. This is described by the process rate 'Decay' of heterotrophs (ρ4).It is also described that part of the heterotrophs is degraded into XS when they die.For the anoxic compartments we have the process rate Anoxic growth of heterotrophs,which is limited by SNO, XBH and inversely limited by the oxygen concentration.3.5.2 Parameters in the ASM1The parameters in the ASM1 are speci�c for each plant. At Ryaverket, one hasbeen tuning many of the parameters for their simulation model, but some are keptat default values. The parameters vary with temperature, but may also vary withother conditions. In Table 3.5 those ASM1-parameters that are important in thisproject are given for the plant at 20 �.
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Table 3.5. ASM1 parameters for Ryaverket.Symbol name value unit
YH Yield for heterotrophic biomass. 0.666 g cell COD formed

(g COD oxidized)−1

µ̂H Maximum speci�c growth rate for heterotrophicbiomass. 3 day−1

ηg Correction factor for µH under anoxic conditions. 1 dimensionless
ηh Correction factor for hydrolysis under anoxic condi-tions. 0.8 dimensionless
kh Maximum speci�c hydrolysis rate. 2.81 g slowly biodegradable

COD(g cell COD ·
day)−1

KX Half saturation coe�cient of slowly biodegradablesubstrate. 0.15 g slowly biodegradable
COD(g cell COD)−1

KS Half saturation coe�cient for heterotrophic biomass. 5 gCODm−3

KNO Nitrate half saturation coe�cient for denitrifyingheterotrophic biomass. 1 gNO3 −Nm−3

KOH Oxygen half saturation coe�cient. 0.2 gO2m
−3

bH Decay coe�cient for heterotrophic biomass. 0.62 day−1

fp Fraction of biomass leading to particular products 0.08 dimensionless
YA Yield for autotrophic biomass 0.15 g cell N formed

(g COD oxidized)−1

bA Decay coe�cient for autotrophic biomass. 0.04 day−1

KNH Ammonia half-saturation coe�cient for autotrophicbiomass 1 g NH3 −Nm−3

µ̂A Maximum speci�c growth rate for autotrophicbiomass 0.1 day−1

iXB Mass of nitrogen per mass of COD in biomass 0.068 gN(g(COD))−1

iXP Mass of nitrogen per mass of COD in biomass 0.068 gN(g(COD)−1

KOA Oxygen half-saturation half saturation coe�cient forautotrophic biomass 0.2 gO2m
−3



16 Chapter 3 THE PLANT AND MODELING3.5.3 Mass transfer of oxygenMass transfer of oxygen is described by
KLa(q)(SOsat − SO)(Olsson and Newell 1999). This concerns only the oxygen equation in ξ, and entersthis in a sum with the reactions in the ASM1. The oxygen mass transfer function

KLa (day−1) is not known for Ryaverket, but it is often assumed to be exponentialw.r.t. the air �ow:
KLa(q) = k1(1− e−k2q), (3.2)with parameters k1 and k2 (Olsson and Newell 1999). SOsat is the oxygen saturationconcentration and de�nes the maximum oxygen concentration in the water. Wik(1999) gave a temperature model for SOsat:

SOsat = 14.53− 0.411T + 9.6 · 10−3T 2 − 1.2 · 10−4T 3.This claims to work well for both fresh and waste water, but there is a common usedconversion between SOsat for the two kind of waters:
SOsat(wastewater) = βSOsat(freshwater).Accordning to Stenstrom and Gilbert (1981) β for domestic wastewater is generallyabout 0.95 but it can vary over a much broader range for industrial wastewater. 0.95is used here.3.6 Simulation platformThe simulation and programming language used in this work is Matlab/Simulink.A part of the model is illustrated in Figure 3.4. The tanks are modeled using an S-function (state space function) block together with a C-�le implementing the ASM1model together with inputs and outputs. This �le was developed in the COSTbenchmark project (Copp 2001, Alex et al. 1999). The full model also includes thecreating and mixing of the three in�uents and oxygen PI controllers for the aerobictanks. Depending on the application, discrete or continuous controllers are used.3.7 Case studyCompared to linear systems, analytic veri�cation of a nonlinear system may be dif-�cult because equations may be very complicated. Another possibility would be toverify it for every possible condition but this is of course not realistic. To evaluatedesigns, a speci�c simulation case is therefore used in this work. The use for an ob-server with unknown inputs implies that high resolution data on all concentrationsin the model is not available. Still, daily mean samples are analyzed for COD at the
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Figure 3.4. Simulink modelplant. Using a scheme, this is divided over the organic compounds in the ASM1.This is however only for the in�uent Qin and not for the other �ows. The plant simu-lation model is more complex and takes among others recirculation and the trickling�lters into account. For a reasonable case, the simulation data presented here arebased on data from the Ryaverket plant simulation model. Simulation conditionsfor waste water plants are commonly categorized based on weather conditions. Thesimulation �les at the plant are divided into "dry summer", "rainy summer", "drywinter" and "rainy winter". The chosen conditions here are a "dry summer" withthe temperature 20 �. Parameter values in the model for these conditions are de-�ned in Section 3.5. The concentrations in the in�uents are chosen such that meanconcentrations in the simulation model coincide with the plants simulation data atpoint 1 in Figure 3.2. The choice of the concentrations in the individual �ows arebased on measurements, lab analysis and knowledge of the process (refer to Section3.3). The variations in the concentrations about their means are chosen to have areasonable e�uent and an interesting simulation case. The shape of the variations in
SS and XS in Qin are based on the weather �les from the COST benchmark project(Copp 2001, Alex et al. 1999). The simulation case is for a 14 days period. Themean values of the considered concentrations in the ASM1 for this period, for thethree in�uents and in the point 1 in Figure 3.2 are listed in Table 3.6. To simplifysimulation of some of the estimators developed in the next chapter, the water �ows
Qin, Qrec and QX are chosen to be constantly 4, 4 and 3 m3s−1 which corresponds tonormal conditions at the plant. Noises in the water �ow measurements are assumedto be neglible. For later purposes it will be convenient to model XBH in QX as a



18 Chapter 3 THE PLANT AND MODELINGTable 3.6. Mean concentrations in the in�uents and the point 1 in Figure 3.2Concentration Unit Qin Qrec QX 1
SO mg(−COD)l−1 0 8.7 0 0.05
SS mg(COD)l−1 127 0 2.5 42.5
XS mg(COD)l−1 376 0 280 210
XBH mg(COD)l−1 52 0 3670 1020
SNO mg(N)l−1 0 12 0 3.5
XBA mg(COD)l−1 0 70 0 25
SNH mg(N)l−1 11 0 2 3.9fraction of TSS in the same �ow:

XBH in QX = (TSS in QX) · γXBH
,where γXBH

is a slowly time varying parameter. XBH in the AS basin may varyfast with changes in the relation between the three in�uent �ows, while the TSSconcentration in QX is controlled to a constant value. The in�uent �ows are setto be constant, so to simulate fast changes in XBH , instead the TSS concentrationin QX is varied. The shape of this variation is a sinus with the period two days.The parameter γXBH
is also simulated as a sinus with the period 20 days. The TSSconcentration in Qin is formed by multiplying the time varying part of XS in thesame �ow with sinus signals of di�erent frequencies and amplitudes, and adjustingits mean. For purposes that will become evident later on, XS is then delayed 30minutes. TSS measurements are assumed to have neglible noise.Only the last 2 tanks (40 % of the basin) are aerated and the oxygen reference of thePI controllers are set to 2mglO2l

−1. In reality the maximum air �ow in the aeratedpart of the AS basin is 2160 m3h−1 per zone. In the model it is assumed that themaximum air �ow is qmax = 2.5 · 2160m3h−1 in each of the aerated tanks. As statedin Section 3.5, the KLa functions of the tanks are unknown and assumed parametervalues are used here. The function is chosen to be the same for both of the aeratedtanks and the choice of the parameters k1 and k2 in the Model (3.2) is based on thefollowing two made up criteria� ∂KLa(q)
∂q

∣∣∣
q=qmax

= 0.7 ∂KLa(q)
∂q

∣∣∣
q=0

.� KLa(qmax) should equal the maximally needed KLa function during simulationwith the case study when the DO-reference is set to be 4mgO2l
−1 in Tank 7.The explicit values of k1 and k2 are given in Table 3.7 and the function is illustratedin Figure 3.5(a) It is assumed that air �ow measurements have neglible measurementnoise. Although, the properties of the real sensors stated in Section 3.4, noises inthe nitrate and oxygen sensors are chosen to be Gaussian white noise to be moregeneral. The standard deviation is assumed to be 0.2 which is 10 % of the oxygenreference. To illustrate the variance of the noise, a series is shown in Figure 3.5(b).
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Table 3.7. KLa parameters.
k1 (d−1) k2 (m−3h)
6.6 · 10−5 1200



4 ESTIMATION - THEORY AND SIMULA-TIONIf other conditions are not stated, the simulation data used in this chapter is thesame as in the case study in Section 3.7. The focus here is on estimation of SS,
XS and XBH in the ASM1. For optimization of several of the control variablesin ASP:s it is necessary with estimates for the whole AS basin. It is, however,concluded that it would not be possible to estimate all the considered concentrationsin the anoxic compartments separately. This must include measurements in theaerobic compartments or estimates from an observer for these. It is much worth withestimates only for the aerobic compartments, and an extension is much simpli�edonce this is available. Mainly two categories of solutions are considered here:� Separate estimation of the heterotrophic biomass in the anoxic tanks and SSin the aerobic compartments via estimation of rate expressions. This is basedon that we may know that the Monod expression in SS is saturated in theearly upstream tanks and we can assume a value for the Monod expression.� Estimation of all concentrations of intrest with an extended Kalman �lter forthe aerobic compartments.Methods to estimate the for an implementation necessary KLa function are �nallyevaluated and further developed.4.1 Observers and observability conditionsIf not stated explicitly, the theory in this section is taken from Besançon (2007) orLewis (1986).The purpose of an observer is to recover the state vector x of a system based onmeasurements of inputs y and outputs u up to the current time t, and an internalmodel of the system. The theory is here presented for continuous time systems ofdimension n (dim(x) = n) on the form

{
ẋ = a(x, u, t) + w state equation
y = c(x, u, t) + v measurement equation , (4.1)where w is process noise (white Gaussian) with covariance R1 = E[wwT ], and vis measurement noise (white Gaussian) with covariance R2 = E[vvT ]. This systemformulation is quite general and includes the following generalizations:� LTI systems for which a(x, u, t) = Ax+Bu and c(x, u, t) = Cx+Du.20



4.1 Observers and observability conditions 21� LTV systems for which a(x, u, t) = A(t)x + B(t)u and c(x, u, t) = C(t)x +
D(t)u.� State a�ne systems for which a(x, u, t) = A(u)x + B(u) and c(x, u, t) =
C(u)x+D(u).If R1 and R2 are zero matrices, the System (4.1) is deterministic, otherwise it isstochastic.De�nition 1 (Observer for deterministic systems) An observer for a deter-ministic system (4.1) with R1 and R2 equal to zero is an auxiliary system

Ẋ = F (X, u, y, t)

x̂ = H(X, u, y, t),such that
(i) x̂(0) = x(0) ⇒ x̂ = x, ∀t ≥ 0
(ii) ‖x̂− x‖ → 0 as t → ∞.If (ii) holds for any pair x(0), x̂(0), the observer is global.If (ii) holds with exponential convergence, the observer is exponential.If (ii) holds with a convergence rate which can be tuned, the observer is tunable.A de�nition of an observer for a stochastic system can be formulated by looseningthe conditions (i) and (ii), since these cannot hold strictly for such a system.4.1.1 Observability conditionsObservability conditions should express that there indeed is a possibility that thepurpose of the observer can be achieved, namely that it might be possible to recover

x from the only knowledge of u and y up to time t. At �rst glance this will bepossible only if y bears the information on the full state vector when considered oversome time interval. This roughly corresponds to the notion of observability. Howeverwhen restricting the de�nition of an observer strictly to items (i)-(ii), it is possibleto construct observers even in cases when y does not bear the full information onthe state vector. This corresponds to detectable systems. Observability conditionsfor a stochastic system are investigated for the corresponding deterministic system.We start with a very general de�nition of observability. Let χu(t, xt0) denote thesolution to the state equation in the System (4.1) for a given input u on [t0, t] andinitial condition χu(t0, xt0) = xt0 .De�nition 2 (Indistinguishability) A pair (x0, x
′

0) is indistinguishable for thesystem (4.1) if
∀u ∈ U, ∀t ≥ 0, c(χu(t,x0), u, t) = c(χu(t,x

′

0)
, u, t).



22 Chapter 4 Estimation theory - theory and simulationFrom this, observability can be de�ned.De�nition 3 (Observability) The System (4.1) is observable if it does not admitany indistinguishable pair.4.1.1.1 Observability of linear systemsAn observer for the deterministic LTI version of the system (4.1) is
˙̂x = Ax̂+Bu+K(Cx̂− y), (4.2)where K is the observer gain, here assumed to be constant. De�ne the observererror e = x̂− x. The di�erential equation describing e is

ė = (A−KC)e,which is asymptotically stable if (A−KC) is stable, or equivalently, if the eigenvaluesof (A − KC) are strictly negative. If the eigenvalues of (A − KC) can be placedarbitrarily by choosing K, the system is observable. If this does not hold but (A−
KC) is stabilizable (can be made stable) the system is detectable. In other words,this means that the unobservable modes of the system are stable. Observability canbe checked in several ways:� By direct investigation of the eigenvalues of (A−KC), by which we also caninvestigate detectability.� By con�rming that the rank of the observability matrix equals the dimensionof the system, see Åstrom and Wittenmark (1997). This condition is referredto as the Kalman rank condition.� In Matlab, observability of an LTI system can be investigated by a lineartransformation into a staircase form. By this, the observable states of thetransformed system are found. The eigenvalues of the unobservable states arealso displayed, from which one can conclude if the system is detectable. Byan inverse transformation, observability/detectability of the original systemsstates can be investigated.The last method is to prefer if the dimension of the system is large. The transfoma-tion of the state x is described by x

′

= Tx, where T is the transformation matrix.Consider the case with one undetectable mode. In the transformed system, thisis the �rst element x
′

1 of x′ . Let T
′ be the inverse transformation matrix - T−1.The relative dependency for the i : th state in x of the undetectable mode can becalulated by
T

′

(i, 1)x
′

1∑n
k=1

∣∣T ′(i, k)x
′

k

∣∣ .Yet another method to investigate detectability is presented in Section 4.1.2.1.



4.1 Observers and observability conditions 234.1.1.2 Observability of nonlinear systemsFor a nonlinear systems, De�nition (3) of observability might be too general forpractical use since one might mainly be interested in distinguishing states fromtheir neighbors. Consider for instance the system
{

ẋ = u
y = sin(x)

.Clearly y cannot help distinguish between x0 and x0 + 2kπ. However, y allows todistinguish states in ]− π
2
, π
2
[. A general notion of observability which includes thiscase is weak observability.De�nition 4 (Weak observability (resp. at x0)) The System (4.1) is weaklyobservable (resp. at x0) if there exists a neighborhood U of any x (resp. at x0)such that there is no indistinguishable state from x (resp. x0) in U .Notice that it is allowed that trajectories may go far from U before one can distin-guish two states of U . The system




ẋ = u

y =

{
x, |x| ≥ 1
0, |x| < 1is weakly observable since any state is distinguishable from any other one by applyingsome nonzero input, but distinguishing two points of [−1, 1] needs to wait for yto move away from 0. Hence, to prevent from this situation, an even more localde�nition of observability can be given.De�nition 5 (Local weak observability (resp. at x0)) The System (4.1) is lo-cally weakly observable (resp. at x0) if there exists a neighborhood U of any x (resp.of x0) such that for any neighborhood V of x (resp. x0) contained in U , there are noindistinguishable state from x (resp. x0) in V when considering time intervals forwhich trajectories remain in V .This roughly means that one can distinguish every state from its neighbors without"going too far". Local weak observability can be checked with the observability rankcondition. Note that this property does not say anything about global properties.Let

Y =




y
dy
dt...

dym

dtm


 , O(x) =




c(x, u, t)
Lfuc(x, u, t)...
Lm
fu
c(x, u, t)


 ,where Lk

fu
c(x, u, t) are Lie derivatives of for any constant input u, and m is anarbitrary positive integer. Y is what we can see from measurements and if the



24 Chapter 4 Estimation theory - theory and simulationsystem is deterministic we have that Y = O(x). From a theorem in multivariablecalculus it follows that O(x) as a function of x is bijective about a point x0 if therank of ∂O(x)
∂x

at this point equals n, see Persson and Böiers (1988). From this followsthe observability rank condition.Theorem 1 (The observability rank condition) The System (4.1) is weakly lo-cally observable if rank (∂O(x)
x

)
= n for any x, and is locally weakly observable at

x0 if
rank

(
∂O(x)

x

∣∣∣
x=x0

)
= n.This theorem is somewhat simpli�ed compared to the presentation in Besançon(2007). If the system is locally weakly observable, we can con�rm this by choosing

m large enough and using the theorem. It might however be di�cult to con�rmthe contrary since we are free to chose m in�nitely large. Still, it is reasonable toassume that the condition does not hold if increasing m over some value does notseem to increase the rank of the jacobian. For LTI systems, the observability rankcondition simpli�es to the Kalman rank condition. For nonlinear systems, local weakobservability is not enough for a possible observer design since the observabilitymay depend on the inputs. We want to di�erentiate between systems for whichobservability is a property of the inputs and not. For that, the notion of uniformobservability is introduced.De�nition 6 (Universal inputs) An input is universal for the system (4.1) if
∀x0 6= x

′

0, ∃τ ≥ 0 such that c(χu(τ,x0), u, τ) 6= c(χu(τ,x
′

0)
, u, τ). An input is singular ifit is not universal.De�nition 7 (Uniformly observable systems) The system (4.1) is uniformlyobservable if every input is universal.The system





ẋ =




0 1 0 · · · 0. . . . . .
0... 1

0 · · · 0



x+




φ1(x1)
φ2(x1, x2)

. . .
φn−1(x1, . . . , xn−1)
φn−1(x1, . . . , xn)



u

y = x1

(4.3)
with nonlinear functions φi is uniformly observable. This can be checked by con-sidering any pair of distinct states x 6= x

′ : assuming indeed that their respectivecomponents xk and x
′

k coincide up to order i and that xi+1 = x
′

i+1, then it is clearthat ẋi−1 − ẋ
′

i−1 6= 0 and thus there exist a t0 such that xi(t) 6= x
′

i(t) for 0 < t < t0,which is true for any u.



4.1 Observers and observability conditions 254.1.2 Observer designsFor linear time invariant- (LTI) and linear time variant (LTV) systems, the theoryand design of observers are general concepts, while for nonlinear systems these con-cepts are system dependent. Special kinds of observers are �lters in which propertiesof disturbances acting on the system are taken into account in the observer synthesis.4.1.2.1 Observers for linear systemsA general form of an observer for a linear system is given by Equation (4.2) withthe addition that K might be time varying. The deterministic case is not treatedfurther but it is stated that given that the system is observable, the convergencerate can be made arbitrarily fast. In the design of observers for stochastic systems,there is a compromise between noise dampening and fastness. A Kalman �lter foran LTI system is optimal in the sense that that it minimizes the expectation of thequadratic error (covariance) P = E[eeT ]. The continuous time version for the LTIsystem (4.1) is presented below.Algorithm 1 (Continuous time Kalman �lter.)
P (0) = P0, x̂(0) = x̂0 Initialization

˙̂x = Ax̂+K[y − Cx̂] Estimate update
Ṗ = AP + P TA +R1 − PCTR−1

2 CP Error covariance update (4.4)
K = PCTR−1

2 Kalman gain
P (0) is the covariance of the initial error: P (0) = E[(x̂(0) − x(0)], which never isknown exactly but should re�ect the "quality" of the initial guess x̂(0) of x(0). Thealgorithm is taken from Lewis (1986), in which the corresponding one for discrete LTIsystems also is given. Equation (4.4) is the Ricatti equation. There is a connectionbetween the Ricatti equation and detectability:Theorem 2 (Detectability and the Ricatti equation) Let R1 =

√
R1

√
RT

1 , and
R2 > 0. Suppose (A,

√
R1) is reachable. Then (A,C) is detectable if and only if:� There is a unique positive de�nite limiting solution P to Equation (4.4), whichis independent of P (0). Furthermore, P is the unique positive de�nite solutionto this.� The error e = (x̂− x)(x̂− x)T is asymptotically stable.The Algorithm 1 also works and is optimal for LTV- and state a�ne systems.



26 Chapter 4 Estimation theory - theory and simulation4.1.2.2 Observers for nonlinear systemsIn systematic design of observers for nonlinear systems, one di�erentiates betweenuniformly- and non-uniformly observable systems. Uniformly observable systems can(at least locally) be transformed into an observable canonical form. For a system onthis form, it is possible to design tunable observers and there exists general designmethods. The System (4.3) is on this form and admits an observer on the form
˙̂x = Ax̂+ φ(x̂, u)−




λ 0 · · · 0

0 λ2 . . . ...... · · · . . . 0
0 · · · · · · λn


K(Cx̂− y),with K such that (A − KC) is stable, and λ large enough. This design is knownas a high gain observer since it relies on the choice of some su�ciently large tuningparameter λ. There are much more general observability canonical forms, for a fulltreatment, see Besançon (2007).4.1.3 The Extended Kalman �lterThe optimal �lter problem for nonlinear systems is in general very complicated, andonly in a few cases do algorithms exist which are easy to implement or understand.In applications, it is common to design a Kalman �lter for the linearization of thenonlinear system around a point x0. This is useful, if for example x0 is a referencestate, which the system is stabilized to by feedback control. An extension to this, isto let the linearization in the Kalman �lter be continuously time varying and be thataround the current estimate x̂. This is the algorithm of the extended Kalman �lter(EKF). In Lewis (1986) one derives the conditional probability density function ofthe state given measurement data. This is then used to �nd optimal update equa-tions for the estimate and error covariance which are in general not computationallyrealizable. To obtain a computationally viable algorithm for general nonlinear sys-tems, one makes approximations that result in the EKF. The algorithm is statedbelow for the System (4.1).Algorithm 2 (Continuous time Extended Kalman �lter.)

P (0) = P0, x̂(0) = x̂0 Initialization
˙̂x = a(x̂, u, t)x+K[y − c(x̂, u, t)] Estimate update (4.5)

Ṗ = A(x̂)P + P TA(x̂) +R1 Error covariance update (4.6)
−PC(x̂)TR−1

2 C(x̂)P

K = PC(x̂)TR−1
2 Kalman gain

A(x) =
∂a(x, u, t)

∂x
, C(x) =

∂c(x, u, t)

∂x
Jacobians



4.1 Observers and observability conditions 27The �lter is a good - almost optimal if the variances are small - local observer butit is in general not a globally converging observer. Intuitively, if the initial guessis far from the actual state, the linearization around the estimate has no sense.Theorems regarding convergence of EKF:s has not been found in the litterature,but it is reasonable that observability of linerizations of the nonlinear model in theobservation space is an important property. For systems that can be transformed intoan observability canonical form there are special variants of EKF:s that are globallyconverging. The high gain extended Kalman �lter (HG-EKF) is an extension ofthe extended Kalman �lter in which the covariance matrix R1 is chosen in a specialway. The idea is to "kill" the nonlinear part of the model.The drawback is that itis very sensitive to noise, i.e. the estimates get very noisy. An interesting extensionof the HG-EKF is the adaptive gain extended Kalman (AG-EKF). This behaves asa HG-EKF at startup but the observer itself converges in time to an ordinary EKF.Also if large perbutations occur, the high gain part takes over again.4.1.4 Implementation of EKF:sThe equations in the Algorithm 2 are continuous and cannot directly be solved ona computer. In Lewis (1986) it was suggested to implement EKF:s using the RungeKutta 4 method. This is a common method to solve ordinary di�erential equations(ODE:s). The method is presented for a system on the form
dx

dt
= f(x, t). (4.7)in the algorithm below.Algorithm 3 (The Runge Kutta 4 method) Let (xk, tk) be the solution to Equa-tion (4.7) at time kh. The solution at time kh+h can be approximated by sequentiallycalculating

a = hf(xk, tk)

b = hf(xk + a/2, tk + h/2)

c = hf(xk + b/2, tk + h)

d = hf(xk + c, tk + h)

xn+1 = xk +
a+ 2(b+ c) + d

6
.The algorithm has been taken from Xin-She (2008). Note that when using it to solvethe equations in the EKF in Algorithm (2), the Equations (4.5) and (4.6) for [x̂, P ]should be treated as one system of equations.



28 Chapter 4 Estimation theory - theory and simulation4.1.5 Random walk modelsA random walk process x is a variable which is modeled as being completely drivenby noise. In its simplest form, a model for x is
ẋ = wx. (4.8)Here, wx is white noise, with varianceRx. This is useful to model variables/parameterswithout known dynamical equation. In a Kalman �lter Rx is used to relate the vari-ation of x compared to other variables and noises in the model. In the discrete case,the Model (4.8) translates to

x(k + 1) = x(k) + wx(k)4.2 Estimation of sludge concentrationsThe experience at the plant is that the substrate concentration is correlated withthe TSS measurement in the in�uent Qin. SS is too much a�ected by upstreamprocesses for this information to be useful in an observer for the aerobic process.
XS, however, is little a�ected by reactions in the basin and is mainly driven bymassbalances. It consists mainly of particulate compounds, and a correlation withthe TSS measurement intutively seems reasonable. This motivates an introductionof the variable Xin (gTSS):The sludge concentration originating from the �ow Qin.This can be estimated for the tanks by simulating the TSS measurement in Qinwith massbalances

˙̂
Xin:t =

3Q

Vt

(
Qin

3Q
((measured TSS in Qin)− X̂in:t) (4.9)

˙̂
Xin:1 = D1(Q)(X̂in:t − X̂in:1)...
˙̂
Xin:8 = D8(Q)(X̂in:7 − X̂in:8).Because of the physical distance between the TSS sensor and the later tanks, wecan predict the future concentration, which can be used to make an observer reactfaster to changes. To make this easily implementable, XS was delayed 30 minutescompared to the TSS concentration in the the simulation case in Section 3.7.The dominating source of heterotrophs XBH in the AS basin is the recycled sludge�ow QX . There is also a relatively small concentration in the in�uent �ow Qin andwe also have growth and decay in the tanks. The composition of the sludge variesslowly, but XBH may vary fast due to changes in the relation between the in�uent�ows to the ASP. Therefore the sludge concentration XX (gTSS) is introducedwhich is



4.3 Estimation of rate expressions, XBH and SS 29The concentration of TSS in a tank originating from the recycled sludge �ow.This can be estimated with the same method as was used for Xin and with the TSSmeasurement in QX . In the simulation case, the slow variation has been modeledwith the parameter γXBH
. We therefore assume that there is a slowly time varyingparameter γ̄XBH

with
E[γ̄XBH

X̂X:i] = XBH:i, i ∈ I,and that γ̄XBH
≈ γXBH

. The index set I was de�ned in Section 3.1. We can thusmodel XBH as γ̄XBH
X̂, and the parameter can be estimated. In the coming designswe will neglect the two parameters di�erences and use γXBH

for γ̄XBH
. We thus havethe model

XBH:i = γXBH
X̂X:i, i ∈ I. (4.10)The C-�le implementing the tank model described in Section 3.6 have been alteredto include estimation of XX and Xin.4.3 Estimation of rate expressions, XBH and SSThe rate expressions oxygen uptake rate OUR and nitrate uptake rate (NUR) de-scribes the reaction rate of oxygen, and Nitrate respectively. Let z be either theoxygen (SO) or nitrate (SNO) concentration and Nz the corresponding rate expres-sion. A general model for z in a tank is

ż = Di(Q)(Szin − z) +KLa(q)(SOsat − z)−Nz, (4.11)whereKLa is identically zero in an anoxic tank, since the air �ow is zero. Nitri�cationhas small e�ect in an anoxic tank, and in this kind of ASP also in an aerobic one(refer to Section 3.5). If nitri�cation is neglected, the two rate expressions can beidenti�ed from Table 3.4 as
NUR = ηgµ̂H

1− YH

2.86YH

SS

KS + SS

SNO

KNO + SNO
XBH (4.12)

OUR = µ̂H
1− YH

YH

SS

KS + SS

SO

KOH + SO
XBH .in the ASM1. Estimated rate expressions can be used for reference control, seefor instance Olsson and Newell (1999). From the stochiometry in the ASM1, itfollows that we from Nz also gets an approximation of the degradation rate of solublesubstrate SS. This can, for example, be used to express the total amount of substratedegraded over period of time. It is here considered to base the estimation of SSand XBH on estimated rate expressions. The Monod expression MSS

= SS

KS+SS
isshown in Figure 4.1(a). In the early upstream anoxic tanks, SS is probably above

30mg(COD)l−1 for most of the day. For these concentrations, MSS
is saturated,and we can assume a value of around 0.9 for it. By applying this, an estimate of

NUR, and measured/estimated nitrate concentration to Equation (4.12) we get anestimate of XBH , or rather γXBH
by applying Equation (4.10). It follows that γ̂XBH
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MSS(b) The inverse of the Monod expression MSSFigure 4.1.with these calculations is increasing with SS, and only reasonable when SS is large,since it is assumed that the Monod expression is saturated. This thus implies that
γ̂XBH

makes sense only when it is relataively large. The method used to estimate
XBH and the parameter implies that the estimated value cannot be used to estimate
SS in the same tanks. This since the inverse of MSS

is here very sensitive to noiseand model errors. The inverse is illustrated in Figure 4.1(b), and it should be clearthat independently of choice of method, it is unreasonable to estimate SS in anoxictanks based only on a model of these. On the other hand, in the last aerobic tank
SS is much smaller, and can be approximated from an estimate of OUR by usingthe estimated value of γXBH

and measured/estimated DO concentration.4.3.1 An observer model for rate expressionsA continuous observer model for z (SO or SNO) and Nz (OUR if z = SO and NURif z = SNO) if derived from Equation (4.11) is




d
dt

[
z
Nz

]

︸ ︷︷ ︸
x

=

[
−D(Q)−KLa(q) −1

0 0

]

︸ ︷︷ ︸
A(t)

x+

[
D(Q)zin +KLa(q)SOsat

0

]

︸ ︷︷ ︸
B(t)

+

[
Di(Q)wzin

0

]
+

[
0
wN

]

y =
[
1 0

]
︸ ︷︷ ︸

C

x+ v

.

(4.13)Time indices have been used for the matrices to emphasize that they vary with timedue to the variation in the inputs. wzin describes measurement noise in the inputconcentration zin. The variance equals the variance of the measurement noise v,which is R2. The rate expression Nz is here modeled as a random walk process



4.3 Estimation of rate expressions, XBH and SS 31with variance RN = E[wNw
T
N ], which is a design parameter. To make it simplerto implement the observer on a computer, the observer model (4.13) is discretized.The sampling time is symbolized with h and the discrete time instants are indexedby k. The discretized observer model becomes

{
x(k + 1) = Ad(k)x(k) + Bd(k) + wd(k)
y(k) = Cdx(k) + vd(k)

. (4.14)With the small approximation that the inputs are constant during the samplingperiods, most of the matrices and covariances in this model can be calculated usingthe standard formulas found in Lewis (1986). Initially we have
Ad(k) = eA(k)h

Bd(k) =

∫ h

0

eA(k)sdsB(k) (4.15)
Cd(k) = C

R2d(k) =
R2

h
variance of the measurement noise vd(k).The variance of the discrete process noise wd(k), R1d(k), can be calculated as a sumof the contributions from wN and wzin, since these are independent. The measuredoxygen input concentration is sampled, and the corresponding discrete measurementnoise is wzind

(k), with variance R2

h
. According to Equation (4.15), this has thefollowing e�ect on the states during one sampling period

∫ h

0

eA(k)sds

[
D(Q(k))wzind

(k)
0

]
.The variance of this expression is

R11d(k) =

∫ h

0

eA(k)sds

[
R2D(Q(k))2

h
0

0 0

] ∫ h

0

eA(k)T sds, (4.16)which is the contribution of wzin to R1d(k). The way Nz is modeled, wN variescontinuously within the sampling periods, and its contribution to R1d(k) is
R12d(k) =

∫ h

0

eA(k)s

[
0 0
0 RN

]
eA(k)T sds,which follows from the formulas in Lewis (1986). Finally, we have

R1d(k) = R11d(k) +R12d(k).It is trivial to check that the model (4.14) is observable using the Kalman rankcondition, and it is not shown here.



32 Chapter 4 Estimation theory - theory and simulation4.3.2 Estimation of NUR based on one reactorIt is here assumed that there is one nitrate sensor in the second anoxic tank, andalso one in the inlet to the same - the �rst anoxic tank. A stationary Kalman �ltergiven in Åstrom and Wittenmark (1997) is used, since with the water �ow constant,the System (4.14) is LTI, and convergence is not an issue. This was implemented inSimulink. According to Section 3.7, R2 is 0.22. The sample time h is chosen to be
0.5 min. The method described in the beginning of this section to estimate XBHand γXBH

is evaluated using the constant value 0.89 ≈ MS |SS=40 for the Monodexpression MS. Instead of the measured nitrate concentration, the concentrationestimated by the Kalman �lter is used in this calculation.4.3.2.1 Simulation resultThe estimate of the nitrate concentration is illustrated in Figure 4.2(a), refer toFigure 3.5(b) for a picture of the measurement noise. N̂UR2 is shown in Figure
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(d) Estimation of γXBH .Figure 4.2. Estimates with a Kalman �lter for the �rst anoxic tank.4.2(b). The result is not very impressive, the convergence rate is quite is slow.



4.3 Estimation of rate expressions, XBH and SS 33There is a compromise between convergence rate and noise dampening, and in thiscase there are disturbances in both the measurement of the input and the output tothe �lter. Noise in the input has particulary large e�ect since the input variance isproportional to (Q
V
)2, and the tank volume is small. X̂BH:2 is illustrated in Figure4.2(c) together with SS:2. The estimate only makes sense when SS is large becauseof the assumption that MSS

is saturated. In Figure 4.2(d), γ̂XBH
is shown. Thisis strictly increasing with SS, and as stated earlier; when γ̂XBH

is large it is alsoquite good. It might be a good idea to form a mean value of γ̂XBH
for a periodof time when this holds. The relatively large noise is due to the calculations afterthe �ltering which ampli�es the noise. It may therefore be better to use an EKF todirectly estimate the parameter.4.3.3 Estimation of NUR based on several reactorsOne would like to estimate NUR based on a model of more than one tank. Thereason is twofold:� As stated earilier, the variance of the noise caused by the measurement of theinput concentration is proportional to (Q

V
)2. If the sensors were more separatedin distance, this variance would be reduced.� The assumption about the sensors placement in the process is not valid, atleast not for now.A possible solution would be to extend the observer with more tanks and with rateexpressions for each, modeled as random walk processes. There are nitrate sensorsin the outlets of the trickling �lters that could be used as the measured input, andthe sensor in either Tank 5 or 6 could be used as output measurement. One couldalso use that the rate expressions are correlated and express this in the process noisecovariance matrix. This solution was considered and tested for a series of two tanks.The result was a non convergent �lter with estimates that stationary dependedon the initial conditions. This also follows from the non detectability of such anobserver model. Another possible solution that could help to reduce the noise is toapproximate two tanks as one. This was considered for the two �rst anoxic tanksin the process with one nitrate measurement in the inlet to the �rst and one inthe second. Approximating two tanks as one means that a second order system isapproximated as a �rst order system. It is not obvious that the volume Vtot in theapproximated model should be the total volume of the two tanks, there might be avalue that is more optimal. Let g1 be the impulse response for the original systemwith the two tanks, and g2 the impulse response of the �rst order approximation.The volumes of the tanks in the original system are in this case equal and we havethat

g1(t) = ( Q
V1
)2te

−
Q
V1

t

g2(t) = Q
Vtot

e
−

Q
Vtot

t
,



34 Chapter 4 Estimation theory - theory and simulationfor the �ow Q constant (Lennartson 2002). A candidate for an optimal Vtot is thatwhich minimizes the integrated quadratic di�erence between the step responses:
∫

∞

0

(g1(t)− g2(t))
2dt. (4.17)The solution is then Vtot ≈ 2.74V1.4.3.3.1 Simulation resultA stationary Kalman �lter for the observer model (4.14) for the approximated systemwas implemented in Simulink. The sampling time h was set to 0.5 min. Bothwhen the value 2.74V1 which minimizes the Criterion (4.17) and when the tankstotal volume was used for Vtot, the �lter estimates of NUR was biased. By trial anderror it was found that the value 2.2V1 gave quite a good result. This is illustratedin Figure 4.3. The optimal choice of V2 is however dependent on the concentrations
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Figure 4.3. Estimation of NUR based on a one-tank model of two tanks.in the tank, which can be seen in the �gure as the estimate becomes more biasedwith time. Any improvement of convergence rate and noise dampening is at leastnot signi�cant.4.3.4 Estimation of OUR and SSIn the aerobic tanks there are measurements of oxygen in all of them. These tanksare also larger than the early anoxic tanks, which makes the variance of the mea-sured input concentration have a relatively smaller e�ect. What contributes moreis that oxygen mass transfer have a relatively large e�ect in the equations. A nonstationary discrete Kalman �lter (Lewis 1986), based on the Model (4.14) was im-plemented for the last reactor. ÔUR8 is shown in Figure 4.4(a). Estimates of SS:8based on the method described in the introduction to this section using the esti-mated DO concentration, and with di�erent values of γ̂XBH
are illustrated in Figure



4.3 Estimation of rate expressions, XBH and SS 354.4(b). The bias for the case with γ̂XBH
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this error isevened out. We can conclude that estimation errors may become large, especially if
SS:8 is relatively large. There are also more possible model errors that has not beenconsidered here, such as an erroneous KLa function.



36 Chapter 4 Estimation theory - theory and simulation4.4 An EKF for the aerobic compartmentsWe are intrested in estimating SS and XS in all the aerobic tanks. In the previoussection, a method to estimate XBH and γXBH
in the anoxic compartments, and

SS in one aerobic tank was presented. From the results we learn that the modelis sensitive to errors in the parameter. Therefore, it is here considered to let also
XBH be an unknown concentration in the observer model. Examples of earlierdeveloped extensive observers based on the ASM1 have been formulated by Benazziet al. (2007) and Boulkroune et al. (2009). These are based on measurements inone aerobic tank, and allthough the bacterial biomass concentrations was assumedto be known, estimation of substrate from unknown inputs was not possible. Thelesson of this is that more online measurements are necessary. Therefore an EKFbased on several aerobic tanks in series is developed, which takes into account theestimated sludge concentrations from Section 4.2. The possibility of an HG-EKFor AG-EKF was considered, but was abandoned due to the di�uculty to transforma model based on the complex ASM1 equations into an observable canonical form(this may not be possible at all). The performance of the �lter based on two tanksis dependent of the real concentrations, and therefore a rede�ned model in whichthe last 40 % of the process contains three aerated tanks for one more measurementof oxygen is considered.4.4.1 Observer modelFirst, a simpli�ed tank model corresponding to the one in Section 3.5 is derived. The�rst simpli�cation made is to exclude XBA, SNH and SNO from the state vector Z,and also the corresponding expressions in the function ξ involving these. Exclusionof the �rst two is motivated in Section 3.5. Exclusion of the last one is motivated bythat SNO enters the reactions as SNO

KNO+SNO

SO

KOH+SO
, and that SNO is relatively smalland SO is relatively large. In the next step XBH is removed from the state vectorand substituted with X̂XγXBH

in the remaining equations (see Section 4.2). Notethat these approximations are observer model errors.The simpli�ed state space model for aerobic reactor number i then becomes
˙̄Zi = Di(Q)(Z̄i−1 − Z̄i) + ξ̄(qi, Z̄i, X̂X:i, γXBH

),where
Z̄ =




SO

SS

XS


 , and ξ̄(q, Z̄, X̂X , γXBH

) =




KLa(q)(SOsat − SO)− 1−YH

YH
µ̂H

SS

KS+SS

SO

KOH+SO
X̂XγXBH

− 1
YH

µ̂H
SS

KS+SS

SO

KOH+SO
X̂XγXBH

+ kh
XS/X̂XγXBH

KX+XS/X̂XγXBH

SO

KOH+SO
X̂XγXBH

(1− fp)bhX̂XγXBH
− kh

XS/X̂XγXBH

KX+XS/X̂XγXBH

SO

KOH+SO
X̂XγXBH


 .



4.4 An EKF for the aerobic compartments 37A rede�nition of the tank index set is made to simplify the extension to a modelwith more tanks. The new index set is I = {d1, d2, t, 1, . . . , m}, where m = 8 inthe original simulation model. A simpli�ed model of the last n aerobic tanks in theASP is formed by connecting the corresponding simpli�ed tank models via the massbalance part. We say that the model is for n tanks, but it also involves inputs fromTank (m − n). The input concentrations in SS, XS and the parameter γXBH
areunmeasureable. These cannot be modeled based on physical relationships, and areinstead modeled as random walk processes. The state vector x, the input vector uand the process noise vector w for the observer model then become.

x =




SS:m−n

XS:m−n

γXBH

Z̄m+1−n

. . .
Z̄m



, u =




Q
qm+1−n

. . .
qm

X̂X:m+1−n

. . .

X̂X:m

SO:m−n




, w =




wXS

wSS

wγ

wSO

0...
0




(4.18)
The state equation in the observer model becomes

ẋ =




0
0
0

Dm+1−n(Q)(Z̄m−n − Z̄m+1−n) + ξ̄(qm+1−n, X̂X , Z̄m+1−n, γXBH
)

. . .

D9(Q)(Z̄m−1 − Z̄m) + ξ̄(qm, X̂X , Z̄m, γXBH
)




︸ ︷︷ ︸
a(x,u,t)

+w.

Note, that SO:m−n is a measured input and enters via Z̄m−n. The process noisecovariance matrix R1 is chosen to be diagonal, and the upper �rst three elements onthe diagonal belongs to the random walk processes and are design parameters. Onecould argue that the unknown inputs in SS andXS are correlated, and express this in
R1. This would work well for the data of the simulation case, but to be more generalthis have not been included. The value of the entry in R1 corresponding to the state
SO:m+1−n originates from noise in the measurement of SO:m−n. If Tank (m − n)is aerated, this entry is D2

m+1−n(Q)RSO
, where RSO

is the variance of the oxygenmeasurements, otherwise it is zero since the oxygen concentration in that tank thenis identically zero, and this knowledge can be used instead of the measurement. Themeasurement equation becomes
y =




SO:10−n...
SO:9




︸ ︷︷ ︸
c(x,u,t)

+v

The covariance of the measurement noise v is R2 = In×nRSO
. The total observer



38 Chapter 4 Estimation theory - theory and simulationmodel becomes {
ẋ = a(x, u, t) + w
y = c(x, u, t) + v

, (4.19)which is on the form (4.1) and the EKF given by Algorithm (2) can be applieddirectly to it.4.4.1.1 An extension of the observer modelAccording to Section 4.2, it is reasonable to assume that there is a correlation be-tween the unknown input concentration XS and TSS in the �ow Qin. The estimatedvariable X̂in:m−n introduced Section 4.2 is included as a state in the observer modeland is considered as measurable. In the observer it is modeled as
˙̂
Xin:9−n = win,where win is white noise with variance R1:in. The new observer model becomes

{
˙̄x = ā(x̄, u, t) + w̄
ȳ = c̄(x̄, u, t) + v̄

(4.20), with
x̄ =

[
x

X̂in:m−n

]
, ā(x̄, u, t) =

[
a(x, u, t)

0

]
, w̄ =

[
w
win

]
,

c̄(x̄, u, t) =

[
c(x, u, t)

X̂in:m−n

]
, and v̄ =

[
v
vin

] .The variance of vin is R2:in and the new measurement covariance matrix R̄2 is di-agonal and is de�ned implicietely. The correlation between XS:m−n is included bychoosing the entries in R̄1 corresponding to E[wXS
wT

in] to a positive nonzero number.All the additional introduced variances are design variables.4.4.1.2 Inclusion of measurement noise in the air �ow ratesThe observers performance for noise disturbances in the measurements of the air�ows will be investigated. The measurements of one of the �ows - q are assumed tobe described by qm = q+wm(q), where wm(q) is Gaussian white noise with variance
Rm(q) = (0.1q)2. The error introduced by the noise on the oxygen equation in theobserver model is

e(wm(q)) = (KLa(q + wm(q))−KLa(q))(SOsat − SO).The mean of e is
µe(q) = E[e(wm(q))] =

∫
∞

−∞

1√
2πRm(q)

e−
w2
m

2Rm(q) e(q)dwm = (4.21)
k1e

−k2q(SOsat − SO)(1− ek
2
2(0.1q)

2/2).



4.4 An EKF for the aerobic compartments 39The variance of e is
σ(q)2 = E[(e(wm(q))− µe(q))

2] =

∫
∞

−∞

1√
2πRm(q)

e−
w2
m

2Rm(q) (e(wm(q))− µe(q))
2dwm =

(k1(SOsat − SO)e
−k2q)2ek

2
2(0.1q)

2

(ek
2
2(0.1q)

2 − 1).Here, rules for expectation of random variables and the distribution of a normal ran-dom variable has been used (Miller and Childers 2004). For Tank i, δi(qi) and σi(qi)can be approximated by substitituting q and SO in Equations (4.21) and (4.22) withthe measurement qm:i and the DO setpoint. The approximated variance µ̂e:i shouldbe added to the diagonal entry in R1 in the observer model (4.19) corresponding tothe oxygen concentration SO:i. The approximated mean µ̂e:i should be substractedfrom corresponding oxygen equation in the state equation in the observers model.4.4.2 Sensitivity analysisSensitivity of the estimated variables to parameter errors will be investigated. Let
θ0 be the vector of parameters in the simulation model and θ the corresponding forthe observer model.Let J be the vector of the actual values of the concentrationsthat are estimated by the EKF. Let Ĵ be the estimate of J when θ = θ0. Let Ĵi,j(θj)be the estimation of Ji as a function of the j:th parameter in θ, θj with all otherparameters in the observer �xed at θ0. The mean relative error in the estimation ofconcentration number i as a function of the relative error ∆j = (θj − θ0:j)/θj in θj is

eEKF i,j(∆j) =

∫ 14

2
Ĵi,j((∆j + 1)θ0:j)− Ĵidt∫ 14

2
Ĵidt

.The integration is started 2 days after the startup of the �lter to let it settle. Alinear approximation of the function is ki,j ·∆j , where
ki,j =

∂eEKFi,j

∂∆j

∣∣∣∣
∆j=0

= 1/

(
d∆j

dθj

)
∂eEKF i,j

∂θj

∣∣∣∣
θj=θ0:j

=

θ0:j ·
∂

∂θj

(∫ 14

2
Ĵi,j((θj)− Ĵidt∫ 14

2
Ĵidt

)∣∣∣∣∣
θj=θ0:j

≈

∫ 14

2
Ĵi,j(1.1θ0:j)− Ĵi + Ĵi,j(0.9θ0:j)− Ĵidt

0.2
∫ 14

2
Ĵidt

= k̂i,j.We have the approximate error function
êEKF i,j

(∆j) = k̂i,j ·∆j .4.4.3 Simulation with one and two tanksHere, the division of the AS basin is that described in Section 3.1. The EKF wasimplemented as a continuous S-function in Simulink. In the case study in Section



40 Chapter 4 Estimation theory - theory and simulation3.7, the correlation between variations in X̂in and XS is strong, but how strong thisis in reality is more hypothetic, and therefore in simulation, the extension of theobserver model described in Section 4.4.1.1 is evaluated separately. The possibilityto implement the observer with the Runge Kutta 4 method, and to include noise inthe air �ow rate measurements is also investigated separately. In all simulations, theinitial guess x̂0 is 1.6 times the true initial state x0 and the initial error covarianceis chosen in accordance with this. The values 1.4 · 107, 5 · 105 and 0.3 are chosen forthe variances of the noises wSS
, wXS

and wγ respectively.4.4.3.1 Simulation with the basic observer modelIn the case with one reactor, the observer diverges. Simulation results of the observerwith two tanks is presented in Figure 4.5 together with the corresponding variables inthe simulation model. For XS and XBH the estimates are only shown for one tank -Tank 7, since XS and XBH are mainly a�ected by massbalances. X̂BH:7 is calculatedusing the Model (4.10). XBH:7 and γXBH
are shown for a longer period due to theirslower variation. The estimated SS states are close to unbiased, and X̂S:7 is goodbut a bit slow. γ̂XBH:7

is quite biased. The biases in the estimates are due to theerrors introduced when neglecting nitri�cation and denitri�cation in the derivationof the observer model. The observer model performs well for the simulation case, butthere are choices of simulation data for which the quality of the estimates is poor.The performance of the �lter is namely dependent on large enough variations in theactual input concentrations, both in frequency and in amplitude. It is especiallysensitive to variations in the input SS concentration, though one large peak a dayseem to be enough for good estimates. If the variation is not large enough, theestimate errors may become large, at least for periods of time. One extreme case iswhen all concentrations in the simulation model are set to constants and the onlyreal variable that varies is the noise in the oxygen measurements. Simulation resultfor SS:6 for this case is illustrated in Figure 4.6. The quality of the estimates is alsosomewhat dependent on the phase between the input in SS and XS.4.4.3.2 ObservabilityTo explain some of the properties of the observer, observability was investigated forthe system. The variables in the simulation model were sampled once an hour duringthe second day and observability of the observer model (4.19) was investigated foreach sample point. For none of the points could locally weakly observability becon�rmed for the model based on one tank, while this was con�rmed for all of thesampled points for the model based on two tanks. This is not in contradiction withthe resctriction on concentration variations, the EKF is not an optimal �lter.Stationary, close to a point, we would expect the EKF to behave as a Kalman �lterbased on the linearization of the observer model around that point. Therefore, in-tuitively observability or detectability of linearizations of the observer model should
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(f) γXBH .Figure 4.5. Estimates of the EKF for two tanks.be an important property for the performance of the �lter. This was investigatedfor the sampled points by solving the Ricatti equation together with Theorem (2).Neither the linearizations of the observer model for one or that for two tanks wereobservable, and not even detectable. The results for the observer model based onone tank is in accordance with the corresponding �lter being divergent.The case with two tanks is now considered in more detail. A transformation ofthe linearized systems into a staircase form yielded that the eignenvalue of nonde-tectable mode was zero. The relative dependency de�ned in Section 4.1.1.1 to theundetectable mode of the concentrations as a function of time (the sampled points)
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Figure 4.6. Estimation of SS:6 when all concentrations are set to constants.is illustrated in Figure 4.7. As seen the dependency of this is relatively large, es-
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Figure 4.7. Relative dependency of the non detectable mode in linearizations ofthe observer model around the true states.pecially for XS, and it is surprising that the �lter is convergent even for the data



4.4 An EKF for the aerobic compartments 43in the simulation case. In Figure 4.8 the same dependency is illustrated, but forwhen the linearizations are around the estimates of the EKF instead of the realvariables. Intresting enough, the relative dependencies of the undetectable mode
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Figure 4.8. Relative dependency of the non detectable mode in linearizations ofthe observer model around the estimates of the EKF.are smaller then. The aim of this investigation was really to show that each state inthe observer model is little dependent of the undetectable mode in the linearizationfor some period of each day in the case study. This to further suggest that as longthe concentrations varies with a large enough amplitude and frequency, all statesare close to observable often enough in the linearizations to make the estimates nondivergent. Clearly, none of this holds, and the reason for the variation dependencyof the �lter cannot be explained in this way. XS:s larger relative dependency to theundetectable mode can possibly explain its slower convergence.4.4.3.3 Correlation includedIn Figure 4.9 XS6 and X̂in are illustrated. In Figure 4.10, the estimation of XS:6for the EKF for two tanks with the extension described in Section 4.4.1.1 is illus-trated. Also shown is the corresponding estimate of the original EKF and the realconcentration. As seen, the estimate of the �rst one is faster. The estimation of thisis however sensitive to a reasonable choice of the covariance E[wXS
win]. If this is
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T ime(days)Figure 4.9.chosen too large, the estimation error of all estimates may become large. The valueused here is 500. The variance of the "measured" X̂in is very small, and the choiceof E[v2in] can be chosen as an arbitraliy small value, but R̂1 needs to be invertible.4.4.3.4 Additional process noise and implementation of the EKFHere, the addition of measurement noise in the air �ows described in Section 4.4.1.2is included. The possibility to implement the EKF with the Runge Kutta 4 methoddescribed in Section 4.1.4 is also investigated. In Simulink, this is solved by using anS-function with discrete states, that in the beginning of each sampling period goesthrough the Algorithm 3. Discrete PI controllers are here used for oxygen referencecontrol with the same sampling time. The performance of the �lter is illustratedin Figure 4.11 for some of the concentrations. The sampling time used here is 0.5minutes. As seen, the result is equivalent to that in Section 4.4.3.1 for the originalobserver model.4.4.3.5 Sensitivity to parameter errorsWhen investigating the sensitivity of the EKF to parameter errors we only considerthose parameters that may be of signi�cant importance. The XS concentrations
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Figure 4.10. Inclusion of a correallation between X̂in and XS in the observermodel.are mainly driven by mass balances, and since fP and bh only have minor a�ect inthe equations describing these, they are excluded from the simulation. Nor is theparameter KOH considered, this since the Monod expression in oxygen is saturatedfor the setpoint oxygen concentration in this simulation case. For the KLa functionwe only consider errors in the k1 - parameters since results for errors in the k2- parameters are di�cult to interpret. The vector of investigated parameters isde�ned by
θ0 =

[
k1:7 k1:8 V7 V8 SOsat kh KS KX µ̂H YH

]
.The EKF was simulated for the di�erent parameter errors and the approximation ofthe de�ned sensitivity measure k̂i,j is shown in Table 4.1 for some of the estimatedconcentrations. As an example on how to interpret the sensitivity measure, the errorin ŜS:6 due a 20% error in SOsat is approximately 20 · 0.14 %. The XS and XBHconcentrations are so dominantly driven by mass balances that we can expect theerror to be the same for all tanks. The result is therefore presented simply for XSand XBH , but was calculated for Tank 7.During this simulation autotrophs and nitrate was precluded from the aerobic tanksin the simulation model. It was later decided to change this, but this simulation isvery time consuming and have not been repeated.Errors in the volumes and KS seem to have minor a�ect, which is a little surprising
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ŜS:8

SS:8

(b) SS:8.
0 0.5 1 1.5 2 2.5 3

100

150

200

250

300

350

 

 PSfrag replacements

m
g
(C

O
D
)l
−
1

T ime(days)

X̂S:7

XS:7

(c) XS:7. 0 2 4 6 8 10 12 14
600

700

800

900

1000

1100

1200

1300

1400

1500

1600

 

 PSfrag replacements
m
g
(C

O
D
)l
−
1

T ime(days)

X̂BH:7

XBH:7

(d) XBH:7.Figure 4.11. The EKF implemented with the Runge Kutta 4 method and withadditional process noise.Table 4.1. Sensitivity (k̂i,j) of the estimates w.r.t the parameters in the observer.
ŜS:6 ŜS:7 ŜS:8 X̂S X̂BH

k17 0.1342 -0.1028 -0.2756 -0.2614 0.1332
k18 -0.0305 0.1424 0.2520 0.2979 -0.0513
V7 0.0855 -0.0038 -0.0377 -0.0421 0.0195
V8 0.0160 0.0466 0.0308 0.0340 -0.0200

SOsat 0.1391 0.0626 -0.0049 0.0926 0.1042
kh -0.0265 -0.0289 -0.0201 -0.1798 0.0119
KS 0.0139 0.0291 0.0450 -0.0304 0.0217
KX 0.0089 0.0100 0.0069 0.0773 -0.0041
µH 0.0215 0.0253 0.0163 0.0946 -0.0962
YH 0.1112 0.0674 0.0416 0.1370 0.2321for the latter one. X̂S is quite sensitive to all other parameters. ŜS:6 and X̂BHare quite sensitive to YH , but this is a stochiometric parameter, and these are of-ten quite well known. All estimates are especially sensitive to errors in the KLafunction, but XBH less than the others. The estimation result for an error only in

K1:8 of 10% is given in Figure 4.12 for some of the concentrations. As seen, the
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(d) XBH:7.Figure 4.12. Result for the EKF for a 10% error in k1:8.error in the estimates increases nonlinearly with the amplitude of the correspondingconcentrations, which has its origin in the nonlinear Monod expressions. This errorin the parameter happens to have a positive e�ect on XBH , compare to Figure 4.5.The reason is that it evens out the e�ect of neglecting nitri�cation and denitri�-cation in the observer model. The di�erence between errors in the KLa functionand other parameter errors is that the latter are the same in the two tank models.It is actually the case that as long as the error in the k1 parameters are the samefor both tanks, then XS and the SS states are not much a�ected. XBH , however,seem to be somewhat more sensitive to this condition. The result for a 10 % errorin both these parameters is illustrated in Figure 4.13. This is fortunate since thereal KLa function might be the same for all the tanks or at least related by theirphysical description. Unfortunately, this does not hold if we consider errors in the
k2 parameters, since the error in KLa is then nonlinear w.r.t. the air �ows.4.4.4 Simulation results for the observer based on three tanksThe EKF based on two tanks has some undesirable properties. Even though, theinput concentrations to a WWTP often follows a daily rhythm, and often with a
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(d) XBH:7.Figure 4.13. Result for the EKF for a 10% error in both k1 parameters.
large peak each day, the property that the quality of the estimates depends onvariations in the actual concentrations is severe. A �lter which is less sensitive toerrors in the KLa parameters is also desirable. For that reason an altered model isintroduced including 9 tanks of whom the last three are aerated. The hypothesis isthat an additional measurement, will lead to better observability properties and lesssensitivity to variations in concentrations, and parameter errors. The volume of theAS basin corresponding to the last two tanks is rede�ned to be described by threetanks of equal size. To show the power of the way XBH is modeled, we also makea small rede�nition of the simulation case. The TSS concentration in QX is set toa constant value while the �ows Qin and Qrec are set to vary stepwise, periodicallyand synchronically, both between 3m3s−1 to 4m3s−1. The �ow QX is set to 3m3s−1.It is also more natural with variations in the in�uent �ows than in TSS in QX . Theother concentrations in the in�uents are unchanged while they may di�er somewhatin the point 1 in Figure 3.2 and in the rest of the AS basin because of the variationin XBH . The same initial condions and variances as in the previous section are usedhere.



4.4 An EKF for the aerobic compartments 494.4.4.1 Simulation of the basic observer modelIn Figure 4.14(a) the estimated XBH:7 is illustrated. As seen, the way it is modeled,it is possible to handle stepwise changes in it. To clarify this result even more, inFigure 4.14(b) X̂BH:7 is shown again for when nitri�cation and denitri�cation areprecluded from the aerobic tanks. The result for the rest of the concentrations is
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(a) X̂BH:7 for the simulation case. 0 2 4 6 8 10 12 14
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(b) X̂BH:7 for the simulation case but with nitri-�cation/denitri�cation precluded from the aer-obic tanks.Figure 4.14. Estimation XBH:7.equivalent to that with 2 tanks regarding the case study, but the estimation of XS issomewhat faster. The main advantage of this �lter shows when di�erent simulationdata is considered. There are now no restrictions on variations in the concentrations.This is illustrated in Figure 4.15 for when the concentrations in the in�uents are setto constants(compare to Section 4.4.3.1 and Figure 4.6).
4.4.4.2 ObservabilityAs with the case with two tanks, the concentrations in the simulation model weresampled once an hour during the second day, and observability of the system wasinvestigated. Because of a high dimension of the observer model, it was not possibleto directly con�rm locally weak observability. But both the model of Tank 7 and 8,and the model of Tank 8 and 9 are locally weakly observable, and from this it followsthat the total model of the three tanks must be locally weakly observable. Regardingobservability, the advantage of introducing an additional tank in the model is that itcould be con�rmed for the linearizations of the observer around the sampled points.This helps to explain why this �lter don not need variations in the concentrationsas was the case with two tanks.
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Figure 4.15. Estimation of SS:6 when all concentrations are set to constant.4.4.4.3 Sensitivity to parameter errorsSensitivity to parameters was investigated for the corresponding set of parametersand concentrations as in Section 4.4.3.5. The parameter vector is
θ0 =

[
k1:7 k1:8 k1:9 V7 V8 V9 SOsat kh KS KX µ̂H YH

]
,and the sensitivity measure k̂i,j is illustrated for some of the concentrations in Table4.2. Compared to the result in Secton 4.4.3.5, in this case nitri�cation and denitri-Table 4.2. Sensitivity (k̂i,j) of the estimates w.r.t the parameters in the observer.

ŜS:6 ŜS:7 ŜS:8 ŜS:9 X̂S:7 X̂BH:7

k1:7 0.0596 -0.1338 -0.2567 -0.2764 -0.1962 0.1428
k1:8 0.2479 0.4145 0.3991 0.3048 0.1275 -0.2632
k1:9 -0.1454 -0.1304 -0.0402 0.0395 0.1562 0.0600
V7 0.0609 -0.0214 -0.0481 -0.0530 -0.0360 0.0261
V8 0.0268 0.0514 0.0278 0.0294 0.0245 -0.0183
V9 -0.0075 -0.0044 0.0046 -0.0033 0.0124 0.0023

SOsat -0.0169 -0.0171 -0.0125 -0.0069 -0.0026 0.0002
kh -0.0202 -0.0205 -0.0148 -0.0085 -0.1977 0.0045
KS 0.0191 0.0338 0.0500 0.0570 -0.0329 0.0171
KX 0.0073 0.0082 0.0069 0.0044 0.0768 -0.0017
µH 0.0140 0.0160 0.0126 0.0068 0.1127 -0.0870
YH 0.1134 0.0772 0.0483 0.0418 0.1226 0.2326



4.5 Estimation of the KLa function 51�cation was included in the aerobic tanks. That is the reason why the SS estimateshere shows even more sensitivity to errors in the KLa parameters than for the casewith two tanks. Also in this case all the estimates except for X̂BH are little a�ectedby errors in the k1 parameters as long as these are the same. X̂S is also in generalless sensitive to errors in KLa. To conclude, the total bene�t regarding sensitivityof introducing an additional tank was at most minor.4.4.5 Additional resultsSeveral EKF:s based on predecessors to the observer model (4.19) has been investi-gated. Initially it was considered to model XBH just as SS and XS with an unknowninput, modeled as a random walk process, and with separate states for each reactor,i.e. the parameter γXBH
was not included in the model. This was not suitable forthe case with two tanks, since only very slow variations in the concentration couldbe assumed. It may work better with three tanks. In the next development, XBHwas only described with γXBH

and X̂X in the input to the �rst tank in the observermodel, and with separate states for the rest of the tanks. This solution is somewhatmore accurate since growth and decay of biomass in the tanks in the observer isincluded. The reason for the di�erent modeling in the observer model (4.19) was todecrease the dimension of it, since problems with a high dimension of the predecessormade it di�cult to analyze observability/detectability properties.In the choice of the process covariance matrix in Section 4.4.1 model errors were notconsidered. The reason for this is that such errors leads to disturbances that are nonwhite, but rather constant for periods of time, and are not well described by whitenoise. However, such disturbances can be described by a random walk process inan observer model. Introducing such models will give worse observability propertiesof the system though. For the case with an observer model with two tanks thispossibility was investigated. The result was a diverging �lter.4.5 Estimation of the KLa functionIn the observers described in Sections 4.3 and 4.4 the KLa function was assumed tobe known. Here methods to estimate it are evaluated and further developed. Theoxygen equation including KLa model (3.2) is repeated below.
ṠO =

Q

V
(SOin

− SO) + k1(1− e−k2q)︸ ︷︷ ︸
KLa(q)

(SOsat − SO)− OUR (4.22)The parameters describing the KLa function are known to be time varying, andtherefore, ideally these should be estimated on a continuous basis. When estimatingit with only oxygen measurements at hand, it is however necessary to excite theair �ow (Lindberg 1997), which is costly. One example of an estimation method inwhich this is not necessary has been found in the literature (Soons et al. 2008). This



52 Chapter 4 Estimation theory - theory and simulationis for an application to biopharmaceutical production, and o�ine measurements ofbacterial biomass concentration is taken into account in the estimation algorithm.Measurements of bacterial biomass are not available at WWTP:s and it would mostlikely be necessary to also include o�ine measurements of substrate concentrationfor this to be useful.If it is necessary to estimate the function on a continuous basis, one would like tovary the air �ow with as small amplitude as possible for low cost. Olsson and Newell(1999) described a dual controller with two purposes: to control the oxygen concen-tration and to make it oscillate. The estimation algorithm was not stated, but hasbeen evaluated on a real plant with success. The DO concentration was held within
reference±0.2mgO2l

−1. With larger excitation, better accuracy could be achieved.This small excitation of the oxygen concentration does not make sense for Ryaverketsince the concentration normally vary way more even within the tanks. Also, a smallvariation in the DO concentration does not really imply a small amplitude of thevariation in the air �ow.Methods described in the literature, that are reasonable consider for the Ryaverketare:� ON/OFF control in which the air �ow is changed stepwise to change the num-ber of unknowns in Equation (4.22) (Suescun et al. 1998).� Excitation of the air �ow with di�erent frequencies and estimation with eitheran EKF or some system identi�cation method (Lindberg 1997).In both of these methods quite large excitation is necessary.The parameters in the KLa function have shown to not be very unique, i.e. theestimated parameters may deviate much from the true ones, while the correspondingestimated function still is a good approximation. For that reason the following errorcriteria is used to describe the quality of the estimates
eKLa =

∫ qmax

0

(
KLa(q)− K̂La(q)

)
dq

∫ qmax

0
(KLa(q)) dq

. (4.23)
K̂La(q) is the Function (3.2) with estimated parameters k̂1 and k̂2 inserted.4.5.1 DO observerIndustrial DO-sensors traditionally have had dynamics which cannot be neglected inan estimation problem since they are slow to be robust (Lindberg 1997). Lindberg(1997) used a �lter to compensate for the dynamics before estimating the KLafunction. The DO-sensors at Ryaverket are quite new and does not have the kind ofdynamics as traditionals, but to reduce noise it is possible to let the sensor output be



4.5 Estimation of the KLa function 53the mean of the last T seconds. At Ryaverket the time span T is set to 60 seconds.A mean for the last 30 seconds is also taken when the data reaches the central datasystem. Neglecting measurement noise, the mean value formed DO - ym is describedby the �lter
ym(t) =

1

30

∫ t

t−30

(
1

60

∫ τ

τ−60

y(ρ)dρ

)
dτ,where y is the true DO. For a constant slope k0 starting at time t0, and after 90seconds we have

ym(t) = y(t0) + k0(t− 45). (4.24)For infrequent and small changes, the �lter is thus mainly a time delay. Thereforethis has not been considered in the designs in Section 4.3 and 4.4. When excitingthe air �ow heavily this might however not be neglible. A discrete model for ymwith sampling time h is given below
ym(n) =

1

n1n2

n∑

i=n−n2+1

(
i∑

k=i−n1+1

y(k)

)
+

1

n1n2

n∑

i=n−n2+1

(
i∑

k=i−n1+1

v(k)

)

︸ ︷︷ ︸
V (n)

, (4.25)where n2h = 30 and n1h = 60 and v is (presumably) white noise with variance
r2. When designing a Kalman �lter one usually makes the assumption that themeasurement noise is white. V is certainly not white but we know its function of v.There are two alternatives� Use a Kalman �lter including a whitening �lter, i.e. include the model of Vin the Kalman �lter, and introduce states for the noise terms v(k).� Neglect the non whiteness of V , and design a Kalman �lter without a whitening�lter.To estimate y a drifting model of it is needed. Here the random walk model

y(n+ 1) = y(n) + w(n)is used. w is white noise with variance R1 (a design parameter). To avoid a large�lter it can be designed with a longer sampling time h∗ with corresponding n∗

1 and
n∗

2. For the case without a whitening �lter, a suitable observer model is




x(n + 1) =




1 0 . . .

I(n∗

1+n∗

2−1)

0
. . .
0


 x(n) +




1
0
. . .
0


w(n)

ym(n) =
1

n∗

1n
∗

2

[
1 . . . n∗

2 − 1 n∗

2 . . . n∗

2︸ ︷︷ ︸
n∗

1−n∗

2+1 elements

n∗

2 − 1 . . . 1
]
x(n) + V (n)

,(4.26)



54 Chapter 4 Estimation theory - theory and simulationwhere the state vector is
x(n) = [y(n), . . . , y(n− n∗

1 − n∗

2 + 1)]T . (4.27)It is possible to derive an exact expression of the autocovariance of V -R2 = E[V (k)2]as a function of r2, the variance of v. This is however unnecessary since we canassume a value for it and relate R1 to this. The Kalman �lter gives an estimate
x̂(n|n), which is the optimal estimate of x at time nh∗ based on measurements upto the same time. The i:th value in x̂(n|n) is then ŷ(n− i+ 1|n), which is the bestestimate of y at time (n− i+1)h∗ given measurements up to time nh∗. With larger
i, the better the estimate is, but choosing i ≥ 2 for the �lter output of course givesa delay of ih∗ seconds.4.5.1.1 SimulationIt is assumed that the sampling time of the sensor system is h = 1s. The samplingtime h∗ was chosen to be 5s, which gives n∗

1 = 12, and n∗

2 = 6. r2 is assumedto have the same variance as for the sensors in the simulation case 0.22

h∗
(discretetime). A stationary Kalman �lter is used here. The response to a step in y for

ym(n) and ŷ(n − i + 1|n) for i = 1 and i = 18 (the last element in x̂(n|n)) areshown in Figure 4.16. The time delay in the second case has been removed. Thedesigned �lter can reconstruct the step response well but the coloured noise in ymis ampli�ed. A Kalman �lter including a whitening �lter has been evaluated, but itdid not improve the performance.

0 50 100 150 200 250 300 350 400
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

PSfrag replacements m
g
O

2
l−

1

T ime(sec)

y(n)
ym(n)
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Figure 4.16. Estimation of the DO concentration from corrupted measurements.



4.5 Estimation of the KLa function 554.5.2 Estimation with ON/OFF control(Suescun et al. 1998) estimated OUR and KLa for a speci�c constant air �ow byneglecting mass balances and turning the aeration between ON (constant air �ow:
q0) and OFF (zero air �ow) stepwise. This variation of the air �ow is here calledON/OFF control. When the aeration is turned to OFF, the only unknown in Equa-tion (4.22) is OUR and can then be estimated from the slope of oxygen measure-ments. When the aeration is turned to ON, it is assumed that OUR is known and
KLa(q0) can be estimated as with OUR.At Ryaverket, the water �ow is relatively large, and it is therefore not reasonable toneglect mass balances in the estimation algorithm, and the above method should notbe applied directly. Instead, they are estimated by minimizing the error between themeasured DO concentration and the one in a model. The method is also extendedto estimation of the parameters in the KLa function.4.5.2.1 Estimation of KLa for a speci�c air �ow q̃0Here, KLa(q̃0) is estimated with only one ON, and one OFF period, where q̃0 is thesample mean of the measured air �ow. The experiment starts with an OFF period.Discrete time with sampling time h is used here. The time kh is shortened with thetime index k. k ∈ [0, m] during the OFF period and k ∈ [m+ 1, n] during the ONperiod. The measured DO is symbolized with SOm. Sample means of measurementsare given with a tilde (∼) above, for example S̃O.Estimation of OUR Solving Equation (4.22) with the aeration turned o�, andassuming that all variables except SO in the considered tank are constant gives

SO(k) = Ce−
Q
V
kh + SO:in −

V

Q
OUR, k ∈ [0, m],where C is an integration constant. Substituting SO(k) with SOm(k), and the vari-ables in the right hand side of the equation with sample means we get

v(k) = f1(k) = Ce−
Q̃
V
kh + S̃O:in −

V

Q̃
OUR− SOm(k),where v(k) is measurement noise. If the mean is approximately zero, it follows thatit is reasonable solve the following optimization problem for OUR:

minimize

(
O1 =

m∑

k=0

f1(k)
2

)
w.r.t. OUR, C. (4.28)The value of OUR that minimizes the objective function O1 is taken as the estimate

ÔUR. An important property of an optimization problem is convexity of the ob-jective function, and is the criterion for convergence to the optimal value in many



56 Chapter 4 Estimation theory - theory and simulationoptimization algorithms. See Andréasson et al. (2005) for a de�nition of convex-ity and related theorems. The optimization problem (4.28) is convex, since it isquadratic in OUR and C.Estimation of KLa(q̃0) At time k = m+1, the aeration is turned to ON (q = q0).Note that q0 is the ordered air �ow, while q̃0 is the estimate of the true air �owbased on a mean value of measurements. OUR is assumed to be constant from theOFF period and the estimated value ÔUR is used here. With a derivation similarto that for OUR, an estimate K̂La0 of KLa(q̃0) is found by solving the followingoptimization problem
minimize

(
O2 =

m∑

k=0

f2(k)
2

)
w.r.t. KLa(q̃0), (4.29)where

f2(k) = Ce−(KLa(q̃0)+
Q̃
V
)kh +

Q̃
V
S̃O:in + SOsatKLa(q̃0)− ÔUR

Q̃
V
+KLa(q̃0)

− SOm(k).Convexity of this problem has not been con�rmed.4.5.2.2 Estimation of the KLa functionBy successively turning the aeration between ON and OFF several times, and solvingthe problems (4.28) and (4.29), we get a series of estimated values of theKLa functionfor di�erent air �ows:
(K̂Lai, qi), i ∈ [0, p]. (4.30)To extract as much as possible of the measurement data, the problem (4.29) shouldbe solved twice for each ON period. One time with ÔUR from the previous OFFperiod, and one time with ÔUR from the following OFF period. To estimate theparameters in the function (3.2), the following optimization problem is solved

minimize

(
O2 =

p∑

i=0

f3(i)
2

)
w.r.t. k1, k2, (4.31)where

f3(i) = k1(1− ek2qi)− K̂LaiThis problem is convex. For a good estimate, p should be large, and as large di�er-ence between the smallest and the largest value in the series is desirable.4.5.2.3 SimulationThe experiment was carried out on Tank 8. In simulation, the DO concentrationwas varied between DOmax = 4mgO2l
−1 and DOmin = 2mgO2l

−1. The DOmin
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Figure 4.17. ON/OFF control.was chosen to make OUR approximately independent of the variation in the DOconcentration. q was qmax de�ned in Section 3.7 every other ON period, and qminevery other one. qmin is based on the desire to vary the concentrations reasonablyfast and is the solution to
0 = ṠO = D(Q)(SO:in−SO)+KLa(

qmin

1.3
)(SOsat −SO)−OUR, for SO = DOmax.This is calculated, by using the exact values of OUR and the KLa parameters, whichof course is not possible in reality. All calculations and the ON/OFF control wereimplemented with S-functions in Simulink. The sampling time h was chosen to be

1s. The optimization problems were solved in Matlab, using the function lsqnonlin.The error of the initial guesses were chosen to be 50 %. To let the the plant modelsettle, the experiment was started two and a half hours into the �rst day.4.5.2.4 Simulation resultsThe oxygen concentration SO:8 (not the measured one), and the air �ow rate q8during the experiment are shown in Figure 4.17. The DO data was run throughthe Filter (4.25) and then reconstructed with a Kalman �lter based on the observermodel (4.26) for h∗ = h = 1s. The result is given in Figure 4.18. As seen the
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Figure 4.18. Reconstructed and measured DO data.
e�ect of forming the mean in the sensor is mainly a time delay for the consideredvariations. The reconstructed data was used and considered as the measurement
SOm:8 in the KLa estimation algorithm. As time of estimation of OUR the mid ofthe OFF periods were chosen. ÔUR8 is illustrated in Figure 4.19. Convexity ofthe objective function O2 could not be con�rmed, but the optimization algorithmconverged for all investigated optimization problems. The estimated values of the
KLa parameters are given in Table 4.3 as a function of the number of ON periodsthat they are based on. The true parameter values are [k1, k2] = [1200, 6.6 · 10−5].As seen, there is quite a large variation in the parameter estimates. Therefore, alsothe Criterion eKLa (see Equation (4.23)) is given in the table. Already after the�rst ON period, this is relatively small. The estimated function is so good that it ispointless to compare it with the real one in a �gure.
4.5.3 A Kalman �lter approachLindberg (1997) used a system identi�cation method with excitation of the air�ow toestimate the KLa function, and also that an EKF can be used in the same manner.An observer model derived by extending the Model (4.13) with random walk models
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Table 4.3. Estimated KLa parameters and the criterim E.Number of ON periods k̂1 · 10−3 k̂2 · 105 eKLa · 103

2 0.89 9.61 22.7
4 1.13 7.09 2.5
6 0.98 8.44 11.0
8 1.15 6.87 4.1
10 1.11 7.24 3.2
12 1.08 7.43 4.2
14 1.14 7.01 2.3
16 1.27 6.19 2.3
18 1.29 6.07 2.8
20 1.20 6.60 2.3
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



ẋ =




D(Q)(SO − SOin
) + k1(1− e−k2q)(SOsat − SO)−OUR

0
0
0




︸ ︷︷ ︸
a(x,u,t)

+w

y =
[
1 0 0 0

]
x︸ ︷︷ ︸

c(x,u,t)

+v

. (4.32)
Here x =

[
SO OUR k1 k2

]T and u =
[
Q q

]T . As in earlier designs theupper diagonal element of R1 = E[wwT ] is D(Q)2RSO
, where RSO

= E[vvT ] is thevariance of the oxygen measurements. The equations of the EKF can be directlyapplied to this model, but would become divergent without excitation of the air�ow.Lindberg (1997) did not state the excitation signal but according to a �gure, itis a discrete time signal with continuous amplitude. This kind of signal is not easilyimplemented at Ryaverket since the air �ow need to be varied manually. A commonlyused excitation signal for linear systems is binary white noise. This signal is calledbinary since it shifts between two discrete levels. It is called white since it has a�at spectrum within a frequency band [ωmin, ωmax]. Ljung and Glad (2002) statedthat it is often necessary with more levels in the excitation signal when identifying anonlinear system. Therefore, also a signal with three levels is tested. A continuoussignal ws(t) with frequencies equally distributed in [ωmin, ωmax] can be formed byapplying an analog bandpass �lter to white noise. A binary signal with frequenciesapproximately in the right band is then formed by
s(t) = sign(ws(t)).Taking the sign of the signal will however distort its spectrum. The excitationsignal is �nally formed by adjusting the level and interval to what is required in theapplication. The choice of ωmin and ωmax can be based on time domain propertiesof the system. It is unnecessary to have pulses so short that they are hardly visiblein the response. It should be useful to have occasional pulses so long that the stepresponse more or less settles. There is however no need for pulses longer than that.4.5.3.1 Simulation resultTank 7 was chosen for simulation. To not disturb the process we need to guar-antee a lowest DO concentration during the experiment. At startup the processwas controlled to 1mgO2l

−1. After one hour the air �ow was stationary and was
1600m3(air)h−1. This was taken as the lower level q0 in the excitation signal. Todecide on the excitation frequencies a step was taken from this level to qmax, de�nedin Section 3.7. The response is illustrated in Figure 4.20. The time for the signalto reach 40% and 95% of the �nal value was T40 = 1.6 and T95 = 11.2 minutesrespectively. It was decided to not allow shorter pulses than T1 and longer pulsesthan T2. Based on this we get
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Figure 4.20. Step response of SO:7.
wmin =

π

T95
and wmax =

π

T40
.Note that this kind of reasoning for a nonlinear system only holds strictly if theprocess can be considered is stationary during the experiment. A 12th order But-terworth band pass �lter was used to form the signal ws(t). The estimated powerspectral density of s(t) is shown in Figure 4.21, where the frequencies ωmin and ωmaxhas been included. This was calculated with the command periodogram in Matlabfrom samples of s(t). The discrete normalized frequency has been recalculated tocontinuous frequency (rad/min). Taking the sign of the signal ws(t) distorts thefrequency content, and the spectrum of s(t) is not �at, but has its peak within theright band. Two excitation signals are tested. One pure binary white noise signal

qa(t) which is de�ned below
qa(t) =

{
qmax, s(t) = 1
q0, s(t) = −1

.The other signal qb(t) is the same as qa(t), but the upper level is varied. It is qmaxevery other time that s(t) goes high and qmax+q0
2

every other. qb(t) is illustratedin Figure 4.22 together with the DO response. The EKF based on the observermodel (4.32) was implemented with an S-function in Simulink. Ideally, this shouldbe merged with the DO Kalman �lter described in Section 4.5.1, but that has notbeen employed here. The DO data was run through the sensor model (4.25) andthen reconstructed with the DO observer. The reconstructed data was then usedand considered to be the measurement in the EKF. The initial state was chosen tobe 0.7 times the true variables, except for the DO concentration which was assumedto be known. The result for the excitation signal qa(t) was that it was possible to
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Figure 4.22. Excitation signal qb(t) and the response in the DO concentration.make the error eKLa converge initially, but without a large variance in the estiamtedparameters, they started to diverge after a while.The result for the excitation signal qb(t) was better. The best result was for when thevariance of the random walk models of k1 and k2 was set to zero, and they were given
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Figure 4.23. ÔUR7 for the excitation signal qb(t).of the random walk model for this has been chosen large since this was positive forthe convergence of the parameters. It has also been given a large initial covariancefor fast convergence. There is an initial oscillation in the estimate. The criteria eKLais illustrated in Figure 4.24. The convergence is fast, and the estimated functionis too good to compare to the true function in a �gure. For both the excitationsignals it was, however, very di�cult and time consuming to �nd good choices of thecovariance R1 and the initial covariance P0. This is of course much more di�cultwhen applying the �lter to real data when the actual variables are unknown.
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5 APPLIED ESTIMATIONExperiments to estimate the KLa function have been performed at Ryaverket, andsome of the observers presented in Chapter 4 have been evaluated for real data. Forthese purposes the model presented in Chapter 3 needs to be extended to includeamong others time dependency of parameters, and that the control of air �ows inreality are based on the zone division of the basin and not the tank model. Themodel of the AS basin as a series of tanks is an approximation of reality, and thismodel is analyzed. All real data are from measurements in line 3, since the air �owsensors works best in that line. The solution for estimation of SS and γBH describedin Section 4.3 was not considered due to the placement of the nitrate sensors in theprocess.5.1 ConventionsIn Chapter 4, the variables were indexed based on which tank they belong to. Thisconvention is used here too, except for the air �ows that are indexed based on whichzone they belong too. The KLa functions are still indexed per tank. Di�user is usedto refer to the pipes in a zone with a corresponding air �ow.5.2 Tank approximationIn �gure (5.1), an AS basin is illustrated. The �ow Q is approximately the same inthe in�uent as in the e�uent. Within the basin, the �ow consists of a �ow in thedirection of the e�uent, but there are also back streams. In addittion to this, thewater is purposely mixed, either with mechanical stirrers, or as a consequence of theaeration. This makes it convenient to model the basin as a series of n continuouslystirred tank reactors (CSTR:s). An unmixed �ow without back streams is called aplug �ow. To divide the basin into a series of tanks in model tracer tests are used.
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Figure 5.1. An AS basin.A basic description of this is:approximately instantaneously, a large amount of a tracer substance, such as lithiumchloride is poured into the water at some point of the basin. At some other down-65



66 Chapter 5 Applied estimationstream point or points, the concentration of the tracer substance is measured. Theresponse is then close to the hydraulic impulse responses of the system. The divisionof the basin is chosen such that the model gives approximately the same impulseresponse.PSfrag replacements Q
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Figure 5.2. Activated sludge basin at Ryaverket.The AS basin in line 3 at Ryaverket is illustrated in Figure 5.2. As seen, the basinactually consists of three sub basins, one small: b1, and two equally large: b2 and b3.At point B and C, the water �ows through holes in the wall of the basin. These arethus natural boarder lines also in a model. The tank division within the sub basinsare illustrated with dashed lines in the �gure.A tracer test has been performed at Ryaverket in another project (Kjellstrand 2006).The tracer substance lithium salt was poured into the water at the in�uent (point
A) and the response was measured at the points B, C, and in the e�uent (point
D). Based on this, each of the basins b2 and b3were divided into two equally largetanks. The basin b1 is smaller but was modeled as 4 equally large tanks. The reasonwas that the �ow through b1 had a plug �ow character. The �ow character in amodel approaches that of a plug �ow, as the number of tanks increases. For theexact volumes of the tanks in the model, refer to Table 3.1.We are interested in how well the tank model describes the reality, especially regard-ing the basin b3, since this is what is included in most of the estimators described inChapter 4. The EKF in Section 4.4 also involves concentrations in Tank 6, but onlyas inputs to Tank 7. Also, as mentioned earlier, based on the physical descriptionof the basin, the point C in Figure 5.2 is a natural border in the model. Accordingto the model, an oxygen sensor should be representative for the whole volume of thetank it belongs to, while in reality concentrations vary within the tank. The DOconcentration is even controlled separately for di�erent volumes within the tank. Wecan also expect time delays not included in the model during fast changes because ofdistances within the tanks. For instance, the vertical distance between the di�usersat the bottom and the water surface where the DO sensors are located causes delays



5.2 Tank approximation 67in the sensor responses. The same goes for the horizontal distances between di�usersand sensors.
Zone 6 Zone 7 Zone 8 Zone 9PSfrag replacementsZone 6Zone 7Zone 8Zone 9 Tank 7 Tank 8

Tank7:new Tank8:new

SOSOSO

Figure 5.3. Model of the activated sludge process at Ryaverket.In Figure 5.3, the basin b3 is illustrated. The current tank division is inconvenientfor two reasons. For one, the di�user in Zone 8 is shared between the tanks whichcomplicates model based control somewhat. Secondly, the only oxygen sensor inTank 7 is placed close to the in�uent in Zone 6. One could question if this is repre-sentative for the whole volume. Therefore, a new tank division is considered. Thisis illustrated by Tank7:new and Tank8:new in Figure 5.3, where also the approximatepositions of the DO sensors are given. The point of this change is that now the sen-sor in Zone 8 can be used as a measurement for Tank 8, and a downstream sensormay be more representative for the whole volume than an upstream one, allthoughthe volume of the new Tank 7 is larger than in the original model. Three transferfunctions are de�ned in Table 5.1. Note that we do not consider reactions in theTable 5.1. Transfer functions describing the system for a constant water �ow.Transfer function Describes
G78(s) The system from an input concentration of a substance to Tank 7 to thecorresponding concentration in Tank 8 in the original model.

G78new(s) The system from an input concentration of a substance to Tank 7 to thecorresponding concentration in Tank 8 in the rede�ned model.
G7new(s) The system from an input concentration of a substance to Tank 7 to thecorresponding concentration in Tank 7 in the rede�ned model.basin now, but only �ows and mixing. The impulse responses of the systems havebeen simulated with the water �ow 11

3
m3s−1, which is the same as was used in thesimulation in Chapter 4. The impulse responses of G78 and G78new are shown in Fig-ure 5.4(a). As seen, these are close to the same, which indicates that the rede�nition



68 Chapter 5 Applied estimationof b3 is valid based on what we know since during the tracer tests, the response wasonly measured at the inlet and outlet of b3, and not within the basin. This, howeverraises the question of what is the correct description of the system. In Figure 5.4(b)the impulse response of G78 and G7new are shown. The former is a second order sys-
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(b) Impulse responses of G78 and G7new .tem, and the latter is a �rst order system, and gives completely di�erent responses.This says that we should have a di�erent character of the response of the oxygensensor in Zone8 from an input to Tank 7 in the two models.Another way to model a basin that probably is more accurate is illustrated in Figure5.4. Here a back�ow R from the upstream tanks are included.
PSfrag replacements QQQQ

RR

Figure 5.4. Tank model with a back �ow R.
5.3 An applied model of the KLa functionThe time variation of the KLa function was mentioned in Sections 3.5.3 and 4.5. Forevaluation and possible implementations of designs this concept becomes important.According to Lindberg (1997), the function varies with kind of wastewater and tem-perature. According to Stenstrom and Gilbert (1981) it also varies with TSS. Thetemperature dependency is described by

KLa(T ) = KLa20θ
T−20, (5.1)where T is the temperature and KLa20 is the value of KLa at 20 �. For stirredand only aerated tanks reported values of θ are between 1.016 and 1.024 (Stenstrom



5.4 Data treatment 69and Gilbert 1981). Here, the value 1.02 is chosen. The next equation describes therelationship between KLa for wastewater and freshwater
KLawastewater = αKLafreshwater.(Stenstrom and Gilbert 1981). If the α factor could be considered to be constant fora speci�c plant, it would be unnecessary to mention it, since the KLa parameterswill be estimated for the same water as they are then used for. Unfortunately it isreported that the α factor might be highly time variant. For a speci�c plant andconstant air �ow it is reported that the KLa function varied between 59.6d−1 and

125.7d−1 over a time period of two and a half month. It is suggested that this couldmean a variation in α between 0.47 and 1 (Stenstrom and Gilbert 1981). It is ofcourse not possible to describe how the α factor varies in a model. Any descriptionsof how KLa varies with TSS has not been found. Therefore, only the temperaturemodel is included in the KLa model. There are several di�users in each tank. Itwould be very time consuming to estimate the function for each di�user separately,and therefore we want to relate them in some way. Each di�user consists of a set ofpipes. We can assume that the all the pipes have approximately the same character.Let KLap(qp), be the KLa function for one pipe at 20 �, with parameters k1p and
k2p, refer to Equation (3.2). qp is the air �ow through the pipe and equals the totalair �ow in the corresponding zone divided by the number of pipes in that zone. Thetotal KLa function in a tank can be described as a sum of the KLa functions forthe pipes belonging to that tank. Including the temperature model (5.1), we get thefollowing KLa functions for Tank 7 and 8 in the original tank model:

KLa7(q6, q7, q8, T ) = θT−20(n6KLap(
q6
n6

) + n7KLap(
q7
n7

) +
n8

2
KLap(

q8
n8

)) (5.2)
KLa7(q6, q7, q8, T ) = θT−20(

n8

2
KLap(

q8
n8

) + (n9KLap(
q9
n9

)).Here, ni is the number of pipes in Zone i, and the values of these are given in Table5.2. It has here been assumed that the air�ow in Zone 8 is shared equally betweenthe two tanks. Note that if the volumes of the tanks were not equal it would benecessary to include these in the equations.Table 5.2. Number of pipes in the zonesZone number (i) Number of pipes in the zone (ni)
3− 8 320
9 240

5.4 Data treatmentAt Ryaverket measurements are not stored in the data bank with a �xed samplingrate, but a new value is only stored when a sensor output has varied enough from the



70 Chapter 5 Applied estimationlast saved value, or after a relatively long period of time. The estimators describedin Chapter 4 requires continuous signals or signals sampled at a �xed sampling rate,and the data is therefore linearly interpolated.5.5 Estimation of the KLa functionAlthough the unknown time variation of the KLa function, refer to Section 5.3, it isnot considered to estimate the KLa function on a continuous basis. This is due tothe economic reasons mentioned in Section 4.5. Instead, it was decided to estimatethe function parameters at discrete occasions, and in evaluation or implementationof other designs use the Model (5.1) to update them. The choice of method wasON/OFF control, described in Section 4.5.2. Compared to the method describedin Section 4.5.3, this method has better convergence properties, and it was alsopreferred by the sta� at the plant.Experiments were carried out on three occasions. It was found that even for fastchanges in the air �ow, the outputs of the DO sensors in Zone 8 and 9 were closeto identical. This speaks for the validity of the original tank model, and it makesno sense to consider the suggested new tank division described in Section 5.2. Thismeans that the oxygen sensor in Zone 6 needs to be used as a measurement for Tank7. It was shown that this sensor varies with the variation in the air �ow in zone8. This is in accordance with the model, but there was a delay of several minutesin the response, and this dynamics is not included in the model. It was initiallyconsidered to estimate the function separately for the two tanks, although there isa model relating them.A couple of changes of the estimation method described in Section 4.5.2 were made.In some experiments, only the air �ow in one zone was varied, while the othersbelonging to the same tank was kept constant. In estimation, only this �ow wasincluded in the Model (5.2). This means that during the OFF periods, what wasreally estimated was OUR plus the "constant" contribution to the total functionfrom the other zones belonging to the same tank. The system supplying air to thezones in all the lines consists of three compressors. This system is slow, and it isnot possible to increase the air �ows stepwise, it may take several minutes to reacha higher commanded air �ow. It was therefore not possible to estimate KLa fromstep responses and it was instead estimated by solving the equation ṠO = 0 for it,when the DO concentration had reached a stationary value for a constant air �ow,refer to Equation 4.22. The response to a decrease in the commanded air �ow washowever quite fast, and the original method could be used to estimate OUR.The DO Kalman �lter described in Section 4.5.1 was applied to the data before anyfurther estimations were performed. An example of the output for Zone 6 is shownin Figure 5.5, where the time delay of the Kalman �lter has been removed. As seen,also for real data, the e�ect of mean value forming in the sensors and in the datastorage system is mainly a time delay. The total time delay of the DO measurments
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Figure 5.5. DO concentration in zone 6, measurement data and estimate.compared to the measured air �ow was found to be approximately 120 seconds.This includes time delays caused by distances in the basin. The smoothness of themeasurement data may be surprising. This is caused by the mean value formingand that the data presented is formed by interpolating discrete time data points.The initial experiments were performed during two days. The temperature was then
9.5 �.5.5.1 Experiments in Tank 7Only the air �ow in zone 6 was varied consciously. The air �ow in zone 7 was set toa constant value, since with reference control the control signal for this is the meanof the control signals for the �ows in zone 6 and 8. Because of time delays it was notpossible to time the exact times for when the air should be turned on again after anOFF period. This led to that the DO concentration sometimes approached as lowvalues as 1mgl−1, which can be seen in Figure 5.5. As stated in Section 4.5, we donot want to approach to low DO concentrations, 1mgl−1 is however not criticallylow.The estimated pairs (K̂Lai, qi), are shown in Figure 5.6, refer to Section 4.5.2.2.The number of estimated pairs is small. This is due to that each ON and OFFperiod was way more time consuming compared to simulation. The reason is amongothers the necessary change of the estimation method stated earlier. As seen, there
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Figure 5.6. Estimated KLa in Tank 7 as a function of q6.is one outlier among the estimated pairs. To compensate for the long periods, theestimated OUR values was interpolated in time before estimating KLa. There isquite little variation in the air �ow values in Figure 5.6. The reason for this isthat high air �ows were necessary to hold a high enough DO concentration. Theestimated function K̂La7(q6) is also shown in the �gure. This is KLa in Tank 7 asa function of q6 for the temperature 9.5 �. When estimating this, the outlier wasremoved. The estimated parameters k1:p and k2:p, recalculated for 20 � are given inTable 5.3. Table 5.3. Estimated KLa parameters for the di�user pipes.
k1p (day−1) k2p (m−3hour)

0.4078 0.1521

5.5.2 Results from experiments in Tank 8During the �rst day, the air�ow was varied in Zone 8 and Zone 9 at the sametime. During the second day it was only varied in Zone 9. The estimated triplet
(q8, q9, K̂La8) values did not show a pattern that can be described with any strictlyincreasing function. The most likely reason for the bad result is that OUR in thetank was small, which makes mass balances have a relatively large e�ect, and asdescribed in Section 5.2, we do not put much con�dence in the model regarding



5.6 The aerobic EKF 73these. Because of this result it was decided to use the estimated KLa parametersfor Tank 7 and the KLa-pipe model (5.2) as a model for KLa in both tanks.5.5.3 A new experimentTo achieve a larger span in the air�ows, and possibly shorter ON and OFF periodsto achieve more data points, it was decided to carry out a new experiments for Tank7 in which the air�ow was varied in both Zone 6 and 7 at the same time. The largevariation in the total air �ow however led to problems with the system supplyingthe air, which in turn led to very few data series - ON and OFF periods. There werealso disturbances in form of quite large variations in the water �ow this day and itwas decided to discard the collected data.5.6 The aerobic EKFHere, the result of the extended Kalman �lter for two aerobic tanks presented inSection 4.4 when applied to real data from Tank 7 and 8 is presented. Lab analysis ofBOD for �ltered water samples in Tank 7 and 8 were taken during a couple of weeksto have to compare with the output of the �lter. Filtered BOD is approximately thesame as SS (COD). The dependency of the parameters k in the ASM1 to temperature
T is described by

k(T ) = k(20�)θT−20�
T ,where θT is the temperature coe�cient for the parameters. These have been gatheredfrom the plant, and are given in Table 5.4 for the parameters included in the observermodel (4.19). The EKF including the KLa model (5.2) with the parameters in Table5.3, the temperature dependency of the ASM1 parameters, and the estimation ofthe sludge concentration XX described in Section 4.2 was implemented in Simulink.No pre�ltering of the oxygen sensor data was made, but due to the relative delayof the oxygen measurement data, described in Section 5.5, all other signals weredelayed 120 seconds. The water �ow within the basin was lowpass �ltered, butmeasurements of the induvidual in�uent �ows and TSS were not. These are namelynaturally lowpass �ltered in the estimation of XX . The estimates of the EKF forsome concentrations are given in Figure 5.6. As seen ŜS:7 and ŜS:8 tend to zero,Table 5.4. Temperature coe�cients for the ASM1 parameters.

Parameter θT
µ̂H 1.05
kh 1.072
KX 1.116

γ̂XBH
and X̂BH diverges, and X̂S goes even below zero. These estimations are of
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5.7 Estimation of OUR 75� The ASM1 parameters.In Section 4.4.3 it was also found that the �lter diverges without enough variationin the real concentrations, which is another possible reason. The parameters in the�lter has been varied to make the estimates more reasonable, but the result has stillbeen equivalent to that presented in Figure 5.6.5.7 Estimation of OURThe observer for OUR described in Section 4.3.4 has been simulated for real datausing the same necessary temperature models and pretreatment of signals as inSection 5.6. The result for Tank 7 is shown in Figure 5.8(a). There is another way
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(a) ÔUR7, estimated with the Kalman �lter. 0 0.5 1 1.5 2 2.5 3
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(b) ÔUR7, estimated with the assumption of astationary process.Figure 5.8. Estimated OUR in Tank 7.of estimating rate expressions, that is by solving Equation 4.11 under the assumptionthat the process is stationary (ṠO = 0). This solution is illustrated in Figure 5.8(b).The time period for when this varies as most is for the �rst day of KLa experiments.Naturally, it is not possible to use this method for such extreme conditions. The twoestimates have the same mean, but the Kalman estimate has much smaller variance.When the process is stationary, it is in not possible to detect any errors in theobserver model, these will be compensated for by an erronous ÔUR such that theequations adds up to the oxygen measurements. During large perturbations it ishowever possible to detect model errors. In Figure 5.9, the measured DO concentra-tion - SOm, and the Kalman �lter DO concentration estimate ŜO in Tank 7 is shownfor the period of the �rst day of KLa experiements. During the time interval T1, theair�ow was varied in Zone 8 and 9, and during the interval T2, it was varied in Zone
6 only. The division into these periods is illustrated in Figure 5.8(a) with the dashedvertical line. During the period T1, ÔUR in Figure 5.8(a) varies heavily, and ŜO isnot in phase with SOm in Figure 5.9. The amplitude of ŜO is also smaller than SOm.The reason for this is that for these fast processes the �lter cannot compensate fastenough for errors by varying ÔUR. In the �lter, we account for that the DO sensor
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Figure 5.9. Measured and estimated DO concentration in Tank 7 during the
KLa experiments.should react as fast for variations in the air �ow in Zone 8 as in Zone 6, and fromthe delay in SOm compared to ŜO, we can draw the conclusion that this is not thecase. During the period T2 when the air �ow is varied in Zone 6, the DO signalsin Figure 5.9 are in phase, and ÔUR varies less, which says that the model worksbetter for this �ow. It should be noted that the KLa function has been estimated forthe same data and for Zone 6 as considered here. The observed phenomen may ingeneral not be a problem, since, normally the air �ow is not varied this heavily, andthe stationary tank model may still be a good approximation. But the oxygen con-centration in Zone 7 and 8 as a function of the air �ow in Zone 6 must be describedby the same kind of dynamics, and the assumption when the KLa parameters wereestimated was that the tank was perfectly stirred, i.e. it was assumed that the DOconcentration did not di�er w.r.t. distance in the tank.



6 PROCESS OPTIMIZATIONThe aim of the aerobic proxess is to assure a low concentration of soluble biodegrad-able substrate in the e�uent by taking care of the waste that cannot be cleaned inthe anoxic process. The only costs are for the total air �ow rate and possible e�uentdischarges. The optimization problem can be formulated asMinimize the cost for aeration, while preserving a good e�uent qualityOptimization of the in�uent �ows is so complicated that it is left out from thediscussion. It is initially considered how the aeobic process could be optimized ifall control variables could be varied independently for these. Control variables toconsider are the aerobic volume, the air �ows, the oxygen setpoints, and the TSSconcentration inQX . To unravel the possibilities for optimization, simpli�ed versionsof the equations describing an aerobic tank are given below.
ṠO = KLa(q)(SOsat − SO) +D(Q)(SO:in − SO)

−µ̂H
1−YH

YH

SO

KOH+SO

SS

KS+SS
XXγXBH

ṠS = D(Q)(SS:in − SS)− µ̂H
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+kh
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KX+
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KOH+SO

(6.1)Nitri�cation, denitri�cation and decay of biomass have been neglected. The equa-tions for heterophic biomass has been removed since this concentration in reality ona short term basis only is controllable via the sludge concentration XX , which inturn is controllable via TSS in QX (and the in�uent �ows). Also XS is in realityonly controllable via the inputs and we consider only its e�ect on SS. If e�uentrestrictions are not violated, the only cost is for aeration. As practiced at the plantit is here assumed that the cost is equivalent to and linear in the air �ows. Reducingthe oxygen setpoint has the following e�ects� The expression (SOsat −SO) increases and makes a smaller KLa necessary andthus a smaller �ow rate.� The monod expression MSO
= SO

KOH+SO
is decreased, which decreases bothhydrolysis and the reaction rates of SS and SO.

MSO
is illustrated in Figure 6.1, and we can see that changes of the DO concentrationabove 1mgO2l

−1, has minor e�ects on the reaction rates. One could thus suggestthat the DO concentration could identically be set to for example 1.5mgO2l
−1. Onlyduring high load it may be bene�tial with a higher concentration, but it is duringhigh load that there is the most to gain. During low load, little oxygen is consumed.There is a reason for this not being done. At the plant, one are working with reducingthe oxygen reference. Currently, it varies between 2 and 4 mgl−1. The reason whya constant reference of 2mgl−1 is not used is that one wants to see the e�ect of77
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.reducing it. It is namely so that the oxygen concentration has more e�ects than canbe seen in the ASM1. A too low concentration bene�ts certain microorganisms withharmful or unfavorable properties. Since the model suggests that it is reasonable toidentically decrease the setpoint, while this is really based on properties outside themodel, it is motivated that the DO setpoint should not be varied on a short termbasis based on the model.

XS is degraded by hydrolysis into SS, which then must be further degraded. Thisis an unnecessary cost since particulate substrate can be removed in the secondaryclari�er and the disc �lters. By reducing the aerobic volume during low load, it ispossible to reduce hydrolysis e�ects.The KLa function is nonlinear with strictly decreasing increase w.r.t. the air �ow,and it would therefore be positive to allocate the reactions as even as possible overseveral tanks. To make this possible, we need to be able to control the reactionrates. As stated earlier, these are not controllable via the DO concentrations withinreasonable intervals in these. They are, however, controllable via the sludge concen-tration XX . For this kind of optimization, it is necessary that at least three tanksare aerated. This is since the reaction rate must be identically small in the last aer-obic tank since this is bounded in SS, which must be small to ful�ll the restrictionon the e�uent. If the �ow in reality has more of a plug�ow character, this can beconsidered even for a smaller volume.Except for the DO concentration, none of the control variables considered so far canactually be optimized independently for the aerobic compartments. Both the aerobicvolume and the sludge concentration a�ect the denitri�cation capacity, and it mayeven be necessary to consider proesses outside the basins. Under the assumption thatthe tank model is valid, there is however one set of variables that can be optimizedindependently for the aerobic tanks. We can consider reference controllers in whichthe control variable is a prescribed KLa function, see for instance Olsson and Newell(1999). From this, the necessary air �ows can be calculated. At Ryaverket, there areseveral air �ows in each tank, and there is no unique choice of these. But beacuse



6.1 Optimization based on real data 79of the KLa functions nonlinear characteristics, there is a cost optimal choice. Weconsider here the KLa model described in Section 5.3. In Tank 6 there are equally asmany pipes in each zone and no zone is shared with another tank. The optimizationproblem is in this case therefore trivial, all �ows should be equal. By the sameargument, one �nds that it is optimal to let the �ows q6 and q7 in Tank 7 to beidentical. With the Model (5.2), the optimization problem becomes
minimize f(q6, q8, q9) = 2q6 + q8 + q9 w.r.t. q6, q7, q9

g1(q6, q8) = θT−20(2n6KLap(q6/n6) +
1
2
n9KLap(q8/n6)−KLa7sp) = 0

g2(q8, q8) = θT−20(1
2
n6KLap(q8/n6) + n9KLap(q9/n9)−KLa8sp) = 0

(q6, q8, q9) ∈ D = {200 ≤ q6, q8 ≤ 2160m3h−1 400 ≤ q9 ≤ 2160} (m3h−1)

.(6.2)Here, n8 and n9 has been substituted with n6 since they are equal, refer to Table 5.2.
KLa7sp and KLa8sp are the by the reference controller speci�ed necessary valuesof KLa in the tanks. The boundary D are restrictions on the �ows. The lowerboundaries are used at the plant to assure enough mixing of the water at all times.The optimal solution are either globally optimal or lies on the boundary of thedomain D. At a globally optimal point we have that the gradients of f , g1 and g2w.r.t the q:s are parallel (Persson and Böiers 1988). Another way to express this isthat

det




grad(f)
grad(g1)
grad(g2)


 = 0.This together with the equations for g1 and g2 gives the possible globally optimalpoints. This has been simpli�ed in a symbolic math program, and there were twosuch points. The solutions on the boundary can be calculated from the equationsfor g1 and g2 by inserting that for example q9 = 400. Totally, there are 8 possibleoptimal solutions that needs to calculated. This optimization method has beenevaluated for real data.6.1 Optimization based on real dataHere, the estimated KLa parameters in Table 5.3 were used. Air �ow and tem-perature measurement data with the sampling time 10 minutes for half a year wascollected from the plant for Zone 6 to 9 and for line 3. Using the Model (5.2),the KLa function in the tanks was calculated for each time instant. The calculatedvalues were taken as the speci�ed values in the Optimization problem (6.2). Theoptimal individual �ows were quite di�erent compared to the measurement data,while the change in the total air �ow were not as signi�cant. For the whole period4.5 % less air was needed with the optimal solution. There is one subperiod of 30(day 100 to 130) days for which the bene�t of the solution is more signi�cant. Thetotal supplied air could for this be reduced by 12 %. The optimized total air �ow



80 Chapter 6 Process optimizationfor the subperiod is illustrated in Figure 6.2 and the optimized induvidual air �owsare illustrated in Figure 6.3 for the same period.
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Figure 6.2. Total air�ow (f).The measurement data for this period is extreme, it is saturated for Zone 8 whilethe �ow in Zone 9 is minimal, and the �ow in Zone 6 is much smaller than that inZone 7, which gives a high potential for the solution. Compared to the developedestimators in Chapter 4, we can expect this solution to be more robust, and lesssensitive to errors in the estiamated KLa parameters. This due to that what wereally want to achieve are air �ows more evenly allocated over the di�users. Howmuch that can be saved is of course highly dependent on the characteristics of thereal KLa function. This property has not been considered in more detail.
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(d) q9Figure 6.3. Optimized air �ows.



7 REVIEW OF RESULTS ANDDISCUSSIONA case study based on plant data was formed to evaluate designs by simulation. Onelimitation in this is that only zero mean sensor noises with Gaussian distributionsare considered.7.1 Estimation via rate expressionsIn Section 4.3 a method was presented in where the parameter γXBH
is determinedfrom NUR, estimated by a linear Kalman �lter in an early upstream tank assumingthat the Monod expression in SS is often saturated there. This method can beused in several ways to estimate substrate concentrations in the downstream aerobictanks. It was illustrated for estimation of SS via estimation of the rate expressions

OUR. Limitations in this method are:� OUR includes nitri�cation which was neglected in the calculations of SS, whichleads to errors.� The estimation of SS is quite sensitive to errors in γXBH
. This is due to thenonlinear Monod expression in SS.� Compared to the aerobic tanks, measurement noise in the measured input ofthe nutrient has a relatively large e�ect in the anoxic tanks. This is in partic-ular true for the considered plant, since the early tanks in this are relativelysmall. Measurement noise is limiting since there is a compromise between noisereduction and convergence speed for the estimates of a �lter.� Secondary calculations for γXBH

based on estimated variables ampli�es dis-turbances. This can be resolved by using an EKF to estimate the parameterdirectly.� The assumption of zero mean measurement noise in the case study may in thiscase be severe. The experience at the plant is namely that the nitrate sensorssometimes are drifting.� Parts of the variable SNO in the ASM1 consists of nitrite which is not measured.This have been neglected in simulation.To decrease noise e�ects due to the measured input in the estimation of γXBH
, di�er-ent alternative observer models were considered. The possibility to approximate twotanks as one for a larger volume and smaller noise e�ects was investigated with the82



7.2 An EKF for the aerobic compartments 83result that the optimal approximation was dependent on the concentrations in thetank. It was illustrated that the inverse of the Monod expression is too sensitive tonoise and disturbances to be used for direct estimation of substrate concentrationsin the anoxic tanks.7.2 An EKF for the aerobic compartmentsThe second estimation method was estimation of biomass and soluble- and partic-ulate substrate concentrations with an extended Kalman �lter (EKF) for a seriesof n aerobic tanks. For one tank, the estimates were divergent but for two tanksthe �lter was convergent for the simulation data in the case study, and performedwell. This result was over expectation with fast convergence from an initial guessand accurate estimates. One could expect that it is necessary with one oxygen mea-surement per unknown input. One reason for the positive result is the modelingof XBH as a product of the fast varying sludge concentration which is an input tothe �lter and a slowly varying paramater γXBH
which is estimated. The possibilityto introduce more process noise and implement the �lter using the Runge Kutta 4method was investigated with a result which was equivalent to previous simulationswith the EKF. The EKF for two tanks has some negative properties though:� As in the previous method, the estimates are somewhat biased which is mainlydue to the neglection of nitri�cation in the derivation of the observer model.If the real e�ect of nitri�cation in the process is quanti�ed, this e�ect can bereduced.� The estimation of XS may be slow, but by describing a correlation betweenmeasured TSS in Qin and XS, this estimation could be made faster. Therecertainly is a correlation between these concentrations also in reality, but it isa bit hypothetic how strong this is.� A sensitivity analysis showed little sensitivity for the estimates to errors inmost of the parameters in the internal model of the observer describing theprocess. On the other hand, the sensitivity to errors in the KLa functionswere quite large. The problems with KLa parameter errors were smaller ifthe relative error was the same for both tanks. This is positive since in anapplication, the di�users are likely to be equal and described by the samemodel.� The convergence of the �lter for two tanks is dependent on certain variationsin the concentrations. Although the in�uent concentrations to an ASP oftenfollows a daily rhythm and often with a large peak each day, restrictions onvariations in estimated concentrations are too restrictive in an observer design.For better convergence properties, and possibly less sensitivity to parameter errorsa rede�ned model involving three tanks was evaluated. The result was a �lter with



84 Chapter 7 Review of results and discussionconvergence independent of variations in the concentrations. The convergence of
X̂S was in general also somewhat faster. The sensitivity property was howevernot improved signi�cantly. To explain the properties of the �lter, observabilityconditions were investigated for sampled points of the simulation data. Locallyweakly observability roughly means that it is possible to distinguish states from theirneighbors without going to far. This could be investigated using the observabilityrank condition. The EKF is based on a linearization of the observer model aroundthe current estimated state, one could therefore expect observability/detectabilityof these linearizations to be an important property. This property was investigatedusing several methods. The results for the sampled points were:� EKF based on measurements in one tank: Locally weakly observability couldnot be con�rmed and the linearizations of the model were neither observablenor detectable. This is in accordance with the poor simulation results withthe �lter.� EKF based on measurements in two tanks: Locally weakly observability wascon�rmed for all points. This shows on some observability properties, but isnot a contradiction to the dependency of variations of the �lter since the EKFis not an optimal �lter. The linearizations around the points were neitherobservable nor detectable. By transformations into stair case form, it wasshown that the eigenvalue of the unobservable mode was 0 for all points.� EKF based on measurement in three tanks: For this case both observabilityconditions could be con�rmed. This result can be related to the independencyof variations for this �lter.The relative dependencies of the states in the observer model to the non detectablemodes in the linearized models were investigated for the �lter based on two tanks.The aim of this was to show that this dependency was small for all variables forrelevant periods of each day in the simulation case. This could explain the conver-gence of the �lter for this data. The result was di�erent than expected. XS showedhigh dependency to the non detectable mode for almost all times. It was concludedthat observability of linearizations of the observer model is not necessary for theEKF, but still a positive and important property. XS:s relatively high dependencyof the non detectable mode was especially large which possibly can explain its slowerconvergence. The process model considered in this project is simpler than in pre-vious formulated extensive observers for the ASM1 since nitri�cation in this case isseparated from the AS basin. The extension of the developed EKF to a process witha mixed aerobic process should however be straightforward. For that more concen-trations need to be included in the observer model, such as autotrophs, ammoniumand nitrate, but it also introduces possibilities of more sensors, since both nitrateand ammonium can be measured online.



7.3 Estimation of the KLa function 857.3 Estimation of the KLa functionThe methods for KLa estimation found in the litterature are unsuitable for Ryaver-ket, and needed to be further developed. The ON/OFF control method described inSection 4.5.2 is an extension of a method described by Suescun et al. (1998). Massbalances were included in the equations because of the relatively high �ow rate atthe plant and the parameters were estimated by solving a set of optimization prob-lems. One would expect the method to give accurate estimates in simulations withzero mean measurement noise and a perfect model, which was also the result.The other evaluated KLa estimation method uses an EKF and excitation of the air�ow, which was inspired by the work by Lindberg (1997). Implied by the controlsystem at the plant, only excitation signals with discrete levels were considered.The result was that the convergence of the �lter was highly dependent on choiceof variances and initial covariance. Lindberg (1997) used an excitation signal withcontinuous amplitude, which can explain the better convergence achieved.The DO measurement data at the plant is formed by moving average. Comparedto sensor dynamics of traditional DO sensors the e�ect of this �ltering is relativelysmall, but for completeness a Kalman �lter to reconstruct the actual concentrationwas designed with good simulation results.It is reported that the KLa function may be varying in a way that it is not possibleto include in a model. Therefore it is desirable to estimation the function on acontinuous basis, but the evaluated KLa estimation methods rely on excitation ofthe air �ow rates, which is too costly to be economically justi�ed. It was thereforedecided to estimate the function on discrete occasions with the ON/OFF controlmethod, and then use a model for it only including its temperature dependency.A possibly less costly method for continuous estimation of the KLa function would isa resphirometer. A resphirometer is a separate chamber without aeration in which
OUR is estimated (Olsson and Newell 1999). Resphirometer measurements are,however, not available online at the considered plant.Experiements to estimate the function were performed on three occasions at theplant. These experiments were very time consuming, which led to that only afew measurement series could be collected. One reason for this was the necessarymodi�cation of the method. The experiments on Tank 8 was unsuccessful due toa small oxygen uptake rate, which led to that water �ow had a relatively largee�ect, and the model of this is a weak part of the total model. By introducingthe model of the KLa function for one pipe, the KLa function for Tank 8 couldbe based on estimations for Tank 7. The results of the experiments in this tankwere quite successful, although a larger di�erence in the �ow rate values, and moremeasurement series would have been desired. A larger di�erence could have beenachieved if the air �ow was varied in more than one zone at a time. This wouldalso give faster variation in the DO concentration and therefore more measurementseries. It could probably make the concentration to be more consistent throughout



86 Chapter 7 Review of results and discussionthe tank, i.e. make the process behave more like a perfectly stirred tank model.This approach was tested on a later occasion, but unfortunately disturbances andproblems in the central air �ow control system when varying the air �ow made thisexperiment unsuccessful.7.4 Evaluation of the EKF based on real dataThe EKF approach was evaluated for real data for two tanks, and unfortunately the�lter was divergent for this. Possible reasons are:� Concentrations may have varied too little in reality, and the result from simu-lation is that the �lter needs variations in the concentrations to be convergent.� Errors in the estimation of theKLa parameters, and unmodel time variations ofthe real KLa. It is known from simulation that the EKF is especially sensitivefor variations in the KLa functions.� Errors in the ASM1 parameters. It is, however, known from simulation thatthe EKF has relatively low sensitivity to errors in these.� Neglection of nitri�cation/denitri�cation in the observer model, especially ni-tri�cation.Model errors were further analyzed by considering the model of the AS basin as aseries of continuously stirred tank reactors. It was illustrated that the performedtracer tests do not give a unique division of the basins, while this is an importantconcept in the observer model. Depending on the division, sensor responses havetotally di�erent characters from an input to the basin holding the two tanks in themodel. Naturally, there are also higher order dynamics due to vertical and horizontaldistances within the basin, and this is not accounted for in the model. This propertywas illustrated using measurement data, and it was stated that this dynamics haveespecially large e�ect when estimating the KLa function. Figure 7.1 illustrates thesources of errors in the observer model of the EKF.7.5 Optimization of the aerobic processIt was concluded that few of the control variables can be optimized independentlyfor the aerobic compartments and that the oxygen set point should not be optimizedcontinuously based on the ASM1 since it a�ects properties not included in the model.Optimization of the individual air �ows were considered and solved. Results for realdata was presented that showed that 5 % of the total cost could be saved with thesolution, but also this method relies on that the tank model and the estimated KLaparameters are valid.
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PSfrag replacements Figure 7.1. Sources of errors in the observer model.7.6 Possibilities for RyaverketA solution for substrate estimation discussed for Ryaverket is to assume that theparameter γXBH
is constant, and estimate a value of it from lab analysis of solublesubstrate. From the lab analysis we get an estimate of the Monod expression in

SS, which can be used to estimate γXBH
from estimates of OUR in the aerobictanks. This can then be used to estimate SS online. With this method, we can alsocompensate somewhat for errors in the estimated KLa function. The possibility ofthis method relies on that γXBH

varies little, and that the KLa parameters do notvary much in an unmodeled way. The method should be used on Tank 8, sincethe concentration in SS is smallest there, and this gives the smallest sensitivity toparameter errors. There is, however, a negative e�ect of the small concentration.The relativily small OUR in this tank makes the e�ects of water �ows to be moresigni�cant in the process, and as stated earlier we do not rely much on the modelof the water �ow. Problems with this model and a small OUR was seen whenestimating the KLa parameters.



8 CONCLUSIONSOptimization of the activated sludge process is limited by the lack of measurementsof concentrations in the commonly used models for it, such as the activated sludgemodel NO.1. This is in particular true for some of the main variables, such asthe concentration of dissolved and particulate substrate, and bacterial biomass. Ageneral remedy for absence of online measurements is to �nd an observer to estimateunmeasured variables based on a dynamic model and online measurements of othervariables. Observers for substrate and biomass have earlier been formulated forthe ASM1, but with unrealistic assumptions of measurements and parameters, andwithout considering sensitivity to errors in its internal model.The goal of this work was an independent solution ready for implementation forestimation of all relevant concentrations in the ASM1 in the aerobic compartmentsof an ASP. The lesson from previous work is that it is necessary to include moremeasurements in the algorithms. This has been solved by including more tanks inthe model, and also taking measurements of totally suspended solids in the in�uentsinto account for faster estimation. Two methods have been developed:� Separate estimation of bacterial biomass in the anoxic compartments, andsubstrate in the aerobic compartments.� An extended Kalman �lter (EKF) for n aerobic tanks for estimation of allconcentrations of interest.The latter one is the more interesting since it consists of only one observer, and itwould be more realistic. Possible unrealistic assumptions about the nitrate sensorsin the �rst one have namely been made in simulation. The EKF performs wellin simulation, but showed to be especially sensitive to errors in the KLa function.Methods to estimate the function have been further developed and evaluated insimulation with good resuls. The evaluation of the EKF based on real data wasunsuccessful, a result which can be explained by errors in the observer model, andthe dependency of variations in concentrations implied by the EKF for two tanks.The KLa function may also be time varying in a way which was not possible toinclude in the model.The developed methods are far more realistic than earlier formulated since no as-sumptions of measurements of in reality immeasurable quantities have been made.Some of their negative properties are process dependent and positive for a possi-ble future implementation would be a process with more and smaller aerobic tankswith better de�ned borders. Cheaper methods for continuous estimation of the KLafunction than available today may also be necessary.Optimization of the aeration was also considered, and it was concluded that the DOset points should not be continuously optimized based on the ASM1. Optimization88



89of the individual air �ows were solved, and results for winnings of the method basedon real data was presented. The magnitude of the possible winnings is, again,dependent on the estimated KLa parameters and that the tank model is valid. Itwas also concluded that the DO set point should not be varied on a continuousbasis.cleardoublepage
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