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Abstract

The activated sludge process for degradation of organic matter is one of the main
processes commonly used in biological wastewater treatment, and aeration in that
process stands for a large part of the energy consumed in a plant. Hence, there has
been many attempts to optimize the operation of the activated sludge process, which
requires a model of the process. The advanced models used has in general their ori-
gin in IWA (former IAWQ) activated sludge model no 1 (ASM1). Unfortunately,
feasible optimization is limited because several of the most important variables, for
example bacterial biomass (Xpg), readily biodegradable soluble substrate (Sg) and
slowly biodegradable particulate substrate (Xg), cannot be reliably measured online
because of their complexity hiding behind their notation. One way to resolve this
problem is to estimate these concentrations using an observer and other online mea-
surements at hand. Here we have developed an Extended Kalman Filter (EKF) that
estimates the relevant concentrations in the ASM1 based on oxygen measurements
and supplied air. For faster convergence, measurements of totally suspended solids
in the influent flows are included in the algorithm. It is concluded that estimation
does not work for one stirred tank alone, but when the activated sludge process is
described by several tanks in series with oxygen measurements in each of them, the
estimates converge. The filter has interesting convergence properties, and to explain
these observability properties are investigated. For an implementation of the ob-
server, it is necessary to estimate the oxygen mass transfer function and methods
for this are evaluated and further developed. One of these and the EKF were evalu-
ated for the wastewater treatment plant Ryaverket in Goteborg. The EKF is found
to be divergent for this plant, which can be explained by the many uncertainties re-
garding the model. A more simple observer for estimation of the important measure
oxygen uptake rate (OUR) was evaluated, and this was found to be convergent for
plant data. Optimization of the aeration is considered briefly and is solved for one
control variable. Results based on real data are presented.

KEYWORDS: observer, extended Kalman filter, ASM1, activated sludge.



Sammanfattning

Aktivslamprocessen for nedbrytning av organiskt material &r en av de vanligaste
processerna for biologisk avloppsvattenbehandling och luftningen av de aeroba zon-
erna i processen star for en stor del av den forbrukade energin pa ett verk. Det har
darfor gjorts flertalet forsok att optimera processen vilket kraver en modell av den.
De avancerade anvinda modellerna har i regel sitt ursprung i IWA (tidigare IWAQ)
activated sludge model no 1 (ASM1). Tyvérr, &r optimering av processen begrin-
sad eftersom flera av de mest viktiga variablerna i ASM1, tex bakteriekoncentration
Xpn, lattillgdngligt substrat Sg och partikulart svarnedbrytbart partikulat substrat
Xg, ej kan mitas fortroligt i realtid. En mdjlig 16sning dr att anvinda en obser-
vator och métningar av andra tillgdngliga processvariabler. I detta arbetet har en
observator - Extended Kalman Filter(EKF) utvecklats som estimerar de relevanta
koncentrationerna i ASM1 modellen baserat pa syremétningar och tillférd luft. Det
visar sig att estimeringen inte fungerar for endast en tank, men om processen beskrivs
av flera efterliggande tankar med syremétningar i var och en konvergerar estimaten.
For en implementering av observatéren ar det nodvindigt att estimera en funktion,
Kpa-funktionen, vilken beskriver syredverforingen fran diffusorerna till vattner i de
aeroba zonerna. Metoder for att gora detta evalueras och vidareutvecklas. En av
dessa och EKF:en har testats pa data fran reningsverket Ryaverket. Tyvérr, kon-
vergerade inte filtret i detta fall vilket kan forklaras av de manga osékerheter som
finns i modellen. En mer simpel observator for den viktiga indikatorn ozygen uptake
rate (OU R) utvirdares ocksa, och var konvergent f6r datan fran Ryaverket. Opti-
mering av processen undersoks overgripande och mer ingaende for en styrvariabel,
och resultat baserat pa riktig data presenteras.

NYCKELORD: observator, extended Kalman filter, ASM1, aktiv slam.
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1 INTRODUCTION

The activated sludge process (ASP) is one of main processes commonly used in
biological wastewater treatment. In this process, bacterial biomass grows as ammo-
nium, phosphor and organic substances are degraded. ASP:s are costly to operate
and their largest cost is for the energy required for aeration of the aerobic compart-
ments.

To optimize the process modeling is needed. The most widely used model for mod-
eling of the reactions in ASP:s is the Activated Sludge Model NO.1 (ASM1) (Henze
et al. 2000), and its successors ASM2 and ASM3 (Henze et al. 2000). ASM1 mod-
els removal of degradable organic matter and nitrogen compounds. ASM2 includes
modeling of biological phosphorus removal. ASM3 is a more comprehensive and
extended version of the ASM1. Unfortunately, these models contain several con-
centrations that cannot reliably be measured online. This is in particular true for
some of the main variables, such as dissolved and particulate organic substrate, and
biomass concentration. Substrate analyzers have been available for several years but
these have historically been considered unreliable (Olsson and Newell 1999), and do
not differentiate between particulate and dissolved substances as in the ASM1. To-
tally Suspended Solids (TSS) measurements though give an indication of biomass
concentration though.

A general remedy for absence of online measurements is to find an observer to
estimate unmeasured variables based on a dynamic model and online measurements
of other variables. In the literature, there are few examples of observers based on the
ASM1 or its successors implemented at a real plant, but at the Ejby Mglle WWTP
in Odense Denmark, an observer based on these models predicts the ammonium
and nitrite plus nitrate concentration in real-time, based on ammonium and redox
potential measurements (Cecil and Kozlowska 2009). Other implemented observers
for ASP:s described in the litterature are for estimation of reaction rates (Lindberg
1997). Observers to estimate biodegradable substrate based on the ASM1 have been
formulated by Benazzi et al. (2007) and Boulkroune et al. (2009). Both of these are
for one aerobic reactor in the COST benchmark model (Copp 2001, Alex et al. 1999),
assuming constant and known bacterial concentration. In practice this is a highly
restrictive assumption since proper measurement of the bacterial concentration is
hardly feasible. Benazzi et al. (2007) used an extended Kalman filter but found
that for the estimates to converge it was necessary that at least the influent of
soluble substrate was also measured. Boulkroune et al. (2009) used another LMI
based nonlinear observer also based on a simplified version of the ASM1. They
lumped soluble and particulate degradable substrate into one variable Xpco, since
the presumed measurement did not make it possible to distinguish them. Further,
they concluded that the system becomes unobservable if the influent concentration
in Xpco is unknown. This is solved by feeding the observer with the daily mean
substrate level based on a presumed lab analysis. The drawbacks of these methods
are that they rely on data for bacterial concentration and influent concentrations of
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biodegradable substrates. Further, the latter method does not distinguish between
soluble and particulate substrate, although this is very important since the effects
and kinetics for the two are very different. Neither is the robustness to model errors
evaluated.

As a basis for the simulation model, and to evaluate designs on, the WWTP Ryaver-
ket in Gothenburg in Sweden is considered. The work has resulted in an EKF that
estimates all relevant concentrations in the ASM1, including unknown inputs of sub-
strate and biomass based on measurements in two or more aerobic tanks, and TSS
measurements in the influents. The filter has been evaluated in simulation with
good results, and it is also shown that the Runge Kutta 4 method can be used for
an implementation of it. For the case with two tanks there are however restrictions
on certain variations in the concentrations, and this property is analyzed based on
observability conditions. The success of this filter compared to the filters by Benazzi
et al. (2007) and Boulkroune et al. (2009) relies on the following features:

e Contrary to the work mentioned above, the process considered here is preden-
itrifying with post nitrification. This means that nitrification stands for a very
small portion of the aerobic reactions in the ASP, which in turn leads to that
fewer concentrations in the ASM1 need to be included in the observer. These
are Sp (oxygen), Ss (readily biodegradable substrate), Xg (slowly biodegrad-
able substrate) and Xpg (heterotrophic biomass). Among these, only oxygen
is measured.

e Instead of assuming the influent concentrations known, they are considered as
stochastic processes and are estimated by the observer.

e By including more than one tank additional measurements of oxygen are avail-
able and a better coupling between the states is achieved.

e The biomass concentration is modeled as a product of the sludge concentration
and a variable (parameter) vx,,, which denoted the fraction of the sludge
being heterotrophic bacteria. The sludge concentration can vary fast when
the operators change the flows but it can then be estimated from measured
TSS in the recycled sludge flow and measured water flows. The estimated
sludge concentration is thus fed to the observer and the slowly varying vx,,
is estimated.

e By describing a correlation between measured TSS in the influent to the ASP
and Xg in the observer model, the convergence of the filter can be made faster.

The extension of the method to a mixed aerobic process should be straightforward.
Another method for estimation of the parameter vx,,,, based on estimation of reac-
tion rate expressions with a linear Kalman filter for the anoxic tanks has also been
developed. In the anoxic compartments, rate expressions are often saturated in the
soluble substrate Sg. With this knowledge, and estimated sludge concentrations,
Vxpy 1S estimated. This can be further used for estimation of substrate in the aer-
obic tanks, which is is evaluated for Sg, again based on estimated rate expressions.



The method is useful but shows to be quite sensitive to errors in the estimated
parameter.

For implementation of the developed estimators, it is necessary to have an estimate
of the oxygen mass transfer function, i.e. the Kpa function. It describes the transfer
of oxygen from diffused air to the water, and is not known for Ryaverket. There are
methods to estimate it, and two of these are evaluated and further developed to be
suitable for the considered plant. These includes excitation of the air flow, which
is costly, which implies that allthough the function is known to be timevarying in a
non modeled way it is not possible to estimate it on a continuous basis. On three
occasions, experiments to estimate the function were performed at the plant.

Due to properties of the considered plant, only the EKF approach with measure-
ments in two tanks for estimation of the ASM1 variables could be evaluated for real
data. Unfortunately, the estimates are found to diverge. One possible reason is that
concentrations vary too little in reality, and another possible reason are deviations
between the real process and the internal model of it in the observer. One source of
errors is the parameters in the ASM1. Another is the model of the activated sludge
basin as a series of tanks, and this model is further analyzed. This also leads to er-
rors in the estimation of the Kpa function, and it is known from sensitivity analysis
by simulation that the EKF is especially sensitive to such errors. The unmodeled
time variation of the Kra function is another source of errors.

There are many possible control variables to optimize in an ASP, such as the air
flows in the aerobic compartments, the oxygen set point, the influent flows, TSS
in the return sludge flow, and the volume used for anoxic processes versus aero-
bic processes. In Lindberg (1997), Samuelsson et al. (2007) and Chachuata et al.
(2005) these kind of problems were considered without taking substrate and biomass
measurements/estimates into account. Dynamical optimization of the process is a
comprehensive problem since many of the control variables need to be optimized us-
ing a model involving at least parts of the AS basin. This goes for the influent flows,
TSS in the return sludge flow, and the aerobic volume. The problem of optimizing
these for the aerobic compartments under the assumption that this can be done
without taking into account upstream processes is considered briefly. The oxygen
set point can, according to the mathemical model, be optimized independently for
the aerobic compartment. The model also says that it is reasonable that a constant
oxygen setpoint can be used that is identically lower than that used today, but the
current value is based on properties not included in the ASM1. It is therefore con-
cluded that it should not be varied continuously based on this model. Optimization
of the induvidual air flows was solved and results based on real data for half a year is
presented. 5 % of the total aeration cost could be saved with the developed method.
The validity of the result is, however, dependent on that the tank model is valid and
on the shape of the real Kya function.



2 NOTATION

Abbreviations
AS activated sludge
ASP activated sludge process
BOD biochemical oxygen demand
COD chemical oxygen demand
CSTR continuously stirred tank reactor
DO dissolved oxygen
EKF extended kalman filter
NUR nitrate (and nitrite) uptake rate (mgNO;'~'d 1)
OUR oxygen uptake rate (mgQOsl~td™1)

S-function state space function in Simulink

TSS

totally suspended solids

WWTP wastewater treatment plant

Capital Letters

BH
X;
Xx
Xs

dillution rate - &£ (d71)

tank index set I = {d1,d2,t,1,...,8}

half saturation coeffiecent in Monod expressions for the concentration z
Monod expression in the concentration z

volumetric water flow rate (m3d—)

water flow from the trickling filters

influent flow to the plant (m3d—1)

sludge recycle flow

process noise covariance matrix

measurment noise covariance matrix

dissolved matter

readily biodegradable substrate (mg(COD)I™)

NH4} + N Hj nitrogen (Ammonium)
nitrate and (nitrite) nitrogen mgNO3
dissolved oxygen concentration (mgOyl~1)
temperature (°C) or transformation matrix
tank volume (m?)

particulate matter

hetertrophic baceterial biomass mg(COD)l

sludge concentration originating from Q;, (mgT'SSI™!)
sludge concentration originating from Qx (mggTSSI™1)
slowly (particulate) biodegradable substrate (mg(COD)I™!)

ll—l

-1

4
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d day
impulse response
sampling time, or hour

1 Kpa function parameter (d—!)

s  Kpa function parameter (m—>h)
volumetric air flow rate (m?(air)h™!)
time
input vector in observer models
measurement noise
state vector in observer models
measurement vector in observer models

T

<R S S T+t

Greek Letters

Vxpy fraction of Xx being heterotrophic biomass (9COD/gTSS)
L maximum specific growth rate for heterotrophic biomass (d™')

Subscripts

di, dy indexes for the deox tanks

m measurement, of
t index for the transport volume (tank)
m input to an arbitrary tank, but is also used for the influent flow @,

Diacritical marks

sample mean
approximation or estimate
scaled
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Ryaverket is owned by GRYAAB who treats wastewater from its joint owners, the
municipalities of Ale, Goteborg, Harryda, Kungilv, Mélndal and Partille. GRYAAB
also operates a 120 km long tunnel system, which transports wastewater from within
the region to the plant. There are mainly three kinds of waste that is removed in
the process:

e Particles, such as sand, coffee grounds, potato peel and toilet paper.

e Organic degradable substances. When they enter natural waters, such as lakes
or seas they are naturally degraded. However, the oxygen needed for the degra-
dation is taken from the water and the result are lowered oxygen concentrations
and increased bacterial biomass.

e The nutrients phosphor and ammonium. They can cause increased growth of
algiers, reed and other plants in watercourses. When the algiers die, they are
degraded and oxygen is consumed. This can lead to oxygen depletion resulting
in dead bottoms.

The treatment process is illustrated in Figure[3.Il The water reaches the plant from
a tunnel system. Before it enters the primary sedimentation step it has gone through
several steps of mechanical cleaning. Different gratings are used to remove sands,
gravels and other larger particles. In the primary sedimentation step the water flows
through large tanks, commonly called primary clarifiers. The flow is low enough, to
allow particles that are heavier than water to sink to the bottom and subsequently
collected and pumped to further sludge treatment stages where energy is extracted
from it. The water also contains grease and oils that are lighter than water and form
a layer on the surface that is skimmed off. At Ryaverket, phosphor removal is not
a biological- but a chemical process. Iron sulphate is added to the water, which is
positively charged, while phosphor is negatively charged. The chemical reaction is
that the nutrients and chemicals attract each other. In this way flocks are formed
in the water that grow in size. These are bounded to the sludge in the Activated
sludge process (ASP).

The ASP is centered about the activated sludge basins which contains both anoxic-
(oxygen free environment) and aerobic (environment containing oxygen) processes.
In this biomass grows with degradation of ammonium and mainly soluble degradable
organic substances. The process at Ryaverket is predenitrifying with post nitrifica-
tion, which means that degradation of nitrate (denitrification in the anoxic com-
partments) comes before the aerobic processes, and that nitrification (degradation
of ammonium in trickling filters) comes after the AS basins. To make this possible,
the effluent of the basins is recirculated via the trickling filters back to the influent.
To sustain a high enough bacterial biomass population in the basins, there is also a
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Figure 3.1. The treatment process at Ryaverket.

recirculation of the sludge containing the bacterias. Approximately half of the efflu-
ent is recirculated. There are two kinds of bacterias in the process. Heterotrophs are
responsible for the main reactions in the AS basin. For growth, these need soluble
carbon and a nutrient. In the anoxic compartments the nutrient is nitrate, and the
rest product is nitrogen gas. In the aerobic compartments the nutrient is oxygen,
and the rest product is carbon dioxide. Oxygen is here added to the water through
diffusors at the bottom. Because this is costly, it is desired to degrade as much
as possible of the soluble organic compounds by denitrification, since nitrate is a
nutrient source formed in the process that also must be degraded. The nitrate that
cannot be degraded in the basins is treated in moving bed reactors (MBR), which
is a separate denitrification process in which an external carbon source is added to
the water, which is also costly. Nevertheless this isnecessary when the concentration
of the natural carbon source in the influent to the ASP is not high enough.

The trickling filters is an aerobic process in which the second kind of bacterial
biomass (autotrophs) grows with the degradation of ammonium and oxygen into
nitrate. The reason why nitrification is separated from the rest of the ASP at
Ryaverket is because high water flow and that heterotrophs grow much faster than
autotrophs. The heterotrophs will therefore outcompete the autotrophs and, hence
limit the potential nitrification in the ASP. Still, there are some nitrification in the
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aerobic parts of the AS basins have been observed.

The purpose of the secondary clarifier is to allow the biological flocs and particulate
compounds in the water to settle and produce sewage water containing low levels
of nutrients and organic matter. A large part of the superfluous sludge is pumped
back to the primary sedimentation step and treated further. To be able to handle
stricter effluent standards disc filters has newly been installed. The purpose of these
is to further remove particulate compounds.

Figure B2 gives a more detailed picture of the ASP. The focus of this work is within
the dashed line, and it defines what is included in the simulation model. The water

Activated sludge basins

secondary
clarifier

/

Q’in

Disc filters

Trickling
filters

Figure 3.2. Model of the activated sludge process at Ryaverket.

from the trickling filters is saturated in oxygen, and the purpose of the deox tanks
is to lower the oxygen level in the water to close to zero before it enters the anoxic
compartments of the basins. In reality there are two deox tanks, recycled sludge
flows and trickling filters. In simulation, the two flows Q) x and Q... are divided over
two equal deox tanks. V; is a transport volume which is non neglible. The points m,
to my are measurement points. The flows Q;, (influent wastewater), Qx (recycled
sludge flow), Q.. (water from the trickling filters) are all measured. These are mixed
and divided over three AS basins, or lines, that are equal and therefore only one line
is included in the simulation model. The flow through one line is symbolized with
Q. The AS basin is illustrated in Figure B3l As indicated in the upper part of the
figure, the process have nine zones, where the two first ones (40 % of the process)
are always anoxic, and at least the last 4 zones (also 40 % of the process) are always
aerated. In the middle there are three zones, comprising 20 % of the process that
can be either anoxic and mixed, or aerated. The normal case is that 40% of the basin
is aerated. The dissolved oxygen (DO) concentration in the aerobic compartments
is feedback controlled to 2mgl~! every second month and 4mgl—! every other. The
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diffusors in the aerobic compartments are illustrated with the dashed line at the
bottom of the basin. The diffusors are in reality a long chain of pipes and the total
air flow through these can be controlled and measured individually per zone. The
oxygen- (Sp) and nitrate (Syo) sensors are also illustrated in the upper part of
Figure B33 Regarding the nitrate sensors, the given positions are where there are
contacts to plug in a sensor and there are not always two sensors plugged in.

zone 74 zone 8 L zone 9

zone 1 | zone 2 zone 3 ‘: zone 4 \ zone 5 | zone 6

Figure 3.3. Division of the basin into zones and tanks.

3.1 Tanks

Lithium tracer tests carried out on the sludge basin indicated that it could be ap-
proximated by 8 ideally stirred tanks. This is illustrated in the lower part of Figure
3.3l The division into tanks is treated further in Chapter 5.2l In simulation, also
the deox tanks and the transport volume V; are assumed to be described by ideally
stirred tanks. The volumes of the tanks are given in Table Bl Parameters, concen-
trations, variables, and functions are indexed based on which tank they belong to.
The index set is [ = {d1,d2,t,1,...,8}, where ¢, d1 and d2 represents the transport
volume and the deox tanks. The concentration of nitrate in the first tank in the AS
basin is for example Syp.1. When discussing an arbitrary tank, no index is given,
and the influent concentration is indexed with in. For the simulation model, it is
assumed that the air flows are controlled and measured per tank, and the same goes
for nitrate and oxygen.

Table 3.1. Volumes of the bioreactors (m?).

Va Vi Vi—Vy | V5T
3960 | 1700 | 11930/12 3310
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3.2 BOD and COD

Describing the organic content of waste water is not trivial, since we are not dealing
with one certain substance. One usually measures it as chemical oxygen demand
(COD) or biochemical oxygen demand (BOD). COD expresses how much oxygen
that is needed to chemically oxidize all organic substances. Chemical degradation
of a substance means degradation by burning it. BOD expresses how much oxygen
that is needed to biologically degrade all biodegradable organic substances in a
compound biologically. In laboratory, BOD in a water sample can be analyzed by
measuring the amount oxygen that the sample consumes in a specified time period.
There are different BOD measurements depending on the time of analysis. The two
most common are the BO D5(5-day BOD), and the one used in Sweden BO D7 (7-day
BOD).

3.3 The influents and the effluent

In the cleaning steps preceeding the ASP, as much as possible of the particulate com-
pounds in the water are removed. All can, however, not be removed and the flow Q;,
contains particulate compounds in the form of heterotrophic biomass, biodegradable
organic matter and inert (non biodegradable) organic matter, where the latter ones
are dominant. Relevant dissolved compounds in ();, are ammonium, biodegradable-
and inert organic matter. During rainy periods, due to nitrification in the tunnels,
the concentration of nitrate in this flow is also significant. @,.., the effluent from
the trickling filters is very clear and contains little particulate matter. Except for
nitrate, Q). holds a small concentration of autotrophs, and the water is saturated
in oxygen. The particulate concentration in @)y is large, and consists in addition to
heterotrophs of biodegradable- and inert organic matter. The exact composition of
the sludge is not well known, but approximately 70 % are organic compounds. It is
also reasonable that this flow holds concentrations of dissolved organic matter but
the biodegradable part should be small (because of the high bacterial concentration).

3.4 Measurements and data storage

The measurements in the measurement points in Figure are listed in Table
Daily samples of COD are taken in measurement point m; (Q;,) and in the efflu-
ent in measurement point my. Totally suspended solids is a measurement of the
concentration of particles in the water. Weakly samples from the effluent are also
analyzed for BOD. The restriction on the effluent in mean organic content over a
year is 10mg(BOD)I=!. If the plant cannot live up to this GRYAAB must pay a
penalty fee. For a less noisy signal, the output of the oxygen sensors are means of
measurements for the last 60 seconds. In addition to this, the data of all measure-
ments in the central data storage system are means of the signals for the last 30
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seconds. According to the plant staff the nitrate sensors may be drifting, i.e. the
measurement error may be biased. Water temperature is also measured online.

Table 3.2. Measurements in the measurement points

Measurment|Measurement point in Figure B2 | mq | ma | ms | mq
Daily measurement of COD * *
Suspended solids
Ammonium

Nitrate *

*

3.5 Mathematical modeling

The basic block in the simulation model is the model of one single tank. For a full
model, the tank models are linked by massbalances. Below, the model of Tank i is
given.

2= DAQ 2~ 2) + €0, 2), i€l (3.1)

Z; is the concentration vector and D; = % is the dillution rate (day™'). £ describes
the mass transfer of oxygen from the diffusers and the reactions in the tank. ¢; is
the air flow of the diffusers in the tank. Z; i is the concentrations in the previous
upstream tank or in the influents. In the complete model the mixing of the three
influent flows in Figure (31 is included.

3.5.1 The activated sludge model NO.1

To describe the reactions occuring in the tanks, the activated sludge model NO.1
(ASM1) is chosen. It was described by Henze et al. (2000). It is physically based
and is a good compromise between simplicity and accuracy. The concentrations in
the model are listed in Table B3l Eight of these describe organic compounds mea-
sured in mg(COD)I~!. This includes readily- (dissolved) and slowly (particulate)
biodegradable substrate, inert organic matter, and heterotrophic- and autotrophic
biomass. The rest of the variables in the model are nitrogen compounds and Alka-
linity. The concentrations denoted by an S are soluble, and the ones denoted by
an X are particulate. The reactions in the ASM1 are described by process rates
and stochioemtry. The stochiometry describes the quantitative relations between
the compounds in the reactions. It describes for example how much oxygen (So),
and readily biodegradable substrate (Sg) that is needed for the growth of 1g het-
erotrophic biomass. The reactions in the ASM1 are given with a matrix notation,
the ASM1 matrix. This matrix is given in Table 3.4
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Table 3.3. Concentration variables in the ASM1

Symbol | Name Dimension

So Oxygen M (—COD)L~3(negative COD)

Sg Readily biodegradable substrate M(COD)L™3

Xs Slowly biodegradable substrate M(COD)L—3

XBu Active heterotrophic biomass M (COD)L 3

Sno Nitrate and nitrite nitrogen M(N)L~

XBa Active autotrophic biomass M(COD)L 3

SnH Ammonium M(N)L~

St Soluble inert organic matter M(COD)L—3

X7 Particulate inert organic matter M(COD)L™3

Xp Particulate products arising from biomass decay | M (COD)L 3

SND Souluble biodegradable organic nitrogen M(N)L~

XND Particulate biodegradable organic nitrogen M(N)L™3

SALK Alkalinity Molar units




Table 3.4. Process kinetics

and stoichiometry

Component ¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 Process Rate p;
Process j St Ss X7 Xs XBH XBaA Xp So SNo SNH SND XND Salk
1 Aerobic growth
. _ 1Yy i ixB _Ss____So
of heterotrophs Yo 1 Vi 'XB 14 HHKg+Sg Ko.mT50
2 Anoxic growth
1 1-Yy . 1-Yy Sg Ko.u
of heterotrophs ~vg 1 ~ 286V —ixB m KH @ Ko m+50
*XB NO 2
— X e—2re—ngX
14 Kno+Sno 19° BH
3 Aerobic growth
Y —4.57 1 i 1 _ixpB SNH S0
of autotrophs 1 v Y41 1XB YA 14 KARNpF+SNE Ko AT50
4 "Decay’ of
heterotrophs 1—fp -1 fp ixp — fpixB by XBH
5 ’Decay’ of
autotrophs 1—fp -1 fp ixB — fpixB baXpa
6 Ammonification
of soluble 1 -1 ﬁ kaSNDXBH
organic nitrogen
. Xo/X S
7 "Hydrolysis’ of 1 -1 k S/ABH (@)
vy hKx+Xs/Xpu \Ko,ut50
Ko.H S
entrapped : NG X
PP T RS g +56 Knotsno )~ BH
organics
8 "Hydrolysis’ of
entrapped 1 -1 p71XND/Xs
organic nitrogen

8

Observed Conversion Rates (g/m?d): r; = 37, vijp;

Suispow jeonzewsyieyy G'¢

€1
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In the upper part of the matrix, the concentrations are listed. The mid part describes
the stochiometry while the right hand column gives the process rates. The name of
the processes is given in the left column. To get the reaction rate of a concentration,
we should multiply each stochiometric coefficient in its column with the process rate
on the same row and sum them up. The reaction rate of oxygen is for example

1-Yy  A57T—Y,
v, Y

P3-

Concentrations enter the reactions in the ASM1 mainly in Monod expressions. A
Monod expression in a concentration z is either = or Kfjiz The first one models
that a process rate is strictly monotonically increasing with z, but is bounded. The
other kind models the same for % The parameter K, is called the half saturation
coefficient for z and defines the value of z for which the Monod expression equals
0.5. The concentrations in the upper part of Table B.3] stands for the dominating
part of the reactions in this kind of ASP. The variables in the mid of the table,
Xpa and Sygy are included in the simulation model but stands for only a small
portion of the reactions. Mathematically, this follows from that they enter the
reactions as %‘X BA, and the concentration of autotrophs is small. These will
be considered as disturbances in observer models derived later and it is therefore
uninteresting how they are formed. The variables in the lower part of the table only
affects the variables in the upper part via Xz, and Sy g or not at all. These are thus
excluded from the simulation model by setting them to zero in the influent. As seen
in Table B3] Syo is used to refer to both nitrate and nitrite in the ASM1. There
is no measurement of nitrite at the plant, but the concentration can be assumed to
be small and is not considered in the model. Sy, thus further on refers to Nitrate.
The degradation of Sp and Sg, and the growth of heterotrophic biomass Xgy in an
aerobic tank is described by the process rate Aerobic growth of heterotrophs (p1), and
is limited by the same variables. Degradation of slowly biodegradable (particulate)
substrate (Xg) into Sg is described by the process rate 'Hydrolysis’ of entrapped
organics (p7), and is limited by Sp, Xg, and Xpg. It is also limited by Syo, but
this applies mainly to the anoxic compartments. Biomass not only grows, but of
course also dies. This is described by the process rate 'Decay’ of heterotrophs (py).
It is also described that part of the heterotrophs is degraded into Xg when they die.
For the anoxic compartments we have the process rate Anoxic growth of heterotrophs,
which is limited by Syo, Xy and inversely limited by the oxygen concentration.

3.5.2 Parameters in the ASM1

The parameters in the ASM1 are specific for each plant. At Ryaverket, one has
been tuning many of the parameters for their simulation model, but some are kept
at default values. The parameters vary with temperature, but may also vary with
other conditions. In Table those ASM1-parameters that are important in this
project are given for the plant at 20 °C.



3.5 Mathematical modeling 15
Table 3.5. ASM1 parameters for Ryaverket.
Symbol | name value | unit
Yu Yield for heterotrophic biomass. 0.666 | g cell COD formed
(9 COD oxidized)™!
[ Maximum specific growth rate for heterotrophic | 3 day™?!
biomass.
Mg Correction factor for pp under anoxic conditions. 1 dimensionless
Mh Correction factor for hydrolysis under anoxic condi- | 0.8 dimensionless
tions.
kp, Maximum specific hydrolysis rate. 2.81 g slowly biodegradable
COD(g cell COD
day)~*
Kx Half saturation coefficient of slowly biodegradable | 0.15 | g slowly biodegradable
substrate. COD(g cell COD)™!
Kg Half saturation coefficient for heterotrophic biomass. | 5 gCODm™3
Kyo Nitrate half saturation coefficient for denitrifying | 1 gNO3z — Nm™3
heterotrophic biomass.
Kon Oxygen half saturation coefficient. 0.2 g0am =3
by Decay coeflicient for heterotrophic biomass. 0.62 | day~*
fr Fraction of biomass leading to particular products 0.08 dimensionless
Ya Yield for autotrophic biomass 015 | g cell N formed
(9 COD oxidized)™!
ba Decay coefficient for autotrophic biomass. 0.04 | day~*
Kyy Ammonia half-saturation coefficient for autotrophic | 1 g NH;— Nm™3
biomass
fia Maximum specific growth rate for autotrophic | 0.1 day™!
biomass
ixB Mass of nitrogen per mass of COD in biomass 0.068 | gN(g(COD))~!
ixp Mass of nitrogen per mass of COD in biomass 0.068 | gN(g(COD)~1
Koa Oxygen half-saturation half saturation coefficient for | 0.2 g0om =3

autotrophic biomass
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3.5.3 Mass transfer of oxygen

Mass transfer of oxygen is described by
KLa'(q)(SOsat - SO)

(Olsson and Newell 1999). This concerns only the oxygen equation in &, and enters
this in a sum with the reactions in the ASM1. The oxygen mass transfer function
Kra (day™') is not known for Ryaverket, but it is often assumed to be exponential
w.r.t. the air flow:

Kpa(q) = k(1 —e™9), (3.2)

with parameters k; and ks (Olsson and Newell 1999). Sp_,, is the oxygen saturation
concentration and defines the maximum oxygen concentration in the water. Wik
(1999) gave a temperature model for Sgp_,,:

So.., = 14.53 — 04117 + 9.6 - 1073T% — 1.2 1013,

This claims to work well for both fresh and waste water, but there is a common used
conversion between Sp_ . for the two kind of waters:

sat

So...(wastewater) = 5So,,,(freshwater).

Accordning to Stenstrom and Gilbert (1981) S for domestic wastewater is generally
about 0.95 but it can vary over a much broader range for industrial wastewater. 0.95
is used here.

3.6 Simulation platform

The simulation and programming language used in this work is Matlab/Simulink.
A part of the model is illustrated in Figure B4l The tanks are modeled using an S-
function (state space function) block together with a C-file implementing the ASM1
model together with inputs and outputs. This file was developed in the COST
benchmark project (Copp 2001, Alex et al. 1999). The full model also includes the
creating and mixing of the three influents and oxygen PI controllers for the aerobic
tanks. Depending on the application, discrete or continuous controllers are used.

3.7 Case study

Compared to linear systems, analytic verification of a nonlinear system may be dif-
ficult because equations may be very complicated. Another possibility would be to
verify it for every possible condition but this is of course not realistic. To evaluate
designs, a specific simulation case is therefore used in this work. The use for an ob-
server with unknown inputs implies that high resolution data on all concentrations
in the model is not available. Still, daily mean samples are analyzed for COD at the
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Figure 3.4. Simulink model

plant. Using a scheme, this is divided over the organic compounds in the ASMI.
This is however only for the influent ();,, and not for the other flows. The plant simu-
lation model is more complex and takes among others recirculation and the trickling
filters into account. For a reasonable case, the simulation data presented here are
based on data from the Ryaverket plant simulation model. Simulation conditions
for waste water plants are commonly categorized based on weather conditions. The
simulation files at the plant are divided into "dry summer", "rainy summer", "dry
winter" and "rainy winter". The chosen conditions here are a "dry summer" with
the temperature 20 °C. Parameter values in the model for these conditions are de-
fined in Section The concentrations in the influents are chosen such that mean
concentrations in the simulation model coincide with the plants simulation data at
point 1 in Figure The choice of the concentrations in the individual flows are
based on measurements, lab analysis and knowledge of the process (refer to Section
B.3)). The variations in the concentrations about their means are chosen to have a
reasonable efluent and an interesting simulation case. The shape of the variations in
Sg and Xg in @, are based on the weather files from the COST benchmark project
(Copp 2001, Alex et al. 1999). The simulation case is for a 14 days period. The
mean values of the considered concentrations in the ASM1 for this period, for the
three influents and in the point 1 in Figure are listed in Table To simplify
simulation of some of the estimators developed in the next chapter, the water flows
Qin, Qreec and Qx are chosen to be constantly 4, 4 and 3 m3s~! which corresponds to
normal conditions at the plant. Noises in the water flow measurements are assumed
to be neglible. For later purposes it will be convenient to model Xy in QQx as a
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Table 3.6. Mean concentrations in the influents and the point 1 in Figure

Concentration | Unit Qin | Qrec | Qx 1
So mg(—COD)I=1 | 0 87 |0 0.05
Ss mg(COD)I~! 127 | 0 2.5 | 425
Xs mg(COD)I=1 | 376 | 0 280 | 210
XpH mg(COD)I~1 52 |0 3670 | 1020
Sno mg(N)I~1 0 12 0 3.5
Xpa mg(COD)I=1 | 0 70 0 25
SNH mg(N)I~t 11 |0 2 3.9

fraction of TSS in the same flow:
XBH m QX = (TSS iIl Qx) ")/XBH,

where vx,, is a slowly time varying parameter. Xpg in the AS basin may vary
fast with changes in the relation between the three influent flows, while the TSS
concentration in (Qx is controlled to a constant value. The influent flows are set
to be constant, so to simulate fast changes in Xy, instead the T'SS concentration
in Q)x is varied. The shape of this variation is a sinus with the period two days.
The parameter vy, is also simulated as a sinus with the period 20 days. The TSS
concentration in @), is formed by multiplying the time varying part of Xg in the
same flow with sinus signals of different frequencies and amplitudes, and adjusting
its mean. For purposes that will become evident later on, Xg is then delayed 30
minutes. T'SS measurements are assumed to have neglible noise.

Only the last 2 tanks (40 % of the basin) are aerated and the oxygen reference of the
PI controllers are set to 2mglO,l~!. In reality the maximum air flow in the aerated
part of the AS basin is 2160 m3h~! per zone. In the model it is assumed that the
maximum air low is gey = 2.5-2160m>h~! in each of the aerated tanks. As stated
in Section B.5], the Ka functions of the tanks are unknown and assumed parameter
values are used here. The function is chosen to be the same for both of the aerated
tanks and the choice of the parameters k; and ks in the Model (3:2) is based on the
following two made up criteria

o Kra(0) _ .7 2Kola)

9 d=Aqmax 9 q=0

o K1a(qmaz) should equal the maximally needed Ka function during simulation
with the case study when the DO-reference is set to be 4mgO,l~! in Tank 7.

The explicit values of k; and ky are given in Table 3.7 and the function is illustrated
in Figure It is assumed that air flow measurements have neglible measurement
noise. Although, the properties of the real sensors stated in Section B.4] noises in
the nitrate and oxygen sensors are chosen to be Gaussian white noise to be more
general. The standard deviation is assumed to be 0.2 which is 10 % of the oxygen
reference. To illustrate the variance of the noise, a series is shown in Figure
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Figure 3.5.

Table 3.7. Kpa parameters.
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4  ESTIMATION - THEORY AND SIMULA-
TION

If other conditions are not stated, the simulation data used in this chapter is the
same as in the case study in Section B.7. The focus here is on estimation of Sg,
Xg and Xpgg in the ASM1. For optimization of several of the control variables
in ASP:s it is necessary with estimates for the whole AS basin. It is, however,
concluded that it would not be possible to estimate all the considered concentrations
in the anoxic compartments separately. This must include measurements in the
aerobic compartments or estimates from an observer for these. It is much worth with
estimates only for the aerobic compartments, and an extension is much simplified
once this is available. Mainly two categories of solutions are considered here:

e Separate estimation of the heterotrophic biomass in the anoxic tanks and Sg
in the aerobic compartments via estimation of rate expressions. This is based
on that we may know that the Monod expression in Sg is saturated in the
early upstream tanks and we can assume a value for the Monod expression.

e Estimation of all concentrations of intrest with an extended Kalman filter for
the aerobic compartments.

Methods to estimate the for an implementation necessary Kpa function are finally
evaluated and further developed.

4.1 Observers and observability conditions

If not stated explicitly, the theory in this section is taken from Besangon (2007) or
Lewis (1986).

The purpose of an observer is to recover the state vector z of a system based on
measurements of inputs y and outputs u up to the current time ¢, and an internal
model of the system. The theory is here presented for continuous time systems of
dimension n (dim(x) = n) on the form

{ i = a(x’;j’ t)+w state equation ’ (4.1)

y = c(x,u,t) +v measurement equation

where w is process noise (white Gaussian) with covariance Ry = E[ww’], and v
is measurement noise (white Gaussian) with covariance Ry = E[vvT]. This system
formulation is quite general and includes the following generalizations:

e LTI systems for which a(z,u,t) = Az + Bu and ¢(x,u,t) = Cx + Du.

20
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e LTV systems for which a(x,u,t) = A(t)x + B(t)u and c(x,u,t) = C(t)x +
D(t)u.

e State affine systems for which a(z,u,t) = A(u)r + B(u) and c(z,u,t) =
C(u)x + D(u).

If Ry and Ry are zero matrices, the System () is deterministic, otherwise it is
stochastic.

Definition 1 (Observer for deterministic systems) An observer for a deter-
manistic system ({.1]) with Ry and Ry equal to zero is an auziliary system

X = F(X,u,y,t)
T = H(X,u,y,t),

such that
(1) 2(0)==2(0)=z=2Vt>0
(17) |[z—z|| >0 as t— oo.

If (ii) holds for any pair x(0), £(0), the observer is global.
If (ii) holds with exponential convergence, the observer is exponential.
If (ii) holds with a convergence rate which can be tuned, the observer is tunable.

A definition of an observer for a stochastic system can be formulated by loosening
the conditions () and (i7), since these cannot hold strictly for such a system.

4.1.1 Observability conditions

Observability conditions should express that there indeed is a possibility that the
purpose of the observer can be achieved, namely that it might be possible to recover
x from the only knowledge of u and y up to time ¢. At first glance this will be
possible only if ¢ bears the information on the full state vector when considered over
some time interval. This roughly corresponds to the notion of observability. However
when restricting the definition of an observer strictly to items (i)-(ii), it is possible
to construct observers even in cases when y does not bear the full information on
the state vector. This corresponds to detectable systems. Observability conditions
for a stochastic system are investigated for the corresponding deterministic system.
We start with a very general definition of observability. Let x, (¢, x;,) denote the
solution to the state equation in the System (4] for a given input w on [ty, ] and
initial condition y,(to, Ty, ) = T4,-

Definition 2 (Indistinguishability) A pair (zo,2,) is indistinguishable for the

system (4.1) if

Vu € UVt > 0, c(Xu(tzo)s Ur t) = C(Xu(t,x{))vuvt)'
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From this, observability can be defined.

Definition 3 (Observability) The System ({.1]) is observable if it does not admit
any indistinguishable pair.

4.1.1.1 Observability of linear systems

An observer for the deterministic LTI version of the system (41) is
& = A% + Bu+ K(Ci —y), (4.2)

where K is the observer gain, here assumed to be constant. Define the observer
error e = & — x. The differential equation describing e is

é=(A—-KC)e,

which is asymptotically stable if (A—KC') is stable, or equivalently, if the eigenvalues
of (A — KC) are strictly negative. If the eigenvalues of (A — KC) can be placed
arbitrarily by choosing K, the system is observable. If this does not hold but (A —
K () is stabilizable (can be made stable) the system is detectable. In other words,
this means that the unobservable modes of the system are stable. Observability can
be checked in several ways:

e By direct investigation of the eigenvalues of (A — KC'), by which we also can
investigate detectability.

e By confirming that the rank of the observability matrix equals the dimension
of the system, see Astrom and Wittenmark (1997). This condition is referred
to as the Kalman rank condition.

e In Matlab, observability of an LTI system can be investigated by a linear
transformation into a staircase form. By this, the observable states of the
transformed system are found. The eigenvalues of the unobservable states are
also displayed, from which one can conclude if the system is detectable. By
an inverse transformation, observability /detectability of the original systems
states can be investigated.

The last method is to prefer if the dimension of the system is large. The transfoma-
tion of the state z is described by ' = Tz, where T is the transformation matrix.
Consider the case with one undetectable mode. In the transformed system, this
is the first element z; of ='. Let T" be the inverse transformation matrix - 7',
The relative dependency for the ¢ : th state in x of the undetectable mode can be
calulated by
T'(i, 1)z}
ZZ:I }T/ (i> k)x;c} '
Yet another method to investigate detectability is presented in Section
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4.1.1.2 Observability of nonlinear systems

For a nonlinear systems, Definition (3] of observability might be too general for
practical use since one might mainly be interested in distinguishing states from
their neighbors. Consider for instance the system

(o e

Clearly y cannot help distinguish between xy and xg + 2km. However, y allows to

distinguish states in | — 7, Z[. A general notion of observability which includes this

case is weak observability.

Definition 4 (Weak observability (resp. at x()) The System ({.1) is weakly
observable (resp. at xo) if there exists a neighborhood U of any x (resp. at xo)
such that there is no indistinguishable state from x (resp. o) in U.

Notice that it is allowed that trajectories may go far from U before one can distin-
guish two states of U. The system

r=1u

Sz 2 >1
Y=V 0, Jzl<1

is weakly observable since any state is distinguishable from any other one by applying
some nonzero input, but distinguishing two points of [—1,1] needs to wait for y
to move away from 0. Hence, to prevent from this situation, an even more local
definition of observability can be given.

Definition 5 (Local weak observability (resp. at z,)) The System ({{.1)) is lo-
cally weakly observable (resp. at xq) if there exists a neighborhood U of any x (resp.
of xo) such that for any neighborhood V' of x (resp. xo) contained in U, there are no
indistinguishable state from x (resp. xy) in V when considering time intervals for
which trajectories remain in V.

This roughly means that one can distinguish every state from its neighbors without
"going too far". Local weak observability can be checked with the observability rank
condition. Note that this property does not say anything about global properties.
Let

Y c(x,u,t)

&y L c(x,u,t
y=| % |, ow=|" (. ) :

zlt/—: L c(x, u,t)

where L’}uc(x,u,t) are Lie derivatives of for any constant input u, and m is an
arbitrary positive integer. Y is what we can see from measurements and if the
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system is deterministic we have that Y = O(z). From a theorem in multivariable
calculus it follows that O(z) as a function of x is bijective about a point z; if the
rank of 8%;50) at this point equals n, see Persson and Boiers (1988). From this follows

the observability rank condition.

Theorem 1 (The observability rank condition) The System ({{.1)) is weakly lo-

cally observable if rank (%@)) = n for any x, and is locally weakly observable at
Ty if
rank %(I) ) =n.

T=x0

This theorem is somewhat simplified compared to the presentation in Besancgon
(2007). If the system is locally weakly observable, we can confirm this by choosing
m large enough and using the theorem. It might however be difficult to confirm
the contrary since we are free to chose m infinitely large. Still, it is reasonable to
assume that the condition does not hold if increasing m over some value does not
seem to increase the rank of the jacobian. For LTI systems, the observability rank
condition simplifies to the Kalman rank condition. For nonlinear systems, local weak
observability is not enough for a possible observer design since the observability
may depend on the inputs. We want to differentiate between systems for which
observability is a property of the inputs and not. For that, the notion of uniform
observability is introduced.

Definition 6 (Universal inputs) An input is universal for the system ({.1)) if
Vo # g, 31 > 0 such that c(Xu(ru), U T) 7 C(XU(T rg),u,T). An input is singular if
it is not universal.

Definition 7 (Uniformly observable systems) The system ([{.1) is uniformly
observable if every input is universal.

The system

( i “ .. T

o ’ 0 ¢1($1)
e Pa(1, x2)
v= 0]z+ u
4.3
: 1 Gn—1(T1, ..., Tp1) (4.3)
L0 - 0 | Gn1(x1,. .., 2p)
\ Y =1

with nonlinear functions ¢; is uniformly observable. This can be checked by con-
sidering any pair of distinct states x # z': assuming indeed that their respective
components x, and :E;,€ coincide up to order ¢ and that z;,; = :17;“, then it is clear
that @;_; — 4, , # 0 and thus there exist a ¢, such that z;(t) # x,(t) for 0 < t < to,
which is true for any wu.
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4.1.2 Observer designs

For linear time invariant- (LTI) and linear time variant (LTV) systems, the theory
and design of observers are general concepts, while for nonlinear systems these con-
cepts are system dependent. Special kinds of observers are filters in which properties
of disturbances acting on the system are taken into account in the observer synthesis.

4.1.2.1 Observers for linear systems

A general form of an observer for a linear system is given by Equation (£2)) with
the addition that K might be time varying. The deterministic case is not treated
further but it is stated that given that the system is observable, the convergence
rate can be made arbitrarily fast. In the design of observers for stochastic systems,
there is a compromise between noise dampening and fastness. A Kalman filter for
an LTI system is optimal in the sense that that it minimizes the expectation of the
quadratic error (covariance) P = FEleel]. The continuous time version for the LTI
system (4.1]) is presented below.

Algorithm 1 (Continuous time Kalman filter.)

P0)=F, z(0)=x¢ Initialization
&= Ai+ Kly—Ci]  Estimate update
P =AP+PTA+ R, — PCTR;'CP  Error covariance update (4.4)
K =PC'R;'  Kalman gain

P(0) is the covariance of the initial error: P(0) = E[(2(0) — x(0)], which never is
known exactly but should reflect the "quality" of the initial guess £(0) of z(0). The
algorithm is taken from Lewis (1986), in which the corresponding one for discrete LTI
systems also is given. Equation (£4) is the Ricatti equation. There is a connection
between the Ricatti equation and detectability:

Theorem 2 (Detectability and the Ricatti equation) Let Ry = /Ri\/RT, and
Ry > 0. Suppose (A,/Ry) is reachable. Then (A, C) is detectable if and only if:

e There is a unique positive definite limiting solution P to Equation ({{.4]), which
is independent of P(0). Furthermore, P is the unique positive definite solution
to this.

e The error e = (& —x)(2 — x)T is asymptotically stable.

The Algorithm [ also works and is optimal for LTV- and state affine systems.
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4.1.2.2 Observers for nonlinear systems

In systematic design of observers for nonlinear systems, one differentiates between
uniformly- and non-uniformly observable systems. Uniformly observable systems can
(at least locally) be transformed into an observable canonical form. For a system on
this form, it is possible to design tunable observers and there exists general design
methods. The System (Z3) is on this form and admits an observer on the form

2
b= Ait o) — | 0 A K(Ci —y),
SR
0 oo ... N2

with K such that (A — KC) is stable, and X\ large enough. This design is known
as a high gain observer since it relies on the choice of some sufficiently large tuning
parameter A\. There are much more general observability canonical forms, for a full
treatment, see Besangon (2007).

4.1.3 The Extended Kalman filter

The optimal filter problem for nonlinear systems is in general very complicated, and
only in a few cases do algorithms exist which are easy to implement or understand.
In applications, it is common to design a Kalman filter for the linearization of the
nonlinear system around a point zy. This is useful, if for example z( is a reference
state, which the system is stabilized to by feedback control. An extension to this, is
to let the linearization in the Kalman filter be continuously time varying and be that
around the current estimate . This is the algorithm of the extended Kalman filter
(EKF). In Lewis (1986) one derives the conditional probability density function of
the state given measurement data. This is then used to find optimal update equa-
tions for the estimate and error covariance which are in general not computationally
realizable. To obtain a computationally viable algorithm for general nonlinear sys-
tems, one makes approximations that result in the EKF. The algorithm is stated
below for the System (Z.1]).

Algorithm 2 (Continuous time Extended Kalman filter.)

P0)=F, z(0)=1 Initialization

&= a(i,u,t)x + Ky —c(Z,u,t)]  Estimate update (4.5)
P = A(#)P+ PTA(&#)+ Ry,  Error covariance update  (4.6)
—~PC(2)'Ry'C(2)P
K =PC(2)"Ry'  Kalman gain
t t
Ax) = dafw, u, ) ), C(x) = Oclz, u,t) Jacobians

ox
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The filter is a good - almost optimal if the variances are small - local observer but
it is in general not a globally converging observer. Intuitively, if the initial guess
is far from the actual state, the linearization around the estimate has no sense.
Theorems regarding convergence of EKF:s has not been found in the litterature,
but it is reasonable that observability of linerizations of the nonlinear model in the
observation space is an important property. For systems that can be transformed into
an observability canonical form there are special variants of EKF':s that are globally
converging. The high gain extended Kalman filter (HG-EKF) is an extension of
the extended Kalman filter in which the covariance matrix R; is chosen in a special
way. The idea is to "kill" the nonlinear part of the model. The drawback is that it
is very sensitive to noise, i.e. the estimates get very noisy. An interesting extension
of the HG-EKF is the adaptive gain extended Kalman (AG-EKF). This behaves as
a HG-EKF at startup but the observer itself converges in time to an ordinary EKF.
Also if large perbutations occur, the high gain part takes over again.

4.1.4 Implementation of EKF:s

The equations in the Algorithm [2] are continuous and cannot directly be solved on
a computer. In Lewis (1986) it was suggested to implement EKF:s using the Runge
Kutta 4 method. This is a common method to solve ordinary differential equations
(ODE:s). The method is presented for a system on the form

dx

- = f1). (4.7)

in the algorithm below.

Algorithm 3 (The Runge Kutta 4 method) Let (xy,tx) be the solution to Equa-
tion (£.7) at time kh. The solution at time kh+h can be approximated by sequentially
calculating

a = hf(xg,ty)
b = hf(zr+a/2,t,+h/2)
c = hf( K+ 0/2,t, + h)
d = hf(zp+cty+h)
a+20b+c)+d
Tpt1 = Ti+ 6 .

The algorithm has been taken from Xin-She (2008). Note that when using it to solve
the equations in the EKF in Algorithm (2), the Equations (£3) and (£.0) for [z, P]
should be treated as one system of equations.
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415 Random walk models

A random walk process x is a variable which is modeled as being completely driven
by noise. In its simplest form, a model for z is

T = w,. (4.8)

Here, w, is white noise, with variance R,. This is useful to model variables /parameters
without known dynamical equation. In a Kalman filter R, is used to relate the vari-
ation of x compared to other variables and noises in the model. In the discrete case,
the Model (48] translates to

x(k+1) = z(k) + w,(k)

4.2  Estimation of sludge concentrations

The experience at the plant is that the substrate concentration is correlated with
the TSS measurement in the influent );,. Ss is too much affected by upstream
processes for this information to be useful in an observer for the aerobic process.
Xg, however, is little affected by reactions in the basin and is mainly driven by
massbalances. It consists mainly of particulate compounds, and a correlation with
the TSS measurement intutively seems reasonable. This motivates an introduction
of the variable X;, (¢7'SS):

The sludge concentration originating from the flow Qy,.

This can be estimated for the tanks by simulating the 7'S'S measurement in );,
with massbalances

3Q

A - an ; . _X.
Xint = Vt(g@((measured TSS in Qin) — Xinxt) (4.9)

Xin:l == DI(Q)(th_inl)

A

Xin:S - D8(Q)(Xm7_in8)

Because of the physical distance between the TSS sensor and the later tanks, we
can predict the future concentration, which can be used to make an observer react
faster to changes. To make this easily implementable, Xg was delayed 30 minutes
compared to the T'SS concentration in the the simulation case in Section B.7.

The dominating source of heterotrophs Xpgg in the AS basin is the recycled sludge
flow QQx. There is also a relatively small concentration in the influent flow @;, and
we also have growth and decay in the tanks. The composition of the sludge varies
slowly, but Xpg may vary fast due to changes in the relation between the influent
flows to the ASP. Therefore the sludge concentration Xy (¢g7'SS) is introduced
which is
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The concentration of TSS in a tank originating from the recycled sludge flow.

This can be estimated with the same method as was used for X,,, and with the T'S.S
measurement in Qx. In the simulation case, the slow variation has been modeled
with the parameter vx,,. We therefore assume that there is a slowly time varying
parameter yy,, with

EVxppXxi] = Xpra, 1€ 1,

and that ¥x,, =~ vx,,. The index set I was defined in Section B.Il We can thus
model Xpgy as ”yXBHX, and the parameter can be estimated. In the coming designs
we will neglect the two parameters differences and use vx,,, for 7x,,. We thus have
the model X

XBH:i :’)/XBHXX:ia 2 € I (410)

The C-file implementing the tank model described in Section have been altered
to include estimation of X x and Xj;,.

4.3 Estimation of rate expressions, Xgy and Sy

The rate expressions ozygen uptake rate OUR and nitrate uptake rate (NUR) de-
scribes the reaction rate of oxygen, and Nitrate respectively. Let z be either the
oxygen (Sp) or nitrate (Syo) concentration and N, the corresponding rate expres-
sion. A general model for z in a tank is

2= D;(Q)(S,, —2) + Kra(q)(So.,, —2) — N, (4.11)

where Kpa is identically zero in an anoxic tank, since the air flow is zero. Nitrification
has small effect in an anoxic tank, and in this kind of ASP also in an aerobic one
(refer to Section B.0]). If nitrification is neglected, the two rate expressions can be
identified from Table B.4] as

. 1-— YH SS SNO
NUR = X 4.12
ngMH2.86YH Ks+ Ss Kyo + Sno o ( )
1-Y, S S,
OUR = [y d a °

X,
Yy Kg+ SgKog+So  BH

in the ASM1. Estimated rate expressions can be used for reference control, see
for instance Olsson and Newell (1999). From the stochiometry in the ASMI, it
follows that we from N, also gets an approximation of the degradation rate of soluble
substrate Sg. This can, for example, be used to express the total amount of substrate
degraded over period of time. It is here considered to base the estimation of Sg
and Xppy on estimated rate expressions. The Monod expression Mg, = KSSfSS is
shown in Figure In the early upstream anoxic tanks, Sg is probably above
30mg(COD)I™* for most of the day. For these concentrations, Mg, is saturated,
and we can assume a value of around 0.9 for it. By applying this, an estimate of
NUR, and measured /estimated nitrate concentration to Equation (£I12]) we get an

estimate of Xpy, or rather vyx,, by applying Equation (LI0). It follows that Yx,,,
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L L L L L L
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Ss(ﬁfg(coz))rl Msg
(a) The Monod expression Mg, (b) The inverse of the Monod expression Mg,
Figure 4.1.

with these calculations is increasing with Sg, and only reasonable when Sy is large,
since it is assumed that the Monod expression is saturated. This thus implies that
Yxpy Makes sense only when it is relataively large. The method used to estimate
Xpp and the parameter implies that the estimated value cannot be used to estimate
Sg in the same tanks. This since the inverse of Mg, is here very sensitive to noise
and model errors. The inverse is illustrated in Figure [4.1(b), and it should be clear
that independently of choice of method, it is unreasonable to estimate Sg in anoxic
tanks based only on a model of these. On the other hand, in the last aerobic tank
Sg is much smaller, and can be approximated from an estimate of OUR by using
the estimated value of vx,, and measured/estimated DO concentration.

4.3.1 An observer model for rate expressions

A continuous observer model for z (Sp or Syo) and N, (OUR if z = Sp and NUR
if z = Syo) if derived from Equation (LIT]) is

(4 { z ] _ [ -D(Q) — Kpa(q) —1 ] _— { D(Q)zin + K1ra(q) S0,

at | N, 0 0 0
x A\(rt) B‘(’t)
BRSNS
0 wWN

(4.13)
Time indices have been used for the matrices to emphasize that they vary with time
due to the variation in the inputs. w,,, describes measurement noise in the input
concentration z;. The variance equals the variance of the measurement noise v,
which is R;. The rate expression N, is here modeled as a random walk process
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with variance Ry = E[wywY], which is a design parameter. To make it simpler
to implement the observer on a computer, the observer model ([@I3)) is discretized.
The sampling time is symbolized with h and the discrete time instants are indexed
by k. The discretized observer model becomes

{ x(k+1) = Ay(k)x(k) + Ba(k) + wa(k) (4.14)
y(k) = Cax(k) + va(k) '

With the small approximation that the inputs are constant during the sampling
periods, most of the matrices and covariances in this model can be calculated using
the standard formulas found in Lewis (1986). Initially we have

Ag(k) = eABn

By(k) = / heA(k)SdsB(k:) (4.15)
Cu(k) = C?

Roug(k) = 72 variance of the measurement noise vy(k).

The variance of the discrete process noise wy(k), Ri4(k), can be calculated as a sum
of the contributions from wy and w,, , since these are independent. The measured

oxygen input concentration is sampled, and the corresponding discrete measurement

noise is w., ,(k), with variance £2. According to Equation (EIF), this has the

following effect on the states during one sampling period

/Oh e AWR)s 7 [ D(Q(k)g]wzmd(k) ] '

The variance of this expression is

h Ry D(Q(k))? h
Ria(k) = / eAk)s s { 8 8 ] / AW s g, (4.16)
0 0

which is the contribution of w,, to Ris(k). The way N, is modeled, wy varies
continuously within the sampling periods, and its contribution to Ry4(k) is

Ryoq(k) = heA(k)S 00 AR s g
12 o O RN )

which follows from the formulas in Lewis (1986). Finally, we have
Ri4(k) = Ri1q(k) + Riza(k).

It is trivial to check that the model (£I4) is observable using the Kalman rank
condition, and it is not shown here.
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4.3.2 Estimation of NU R based on one reactor

It is here assumed that there is one nitrate sensor in the second anoxic tank, and
also one in the inlet to the same - the first anoxic tank. A stationary Kalman filter
given in Astrom and Wittenmark (1997) is used, since with the water flow constant,
the System (£I4]) is LTI, and convergence is not an issue. This was implemented in
Simulink. According to Section 3.7, Ry is 0.22. The sample time & is chosen to be
0.5 min. The method described in the beginning of this section to estimate Xppy
and 7yx,, is evaluated using the constant value 0.89 ~ M5|SS:40 for the Monod
expression Mg. Instead of the measured nitrate concentration, the concentration
estimated by the Kalman filter is used in this calculation.

4.3.2.1 Simulation result

The estimate of the nitrate concentration is illustrated in Figure |4.2(a)] refer to
Figure [3.5(b)| for a picture of the measurement noise. NUR; is shown in Figure

L L L L L L L L L | L L
1.01 102 1.03 104 105 106 107 108 109 1.1 1 15 2.5 3

2
Time(days) Time(days)
(a) Estimation of Syo. (b) Estimation of NUR.
o
---VXpH l j
1 1 |“ 4 4l
2 -~ |
8 _-t 1
S) .
=
£
2
0
‘1 1‘.5 . é 2‘.5 3 1 1‘.5 2 2.‘5 C‘%
Time(days) Time(days)
(c) Estimation of Xpp.o. (d) Estimation of vXpg.

Figure 4.2. Estimates with a Kalman filter for the first anoxic tank.

4.2(b). The result is not very impressive, the convergence rate is quite is slow.
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There is a compromise between convergence rate and noise dampening, and in this
case there are disturbances in both the measurement of the input and the output to
the filter. Noise in the input has particulary large effect since the input variance is
proportional to (%)2, and the tank volume is small. X g0 is illustrated in Figure
together with Sg.o. The estimate only makes sense when Sy is large because
of the assumption that Mg, is saturated. In Figure [£.2(d)] 9x,,, is shown. This
is strictly increasing with Sg, and as stated earlier; when 7x,, is large it is also
quite good. It might be a good idea to form a mean value of 4x,, for a period
of time when this holds. The relatively large noise is due to the calculations after
the filtering which amplifies the noise. It may therefore be better to use an EKF to

directly estimate the parameter.

433 Estimation of NU R based on several reactors

One would like to estimate NUR based on a model of more than one tank. The
reason is twofold:

e As stated earilier, the variance of the noise caused by the measurement of the
input concentration is proportional to (%)2 If the sensors were more separated
in distance, this variance would be reduced.

e The assumption about the sensors placement in the process is not valid, at
least not for now.

A possible solution would be to extend the observer with more tanks and with rate
expressions for each, modeled as random walk processes. There are nitrate sensors
in the outlets of the trickling filters that could be used as the measured input, and
the sensor in either Tank 5 or 6 could be used as output measurement. One could
also use that the rate expressions are correlated and express this in the process noise
covariance matrix. This solution was considered and tested for a series of two tanks.
The result was a non convergent filter with estimates that stationary depended
on the initial conditions. This also follows from the non detectability of such an
observer model. Another possible solution that could help to reduce the noise is to
approximate two tanks as one. This was considered for the two first anoxic tanks
in the process with one nitrate measurement in the inlet to the first and one in
the second. Approximating two tanks as one means that a second order system is
approximated as a first order system. It is not obvious that the volume V,,; in the
approximated model should be the total volume of the two tanks, there might be a
value that is more optimal. Let g; be the impulse response for the original system
with the two tanks, and g, the impulse response of the first order approximation.
The volumes of the tanks in the original system are in this case equal and we have
that

_Q
g(t) = (F)e '

Q
92(t) = Vite—tht’
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for the flow @ constant (Lennartson 2002). A candidate for an optimal Vj, is that
which minimizes the integrated quadratic difference between the step responses:

/0 " (01(t) — gul0))dt. (4.17)

The solution is then V,,; ~ 2.74V}.

4.3.3.1 Simulation result

A stationary Kalman filter for the observer model (£14) for the approximated system
was implemented in Simulink. The sampling time h was set to 0.5 min. Both
when the value 2.74V; which minimizes the Criterion (LI7) and when the tanks
total volume was used for V,,, the filter estimates of NUR was biased. By trial and
error it was found that the value 2.2V gave quite a good result. This is illustrated
in Figure 3l The optimal choice of V5 is however dependent on the concentrations

mgNO3 d~1

1 12 14 16 18 2 22 24 26 28 3
Time(days)

Figure 4.3. Estimation of NUR based on a one-tank model of two tanks.

in the tank, which can be seen in the figure as the estimate becomes more biased
with time. Any improvement of convergence rate and noise dampening is at least
not significant.

4.3.4 Estimation of OUR and Sg

In the aerobic tanks there are measurements of oxygen in all of them. These tanks
are also larger than the early anoxic tanks, which makes the variance of the mea-
sured input concentration have a relatively smaller effect. What contributes more
is that oxygen mass transfer have a relatively large effect in the equations. A non
stationary discrete Kalman ﬁlte1ﬂL\eWis 1986), based on the Model (£I4) was im-

plemented for the last reactor. OU Rg is shown in Figure 4.4(a). Estimates of Sg.g
based on the method described in the introduction to this section using the esti-
mated DO concentration, and with different values of 7x,,, are illustrated in Figure
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4.4(b)l The bias for the case with Yx,, = Vx,, is mainly due to the neglection
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(a) Estimation of OUR in the last aerobic tank.
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(b) Ss.s (smooth) and its estimate Sg.s

Figure 4.4.

of nitrification/denitrification in the calculations. For 4x,, = 1.1yx,,, this error is
evened out. We can conclude that estimation errors may become large, especially if
Sg.g is relatively large. There are also more possible model errors that has not been
considered here, such as an erroneous Ka function.
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4.4 An EKF for the aerobic compartments

We are intrested in estimating Ss and Xg in all the aerobic tanks. In the previous
section, a method to estimate Xppy and <yx,, in the anoxic compartments, and
Ss in one aerobic tank was presented. From the results we learn that the model
is sensitive to errors in the parameter. Therefore, it is here considered to let also
Xpg be an unknown concentration in the observer model. Examples of earlier
developed extensive observers based on the ASM1 have been formulated by Benazzi
et al. (2007) and Boulkroune et al. (2009). These are based on measurements in
one aerobic tank, and allthough the bacterial biomass concentrations was assumed
to be known, estimation of substrate from unknown inputs was not possible. The
lesson of this is that more online measurements are necessary. Therefore an EKF
based on several aerobic tanks in series is developed, which takes into account the
estimated sludge concentrations from Section The possibility of an HG-EKF
or AG-EKF was considered, but was abandoned due to the diffuculty to transform
a model based on the complex ASM1 equations into an observable canonical form
(this may not be possible at all). The performance of the filter based on two tanks
is dependent of the real concentrations, and therefore a redefined model in which
the last 40 % of the process contains three aerated tanks for one more measurement
of oxygen is considered.

441 Observer model

First, a simplified tank model corresponding to the one in Section is derived. The
first simplification made is to exclude Xpa, Syg and Syo from the state vector Z,
and also the corresponding expressions in the function ¢ involving these. Exclusion
of the first two is motivated in Section Exclusion of the last one is motivated by
that S NO enters the reactions as KNiZiOS,NO Kofﬂr 5 and that Sy is relatively small
and Sp is relatively large. In the next step Xpg is removed from the state vector
and substituted with Xx7y,, in the remaining equations (see Section E2). Note

that these approximations are observer model errors.

The simplified state space model for aerobic reactor number ¢ then becomes

where

7 = Ss , and g(Qa ZaXXa’yXBH) =

~

1-Yy ~ Ss So
KLa( )(Sosat - SO) Y ’UHKs-i-Ss KOH—i-SOXX’yXBH
Sq b L Xs/XxVXpy So ¥
MHKs-i-SS K0H+So XVxpn T th-i-Xs/Xx’YXBH Kou+50 X 1 Xpn

XS/XX"/XBH So
(1 fp)thXryXBH Fn Kx+Xs/Xx7xp, Kon+So XXFYXBH
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A redefinition of the tank index set is made to simplify the extension to a model
with more tanks. The new index set is [ = {d1,d2,t,1,...,m}, where m = 8 in
the original simulation model. A simplified model of the last n aerobic tanks in the
ASP is formed by connecting the corresponding simplified tank models via the mass
balance part. We say that the model is for n tanks, but it also involves inputs from
Tank (m — n). The input concentrations in Sg, Xg and the parameter yx,, are
unmeasureable. These cannot be modeled based on physical relationships, and are
instead modeled as random walk processes. The state vector x, the input vector u
and the process noise vector w for the observer model then become.

- - @ [ Wxq ]
SS:m—n dm+1—n Wsg
XS:m—n Wy
YXpu dm w
r=| 5 , U= 5 , W = s 4.18
Zm+1—n XX:m+l—n 00 ( )
Zom Kxom f
| ] g X: 0
Om—m | - -

The state equation in the observer model becomes

0
0
. 0
T = = =
+

Dm—i—l—n(Q)(Zm—n - Zm—l—l—n) E(Qm—i-l—nv Xx, Zm—l—l—na 7X3H>

D9(Q)(Zm—1 - Zm) + g(Qma XXa va'YXBH)

-~

a(r7u7t)

Note, that So.n_, is a measured input and enters via Z,,_,. The process noise
covariance matrix R; is chosen to be diagonal, and the upper first three elements on
the diagonal belongs to the random walk processes and are design parameters. One
could argue that the unknown inputs in S5 and Xg are correlated, and express this in
R;. This would work well for the data of the simulation case, but to be more general
this have not been included. The value of the entry in R; corresponding to the state
SO:m+1-n originates from noise in the measurement of So.,_,. If Tank (m — n)
is aerated, this entry is D2 ., (Q)Rs,, where Rg, is the variance of the oxygen
measurements, otherwise it is zero since the oxygen concentration in that tank then
is identically zero, and this knowledge can be used instead of the measurement. The
measurement equation becomes

SO:lO—n

c(z,u,t)

The covariance of the measurement noise v is Ry = I,,x,I25,. The total observer
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model becomes

y=clx,u,t)+v ’ (4.19)

which is on the form (A1) and the EKF given by Algorithm (2] can be applied
directly to it.

{ T =a(z,u,t) +w

4.4.1.1 An extension of the observer model

According to Section 2] it is reasonable to assume that there is a correlation be-
tween the unknown input concentration Xg and 7°S\S in the flow @);,. The estimated
variable Xin:m—n introduced Section is included as a state in the observer model
and is considered as measurable. In the observer it is modeled as

A

Xin:9—n = Wip,

where w;,, 1s white noise with variance Ri.;,. The new observer model becomes
{ v = ‘_;(“_f’ U )+ (4.20)

, with

L) s [0], e-[2]

c(z,u,t) = {c)ﬁ;:,u,t) } , and U = {Uv }

The variance of v;, is Ra., and the new measurement covariance matrix Ry is di-
agonal and is defined implicietely. The correlation between Xg.,,_, is included by
choosing the entries in R, corresponding to E[wx,w} ] to a positive nonzero number.
All the additional introduced variances are design variables.

4.4.1.2 Inclusion of measurement noise in the air flow rates

The observers performance for noise disturbances in the measurements of the air
flows will be investigated. The measurements of one of the flows - ¢ are assumed to
be described by ¢, = ¢+ w,(q), where w,,(q) is Gaussian white noise with variance
R,.(q) = (0.1¢)?. The error introduced by the noise on the oxygen equation in the
observer model is

e(wn(q)) = (Kra(g + wm(q)) = Kra(q))(So... = So).

The mean of e is
w2,
e 2Em@ e(q)dw,, = (4.21)

11e(q) = Ele(wm(q))] = /_ ) \/ﬁ

ke R29(Sp.  — Sp) (1 — F3(019%/2)
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The variance of e is

w2

o(0)* = El(e(wn(q)) — 1e(q))’] = /_Oo \/ﬁe_wn@(e(wm@) — pte(q))*dwn, =

(k1(So.,, — So)e29)2ek 010 (k3 (0-10)° _ 1),

Here, rules for expectation of random variables and the distribution of a normal ran-
dom variable has been used (Miller and Childers 2004). For Tank 4, 6;(¢;) and o;(¢;)
can be approximated by substitituting ¢ and Sp in Equations (A.21]) and ([@22]) with
the measurement ¢,,.; and the DO setpoint. The approximated variance fi..; should
be added to the diagonal entry in R; in the observer model (£I9) corresponding to
the oxygen concentration Sp.;. The approximated mean ji..; should be substracted
from corresponding oxygen equation in the state equation in the observers model.

4.4.2 Sensitivity analysis

Sensitivity of the estimated variables to parameter errors will be investigated. Let
0y be the vector of parameters in the simulation model and # the corresponding for
the observer model.Let J be the vector of the actual values of the concentrations
that are estimated by the EKF. Let .J be the estimate of .J when 6 = ;. Let J; ;(6;)
be the estimation of J; as a function of the j:th parameter in 0, 6; with all other
parameters in the observer fixed at #y. The mean relative error in the estimation of
concentration number 7 as a function of the relative error A; = (6; —6.;)/6; in 6; is

14 5 ~
fz Jij((Aj +1)bo.;) — Jidt
4 ; :
J, " Jidt
The integration is started 2 days after the startup of the filter to let it settle. A
linear approximation of the function is k; ; - A;, where
aeEKFm-

_ 1y dA;\ Oepkri;
0A; Aj=0 do; 00,
, 0 ( ST ((85) — jidt>
0:5 " 595 14 3
00, f2 Jidt 6,=00,;
0 (1060) — J; + J; ;(0.960,) — Jidt
0.2 " Jidt
We have the approximate error function

eprr,,(A)) =kij A

eEKFi,j(Aj) =

kij =

6]‘ :Go;j

Q

= ki

443 Simulation with one and two tanks

Here, the division of the AS basin is that described in Section Bl The EKF was
implemented as a continuous S-function in Simulink. In the case study in Section
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3.7, the correlation between variations in )A(m and Xg is strong, but how strong this
is in reality is more hypothetic, and therefore in simulation, the extension of the
observer model described in Section is evaluated separately. The possibility
to implement the observer with the Runge Kutta 4 method, and to include noise in
the air flow rate measurements is also investigated separately. In all simulations, the
initial guess 2y is 1.6 times the true initial state xy and the initial error covariance
is chosen in accordance with this. The values 1.4-107, 5-10° and 0.3 are chosen for
the variances of the noises wg,, wx, and w, respectively.

4.4.3.1 Simulation with the basic observer model

In the case with one reactor, the observer diverges. Simulation results of the observer
with two tanks is presented in Figure L5 together with the corresponding variables in
the simulation model. For Xg and Xpgg the estimates are only shown for one tank -
Tank 7, since Xg and Xy are mainly affected by massbalances. X g7 1s calculated
using the Model (LI0). Xpy.7 and 7yx,, are shown for a longer period due to their
slower variation. The estimated Sg states are close to unbiased, and X5;7 is good
but a bit slow. 9x,,., is quite biased. The biases in the estimates are due to the
errors introduced when neglecting nitrification and denitrification in the derivation
of the observer model. The observer model performs well for the simulation case, but
there are choices of simulation data for which the quality of the estimates is poor.
The performance of the filter is namely dependent on large enough variations in the
actual input concentrations, both in frequency and in amplitude. It is especially
sensitive to variations in the input Sg concentration, though one large peak a day
seem to be enough for good estimates. If the variation is not large enough, the
estimate errors may become large, at least for periods of time. One extreme case is
when all concentrations in the simulation model are set to constants and the only
real variable that varies is the noise in the oxygen measurements. Simulation result
for Sg.¢ for this case is illustrated in Figure The quality of the estimates is also
somewhat dependent on the phase between the input in Sg and Xg.

4.4.3.2 Observability

To explain some of the properties of the observer, observability was investigated for
the system. The variables in the simulation model were sampled once an hour during
the second day and observability of the observer model (I9) was investigated for
each sample point. For none of the points could locally weakly observability be
confirmed for the model based on one tank, while this was confirmed for all of the
sampled points for the model based on two tanks. This is not in contradiction with
the resctriction on concentration variations, the EKF is not an optimal filter.

Stationary, close to a point, we would expect the EKF to behave as a Kalman filter
based on the linearization of the observer model around that point. Therefore, in-
tuitively observability or detectability of linearizations of the observer model should
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Figure 4.5. Estimates of the EKF for two tanks.

be an important property for the performance of the filter. This was investigated
for the sampled points by solving the Ricatti equation together with Theorem ().
Neither the linearizations of the observer model for one or that for two tanks were
observable, and not even detectable. The results for the observer model based on
one tank is in accordance with the corresponding filter being divergent.

The case with two tanks is now considered in more detail.

A transformation of

the linearized systems into a staircase form yielded that the eignenvalue of nonde-
tectable mode was zero. The relative dependency defined in Section A.I.1.1] to the
undetectable mode of the concentrations as a function of time (the sampled points)
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is illustrated in Figure L7l As seen the dependency of this is relatively large, es-
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Figure 4.7. Relative dependency of the non detectable mode in linearizations of
the observer model around the true states.

pecially for Xg, and it is surprising that the filter is convergent even for the data
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in the simulation case. In Figure the same dependency is illustrated, but for
when the linearizations are around the estimates of the EKF instead of the real
variables. Intresting enough, the relative dependencies of the undetectable mode

0.7 T T T T

25

Time(hours)

Figure 4.8. Relative dependency of the non detectable mode in linearizations of
the observer model around the estimates of the EKF.

are smaller then. The aim of this investigation was really to show that each state in
the observer model is little dependent of the undetectable mode in the linearization
for some period of each day in the case study. This to further suggest that as long
the concentrations varies with a large enough amplitude and frequency, all states
are close to observable often enough in the linearizations to make the estimates non
divergent. Clearly, none of this holds, and the reason for the variation dependency
of the filter cannot be explained in this way. Xg:s larger relative dependency to the
undetectable mode can possibly explain its slower convergence.

4.4.3.3 Correlation included

In Figure L9 Xg, and X, are illustrated. In Figure II0, the estimation of Xg.g
for the EKF for two tanks with the extension described in Section EZ4.1.1]is illus-
trated. Also shown is the corresponding estimate of the original EKF and the real
concentration. As seen, the estimate of the first one is faster. The estimation of this
is however sensitive to a reasonable choice of the covariance Elwx w;,]. If this is
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chosen too large, the estimation error of all estimates may become large. The value
used here is 500. The variance of the "measured" X, is very small, and the choice
of E[v? ] can be chosen as an arbitraliy small value, but R; needs to be invertible.

4.4.3.4 Additional process noise and implementation of the EKF

Here, the addition of measurement noise in the air flows described in Section
is included. The possibility to implement the EKF with the Runge Kutta 4 method
described in Section is also investigated. In Simulink, this is solved by using an
S-function with discrete states, that in the beginning of each sampling period goes
through the Algorithm [l Discrete PI controllers are here used for oxygen reference
control with the same sampling time. The performance of the filter is illustrated
in Figure [L.I7] for some of the concentrations. The sampling time used here is 0.5
minutes. As seen, the result is equivalent to that in Section for the original
observer model.

4.4.3.5 Sensitivity to parameter errors

When investigating the sensitivity of the EKF to parameter errors we only consider
those parameters that may be of significant importance. The Xg concentrations
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Figure 4.10. Inclusion of a correallation between )A(m and Xg in the observer
model.

are mainly driven by mass balances, and since fp and b, only have minor affect in
the equations describing these, they are excluded from the simulation. Nor is the
parameter Kopg considered, this since the Monod expression in oxygen is saturated
for the setpoint oxygen concentration in this simulation case. For the Ka function
we only consider errors in the k; - parameters since results for errors in the ko
- parameters are difficult to interpret. The vector of investigated parameters is
defined by

0= [ kir ks Vo Vo So.. kn Ks Kx fin Yu |.

sat

The EKF was simulated for the different parameter errors and the approximation of
the defined sensitivity measure k; ; is shown in Table 1] for some of the estimated
concentrations. As an example on how to interpret the sensitivity measure, the error
in Sg¢ due a 20% error in So.., 1s approximately 20 - 0.14 %. The Xg and Xpg
concentrations are so dominantly driven by mass balances that we can expect the
error to be the same for all tanks. The result is therefore presented simply for Xg
and Xpg, but was calculated for Tank 7.

During this simulation autotrophs and nitrate was precluded from the aerobic tanks
in the simulation model. It was later decided to change this, but this simulation is
very time consuming and have not been repeated.

Errors in the volumes and Kg seem to have minor affect, which is a little surprising
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Figure 4.11. The EKF implemented with the Runge Kutta 4 method and with
additional process noise.

~

Table 4.1. Sensitivity (k; ;) of the estimates w.r.t the parameters in the observer.

Ss:6 Ss.7 Ss.8 Xs Xpn

k1, 0.1342 | -0.1028 | -0.2756 | -0.2614 | 0.1332
k1g -0.0305 | 0.1424 0.2520 0.2979 | -0.0513
Vz 0.0855 | -0.0038 | -0.0377 | -0.0421 | 0.0195
Vs 0.0160 | 0.0466 | 0.0308 | 0.0340 | -0.0200
0.1391 0.0626 | -0.0049 | 0.0926 | 0.1042
kn, -0.0265 | -0.0289 | -0.0201 | -0.1798 | 0.0119
Kg 0.0139 0.0291 0.0450 | -0.0304 | 0.0217
Kx 0.0089 0.0100 0.0069 0.0773 | -0.0041
WEH 0.0215 | 0.0253 | 0.0163 | 0.0946 | -0.0962
Yu 0.1112 0.0674 0.0416 0.1370 0.2321

for the latter one. Xg is quite sensitive to all other parameters. 5’5;6 and XBH
are quite sensitive to Yy, but this is a stochiometric parameter, and these are of-
ten quite well known. All estimates are especially sensitive to errors in the Kja
function, but Xpgpy less than the others. The estimation result for an error only in
K. of 10% is given in Figure for some of the concentrations. As seen, the
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Figure 4.12. Result for the EKF for a 10% error in k5.

error in the estimates increases nonlinearly with the amplitude of the corresponding
concentrations, which has its origin in the nonlinear Monod expressions. This error
in the parameter happens to have a positive effect on Xy, compare to Figure
The reason is that it evens out the effect of neglecting nitrification and denitrifi-
cation in the observer model. The difference between errors in the Kja function
and other parameter errors is that the latter are the same in the two tank models.
It is actually the case that as long as the error in the k; parameters are the same
for both tanks, then Xg and the Sg states are not much affected. Xpgg, however,
seem to be somewhat more sensitive to this condition. The result for a 10 % error
in both these parameters is illustrated in Figure This is fortunate since the
real Kpa function might be the same for all the tanks or at least related by their
physical description. Unfortunately, this does not hold if we consider errors in the
ko parameters, since the error in Ka is then nonlinear w.r.t. the air flows.

4 4 4  Simulation results for the observer based on three tanks

The EKF based on two tanks has some undesirable properties. Even though, the
input concentrations to a WW'TP often follows a daily rhythm, and often with a
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Figure 4.13. Result for the EKF for a 10% error in both k; parameters.

large peak each day, the property that the quality of the estimates depends on
variations in the actual concentrations is severe. A filter which is less sensitive to
errors in the Kpa parameters is also desirable. For that reason an altered model is
introduced including 9 tanks of whom the last three are aerated. The hypothesis is
that an additional measurement, will lead to better observability properties and less
sensitivity to variations in concentrations, and parameter errors. The volume of the
AS basin corresponding to the last two tanks is redefined to be described by three
tanks of equal size. To show the power of the way Xpg is modeled, we also make
a small redefinition of the simulation case. The TSS concentration in () x is set to
a constant value while the flows @, and Q.. are set to vary stepwise, periodically
and synchronically, both between 3m3s~! to 4m?®s~!. The flow Qx is set to 3m?3s— L.
It is also more natural with variations in the influent flows than in TSS in QQx. The
other concentrations in the influents are unchanged while they may differ somewhat
in the point 1 in Figure and in the rest of the AS basin because of the variation
in Xpy. The same initial condions and variances as in the previous section are used
here.
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4.4.4.1 Simulation of the basic observer model

In Figure the estimated X ppg.7 is illustrated. As seen, the way it is modeled,
it is possible to handle stepwise changes in it. To clarify this result even more, in
Figure X BH-7 1s shown again for when nitrification and denitrification are
precluded from the aerobic tanks. The result for the rest of the concentrations is
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fication/denitrification precluded from the aer-

obic tanks.

Figure 4.14. Estimation Xpy.7.

equivalent to that with 2 tanks regarding the case study, but the estimation of Xg is
somewhat faster. The main advantage of this filter shows when different simulation
data is considered. There are now no restrictions on variations in the concentrations.
This is illustrated in Figure for when the concentrations in the influents are set
to constants(compare to Section [L.4.3.1] and Figure [4.6]).

4.4.4.2 Observability

As with the case with two tanks, the concentrations in the simulation model were
sampled once an hour during the second day, and observability of the system was
investigated. Because of a high dimension of the observer model, it was not possible
to directly confirm locally weak observability. But both the model of Tank 7 and 8,
and the model of Tank 8 and 9 are locally weakly observable, and from this it follows
that the total model of the three tanks must be locally weakly observable. Regarding
observability, the advantage of introducing an additional tank in the model is that it
could be confirmed for the linearizations of the observer around the sampled points.
This helps to explain why this filter don not need variations in the concentrations
as was the case with two tanks.
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Figure 4.15. Estimation of Sg. when all concentrations are set to constant.
4.4.4.3 Sensitivity to parameter errors

Sensitivity to parameters was investigated for the corresponding set of parameters
and concentrations as in Section 4.4.3.5l The parameter vector is

sat

80:[k1:7 kl:8 kl:9 V? ‘/8 ‘/9 SO kh KS KX :[LH YH}v

and the sensitivity measure /Afm is illustrated for some of the concentrations in Table
42 Compared to the result in Secton [A.4.3.5] in this case nitrification and denitri-

~

Table 4.2. Sensitivity (k; ;) of the estimates w.r.t the parameters in the observer.

Ss.6 Ss.7 Ss.8 Ss:9 Xsr | Xpur
k1.7 0.0596 | -0.1338 | -0.2567 | -0.2764 | -0.1962 | 0.1428
ki.s 0.2479 | 0.4145 | 0.3991 0.3048 | 0.1275 | -0.2632
k1.9 -0.1454 | -0.1304 | -0.0402 | 0.0395 | 0.1562 | 0.0600
Vz 0.0609 | -0.0214 | -0.0481 | -0.0530 | -0.0360 | 0.0261
Vs 0.0268 0.0514 0.0278 0.0294 0.0245 | -0.0183
Vy -0.0075 | -0.0044 | 0.0046 | -0.0033 | 0.0124 0.0023
-0.0169 | -0.0171 | -0.0125 | -0.0069 | -0.0026 | 0.0002
kn, -0.0202 | -0.0205 | -0.0148 | -0.0085 | -0.1977 | 0.0045
Kg 0.0191 0.0338 | 0.0500 | 0.0570 | -0.0329 | 0.0171
Kx 0.0073 0.0082 0.0069 0.0044 0.0768 | -0.0017
WH 0.0140 0.0160 0.0126 0.0068 0.1127 | -0.0870
Yy 0.1134 0.0772 0.0483 0.0418 0.1226 0.2326
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fication was included in the aerobic tanks. That is the reason why the Sg estimates
here shows even more sensitivity to errors in the Kpa parameters than for the case
with two tanks. Also in this case all the estimates except for X g are little affected
by errors in the k; parameters as long as these are the same. Xg is also in general
less sensitive to errors in Kpa. To conclude, the total benefit regarding sensitivity
of introducing an additional tank was at most minor.

445 Additional results

Several EKF:s based on predecessors to the observer model (.I9) has been investi-
gated. Initially it was considered to model Xgp just as Ss and Xg with an unknown
input, modeled as a random walk process, and with separate states for each reactor,
i.e. the parameter vx,, was not included in the model. This was not suitable for
the case with two tanks, since only very slow variations in the concentration could
be assumed. It may work better with three tanks. In the next development, Xgy
was only described with vy, and X in the input to the first tank in the observer
model, and with separate states for the rest of the tanks. This solution is somewhat
more accurate since growth and decay of biomass in the tanks in the observer is
included. The reason for the different modeling in the observer model (AI9]) was to
decrease the dimension of it, since problems with a high dimension of the predecessor
made it difficult to analyze observability /detectability properties.

In the choice of the process covariance matrix in Section £.4.T] model errors were not
considered. The reason for this is that such errors leads to disturbances that are non
white, but rather constant for periods of time, and are not well described by white
noise. However, such disturbances can be described by a random walk process in
an observer model. Introducing such models will give worse observability properties
of the system though. For the case with an observer model with two tanks this
possibility was investigated. The result was a diverging filter.

4.5 Estimation of the Kya function

In the observers described in Sections .3 and the Kja function was assumed to
be known. Here methods to estimate it are evaluated and further developed. The
oxygen equation including Kpa model (3:2) is repeated below.
So = %(Som - So) + kl(l - 6_k2q)(508at - So) — OUR (4.22)
—_——

Kra(q)

The parameters describing the Kja function are known to be time varying, and
therefore, ideally these should be estimated on a continuous basis. When estimating
it with only oxygen measurements at hand, it is however necessary to excite the
air flow (Lindberg 1997), which is costly. One example of an estimation method in
which this is not necessary has been found in the literature (Soons et al. 2008). This
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is for an application to biopharmaceutical production, and offline measurements of
bacterial biomass concentration is taken into account in the estimation algorithm.
Measurements of bacterial biomass are not available at WWTP:s and it would most
likely be necessary to also include offline measurements of substrate concentration
for this to be useful.

If it is necessary to estimate the function on a continuous basis, one would like to
vary the air flow with as small amplitude as possible for low cost. Olsson and Newell
(1999) described a dual controller with two purposes: to control the oxygen concen-
tration and to make it oscillate. The estimation algorithm was not stated, but has
been evaluated on a real plant with success. The DO concentration was held within
reference40.2mgO,l~t. With larger excitation, better accuracy could be achieved.
This small excitation of the oxygen concentration does not make sense for Ryaverket
since the concentration normally vary way more even within the tanks. Also, a small
variation in the DO concentration does not really imply a small amplitude of the
variation in the air flow.

Methods described in the literature, that are reasonable consider for the Ryaverket
are:

e ON/OFF control in which the air flow is changed stepwise to change the num-
ber of unknowns in Equation (£.22) (Suescun et al. 1998).

e Excitation of the air flow with different frequencies and estimation with either
an EKF or some system identification method (Lindberg 1997).

In both of these methods quite large excitation is necessary.

The parameters in the Kpa function have shown to not be very unique, i.e. the
estimated parameters may deviate much from the true ones, while the corresponding
estimated function still is a good approximation. For that reason the following error
criteria is used to describe the quality of the estimates

gmax Kra . @ d
CKpa = Jo <qm @ (q)> ‘ (4.23)
f() (KLa((D) dq

[?L\a(q) is the Function (3:2) with estimated parameters k; and ks inserted.

451 DO observer

Industrial DO-sensors traditionally have had dynamics which cannot be neglected in
an estimation problem since they are slow to be robust (Lindberg 1997). Lindberg
(1997) used a filter to compensate for the dynamics before estimating the Kpa
function. The DO-sensors at Ryaverket are quite new and does not have the kind of
dynamics as traditionals, but to reduce noise it is possible to let the sensor output be
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the mean of the last T seconds. At Ryaverket the time span T is set to 60 seconds.
A mean for the last 30 seconds is also taken when the data reaches the central data
system. Neglecting measurement noise, the mean value formed DO - y,, is described

by the filter
0 1/t (1/ <>d)d
Ym = o= - y\p)ap T,
30 Ji_30 \ 60 J; g0

where y is the true DO. For a constant slope ko starting at time ¢y, and after 90
seconds we have

Ym(t) = y(to) + ko(t — 45). (4.24)

For infrequent and small changes, the filter is thus mainly a time delay. Therefore
this has not been considered in the designs in Section and 441 When exciting
the air flow heavily this might however not be neglible. A discrete model for v,
with sampling time h is given below

n 7 n 7

ym(n):mln2 Z ( Z y(k))+n11n2 Z ( Z U(@), (4.25)

t=n—n2+1 \k=i—ni1+1 t=n—n2+1 \k=i—ni1+1

V(n)

where noh = 30 and n;h = 60 and v is (presumably) white noise with variance
ro.  When designing a Kalman filter one usually makes the assumption that the
measurement noise is white. V' is certainly not white but we know its function of v.
There are two alternatives

e Use a Kalman filter including a whitening filter, i.e. include the model of V'
in the Kalman filter, and introduce states for the noise terms v (k).

e Neglect the non whiteness of V', and design a Kalman filter without a whitening
filter.

To estimate y a drifting model of it is needed. Here the random walk model
y(n+1) = y(n) + w(n)

is used. w is white noise with variance R; (a design parameter). To avoid a large
filter it can be designed with a longer sampling time h* with corresponding n} and
ns. For the case without a whitening filter, a suitable observer model is

(
1 0 ... 0 (1)
z(n+1)= oo | z(n) 4+ w(n)
Iz 4nz—1) 0 0
1 oooms—1 5 ...onb mi—1 ... 1
) = 2 o) + V()
ny—n5+1 elements

(4.26)
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where the state vector is
z(n) = [y(n),...,y(n —nj —ni+1)]%. (4.27)

It is possible to derive an exact expression of the autocovariance of V - Ry = E[V (k)?
as a function of 79, the variance of v. This is however unnecessary since we can
assume a value for it and relate R; to this. The Kalman filter gives an estimate
#(n|n), which is the optimal estimate of x at time nh* based on measurements up
to the same time. The i:th value in Z(n|n) is then y(n — i 4+ 1|n), which is the best
estimate of y at time (n — i+ 1)h* given measurements up to time nh*. With larger
1, the better the estimate is, but choosing ¢ > 2 for the filter output of course gives
a delay of ¢h* seconds.

4.5.1.1 Simulation

It is assumed that the sampling time of the sensor system is h = 1s. The sampling
time h* was chosen to be 5s, which gives nj = 12, and nj = 6. 7y is assumed
to have the same variance as for the sensors in the simulation case 0,‘12*2 (discrete
time). A stationary Kalman filter is used here. The response to a step in y for
ym(n) and g(n —i + 1|n) for ¢ = 1 and ¢ = 18 (the last element in Z(n|n)) are
shown in Figure [£.16l The time delay in the second case has been removed. The
designed filter can reconstruct the step response well but the coloured noise in ,,
is amplified. A Kalman filter including a whitening filter has been evaluated, but it

did not improve the performance.

1.2 T T T T T T T

50 100 150 200 250 300 350 400
Time(sec)

Figure 4.16. Estimation of the DO concentration from corrupted measurements.
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4.5.2 Estimation with ON/OFF control

(Suescun et al. 1998) estimated OUR and Kpa for a specific constant air flow by
neglecting mass balances and turning the aeration between ON (constant air flow:
¢o) and OFF (zero air flow) stepwise. This variation of the air flow is here called
ON/OFF control. When the aeration is turned to OFF, the only unknown in Equa-
tion (A22) is OUR and can then be estimated from the slope of oxygen measure-
ments. When the aeration is turned to ON, it is assumed that OUR is known and
Kra(qop) can be estimated as with OUR.

At Ryaverket, the water flow is relatively large, and it is therefore not reasonable to
neglect mass balances in the estimation algorithm, and the above method should not
be applied directly. Instead, they are estimated by minimizing the error between the
measured DO concentration and the one in a model. The method is also extended
to estimation of the parameters in the K a function.

4.5.2.1 Estimation of K a for a specific air flow ¢

Here, Kpa(q) is estimated with only one ON, and one OFF period, where g, is the
sample mean of the measured air flow. The experiment starts with an OFF period.
Discrete time with sampling time A is used here. The time kh is shortened with the
time index k. k € [0, m] during the OF F' period and k € [m + 1,n] during the ON
period. The measured DO is symbolized with Sp, . Sample means of measurements
are given with a tilde (~) above, for example Sp.

Estimation of OUR Solving Equation (£22) with the aeration turned off, and
assuming that all variables except Sp in the considered tank are constant gives

So(k) = Ce™#5 4 5.4, — govR, ke [0,m),

where C is an integration constant. Substituting So(k) with Sp,, (k), and the vari-
ables in the right hand side of the equation with sample means we get

_Qrn & V
v(k) = fi(k) =Ce V™ + Sp.n — 5OUR — So,, (k),

where v(k) is measurement noise. If the mean is approximately zero, it follows that
it is reasonable solve the following optimization problem for OU R:

minimize <01:Zf1(k)2> wrt. OUR, C. (4.28)
k=0

The value of OU R that minimizes the objective function O; is taken as the estimate
OUR. An important property of an optimization problem is convexity of the ob-
jective function, and is the criterion for convergence to the optimal value in many
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optimization algorithms. See Andréasson et al. (2005) for a definition of convex-
ity and related theorems. The optimization problem (£28) is convex, since it is
quadratic in OUR and C'.

Estimation of K a(g) At time k= m+1, the aeration is turned to ON (¢ = qo).
Note that ¢p is the ordered air flow, while ¢y is the estimate of the true air flow
based on a mean value of measurements. OUR is assumed to be constant from the
OFF period and the estimated value OUR is used here. With a derivation similar
to that for OUR, an estimate Kpay of Kpa(go) is found by solving the following
optimization problem

minimize (Og = zm:fg(k)2> w.rt. Kpa(q), (4.29)
k=0

where
%SO:in + SOsatKLa(go) —OUR .
€+ Kra(go)

Falk) = Ce~(Kra@)+h So, (k).

Convexity of this problem has not been confirmed.

4.5.2.2 Estimation of the K;a function

By successively turning the aeration between ON and OFF several times, and solving
the problems (£.28) and ([£29]), we get a series of estimated values of the K a function
for different air flows: -

(Kra;,q), 1i€]l0,pl. (4.30)
To extract as much as possible of the measurement data, the problem (£29) should
be solved twice for each ON period. One time with OUR from the previous OFF
period, and one time with OUR from the following OFF period. To estimate the
parameters in the function ([B.:2)), the following optimization problem is solved

P
minimize (OQZng(i)2> w.rt. ky, ko, (4.31)

=0

where -
fg(l) = ]{?1(1 — €k2qi) — KLCLZ-

This problem is convex. For a good estimate, p should be large, and as large differ-
ence between the smallest and the largest value in the series is desirable.

4.5.2.3 Simulation

The experiment was carried out on Tank 8. In simulation, the DO concentration
was varied between DO,,.. = 4mgOsl~! and DO,,;, = 2mgOsl~'. The DO,
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Figure 4.17. ON/OFF control.

was chosen to make OUR approximately independent of the variation in the DO
concentration. ¢ was ¢nq. defined in Section B.7] every other ON period, and ¢,
every other one. ¢,,;, is based on the desire to vary the concentrations reasonably
fast and is the solution to

0= So = D(Q)(So:m — So) +KLa(qf“;”)(som —So)—OUR, for So= DOmas.

This is calculated, by using the exact values of OUR and the Kpa parameters, which
of course is not possible in reality. All calculations and the ON/OFF control were
implemented with S-functions in Simulink. The sampling time h was chosen to be
1s. The optimization problems were solved in Matlab, using the function lsqnonlin.
The error of the initial guesses were chosen to be 50 %. To let the the plant model
settle, the experiment was started two and a half hours into the first day.

4.5.2.4 Simulation results

The oxygen concentration Sp.s (not the measured one), and the air flow rate gs
during the experiment are shown in Figure The DO data was run through
the Filter (4.25]) and then reconstructed with a Kalman filter based on the observer
model (£26) for h* = h = 1s. The result is given in Figure I8 As seen the
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Figure 4.18. Reconstructed and measured DO data.

effect of forming the mean in the sensor is mainly a time delay for the considered
variations. The reconstructed data was used and considered as the measurement
So,,.s in the Kpa estimation algorithm. As time of estimation of OUR the mid of

the OFF periods were chosen. O/U\Rg is illustrated in Figure Convexity of
the objective function O, could not be confirmed, but the optimization algorithm
converged for all investigated optimization problems. The estimated values of the
Kpa parameters are given in Table [4.3] as a function of the number of ON periods
that they are based on. The true parameter values are [kq, ko] = [1200,6.6 - 107°].
As seen, there is quite a large variation in the parameter estimates. Therefore, also
the Criterion eg,, (see Equation ([@23])) is given in the table. Already after the
first ON period, this is relatively small. The estimated function is so good that it is
pointless to compare it with the real one in a figure.

453 A Kalman filter approach

Lindberg (1997) used a system identification method with excitation of the airflow to
estimate the Kra function, and also that an EKF can be used in the same manner.
An observer model derived by extending the Model ({I3]) with random walk models
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Table 4.3. Estimated Ka parameters and the criterim FE.

Number of ON periods | k1 - 1073 | kg -10° | ex,q - 103
2 0.89 9.61 22.7
4 1.13 7.09 2.5
6 0.98 8.44 11.0
8 1.15 6.87 4.1
10 1.11 7.24 3.2
12 1.08 7.43 4.2
14 1.14 7.01 2.3
16 1.27 6.19 2.3
18 1.29 6.07 2.8
20 1.20 6.60 2.3
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for k1 and ks is

( D(Q)(So — So,,) + ki(1 — e7*29)(S0,,, — So) — OUR
T = 8 +w
| 0 (4.32)
a(z,u,t)
y=[10 0 0]z+v
\ (@)

Here z = [ So OUR ki ko }T and v = [ Q q }T. As in earlier designs the
upper diagonal element of By = Flww’] is D(Q)*Rs,, where Rg, = Evv’] is the
variance of the oxygen measurements. The equations of the EKF can be directly
applied to this model, but would become divergent without excitation of the air
flow.Lindberg (1997) did not state the excitation signal but according to a figure, it
is a discrete time signal with continuous amplitude. This kind of signal is not easily
implemented at Ryaverket since the air flow need to be varied manually. A commonly
used excitation signal for linear systems is binary white noise. This signal is called
binary since it shifts between two discrete levels. It is called white since it has a
flat spectrum within a frequency band [Wpin, Wmae]- Ljung and Glad (2002) stated
that it is often necessary with more levels in the excitation signal when identifying a
nonlinear system. Therefore, also a signal with three levels is tested. A continuous
signal w;(t) with frequencies equally distributed in [Wpin, W] can be formed by
applying an analog bandpass filter to white noise. A binary signal with frequencies
approximately in the right band is then formed by

s(t) = sign(ws(t)).

Taking the sign of the signal will however distort its spectrum. The excitation
signal is finally formed by adjusting the level and interval to what is required in the
application. The choice of w,,;, and wy,,; can be based on time domain properties
of the system. It is unnecessary to have pulses so short that they are hardly visible
in the response. It should be useful to have occasional pulses so long that the step
response more or less settles. There is however no need for pulses longer than that.

4.5.3.1 Simulation result

Tank 7 was chosen for simulation. To not disturb the process we need to guar-
antee a lowest DO concentration during the experiment. At startup the process
was controlled to 1mgO,l~t. After one hour the air flow was stationary and was
1600m3(air)h~!. This was taken as the lower level ¢y in the excitation signal. To
decide on the excitation frequencies a step was taken from this level to ¢,,.., defined
in Section Bl The response is illustrated in Figure The time for the signal
to reach 40% and 95% of the final value was Typ = 1.6 and Ty5 = 11.2 minutes
respectively. It was decided to not allow shorter pulses than 7} and longer pulses
than T,. Based on this we get
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Figure 4.20. Step response of So.7.

o d oo
Winin = T and Wyee = T

Note that this kind of reasoning for a nonlinear system only holds strictly if the
process can be considered is stationary during the experiment. A 12th order But-
terworth band pass filter was used to form the signal wg(¢). The estimated power
spectral density of s(t) is shown in Figure L2T], where the frequencies wy,i, and wyq.
has been included. This was calculated with the command periodogram in Matlab
from samples of s(t). The discrete normalized frequency has been recalculated to
continuous frequency (rad/min). Taking the sign of the signal wg(t) distorts the
frequency content, and the spectrum of s(¢) is not flat, but has its peak within the
right band. Two excitation signals are tested. One pure binary white noise signal

¢a(t) which is defined below

S Gomaas S(t) =
Ga(t) = { s(t) = —

1
o 1
The other signal g,(t) is the same as ¢,(t), but the upper level is varied. It is ¢as
every other time that s(t) goes high and 2229 every other. ¢, (t) is illustrated
in Figure together with the DO response. The EKF based on the observer
model ([432) was implemented with an S-function in Simulink. Ideally, this should
be merged with the DO Kalman filter described in Section [£.5.T], but that has not
been employed here. The DO data was run through the sensor model (£.25]) and
then reconstructed with the DO observer. The reconstructed data was then used
and considered to be the measurement in the EKF. The initial state was chosen to
be 0.7 times the true variables, except for the DO concentration which was assumed
to be known. The result for the excitation signal ¢,(t) was that it was possible to
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Figure 4.22. Excitation signal g,(¢) and the response in the DO concentration.
make the error eg, , converge initially, but without a large variance in the estiamted
parameters, they started to diverge after a while.

The result for the excitation signal g,(t) was better. The best result was for when the
variance of the random walk models of k; and ks, was set to zero, and they were given
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a large initial error variance in Fj. O/U\R7 is illustrated in Figure[4.23] The variance
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Figure 4.23. OUR; for the excitation signal gy(t).

of the random walk model for this has been chosen large since this was positive for
the convergence of the parameters. It has also been given a large initial covariance
for fast convergence. There is an initial oscillation in the estimate. The criteria eg, ,
is illustrated in Figure The convergence is fast, and the estimated function
is too good to compare to the true function in a figure. For both the excitation
signals it was, however, very difficult and time consuming to find good choices of the
covariance R; and the initial covariance F,. This is of course much more difficult
when applying the filter to real data when the actual variables are unknown.
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5 APPLIED ESTIMATION

Experiments to estimate the Kpa function have been performed at Ryaverket, and
some of the observers presented in Chapter [l have been evaluated for real data. For
these purposes the model presented in Chapter [3l needs to be extended to include
among others time dependency of parameters, and that the control of air flows in
reality are based on the zone division of the basin and not the tank model. The
model of the AS basin as a series of tanks is an approximation of reality, and this
model is analyzed. All real data are from measurements in line 3, since the air flow
sensors works best in that line. The solution for estimation of Sg and ygg described
in Section was not considered due to the placement of the nitrate sensors in the
process.

5.1 Conventions

In Chapter [ the variables were indexed based on which tank they belong to. This
convention is used here too, except for the air flows that are indexed based on which
zone they belong too. The Ka functions are still indexed per tank. Diffuser is used
to refer to the pipes in a zone with a corresponding air flow.

5.2 Tank approximation

In figure (5I0), an AS basin is illustrated. The flow Q is approximately the same in
the influent as in the effluent. Within the basin, the flow consists of a flow in the
direction of the effluent, but there are also back streams. In addittion to this, the
water is purposely mixed, either with mechanical stirrers, or as a consequence of the
aeration. This makes it convenient to model the basin as a series of n continuously
stirred tank reactors (CSTR:s). An unmixed flow without back streams is called a
plug flow. To divide the basin into a series of tanks in model tracer tests are used.

Q Q
> > > > > |—

N X XS

Figure 5.1. An AS basin.

A basic description of this is:

approximately instantaneously, a large amount of a tracer substance, such as lithium
chloride is poured into the water at some point of the basin. At some other down-

65
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stream point or points, the concentration of the tracer substance is measured. The
response is then close to the hydraulic impulse responses of the system. The division
of the basin is chosen such that the model gives approrimately the same impulse
response.

> 63 > °
/ Effluent
> - b '\
Q ! E :
; > 3?1 j > /\
Influent . . .

Figure 5.2. Activated sludge basin at Ryaverket.

The AS basin in line 3 at Ryaverket is illustrated in Figure[5.21 As seen, the basin
actually consists of three sub basins, one small: b;, and two equally large: b, and b3.
At point B and C, the water flows through holes in the wall of the basin. These are
thus natural boarder lines also in a model. The tank division within the sub basins
are illustrated with dashed lines in the figure.

A tracer test has been performed at Ryaverket in another project (Kjellstrand 2006).
The tracer substance lithium salt was poured into the water at the influent (point
A) and the response was measured at the points B, C, and in the effluent (point
D). Based on this, each of the basins by and bgwere divided into two equally large
tanks. The basin b; is smaller but was modeled as 4 equally large tanks. The reason
was that the flow through b; had a plug flow character. The flow character in a
model approaches that of a plug flow, as the number of tanks increases. For the
exact volumes of the tanks in the model, refer to Table [3.11

We are interested in how well the tank model describes the reality, especially regard-
ing the basin b3, since this is what is included in most of the estimators described in
Chapter d. The EKF in Section also involves concentrations in Tank 6, but only
as inputs to Tank 7. Also, as mentioned earlier, based on the physical description
of the basin, the point C' in Figure 5.2]is a natural border in the model. According
to the model, an oxygen sensor should be representative for the whole volume of the
tank it belongs to, while in reality concentrations vary within the tank. The DO
concentration is even controlled separately for different volumes within the tank. We
can also expect time delays not included in the model during fast changes because of
distances within the tanks. For instance, the vertical distance between the diffusers
at the bottom and the water surface where the DO sensors are located causes delays
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in the sensor responses. The same goes for the horizontal distances between diffusers
and sensors.

So
Zone 8 Zone 9
: : o
i Tank 7 | Tank 8
1 L L
Tank%new Tank&new

Figure 5.3. Model of the activated sludge process at Ryaverket.

In Figure 5.3 the basin b3 is illustrated. The current tank division is inconvenient
for two reasons. For one, the diffuser in Zone 8 is shared between the tanks which
complicates model based control somewhat. Secondly, the only oxygen sensor in
Tank 7 is placed close to the influent in Zone 6. One could question if this is repre-
sentative for the whole volume. Therefore, a new tank division is considered. This
is illustrated by Tankz.,c, and Tanks.,e,, in Figure 5.3, where also the approximate
positions of the DO sensors are given. The point of this change is that now the sen-
sor in Zone 8 can be used as a measurement for Tank 8, and a downstream sensor
may be more representative for the whole volume than an upstream one, allthough
the volume of the new Tank 7 is larger than in the original model. Three transfer
functions are defined in Table B.Il Note that we do not consider reactions in the

Table 5.1. Transfer functions describing the system for a constant water flow.

Transfer function | Describes
Grs(s) The system from an input concentration of a substance to Tank 7 to the
corresponding concentration in Tank 8 in the original model.
Grsnew(8) The system from an input concentration of a substance to Tank 7 to the
corresponding concentration in Tank 8 in the redefined model.
Grnew(8) The system from an input concentration of a substance to Tank 7 to the
corresponding concentration in Tank 7 in the redefined model.

basin now, but only flows and mixing. The impulse responses of the systems have
been simulated with the water flow %m?’s_l, which is the same as was used in the
simulation in Chapter @l The impulse responses of G7s and G7gye, are shown in Fig-

ure As seen, these are close to the same, which indicates that the redefinition
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of bs is valid based on what we know since during the tracer tests, the response was
only measured at the inlet and outlet of b3, and not within the basin. This, however
raises the question of what is the correct description of the system. In Figure
the impulse response of Gr7s and G, are shown. The former is a second order sys-

3or —Grs 1 6o '\ —Grs

.
25t - Gr8new sop L ——~ Gnew
.

20t
LT

10

10 20 30 40 50 60 10 20 30 40 50 60
Time(minutes) Time(minutes)

(a) Impulse responses of G7s and G7gnew- (b) Impulse responses of G7g and Grpew-

tem, and the latter is a first order system, and gives completely different responses.
This says that we should have a different character of the response of the oxygen
sensor in Zone8 from an input to Tank 7 in the two models.

Another way to model a basin that probably is more accurate is illustrated in Figure
6.4l Here a backflow R from the upstream tanks are included.

Q Q Q Q

—> —t— — ——>

Figure 5.4. Tank model with a back flow R.

5.3 An applied model of the Ka function

The time variation of the K;a function was mentioned in Sections and For
evaluation and possible implementations of designs this concept becomes important.
According to Lindberg (1997), the function varies with kind of wastewater and tem-
perature. According to Stenstrom and Gilbert (1981) it also varies with TSS. The
temperature dependency is described by

KLQ(T) = KLagoeT_QO, (51)

where T is the temperature and Kpagy is the value of Kpa at 20 °C. For stirred
and only aerated tanks reported values of § are between 1.016 and 1.024 (Stenstrom
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and Gilbert 1981). Here, the value 1.02 is chosen. The next equation describes the
relationship between Kpa for wastewater and freshwater

KL Qyastewater = aKLafreshwater .

(Stenstrom and Gilbert 1981). If the « factor could be considered to be constant for
a specific plant, it would be unnecessary to mention it, since the Kya parameters
will be estimated for the same water as they are then used for. Unfortunately it is
reported that the o factor might be highly time variant. For a specific plant and
constant air flow it is reported that the Kpa function varied between 59.6d~' and
125.7d7! over a time period of two and a half month. It is suggested that this could
mean a variation in « between 0.47 and 1 (Stenstrom and Gilbert 1981). It is of
course not possible to describe how the « factor varies in a model. Any descriptions
of how Ka varies with T'SS has not been found. Therefore, only the temperature
model is included in the Kra model. There are several diffusers in each tank. It
would be very time consuming to estimate the function for each diffuser separately,
and therefore we want to relate them in some way. Each diffuser consists of a set of
pipes. We can assume that the all the pipes have approximately the same character.
Let Kpa,(g,), be the Kpa function for one pipe at 20 °C, with parameters k;, and
kop, refer to Equation ([B.2)). ¢, is the air flow through the pipe and equals the total
air flow in the corresponding zone divided by the number of pipes in that zone. The
total Kra function in a tank can be described as a sum of the Kja functions for
the pipes belonging to that tank. Including the temperature model (5.1), we get the
following Kpa functions for Tank 7 and 8 in the original tank model:

_ n
Kuoolan gr.aT) = 07 (0K0ap(2) + moKin () + 5 HK10,(2) (5.2
6

7 2 ng
_og, T q q
Kraz(gs,q7,05,T) = 6" 20(?8KL%(—8)+(”9KL%(—9))~
ns N9

Here, n; is the number of pipes in Zone 7, and the values of these are given in Table
6.2l It has here been assumed that the airflow in Zone 8 is shared equally between
the two tanks. Note that if the volumes of the tanks were not equal it would be
necessary to include these in the equations.

Table 5.2. Number of pipes in the zones

Zone number (i) | Number of pipes in the zone (n;)
3-8 320
9 240

5.4 Data treatment

At Ryaverket measurements are not stored in the data bank with a fixed sampling
rate, but a new value is only stored when a sensor output has varied enough from the



70 Chapter 5 Applied estimation

last saved value, or after a relatively long period of time. The estimators described
in Chapter @l requires continuous signals or signals sampled at a fixed sampling rate,
and the data is therefore linearly interpolated.

5.5 Estimation of the K;a function

Although the unknown time variation of the Ka function, refer to Section B3] it is
not considered to estimate the Kra function on a continuous basis. This is due to
the economic reasons mentioned in Section Instead, it was decided to estimate
the function parameters at discrete occasions, and in evaluation or implementation
of other designs use the Model (5.I) to update them. The choice of method was
ON/OFF control, described in Section .52 Compared to the method described
in Section 453 this method has better convergence properties, and it was also
preferred by the staff at the plant.

Experiments were carried out on three occasions. It was found that even for fast
changes in the air flow, the outputs of the DO sensors in Zone 8 and 9 were close
to identical. This speaks for the validity of the original tank model, and it makes
no sense to consider the suggested new tank division described in Section 5.2l This
means that the oxygen sensor in Zone 6 needs to be used as a measurement for Tank
7. It was shown that this sensor varies with the variation in the air flow in zone
8. This is in accordance with the model, but there was a delay of several minutes
in the response, and this dynamics is not included in the model. It was initially
considered to estimate the function separately for the two tanks, although there is
a model relating them.

A couple of changes of the estimation method described in Section were made.
In some experiments, only the air flow in one zone was varied, while the others
belonging to the same tank was kept constant. In estimation, only this flow was
included in the Model (5.2]). This means that during the OFF periods, what was
really estimated was OUR plus the "constant" contribution to the total function
from the other zones belonging to the same tank. The system supplying air to the
zones in all the lines consists of three compressors. This system is slow, and it is
not possible to increase the air flows stepwise, it may take several minutes to reach
a higher commanded air flow. It was therefore not possible to estimate Kpa from
step responses and it was instead estimated by solving the equation So = 0 for it,
when the DO concentration had reached a stationary value for a constant air flow,
refer to Equation [£.221 The response to a decrease in the commanded air flow was
however quite fast, and the original method could be used to estimate OUR.

The DO Kalman filter described in Section 5.1l was applied to the data before any
further estimations were performed. An example of the output for Zone 6 is shown
in Figure 5.5l where the time delay of the Kalman filter has been removed. As seen,
also for real data, the effect of mean value forming in the sensors and in the data
storage system is mainly a time delay. The total time delay of the DO measurments



5.5 Estimation of the Kra function 71

Estimate
Sensor data

3.5

2.5

mgOsl™?

15

Time(min)

Figure 5.5. DO concentration in zone 6, measurement data and estimate.

compared to the measured air flow was found to be approximately 120 seconds.
This includes time delays caused by distances in the basin. The smoothness of the
measurement, data may be surprising. This is caused by the mean value forming
and that the data presented is formed by interpolating discrete time data points.

The initial experiments were performed during two days. The temperature was then
9.5 °C.

551 Experiments in Tank 7

Only the air flow in zone 6 was varied consciously. The air flow in zone 7 was set to
a constant value, since with reference control the control signal for this is the mean
of the control signals for the flows in zone 6 and 8. Because of time delays it was not
possible to time the exact times for when the air should be turned on again after an
OFF period. This led to that the DO concentration sometimes approached as low
values as 1mgl~!, which can be seen in Figure As stated in Section [4.5] we do
not want to approach to low DO concentrations, 1mgl~! is however not critically
low.

The estimated pairs (@i,(b’); are shown in Figure 5.6 refer to Section
The number of estimated pairs is small. This is due to that each ON and OFF
period was way more time consuming compared to simulation. The reason is among
others the necessary change of the estimation method stated earlier. As seen, there
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Figure 5.6. Estimated Kpa in Tank 7 as a function of g¢s.

is one outlier among the estimated pairs. To compensate for the long periods, the
estimated OU R values was interpolated in time before estimating Kpa. There is
quite little variation in the air flow values in Figure The reason for this is
that high air flows were necessary to hold a high enough DO concentration. The
estimated function Kja;(gs) is also shown in the figure. This is Kpa in Tank 7 as
a function of ¢ for the temperature 9.5 °C. When estimating this, the outlier was
removed. The estimated parameters k;., and k., recalculated for 20 °C are given in
Table (.31

Table 5.3. Estimated Kja parameters for the diffuser pipes.

k1p (day™1) | kap (m~3hour)
0.4078 0.1521

5.5.2 Results from experiments in Tank 8

During the first day, the airflow was varied in Zone 8 and Zone 9 at the same
time. During the second day it was only varied in Zone 9. The estimated triplet
(gs, qo, Kpag) values did not show a pattern that can be described with any strictly
increasing function. The most likely reason for the bad result is that OUR in the
tank was small, which makes mass balances have a relatively large effect, and as
described in Section (2] we do not put much confidence in the model regarding
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these. Because of this result it was decided to use the estimated Kpa parameters
for Tank 7 and the Kpa-pipe model (5.2) as a model for Kpa in both tanks.

5.5.3 A new experiment

To achieve a larger span in the airflows, and possibly shorter ON and OFF periods
to achieve more data points, it was decided to carry out a new experiments for Tank
7 in which the airflow was varied in both Zone 6 and 7 at the same time. The large
variation in the total air flow however led to problems with the system supplying
the air, which in turn led to very few data series - ON and OFF periods. There were
also disturbances in form of quite large variations in the water flow this day and it
was decided to discard the collected data.

56 The aerobic EKF

Here, the result of the extended Kalman filter for two aerobic tanks presented in
Section [£.4 when applied to real data from Tank 7 and 8 is presented. Lab analysis of
BOD for filtered water samples in Tank 7 and 8 were taken during a couple of weeks
to have to compare with the output of the filter. Filtered BOD is approximately the
same as Sg (COD). The dependency of the parameters k in the ASM1 to temperature
T is described by

k(T) = k(20°C)0527¢,

where 0 is the temperature coefficient for the parameters. These have been gathered
from the plant, and are given in Table B.4lfor the parameters included in the observer
model (£19). The EKF including the K a model (5.2) with the parameters in Table
6.3, the temperature dependency of the ASM1 parameters, and the estimation of
the sludge concentration Xx described in Section was implemented in Simulink.
No prefiltering of the oxygen sensor data was made, but due to the relative delay
of the oxygen measurement data, described in Section 5.5l all other signals were
delayed 120 seconds. The water flow within the basin was lowpass filtered, but
measurements of the induvidual influent flows and T'SS were not. These are namely
naturally lowpass filtered in the estimation of Xx. The estimates of the EKF for
some concentrations are given in Figure As seen 5’5;7 and 5’5;8 tend to zero,

Table 5.4. Temperature coefficients for the ASM1 parameters.

Parameter Or
g 1.05
kr, 1.072
Kx 1.116

Yxpy and Xpp diverges, and Xg goes even below zero. These estimations are of
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Figure 5.7. Estimates of the EKF.

course not valid. One possible reason for the bad performance of the filter is model
errors. Some sources of errors thay may have large impact are

e The approximation of the basin as a series of CSTR:s.

e The estimated Kpa functions. The real function may also be timevarying in a

way not included in the model.
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e The ASM1 parameters.

In Section it was also found that the filter diverges without enough variation
in the real concentrations, which is another possible reason. The parameters in the
filter has been varied to make the estimates more reasonable, but the result has still
been equivalent to that presented in Figure (.6

57 Estimation of OUR

The observer for OUR described in Section .34 has been simulated for real data
using the same necessary temperature models and pretreatment of signals as in
Section The result for Tank 7 is shown in Figure [5.8(a)l There is another way
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Figure 5.8. Estimated OUR in Tank 7.

of estimating rate expressions, that is by solving Equation [ ITlunder the assumption
that the process is stationary (So = 0). This solution is illustrated in Figure
The time period for when this varies as most is for the first day of Ka experiments.
Naturally, it is not possible to use this method for such extreme conditions. The two
estimates have the same mean, but the Kalman estimate has much smaller variance.

When the process is stationary, it is in not possible to detect any errors in the
observer model, these will be compensated for by an erronous OUR such that the
equations adds up to the oxygen measurements. During large perturbations it is
however possible to detect model errors. In Figure5.9] the measured DO concentra-
tion - Sp,,, and the Kalman filter DO concentration estimate So in Tank 7 is shown
for the period of the first day of Kpa experiements. During the time interval 77, the
airflow was varied in Zone 8 and 9, and during the interval 75, it was varied in Zone
6 only. The division into these periods is illustrated in Figure with the dashed

vertical line. During the period 77, OUR in Figure varies heavily, and So is
not in phase with Sp, in Figure[5.9l The amplitude of Sp is also smaller than Sp, .
The reason for this is that for these fast processes the filter cannot compensate fast
enough for errors by varying OUR. In the filter, we account for that the DO sensor
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Figure 5.9. Measured and estimated DO concentration in Tank 7 during the
K a experiments.

should react as fast for variations in the air flow in Zone 8 as in Zone 6, and from
the delay in Sp,, compared to S‘O, we can draw the conclusion that this is not the
case. During the period 75 when the air flow is varied in Zone 6, the DO signals
in Figure 5.9 are in phase, and OUR varies less, which says that the model works
better for this flow. It should be noted that the K;a function has been estimated for
the same data and for Zone 6 as considered here. The observed phenomen may in
general not be a problem, since, normally the air flow is not varied this heavily, and
the stationary tank model may still be a good approximation. But the oxygen con-
centration in Zone 7 and 8 as a function of the air flow in Zone 6 must be described
by the same kind of dynamics, and the assumption when the Kja parameters were
estimated was that the tank was perfectly stirred, i.e. it was assumed that the DO
concentration did not differ w.r.t. distance in the tank.



6 PROCESS OPTIMIZATION

The aim of the aerobic proxess is to assure a low concentration of soluble biodegrad-
able substrate in the effluent by taking care of the waste that cannot be cleaned in
the anoxic process. The only costs are for the total air flow rate and possible effluent
discharges. The optimization problem can be formulated as

Minimize the cost for aeration, while preserving a good effluent quality

Optimization of the influent flows is so complicated that it is left out from the
discussion. It is initially considered how the aeobic process could be optimized if
all control variables could be varied independently for these. Control variables to
consider are the aerobic volume, the air flows, the oxygen setpoints, and the TSS
concentration in ()x. To unravel the possibilities for optimization, simplified versions
of the equations describing an aerobic tank are given below.

So = KLCL(Q)(SOS;t - »5;0) + D(Q)(So:in — So)
A~ 11—
. Batit YHH KOH%SO KSE%SXX/W;BH
Ss = D(Q)(Ssiin — Ss) — in=—31 KOH%SO i X x Y (6.1)
Xg O
e FoutS

Nitrification, denitrification and decay of biomass have been neglected. The equa-
tions for heterophic biomass has been removed since this concentration in reality on
a short term basis only is controllable via the sludge concentration Xy, which in
turn is controllable via TSS in @)x (and the influent flows). Also Xg is in reality
only controllable via the inputs and we consider only its effect on Sg. If efHuent
restrictions are not violated, the only cost is for aeration. As practiced at the plant
it is here assumed that the cost is equivalent to and linear in the air flows. Reducing
the oxygen setpoint has the following effects

e The expression (Sp,,, — So) increases and makes a smaller Ka necessary and
thus a smaller flow rate.

e The monod expression Mg, = Koi?i-so is decreased, which decreases both

hydrolysis and the reaction rates of Sg and Sp.

Mg, is illustrated in Figure[6.T], and we can see that changes of the DO concentration
above 1mgO,l~!, has minor effects on the reaction rates. One could thus suggest
that the DO concentration could identically be set to for example 1.5mgO,l~!. Only
during high load it may be benefitial with a higher concentration, but it is during
high load that there is the most to gain. During low load, little oxygen is consumed.
There is a reason for this not being done. At the plant, one are working with reducing
the oxygen reference. Currently, it varies between 2 and 4 mgl~!. The reason why
a constant reference of 2mgl~! is not used is that one wants to see the effect of

7
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reducing it. It is namely so that the oxygen concentration has more effects than can
be seen in the ASM1. A too low concentration benefits certain microorganisms with
harmful or unfavorable properties. Since the model suggests that it is reasonable to
identically decrease the setpoint, while this is really based on properties outside the
model, it is motivated that the DO setpoint should not be varied on a short term
basis based on the model.

Xy is degraded by hydrolysis into Sg, which then must be further degraded. This
is an unnecessary cost since particulate substrate can be removed in the secondary
clarifier and the disc filters. By reducing the aerobic volume during low load, it is
possible to reduce hydrolysis effects.

The Kpa function is nonlinear with strictly decreasing increase w.r.t. the air flow,
and it would therefore be positive to allocate the reactions as even as possible over
several tanks. To make this possible, we need to be able to control the reaction
rates. As stated earlier, these are not controllable via the DO concentrations within
reasonable intervals in these. They are, however, controllable via the sludge concen-
tration Xx. For this kind of optimization, it is necessary that at least three tanks
are aerated. This is since the reaction rate must be identically small in the last aer-
obic tank since this is bounded in Sg, which must be small to fulfill the restriction
on the effluent. If the flow in reality has more of a plugflow character, this can be
considered even for a smaller volume.

Except for the DO concentration, none of the control variables considered so far can
actually be optimized independently for the aerobic compartments. Both the aerobic
volume and the sludge concentration affect the denitrification capacity, and it may
even be necessary to consider proesses outside the basins. Under the assumption that
the tank model is valid, there is however one set of variables that can be optimized
independently for the aerobic tanks. We can consider reference controllers in which
the control variable is a prescribed Ka function, see for instance Olsson and Newell
(1999). From this, the necessary air flows can be calculated. At Ryaverket, there are
several air flows in each tank, and there is no unique choice of these. But beacuse
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of the Kra functions nonlinear characteristics, there is a cost optimal choice. We
consider here the K a model described in Section 5.3l In Tank 6 there are equally as
many pipes in each zone and no zone is shared with another tank. The optimization
problem is in this case therefore trivial, all flows should be equal. By the same
argument, one finds that it is optimal to let the flows ¢g and ¢; in Tank 7 to be
identical. With the Model (5.2]), the optimization problem becomes

minimize  f(qs, qs, Qo) = 2¢6 +qs +qo  w.rt.  Gs, qr, Qo
91(g6, g3) = 07 2°(2n6 K a,(gs /n6) + 519K La,(qs/ne) — Kpaz,,) =0
928, qs) = QT_QO(%%KL%(%/%) +ngKray(qo/ng) — Kras,,) =0

(g6, Gs, q0) € D = {200 < g6, gz < 2160m3h~1 400 < g9 < 2160} (m3h~1)

(6.2)
Here, ng and ng has been substituted with ng since they are equal, refer to Table
Kraz,, and Kpag,, are the by the reference controller specified necessary values
of Kpa in the tanks. The boundary D are restrictions on the flows. The lower
boundaries are used at the plant to assure enough mixing of the water at all times.
The optimal solution are either globally optimal or lies on the boundary of the
domain D. At a globally optimal point we have that the gradients of f, g; and g
w.r.t the ¢:s are parallel (Persson and Boiers 1988). Another way to express this is

that
grad(f)
det | grad(g:) | =0.
grad(gs)

This together with the equations for g, and g, gives the possible globally optimal
points. This has been simplified in a symbolic math program, and there were two
such points. The solutions on the boundary can be calculated from the equations
for g; and g, by inserting that for example g9 = 400. Totally, there are 8 possible
optimal solutions that needs to calculated. This optimization method has been
evaluated for real data.

6.1 Optimization based on real data

Here, the estimated Ka parameters in Table 5.3 were used. Air flow and tem-
perature measurement data with the sampling time 10 minutes for half a year was
collected from the plant for Zone 6 to 9 and for line 3. Using the Model (5.2),
the Kpa function in the tanks was calculated for each time instant. The calculated
values were taken as the specified values in the Optimization problem (6.2)). The
optimal individual flows were quite different compared to the measurement data,
while the change in the total air flow were not as significant. For the whole period
4.5 % less air was needed with the optimal solution. There is one subperiod of 30
(day 100 to 130) days for which the benefit of the solution is more significant. The
total supplied air could for this be reduced by 12 %. The optimized total air flow
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for the subperiod is illustrated in Figure and the optimized induvidual air flows
are illustrated in Figure for the same period.
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The measurement data for this period is extreme, it is saturated for Zone 8 while
the flow in Zone 9 is minimal, and the flow in Zone 6 is much smaller than that in
Zone 7, which gives a high potential for the solution. Compared to the developed
estimators in Chapter M we can expect this solution to be more robust, and less
sensitive to errors in the estiamated Kpa parameters. This due to that what we
really want to achieve are air flows more evenly allocated over the diffusers. How
much that can be saved is of course highly dependent on the characteristics of the
real Kpa function. This property has not been considered in more detail.
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7 REVIEW OF RESULTS AND
DISCUSSION

A case study based on plant data was formed to evaluate designs by simulation. One
limitation in this is that only zero mean sensor noises with Gaussian distributions
are considered.

/.1 Estimation via rate expressions

In Section a method was presented in where the parameter vx,, is determined
from NUR, estimated by a linear Kalman filter in an early upstream tank assuming
that the Monod expression in Sg is often saturated there. This method can be
used in several ways to estimate substrate concentrations in the downstream aerobic
tanks. It was illustrated for estimation of Sg via estimation of the rate expressions
OUR. Limitations in this method are:

e OUR includes nitrification which was neglected in the calculations of Sg, which
leads to errors.

e The estimation of Sg is quite sensitive to errors in 7yx,,. This is due to the
nonlinear Monod expression in S.

e Compared to the aerobic tanks, measurement noise in the measured input of
the nutrient has a relatively large effect in the anoxic tanks. This is in partic-
ular true for the considered plant, since the early tanks in this are relatively
small. Measurement noise is limiting since there is a compromise between noise
reduction and convergence speed for the estimates of a filter.

e Secondary calculations for vx,, based on estimated variables amplifies dis-
turbances. This can be resolved by using an EKF to estimate the parameter
directly.

e The assumption of zero mean measurement noise in the case study may in this
case be severe. The experience at the plant is namely that the nitrate sensors
sometimes are drifting.

e Parts of the variable Syo in the ASM1 consists of nitrite which is not measured.

This have been neglected in simulation.

To decrease noise effects due to the measured input in the estimation of yx,,,, differ-
ent alternative observer models were considered. The possibility to approximate two
tanks as one for a larger volume and smaller noise effects was investigated with the
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result that the optimal approximation was dependent on the concentrations in the
tank. It was illustrated that the inverse of the Monod expression is too sensitive to
noise and disturbances to be used for direct estimation of substrate concentrations
in the anoxic tanks.

7.2 An EKF for the aerobic compartments

The second estimation method was estimation of biomass and soluble- and partic-
ulate substrate concentrations with an extended Kalman filter (EKF) for a series
of n aerobic tanks. For one tank, the estimates were divergent but for two tanks
the filter was convergent for the simulation data in the case study, and performed
well. This result was over expectation with fast convergence from an initial guess
and accurate estimates. One could expect that it is necessary with one oxygen mea-
surement per unknown input. Omne reason for the positive result is the modeling
of Xpy as a product of the fast varying sludge concentration which is an input to
the filter and a slowly varying paramater yx,, which is estimated. The possibility
to introduce more process noise and implement the filter using the Runge Kutta 4
method was investigated with a result which was equivalent to previous simulations
with the EKF. The EKF for two tanks has some negative properties though:

e Asin the previous method, the estimates are somewhat biased which is mainly
due to the neglection of nitrification in the derivation of the observer model.
If the real effect of nitrification in the process is quantified, this effect can be
reduced.

e The estimation of Xg may be slow, but by describing a correlation between
measured TSS in @Q);, and Xg, this estimation could be made faster. There
certainly is a correlation between these concentrations also in reality, but it is
a bit hypothetic how strong this is.

e A sensitivity analysis showed little sensitivity for the estimates to errors in
most of the parameters in the internal model of the observer describing the
process. On the other hand, the sensitivity to errors in the Kpa functions
were quite large. The problems with Kpa parameter errors were smaller if
the relative error was the same for both tanks. This is positive since in an
application, the diffusers are likely to be equal and described by the same
model.

e The convergence of the filter for two tanks is dependent on certain variations
in the concentrations. Although the influent concentrations to an ASP often
follows a daily rhythm and often with a large peak each day, restrictions on
variations in estimated concentrations are too restrictive in an observer design.

For better convergence properties, and possibly less sensitivity to parameter errors
a redefined model involving three tanks was evaluated. The result was a filter with
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convergence independent of variations in the concentrations. The convergence of
Xg was in general also somewhat faster. The sensitivity property was however
not improved significantly. To explain the properties of the filter, observability
conditions were investigated for sampled points of the simulation data. Locally
weakly observability roughly means that it is possible to distinguish states from their
neighbors without going to far. This could be investigated using the observability
rank condition. The EKF is based on a linearization of the observer model around
the current estimated state, one could therefore expect observability /detectability
of these linearizations to be an important property. This property was investigated
using several methods. The results for the sampled points were:

e EKF based on measurements in one tank: Locally weakly observability could
not be confirmed and the linearizations of the model were neither observable
nor detectable. This is in accordance with the poor simulation results with
the filter.

e EKF based on measurements in two tanks: Locally weakly observability was
confirmed for all points. This shows on some observability properties, but is
not a contradiction to the dependency of variations of the filter since the EKF
is not an optimal filter. The linearizations around the points were neither
observable nor detectable. By transformations into stair case form, it was
shown that the eigenvalue of the unobservable mode was 0 for all points.

e EKF based on measurement in three tanks: For this case both observability
conditions could be confirmed. This result can be related to the independency
of variations for this filter.

The relative dependencies of the states in the observer model to the non detectable
modes in the linearized models were investigated for the filter based on two tanks.
The aim of this was to show that this dependency was small for all variables for
relevant periods of each day in the simulation case. This could explain the conver-
gence of the filter for this data. The result was different than expected. Xg showed
high dependency to the non detectable mode for almost all times. It was concluded
that observability of linearizations of the observer model is not necessary for the
EKF, but still a positive and important property. Xg:s relatively high dependency
of the non detectable mode was especially large which possibly can explain its slower
convergence. The process model considered in this project is simpler than in pre-
vious formulated extensive observers for the ASM1 since nitrification in this case is
separated from the AS basin. The extension of the developed EKF to a process with
a mixed aerobic process should however be straightforward. For that more concen-
trations need to be included in the observer model, such as autotrophs, ammonium
and nitrate, but it also introduces possibilities of more sensors, since both nitrate
and ammonium can be measured online.
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7.3 Estimation of the Kya function

The methods for Kpa estimation found in the litterature are unsuitable for Ryaver-
ket, and needed to be further developed. The ON/OFF control method described in
Section is an extension of a method described by Suescun et al. (1998). Mass
balances were included in the equations because of the relatively high flow rate at
the plant and the parameters were estimated by solving a set of optimization prob-
lems. One would expect the method to give accurate estimates in simulations with
zero mean measurement noise and a perfect model, which was also the result.

The other evaluated Kja estimation method uses an EKF and excitation of the air
flow, which was inspired by the work by Lindberg (1997). Implied by the control
system at the plant, only excitation signals with discrete levels were considered.
The result was that the convergence of the filter was highly dependent on choice
of variances and initial covariance. Lindberg (1997) used an excitation signal with
continuous amplitude, which can explain the better convergence achieved.

The DO measurement data at the plant is formed by moving average. Compared
to sensor dynamics of traditional DO sensors the effect of this filtering is relatively
small, but for completeness a Kalman filter to reconstruct the actual concentration
was designed with good simulation results.

It is reported that the Kpa function may be varying in a way that it is not possible
to include in a model. Therefore it is desirable to estimation the function on a
continuous basis, but the evaluated Kpa estimation methods rely on excitation of
the air flow rates, which is too costly to be economically justified. It was therefore
decided to estimate the function on discrete occasions with the ON/OFF control
method, and then use a model for it only including its temperature dependency.

A possibly less costly method for continuous estimation of the Kja function would is
a resphirometer. A resphirometer is a separate chamber without aeration in which
OUR is estimated (Olsson and Newell 1999). Resphirometer measurements are,
however, not available online at the considered plant.

Experiements to estimate the function were performed on three occasions at the
plant. These experiments were very time consuming, which led to that only a
few measurement series could be collected. One reason for this was the necessary
modification of the method. The experiments on Tank 8 was unsuccessful due to
a small oxygen uptake rate, which led to that water flow had a relatively large
effect, and the model of this is a weak part of the total model. By introducing
the model of the Kpa function for one pipe, the Kpa function for Tank 8 could
be based on estimations for Tank 7. The results of the experiments in this tank
were quite successful, although a larger difference in the flow rate values, and more
measurement, series would have been desired. A larger difference could have been
achieved if the air flow was varied in more than one zone at a time. This would
also give faster variation in the DO concentration and therefore more measurement
series. It could probably make the concentration to be more consistent throughout
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the tank, i.e. make the process behave more like a perfectly stirred tank model.
This approach was tested on a later occasion, but unfortunately disturbances and
problems in the central air flow control system when varying the air flow made this
experiment unsuccessful.

7.4 Evaluation of the EKF based on real data

The EKF approach was evaluated for real data for two tanks, and unfortunately the
filter was divergent for this. Possible reasons are:

e Concentrations may have varied too little in reality, and the result from simu-
lation is that the filter needs variations in the concentrations to be convergent.

e Errorsin the estimation of the Kja parameters, and unmodel time variations of
the real Kra. It is known from simulation that the EKF is especially sensitive
for variations in the Kra functions.

e Errors in the ASM1 parameters. It is, however, known from simulation that
the EKF has relatively low sensitivity to errors in these.

e Neglection of nitrification/denitrification in the observer model, especially ni-
trification.

Model errors were further analyzed by considering the model of the AS basin as a
series of continuously stirred tank reactors. It was illustrated that the performed
tracer tests do not give a unique division of the basins, while this is an important
concept in the observer model. Depending on the division, sensor responses have
totally different characters from an input to the basin holding the two tanks in the
model. Naturally, there are also higher order dynamics due to vertical and horizontal
distances within the basin, and this is not accounted for in the model. This property
was illustrated using measurement data, and it was stated that this dynamics have
especially large effect when estimating the Kpa function. Figure [Tl illustrates the
sources of errors in the observer model of the EKF.

7.5 Optimization of the aerobic process

It was concluded that few of the control variables can be optimized independently
for the aerobic compartments and that the oxygen set point should not be optimized
continuously based on the ASM1 since it affects properties not included in the model.
Optimization of the individual air flows were considered and solved. Results for real
data was presented that showed that 5 % of the total cost could be saved with the
solution, but also this method relies on that the tank model and the estimated K a
parameters are valid.
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Figure 7.1. Sources of errors in the observer model.

7.6 Possibilities for Ryaverket

A solution for substrate estimation discussed for Ryaverket is to assume that the
parameter yx,, is constant, and estimate a value of it from lab analysis of soluble
substrate. From the lab analysis we get an estimate of the Monod expression in
Sg, which can be used to estimate 7yx,, from estimates of OUR in the aerobic
tanks. This can then be used to estimate Sg online. With this method, we can also
compensate somewhat for errors in the estimated Kpa function. The possibility of
this method relies on that vyx,, varies little, and that the K;a parameters do not
vary much in an unmodeled way. The method should be used on Tank 8, since
the concentration in Sg is smallest there, and this gives the smallest sensitivity to
parameter errors. There is, however, a negative effect of the small concentration.
The relativily small OUR in this tank makes the effects of water flows to be more
significant in the process, and as stated earlier we do not rely much on the model
of the water flow. Problems with this model and a small OUR was seen when
estimating the Kja parameters.



8 CONCLUSIONS

Optimization of the activated sludge process is limited by the lack of measurements
of concentrations in the commonly used models for it, such as the activated sludge
model NO.1. This is in particular true for some of the main variables, such as
the concentration of dissolved and particulate substrate, and bacterial biomass. A
general remedy for absence of online measurements is to find an observer to estimate
unmeasured variables based on a dynamic model and online measurements of other
variables. Observers for substrate and biomass have earlier been formulated for
the ASM1, but with unrealistic assumptions of measurements and parameters, and
without considering sensitivity to errors in its internal model.

The goal of this work was an independent solution ready for implementation for
estimation of all relevant concentrations in the ASM1 in the aerobic compartments
of an ASP. The lesson from previous work is that it is necessary to include more
measurements in the algorithms. This has been solved by including more tanks in
the model, and also taking measurements of totally suspended solids in the influents
into account for faster estimation. Two methods have been developed:

e Separate estimation of bacterial biomass in the anoxic compartments, and
substrate in the aerobic compartments.

e An extended Kalman filter (EKF) for n aerobic tanks for estimation of all
concentrations of interest.

The latter one is the more interesting since it consists of only one observer, and it
would be more realistic. Possible unrealistic assumptions about the nitrate sensors
in the first one have namely been made in simulation. The EKF performs well
in simulation, but showed to be especially sensitive to errors in the Kpa function.
Methods to estimate the function have been further developed and evaluated in
simulation with good resuls. The evaluation of the EKF based on real data was
unsuccessful, a result which can be explained by errors in the observer model, and
the dependency of variations in concentrations implied by the EKF for two tanks.
The Kpa function may also be time varying in a way which was not possible to
include in the model.

The developed methods are far more realistic than earlier formulated since no as-
sumptions of measurements of in reality immeasurable quantities have been made.
Some of their negative properties are process dependent and positive for a possi-
ble future implementation would be a process with more and smaller aerobic tanks
with better defined borders. Cheaper methods for continuous estimation of the K a
function than available today may also be necessary.

Optimization of the aeration was also considered, and it was concluded that the DO
set points should not be continuously optimized based on the ASM1. Optimization
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of the individual air flows were solved, and results for winnings of the method based
on real data was presented. The magnitude of the possible winnings is, again,
dependent on the estimated Kpa parameters and that the tank model is valid. It
was also concluded that the DO set point should not be varied on a continuous
basis.

cleardoublepage
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