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Abstract

Accurate brain tissue segmentation of MR (Magnetic Resonance) images has been one of the
most important research areas for several years. It is important to have an accurate segmentation
of different brain tissue types for various applications such as radiotherapy planning, image-
guided interventions, surgical planning by using Electroencphalography (EEG) or Functional
Magnetic Resonance Imaging (fMRI) information and brain disease studies such as Alzheimer
and Multiple sclerosis (MS). However, all the mentioned applications are crucially dependent on
the level of accuracy of brain tissue segmentation. Thus, this is important to choose the best
algorithm to reach the most accurate tissue segmentation.

In this project different software packages for brain tissue segmentation were studied. We have
chosen the most sophisticated ones for the evaluation and comparison. SPMS [7], FSL [8] and
FreeSurfer [9] are selected which are three most widely used brain tissue segmentation software
packages. The evaluation for each software package carried out by performing tissue
segmentation over 18 brain phantoms provided by Brainweb [35] with 6 different noise levels
and 3 different RF inhomogeneity values. Then the resulted images for each tissue type from
each software compared voxel by voxel with the ground truth images for each tissue type. To
provide a volumetric voxel by voxel comparison between ground truth images and output images
from software packages the 3dOverlap command line from AFNI software package [41] used
together with Jimmy Shen’s library in MATLAB [36].

Finally to compare the performance of these three software packages the misclassification rate
were calculated for each tissue type.
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Chapter 1

1. Introduction

This chapter summarizes the necessity and importance of accurate brain tissue segmentation and
explains the motivation of this project.

1.1. Motivation

Accurate brain tissue segmentation of MR images has been one of the most important research
areas for several years. It is important to have an accurate segmentation of different brain tissue
types for various applications such as radiotherapy planning, image-guided interventions,
surgical planning by using EEG or fMRI information and brain disease studies such as
Alzheimer and MS. [1]

For instance a study on Alzheimer disease carried out on department of radiology in university of
California at San Francisco medical center [2] to compare volume of brain tissues in patients
with Alzheimer' disease and control subjects. They extracted white matter (WM), Grey matter
(GM) and Cerebrospinal fluid (CSF) volumes using quantitative tissue segmentation techniques.
Their results showed significant decrease in GM and an increase in the ventricular and sulcal
CSF for Alzheimer patients which shows the importance of having an accurate brain tissue
segmentation for this study.

On the other hand, combining the functional information from hemodynamic approaches (ex.
fMRI, PET) or electromagnetic approaches (ex. EEG, MEG) with anatomical MR images can
play a significant role for neurosurgical planning. For instance in fMRI, it is possible to avoid
losing different abilities for the patients by using BOLD” response information. Motor, sensory,
memory and language mapping can be done by using a combination of functional data with
anatomical images. In electromagnetic approaches like EEG, source localization of abnormal



signals is important for surgical planning. Again both of mentioned approaches need accurate
tissue segmentation over anatomical brain MR images.

These explicit examples show the importance of having accurate tissue segmentation of brain
tissues. There are number of different software packages using different image analysis and
processing techniques and algorithms to perform tissue segmentation in brain MR images.
However, the accuracy of the results of these techniques and algorithms is crucial for subsequent
use and yet it has not been well studied. Thus, it is important to have an evaluation of these
software packages to choose practical ones.

1.2. Patient specific model development project

In Sahlgrenska University Hospital, Medtech West research group is developing a new method
for providing patient specific accurate head models for EEG dipole source localization to replace
them with the regular spherical models which are already used in hospital for EEG dipole source
localization.

Spherical head models normally have a homogeneous layer for scalp following by a sphere
shaped shell representing the skull. The third layer is normally CSF and finally the innermost
layer representing the cortex. Each of these layers has a specific conductivity and thickness. It is
possible to add more layers to the model such as dura and even some inhomogeneous parts to
make the model more accurate. However, a normal spherical head model which illustrated in
figure 1 is mainly useful for extracting general information. [3]

Scalp 64 \

Skull 63 \
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Figure 1, Cross section of a spherical head model for EEG dipole source localization, different tissues with different
conductivities and radiuses are depicted in the figure.



Signals are always perpendicular to the surface of cortex. It means for a flat surface of cortex
such as a gyrus, the signal will be detected in the right place (figure 2a). But, if the origin of the
signal is located in a sulcus, then the measured signal will be appear in both sides of the head due
to the fact that the signal propagates perpendicular to the cortex surface (figure 2b). Thus, by
using a spherical head model accurate detection of these signals will be impossible. This problem
of source localization can be solved by constructing a more accurate head model. The first step
to develop this new head model is to extract different head and brain structures and tissues
precisely. The main idea is to extract this information from the anatomical MR images and the
first step is to perform accurate tissue segmentation on head MR images. The motivation of this
project is basically reaching this goal and besides that it tries to find the best possible way to
obtain the most accurate brain tissue segmentation considering the state of art.
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Figure 2, Cross section of a head model, (a) Signal detection from gyrus, (b) Signal detection from a sulcus



In this project different software packages for brain tissue segmentation were studied to pick the
most sophisticated ones for the evaluation and comparison. SPMS8 [7], FSL [8] and FreeSurfer
[9] are selected which are three most widely used brain tissue segmentation software packages.
The evaluation for each software package was carried out by performing tissue segmentation
over 18 brain phantoms provided by Brainweb [35] with 6 different noise levels and 3 different
RF inhomogeneity values. Then the resulted images for each tissue type from each software
compared voxel by voxel with the ground truth images for each tissue type. To provide a
volumetric voxel by voxel comparison between ground truth images and output images from
software packages the 3dOverlap command line from AFNI software package [41] used together
with Jimmy Shen’s library in MATLAB [36].

Finally to compare the performance of these three software packages the misclassification rate
were calculated for each tissue type.



Chapter 2

2. Background

This chapter explains the anatomy of brain and its different structures. In the second part, some
background of magnetic resonance imaging will be given.

2.1. Anatomy of the brain [4]

Central nervous system (CNS) is a long tube which consists of spinal cord and brain. CNS is
covered by a system of membranes called Meninges which consists of three layers: Dura matter’,
Arachnoid matter* and the Pia matter’ which illustrated in figure 3.
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Figure 3, Different layers of Meninges [5]



Brain itself is a folded structure placed inside the skull consisting of four different regions:
. . Frontal lobe Parietal lobe
Cerebrum, Diencephalon, Cerebellum and Bralnstem{

rebrum

porebei Dienceohalon

4 I.] ,

Corpus
callosum

Cerebellum

Figure 4, Different regions of brain [4]

Subsequently as illustrated in figure 4, cerebrum and Diencephalon together are forming
forebrain. Midbrain, Pons and Medulla oblongata together are forming Brainstem in the bottom.

As it is illustrated in figure 5, cerebral ventricles are four interconnected cavities in the brain
Layers

which filled with CS

White matter

Cerebrum

Corpus callosum
Sulcus

Lateral ventricle

—

—— Basal nuclei

Thalamus

Third ventricle
Hypothalamus

Pituitary gland

Figure 5, Cerebral hemispheres, white and grey matter, subcortical structures, cerebral ventricles [4]



As it mentioned before cerebrum and diencephalon are two subdivisions of forebrain. Brain
consists of two hemispheres, left and right. As a result, all structures in the brain have two
hemispheres. The hemispheres of cerebrum are called cerebral hemispheres which connected
together by a group of nerve fibers known as corpus callosum. Each cerebral hemisphere consists
of cerebral cortex which is a layer of neural tissue. The folded ridges on cerebral cortex are
called gyri and between each gyrus (singular) there is a sulcus. The outer layer of cerebral cortex
is made of grey matter (GM) which contains the cell bodies of neurons and because of that it has
a grey color. It forms only 3 mm of the brain cortex in average. There are two different types of
cortical neurons, pyramidal cells and non-pyramidal cells. The processing of information and
controlling the systems are carried out in the cerebral cortex. It consists of four lobes: frontal,
parietal, occipital and temporal. Occipital lobe contains the visual cortex which controls the
vision. The auditory cortex is in the temporal lobe. The olfactory cortex is in the frontal lobe and
the somatosensory cortex is located in the parietal lobe. Different lobes and primary sensory
areas are illustrated in figure 6.
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Figure 6, Different regions of cerebral cortex [4]

On the other hand, the inner layer of cerebral cortex is made of white matter (WM) which
contains myelinated fiber tracts and has a brighter look. Each fiber tract has several nerve fibers
and their function is to transfer information inside the hemisphere.

Another part of the brain is subcortical nuclei that contain number of structures made of grey
matter and located inside of the cerebral hemispheres. A group of these subcortical structures
(striatum®, pallidum’, substantia nigra® and subthalamic nucleus’) together form basal nuclei
(basal ganglia) which are responsible for controlling movement and posture and behaviors such



as reactions in response to rewarding stimuli. Basal nuclei and its structures are illustrated in
figure 5.

As mentioned before forebrain consists of two parts: cerebrum and diencephalon. Diencephalon
itself is a subcortical structure which is made up of two parts: thalamus and hypothalamus. The
thalamus, as shown in figures 5 and 7, is located between cerebral cortex and midbrain and it is
made up of several large nuclei. It plays a significant role in relaying the sensing signals in
synapses heading to the cerebral cortex. Thalamus is also responsible for regulating
consciousness, sleep, general arousal and focused attention. The hypothalamus is a tiny structure
(less than 1% of brain weight) and consists of several small nuclei situated under thalamus
(figures 5 and 7). It has many different functions such as controlling behaviors like eating,
drinking and reproduction. However, its most important function is coordinating the connection
between nervous system and endocrine system through pituitary gland'® (hypophysis).

Hippocampus'', amygdala'?, anterior thalamic nuclei'” and limbic cortex' together form a
functional structure called limbic system. Limbic system is responsible for number of functions
such as learning, emotional, behavior, long term memory, olfaction and several visceral and
endocrine functions. The limbic system is illustrated in figure 7.
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Figure 7, Limbic system (purple), Thalamus (orange), Hypothalamus (blue) [4]

Another region of the brain is cerebellum which situated at the back of the brain. Its surface
called cerebellar cortex which made of grey matter while its inside is made of white matter.
Cerebellum has a lot of functions. It is mostly responsible for coordinating the motor control
(movement, posture and balance) and connected to different parts of the brain which are
responsible for movement as well as different parts of the body like ears, eyes, viscera, joints and
muscles. Although, cerebellum controls the movements in the body but it cannot initiate any



voluntary movement. Cerebellum also has other functions such as regulating fear and pleasure
(emotional functions), controlling attention and language (cognitive functions).

The forth region of the brain is brainstem. It is situated at the bottom of the brain and is the
starting part of spinal cord. Brainstem contains nerve fibers which carrying signals between
spinal cord, cerebellum and forebrain. As it is illustrated in figure 4, brainstem comprises three
parts: Midbrain'>, Pons'® and Medulla oblongata'’. This part of brain contains “reticular
formation” which is situated in the core of Pons and considered an essential region for
controlling many basic functions. All signals from different parts of central nervous system will
enter to reticular formation at first place and the neural information processing will take place in
this structure. It is responsible for sleep and wakefulness cycles, respiratory and cardiovascular
systems and motor functions.

After this brief review of human brain anatomy, this is also good to have a basic knowledge
about magnetic resonance imaging.

2.2. Magnetic Resonance Imaging (MRI) [6]

Magnetic resonance imaging generates tomographic images with high spatial resolution and
contrast. Although the image generation method in MRI is totally different from CT (Computed
Tomography), both modalities generate tomographic images. However, what makes it more
interesting is being a risk-free imaging modality. Unlike computed tomography, MRI doesn’t use
ionizing radiation. It is based on a physical phenomenon known as nuclear magnetic resonance
(NMR) which is defined as the ability of magnetic nuclei to absorb energy from an
electromagnetic pulse and radiating this energy back.

Nucleus of atoms contains protons and neutrons which are considered positive charges. They
have two important properties: angular momentum'® (spin) and magnetic dipole moment'’
(figure 8). A nucleus of an atom with an odd atomic number or an odd mass number such as 'H,
B¢, "F and °'P has these two properties and as a result can provide NMR signal. However, in
MR imaging the 'H atoms are important simply because of high water content of human body.
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Figure 8, Angular momentum ® (a), magnetic dipole moment (b) [6]



Now consider a group of nuclei of the same atom in a medium, they are called nuclear spin
system. This spin system in a molecular environment in absence of an external magnetic field
has no macroscopic magnetic field because the orientation of each nucleus in a spin system is
randomized (They influenced by molecular thermal motion) and as a result they cancel each
other’s nuclear magnetic moment vector microscopically (figure 9).
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Figure 9, Individual nucleus in a spin system randomly oriented and there is no macroscopic magnetic field [60]
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Nuclear magnetic moment vector is the magnetic field of each nucleus and can be calculated by:
u=y.0 (2.1)

Where O is the angular momentum of the nucleus and y is known as the gyromagnetic ratio
which has different values for different atoms.

By applying an external static magnetic field the magnetic moments of nuclei in the spin system
will align to the external static magnetic field and as a result the spin system will become
macroscopically magnetized which known as nuclear magnetization which essentially is the
summation of nuclear magnetic moments in the spin system (figure 10).

A T A A A
M

Figure 10, External static magnetic field B and resulted nuclear magnetization vector M [60]



In MR imaging the magnetization vector is brought out of alignment with the external static
magnetic field using a radio frequency pulse. The gyromagnetic property of 'H nuclei will cause
a precession”’ of magnetization vector to come back in alignment with the external static
magnetic field and reaching thermal equilibrium (relaxation). The frequency of this precession is
known as Larmor frequency wo which given by:

®o=7v.B (2.2)

The magnetization vector as it is shown in figure 11 has two components: Longitudinal and
Transversal. As it mentioned before an RF pulse is used to manipulate the magnetization vector
and take it out of equilibrium, which means bring it out of alignment with the external static
magnetic field vector. By using the right RF pulse the magnetization vector can totally pushed
toward the transverse plane. It means the magnetization vector will change its position 90°
degrees. The angle of perturbation is called tip angle and the excitation pulse that used for
creating this perturbation is called a m/2 pulse. As a result of a w/2 pulse the only remained
component of magnetization vector will be transversal component. However, there is another
common excitation pulse called a m pulse or inversion pulse that changes the direction of

magnetization vector 180° degrees. . ::
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Figure 11, Magnetization vector and its components [6]

When the magnetization vector is brought out of equilibrium using a m/2 pulse, it will start the
precession in a spiral form (figure 12a) to come back in alignment with the external static
magnetic field. This precession (transverse relaxation or spin-spin relaxation) produces an RF
pulse from the spin system which is known as Free Induction Decay (FID) with a time constant
called transverse relaxation time T, (figure 12b). This signal then received by antennas around

the spin system to produce images. Signal

amplitude
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Figure 12, Precession of magnetlzatloﬁJ vector (a), free induction decay due to transverse relaxation (b) [6]
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However, the signal which received by antennas will decay faster than T, due to local
perturbations in the external static magnetic field. This shorter time constant is called T, and

illustrated in figure 13a. M.(1)
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Longitudinal recovery

(a) (b)
Figure 13, Transverse relaxation and T2* decay (a), longitudinal relaxation (b) [6]
Different tissues have various T, decay time. Thus, by choosing a good sampling time it is
possible to capture an image with a good contrast between different tissues. Figure 14 shows a T,
image and transverse relaxation time for different tissues. The sampling time of the image
specified in the figure. Table 1 gives the relative elapsing time for various tissues.
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Figure 14, Sagittal view of a T, weighted image and transverse relaxation time for different tissues [60]

Tissue T, (ms)
Fat 84
WM 73
GM 90
CSF >2000

Table 1, Elapsing time for different tissues [60]

If instead of observing transversal component decay, we focus on recovery of longitudinal
component of magnetization vector to its equilibrium, it is possible to measure another relaxation
time known as longitudinal relaxation time T; (figure 13b). This relaxation mechanism unlike



transverse relaxation is an increasing exponential. However, in both mechanisms the produced
NMR signal from spin system will decay. This process is known as longitudinal relaxation or
spin/lattice relaxation and like transverse relaxation has different recovery time for different
tissues. As a result, with a good choice in sampling time we can capture images with good
contrast between various tissues. Figure 15, shows the recovery time for different tissues and the
sampling time to capture a T; weighted image and Table 2 shows the relative recovery time for
various tissues. T normally ranges between 250ms < T;< 2500ms, T, is much shorter and ranges

between 25ms < Tr< 250ms.
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Figure 15, Sagittal view of a T, weighted image and longitudinal relaxation time for different tissues [60]
Tissue Ty (mMs)
Fat 260
WM 582
GM 982
CSF >4000

Table 2, Recovery time for different tissues [60]



Chapter 3

3. Automated brain tissue segmentation

This chapter starts by giving a brief review of different software packages for brain tissue
segmentation and then continues with more in details explanation and instructions for performing
tissue segmentation on some of the most used ones.

3.1. Arreview of different software packages for brain tissue segmentation

There are number of software packages available for brain tissue segmentation which are using
different algorithms and image processing techniques to perform brain tissue segmentation and
sometimes overlap in capabilities. It is useful to have a brief review and understanding about
number of widely used software packages for brain tissue segmentation. The software packages
for this review are: SPM [7], FSL [8], FreeSurfer [9], Bioimage suite [10] and Brain suite [11].
The mentioned software packages have different usages. However, this review only aimed to
give a brief summary of capabilities of these software packages in brain tissue segmentation.

3.1.1. SPM [7]

Statistical Parametric Mapping (SPM) is an open source software which developed in MATLAB
[12] environment. The software basis is a voxel-based approach for tissue segmentation using
modified versions of the ICBM Tissue Probabilistic Atlases [13]. The user is able to use a
graphical user interface to segment white matter (WM), grey matter (GM) and cerebrospinal
fluid (CSF) from T1 images which are roughly aligned to probability maps. However,
subcortical segmentation cannot be done using SPM. Another important issue for SPM is that
multi spectral segmentation has not implemented in this software yet (During writing this thesis
the latest available version was SPMS). This means it is not possible to use registered T1 and T2
images to segment skull and scalp. Nevertheless, image registration, bias field correction,
spatially normalizing images and smoothing can be done using this software package.

3.1.2. FSL [8]



FSL is an open source software package which developed in FMRIB, Oxford, UK. FSL uses
MNI probability atlases (Montreal Neurological Institute) [14] for tissue segmentation in a
voxel-based algorithm. It has a graphical user interface but it can be more useful by using
command line. FSL is able to segment white matter (WM), grey matter (GM), cerebrospinal
fluid (CSF) and subcortical structures. It is possible to perform multi spectral segmentation and
as a result extracting skull and scalp. Moreover, bias field correction and also image registration
can be done by FSL.

3.1.3. FreeSurfer [9]

FreeSurfer is an open source software package developed at the Martinos Center for Biomedical
Imaging [15]. Like SPM and FSL, FreeSurfer segmentation method is based on voxel intensities
and Talairach anatomical atlases [16]. It has a graphical user interface which mostly used for
visualization purposes. However, for performing segmentation using command line is
recommended. It is possible to segment white matter (WM), grey matter (GM), cerebrospinal
fluid (CSF) and subcortical structures using T1 images in FreeSurfer but multi spectral
segmentation is not an option for this software package. As a result it cannot extract skull and
scalp using T2 images. Bias field correction and spatially normalization can be done by
FreeSurfer.

3.1.4. Bioimage suite [10]

Bioimage suite is an open source software package developed at Yale University. It has
developed in C++ environment and Tecl (Tool Command Language) has been used for
constructing its user interface. Bioimage suite uses FSL options for brain tissue segmentation.
Therefore, the output is the same as FSL which reviewed earlier. Manual image registration can
be done by Bioimage suie.

3.1.5. Brain suite [11]

Brain suite is an open source software which written in C++ [11]. This software package uses a
volume based algorithm to create a likelihood model for tissue classification. It is possible to
segment white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) using this software
package. Although, it cannot perform subcortical segmentation but it is possible to extract skull
and scalp using brain suite.

By comparing the capabilities of these five software packages, it can be seen that FSL,
FreeSurfer and SPM are considered more reliable software packages for brain tissue
segmentation considering their broad usage. Therefore, this project will focus on using these
three software packages and giving step by step instructions of tissue segmentation for each of
them. A summary of this overview is available in table 3.



Software Segmentation
package WM | GM | CSF | Sub-cortical | Skull and Scalp Visualization
SPM v | v | v < » v
FSL v v | v v v v
FreeSurfer v v | v v x v
Bioimage Suite v v | v % v v
Brain Suite v v | v x v v

Table 3, Summary of capabilities of five different brain tissue segmentation software packages

3.2. Tissue segmentation using SPM8 [37]

By running SPMS8 in MATLAB, a menu will appear which comprises three options to choose
(figure3.1). Stafistical Paramefiic Mapping

SPM8
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Figure 16, SPMS start up menu
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Figure 17, SPM8 fMRI menu




For tissue segmentation fMRI option must be chosen. In the fMRI window (figure 17) there are
different options which will be discussed in details. The first thing to know for tissue
segmentation in SPM is that, original T, weighted images, which are roughly aligned with the
probability maps, must be used. Using T; images which are not aligned with the probability
maps, brain extracted T; images or using T, weighted images will give strange results in the
output (figure 18).

Figure 18, Brain extracted T1 weighted input image results in an odd output in SPM8 (left), T2 weighted input
image results in an odd output in SPMS (right) both are in transverse view

This problem has been anticipated in SPM8. To overcome this problem the coregister option can
be used to realign the images with the probability maps. There is another option called realign
but it is mainly designed to use for aligning PET and fMRI data sessions on anatomical images.

Coregister option has three choices: Estimate, Reslice and Est & Res. By clicking on coregister
(Estimate) option a window will open (figure 19). The estimate option uses Collignon et al [17]
method. First task is to select a reference image. It is better to choose an image from ICBM
Tissue Probabilistic Atlases as reference image because the segmentation tool uses the same
probability maps for tissue classification. After specifying the reference, the source image should
be selected which is the image that will align with reference. There is another option named
other images that make it possible to select as many images as desired to align with the source
image. Afterwards, the estimation options can be manipulated to reach an optimized registration.
The first option is “Objective Function” which is a real-valued function used in every
optimization problem to be minimized or maximized. While in this project we are interested in
tissue segmentation, thus, only T; weighted anatomical images are of our interest. As a result,
three options of objective function may be used that are mutual information [17, 18], normalized
mutual information [19] or entropy correlation coefficient [20]. The default choice is normally
give the best estimate. The normalized Cross Correlation option is useful for image registration
between different modalities.



Next estimation option is “Separation” which is a 1-by-x array in millimeters to specify the
average distance between sampled points.

The other estimation option is “Tolerances” which is a 1-by-12 array to define the value of
difference between two consecutive iterations. If the difference is more than the tolerance the
iteration will continue otherwise it will stop.

Finally the last option is “Histogram Smoothing” which is a Gaussian smoothing filter. There is a
default value for the filter however it is possible to choose any combination of a 1-by-2 array.

The “Coregister Estimate” window is illustrated in figure 19:
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Figure 19, SPMS coregister estimate menu

The second registration option is reslice. This option will reslice the input image to the match the
reference image. It means the voxel sizes, dimensions and orientations will be changed to the
reference image. In the menu of “Registration Reslice” (figure 20), instead of reference image
you will find image defining space. The second step is to choose images that we want to be
registered to the reference. It can be find in the third line “Images to Reslice”. After choosing the
images, for optimizing the results we need to manipulate the “Reslice Options”. The first option
is “Interpolation”. There are three choices: Nearest neighbor, Trilinear and B-spline.



The nearest neighbor option is very fast but the results won’t be as good as the others. It can be
useful to re-orient the images while they keeping their original voxel intensities. The other two
options both will give good results however for high motion artifact higher degrees of B-spline
option is recommended. The drawback is it will take much longer to perform the registration
because it will use more neighbors.

The second option is “Wrapping”. This option makes it possible to wrap the images in X, Y and
Z directions. However, normally no wrapping is needed.

Motion artifact highly influences the MR images. Therefore, during sampling some of the voxels
cannot save any data. “Masking” option will using the data from time series to refill these voxels.
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Figure 20, SPM8 coregister reslice menu

The “Coregister: Est & Res” is simply doing both options at the same time and giving the files in
the output. Resliced files have the “r” filename prefix to be distinguished. Table 4 gives a
summary of different options in “Coregister: Estimate” and “Coregister: Reslice”.



Coregister : Estimate

Reference image

The image that other images are supposed to be aligned to

Source image

The image that will align with reference

Other images

Select as many images as desired to align with the source image

Objective function

A real-valued function used in optimization problem

Separation

Specifies the average distance between sampled points

Tolerances

Defines the value of difference between two consecutive iterations

Histogram smoothing

Possibility to choose any combination for a Gaussian smoothing filter

Coregister : Reslice

Image defining space

The image that other images are supposed to be aligned to

Images to Reslice

Select as many images as desired to align with the reference image

Interpolation Choosing the method that images have been sampled
Wrapping Wrap the images in X, Y and Z directions
Masking Refilling the blank voxels

Filename prefix

Changing the filename prefix, default is “r”

Table 4, SPM8 Coregister tool option descriptions summary [31]

Now the images are aligned with the probability maps and ready for segmentation by choosing
“Segment”. The aligned T; weighted image should be selected in “Data”. The SPM segment tool
will automatically perform the bias field correction®' over the image. However, it is arbitrary to

save the bias corrected image or not.

Figure 21, Bias field correction in transverse view of a T1 weighted image, left image is the original image with

inhomogeneous pattern and right image is the bias field corrected version

There is also an option for optimizing the brain extraction called “Clean up any partitions”. It is
off by default however there are choices to have light or through clean up. The problem with
clean up tool is sometimes it will totally cut off some parts of the brain. Thus, it is recommended

to keep the default configuration in this option.




There are three classes for tissue segmentation GM, WM and CSF and three optional choices:
Native Space, Unmodulated normalized and Modulated normalized. The “Native Space” option
will classify three tissue classes in images which are aligned with the original T, weighted
image. Figure 22 illustrated the results of segmentation for ‘“Native Space” option with the
default custom options.

Figure 22, Segmented in Native Space: GM (left), WM (middle), CSF (right), coronal (a), sagittal (b) and transverse
view (c)

The second option for tissue segmentation is “Unmodulated Normalized”. There are two

differences between the resulted images from this option comparing to native space. First of all,

the images will be spatially normalized and second, they will be aligned to the probability maps

instead of original images. Thus, the orientation and voxel sizes will be changed. Results of

“Unmodulated Normalized” with the default custom options are illustrated in figure 23.

Figure 23, Unmodulated normalized Segmented: GM (left), WM (middle), CSF (right), coronal (a), sagittal (b) and
transverse view (c)

As mentioned, normalization will realign the images to the probability maps and change the
orientation and voxel sizes. Therefore, the volumes will change in the segmented images. To
overcome this problem we can use the ‘“Modulated Normalized” option. The segmentation
results using this option are shown in figure 24.



Figure 24, Modulated normalized Segmented: GM (left), WM (middle), CSF (right), coronal (a), sagittal (b) and
transverse view (c)

For optimizing these results we may use the “Custom” options. The first option in the list is
“Tissue probability maps” and as it mentioned before SPM uses modified versions of the ICBM
Tissue Probabilistic Atlases which comprises GM, WM and CSF with 2mm resolution (figure
25). The second option for improving segmentation performance is the ability to change the
number of Gaussians per class. It means that it is better to use more than one Gaussian for
representing the intensity distribution for each tissue class. The reason is, normally each voxel in
the image contains intensity information from more than just one tissue class. Therefore,
theoretically assigning only one Gaussian per class should decrease the accuracy of the
segmentation. The default values for Gaussian for each tissue type are two for GM, two for WM,
two for CSF and four for everything else which has not fit into these three classes.

Figure 25, ICBM tissue probability maps: GM (left), WM (middle), CSF (right), coronal (a), sagittal (b) and
transverse view (c)

“Affine Regularization” option will lead to a more robust segmentation due to an affine
registration of images to tissue probability maps. However, this option may be turned off if the
images are already registered to tissue probability maps.

Next option is “Warping Regularization”. It regulates the registration procedure when the images
being aligned with the tissue probability maps. The default value is 1 however in the case of
having distorted normalized images increasing the amount of warping regularization will give



smoother deformation in the registration process. Decreasing the “Warp Frequency Cutoff” will
lead to more detailed deformation in the images. However, this is a trade off as long as it will
increase the processing time.

“Bias Regularization” option makes it possible to change the intensity of bias field estimation
procedure. It is recommended to increase the bias regularization for highly bias field corrupted
images. If the intensities in the image are very smooth, the segmentation tool needs a high cutoff
for FWHM of Gaussian smoothness of bias. It means despite low variations in intensity levels
for different tissue types, the algorithm will be able to classify them.

“Sampling Distance” is a 1-by-1 array which specifies the relative distance between two
consecutive sampled voxels. It is obvious that by choosing smaller sampling distance more data
points will be used in the segmentation process.

The segment tool in SPMS has the option to use a “Masking Image” to mask the segmentation
and avoiding the blank voxels without any data in the output. However, it is important to use an
image with the same orientation and voxel sizes as the images to be segmented. Figure 26 shows
the “Segment” menu of SPMS8. And Table 5 summarizes different tools and options in this tool.

Segment
Data A T; weighted image roughly aligned to tissue probability maps
Grey matter The output tissue class can be choose to be one of three options or none
White matter The output tissue class can be choose to be one of three options or none
Cerebrospinal fluid The output tissue class can be choose to be one of three options or none
Bias corrected Saving the bias corrected image
Clean up any partitions | Automated brain extraction with three options
Tissue probability Modified versions of the ICBM Tissue Probabilistic Atlases which
maps comprises GM, WM and CSF with 2mm resolution
Gaussians per class The ability to change the number of Gaussians per each tissue class
Affine regularization Lead to a more robust segmentation due to an affine registration of

images to tissue probability maps

Warping regularization | Regulates the registration procedure when the images being aligned with
the tissue probability maps

Warp frequency cutoff | Lead to more detailed deformation in the images by decreasing

Bias regularization possibility to change the intensity of bias field estimation procedure

Bias FWHM If the intensities in the image are very smooth, the segmentation tool
needs a high cutoff for FWHM of Gaussian smoothness of bias

Sampling distance Specifies the relative distance between two consecutive sampled voxels

Masking image to mask the segmentation and avoiding the blank voxels without any data

in the output
Table 5, SPM8 Coregister tool option descriptions summary [31]
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Figure 26, SPM8 segment menu

3.3. Tissue segmentation using FSL 4.1.5 [38]

For running FSL there are two choices. It is possible to use either Graphical User Interface (GUI)
or command line in Linux terminal. First step for tissue segmentation with FSL software package
is to extract the brain using BET.

3.3.1. Brain Extraction Tool (BET)

For brain extraction, choose the “BET brain extraction” in the GUI, or write “bet <input>
<output> [options]” in command line. Pick the input image and specify a name and path for the
output image. FSL uses two main programs for brain extraction. “bet2” is the main brain
extraction algorithm in FSL and “betsurf” makes it possible to extract scalp and skull (inner and
outer). In graphical user interface, there are several options which illustrated in figure 27. In each
option of GUI different combinations of these two algorithms has been used. However, one can
get better results by choosing manual combinations in the command line. Therefore, it is better to
focus on command line instead of explaining the graphical user interface.



For choosing options the most important choice is “-f” which is fractional intensity threshold has
a value between 0-1. By increasing its value the extracted brain will get smaller. This option can
be combined with “-g” which is vertical gradient in fractional intensity ranging between -1tol.
By increasing its value from zero the extracted brain will become larger at the bottom and
smaller at top and by using negative values the extracted brain will become smaller at the bottom
and larger at top.

Input image | =
Output image| |
Fractional intensity threshold; smaller values give larger brain outline estimatesID.S ﬁ

Run standard brain extraction using bet2 — |

EET brain extraction

[ Advanced options

SUISAN noise reduction

FAST Segmentation

Fun standard brain extracton using bet2
Robust brain cenfre estimation (iterates bet2 several tmes)

|
|
|
FLIRT linear registration |
FEAT FMRBI analysis | Eve and optic nerve clean up (can be useful in SIENA)
|
|
|
|

Bias field neck clean up (can be useful in SIEMA)
MELODIC ICA Improve BET if FOV is very small in 2
Spply to 4D FMRI data
Run bet? and then betsurf to get additonal skull and scalp surfaces
As above, when also feeding in non-brain-extracted T2

FOT diffusion

POSSLM MBI simulator

FalView

Misc | Ext | Help |

Figure 27, FSL 4.1.5 graphical user interface for BET (Brain Extraction Tool)

Figure 28 shows an illustrative example of how these two options are working for brain
extraction. The reason for this example is to show that choosing these two values are crucial for
brain extraction results. It is possible to use either T1 or T2 image to extract the brain. However,
by running BET the extracted brain will normally contain parts of mouth and neck. To overcome
this problem we need and estimation of center of gravity of the brain. It can be done using two
options: “-R” and “-c”. The “R” stands for robust estimation for center of gravity which is an
iterative method to find the best possible estimation while for using “-c¢” option user must
provide the coordinates of the center of gravity. It can be done by using “FSLview”.

Although, using robust brain extraction will generate a very good result but it is not possible to
use this option with “betsurf”. It is possible to produce a skull image using “-s” option together
with “-R” however this image is not comparable with “betsurf” results. Thus, for using T,
weighted image to generate skull and scalp images we need to have a good estimation of center
of gravity of brain for “-c” option. A comparison between these two options illustrated in figure
29.



Figure 28, Left column: shows the extracted brain for
Different values of fractional intensity. Right column:
shows extracted brain in coronal view for different
values of vertical gradient.

al: -£0.8 all: -g 0.4
bl: -f0.5 bIl: -g 0
cl: -f0.1 cll: -g -0.8

bet <input> <output> -f... —g...

Table 6, Commands for generating images in figure28

bet <input> <output> -f0.5 —g0 —R
bet <input> <output> -£0.5 —g0 —c 81 113 101

Table 7, Commands for generating images in figure29

Figure 29, A comparison between the results of “-R” and “-c¢” for brain extraction, A part of neck remains in
generated image using “-c¢” option but the results of robust brain extraction have no sign of neck (coronal view)




As it is illustrated in figure 29, there is drawback by using “-c¢” because providing an accurate
center of gravity for this option is not easy. Therefore, sometimes parts of neck will be included
in output images. However, as [ mentioned before for extracting skull and scalp it is unavoidable
to use “-¢” option.

There are two options to extract skull and scalp: “-A” and “-A2”. Option “-A” doesn’t need a T,
weighted image for extracting skull and scalp. It can generate these images directly from T,
image. “-A2” option makes it possible to use an aligned T, image together with T; to extract
skull and scalp. However, if these two images are not registered well it is better to use “-A”
option because it can generate more accurate results. Figure 30 shows the results of brain
extraction for these two options.

Figure 30, A comparison between the results of “-A” and “-A2” options, left image shows the extracted skull and
scalp using “-A” option, right image shows the extracted skull and scalp using “-A2” option, transverse (up left),
sagittal (up right), coronal (Bottom)

Left: bet <input> <output> -f0.6 -g0 —c<xyz> -A
Right: bet <input> <output> -f0.6 —g0 —c<xy z> -A2 <input T,>

Table 8, Commands for generating images in figure30

The results in figure 30 shows a slightly better extraction of inner skull by using option “-A”
comparing to option “-A2”. However, outer skull and scalp for both options showing more or
less the same results. It is important to know that mutual use of options with capital letters which
are working modes is impossible.

Both of these options will generate volume masks for extracted brain, skull and scalp as well as a
surface mask for extracted brain in “vtk’ format [33].

A summary of FSL BET (Brain Extraction Tool) shall be found in table 9.



BET

-f Fractional intensity threshold has a value between 0-1. By increasing its value the extracted
brain will get smaller and vice versa.

-g Vertical gradient in fractional intensity ranging between -1tol. By increasing its value from
zero the extracted brain will become larger at the bottom and smaller at top.
G The coordinates of the center of gravity.

-R | Robust estimation for center of gravity which is an iterative method to find the best possible
estimation.
-A | Extracting skull and scalp from T; weighted image.

-A2 | Extracting skull and scalp from T; weighted image using information from T, weighted image
from the same subject with the same alignment.
Table 9, FSL BET option descriptions summary [32]

3.3.2. FAST

FAST or “FMRIB’s Automated Segmentation Tool” is able to classify three tissue types: WM,
GM and CSF. It takes brain extracted image as input, does the bias field correction and generates
one image or separate images for different tissue classes as output. Similar to other options of
FSL it is possible to use this tool either in GUI or command line. The graphical user interface for
FAST is illustrated in figure 31.

— Input
Mumber of input channels |1 =
Input image =

Image type Tl-weighted —-|

— Cutput
Dutput image(s) basename QI

Mumber of classesIS =

Cutput images:
Einary segmentation: Also outplt one image per class _|
Partial volume maps [~ Restored input 1 Estimated Bias field _j

[ Advanced options

Figure 31, FSL 4.1.5 graphical user interface for FAST (FMRIB’s Automated Segmentation Tool)

As it is shown in figure 31, it is possible to have a number of input images to be segmented.
However, it is important to use a brain extracted image and choose the right image type as input



otherwise an odd result will appear in the output. Again, similar to BET it is better to explain
everything in command line. The general form of FAST command is “fast [options] —o <output>
<input>".

As it mentioned before, it is important to choose the right value for option “-t” which defines the
image type. “-t 1” stands for T weighted images, “-t 2” for T, weighted images and “-t 3" means
the input image(s) are proton density weighted images (PD). The second important option to in
FAST is “-H” which stands for main MRF parameter to determine the spatial smoothness of
segmentation. The default value is 0.1 however after different experiments the best results
obtained with “-H 0.5”. FAST tool will produce a hard segmented image in the output however
by choosing option “-g” separated binary images for each class will be generated. Option “-n” is
to determine the number of tissue types to be segmented. Option “-B” stands for correcting bias
field and by choosing option “-b” in the command line a bias field corrected version of input
image will generate in the output. The results of image segmentation which are illustrated in

figure 3.11 shows a better tissue segmentation using T; weighted images comparing to
segmentation results for T, weighted ones.

- |
Figure 32, Segmentation results from FAST, T1 weighted image (left), T2 weighted image (right), coronal (up left),
sagittal (up right), transverse (Bottom row)

Left: fast t1 -n3 -H 0.5 —g -b —B —o <output> <input T,;>
Right: fast t2 —n3 —H 0.5 —g —b —B —o0 <output> <input T>

Table 10, Commands for generating images in figure32

However, considering the nature of T, weighted images (figure 14), the voxel intensities for
white and grey matter are very close. Therefore, the segmentation results for T, weighted images
as it has shown in figure 32 will be inaccurate. Thus, it is recommended to use T; weighted
images for tissue segmentation.



A summary of FSL FAST (FMRIB’s Automated Segmentation Tool) shall be found in table 11.

FAST
-t Defines the image type. 1 for Ty, 2 for T, and 3 for PD (proton density).
-n Number of tissue types to be segmented.

-H | Stands for main MRF parameter to determine the spatial smoothness of segmentation.

-g Generating separated binary images for each class.

-b A bias corrected version of input image will generate in the output.

-B Stands for bias field correction.

-0 Specifying the output path.
Table 11, FSL FAST option descriptions summary [32]

3.3.3. FLIRT

Similar to SMP8 in the case of using unaligned images as input in BET or FAST, odd results will
appear in the output. To solve this problem, FSL uses FLIRT (FMRIB’s Linear Image
Registration Tool). It uses the same tissue atlases as SPM8 (MNI152 tissue templates) which are
provided by Montreal Neurological Institute and Hospital [14]. Normally when one download
FSL software package, these tissue atlases must be included in the software library. However, if
the software package doesn’t include these atlases, one can find them in Debian Neuroscience
Repository [24]. FLIRT menu in GUI is illustrated in figure 33.

Mode Input image -> Reference image — |

Feference image |/usr/share/fsl/data‘standard®MNI15Z_T1_Zmm_brain g|
hodel/DOF (input to ref)  Affine (12 parameter model) —-|

Input image

2 @

Output image

Mumber of secondary images to apply transform to |D =

[ Advanced Options

Figure 33, FSL 4.1.5 graphical user interface for FLIRT (FMRIB’s Linear Image Registration Tool)

The graphical user interface for FLIRT is very user friendly and easy to use. “Reference image”
should normally choose from MNI152 atlases and “Input image” is the image to be aligned.
However, it is good to first align T; image with MNI152 atlases then for aligning T, and T;



weighted images for “-A2” option in FAST, one should choose this T; image as reference and T,
as “Input image”.

The path and filename for “Output image” should be manually assigned. Finally number of
secondary images can be used to be aligned with the reference.

It is possible to choose 2D to 2D registration for 2D images and 3D to 3D registration for
volumes. The degrees of freedom (DOF) may be assigned to 3 (Translation only), 6(Rigid body),
7(Global rescale), 9(Traditional) or 12 parameter model (Affine registration). For 2D to 2D
registration only 3 parameter model (Rigid body) registration is available to choose.

3.3.4. FIRST

FIRST (FMRIB’s Integrated Registration and Segmentation Tool) is a tool for subcortical
segmentation which is only available on command line. . The general form of FIRST command
is “run_first all —i <input> -o <output> [options]”.

It is important to notice that Input image must be a T, weighted image. FIRST needs model data
in its library to perform subcortical segmentation. This model data can be downloaded and be
installed from Debian Neuroscience Repository [25].

The first option is “-b” to specify that the input image is brain extracted. FIRST is able to
perform subcortical segmentation on both original and brain extracted version of T, weighted
images. Thus, in the case of having a brain extracted image as input it is necessary to use this
option in the command line. Option “-m” choose the boundary correction method. Without using
this option, the software package will choose the automatic boundary correction. However, it can
be changed by choosing “FAST” which based on tissue classification, or “thresh” which uses a
Gaussian intensity model to perform thresholding, and finally “none” to avoid boundary
correction. Option “-s”
desirable subcortical structures to be segmented. A comma without space should be used to
divide between selected structures. Name codes for different possible subcortical structures to

choose are:

will restrict the segmentation results. It makes it possible to select

L Accu | Left Accumbens area R Accu | Right Accumbens area
L _Amyg | Left Amygdala R Amyg | Right Amygdala

L Caud | Left Caudate R Caud | Right Caudate

L _Hipp | Left Hippocampus R Hipp | Right Hippocampus
L_Late | Left Lateral ventricle R Late Right Lateral ventricle
L Pall Left Pallidum R_Pall Right Pallidum

L Puta | Left Putamen R Puta Right Putamen

L Thal | Left Thalamus R Thal Right Thalamus
BrStem | Brainstem

Table 12, Name codes for different possible subcortical structures in FIRST [32]



FIRST generates a volumetric image in NIFTI format “outputname all fast firstseg.nii.gz”
which shows the volumes of different subcortical structures (figure 3.13). It also produces a
series of mesh images in “vtk” format (figure 3.14).

Run_first all —i <input T;> -o <output> -b

Table 13, Command for generating images in FIRST

Figure 34, Volumes of different subcortical structures -

Right Thalarmus
Left Caudate - Right Caudate

Left &ccumbens area Fight Accumbens area
Left Putamen . Right Pautatnen

Left Pallidum

Left Amyodala

Left Hippocarnpus Right Hippocampus
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.

Figure 35, Surface meshes of different subcortical structures (this image created by Paraview [26] in coronal view)




A summary of FSL FIRST (FMRIB’s Integrated Registration and Segmentation Tool) shall be
found in table 14.

FIRST

-1 Input file must be a T; weighted image.

-0 General name for all output files.

-b Specifies that the input is a brain extracted image.

-m | For selecting the boundary correction method.

-S Restricts the segmentation results.
Table 14, FSL FIRST option descriptions summary [32]

3.4. Tissue segmentation using FreeSurfer [28]

For running FreeSurfer one can use both graphical user interface and command line. However,
using command line in Linux terminal is more recommended. “recon-all” can be used for the
whole brain segmentation which comprises volume based and surface based segmentations. It is
important to use T; weighted image as input for “recon-all” command. It has 31 stages which
Started with motion correction, non uniform intensity normalization, an affine registration to
Talairach atlases [27], another intensity normalization and finally brain extraction. These 5 steps
can be separated from the rest of stages by adding “autoreconl” at the end of command line.

recon-all —subject <specify an name> -i <a T; weighted image > -atuoreconl
Table 15, Command for generating registration and brain extraction in FreeSurfer

“autorecon2” will continue until 23th stage which illustrated in table 16. It will perform the
whole brain segmentation in both volume based and surface based and will extract all the
structures inside the brain. However, the difference between FreeSurfer and two other studied
software packages is that it will create a set of folders in “Subject” with the same name that user
specified. All the results for volumetric based segmentation are collected in “mri” folder in
“aseg.mgz” file which contains all the structures. “autorecon2” also creates a text file
“aseg.auto_noCCseg.label intensities.txt” consist of intensities for all structures in “aseg.mgz”
(Table 16). By using this table one can extract different structures from “aseg.mgz”. Although
there are individual images for white matter “wm.mgz”, bias corrected T; weighted image, brain
extracted image in “norm.mgz”, brain mask in “brainmask.mgz” and etc. but it is recommended
to use “aseg.mgz” and extracting all desired tissues considering different intensities in table 17.
Because other images are not binary and for instance there is a wide intensity variation in
“wm.mgz”.

The “aseg.mgz” image is illustrated in figure 36.



Figure 36, Different extracted tissues and structures in “aseg.mgz”, planes: sagittal (left), coronal (middle),
transverse (right)

recon-all —subject <specify an name> -i <a T, weighted image > -atuoreconl —autorecon2

Table 16, Command for generating “aseg.mgz”

Intensity | Extracted tissue name Intensity Extracted tissue name
1 Left Cerebral Exterior 42 Right Cerebral Cortex
2 Left Cerebral White Matter 43 Right Lateral Ventricle
3 Left Cerebral Cortex 44 Right Inf Lat Vent
4 Left Lateral Ventricle 46 Right Cerebellum White Matter
5 Left Inf Lat Vent 47 Right Cerebellum_Cortex
7 Left Cerebellum White Matter 48 Right Thalamus
8 Left Cerebellum Cortex 49 Right Thalamus Proper
9 Left Thalamus 50 Right Caudate
10 Left Thalamus Proper 51 Right Putamen
11 Left Cerebral White Matter 52 Right Pallidum
12 Left Putamen 53 Right Hippocampus
13 Left Pallidum 54 Right Amygdala
14 Third Ventricle 58 Right Accumbens_area
15 Fourth Ventricle 60 Right VentralDC
16 Brain Stem 72 Fifth Ventricle
17 Left Hippocampus 75 Left Lateral Ventricles
18 Left Amygdala 76 Right Lateral Ventricles
24 CSF 77 WM hypointensities
26 Left Accumbens_area 78 Left WM_hypointensities
28 Left VentralDC 79 Right WM _hypointensities
40 Right Cerebral Exterior 80 non WM hypointensities
41 Right Cerebral White Matter 81 Left non WM _hypointensities
82 Right non WM _hypointensitie

Table 17, Name codes and intensities for different possible extracted structures using FreeSurfer




As it mentioned before FreeSurfer also performs surface based segmentation. It can generate the
white matter surface and pial surface and the thickness of these two surfaces which is the
cerebral cortex made of gery matter. The results of surface based segmentation are in the surf
folder. Right and left white matter surfaces and pial surfaces can be found. The resulted image is
illustrated in figure 37.

Figure 37, White matter and pial surfaces, planes: sagittal (up left), coronal (up middle), transverse (up right) white
matter surface (bottom left), pial surface (bottom right)

Acquiring these results may take around 9 hours using “-autoreconl” and “-autorecon2”.
However, as it mentioned before, there are 31 stages with option “-all”. It may take 20-40 hours
to finish the whole brain tissue segmentation. It can extract more individual images like
“ribbon.mgz” which contains binary information of just white and grey matter. There is also an
image of just grey matter in “aparc.a2009s+aseg.mgz’ but it is not a binary image. However, for
acquiring “aseg.mgz” it is enough to just use “-autoreconl” and “-autorecon2” options. List of all
31 stages for “recon-all” using option “-all” can be found in table 18.

Figure 38, White matter in “wm.mgz” (a), planes: sagittal (left), coronal (middle), transverse (right), grey matter in
“aparc.a2009s+aseg.mgz” (b), planes: sagittal (left), coronal (middle), transverse (right)



Figure 39, White and grey matter in “ribbon.mgz”, planes: sagittal (left), coronal (middle), transverse (right)

No. Stage
— 1 Motion Correction and Conform
E 2 | NU (Non-Uniform intensity normalization)
g 3 | Talairach transform computation
E 4 | Intensity Normalization 1
' 5 | Skull Strip
6 | EM Register (linear volumetric registration)
7 | CA Intensity Normalization
8 | CA Non-linear Volumetric Registration
9 | Remove Neck
10 | LTA with Skull
11 | CA Label (Volumetric Labeling, ie Aseg) and Statistics
2 | 12 | Intensity Normalization 2 (start here for control points)
E 13 | White matter segmentation
8 | 14 | Edit WM With ASeg
& | 15 | Fill (start here for wm edits)
16 | Tessellation (begins per-hemisphere operations)
17 | Smoothl
18 | Inflatel
19 | QSphere
20 | Automatic Topology Fixer
21 | Final Surfs (start here for brain edits for pial surf)
22 | Smooth2
23 | Inflate2
24 | Spherical Mapping
25 | Spherical Registration
4 | 26 | Spherical Registration, Contralateral hemisphere
E 27 | Map average curvature to subject
E 28 | Cortical Parcellation - Desikan_Killiany and Christophe (Labeling)
g 29 | Cortical Parcellation Statistics
30 | Cortical Ribbon Mask
31 | Cortical Parcellation mapping to Aseg

Table 18, Different stages of tissue segmentation in FreeSurfer [28]



As it has showed in figure 36, segmentation method in FreeSurfer is different from FSL and
SPM. Especially for subcortical structures it won’t produce individual images like FSL.
However, as it mentioned before by using the intensities for different structures in table 17, one
can extract different tissues and structures from “aseg.mgz”.

One of useful tools in FreeSurfer is “mri_convert” that can be used for image conversion. During
the work with MR images, it is very relevant to be forced to convert between different formats.
The reason is different software packages work with different image formats. For instance when
I got my own MR images from my brain using “PHILIPS” scanner in Sahlgrenska Hospital, they
were in “DICOM” [29] format. None of these software packages work with “DICOM” format.

The general format of command line for image conversion in FreeSurfer is “mri_convert
[options] <input image> <output image>".

The list of options can be found in FreeSurfer wiki [30]. However, different possible image

format conversions are listed in table 19.

Format Description Format Description
cor MGH-NMR COR format (deprecated) dicom generic DICOM Format (input only)
mgh MGH-NMR format siemens _d | Siemens DICOM Format (input only)
icom
mgz MGH-NMR gzipped (compressed) afni AFNI format
mgh format
ming MNI's Medical Imaging NetCDF brik same as afni
format (output may not work)
analyze | 3D analyze (same as spm) bshort MGH-NMR bshort format
analyze4d | 4D analyze bfloat MGH-NMR bfloat format
spm SPM Analyze format (same as analyze sdt Varian
and analyze3d)
ge GE Genesis format (input only) outline MGH-NMR Outline format
gelx GE LX (input only) otl same as outline
Ix same as gelx gdf GDF volume (requires image stem for
output; use -gis)
ximg GE XIMG variant (input only) niftil NIfTI-1 volume (separate image and
header files)
siemens | Siemens IMA (input only) nii NIfTI-1 volume (single file), if
input/output has extension .nii.gz, then
compressed is used

Table 19, Different possible image formats conversion using FreeSurfer [30]

Although “mri_convert” in FreeSurfer is a sophisticated tool for image conversion but it is not
useful for some of formats. For instance, FreeSurfer cannot convert “DICOM2” [29] too “nii”
[31]. For this conversion “MRIcron” [32] software package can be used.
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Figure 40, Screen snapshot: MRIcron viewer user interface (left), MRIcron converter user interface (right)

The other important image format can be “vtk™ [33]. Again FreeSurfer is not going to be useful
for conversion to this image format. “ITKsnap” [34] is a useful software package for converting
from “nii” to “vtk”.
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Figure 41, Screen snapshot from ITKsnap user interface



Chapter 4

4. Evaluation and Comparison between performances
of three software packages

This chapter explains the evaluation method which used for evaluating the results of these three
software packages and then using these evaluations to perform a comparison between them.
Finally it will represent the results of this comparison.

4.1. Evaluation method

To evaluate the performances of these three software packages a data set consists of 18 Brainweb
[35] T, weighted phantoms were used. These phantoms were generated with slice thickness of
Imm (Imm X Imm xImm) and echo time of 10ms. Six different noise levels (0%, 1%, 3%, 5%,
7% and 9%) were used and for each noise level three various RF inhomogeneity values (0%,
20%, 40%) were employed. The ground truth of white matter, grey matter and cerebrospinal
fluid for these phantoms were provided from Brainweb. However, the ground truth for
subcortical structures was inaccessible. Therefore, there is no evaluation of subcortical structures
in this chapter.

All 18 phantoms were used in all three software packages to obtain the segmentation results for
three tissue classes (WM, GM and CSF) using the methods that explained in previous chapter.
To evaluate the segmentation a voxel by voxel comparison between segmented images and the
ground truth performed using 3dOverlap command line from AFNI software package [41] and
MATLAB together with Jimmy Shen’s library [36]. This comparison showed the number of
voxels as true positives, false positives, true negatives and false negatives.



True positive Classification of a voxel as tissue when it is tissue

False positive | Classification of a voxel as tissue when it is background

True negative Classification of a voxel as background when it is background

False negative | Classification of a voxel as background when it is tissue

Table 20, Definition of true and false classification

It is possible to calculate the sensitivity and specificity of the segmentation performance from
these classification parameters. Sensitivity or recall rate shows the rate of true classification.
Regarding to this definition by increasing the sensitivity the number of missed true tissue voxels
will decrease. However, the drawback is there will be more voxels classified as tissue when they
were actually background. High sensitivity is considered good when it is important to preserve
all tissue pixels. Sensitivity can be calculated as follow:

number of true positives

sensttivity = number of true positives + number of false negatives
Specificity or precision on the other hand is a measure of background voxels where correctly
identified as background. Thus, by increasing the specificity the number of false positive (which
means classification of a voxel as tissue when it is background) will decrease but the drawback is
there some tissue voxels will wrongly classified as background. However, specificity is
important to preserve the background pixelsv. Specificity can be calculated as follow:

number of true negatives

spectficity = number of true negatives + number of false positives
Sensitivity and specificity were calculated for all three software packages for every noise level
and RF inhomogeneity value. However, to evaluate the performance of the software packages it
is important to have a single measure. Misclassification rate (MCR) [40], [61] can be calculated
from sensitivity and specificity using priori probabilities of voxels. In this problem there are two
cases: tissue or background. Sensitivity is representing true classification rate of tissue voxels
and specificity represents the rate of true classification for background voxels. A random choice
of a voxel can have two outcomes: tissue or background. Thus misclassification rate can be
calculated using this formula:

MCR = Py x (1 - sensitivity) + P, x (1 - specificity),

where P is the priori probability of a voxel to be background and P is the priori probability of a
voxel to be tissue. P; is the weight for (1 — sensitivity) which means whatever is not the true
classification rate of tissue voxels and P, is the weight for (1 — specificity) which means
whatever is not the true classification rate of background voxels. MCR were calculated for all
three software packages for every noise level and RF inhomogeneity value. Finally the average
value of sensitivity, specificity and MCR in each tissue class will represent the performance of
each software package for segmenting each of these three tissue classes (WM, GM, CSF).



4.1.1. Results

To compare the performance of different software packages, segmentation of three tissue classes
(WM, GM and CSF) performed over all 18 phantoms then for each tissue type sensitivity,
specificity and MCR calculated. The results are illustrated in a graphical format to show the
quality of segmentation for various amounts of noise and RF inhomogeneity.

4111. SPMS8

41.1.1.1. White matter

As it mentioned before sensitivity shows the rate of true classification. Thus, it is good to start
with this measure. The results of sensitivity for white matter is getting better (closer to 1) for
more noise and less RF inhomogeneity. However, as it has shown in figure 42, the difference
between various RF inhomogeneity values is negligible. Normally one expects better results
from less noise level but reviewing table 21 shows that the best outcome were from 9% noise
level. The same performance for SPM5 noticed in Ferreira da Silva [39] publication and another
review [40] as well. The reason is this software package is designed to work with noisy images
as long as practical images from patients are always along with noise.

| 0.7120 | 0.8996 | 0.9661 | 0.9596 | 0.9836 | 0.9910
RF | 0.7105 | 0.8992 | 0.9564 | 0.9537 | 0.9820 | 0.9885

0.7133 | 0.8874 | 0.9606 | 0.9496 | 0.9745 | 0.9851
Table 21, Sensitivity of segmentation for white matter in SPM8
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Figure 42, Sensitivity of segmentation for white matter in SPM8



Regarding to specificity definition in section 4.1, high values for this measure gives better
classification rate of background voxels. The results of specificity for white matter shows high
value of specificity (close to 1) for less noise level, and low value for high noise level can be
observed. The difference between RF inhomogeneity values is more dominant in specificity.
Classification rate is slightly better for lower values of RF inhomogeneity. The results are
illustrated in table 22 and figure 43.

0.99958

0.98581
0.99959 | 0.98995 | 0.97701 | 0.94220

0.99963 | 0.98844 | 0.97890 | 0.95019
Table 22, Specificity of segmentation for white matter in SPM8
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Figure 43, Specificity of segmentation for white matter in SPM8

MCR shows the highest error rate without any noise. As it is illustrated in figure 44 the
misclassification rate is around 26% for zero noise and by increasing noise level the error rate
will become lower and reach to the lowest MCR (around 2%) for 9% of noise and RF
inhomogeneity of zero. However, RF inhomogeneity value doesn’t have a significant influence.

| |

‘ 0.2631 0.0895 0.0313 0.0385 0.0240 0.0232
RF ‘ 0.2645 0.0898 0.0394 0.0432 0.0248 0.0239
‘ 0.2619 0.1005 0.0359 0.0465 0.0295 0.0254

Table 23, Misclassification rate of segmentation for white matter in SPM8
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Figure 44, Misclassification rate of segmentation for white matter in SPM8

Figure 45, Segmented white matter using SPM8 (red), Brainweb phantom ground truth (green), planes: sagittal
(left), coronal (middle), transverse (right)

41.1.1.2. Grey matter

The results of sensitivity for grey matter surprisingly showed better results for no noise.
Although finally by reaching to 9% of noise level the sensitivity starts to get better but the results
with no noise still had the best sensitivity. The RF inhomogeneity had not a noticeable effect.

Sensitivity — grey matter
SPM8 Noise (%)
0 1 3 5 7 9
0| 0.9623 | 0.9420 | 0.9434 | 0.9278 | 0.9301 | 0.9382
RF 20 | 0.9602 | 0.9400 | 0.9345 | 0.9215 | 0.9313 | 0.9390
40 | 0.9586 | 0.9416 | 0.9373 | 0.9179 | 0.9235 | 0.9340
Table 24, Sensitivity of segmentation for grey matter in SPM8
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The results of specificity, again, showed higher values for less noise levels and lower values for
more noise levels. The RF inhomogeneity values still had not a significant influence at the
results. The best specificity is for 5% of noise level. However, the overall results showed a good

Figure 46, Sensitivity of segmentation for grey matter in SPM8

specificity for grey matter.

Noise (%)

0.9600 | 0.9612 | 0.9599 | 0.9664 | 0.9541 | 0.9423

RF 0.9601 | 0.9623 | 0.9579 | 0.9686 | 0.9549 | 0.9427

0.9605 | 0.9612 | 0.9579 | 0.9693 | 0.9587 | 0.9462

Table 25, Specificity of segmentation for grey matter in SPM8
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Figure 47, Specificity of segmentation for grey matter in SPM8




Misclassification rate for grey matter showed the lowest error around 3% for 0% of noise level
and 0% of RF inhomogeneity value. The results are illustrated in table 26 and figure 48.

MCR — grey matter
SPM8 Noise (%)
0 1 3 5 7 9
0 | 0.0382 | 0.0541 | 0.0532 | 0.0646 | 0.0649 | 0.0609
RF 20 | 0.0398 | 0.0555 | 0.0607 | 0.0695 | 0.0638 | 0.0602

40 | 0.0410 | 0.0544 | 0.0585 | 0.0722 | 0.0694 | 0.0634
Table 26, Misclassification rate of segmentation for grey matter in SPM8
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Figure 48, Misclassification rate of segmentation for grey matter in SPM8

Figure 49, Segmented grey matter using SPM8 (red), Brainweb phantom ground truth (green), planes: sagittal (left),
coronal (middle), transverse (right)



411.13. CSF

The sensitivity for CSF had its best result (97%) for 1% of noise level and the worst result (85%)
for 9% of noise level. Thus, as it has illustrated in table 27 and figure 50 the best results are in
lower noise levels and it is getting worse with increasing noise level. RF inhomogeneity effect is
not significant.

‘ Noise (%)

0.9383 | 0.9761 | 0.9591 | 0.9187 | 0.8875 | 0.8585
RF 0.9528 | 0.9784 | 0.9644 | 0.9320 | 0.8961 | 0.8586
0.9633 | 0.9772 | 0.9625 | 0.9401 | 0.8852 | 0.8655

0.9800
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Figure 50, Sensitivity of segmentation for CSF in SPMS8

Specificity on the other hand showed the highest values for no noise and lowest values for 9% of
noise level. It means the background voxels were better classified by SPM8 when there was no
noise. As it as shown in figure 51, changes in RF inhomogeneity values in specificity were more
effective than they were for sensitivity.

Noise (%)

0.9355 | 0.9181 | 0.9182 | 0.9198 | 0.9067 | 0.8985

RF 0.9332 | 0.9158 | 0.9143 | 0.9185 | 0.9052 | 0.8990

0.9321 | 0.9186 | 0.9154 | 0.9183 | 0.9156 | 0.8992
Table 28, Specificity of segmentation for CSF in SPM8
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Figure 51, Specificity of segmentation for CSF in SPM8

Misclassification rate for CSF showed the lowest error around 3% for 1% of noise level and 20%
of RF inhomogeneity. By increasing noise level the error rate will become larger around 13%.
The results are illustrated in table 29 and figure 51.

Noise (%)

0.0621 | 0.0331 | 0.0474 | 0.0811 | 0.1094 | 0.1348
RF 0.0500 | 0.0317 | 0.0437 | 0.0699 | 0.1024 | 0.1347
0.0412 | 0.0321 | 0.0451 | 0.0637 | 0.1101 | 0.1289

Table 29, Misclassification rate of segmentation for CSF in SPMS
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Figure 52, Misclassification rate of segmentation for CSF in SPM8



Figure 53, Segmented CSF using SPMS (red), Brainweb phantom ground truth (green), planes: sagittal (left),

coronal (middle), transverse (right)

The average values of sensitivity, specificity and MCR for each tissue type used for an overall
evaluation of SPM8 performance for tissue segmentation. The results for all tissue types are very
good and the misclassification rate for each tissue type shows a low value (less than 10% of

error).
SPM8 Sensitivity | Specificity | MCR
WM 0.91515 0.97175 | 0.0808
GM 0.93794 0.95801 | 0.0580
CSF 0.92857 0.91555 | 0.0734
Table 30, Overall evaluation of tissue segmentation using SPM8
v
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Figure 54, Overall evaluation of tissue segmentation using SPMS8



4112. FSL

41.1.2.1. White matter

The sensitivity of tissue classification for white matter in FSL is getting better (around 77%) by
increasing noise level. However, the value of RF inhomogeneity does not have a significant
effect on sensitivity.

| Noise (%)
\ 0.47736 | 0.62513 | 0.73657 | 0.76508 | 0.77815 | 0.78137
RF \ 0.62901 | 0.65702 | 0.73080 | 0.76104 | 0.77437 | 0.77532

‘ 0.63143 | 0.65243 | 0.71857 | 0.75030 | 0.76752 | 0.77205
Table 31, Sensitivity of segmentation for white matter in FSL
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Figure 55, Sensitivity of segmentation for white matter in FSL

On the other hand, specificity shows a very good background classification with less noise level.
By increasing noise level, specificity will decrease. RF inhomogeneity just has a small influence
on specificity on 9% of noise level.

| Noise (%)

1.00000 | 1.00000 | 1.00000 | 0.99993 | 0.99958 | 0.99885

RF 1.00000 | 1.00000 | 1.00000 | 0.99995 | 0.99967 | 0.99914

1.00000 | 1.00000 | 1.00000 | 0.99996 | 0.99972 | 0.99924
Table 32, Specificity of segmentation for white matter in FSL




1.00000
0.99980
0.99960
0.99940
0.99920
0.99900
0.99880
0.99860
0.99840
0.99820

Noise (%)

ERFO
mRF 20
mRF40

Figure 56, Specificity of segmentation for white matter in FSL

Misclassification rate for white matter showed the lowest error around 19% for 9% of noise level

and RF inhomogeneity value of zero. By decreasing noise level the error rate will become larger
around 34%. However, the worst error rate is from 0% of noise level and RF inhomogeneity
value of zero. Results are illustrated in table 33 and figure 57.

RF

0.49241

0.34647

0.23992

0.21313

0.20089

0.19782

0.34271

0.31567

0.24536

0.21692

0.20442

0.20348

0.34037

0.32009

0.25693

0.22699

0.21083

0.20654

Table 33, Misclassification rate of segmentation for white matter in FSL
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Figure 57, Misclassification rate of segmentation for white matter in FSL



Figure 58, Segmented white matter using FSL (red), Brainweb phantom ground truth (green), planes: sagittal (left),

coronal (middle), transverse (right)

4.1.1.2.2. Grey matter

The sensitivity value for classification of grey matter using FSL is the opposite of white matter.
Therefore, by increasing noise level the sensitivity will decrease. However, changes in RF

inhomogeneity had not a significant effect.

Sensitivity — grey matter
FSL Noise (%)
0 1 3 5 7 9
0| 0.83261 | 0.76266 | 0.68421 | 0.67745 | 0.68375 | 0.69301
RF 20 | 0.75447 | 0.73547 | 0.68632 | 0.67839 | 0.68546 | 0.69652
40 | 0.75089 | 0.73619 | 0.69193 | 0.67311 | 0.68099 | 0.68931
Table 34, Sensitivity of segmentation for grey matter in FSL
0.90000
0.80000 -
0.70000 -
0.60000 - B
0.50000 | : FRFO
0.40000 -
030000 1 —  WRF20
0.20000 - B RF 40
0.10000 B
0.00000 7
o Talal sl ]os]
Noise (%) ‘

Figure 59, Sensitivity of segmentation for grey matter in FSL




The specificity of grey matter segmentation is almost the same and close to one for all noise
levels and RF inhomogeneity values except for zero noise and zero RF which has slightly lower

value of specificity.

Noise (%)

| O] 0.9903| 0.9981 | 0.9988 | 0.9988 | 0.9987 | 0.9985

RF 0.9983 | 0.9985 | 0.9988 | 0.9989 | 0.9988 | 0.9986

0.9984 | 0.9985| 0.9988 | 0.9990 | 0.9990 | 0.9987

Table 35, Specificity of segmentation for grey matter in FSL
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Figure 60, Specificity of segmentation for grey matter in FSL

Misclassification rate for grey matter showed the lowest error around 14% for zero noise level
and RF inhomogeneity value of zero. The error rate has its largest value around 27% for
moderate amount of noise (3%, 5% and 7% of noise). However, the worst error rate is from 5%
of noise level and RF inhomogeneity value of 40%. Results are illustrated in table 36 and figure
61.

| |

RF

0.14231 | 0.20442 | 0.27644 | 0.28276 | 0.27688 | 0.26823
0.21184 | 0.22912 | 0.27448 | 0.28189 | 0.27528 | 0.26499
0.21508 | 0.22848 | 0.26928 | 0.28684 | 0.27947 | 0.27170

Table 36, Misclassification rate of segmentation for grey matter in FSL
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Figure 62, Segmented grey matter using FSL (red), Brainweb phantom ground truth (green), planes: sagittal (left),

Figure 61, Misclassification rate of segmentation for grey matter in FSL

coronal (middle), transverse (right)

411.23. CSF

The sensitivity for classification of CSF is decreasing by increasing noise but the effect of RF
inhomogeneity value is negligible. Therefore, the best value of sensitivity is around 55% for less

noise values.

Sensitivity — CSF

FSL Noise (%)
0 1 3 5 7 9
0| 0.53593 | 0.55470 | 0.53489 | 0.50119 | 0.47922 | 0.46354
RF | 20| 0.55528 | 0.55862 | 0.53260 | 0.49707 | 0.48366 | 0.46761
40 | 0.55502 | 0.55593 | 0.52753 | 0.48678 | 0.47066 | 0.45418

Table 37, Sensitivity of segmentation for CSF in FSL
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Figure 63, Sensitivity of segmentation for CSF in FSL

The specificity of CSF tissue class is close to one and will slightly decrease by increasing noise

level. RF inhomogeneity changes had not significant effect on the results.

|

|

09971 | 0.9969 | 0.9971 | 0.9971 | 0.9962 | 0.9958
RF 09973 | 0.9971 | 0.9973 | 0.9972 | 0.9965 | 0.9958
0.9971 | 0.9971 | 0.9972 | 0.9972 | 0.9967 | 0.9960
Table 38, Specificity of segmentation for CSF in FSL
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Figure 64, Specificity of segmentation for CSF in FSL



Misclassification rate for CSF showed the lowest error around 42% for 1% noise level and RF
inhomogeneity value of 20%. The error rate has its largest value around 52% for 9% noise level
and RF inhomogeneity value of 40%. However, by looking at the images in figure 66 it can be
seen that there is a part of ground truth that didn’t overlap with segmented tissue. Results are
illustrated in table 36 and figure 61.

MCR — CSF
FSL Noise (%)
0 1 3 5 7 9
0| 0.44177 | 0.42316 | 0.44282 | 0.47629 | 0.49786 | 0.51339
RF | 20 | 0.42269 | 0.41935 | 0.44516 | 0.48046 | 0.49353 | 0.50929
40 | 0.42289 | 0.42199 | 0.45016 | 0.49072 | 0.50665 | 0.52286
Table 39, Misclassification rate of segmentation for CSF in FSL
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Figure 65, Misclassification rate of segmentation for CSF in FSL

Figure 66, Segmented CSF using FSL (red), Brainweb phantom ground truth (green), planes: sagittal (left), coronal
(middle), transverse (right)



Again an average of sensitivity, specificity and MCR from each issue class is used to obtain an
overall evaluation of FSL performance for tissue segmentation. The lowest error rate with 25%
and 26% of error calculated for grey matter and white matter respectively and the highest error
rate is from CSF with 46% of error. The overall results are illustrated in table 40 and figure 67.

FSL

WM 0.7102 0.99978 | 0.2656
GM 0.71071 0.99819 | 0.2522
CSF 0.51191 0.99681 | 0.4656

Table 40, Overall evaluation of tissue segmentation using FSL
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Figure 67, Overall evaluation of tissue segmentation using FSL

41.1.3. FreeSurfer

As it mentioned in section 3.4, FreeSurfer performs the tissue segmentation in a different way.
The output of FreeSurfer is an image (aseg.mgz) with different intensities for each structure
inside the brain. There is also a list of different structures with their intensity levels in a text file
(aseg.auto_noCCseg.label intensities.txt) together with ‘“aseg.mgz” image in the output of
FreeSurfer segmentation which has been shown in section 3.4 table 17.

For evaluating tissue segmentation using FreeSurfer, first step was extracting different tissue
types from the “aseg.mgz” image and creating new separated images to represent white matter,
grey matter and cerebrospinal fluid. Thus, I wused table 17 which came from
“aseg.auto_ noCCseg.label intensities.txt” file and consulted with Anders Hedstrom [42] to
extract different tissue types from “aseg.mgz” image. The resulted classification of different
structures in “aseg.mgz” is illustrated in table 41.



Intensity | Tissue Extracted tissue name Intensity | Tissue Extracted tissue name
type type
1 CSE | Left Cerebral Exterior 42 GM | Right Cerebral Cortex
2 WM | Left Cerebral White Matter 43 CSF | Right Lateral Ventricle
3 GM | Left Cerebral Cortex 44 CSF | Right Inf Lat Vent
4 CSF | Left Lateral Ventricle 46 WM | Right Cerebellum White Matter
5 CSF | Left Inf Lat Vent 47 GM | Right Cerebellum Cortex
7 WM | Left Cerebellum White Matter 48 GM | Right Thalamus
8 GM | Left Cerebellum Cortex 49 GM | Right Thalamus Proper
9 GM | Left Thalamus 50 GM | Right Caudate
10 GM | Left Thalamus Proper 51 GM | Right Putamen
11 WM | Left Cerebral White Matter 52 GM | Right Pallidum
12 GM | Left Putamen 53 GM | Right Hippocampus
13 GM | Left Pallidum 54 GM | Right Amygdala
14 CSE | Third Ventricle 58 GM | Right Accumbens area
15 CSF | Fourth Ventricle 60 GM | Right VentralDC
16 W-+GM | Brain_Stem 72 CSF | Fifth Ventricle
17 GM | Left Hippocampus 75 CSF | Left Lateral Ventricles
18 GM | Left Amygdala 76 CSF | Right Lateral Ventricles
24 CSE | CSF 77 WM | WM hypointensities
26 GM | Left Accumbens area 78 WM | Left WM _hypointensities
28 GM | Left VentralDC 79 WM | Right WM_hypointensities
40 CSE | Right Cerebral Exterior 80 CSE | non WM _hypointensities
41 WM | Right Cerebral White Matter 81 CSE | Left non WM _hypointensities
82 CSE | Right non WM hypointensitie

Table 41, Name codes, intensities and tissue types for different possible extracted structures using FreeSurfer

4.1.1.3.1. White matter

Sensitivity of the classified white matter using FreeSurfer in the best case is 75% which is for
noise level of 3% for zero RF inhomogeneity and noise level of 5% for 40% RF inhomogeneity.
However, unlike two other software packages, FreeSurfer could not perform the segmentation
over 9% of noise level and 40% of RF inhomogeneity.

Sensitivity — white matter

FreeSurfer Noise (%)
0 1 3 5 7 9
0 | 0.73200 | 0.73670 | 0.75060 | 0.73860 | 0.73640 | 0.73510
RF 20 | 0.74120 | 0.73730 | 0.74480 | 0.73910 | 0.73610 | 0.74070
40 | 0.73870 | 0.73870 | 0.74660 | 0.74980 | 0.73120 -

Table 42, Sensitivity of segmentation for white matter in FreeSurfer
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Figure 68, Sensitivity of segmentation for white matter in FreeSurfer

Segmented white matter using FreeSurfer shows specificity of 98% almost for all conditions.
However, a closer look shows a slightly higher specificity in zero noise level and zero RF
inhomogeneity. The lowest specificities are calculated for moderate noise levels (3% and 5%)

but as it is illustrated in table 43 and figure 69 the difference is not significant.

Noise (%)

[

|
0.98480

0.98520 | 0.98490 | 0.98380 | 0.98450 | 0.98470
RF 0.98460 | 0.98490 | 0.98450 | 0.98440 | 0.98460 | 0.98440
0.98450 | 0.98490 | 0.98400 | 0.98360 | 0.98510 -
Table 43, Specificity of segmentation for white matter in FreeSurfer
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Figure 69, Specificity of segmentation for white matter in FreeSurfer




Misclassification rate for white matter showed the lowest error around 22% for noise level of 3%
and RF inhomogeneity value of zero. However, the error rate at its highest value is around 24%
which indicates that there is not a large gap between different noise levels for FreeSurfer
performance. Results are illustrated in table 44 and figure 70.

MCR — white matter
FreeSurfer Noise (%)
0 1 3 5 7 9
0 | 0.24337 | 0.23895 | 0.22594 | 0.23715 | 0.23922 | 0.24046
RF 20 | 0.23473 | 0.23895 | 0.23138 | 0.23668 | 0.23949 | 0.23519
40 | 0.23705 | 0.23710 | 0.22965 | 0.22665 | 0.24411 -
Table 44, Misclassification rate of segmentation for white matter in FreeSurfer
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Figure 70, Misclassification rate of segmentation for white matter in FreeSurfer

Figure 71, Segmented white matter using FreeSurfer (red), Brainweb phantom ground truth (green), planes: sagittal
(left), coronal (middle), transverse (right)



4.1.1.3.2. Grey matter

Sensitivity of segmented grey matter using FreeSurfer is around 67% and has its best value in
7% of noise and 40% of RF inhomogeneity (68%). Again FreeSurfer was unable to perform
segmentation over the phantom with noise level of 9% and RF inhomogeneity value of 40%.
The results are illustrated in table 45 and figure 72.

0.67570 | 0.67420 | 0.66880 | 0.67400 | 0.67430 | 0.68040
RF ‘ 0.67270 | 0.67390 | 0.67030 | 0.67190 | 0.67850 | 0.67730
‘ 0.67420 | 0.67450 | 0.66870 | 0.66530 | 0.68160 -
Table 45, Sensitivity of segmentation for grey matter in FreeSurfer
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Figure 72, Sensitivity of segmentation for grey matter in FreeSurfer

Similar to white matter classification the results of specificity for grey matter are around 98% for
all conditions for noise and RF inhomogeneity levels. However, closer look shows slightly
higher specificity values for moderate noise levels (3% and 5%).

Noise (%)

0.98480 | 0.98480 | 0.98540 | 0.98470 | 0.98470 | 0.98410
RF 0.98500 | 0.98500 | 0.98520 | 0.98490 | 0.98450 | 0.98460
0.98510 | 0.98530 | 0.98530 | 0.98550 | 0.98440 =

Table 46, Specificity of segmentation for grey matter in FreeSurfer
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Figure 73 , Specificity of segmentation for grey matter in FreeSurfer

Misclassification rate for grey matter showed the lowest error around 28% for noise level of 7%
and RF inhomogeneity value of 40%. However, the error rate at its highest value is around 29%
which again similar to white matter indicates that there is not a big difference between different
noise levels for FreeSurfer performance. Results are illustrated in table 47 and figure 74.

Noise (%)
0.28515 | 0.28652 | 0.29167 | 0.28673 | 0.28647 | 0.28077
RF 0.28797 | 0.28686 | 0.29021 | 0.28874 | 0.28257 | 0.28371

0.28661 | 0.28635 | 0.29175 | 0.29493 | 0.27971 =
Table 47, Misclassification rate of segmentation for grey matter in FreeSurfer
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Figure 74, Misclassification rate of segmentation for grey matter in FreeSurfer



Figure 75, Segmented grey matter using FreeSurfer (red), Brainweb phantom ground truth (green), planes: sagittal
(left), coronal (middle), transverse (right)

41.133. CSF

The rate of true classification which is sensitivity for classification of CSF using FreeSurfer
showed a result close to zero. Figure 79 shows very small amount of extracted CSF using
FreeSurfer. The results are listed in table 48.

Sensitivity — CSF

FreeSurfer Noise (%)
0 1 3 5 7 9
0| 0.04170 | 0.04200 | 0.04210 | 0.04170 | 0.04210 | 0.04210
RF 20 | 0.04190 | 0.04200 | 0.04190 | 0.04200 | 0.04220 | 0.04240
40 | 0.04210 | 0.04170 | 0.04190 | 0.04210 | 0.04220 -

Table 48, Sensitivity of segmentation for CSF in FreeSurfer

0.04240

0.04220

0.04200

0.04180 BRFO

0.04160 " RF 20
RF 40
0.04140

0.04120
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Figure 76, Sensitivity of segmentation for CSF in FreeSurfer



On the other hand, specificity of CSF is very high which is reasonable. Because the number of
tissue voxels is really low, therefore the rest of voxels in the image will classify as background.

| Noise (%)

0.99993 0.99994 | 0.99990 | 0.99990 | 0.99990 | 0.99988
RF 0.99993 0.99994 | 0.99994 | 0.99989 | 0.99987 | 0.99989
0.99990 | 0.99991 | 0.99990 | 0.99989 | 0.99989 -
Table 49, Specificity of segmentation for CSF in FreeSurfer
0.99994
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0.99990
0.99988 ERFO
0.99986 = RF 20
W RF 40
0.99984
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Noise (%)

Figure 77, Specificity of segmentation for CSF in FreeSurfer

Finally misclassification rate for CSF did not show a good classification. It can be seen in figure
79 that there is a large difference between the ground truth and segmented image for CSF. The
error rate is around 95% for all noise levels and RF inhomogeneity values. However, again
performance of FreeSurfer is not influenced by noise or RF inhomogeneity. The results are
illustrated in table 50 and figure 78.

| Noise (%)

‘ 0.95401 | 0.95369 | 0.95354 | 0.95399 | 0.95354 | 0.95352
RF ‘ 0.95380 | 0.95368 | 0.95378 | 0.95363 | 0.95340 | 0.95319
‘ 0.95354 | 0.95399 | 0.95377 | 0.95353 | 0.95342 =

Table 50, Misclassification rate of segmentation for CSF in FreeSurfer
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Figure 78, Misclassification rate of segmentation for CSF in FreeSurfer

Figure 79, Segmented CSF using FreeSurfer (red), Brainweb phantom ground truth (green), planes: sagittal (left),
coronal (middle), transverse (right)

Again an average of sensitivity, specificity and MCR from each tissue class is used to obtain an
overall evaluation of FreeSurfer performance for tissue segmentation. The lowest error rate with
23% and 28% of error calculated for white matter and grey matter respectively and the highest
error rate is for CSF with 95% of error. The overall results are illustrated in table 51 and figure
80.

Table 51, Overall evaluation of tissue segmentation using FreeSurfer

FreeSurfer | Sensitivity | Specificity | MCR
WM 0.73962 0.98455 | 0.23624
GM 0.6739 0.9849 | 0.28687
CSF 0.04201 0.9998 | 0.95365
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Figure 80, Overall evaluation of tissue segmentation using FreeSurfer

4.2. Conclusion and discussion

The misclassification rate of tissue segmentation shows the amount of error in tissue
classification. By reviewing this feature for all three software packages, SPM8 shows 8% error in
classification of white matter while misclassification rate for this tissue type in FreeSurfer is 23%
and in FSL is 26%. The error in classification of grey matter for SPM8 shows even better output
with misclassification rate of 5% which is much better comparing to FreeSurfer with error rate of
28% and FSL with error rate of 25%. Finally misclassification rate of cerebrospinal fluid in
SPM8 shows 7% of error while the other two couldn’t manage to obtain good classification for
this tissue type at all. The error rate for FSL is 46% and FreeSurfer shows a high error rate of
95%. The reason of bad classification of CSF in FSL can be solve by decreasing the amount of
erosion in brain extraction step using BET, however, it will cause more errors in other tissue
types. The reason is by reducing erosion in BET some parts of skull and neck will be included as
brain and subsequently will be classified as brain tissues. Thus, the problem with FSL is
initiating from the first step which is BET. Regarding to FreeSurfer, as it mentioned before every
voxel which was considered CSF in the “aseg.auto_noCCseg.label intensities.txt” file were used
to create the CSF image. But, the resulted image (figure 79) showed a significant lack of CSF.
By considering the misclassification rate, SPM8 has the best output among these three tools.
Table 52 and figure 81 show the misclassification rates for three tissue classes in each software
package.



Tissue
type MCR
WM 0.23624
GM 0.28687
CSF 0.95365
WM 0.26561
FSL GM 0.25219
CSF 0.46561
WM 0.08084
SPM8 GM 0.05802
CSF 0.07341

Table 52, Comparison of misclassification rates between three software packages
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Figure 81, Comparison of misclassification rates between three software packages

Although SPMS8 has the lowest error rate among three evaluated software packages but
considering the capabilities of SPMS it is not going to be a good choice for developing a head
model. The reason is obvious! As it mentioned before SPMS is just able to extract three tissue
classes (WM, GM and CSF) which means subcortical segmentation and extracting skull and
scalp cannot be carried out using SPM8 while for creating a head model for EEG source
localization scalp and skull are crucial components.

FSL and FreeSurfer are able to do subcortical segmentation. However, lack of ground truth for
subcortical structures didn’t allow evaluation of their performance. Although, FreeSurfer can
extract more subcortical structures comparing to FSL and it shows better results in white matter
segmentation but it doesn’t have any tool for extracting skull and scalp. Moreover, the results of
grey matter are not as good as FSL and the error rate for CSF is very high. Thus, after all despite
of very good results of segmentation in SPM8 and high number of subcortical structures
extracted by FreeSurfer, they are not the best choice for creating a head model. Although, FSL is
not as good as SPM8 in segmenting three tissue classes (WM, GM, CSF), but it is much more



sophisticated. It can extract subcortical structures, inner skull, outer skull and scalp which are
important for developing a head model. And comparing to FreeSurfer it is much faster in every
possible way. Using FreeSurfer for a normal segmentation takes at least 8 hours with a good
computer while this time for the same results in FSL is around 30 minutes.

A question that may come into mind is, can we use these results together? The answer is yes! But
there are a lot overlaps between voxels from different tissue types which will decrease the
accuracy of the model. For instance figure 82 shows a combination of tissue segmentation from
SPMS together with skull and scalp extraction using FSL. By a comparison to the original image
in figure 83 which only uses FSL results, it can be see that there are a lot of overlaps between
CSF voxels and skull in figure 82. Although, regarding to ground truth the error must be in skull
and scalp extraction in FSL.

Figure 82, Segmented tissues by SPM8 together with extracted skull and scalp by FSL, planes: sagittal (left),
coronal (middle), transverse (right)

Figure 83, Segmented tissues and extracted skull and scalp by FSL, planes: sagittal (left), coronal (middle),
transverse (right)

A future work in this area can be done by using new features which will be included in all three
software packages and evaluating the results of them. For example SPM will include subcortical



segmentation in newer versions which makes it a very sophisticated tool for brain tissue
segmentation. However, considering the state of art FSL can be considered the most
sophisticated tool for the sake of developing the head model but of course SPMS is the best
software package for tissue classification between all three. FreeSurfer is able to extract many
structures inside the brain. However, lack of ground truth for subcortical structures didn’t allow a
good evaluation for FreeSurfer after all.



5. Terminology

1. Alzheimer disease is the most common form of dementia, which cause lapses of memory in
early stages and with progress of the disease patients will have severe communication
problems. However, Alzheimer disease is unique for every patient and different people may
experience it in different ways. [43]

2. By increasing the firing rate of neurons in the brain they need more oxygen and nutrients. As
a result the circulatory system will increase the amount of oxygenated blood on that area. The
oxygenated blood has different magnetic signature comparing to deoxygenated blood which
is due to magnetic characteristics of hemoglobin. fMRI uses this characteristic of blood
oxygen level to capture the activities in the brain. This signal is called blood oxygen level
dependent (BOLD). [44]

3. Dura mater is the outermost membrane of meninges and the thickest one. It is close to the
skull and consists of two layers: periosteal and meningeal. Its main function is to preserve
CSF inside the meninges sac. [45]

4. Arachnoid mater is between two other layers of meninges and sometimes considered as a
single structure with pia mater. [45]

5. Pia mater is the innermost layer of meninges which is in contact with surface of brain and its
function is to supply blood for the superficial areas of the cortex. [45]

6. Striatum (neostriatum or strate nucleus) is a subcortical structure and part of the basal nuclei.
its functions are mostly modulating and planning for movements in the body. However,
recent studies showed activation of striatum with respect to stimuli such as reward. It has two
subdivision nuclei: Caudate and Putamen. Caudate nucleus is mainly responsible for learning
and memory and putamen is responsible for learning and movement regulation. Striatum
contains a collection of neurons called Accumbens which are responsible for different
functions such as addiction, pleasure, fear, reward, aggression, laughter. [46], [47]

7. Pallidum (paleostriatum) is a subcortical structure and part of the basal nuclei. It is mostly
responsible for controlling motor functions. [48]

8. Substantia nigra is a subcortical structure and part of the basal nuclei. It is responsible for eye
movement, motor planning, reward, learning and addiction. [49]



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

subthalamic nucleus is a subcortical structure and a part of basal nuclei. Its function is
unknown. However, studies have shown an increase in its activities in response to a
rewarding stimuli. [50]

Pituitary gland (also known as hypophysis) is an important endocrine structure attached to
the bottom of hypothalamus via a stalk. It has several functions such as preservation of
growth, blood pressure, some aspects of pregnancy, production of breast milk, sex organ
functions, thyroid gland functions, metabolism, osmolarity regulation, water absorption in
kidneys and temperature regulation. [4] [51]

Hippocampus is a large structure in the brain which is part of limbic system and responsible
for long term memory and spatial navigation. [52]

Amygdala is a small almond-shaped structure inside the mid-brain and part of the limbic
system and responsible for processing and memory of emotional reactions. [53]

Anterior thalamic nuclei are a group of nuclei in front of the thalamus and part of limbic
system. Their function is not precisely known, however, studies have shown that they are
responsible for learning, memory and modulation of alertness. [54]

Limbic cortex is fraction of cerebral cortex and part of limbic system and responsible for
emotional reactions. [55]

Midbrain (or Mesencephalon) is the starting part of brainstem and consists of several nuclei.
Midbrain’s function is mostly related to coordinating motor system pathways. [56]

Pons is a part of brainstem and in the middle of two other structures of brainstem (see figure
4). pons comprises two nuclei, one of them is responsible for conducting signals from
cerebrum to cerebellum. The other one is responsible for a number of functions such as
posture, swallowing, taste, facial sensation and expressions, hearing, eye movement,
respiration, sleep, equilibrium and bladder control. [57]

Medulla oblongata is a part of brainstem responsible for vital functions such as heart rate,
breathing, blood pressure, cardiac and respiratory systems. [56]

Angular momentum is a physical property of a particle which defined as a vector quantity to
describe the position of particles in a physical system. [58]

Magnetic moment is a physical property of a particle to describe its tendency to align with a
magnetic field. [59]



20. Rotating about the vertical axis of the nucleus. Precession always occurs opposite the
direction of static magnetic field. [6]

21. MR images are inhomogeneous in terms of voxel intensities. Bias field correction creates a
version of the image with uniform voxel intensities for all types of tissues which is important
for subsequent usages such as tissue classification based on voxel intensities. [37]
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