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Abstract 
 
 Full brain segmentation has been of significant interest throughout the years. Recently, 

many research groups worldwide have been looking into development of patient-specific 

electromagnetic models for dipole source location in EEG. To obtain this model, accurate 

segmentation of various tissues and sub-cortical structures is thus required. 

 In this project, the performance of three of the most widely used software packages 

for brain segmentation has been analyzed: FSL, SPM and FreeSurfer. For the analysis, real 

images from a patient and a set of phantom images have been used in order to evaluate the 

performance r of each one of these tools. 

Keywords: dipole source location, brain, patient-specific model, image segmentation, FSL, 

SPM, FreeSurfer. 
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1. Introduction 

 In recent years, the study of the brain behavior has produced an increasing interest in 

the location of the source of the electrical signals generated. It is important in the research of 

some brain diseases (such as epilepsy) to know with more accuracy about the nature of the 

disease and the exact location of where the problem is in the brain. 

 Some of these diseases are studied using tools such as electro-encephalography (EEG), 

which is able to measure the signals generated in the brain by putting some electrodes in the 

patient’s head. In this sense, EEG technique can be invasive or non-invasive. The invasive 

method needs surgery and consists in locating the electrodes directly in the patient brain. The 

non-invasive method, on the other hand, aims to locate the electrodes over the patient head. 

It is straightforward to conclude that the non-invasive method is more sensitive to the external 

noise and that the invasive method could be dangerous for the patient. In addition, the 

location of the signal is much more accurate when using the invasive method. 

 However, the invasive method should only be used in that cases when there are no 

other options. For that reason, many researchers in the world are working in order to locate 

accurately the exact location of the signals received by using non-

invasive EEG. 

 In the context of dipole source localization, nowadays, a 

spherical model for the human head and brain is being used in most 

studies (see Figure 1). In practice, however, people do not have 

spherical heads and the head size is different for everyone, there are 

many in-accuracies when trying to find out the exact point in the brain 

where one signal has been generated. For that reason, it is necessary 

to have a patient-specific model which let locate exactly the point 

where signals are generated, by using the information acquired with the electrodes located 

over the patient head (inverse problem).  

 Now the need of having a model for the patient head 

and brain has been set, it is necessary to build this model. For 

that purpose, we have to obtain the information from inside the 

patient head with a non-invasive technique. Magnetic 

Resonance Imaging (MRI) is a good alternative, because it lets 

obtain images of the patient head and brain, and it doesn’t 

produce secondary effects. Thus, we need to apply some 

methods which allow obtaining as much information as possible 

from inside the patient head in order to perform its reconstruction. In [1] we can see that the 

most important parts which should be extracted from the brain are the scalp, bone, cerebro-

spinal fluid, grey matter and white matter. 

 In the last few years, many tools for reconstructing the human brain from magnetic 

resonance images have been developed. These tools have a very high complexity and needed 

many years for their development. In addition, they can obtain good results for our objective, 

so it would not be very useful to start developing new software and it would be better to use 

Figure 1. Spherical model. 

Figure 2. Patient-specific model. 
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one of them. The goal of this project is, therefore, to analyze the performance of these tools to 

obtain the best possible reconstruction of the patient head. 

 For this purpose, we will first make an introduction about the basics of MRI of how to 

obtain images. This could help us to better understand the nature of the images we have as 

input. After that, a brief explanation of what to segment an image is will be shown and the 

most popular brain segmentation tools will be analyzed in detail. 
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2. Magnetic resonance imaging 

Magnetic Resonance Imaging (MRI) is a technique used to obtain high quality images 

of the inside of the human body. It is based on the radio-frequency waves that the protons in 

the examined tissues emit when exposed to an external magnetic field. Each signal is then 

processed by advanced computer programs, which transform it into high quality images. 

Unlike conventional x-ray systems and procedures of nuclear medicine, this kind of technique 

does not emit ionizing radiations. 

In order to produce images without using ionizing radiations, the patient is undergone 

to a magnetic field thousands times bigger than the one produced by our planet. Thus, a 

powerful magnet attracts the protons inside the (usually) hydrogen atoms in the human 

tissues. These protons, when stimulated with radio-frequency waves, get out from their 

normal alignment. However, when this stimulus is stopped, protons come back to their original 

position, releasing energy that we can transform in radio signals in order to detect them with a 

computer. Then, we can transform these signals in images which describe the shape of organs. 

Magnetic resonance imaging is based on a physical phenomenon called nuclear 

magnetic resonance, which is related to the nuclei of atoms. Since it is composed by neutrons 

and protons, a nucleus has a positive charge. Moreover, all nuclei with an odd atomic number 

or mass number have an angular momentum, so they are said to have spin. These nuclei which 

have spin are the ones we consider in this technique. The most used nuclei for magnetic 

resonance imaging are 1H, 13C and 19F, because they are the most relevant in biological 

systems. 

We can think of a nucleus with spin as a magnetic moment 

vector that causes the nucleus to behave just like a magnet, with one 

north pole and one south pole. We can explain this fact because a 

nucleus has a positive charge and, if it is spinning around an axis, then 

we have circulating charges which produce a magnetic field. We can 

calculate the magnetic moment vector with the following expression: 

𝜇 = 𝛾Φ 

where 𝛾 is the gyromagnetic ratio in radians per second per Tesla. 

In normal conditions, all nuclei are randomly oriented in a given sample. Even though 

each nucleus has a microscopic spin, the total macroscopic spin has no magnetic field, since 

each microscopic spin cancel each other. However, when applying an external magnetic field, 

all the microscopic spins align with this, 

causing the spin system to become 

magnetized. For each one of the nuclei, 

there are a high energy configuration and a 

low energy configuration, depending on the 

poles alignment, as seen in Figure 4  and 

Figure 5 respectively. 

Figure 3. Nuclei spinning 
around it axis. 

Figure 4. Low energy state. Figure 5. High energy state. 
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The applied external field can be represented as a B0 vector, which can be calculated 

with the product of the magnitude of the magnetic field and a vector pointing in the positive Z 

direction within a fixed frame. 

𝐵0 = 𝐵0 ∙ 𝑧  

Each one of the nuclei we consider in MRI has a spin quantum number, which takes a 

positive value multiples of ½. For this systems, also called spin ½ systems, there are two 

possible orientations for the microscopic magnetizations: 54 degrees off 𝑧  (low energy state) 

or 126 degrees off 𝑧 , with a preference for the low energy state. In addition, the fact that the 

orientation of the magnetic moment vector µ around the Z axis is random together with 

everything exposed above make the system to become magnetized in the 𝑧  direction. Thus, 

this system can be modeled with a magnetization vector M, which is the sum of all the 

individual nuclear magnetic moments. 

𝑀 =  𝜇𝑛

𝑁

𝑛=1

 

 If the applied external magnetic field is constant for a period of time, the 

magnetization vector will reach an equilibrium value M0 parallel to B0: 

𝑀0 =
𝐵0𝛾

2ℏ2

4𝜅𝑇
𝑃𝐷  

where 𝜅 is the Boltzmann’s constant, T is the temperature in Kelvin and PD is the proton 

density. Here we can point that the larger is M0, the larger is the received NMR signal. 

 As we have seen, the magnetization vector M is a 

function of time and can be defined in a three-dimensional 

coordinate system. So, as occurs with the microscopic angular 

momentum, we can define an angular momentum J 

associated to the system, which can be related to the 

magnetization as follows: 

𝑀 = 𝛾 𝐽 

 If we apply a time-varying external magnetic field, we can set a relation between the 

external field, the magnetization vector and the angular momentum associated with the 

magnetization vector: 

𝑑𝐽(𝑡)

𝑑𝑡
= 𝑀(𝑡) × 𝐵 𝑡  

 From this expression, we can derive the equations of precession, which can be written 

as: 

𝑀𝑥 𝑡 = 𝑀0 sin 𝛼 cos⁡(−2𝜋𝜈𝑜𝑡 + 𝜙) 

𝑀𝑦 𝑡 = 𝑀0 sin 𝛼 sin⁡(−2𝜋𝜈𝑜𝑡 + 𝜙) 

Figure 6. Precession. 
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𝑀𝑧 𝑡 = 𝑀0 cos 𝛼  

where 𝜈𝑜  is the Larmor frequency in hertz and can be calculated as 𝜈𝑜 = 𝛾𝐵0. The precession 

of the magnetization vector around the external magnetic field 𝑧  axis can be shown in the 

Figure 6. 

 We could think that the Larmor frequency should be constant for a spin system. 

However, since the magnetic field is not constant due to magnetic field inhomogeneities, 

magnetic susceptibility and chemical shift, it’s not really constant. 

 In Figure 6 we can define two components for the magnetization vector. We can call 

longitudinal component to the one that is oriented in the axis defined by the external magnetic 

field (𝑀𝑧), and transverse component to the other component, which is oriented in the XY 

plane (𝑀𝑋𝑌). We can see the transverse magnetization as a complex number defined by 

𝑀𝑋𝑌(𝑡) = 𝑀𝑋(𝑡) + 𝑗𝑀𝑌(𝑡), where the phase is given by  𝜙(𝑡) = 𝑡𝑎𝑛−1 𝑀𝑋 (𝑡)

𝑀𝑌 (𝑡)
. 

 If we place a coil of wire outside the sample, the rotating transverse magnetization will 

induce a voltage (Faraday’s law), which can be measured and recorded for use in MRI. If we 

assume that the object is homogeneous, the field produced by the coil when excited is uniform 

and the time derivative of the z component of magnetization can be ignored, we can reach the 

following expression for the voltage induced in the coil: 

𝑉 𝑡 = −2𝜋𝜈0𝑉𝑠𝑀0 sin 𝛼𝐵𝑟 sin⁡(−2𝜋𝜈0𝑡 + 𝜙 + 𝜃𝑟) 

 Sometimes, it’s better to analyze the evolution of the magnetization vector in a frame 

of reference which rotates at the Larmor frequency. So, the new rotating vector would be 

stationary in this new frame, called rotating frame. Its coordinates could be defined as follows: 

𝑥′ = 𝑥 cos 2𝜋𝜈0𝑡 − 𝑦 sin 2𝜋𝜈0𝑡  

𝑦′ = 𝑥 sin 2𝜋𝜈0𝑡 + 𝑦 cos 2𝜋𝜈0𝑡  

𝑧′ = 𝑧 

Consequently, the magnetization vector can be expressed as  

𝑀𝑥 ′ 𝑦 ′  𝑡 = 𝑀0𝑠𝑖𝑛𝛼 𝑒𝑗𝜙 . 

 As explained before, for M to precess it has to be oriented 

away from B0. Thus, we can use a RF current through an antenna 

placed surrounding the sample, which causes the systems to be 

excited. In this way, we can generate circularly polarized RF 

excitations using quadrature RF coils. The field generated can be 

modeled as follows: 

𝐵1 𝑡 = 𝐵1
𝑒 𝑡  𝑒−𝑗(2𝜋𝜈0𝑡−𝜑)       (Fixed frame) 

𝐵1 𝑡 = 𝐵1
𝑒 𝑡  𝑒𝑗𝜑                   (Rotating frame) 

Figure 7. Motion of 
Magnetization vector. 
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 With this approach, the magnetization vector will precess in the y’-z’ plane (forced 

precession). Adding this precession to the one around the Z axis, we have that the evolution of 

M(t) is a spiral as shown in Figure 7. There, the tip angle and phase depend on the amplitude 

and duration of 𝐵1 𝑡 . So, if we turn off the pulse when M has precessed into the transverse 

plane, the pulse will be called a 
𝜋

2
 pulse. Otherwise, if we turn off the pulse when M has 

precessed along the –z axis, we call it a 𝜋 pulse.  Anyway, the final tip angle can be calculated 

as 𝛼 = 𝛾  𝐵1
𝑒 𝑡 𝑑𝑡

𝜏𝑝
0

. 

 After a α-pulse, M will precess because of the presence of B0. But this precession is not 

infinite; there are two relaxation processes that cause the signal to vanish: 

 Transverse relaxation: is caused by the perturbations in the magnetic field due to the 

closest spins. Because of these perturbations, a dephasing appears so that there is a 

loss in the coherence of the wave produced by the spin system and the signal is lost. 

The received signal is called Free Induction Decay (FID) and decreases exponentially 

with a time constant T2, which is different for each tissue.  

 Longitudinal relaxation: it’s related to the recovery of Mz(t) to its equilibrium value M0. 

It can be modeled as an increasing exponential with a time constant T1. 

Because of the dephasing between spins 

due to transverse relaxation, another kind of signals 

called spin echoes appear. These are signal 

generated by the transverse spin while recovering 

their coherence, followed by a deliberate π-pulse. 

The time between the 
𝜋

2
-pulse and the π-pulse is 

what we call echo time. We can control it because 

the difference in time between the application of 

both pulses is exactly the half of the echo time. 

It is possible to use an equation, called Bloch equation, which let us predict the 

behavior of the magnetic spin system: 

𝑑𝑀(𝑡)

𝑑𝑡
= 𝛾𝑀 𝑡 × 𝐵 𝑡 − 𝑅(𝑀 𝑡 − 𝑀0) 

where R is called relaxation matrix and can be defined as 𝑅 =  

1/𝑇2 0 0
0 1/𝑇2 0
0 0 1/𝑇1

 . 

 We can use three parameters in order to distinguish different tissues when we want to 

image a sample with more than one tissue: 

 Proton density: the image intensity is proportional to the number of hydrogen nuclei in 

the sample. We start with the sample in equilibrium by applying a RF pulse and image 

before transverse relaxation. TR can be defined as the time between excitations and 

must be long enough to make sure the system to be in equilibrium before the pulse. 

It’s better to use 
𝜋

2
-pulses to have a larger signal. 

Figure 8. Generating spin echoes. 
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 T2-weighted contrast: echoes can also be used to obtain images, taking profit of the 

different T2 for each tissue. We have to set a TE almost equal to T2 for the tissues 

imaged. 

 T1-weighted contrast: images are obtained by exciting the tissues repeatedly before 

they can recover their longitudinal magnetizations. If we set TR = T1, the transverse 

component vanishes but the longitudinal component doesn’t. By applying 
𝜋

2
-pulses, we 

can detect a larger signal for those tissues with a shorter T1. 

 In this project, we have used T1 and T2-weighted images to evaluate the accuracy of 

the software packages we have studied. Therefore, our starting point is a set of magnetic 

resonance images which have been used to perform brain segmentation. 
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3. Brain images segmentation 

 Once we have obtained all data we need from the patient brain, the next step is about 

using these data to extract the desired information. At this point, it is very important to have a 

clear idea about what outcome we really want to obtain.  As we will see later, the selection of 

the segmentation method (and the software to use) will depend on the results we need. 

Since all we have as input is a series of images of the brain, we should define 

accurately what an image is. An image can be defined as a collection of values in a 2-

dimensional or 3-dimensional space. Thus, when talking about magnetic resonance images, 

theses values represent radio-frequency signal intensities. In addition, due to all images are 

obtained in a discrete domain, we can call the position of every one of these values as pixel (in 

2D imaging) or voxel (in 3D imaging). 

 Image segmentation is about partitioning an image in non-overlapped regions, which 

are homogeneous regarding to a specific characteristic such as an intensity level or a texture. 

Therefore, if the image domain is considered to be I, then the segmentation problem falls on 

finding out a set 𝑆𝑘 ⊂ 𝐼 which can be used to reconstruct the I image so that: 

𝐼 =  𝑆𝑘

𝐾

𝑘=1

 

where 𝑆𝑘 ∩ 𝑆𝑗 = 𝜙 , k ≠ j and all points in Sk are connected. Ideally, a good method for brain 

segmentation finds those sets which correspond to different regions or structures that form 

the brain. 

 When removing the restriction for all points of the same set to be connected we talk 

about classification instead of segmentation, and sets are also called classes. To determine the 

number can be a very complex task and sometimes it is set basing on previous knowledge 

about the images. Furthermore, the process of assigning one label to a segment can be carried 

out separately from the segmentation process and it’s called labeling. 

 At this point, we should ask ourselves about which sets we could want to identify in 

brain images. As we concluded from the previous chapters, it is very important for us to 

distinguish between brain white matter, grey matter and cerebrospinal fluid. It would also be 

desirable to extract the bone and skin/scalp from the patient brain images so that the patient 

specific model can be built. 

 Since it can be very difficult to obtain accurate brain tissue segmentation, there has 

been an intense research in this area in the last two decades. As result, many universities and 

research groups worldwide have developed different software packages which can perform 

brain segmentation and so extract tissues and structures from patient images. In the next 

sections we will briefly analyze how the three most popular software packages work: FSL [2], 

SPM [3] and FreeSurfer [4]. 
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3.1. FSL 

 FSL is a software package developed by members of the Oxford Centre for Functional 

MRI of the Brain (Oxford University) which is composed by a series of independent tools that 

can be used separately or together. Although FSL has many different libraries and tools, in this 

section we are only going to focus in these ones which are useful for our goal of segmenting 

between the different tissues that can be found in a human brain. 

 In order to differentiate several tissues in magnetic resonance brain images, we have 

to perform some steps which are described below. 

3.1.1. Brain Extraction 

 When acquiring a brain MR image, we have a result similar to the one shown in Figure 

9 and Figure 10. 

 

Figure 9. T1-weighted image: axial(top-left),sagittal(top-right) and coronal(bottom). 

 

Figure 10. T2-weighted image: axial(top-left),sagittal(top-right) and coronal(bottom). 

In both T1-wegithed and T2-weighted images we can see all structures and elements in 

the head of the patient, not only the brain.  Therefore, it is necessary to obtain only the region 

of interest from these images (the brain in this case). 
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In order to separate the brain from the other 

structures, FSL supplies a brain extraction tool (also called BET). 

The main advantage of using this kind of tool is that everything 

can be automated, so that we only have to wait until the 

process finishes. Furthermore, since every brain image can be 

different, there are some parameters which can be tuned to 

have a better result. 

The main steps performed by the brain extracted tool in FSL are the following:  

1. Triangular tessellation of icosahedrons. 

2. Split each triangle until achieve required complexity. 

3. Surface deformation to fit the brain surface. 

 This algorithm takes as input the T1 brain image and uses a brain model to try to fit the 

mesh for extracting the brain to the image. Although the results of the brain extractions use to 

be good, sometimes parts of the non-brain structures remain. However, it’s not very important 

for our purpose that is to segment different tissues in the brain. 

 In addition, the brain extraction tool is also able to generate a model of the skin and 

skull from the patient images. This point is very important because, as we explained in the 

chapters before, these are very important parts that we need to know in order to build the 

patient specific model. 

3.1.2. Image registration 

 Sometimes, when we are going to work with different images from the same patient, 

we need to align them so that we can work with them altogether. Furthermore, we can have 

misaligned slices in the same T1 or T2 image, so we should also align them in that case. To 

achieve that, FSL has two tools called FLIRT (FMRIB’s Linear Image Registration Tool) and FNIRT 

(FMRIB’s Non-linear Image Registration Tool). 

 The first one, FLIRT, is used to align images or slices only by using linear 

transformations in 2D and 3D (with several degrees of freedom) basing only in pixel/voxel 

intensities. Here, the registration process is finished 

when finding a global maximum of a similarity 

function. However, it can take too much time to 

find a global maximum, so methods to find a local 

maximum are normally used. In the case of FLIRT, 

instead of looking for a maximum for the similarity 

function, it looks for the minimum of the cost 

function.  

 One important characteristic of FLIRT is that 

we can set up the method we want to use for 

finding this minimum, i.e. least squares, correlation 

ration, normalized correlation… So, once we chose 

this method, the tool will try to find this cost 

Figure 11. Brain mesh. 

Figure 12. FAST’s Gaussians model. 
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function minimum by performing repeated trials and searching for the best solution. It is 

important to have a starting point close to the global minimum, so that the algorithm can 

converge faster. Moreover, this tool uses low-resolution versions of the initial images to 

increase the speed. Thus, FLIRT provides a trade-off between speed and robustness. It is 

important to highlight that the input of FLIRT should be a brain extracted image instead of a 

normal T1 or T2 image.  

 On the other hand, FNIRT let us align images by using not only linear transformations. 

The way it works is similar to FLIRT, but it also tries to perform some non-linear 

transformations to reach the minimum of the cost function. 

3.1.3. Brain tissue segmentation 

 FSL also has a tool called FAST (FMRIB’s Automated Segmentation Tool), which let us 

perform tissue segmentation over the brain images. The input of this tool consists on brain-

extracted images, which can be obtained as the output of the FSL’s BET. 

 FAST is able to perform 

segmentation basing on an intensity model 

(histogram based), viewed as a mix of 

Gaussians. As they can be overlapped, FAST 

uses a probability model. In addition, this 

overlapping is even worsened because of 

the bias field (RF inhomogeneities), 

blurring, low resolution, head motion and noise. Specially, it is important to remove the bias 

field, since it causes intensity variations across space. In the Figure 13 we can see the effect of 

the bias field. 

 FAST is very robust to noise, because it does not only use the information of one voxel 

to classify it, but also uses its neighbors’ information. Because of this, there must be a balance 

between believing the information from the pixel itself, or from its neighbors. Therefore, the 

final probability of a voxel to be part of a tissue can be computed as: 

𝐹𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = log 𝑝 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 +  𝛽 𝑙𝑜𝑔  𝑝(𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑠) 

 As output, FAST can obtain one probability volume model for every tissue, and also a 

binary segmentation instead of a probability volume model. 

 As a summary, we can see the behavior of the FAST algorithm as a series of steps as 

shown below: 

 Initial segmentation (using tree-K-means) 

 Iterate: 

o Estimate bias field. 

o Estimation segmentation. Iterate: 

 Update segmentation  (intensity  + neighbors). 

 Update tissue class parameters. 

o Apply partial volume model: 

Figure 13. Bias field effect. 
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 MRF on mixed type (how many tissues) 

 PV estimation. 

3.1.4. Sub-cortical segmentation 

 Apart from obtaining segmentation between white, grey matter and CSF, it is possible 

to extract some of the sub-cortical structures which are present in the human brain, as 

hippocampus or brain stem. This can be performed with FSL using FIRST (FMRIB’s Integrated 

Registration and Segmentation Tool). FIRST is able to extract 17 different brain sub-cortical 

structures by using a training model of 336 complete data set, which have been segmented 

manually by experts. So, the input of the algorithm must be a T1-weighted image, which is 

then compared with the data models. 

 Since all training data have been registered to a standard coordinates space (MNI-152), 

the first step of the algorithm is to align the input image to this space. Once it’s done, it tries to 

fit every structure model (meshes) to the image and a boundary correction is applied finally. 

Since this project it is not very focus on sub-cortical structures segmentation, we will not 

explain too much about this. 

3.2. SPM 

 SPM (Statistical Parametric Mapping) is a software package that works under MatLab 

and it’s designed to perform segmentation between grey matter, white matter and CSF in a 

human brain. It’s based on a mixture model clustering algorithm which has been extended to 

include probability maps and corrections for image problems common in MRI. 

 This tool is working under the following assumptions about the brain composition and 

distribution: 

 Brain images are composed by tissue types (clusters) from which every voxel can be 

drawn. 

 Voxel intensities can be modeled as a normal distribution. 

 We know the number of classes in which voxels can fit. 

 Some knowledge about special distribution in form of probability images obtained 

from the Montreal Neurological Institute. 

 The intensity and noise associated to each voxel has been multiplied with a smooth 

scalar field 

Since there are many unknown and related parameters, we need to know some 

information about some of them to find the value of the others. That’s why SPM uses an 

iterative algorithm. It starts with a value of 1 for the modulation field and it also gives starting 

probabilities for every voxel to belong to grey matter, white matter or CSF, basing on prior 

probability maps. Thus, the algorithm tries to converge in each iteration by assigning new 

values to the cluster parameters by means of the values computed in the iterations before. 

 In order to make the segmentation between different tissues, SPM performs the 

following stages iteratively: 
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1. Estimating the cluster parameters: 

a. Compute the number of voxels belonging to each class from the probability 

values of every voxel and the multiplicative correction estimation (basing on 

probability maps in the first step). 

b. Later, mean and variance of voxel intensities for each cluster are computed. 

2. Recalculating the belonging probabilities using the parameter values obtained before 

and the prior probability images. The fact of having this prior probabilities information 

will make the algorithm to converge faster. 

3. Estimating the modulation function:  to reduce the number of parameters describing 

an intensity modulation field, it is modeled by a linear combination of low frequency 

discrete cosine transform basic function. 

3.3. FreeSurfer 

 FreeSurfer is a set of tools developed to study the brain cortical and sub-cortical 

anatomy. When focusing on cortical anatomy, the software can build a model of the boundary 

between white matter, grey matter and pial surface. As long as we know these surfaces, the 

software is also able to obtain information about surfaces, volumes, curvature, thickness, etc. 

 The software let us study the brain anatomy by means of two different streams: 

 Surface-based stream. 

 Volume-based stream. 

 The surface-based stream pipeline is performed by several stages, which are listed 

below: 

1. An affine registration with a Talairach atlas [5] [6] is performed: this allows FreeSurfer 

set some seed point which are used in later stages. 

2. B1 bias estimation by measuring variations in white matter intensity. This estimation 

can be done by using the changes in the intensity of the white matter across the 

volume. The white matter points used to measure these variations are chosen basing 

on their location on Talairach space as well as their intensity and its neighbors 

intensity. 

3. Each voxel intensity is divided by the estimated bias field, as a attempt to remove its 

effects. 

4. The skull is stripped by using a deformable template model. 

5. All voxels are classified in white matter and other tissues basing on their intensity and 

their neighbors intensity. 

6. Basing on the Talairach space, both brain hemispheres are separated with cutting 

planes. 

7. Finally, the surface between grey and white matter, and the pial surface are generated 

and refined, as well as the brain surface. 

 Once the surface-based stream has finished, FreeSurfer has a volume-based stream 

designed to preprocess MRI volumes and label sub-cortical tissue classes. The stream is 

composed by the following stages: 
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1. Registration a Talairach space in order to perform a more accurate segmentation. Both 

cortical and sub-cortical labeling use the same algorithm so that the final result is 

computed by using the two outcomes. The atlas is built from a training set of subjects’ 

brains which have been labeled by experts. 

2. Initial volumetric labeling: labeling is performed by using a probabilistic model, setting 

value for each point basing of the training data set.  

3. B1 bias correction: the algorithm used here is different to the one used in the surface-

based stream. 

4. High-dimensional non-linear volumetric alignment to Talairach atlas, to improve 

previous results. 

5. An iterative algorithm is performed to compute final probabilities for every voxel until 

the probabilities do not change between two consecutive iterations.  

 As we can deduce from all the steps described above and the outcome we have as 

output, FreeSurfer is more oriented to study the anatomy of the brain than to distinguish 

between grey matter, white matter and CSF. 
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4. Methodology 

 Since the goal of this thesis, as explained before, is to evaluate different software 

packages in order to have an accurate segmentation, we need to have a ground truth which 

can be used to assess the quality of a performed segmentation. For that reason, we have 18 

phantoms obtained from Brainweb [7] with a known distribution of white matter, grey matter 

and CSF. Together with the outcome from a segmentation performed by a software package, 

we can know accurately how good it is. 

 In order to compare the segmentation results, we have used MatLab together with a 

library created by Jimmy Shen [8] that let us load Nifti format images. As long as we can load 

the image data, we just have to compare the values of 3-D matrices to measure the difference 

between two images. In that way, we are able to count the total number of voxels in the image 

and, for every tissue, the true-positives, false-positives, true-negatives and false-negatives. The 

concepts can be explained as follows:  

 True-positive: voxel of a tissue classified as part of this tissue. 

 False-positive: voxel which is not part of a tissue but is classified as if it was. 

 True-negative: voxel which is not part of a tissue and is right classified. 

 False-negative: voxel which is part of a tisse and is classified as if it was not. 

 However, only to count the number of voxels well or bad-classified is not enough. 

Thus, we need to use some parameters which can give a more accurate idea of how good a 

segmentation process can be. For this reason, we have used 3 different parameters: specificity, 

sensitivity and f-factor [9] [10].  

 Specificity can be defined as the probability of classifying properly one voxel which 

doesn’t belong to a tissue. It can be calculated as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 On the other hand, sensitivity can be defined as the probability of classifying properly 

one voxel as part of a tissue. It can be computed as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 However, sometimes it is difficult to compare the classification made by a software 

package if we have more than one parameter. To solve that, we only define the f-factor as the 

harmonic mean of specificity and sensitivity: 

𝐹 𝑓𝑎𝑐𝑡𝑜𝑟 = 2 ∙
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ∙ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 If the f-factor is close to one, then the classification will be better than if it is close to 

zero. 
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 Finally, in addition to these three measures, we have also used an error ratio. This has 

been used because we have three different classes and it would be desirable to have one 

measure which lets have a general idea for the result. In this sense, the error ratio has been 

computed as: 

𝐸𝑟𝑟𝑜𝑟 = 1 −
𝑤𝑒𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑣𝑜𝑥𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠
 

where “well classified voxels” are the voxels which have been classified right when comparing 

with the ground truth. 

 But this error ratio can be used in two different ways: 

 We could consider all the voxels in the image so that “number of voxels” is the total 

number of voxels in the images (the number of voxels in the ground truth is the same 

than in the segmented images, because they have the same size and coordinate 

space). 

 We could use only those voxels which are not empty (which are not the background in 

either the ground truth or the segmented images). This last approach will probably 

give us a better idea of the real performance for a segmentation method. 

 However, before comparing all segmentation results from different softwares, we first 

need to understand how they work and how we can obtain the best possible results with each 

one of them. Thus, the first part of the experiments we have carried out is focused on trying to 

set a standard procedure to perform segmentation with each set of tools, as can be seen 

below. 

4.1. FSL 

 FSL has different tools in order to perform the steps which are necessary in the 

segmentation process. Thereby, we are going to explain the way we need to use each one of 

them. We have only used all these tools from a command-line console because, even though 

some of them have graphical user interfaces (GUI), we cannot use all available options from 

these interfaces. 

4.1.1. Brain extraction 

 The first step in the process is to extract the brain from the patient MR images we have 

obtained. Thus, the “BET” tool allows doing this and supplies a list of options and configurable 

parameters that can be used to improve the results. All this parameters and their possible 

values can be found in the FSL’s official documentation. Here we are not going to focus in all 

these parameters, but in those ones we have considered are important for our goal. 

 In addition to the configurable parameters, “BET” also let us change its functionality 

with a list of mutual exclusive options. Therefore, if we want to specify a working mode and 

some configurable parameters values, then we have to write in a command-line console the 

following: 

bet input output <mode> <parameters> 
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 In Table 1 and Table 2, we can see a list of working modes and parameters we have 

changed in order to obtain a more accurate result for the brain extraction. 

Mode Description 

-R This option runs more "robust" brain centre estimation; it repeatedly calls bet2, 
each time using the same input image and the same main options, except that the -
c option (which sets the starting centre of the brain estimation) is set each time to 
the centre-of-gravity of the previously estimated brain extraction. The primary 
purpose is to improve the brain extraction when the input data contains a lot of 
non-brain matter - most likely when there is a lot of neck included in the input 
image. By iterating in this way the centre-of-gravity should move up each time 
towards the true centre, resulting in a better final estimate. The iterations stop 
when the centre-of-gravity stops moving, up to a maximum of 10 iterations. 

-B This attempts to reduce image bias, and residual neck voxels. This can be useful 
when running SIENA or SIENAX, for example. Various stages involving FAST 
segmentation-based bias field removal and standard-space masking are combined 
to produce a result which can often give better results than just running bet2. 

-A This runs both bet2 and betsurf programs in order to get the additional skull and 
scalp surfaces created by betsurf. This involves registering to standard space in 
order to allow betsurf to find the standard space masks it needs. 

-A2 <T2> This is the same as -A except that a T2 image is also input, to further improve the 
estimated skull and scalp surfaces. As well as carrying out the standard space 
registration this also registers the T2 to the T1 input image. 

Table 1. BET working modes. 

  

Option Description 

-f <f> Fractional intensity threshold (0->1); default=0.5; smaller values give larger brain 
outline estimates 

-g <g> Vertical gradient in fractional intensity threshold (-1->1); default=0; positive values 
give larger brain outline at bottom, smaller at top 

-c <x y z> Centre-of-gravity (voxels not mm) of initial mesh surface. 
Table 2. BET options. 

 As long as we have chosen the working mode and the values for those parameters 

which are configurable, we can run the brain extraction program and wait for the results. 

4.1.2. Image registration 

 Once we have the brain-extracted images, we should be able to start the segmentation 

process. However, if we want to use more than one input image (as T1 and T2 for example), 

we will need to align them to the same coordinate space. 

 FSL let us align two different images from the same subject by using the “FLIRT” tool. 

We have used this tool in order to align T1 and T2 images from the same subject. It can be 

used from a command-line console by typing the following: 

flirt -in input -ref reference -out output -omat transformation.mat <-dof X> 
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where “input” should be the image we want to align, “reference” is the reference image we 

want to use and “transformation.mat” is the filename for the saved ASCII transformation 

matrix. 

 FSL gives some low-resolution images that let us align images to standard coordinate 

spaces, as MNI152 for example. Therefore, we should align both T1 and T2 images to the same 

space in order to use them in the segmentation process. 

4.1.3. Brain tissue segmentation 

 Once we have extracted the brain from the images we want to use for segmentation 

and we have aligned them (if we have more than one), we can start the segmentation process. 

For that purpose we will use the “FAST” tool supplied by FSL. This tool can be used just by 

writing the following in a command-line console: 

fast [options] file(s) 

where “files(s)” is the list of input images we are going to use to perform segmentation. The 

options we have used in this project are listed below: 

Option Description 

-t <t> Indicates if the input is a set of T1-weighted images (1), T2-weighted (2) or proton 
density (3).  

-o <o> Sets the base name for the output. 

-n <n> Sets the number of classes for segmentation. 

-B Estimated bias field as output. 

-b Bias corrected image as output 

-g Gets a separate binary file for each tissue class as output. 

-H <h> MRF beta value for main segmentation phase (increasing this gives spatially 
smoother segmentations) 

Table 3. FAST options. 

 In the results chapter we will analyze how these parameters can affect to the 

segmentation process outcome. In this case, since we want to distinguish between grey 

matter, white matter and CSF, the number of classes we are going to work with is three (one 

for each tissue). 

4.1.4. Sub-cortical segmentation 

 In the case we also want to obtain a sub-cortical segmentation from the patient’s 

brain, we can use the “first” tool. For that purpose, we have to write in a command-line 

console the following: 

run_first_all [options] –i input –o output 

where we have chosen the following option: 

Option Description 

-b Input is already brain-extracted. If we don’t use this option, the “bet” tool is called 
so that the brain is extracted.  

Table 4. FIRST options. 
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For a complete list of available options, they can be all consulted in the official FSL’s 

documentation. As output, we will have one image per sub-cortical structure segmented. 

4.2. SPM 

 As we highlighted in chapters before, SPM is able to perform segmentation between 

brain tissues (i.e. grey matter, white matter and CSF). Since this package is written and 

designed to run in MatLab environment, we have to run the “spm.m” file to open the program. 

Unlike FSL or FreeSurfer, SPM  only has a graphical user interface, which has to be used to 

perform all steps in the segmentation process.  

 Same as FSL , SPM also has some options that let us re-align those images we want to 

use for segmentation. However, the segmentation process in SPM does not allow performing 

segmentation over more than one image yet. Because of that reason, the only goal of image 

re-alignment is to correct movements in time-series images (4D images). In our case, since we 

don’t have this kind of image, we will skip this step. 

 Furthermore, although FSL has different tools for extracting the brain and for 

performing segmentation, SPM integrates everything in the same process. Therefore, we 

cannot see and correct the brain-extracted image, but we have to perform all segmentation 

and then check the results. 

 Thus, once we have started SPM in “fmri” mode, we need to press the “segment” 

button inside the “spatial pre-processing” box. After that, one configuration window will pop 

up, where we will be able to choose the values of the configurable parameters for the whole 

process. Between these options we can find the following: 

Option Description 

Data In this option we have to choose the input file. 

Output files Here we can choose what king of output we want for grey matter, white 
matter and CSF. The possible options are “native”, “modulated” and/or 
“unmodulated”. The native output gives the segmentation results in the 
same space as the input image. The modulation option is an attempt to 
compensate for the effect of spatial normalization (volumetric differences 
as result of warping an image to match a template). Finally, the 
unmodulated option uses a kind of smoothing procedure to try to correct 
the projected data, with worse results than modulated.  

Bias corrected This option can be used to also save the bias corrected image. 

Tissue 
probability maps 

We can change here the images we want to use as prior probability maps 
for the segmentation algorithm. 

Gaussians per 
class 

Number of Gaussians to be used for every class. The typical values are 2 for 
grey matter, 2 for white matter, 2 for CSF and 4 for everything else. These 
values could work properly and we shouldn’t have to change them. 

Affine 
regularization 

We can change the standard space which the input is registered to. 

Table 5. SPM segmentation parameters. 
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 Once we have chosen the desired values for all the parameters, we just have to press 

then “run batch” button at the top of the window and SPM will generate all results in the 

MatLab working directory. 

4.3. FreeSurfer 

 FreeSurfer supplies a tool called “recon-all” that can be used to perform automatically 

all the segmentation process. Thus the process can be divided in a list of stages shown below: 

Number Task 

1 Motion Correction and Conform 

2 NU (Non-Uniform intensity normalization) 

3 Talairach transform computation 

4 Intensity Normalization 1 

5 Skull Strip 

6 EM Register (linear volumetric registration) 

7 CA Intensity Normalization 

8 CA Non-linear Volumetric Registration 

9 Remove Neck 

10 LTA with Skull 

11 CA Label (Volumetric Labeling, ie Aseg) and Statistics 

12 Intensity Normalization 2 (start here for control points) 

13 White matter segmentation 

14 Edit WM With ASeg 

15 Fill (start here for wm edits) 

16 Tessellation (begins per-hemisphere operations) 

17 Smooth1 

18 Inflate1 

19 QSphere 

20 Automatic Topology Fixer 

21 Final Surfs (start here for brain edits for pial surf) 

22 Smooth2 

23 Inflate2 

24 Spherical Mapping 

25 Spherical Registration 

26 Spherical Registration, Contralateral hemisphere 

27 Map average curvature to subject 

28 Cortical Parcellation - Desikan_Killiany and Christophe (Labeling) 

29 Cortical Parcellation Statistics 

30 Cortical Ribbon Mask 

31 Cortical Parcellation mapping to Aseg 
Table 6. FreeSurfer processing stages. 

 All these stages are divided in three big groups: 

Group Stages 

1 1-5 

2 6-23 

3 24-31 
Table 7. FreeSurfer stage groups. 
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In this way, FreeSurfer let us perform only the stages in one of the previous groups, so 

that we can divide the process and look at the outcome of every stage group in order to fix 

possible errors.  Moreover, there are many parameters and options that can be used together 

with the “recon-all” command. If we want to change the way of how segmentation is 

performed, there are some parameters we could use and which can be found in the FreeSurfer 

documentation. 

In order to solve some problems that can appear when using “recon-all”, we also have 

some tools supplied with FreeSurfer. A complete list of possible failure modes and how we can 

try to solve them can also be found in the official documentation. In this project, having the 

goal of comparing the performance of automatic segmentation with every software package, 

we have only used automatic options to obtain different structures from the human brain. 

Finally, it is important to highlight that FreeSurfer works with “mgz” format images. 

Most of the magnetic resonance machines use to work with DICOM of Nifti files so, in order to 

solve the format conversion problem, FreeSurfer includes a tool called “mri_convert”, which 

let us convert between different image formats. This tool can also been run automatically 

when calling “recon_all” if necessary. 

In our experience, the easiest way to run FreeSurfer is writing the following in a 

command-line console: 

recon-all -subject subjectName -i input1 <-i input2> -all 

 This command will create a new folder in the subjects directory called “subjectName”, 

will convert all input files to “mgz” format and will run all processing steps. Therefore, when 

using this command everything will be done automatically, from the format conversion to the 

segmentation process.   
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5. Experiments with real data 

 As explained before, the first step before doing any comparison between the software 

packages is to try to set the best values for those parameters which can be configured. To 

achieve that, we have used both T1-weighted and T2-weighted images obtained from a 3 

years-old boy. In the following sub-sections, the possible values for these configurable 

parameters in each software are explained. After this, the results obtained for the images from 

this 3-years old patient are shown.  

5.1. FSL 

 As we could see in previous chapters, FSL has different tools to perform different 

stages in the segmentation process. In addition, each one of these tools is configurable by 

means of some parameters than can be changed. In this section, we will expose which values 

we have chosen for these parameters and we will try to explain why. 

 As explained before, the first step is to extract the brain from the patient head. For this 

extraction we have to choose between different working modes for the “BET” tool. 

Throughout the studies in this thesis, we have chosen only the T1-weighted image as input. 

The reason for that is that in T2-weighted images the contrast between grey matter and white 

matter is really poor; thereby we will use the T1-weighted image to have better segmentation 

results. Regarding to “BET”, we tried some of the working modes with the following results. 

-B working mode:  

 This working mode attempts to reduce image bias and residual neck voxels. The result 

is not very good, because the contrast in the image is much lower than in the original image, as 

we can see in Figure 14. 

 

 

 

 

 

 

-R working mode 

 As we can see in the Figure 15, the result is very good, since the whole brain has been 

extracted. In addition, the contrast between tissues remains almost the same as in the original 

image. 

 

Figure 14. BET: -B working mode: axial(top-left),sagittal(top-right) and coronal(bottom). 
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-A2 working mode 

 In this working mode, we can use the T2-weighted image together with the T1-

weighted image to extract the brain from the last one. The brain extraction using this working 

mode should be better because we have more information. For that reason, “bet” is also able 

to extract the skull and skin, which are very useful for the goal of construction a patient 

specific model. In the Figure 16 we can see the results. 

The result is worse than it was with the “-R” working mode. The reason is that the “-R” 

working mode performs some more iterations in the algorithm in order to find the centre of 

gravity for the brain, so that the extraction can be better. To solve this we could include some 

information about the centre of gravity, so that we can obtain the same good results than 

before, also extracting the skull and scalp. 

Figure 15. BET: -R working mode: axial(top-left),sagittal(top-right) and coronal(bottom). 

Figure 16. BET: -A2 working mode: axial(top-left),sagittal(top-right) and coronal(bottom). 
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In order to add this information, we can use the “-c” option in order to add a centre of 

gravity (in voxels) for the image. This centre doesn’t have to be exact, but it will improve the 

results much. The result of including this information is shown in Figure 17. 

 As we can see, the result is much better now and similar to the one obtained with the 

“-R” working mode. Now we could ask, can this result be improved even more? Although this 

result is good to perform segmentation, we can obtain a better result by changing the value of 

another parameter. 

We say in previous chapter that “BET” tool in FSL let us change the value for the 

intensity threshold, so that smaller values give larger brain outlines estimates. This value has 

to be between 0 and 1 and has a default value of 0.5. Thus, if we increase a little this value (to 

0.6) we can even obtain a smoother result. Therefore, the result we obtained is the one shown 

in Figure 18. 

 Well, now we have a good result for the brain-extracted image, we can start the 

segmentation process using the “fast” tool in FSL. 

 Between the available options for “fast” we are going to choose the following: 

 -b: we want to obtain a bias-corrected image. 

 -B: we want to see the estimated bias field to evaluate possible errors. 

Figure 17. BET: -A2 working mode with -c option: axial(top-left),sagittal(top-right) and coronal(bottom). 

Figure 18. BET: -A2 working mode with -c and -f=0.6 options: axial(top-left),sagittal(top-right) and 
coronal(bottom). 



Accurate segmentation of brain MR images  Chalmers University of Technology 

25 
 

 -g:  we also want to obtain one binary image per classified tissue, in order to make 

easier the comparison later. 

 -t 1: we tell “FAST” we are going to use the T1 image as input. We only use the T1 

image because in our experiments we have seen that the results when using T1 and T2 

together are very bad. This happens because the T2 image uses to decrease the 

contrast between grey and white matter, so that the segmentation is much worse. 

 H 0.5: this is the importance of the neighbors when segmenting one voxels (values 

from 0 to 1). We put an intermediate value because we want smooth results but also 

giving importance to the intensity of the voxel to be segmented. 

After running “FAST” tool, we have obtained the following results. We show only the 

segmented image, but we also have one binary image per class. 

 In this image, we can see white matter in white color, grey matter in grey color and 

CSF in a darker color (black voxels belong to empty space). 

 Finally, if we want to perform sub-cortical segmentation, we have to use the “first” 

tool. With it, we have used the “-b” option, which let us use the brain-extracted image instead 

of the original image. By doing this, the process will be faster. In this tool, almost everything is 

automatic, so we just have to run it and wait for the results, which are shown in the Figure 20 

and the Figure 21. 

 

 

 

 

 

 

 

Figure 19. FAST: segmented brain: axial(top-left),sagittal(top-right) and coronal(bottom). 

Figure 20. FIRST: results (b) Figure 21. FIRST: results (a) 
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5.2. SPM 

 SPM, as it is concerned, is not as flexible as FSL can be. This tool only separates 

between image registration (when talking about 4D images) and image segmentation.  

 In this case, as explained previously, we are not going to use the image re-alignment 

option included in SPM because we don’t need it (as long as we don’t have time series 

images).   

 Regarding to image segmentation, there are no many parameters we could change 

apart from the number of Gaussians per class (which shouldn’t be changed because the results 

are good with its default values) or the space we used for affine transformation (which only 

should change the orientation of the image or the coordinate system). For that reason, since 

SPM does not allow performing a segmentation basing on more than two images, we tried to 

segment tissues using only the T1-weighted image, and alter using only the T2-weighted 

image. 

 Moreover, we chose to obtain native, modulated and unmodulated images. However, 

since we want to compare these results with the ground truth, we should only use the native 

images, because they are in the same coordinate system than the original ones. Therefore, the 

result obtained for T1 and T2 images separately are the following. 

 

 

Figure 22. SPM: CSF using T1: axial(top-left),sagittal(top-right) and coronal(bottom). 
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Figure 23. SPM: CSF using T2: axial(top-left),sagittal(top-right) and coronal(bottom). 

 

Figure 24. SPM: white matter using T1: axial(top-left),sagittal(top-right) and coronal(bottom). 

 

Figure 25. SPM: white matter using T2: axial(top-left),sagittal(top-right) and coronal(bottom). 
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Figure 26. SPM: grey matter using T1: axial(top-left),sagittal(top-right) and coronal(bottom). 

 

Figure 27. grey matter using T2: axial(top-left),sagittal(top-right) and coronal(bottom). 

 When comparing the results using the T1-weighted and the T2-weighted images, we 

can see that the second one will give completely wrong results. For that reason, we should 

only use T1-weighted images when working with SPM. 

 In addition, we can observe in Figure 22 that the results for CSF are also bad, because 

it takes part of the skull when it tries to extract the cerebro-spinal fluid. However, the results 

for grey and white matter seem to be good, so we will see how good they are when comparing 

to the ground truth later. 

5.3. FreeSurfer 

FreeSurfer, as also explained before, is able to segment between different structures 

we can find in the human brain. If compared to FSL and SPM, it is the most automatic tool 

because everything can be performed just with one command (“recon_all”). In addition, stages 

can also be performed individually so that we can fix manually the error which can appear in 

the process. 
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Since in this project we are looking for a half-automatic method to perform brain 

segmentation, we have only used the automatic procedure for FreeSurfer. In addition, we are 

not experts in medicine so we aren’t able to perform a manual segmentation or we can’t 

correct all errors which can be present in the results. For that reason, when comparing with 

results from FSL and SPM, we will only wait for the automatic results from Freesurfer. 

Once we have launched the automatic tool “recon_all”, we obtain as result many files 

for volumes and surfaces segmented. However, we can use one of these files, which contains 

all the segmented structures. The name of this file is “aseg.mgz” and it’s shown below in Figure 

28. 

 

Figure 28. FreeSurfer segmentation: axial(bottom-right),sagittal(top) and coronal(bottom-left). 

 As we can see in the results, unlike FSL and SPM, FreeSurfer does not segment 

between grey matter, white matter and CSF. However, it segments between the structures in 

the brain, as brain step, hippocampus, thalamus, etc.  In that sense, the output from 

FreeSurfer is different than the one from SPM, and could be considered as a mixture between 

“fast” a “first” tools in FSL.  

 Basing on our experience, FreeSurfer should be used mostly when we are interested in 

brain structures instead of segmenting between brain tissues.  
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6. Software comparison 

 At the moment we have set a value for all configurable options using one software 

package, we can start performing segmentation over other images. In this chapter, the results 

obtained when comparing the performance of each software package we have studied are 

presented. In order to know the accuracy of segmentation results we must have a ground 

truth, which can be used to make the comparison. For this reason, we have obtained a set of 

images with a known ground truth from Brainweb. 

 The set of images we are going to use is composed by 18 phantoms with different 

conditions regarding to the noise and radio-frequency in-homogeneities which are present in 

the images. In this sense, this data-set can be considered as a good one to compare the 

behavior of each package, because some of them can be more sensitive to the noise of RF in-

homogeneities. 

 The noise level present in the images and calculated relatively to the brightest tissue 

can vary between 0% (no noise) and 9% (high-intensity noise), with values of 1%, 3%, 5% and 

7%. Moreover, the RF in-homogeneities can have an intensity of 0%, 20% or 40%. Therefore, 

we have 18 different T1-weighted and T2-weighted images to make the comparison.  

 The following table shows the parameters used for the simulation which has generated 

the phantom images. 

Phantoms simulation data 

Slice thickness 1mm 

Scan technique Spoiled FLASH 

Flig angle 30º 

Echo time 10ms 

Image type Magnitude 
Table 8. Phantom parameters. 

6.1. Comparison results 

 When the voxel-by-voxel comparison is finished, we can represent graphically the 

obtained results using the measures explained in Chapter 4 in order to evaluate how accurate 

a segmentation is, and how the noise and radio-frequency in-homogeneities can affect the 

result. In the graphics shown below each represented line corresponds to a percentage of RF 

in-homogeneities, so that different percentages are shown in each graphic’s legend. 

6.1.1. FSL 

In this section, the result for specificity, sensitivity, f-factor and error ratio when using 

FSL are shown . 

White matter results 

In FSL, as can be seen in the following tables and graphics, specificity for white matter 

is really good and close to 1, but its value is worse when adding noise to the image.  
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On the other hand, sensitivity is lower than specificity and has the opposite behavior; 

when adding noise to the image, the result is better. 

The f-factor, as it is concerned, has its higher value when adding noise to the image. In 

the results, we can see that the results are not very influenced by RF in-homogeneities. 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 1,00000 1,00000 1,00000 0,99993 0,99958 0,99885 

20 1,00000 1,00000 1,00000 0,99995 0,99967 0,99914 

40 1,00000 1,00000 1,00000 0,99996 0,99972 0,99924 

Table 9. FSL: White matter specificity. 

 

Figure 29. FSL: White matter specificity. 

 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,47736 0,62513 0,73657 0,76508 0,77815 0,78137 

20 0,62901 0,65702 0,73080 0,76104 0,77437 0,77532 

40 0,63143 0,65243 0,71857 0,75030 0,76752 0,77205 

Table 10. FSL: White matter sensitivity. 

 

Figure 30. FSL: White matter sensitivity. 
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 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,64623 0,76933 0,84830 0,86688 0,87507 0,87683 

20 0,77226 0,79302 0,84446 0,86429 0,87272 0,87311 

40 0,77408 0,78966 0,83624 0,85732 0,86837 0,87107 

Table 11. FSL: White matter f-factor. 

 

Figure 31. FSL: White matter f-factor. 

 

Grey matter results 

Regarding to grey matter results, we can see below the tables and graphics 

representing the values obtained for the parameters we have used. We can see that specificity 

is very close to 1 and its value doesn’t change very much when adding noise to the image. 

Sensitivity, on the other hand, has different values between 83% and 67%. As can be 

seen below, the best result is obtained when there is no noise in the image. 

Since the f-factor is the harmonic mean between specificity and sensitivity, it has its 

highest values when the noise in the image is low. 

 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,99029 0,99813 0,99876 0,99880 0,99874 0,99853 

20 0,99831 0,99847 0,99877 0,99887 0,99878 0,99862 

40 0,99839 0,99852 0,99883 0,99895 0,99896 0,99874 

Table 12. FSL: Grey matter specificity. 
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Figure 32. FSL: Grey matter specificity. 

 

 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,83261 0,76266 0,68421 0,67745 0,68375 0,69301 

20 0,75447 0,73547 0,68632 0,67839 0,68546 0,69652 

40 0,75089 0,73619 0,69193 0,67311 0,68099 0,68931 

Table 13. FSL: Grey matter sensitivity. 

 

Figure 33. FSL: Grey matter sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,90463 0,86465 0,81209 0,80732 0,81176 0,81818 

20 0,85943 0,84702 0,81358 0,80802 0,81298 0,82065 

40 0,85713 0,84752 0,81753 0,80428 0,80988 0,81566 

Table 14. FSL: Grey matter f-factor. 
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Figure 34. FSL: Grey matter f-factor. 

 

Cerebro-spinal fluid 

 For CSF segmentation, FSL obtains good values regarding to specificity. In addition, 

these values are not very influenced by the noise and RF in-homogeneities in the image. 

 If we focus on sensitivity, we can see that the results are not that good, and are even 

worse when increasing the noise level in the image. 

 Regarding to the f-factor, we can see that the best result obtained in FSL for CSF is 

achieved when the noise in the image is low (1%).  

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,99707 0,99693 0,99711 0,99705 0,99620 0,99583 

20 0,99727 0,99711 0,99729 0,99719 0,99645 0,99579 

40 0,99707 0,99708 0,99720 0,99717 0,99670 0,99601 

Table 15. FSL: CSF specificity. 

 

Figure 35. FSL: CSF specificity. 
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 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,53593 0,55470 0,53489 0,50119 0,47922 0,46354 

20 0,55528 0,55862 0,53260 0,49707 0,48366 0,46761 

40 0,55502 0,55593 0,52753 0,48678 0,47066 0,45418 

Table 16. FSL: CSF sensitivity. 

 

Figure 36. FSL: CSF sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,69714 0,71280 0,69628 0,66706 0,64714 0,63261 

20 0,71336 0,71607 0,69437 0,66344 0,65123 0,63638 

40 0,71310 0,71385 0,69003 0,65421 0,63939 0,62387 

Table 17. FSL: CSF f-factor. 

 

Figure 37. FSL: CSF f-factor. 
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Overall result 

 If we focus on the general result for white matter, grey matter and CSF, we can 

compute the error ratio. As explained in chapters before, it can be obtained counting all voxels 

in the image, or only those voxels which are not empty. 

 The results obtained are shown below. We can see in the tables and graphics that the 

lowest error ratio (and the best result) is obtained when the noise in the image is 1% and RF in-

homogeneities are low. In this sense, the result is going worse when increasing one of these 

two parameters. 

 Error ratio (all voxels) 

 Noise 

RF 0 1 3 5 7 9 

0 0,0288 0,0222 0,0242 0,0248 0,0248 0,0244 

20 0,0228 0,0227 0,0245 0,0253 0,0243 0,0242 

40 0,0233 0,0233 0,0254 0,0283 0,0267 0,0267 

Table 18. FSL: Error ratio (all voxels). 

 

Figure 38. FSL: Error ratio (all voxels). 

 

 Error ratio (non-empty voxels) 

 Noise 

RF 0 1 3 5 7 9 

0 0,1033 0,0795 0,0866 0,0890 0,0886 0,0872 

20 0,0817 0,0812 0,0879 0,0908 0,0870 0,0864 

40 0,0834 0,0834 0,0911 0,1017 0,0955 0,0954 

Table 19. FSL: Error ratio (non-empty voxels). 
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Figure 39. FSL: Error ratio (non-empty voxels). 

 

6.1.2. SPM 

The results for the parameters we used to evaluate the performance of SPM are 

shown in this section. 

White matter 

 When classifying white matter voxels, we can see in the following tables and graphics 

that specificity is very good (close to 1) and it gets worse when increasing the noise level. In 

addition, the RF in-homogeneities don’t affect very much to the results. 

 Regarding to sensitivity, the results are not that good when there is no noise in the 

image, but they are getting much better when increasing the noise level. 

 Finally, f-factor values show that SPM classifies better white matter when the noise 

level is intermediate (around 3%). RF in-homogeneities don’t influence the results in this case. 

 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,99981 0,99958 0,98581 0,97307 0,93947 0,91752 

20 0,99982 0,99959 0,98995 0,97701 0,94220 0,92270 

40 0,99981 0,99963 0,98844 0,97890 0,95019 0,92797 

Table 20. SPM: white matter specificity. 
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Figure 40. SPM: white matter specificity. 

 

 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,71197 0,89956 0,96608 0,95963 0,98360 0,99099 

20 0,71046 0,89922 0,95635 0,95371 0,98199 0,98852 

40 0,71332 0,88739 0,96064 0,94964 0,97453 0,98512 

Table 21. SPM: white matter sensitivity. 

 

Figure 41. SPM: white matter sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,83169 0,94694 0,97585 0,96630 0,96103 0,95284 

20 0,83066 0,94675 0,97286 0,96522 0,96168 0,95448 

40 0,83261 0,94017 0,97434 0,96405 0,96221 0,95569 

Table 22. SPM: white matter f-factor. 
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Figure 42. SPM: white matter f-factor. 

 

Grey matter 

 When looking at specificity for grey matter, we can see that its values are lower than 

they were for white matter. In addition, they get their best values for 1% and 3% noise level. 

 Sensitivity, as it is concerned, has its highest value with 3% noise and its worst value 

with 5% noise. 

 Finally, f-factor shows that SPM has a better result when the noise level is between 0% 

and 3%, and it is not influenced by RF in-homogeneities. 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,86241 0,86606 0,86328 0,85852 0,85367 0,84859 

20 0,86301 0,86647 0,86644 0,86112 0,85395 0,84925 

40 0,86346 0,86639 0,86580 0,86370 0,85811 0,85027 

Table 23. SPM: grey matter specificity 

 

Figure 43. SPM: grey matter specificity 
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 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,69957 0,68754 0,67795 0,57504 0,62729 0,68351 

20 0,69974 0,67995 0,70179 0,56928 0,62567 0,68624 

40 0,69825 0,68965 0,70131 0,57860 0,61876 0,66213 

Table 24. SPM: grey matter sensitivity. 

 

Figure 44. SPM: grey matter sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,77250 0,76654 0,75947 0,68875 0,72318 0,75716 

20 0,77284 0,76196 0,77547 0,68543 0,72220 0,75909 

40 0,77212 0,76798 0,77492 0,69298 0,71904 0,74450 

Table 25. SPM: grey matter f-factor. 

 

Figure 45. SPM: grey matter f-factor. 
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Cerebro-spinal fluid 

 When focusing on CSF, we can see that the specificity has its best value when there is 

no noise in the image. 

 Regarding to sensitivity, the values are really bad, and we can conclude with then that 

the classification in SPM for CSF is wrong. In addition, we can prove it by looking at the f-factor 

because its best value is 3% (when the noise intensity is 1%). 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,84368 0,82411 0,82509 0,83008 0,81984 0,81464 

20 0,84012 0,82192 0,82110 0,82797 0,81762 0,81506 

40 0,83827 0,82486 0,82221 0,82527 0,82919 0,81474 

Table 26. SPM: CSF specificity. 

 

Figure 46. SPM: CSF specificity. 

 

 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,00083 0,01629 0,01053 0,00723 0,01008 0,01444 

20 0,00182 0,01954 0,01465 0,01044 0,01115 0,01334 

40 0,00426 0,01865 0,01297 0,01350 0,00877 0,01412 

Table 27. SPM: CSF sensitivity. 
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Figure 47. SPM: CSF sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,00166 0,03195 0,02080 0,01434 0,01991 0,02838 

20 0,00364 0,03817 0,02879 0,02062 0,02200 0,02625 

40 0,00847 0,03648 0,02553 0,02657 0,01736 0,02776 

Table 28. SPM: CSF f-factor. 

 

Figure 48. SPM: CSF f-factor. 

 

Overall result 

 If we look at the error ratio in SPM, we can see it obtains a better classification (lower 

values) when the noise in the image in intermediate (3%). RF in-homogeneities are not 

important for SPM performance regarding to these results. 

 Error ratio (all voxels) 

 Noise 

RF 0 1 3 5 7 9 

0 0,05007 0,05094 0,04725 0,05512 0,06855 0,07639 

20 0,05002 0,05078 0,04703 0,05129 0,06804 0,07616 

40 0,04850 0,04877 0,04731 0,04945 0,06128 0,07477 
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Table 29. SPM: Error ratio (all voxels). 

 

Figure 49. SPM: Error ratio (all voxels). 

 

 Error ratio (non-empty voxels) 

 Noise 

RF 0 1 3 5 7 9 

0 0,15387 0,15596 0,14636 0,16662 0,19913 0,21710 

20 0,15375 0,15557 0,14578 0,15695 0,19796 0,21660 

40 0,14980 0,15038 0,14652 0,15222 0,18196 0,21356 

Table 30. SPM: Error ratio (non-empty voxels). 

 

Figure 50. SPM: Error ratio (non-empty voxels). 

 

6.1.3. FreeSurfer 

In this section, the results obtained when using FreeSurfer to classify the different 

brain tissues are show. 

White matter 

 Specificity for white matter is very good, with values close to 1, having always a value 

of 98% regardless of the noise and RF in-homogeneities. 

0,00000

0,05000

0,10000

0 1 3 5 7 9

E
rr

o
r 

ra
ti
o

Noise (%)

Error ratio vs. Noise
For all voxels in the images

0 20 40RF in-homogeneities (%):

0,00000

0,10000

0,20000

0,30000

0 1 3 5 7 9

E
rr

o
r 

ra
ti
o

Noise (%)

Error ratio vs. Noise
Just for segmented voxels

0 20 40RF in-homogeneities (%):



Accurate segmentation of brain MR images  Chalmers University of Technology 

44 
 

 Sensitivity, as it is concerned, has values close to 70% and the best result is obtained 

when the noise leve is intermediate (3% and 5%). 

 Finally, f-factor shows that the best classification is performed when the noise level is 

between 3% and 5%. 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,98619 0,98584 0,98481 0,98549 0,98568 0,98578 

20 0,98553 0,98585 0,98543 0,98545 0,98555 0,98536 

40 0,98556 0,98590 0,98499 0,98463 0,98609 
 Table 31. FreeSurfer: White matter specificity. 

 

Figure 51. FreeSurfer: White matter specificity. 

 

 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,70517 0,71013 0,72381 0,71180 0,70973 0,70793 

20 0,71450 0,71067 0,71792 0,71235 0,70938 0,71388 

40 0,71215 0,71174 0,72003 0,72329 0,70440 
 Table 32. FreeSurfer: White matter sensitivity. 

 

Figure 52. FreeSurfer: White matter sensitivity. 
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 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,82233 0,82557 0,83437 0,82658 0,82525 0,82406 

20 0,82841 0,82594 0,83067 0,82694 0,82496 0,82793 

40 0,82684 0,82668 0,83193 0,83396 0,82177 
 Table 33. FreeSurfer: White matter f-factor. 

 

Figure 53. FreeSurfer: White matter f-factor. 

  

Grey matter 

 If we look at grey matter, the specificity in SPM is high and close to 1. Its value does 

not vary much with changes in the noise level or RF in-homogeneities, and it is 98%. 

 Regarding to sensitivity, the result obtained is not very good and it is worse then the 

noise level is intermediate (5%). 

 F-factor, as it is concerned, shows the same evolution that sensitivity, but with values 

close to 64%. These results can’t be considered as very good. 

 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,98797 0,98795 0,98861 0,98802 0,98799 0,98743 

20 0,98824 0,98823 0,98842 0,98825 0,98788 0,98799 

40 0,98828 0,98837 0,98850 0,98867 0,98771 
 Table 34. FreeSurfer: Grey matter specificity. 
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Figure 54. FreeSurfer: Grey matter specificity. 

 

 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,48156 0,48040 0,47432 0,47829 0,47842 0,48352 

20 0,47849 0,47912 0,47565 0,47596 0,48177 0,48056 

40 0,47910 0,47989 0,47488 0,47164 0,48479 
 Table 35. FreeSurfer: Grey matter sensitivity. 

 

Figure 55. FreeSurfer: Grey matter sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,64750 0,64645 0,64107 0,64456 0,64467 0,64916 

20 0,64479 0,64536 0,64224 0,64248 0,64768 0,64661 

40 0,64534 0,64608 0,64155 0,63863 0,65037 
 Table 36. FreeSurfer: Grey matter f-factor. 
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Figure 56. FreeSurfer: Grey matter f-factor. 

 

Cerebro-spinal fluid 

 If we focus on specificity for CSF, we can see that its value is very close to 1 and is very 

good, regardless of different noise or RF in-homogeneity levels. 

 On the other hand, sensitivity is almost zero, which means that FreeSurfer in not able 

to find CSF in the image. It is only able to find a little part of CSF. 

 Finally, the f-factor shows that the performance of FreeSurfer when classifying CSF is 

very bad and it can’t be used to extract CSF. 

 Specificity 

 Noise 

RF 0 1 3 5 7 9 

0 0,99993 0,99994 0,99990 0,99990 0,99990 0,99988 

20 0,99993 0,99994 0,99994 0,99989 0,99987 0,99989 

40 0,99990 0,99991 0,99990 0,99989 0,99989 
 Table 37. FreeSurfer: CSF specificity. 

 

Figure 57. FreeSurfer: CSF specificity. 
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 Sensitivity 

 Noise 

RF 0 1 3 5 7 9 

0 0,00184 0,00193 0,00194 0,00199 0,00195 0,00200 

20 0,00190 0,00183 0,00193 0,00191 0,00200 0,00194 

40 0,00193 0,00189 0,00196 0,00189 0,00194 
 Table 38. FreeSurfer: CSF sensitivity. 

 

Figure 58. FreeSurfer: CSF sensitivity. 

 

 F-factor 

 Noise 

RF 0 1 3 5 7 9 

0 0,00367 0,00384 0,00388 0,00397 0,00390 0,00399 

20 0,00379 0,00366 0,00385 0,00380 0,00399 0,00386 

40 0,00385 0,00378 0,00392 0,00378 0,00386 
 Table 39. FreeSurfer: CSF f-factor. 

 

 

Figure 59. FreeSurfer: CSF f-factor. 
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Overall result 

 If we compute the error ratio for FreeSurfer, we can see that the results are very bad, 

with values higher than 50% error when considering only non-empty voxels. However, it does 

not mean that the result is wrong because of the way FreeSurfer works. It extracts all 

structures in the brain, which are composed by grey and white matter, but it does not classify 

them as grey matter or white matter. For that reason, the results could be good but it is not 

what we are interested in, as explained when defining the problem. 

 Error ratio (all voxels) 

 Noise 

RF 0 1 3 5 7 9 

0 0,15672 0,15672 0,15674 0,15618 0,15737 0,15604 

20 0,15661 0,15688 0,15701 0,15719 0,15655 0,15633 

40 0,15658 0,15618 0,15697 0,15704 0,15601 
 Table 40. FreeSurfer: Error ratio (all voxels). 

 

Figure 60. FreeSurfer: Error ratio (all voxels). 

 Error ratio (non-empty voxels) 

 Noise 

RF 0 1 3 5 7 9 

0 0,56324 0,56319 0,56315 0,56112 0,56538 0,56029 

20 0,56270 0,56376 0,56413 0,56466 0,56230 0,56156 

40 0,56272 0,56157 0,56415 0,56433 0,56063 
 Table 41. FreeSurfer: Error ratio (non-empty voxels). 

 

Figure 61. FreeSurfer: Error ratio (non-empty voxels). 
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6.2. Images 

 Once segmentation is performed and we have the comparison results, we can see the 

output obtained from each software. Since there are a lot of images, we are going to show the 

best result obtained for FSL, SPM and FreeSurfer. 

6.2.1. FSL 

 We can see in the following figure the results obtained in FSL for white matter, grey 

matter and CSF segmentation respectively. The images were obtained for 1% noise and 20% RF 

in-homogeneities. In these pictures, the ground truth is shown in green and the segmented 

result in red. 

 

Figure 62. FSL: white matter vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 
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Figure 63. FSL: grey matter vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 

 

Figure 64. FSL: CSF vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 

 As can be observed in images, most of the problems found in FSL to classify all tissues 

are found in the boarders between them. Anyway, we can see that the results we have 

obtained for white and grey matter are good. In the case of CSF, the result is not that good 

because part of the CSF was removed in the brain extraction process. 
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6.2.2. SPM 

 Regarding to SPM the results for the images with 3% noise and 20% in-homogeneities 

are shown below: 

 

Figure 65. SPM: white matter vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 

 

Figure 66. SPM: grey matter vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 
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Figure 67. SPM: CSF vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 

 The results obtained for SPM are also good for white and grey matter, even though 

some errors can be found. Moreover, the result for CSF is wrong, so that part of the skull and 

scalp are classified as CSF. 

6.2.3. FreeSurfer 

 Finally, for FreeSurfer, the results for 9% noise and 20% RF in-homogeneities are 

shown below: 

 

Figure 68. FreeSurfer: white matter vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 
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Figure 69. FreeSurfer: grey matter vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 

 

Figure 70. FreeSurfer: CSF vs. ground truth: coronal(top-left),sagittal(top-right) and axial(bottom). 

 Looking at these results, we can see that FreeSurfer is giving incomplete results as 

output. The reason is that it is classifying structures instead of types of tissue. In that way, we 

can’t consider these results as wrong,. 
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7. Conclusions 

 The goal of this project at the beginning was to evaluate the performance of FSL and 

FreeSurfer in order to segment between different brain tissues and sub-cortical structures. 

This was necessary because our research-group was trying to develop patient-specific 

electromagnetic models for both dipole source location in electroencephalography and stroke 

detection (via microwave helmet, with Midfield Diagnostic). 

 While thinking on the problem, we considered it was also necessary to include SPM as 

another software package we had to analyze, because it’s one of the most used software tools 

worldwide and we read much information about its good results regarding to cortical 

segmentation. 

 Once we could evaluate the segmentation performed by each one of the tools we have 

used (having a ground truth from Brainweb phantoms), the results we have found have been 

very different depending on what we wanted to obtain. The reason is that these three 

software packages used have been designed for a slightly different purpose, even though they 

all perform brain tissue segmentation. The differences we have found, both in their goal and 

their performance, are exposed below. 

 FSL is a software package that has been designed for a general purpose if we talk 

about brain segmentation. The meaning of general purpose here is that it is able to perform 

both brain tissue segmentation (white matter, grey matter and cerebro-spinal fluid) and sub-

cortical segmentation (brain stem, amygdale, hippocampus…) in separated processes. 

Between other reasons, it’s this modularity what gives FSL the capability to perform so many 

different tasks, since it’s composed by different tools with different goals.  

 Regarding to FSL performance for brain tissue segmentation, it is able to classify grey 

matter with very good results (f-factor over 80%) and has also good results for white matter (f-

factor over 75%, excepting one case). The result for CSF is not very good (f-factor over 62%) 

and is very influenced by the noise in the image.  In general, we can see that segmentation 

performed by FSL is very influenced by the noise, and just a little by RF in-homogeneities, 

having better results when both have an intermediate value (the best result is obtained with 

1% noise, with an error ratio close to 8% for non-empty voxels). 

 SPM, as it is concerned, is only designed to perform segmentation between white 

matter, grey matter and CSF. Unlike FSL, it is not able to perform sub-cortical segmentation. 

One advantage of SPM could be that, since it’s designed to run in MatLab, it’s not platform-

dependent and it can be run in both Linux and Windows operating systems.  

 The performance of SPM, if we look at the graphics in the results section, is not 

influenced (almost) by RF in-homogeneities but, as it happened with FSL, it’s very influenced 

by the noise. It can give a better result for white matter segmentation when comparing to FSL 

(f-factor over 83%) but its result for grey matter segmentation is slightly worse (f-factor over 

68%). Regarding to CSF, the result is very bad (the highest f-factor is 3.8%) and can’t be 

considered if we want to segment CSF from a MR image. 
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 Finally, FreeSurfer was designed to perform segmentation between brain structures, 

both cortical and sub-cortical. However, the comparison with FSL or SPM when segmenting 

between white matter, grey matter and CSF is not fair. If we look at the results, the error ratio 

is always over 50% so we could think that this result is really bad. The problem is that where 

FSL or SPM see white or grey matter (or a combination of both), FreeSurfer can see a brain 

structure, like brain stem. The reason is that these structures are composed by both grey and 

white matter, so that the result from FreeSurfer can’t be considered as wrong. What we can 

say is that FreeSurfer, at least, is affected by the noise and RF in-homogeneities because it 

couldn’t perform segmentation when they both had their maximum value in the experiments.  

 Regarding to all the results we have obtained, we can conclude that FSL is the most 

complete package to perform brain segmentation, since it has better results for tissue 

segmentation than SPM and it can also perform sub-cortical segmentation. However, if we are 

really interested in sub-cortical structures, we should consider FreeSurfer as an alternative, 

because it’s able to extract more sub-cortical structures than FSL.  



Accurate segmentation of brain MR images  Chalmers University of Technology 

57 
 

8. Bibliography 

1. Program for Imaging and Cognitive Sciences. Columbia University Medical Center. [Online] [Cited: 

March 20, 2010.] http://www.fmri.org/index.html. 

2. Hornak, Joseph P. The basics of MRI. [Online] [Cited: March 10, 2010.] 

http://www.cis.rit.edu/htbooks/mri/. 

3. e-MRI: MRI physics interactive tutorial (Online remote education for health professionals). [Online] 

[Cited: March 20, 2010.] http://www.imaios.com/en/e-Courses/e-MRI/. 

4. Sociedad Española de Neuroimagen. [Online] [Cited: March 20, 2010.] http://www.neuroimagen.es. 

5. Jerry L. Prince, Jonathan M. Links. Medical Imaging, Signals and Systems. 0-13-065353-5. 

6. BrainWeb: Simulated Brain Database. [Online] [Cited: April 1, 2010.] 

http://mouldy.bic.mni.mcgill.ca/brainweb/. 

7. Shen, Jimmy. Tools for NIfTI and ANALYZE image. [Online] April 13, 2010. [Cited: MAy 3, 2010.] 

http://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image. 

8. Baeza-Yates, Ricardo and Ribeiro-Neto, Berthier. Modern information retrieval. s.l. : ACM Press, 1999. 

020139829X. 

9. Olson, David L. and Delen, Dursun. Advanced Data Mining Techniques. s.l. : Springer, 2008. 

3540769161. 

10. FMRIB Software Library. [Online] [Cited: March 1, 2010.] http://www.fmrib.ox.ac.uk/fsl/. 

11. FreeSurfer. [Online] [Cited: March 1, 2010.] http://surfer.nmr.mgh.harvard.edu/. 

12. SPM. [Online] [Cited: March 1, 2010.] http://www.fil.ion.ucl.ac.uk/spm/. 

13. Ramon, Ceon, Schimpf, Paul H. and Haueisen, Jens. Influence of head models on EEG simulations and 

inverse source. Biomedical Engineering Online. [Online] February 8, 2006. http://www.biomedical-

engineering-online.com/content/5/1/10. 

14. J. Talairach, P. Tournoux. Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional 

Proportional System - an Approach to Cerebral Imaging. New York : Thieme Medical Publishers, 1988. 

15. J. Talairach, P. Tournoux. Referentially Oriented Cerebral MRI Anatomy: An Atlas of Stereotaxic 

Anatomical Correlations for Gray and White Matter. New York : Thieme Medical Publishers, 1993. 

16. On Tsang, Ali Gholipour, Nasser Kehtarnavaz, et al. Comparison of tissue segmentation algorithms in 

neuroimage analysis software tools. Vancouver. 30th Annual International IEEE EMBS Conference, 2008. 

 


