

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, Augusti 2010

Subscribing to a Publisher Subscriber System
with Dynamic HTML
Master of Science Thesis IT Program

MIKAEL FROSTHAGE

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Subscribing to a Publisher Subscriber System with Dynamic HTML

MIKAEL FROSTHAGE

© MIKAEL FROSTHAGE, August 2010.

Examiner: MARINA PAPATRIANTAFILOU

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden August 2010

3

Abstract

Middleware is software which acts as a bridge between different kinds
of systems which are not able to communicate with each other. This
thesis presents how a webpage can subscribe to different events which
are generated by an arbitrary system that does not communicate with
the HTTP protocol. In order for the webpage to fetch data, it
communicates with webservices which act as middleware.
 Three different ajax techniques are evaluated on how they fetch data
without doing any postbacks, periodic refresh, long polling and HTTP
streaming.
 On the back end side, two different publisher subscriber
specifications are evaluated: WS-Eventing and WS-Notifications.
 The result of the thesis is a prototype system where the webpage
uses the periodic refresh technique to retrieve data from WS-
Notification webservices.

Sammanfattning

Middleware är mjukvara som agerar som en brygga mellan olika system
som inte kan kommunicera med varandra. I detta examensarbe
presenteras hur en websida kan prenumerara på olika händelser som
genereras av ett godtyckligt system som inte kommunicerar med HTTP
protokollet. För att kunna hämta data kommunicerar websidan med
olika webservicar som aggerar som middleware.
 För att hämta data från webservicen utan att göra post backs så
utvärderas tre olika ajax tekniker. Periodic refresh, long polling och
HTTP streaming.
 På back end sidan utvärderas två olika publisher subscriber
specifikationer för webservicar, WS-Eventing och WS-Notification.
 Resultatet av exjobbet är ett prototytpsystem där websidan
använder sig av Periodic refresh för att hämta data från WS-Notifcation
webservicar.

Keyword: Middleware, AJAX, Webservices, WS-Eventing, WS-
Notifcation

4

Preface

Mikael Frosthage studies Computer Science at Chalmers University of
technology in Gothenburg Sweden. This thesis is part of his master’s
degree. The work was performed at Manodo’s office in Gothenburg
during autumn 2005 and spring 2006.
 The author would like to thank Tobias Ahnoff and Olof Zanden at
Manodo and Marina Papatriantafilou at Chalmers. Furthermore the
author would like to thank his mother, father, Thina and his daughter
Minja for all the support before, during and after the thesis work. He
would also like to thank Petter Bergström for giving valuable advice and
motivation. Most of all he would like to thank Edward A. Cerullo who
put a huge effort into proof reading the thesis and raised it to another
level.

5

Contents

1. Introduction ... 7

2. Concepts .. 9

2.1 Client Server Model .. 9

2.1.1 Tier Levels ... 9

2.1.1.1 The User Interface Level.. 10

2.1.1.2 The Processing Level .. 10

2.1.1.3 The Data Level ... 10

2.2 Client Server Architectures .. 10

2.2.1 Multitiered Architecture .. 11

2.2.2 Horizontal Architecture ... 11

2.2.3 Communication in an Information System 12

2.3 Middleware ... 12

2.3.1 RPC - Remote Procedure Call ... 13

2.3.2 Transaction Processing Monitors... 13

2.3.3 Object Brokers ... 13

2.3.4 Object Monitors ... 13

2.3.5 Message Oriented Middleware .. 13

2.3.6 Message Brokers ... 14

2.4 Web Application Servers ... 14

2.4.1 Application Level .. 14

2.4.2 Presentation Level.. 15

2.5 Webservices ... 15

2.5.1 Why Webservices are Needed ... 15

2.5.2 B2B Integration with Webservices .. 16

2.6 Webservices Infrastructure.. 17

2.6.1 SOAP .. 17

2.6.1.1 Structure and content of a SOAP message 17

2.6.1.2 Binding SOAP to a Transport Protocol 18

2.6.1.3 A Simple SOAP Implementation .. 19

2.6.2 WSDL ... 19

2.6.2.1 Structure of a WSDL Interface .. 19

2.6.3 UDDI ... 22

2.7 Publisher Subscriber Architecture .. 22

2.7.1 WS-Eventing vs WS-notification ... 22

2.7.1.1 Architecture Comparison ... 23

2.7.1.2 Function Comparison .. 24

2.7.1.3 Message delivery comparison .. 24

2.7.1.4 Broker support comparison .. 25

3. Analysis .. 26

3.1 The current system .. 26

3.1.1 The Data Level .. 26

6

3.1.1.1 OPC ... 27

3.1.1.2 OPC Data Access Fundamentals ... 27

3.2 The Prototype System .. 28

3.2.1 Replacement of the Applet Middleware ... 29

3.2.1.1 Periodic Refresh ... 29

3.2.1.2 HTTP Streaming ... 29

3.2.1.3 Long Polling .. 30

3.2.2 Replacement of the Data Level Middleware 30

4. Method .. 31

4.1 Iteration One .. 31

4.1.1 Client Side ... 31

4.1.1.1 ASP.Net Client Callback .. 32

4.1.1.2 Ajax .Net ... 32

4.1.1.3 Webservice Behavior .. 32

4.1.2 Server side .. 32

4.1.2.1 Periodic Refresh Webservice ... 32

4.1.2.2 Long Polling Webservice ... 33

4.1.2.3 Validation and Testing ... 33

4.2 Iteration Two ... 34

4.2.1 Motivation for Periodic Refresh .. 34

4.2.2 Motivation for WS-BaseNotification ... 34

5. Design .. 36

5.1 Architecture Overview ... 36

5.2 The SOAP Message Envelope ... 37

5.3 Create PullPoint Porttype ... 37

5.4 NotificationProducer Porttype ... 38

5.5 NotificationConsumer Porttype.. 40

5.6 PullPoint porttype .. 41

5.7 SubscriberManager Porttype... 42

5.8 A Subscription from Beginning to the End ... 43

6. Implementation.. 44

6.1 Subscription Initiation and Page Render .. 45

6.2 The PullPoint Webservice ... 45

6.2.1 Creating the PullPoint .. 45

6.2.2 Pulling and notifying data .. 45

6.2.3 Destroying the PullPoint ... 46

6.3 The NotificationProducer webservice .. 46

6.3.1 Creating subscriptions ... 46

6.3.2 Sending Notifications ... 47

6.3.3 Unsubscribing ... 47

6.4 The Web Page .. 47

7. Conclusion .. 49

7.1 Discussion ... 49

7.2 Future work .. 50

7

Chapter 1

Introduction

Background

The majority of all modern desktop applications are implemented with
a framework supporting the publisher subscribe pattern such as .Net or
Java Swing. For example, when a user is operating an application and
clicks a button on a window form, an event is fired that executes the
functionality of the button. In other words, that piece of code subscribes
to the click event and performs some logic when the event is fired. This
is a stark contrast to the way pure HTML based web pages behaves,
where all the input elements are posted to the web server which
basically processes the whole software logic for that page.

With the advent of dynamic HTML, web pages have become more
and more complex. Buttons can trigger an event which executes
JavaScript code locally on the web browser. This has gradually made the
difference between desktop applications to start to disappear where
web pages perform more and more complex task. One might even
consider these web pages as much of an application as a desktop
application, but with a browser based front end.

One difference between web based and desktop applications is still
the fact web based applications, without embedded software, can only
communicate with the HTTP protocol. Furthermore it is not possible to
establish a connection with a web browser and send data to it.
Therefore it is not possible for a web browser to actually subscribe to
events on another process.

However the important thing is the user perceives it as if the web
page is subscribing to events from an external data source, even if the
events are not actually pushed to the web page.

Manodo

Manodo is a software company which builds and customizes web based
software systems for individual measurements of heat, water and
electrical consumption targeted towards real estate and energy
companies. All the monitored data updates in real time, and the
software is flexible and able to monitor a wide range measuring devices.

8

Problem description

Manodo’s current web portal relies on an embedded Java applet
running in the clients’ web browsers. The purpose of the java applet is
to fetch real time data, without post backs, from a server which is
reading the current states of the measuring devices. The actual server
does not communicate with the HTTP protocol, rather the server and
the applet communicate via intermediary software.

This implies the java runtime libraries have to be installed on all the
client computers. Since Windows XP however, java runtime is not
shipped with the installation, and some costumers refuse to install extra
software for security reasons. This forces Manodo to develop a new
solution that relies on more generic components.

Furthermore the intermediary software is written by a third party
company and Manodo does not have access to the source code. Besides
that obvious problem, the current intermediary software does not scale
geographically, as it is just an adapter between one server and several
clients. It would be preferable if there were a many to many
relationship between clients and servers.

Goal

The goal is to build a publisher subscriber prototype system where
dynamic HTML web pages act as subscribers. Events should be fired on
a regular basis, signaling different state changes, and the events are
supposed to be propagated to the subscribers. The users watching the
pages should see the state changes almost immediately, and the web
page code must only be constructed with standard components. No
embedded objects, such as Java applets, can be used.

Rather than being a simple adapter between subscribers and
publishers, the prototype system should be able to support a many to
many relationship between them. By doing this, a subscriber should be
able to subscribe to several events produced by different publishers.

Overview

This thesis describes the publisher subscriber prototype system which
was developed.
 In chapter 2 the core concepts are described, these include
middleware, webservices and publisher subscriber specifications for
webservices.
 Chapter 3 analyses different approaches to implement the concepts
described in chapter 2.
 Chapter 4 covers the work method during the thesis.
 Chapter 5 describes the general design of the prototype.
 Chapter 6 describes in more detail how the prototype was
developed.
 Chapter 7 discusses the result, makes a conclusion and presents
future work.

9

Chapter 2

Concepts

2.1 Client Server Model

The client server model consists of two parts, the server and the client.
The server is a process which implements a service such as a file server
or a database. The client makes requests to the server, which in turn,
returns data. This client server interaction is sometime called “request-
reply behavior”. [1]

If the underlying network is a relatively reliable network, such as a
LAN for example it might be a good idea to implement a “connectionless
protocol” since these protocols are more efficient. [1] The disadvantage
with a connectionless protocol is twofold. It does not guarantee a
package reaches the destination, and it does not guarantee the package
has become corrupted.

An alternative to the connectionless protocols are the more reliable
“connection oriented protocols”. The principle behind these protocols is
the client first establishes a connection to the server before a message
is sent. Later on the server, the same connection is used to send the
reply. It is unfortunately very time consuming to open and close
connections in this manner, in particular when it comes to cases where
the request and reply messages are small. [3]

2.1.1 Tier Levels

In contrast to what one might believe, clear definitions of clients or
servers really are not as obvious as it first seems. There have actually
been debates and controversies regarding the substantive differences
between them. For example, a server for a distributed database might
act as a client and forward requests to file servers, which stores the
physical tables. Instead of dividing functionality into server and client
components, it is easier to divide them into three different levels which
define functionality. The three levels are:

1. The user interface level

2. The processing level

3. The data level

The user interface level handles all the interaction with the users, the
processing level is the actual application and the data level contains the
data. [1]

10

2.1.1.1 The User Interface Level

Normally the user interface is implemented on a client. This level acts
as the front end, and it contains the software users use in order to
interact with distributed systems. The variance in sophistication
between different user interfaces is today huge, and spans from console
application to advanced graphical user interfaces. [1]

2.1.1.2 The Processing Level

As previously mentioned, the processing level is the actual core of the
system. One example might be a search engine where the user interface
level is the web browser and the data level is a database with
preindexed web pages. In this case the processing level transforms the
user input to one or more queries which fetch data from the level. After
that, the result is ranked and returned as a list with addresses to
different web pages.
 Another example is a system for stock brokers where the user
interface level is implemented in some desktop application, and
historical stock data is stored in the data level. Here the processing
levels might perform advanced computations on financial data. [1]

2.1.1.3 The Data Level

The data level, or resource management level, is the level which
contains the data used by the distributed system. Usually the data level
is a fully fledged database, however there are exceptions. For example
the database might be a file system or something similar. [1]

In traditional business oriented environments, the database is
organized as a relational database, with a keyword that is data
independent. The data is organized independently of the application,
and changes to either level do not change the other. In some cases it
might be unsuitable to save data within a relational database. These
cases are characterized by the fact the data is saved in the form of
various complicated data types, and they are therefore better suited to
be saved in ordinary objects. For example, CAD systems, with their
complex graphical objects such as polygons, are clearly unsuitable to be
saved in a relational database. Another example is multimedia, where it
is problematic to save data in the form of tables and relations. [1]

In the cases where the data is more suitable for object manipulation,
the data level is ideally implemented as an object oriented database.
Such databases not only contain the objects, but also the operations
which are executed upon them. Some parts of the logic that could have
been implemented in the processing level could thus be moved to the
data level. [3]

2.2 Client Server Architectures

By distributing a system into several levels, it is possible to physically
distribute a client server architecture across several computers in

11

different ways. The simplest form is to just distribute the system to two
different computers.

1. A client computer that contains the entire interface level or a

part of the interface level.

2. A server computer that contains the processing and the data

level.

The problem with this architecture is the system is not really
distributed, since everything is processed by the server, while the
clients are just dumb terminals. There are multiple alternatives to this
architecture. [3]

2.2.1 Multitiered Architecture

In the previous example, a distinction is made between two different
computers that contain the client and the server. This is a two tiered
architecture. One way to organize the clients and the server in a two
tired architecture is to distribute the software logic over the different
levels across different computers. For example the entire user interface
level can be implemented on the clients, however in some cases; some
part of the processing logic can also be implemented on the clients.
 Furthermore even the data level can be distributed to the client
computer. Modern web browsers have in practice implemented a part
of the data level in the form of the cached memory. [2]

In a multitiered distributed system however, computers might act
both as a client and as server. For example, one computer might host a
part of the processing level which administers transactions against the
data level. Here the interface level perceives this computer as a server
with which it interacts. The data level on the other hand is serving the
processing levels request. This example describes a three tiered
architecture. [2]

2.2.2 Horizontal Architecture

So far all the examples have been demonstrated from a vertical
perspective. In this perspective, different kinds of software components
have been placed on different machines. Another way to balance the
load is to distribute in a horizontal perspective. Instead of distributing
different parts of the system, equivalent parts are distributed, and they
work with the same data, thus sharing the work load. An example of
where horizontal distribution is appropriate is where a webpage is
overloaded and needs extra computing power. Each request can then be
processed by a component which forwards the request to a server in
server farm according to a round robin policy. When updates are to be
made, the updates are made to all the servers concurrently. [2]

12

2.2.3 Communication in an Information System

In an information system the software components communicate via
synchronous or asynchronous calls. Synchronous communication is
blocking; when a thread makes a call, the thread must wait for a reply
before it might proceed. The advantage with synchronous
communication is that it is much easier to follow what is happening
logically in the code. Due to this fact synchronous communication
dominates almost all forms of middleware. A middleware is a software
that acts as bridge between two or more kinds of software by
translating and changing information between them, without the other
applications knowing of each other. [2]

The disadvantage with synchronous communication is the threads
are not able to perform other operations while waiting for a reply. This
might be extremely noticeable, resulting in long waiting times, if there
are different levels where the middleware has to wait on each operation
on each level. [2]

In the cases where a sequence must be performed in a certain order,
there is no choice but to accept this limit. But in some cases
synchronous calls are not required, and this is where asynchronous
calls come into the picture. In contrast to synchronous call the
asynchronous call thread does not wait for a reply; rather it fetches the
reply at a later stage. During the time a synchronous thread would have
waited, an asynchronous thread can perform other tasks. This
therefore makes asynchronous communication suited for cases where
the communication is not of the typical request response type. An
example is a system where a server periodically sends information to
its clients via publication of events or signals, rather than explicit calls
or explicit exchange of messages. [2]

The publisher subscriber paradigm principally works in this manner,
where certain components make information available by publishing
information, while other components indicates they are interested of
the information by subscribing to it. The system is thus responsible for
matching published information with the subscriptions, and delivers
the information to the subscribers in some form of queue system. [2]

As previously mentioned, threads might be hampered because they
have to wait for different operations on different levels. Sometimes
asynchronous calls might solve this type of problem, but this is not the
only advantage of asynchronous calls in a multitier system.
Asynchronous calls make it possible to move message processing from
different wrappers or components to the queues. The advantages are
obvious, since the message processing, for example filtering, can be
modified without having to change the components which generate or
fetch the messages. [2]

2.3 Middleware

The term middleware is broadly defined, and middleware is used in
many different ways. Most middleware is based upon some form model

13

or paradigm which describes the distribution.[3] This chapter describes
a couple of different models or middleware infrastructures.

2.3.1 RPC - Remote Procedure Call

The purpose of the RPC model is to hide the network communication
when a process is supposed to call a procedure which is implemented
on another machine. The parameters are sent from the process to the
host computer, which in turn executes the procedure and returns the
result. In practice though, it appears as if the procedure is executed
locally. [2]

2.3.2 Transaction Processing Monitors

Transaction processing monitors, or TP monitors, can be considered as
RPC middleware with the possibility to perform transactions.
Depending on if they are implemented in a 2-tier or 3-tier system, TP
monitors are classed as either TP-lite or TP-heavy. TP-lite systems tend
to supply a RPC interface to databases. TP-heavy monitors conversely
are fundamental middleware platforms with a wide range of
functionally and tools, which often matches or surpasses those supplied
by the operating systems. [2]

2.3.3 Object Brokers

When object oriented programming matured, it was obvious the RPC
model could be extended to distribute objects by the same principle as
distributed procedures. The essence of the distributed objects, or object
brokers, is the object implements an interface which hides all the
internal details from the user. More specifically, the interface is
implemented on the client, and the object is created on the server. [2]

2.3.4 Object Monitors

Object monitors originate from the demand that object brokers should
support transactional calls and that TP monitors should be extended to
support object orienting. The result from this demand was that object
brokers and TP monitors were merged into hybrid systems called
object monitors. For the most part, object monitors are extended TP
monitors with object oriented interfaces. The developers usually found
it was easier to extend a TP monitor to an object broker rather than
implementing an object broker with the performance demands and
features of a TP monitor. [2]

2.3.5 Message Oriented Middleware

In the past, RPC and TP monitor systems only offered support for
synchronous communication which did not fill all the needs. At first,
this was simply solved by implementing RPC middleware with support
of asynchronous communication. On the basis of this, TP monitors were

14

extended to support persistent message queuing systems. It was then
realized that queue processing could be classed as a unique form of
middleware, message oriented middleware or MOM. Such platforms
offer transactional calls to different queues and different sorts of
operations to read or write on local or remote queues. [2]

2.3.6 Message Brokers

Message brokers are sort of a variant of a message oriented
middleware, where the difference is the software logic, which can be
attached to queues and dynamically filter and transform messages.
Furthermore the choice of recipients can be selected based upon the
content of the message. The biggest difference between message
brokers and traditional middlewares though, is that instead of acting as
a static and inflexible point to point link between applications. Message
brokers act as a communication infrastructure, and they deal with all
the routing. This functionality combined with asynchronous
communication is just what is needed in dynamic EAI (Enterprise
Application Integration) systems. This is the main reason message
brokers are the dominating commercial EAI tools used today. Thanks to
the possibility to define application specific routing logic, message
brokers are able to support a wide range of different message based
interaction models such as the publisher subscriber paradigm. [2]

2.4 Web Application Servers

As opposed to traditional middleware, web application servers are
middleware where the clients connect to the server via the web. Using
the web however, causes several complications. The most significant
complication is the presentation level has a much more significant role
than conventional middleware. This is a direct consequence from the
way the web and HTTP protocol is constructed, where all the
information exchange takes place with documents. In order to
dynamically create these documents, the presentation level needs to be
situated in the application server. This tends to merge the presentation
level with the application level. The connection to the data level is then
handled via standard architectures and APIs such as JDBC, ODBC or
ADO.Net. [2]

2.4.1 Application Level

The goal of application servers is to offer an environment for all sorts of
application logic, web based or not. For example, an application server
makes automatic functionality available as a transaction, when the
application is installed on a server. In this way the developers do not
have to implement this by themselves, but instead use the functionality
which is offered by the application server. [2]

In this way, the application server makes it easier for the developers
when they are supposed to develop middleware, since they do not have
to implement functionality from scratch. There is unfortunately a trade

15

off when it comes to performance Application servers can never
perform as well as a customized TP monitor; however, it is far more
likely the development time is shorter. [2]

2.4.2 Presentation Level

A modern application server supports several types of clients:

• Web browsers, including browsers which are running applets

• Applications

• Pocket computers, mobile telephones etc.

• Email clients

Web browsers are today the most common type of client. They interact
with the application server, via a web server, with the HTTP or HTTPS
protocol, and they fetch static and dynamically created web pages.
However, if an application such as a Java applet is running in a web
browser, there are no limits to which communication protocol to use.
The applet can, for example, communicate via RMI (Remote Method
Invocation), CORBA/IIOP (Inter-Operable Internet Object Protocol) or
standard CORBA remote procedure call protocols on TCP/IP.
Furthermore, ordinary desktop applications can interact with the
application server in the same manner. The only difference is that in the
applet case, the application is downloaded via a web browser and it
runs with tighter security settings because the applet is by default not
trusted. [2]

2.5 Webservices

According to the World Wide Web consortium, the definition of a
webservice is the following: “A software application identified by a URI,
whose interface and binding are capable of being defined, describe and
discovered as XML artifacts. A webservice supports direct interaction
with other software agents using XML based messages exchanged via
internet based protocols”. This means that webservices should be
services like conventional middleware. Not only are they supposed to
be up and running, but also being described and announced so that
client can interact with them. In this way, webservices can be integrated
into more complex distributed applications. [2]

2.5.1 Why Webservices are Needed

Conventional middleware functions very well when the communication
is limited to a LAN, or at least within the same organization. However,
when it comes to business to business (B2B) integration, the situation
immediately becomes more complicated. First, it is not at all obvious
where the actual middleware should be placed. This would, for

16

example, require that the organizations were to agree upon which
message broker to use and which third party company was to host.
Even though it is possible that a small amount of companies, who are
cooperating closely, might find a particular solution acceptable.

In practice though, this is fairly rare; companies generally do not
trust each other and want to be independent [2]. Their transactions
should be confidential, and only the recipients are supposed to be able
to read the information. Every company wants to control their own
business operations and the way they are performed. This is, of course,
not possible if a third party is controlling the message broker. Even if
every company hosted their own message broker, this would eventually
lead to a situation where every company needed to support lots of
heterogeneous middleware systems. Furthermore the security aspect
has not been mentioned at all and this is also a large problem. During
EAI integration, the information exchange occurs within the same trust
domain. However when it comes to B2B integration there is no such
thing as trust, even if the communication formally speaking were to
happen in the trust domain. Transactions in particular have been
complicated to implement, since the company which hosts the server
must limit and control which resources should be locked, and not give
away the locking access to potentially harmful external entities. [2]

There are of course companies which have successfully implemented
successful B2B integration. However the web has offered standard
protocols, such as HTTP, and data formats, such as XML, which have
created a common middleware infrastructure in which the
heterogeneity among the interfaces have been reduced. HTTP and XML
are enough to offer application integration which, for example,
demands transaction protocols and other abstractions to work. The
goal of webservices is to fill this gap between the web (HTTP, XML) and
what application integration requires. [2]

2.5.2 B2B Integration with Webservices

Webservices resolve the limits of conventional middleware from three
perspectives:

• First, the webservice is exposed as service which in middleware
terminology means procedures, methods or objects. The service
publishes an interface which can be invoked by clients.
Webservices are programs which call other programs; the
difference is calls occur across the internet.

• Second, communication protocols are not dependent on
communication which only occurs within the organization. What
previously required a centralized platform is now replaced by
protocols which work in a decentralized environment and across
several trust domains.

• Third, the webservice technology is standardized. It does not
matter if new protocols and languages solve problems if only few
use them. [2]

17

It is worth mentioning that even though the main purpose of
webservices is to solve problems regarding business to business
integration, you can just as well use them locally within one
organization or LAN. In fact, if all programs were to have webservice
interfaces, integration of programs would be much easier since all the
components would be homogenous. [2]

2.6 Webservices Infrastructure

The fundamental components of webservices are SOAP, WSDL and
UDDI. SOAP is the message protocol webservices use when messages
are sent. WSDL is a specification used to describe the webservice.
Finally UDDI is used by service providers to publish their webservices
so clients can find them. [2]

2.6.1 SOAP

Since business to business integration has been problematic because of
firewalls, the lack of standardized protocols and so forth, this is the first
issue webservices needs to tackle [2]. The answer for these problems is
in the SOAP specification which specifies the following: [2]

• A message format for one way communication that describes how
to package data within a XML document.

• A set of conventions on how to implement the RPC interaction
pattern by using SOAP messages. That is how client can invoke a
remote procedure by sending a SOAP message and how services
can send a new SOAP message back as response.

• A set of rules which all SOAP messages needs to follow, in
particular the XML elements they have to be able to read and
understand. If the content is not understood, measures are also
defined on how to deal with these messages.

• A description that states how messages are supposed to be sent
with the HTTP or SMTP transport protocol.

As a communication protocol, SOAP is one way and stateless. This
means the interaction needs to be encoded within the SOAP document.
In order to implement a standard RPC call, the message thus needs to
be created on the client side, and then the services create a new SOAP
message which is sent back. Synchronous messages like these are
usually sent with the HTTP protocol. For asynchronous calls, a possible
scenario might look like this: First, the client sends a SOAP message to
the service and then the client receives the SOAP message reply via
SMTP. [2]

2.6.1.1 Structure and content of a SOAP message

SOAP exchanges information with the help of messages. These
messages are used as envelopes, where the application wraps the

18

information which is about to be sent. Each envelope contains two
parts: the header and the body. The body is mandatory however, the
header is optional. [2]

Figure 2.1: SOAP envelope example

The reason that SOAP messages are constructed according to these

principles is because the SOAP protocol should follow the same
approach as standard communication protocols. A SOAP message
assumes that each message has a sender, an ultimate receiver and an
arbitrary amount of intermediaries. The actual data which is meant for
the ultimate receiver is contained within the body while the data that
the intermediaries need is in the header. The data the intermediaries
need might, for example, be transaction id, security information and so
forth. In the cases where there are no intermediaries at all, there is no
need for a header and for this reason the header is optional. [2]

There are no requirements on how the SOAP structure is supposed
to be in the header or the body, but one of the most common one is the
RPC Style. In RPC style, the request is encapsulated within one message
and the reply in another message. The request body contains the data
about which procedure is to be executed and various amounts of input
parameters in the request message. The response message contains the
output parameters. [4]

2.6.1.2 Binding SOAP to a Transport Protocol

Even if the SOAP specification states how to bind the protocol to HTTP
and SMTP, SOAP is not tied to a specific transport protocol. A SOAP
envelope can be sent on any kind of transport protocol. Thus when
referring to a SOAP binding, one is actually referring to a specification
on how to package a SOAP message within a transport protocol. For

19

example, the HTTP binding is the specification on how to wrap a SOAP
message within a HTTP package. Depending on what is supposed to be
done, SOAP can be transmitted via GET, POST or other HTTP primitives.
[4]

2.6.1.3 A Simple SOAP Implementation

An example of how to implement RPC functionality with SOAP
interaction can be described as follows:

In the client code, a local method call is made to a method, which is a
proxy method created during compile time. From an external
perspective, the method behaves as if it runs locally, however, in fact it
actually re-routes the message to SOAP engine that transforms the
method parameters to a SOAP message. When the SOAP message is
created, a HTTP engine wraps the envelope within a HTTP post request
message. The HTTP message is then sent to, and received by the server.
This process is then done in a reversed order on the server. On the
server the SOAP envelope is extracted from the HTTP call, and
forwarded to a SOAP router. This router then forwards the messages to
a server stub, which in turn calls the target method. [4]

2.6.2 WSDL

The acronym WSDL stands for Webservice Description Language and
the main purpose of WSDL is to describe the interface of the service.
From this perspective, the role of WSDL is the same as that of an IDL in
a conventional middleware. What separates them is WSDL needs to
define the mechanism on how to access the webservice. This is done
implicitly in traditional middleware, since the access mechanism is
identical on the various middleware platforms. For webservices, this is
not the case because webservices can be accessed via different kinds of
transport protocols, and for this reason, it is of utmost importance this
kind of information is a part of the service description. [4]

2.6.2.1 Structure of a WSDL Interface

A WSDL specification can be divided into two parts: an abstract part
and a concrete part. The abstract part is conceptually like the
conventional IDL, while the concrete part contains the protocol binding
and so forth. [2]

The abstract part of a WSDL specification consists of four different
parts: types, messages, operations and port types. The type part is the
part which defines the different data types that both of the parties must
be able to interpret. By default WSDL specifications uses the same type
system as XML schemas but this is by no means a requirement. XML
schemas have built in datatype primitives such as integers and strings,
and these primitives can then be used in order to construct structures,
etc. Thus, the first step in building a WSDL interface is therefore to
identify and define all data structures which are supposed to be
exchanged between both of the parties. [2]

20

The second step is to define the actual message to be sent. Each
message is divided into different parts where each part has a name and
a datatype. The parts therefore represent the in and out parameters of
the method of the webservice. [2]

The third step in defining the WSDL interface is to define operations,
also called transmission primitives or interactions. There are four kind
fundamental operations: [2]

• One-way means the webservice is called without the expectation
of any reply.

• Request-response corresponds to a traditional RPC or method
call, where clients expect some form of result in return
immediately after a call.

• Solicit-response is the opposite of request-response where the
webservice is doing the calling and expects a reply in return.

• Finally, notification is the opposite of one-way, i.e. the service calls
the client without expecting a reply

Of these, request-response and solicit-response operations are classed
as synchronous while one-way and notification are classed as
asynchronous. [2]

The last step in defining the abstract part of the WSDL interface is to
group operations into port types. A port type is the counterpart of an
interface in traditional IDLs. Each porttype is a logical collection of
related operations. [2]

The reason the parts above are classed as abstract is because the
definitions miss concrete binding or an encoding specified for these
constructs. They also miss a definition of a service that implements a set
of port types. For example, in order to define a real instance of a
webservice one must define:

• The exact set of ports which it implements
• The transport binding which is used when implementing the port

types
• The addresses used by the clients to invoke the services.

The absence of these parts makes the port definitions abstract, because
port types and messages can be implemented with different kind of
transport bindings or encoding. Furthermore, even data types can be
serialized according to different rules. The other part of the WSDL
definition is thus to define a concrete service by specifying all of these
aspects. [2]

21

Figure 2.2: WSDL document example

The concrete part of a WSDL interface is defined using the following

three constructs. [2]

• Interface bindings. The binding specifies the message encoding
and protocol binding for all operations and messages which are
defined within a specific port type. For example, an operation can
be defined as a RPC call. An interface binding can also define that
the message being sent is bound to the HTTP transport protocol.
This is by far the most common approach. Finally, the message
encoding used for serializing the message to XML is defined. When
messages are encoded using SOAP, the translating is done by
translating the WSDL data types to XML based upon the encoding
rules according to the rules of a SOAP specification, such as
version 1.2.

• Ports. Also known as EndPoints, ports combine the
InterfaceBindning information with a network address (specified
by an URL) where the implementation of the port type can be
accessed.

• Services. Services are a logical group of ports which can be
deployed on different addresses. This means the actual
webservice can be deployed on different addresses. Furthermore
this implies that the same functionality can be accessed with
different kinds of transport protocols and interaction styles.

22

2.6.3 UDDI

There is a third technology worth mentioning called UDDI which is an
initialism for Universal Description, Discovery and Integration. UDDI is
a registry and an API where the registry is simply a registry containing
the addresses to the webservice. The API conversely defines how to
publish webservices, what is needed to register webservice and how to
query them. There is much more to UDDI than this, but this will not be
covered because it is out of scope. [4]

2.7 Publisher Subscriber Architecture

Previous chapters cover specifications on how webservices are
supposed to be implemented, and even though the specification offers
the possibility for webservices to communicate in ways other than
ordinary request reply communication. They do not explicitly treat how
to implement a webservice architecture based upon the publisher
subscriber paradigm. The principal behind the publisher subscriber
paradigm is that different software components subscribe on different
kinds of state changes. This means when a state change happens, the
code which is supposed to react on the state change is executed.

As of now there are two propositions on extending standards on how
to do that. One of them is called WS-Eventing and was originally
designed by BEA systems, Microsoft and TIBCI. The other is called WS-
Notification and contains three sub specifications. WS-BaseNotification,
WS-BrokererdNotification and WS-Topics [6]. WS-Notification was
originally designed by Akamai, The Globus Alliance, Hewlett-Packard,
IBM, Sonic software and TIBCO software. [10]

WS-Eventing and WS-Notification are unfortunately only
suggestions, and according to Gartner they should be considered as
rough drafts rather than stable standards. If one is supposed to
implement the publisher subscriber paradigm between webservices, it
is recommended to review both of the specifications and choose the one
which is best suited. Furthermore it is recommended to revise the
application if a commercial middleware appears which has
implemented a converged standard. [5]

2.7.1 WS-Eventing vs WS-notification

This part of the paper is based upon the report “A comparative study of
Web Services-based Event Notifications Specifications” [11] and
describes the differences from different perspectives such as
architecture, functions, message delivery, message formats and broker
supports. Since the publications of this report, WS-Eventing has
formally been delivered to W3C, reviewed and accepted as a formal
W3C standard. The submitted specification is however identical to the
one examined in ”A Comparative Study of Web Services-based Event
Notification Specifications”

In general terms, WS-Eventing is a simpler standard than WS-
Notification. WS-Notification however, has more features than WS-

23

Eventing and can be used in a full-fledged publisher subscriber system.
Since webservice specifications are composable, the WS-Eventing and
WS-Notification specifications only contain key publish subscriber
related functions. Functions such as security, reliability and transaction
handling are dependent on other WS-* specifications.

2.7.1.1 Architecture Comparison

The architecture of WS-Eventing and WS-BaseNotification has almost
identical webservice based architecture. They both follow the publisher
subscriber paradigm and both define subscriber and subscriber
manager units. Event sink, which is defined in WS-Eventing, is
equivalent to WS-BaseNotification’s notification consumer. Both of the
specifications separate subscribers from notification consumers, such
that notification consumers only need to deal with received messages.
They do not need to know about the broker locations and how to create
subscriptions. WS-Eventing does not separate the publisher from the
event source. The event source in WS-Eventing both has the notification
function and the publisher role defined within the WS-BaseNotification.

Figure 2.3: WS-Eventing architecture and operations

Figure 2.4: WS-BaseNotification architecture and operations

24

2.7.1.2 Function Comparison

We can also find many similarities within the actual functions of the
specifications. WS-Eventing defines the five web service operations:

•••• Subscribe
•••• Renew
•••• GetStatus
•••• Unsubscribe
•••• SubscribeEnd.

The Subscribe message is used to create a subscription for an event
sink. The Renew, GetStatus and Unsubscribe messages are sent from
subscribers to subscription managers in order to handle existing
subscriptions. The SubscriptionEnd message is generated when an
event source terminates a subscription unexpectedly. The actual
SubscriptionEnd message is sent in the address which is specified in the
subscription request. In the case where the address is not a part of the
subscription request, the message is not generated.

WS-Eventing WS-BaseNotification

Subscribe Subscribe

Renew Renew

Unsubscribe Unsubscribe

GetStatus Not defined, can use GetResourceProperties in

WSRF

SubscriptionEnd Not defined, can use TerminationNotification in

WSRF

Not available Pause/resume subscription

Not available GetCurrentMessage

Table 2.2: Function comparison

WS-BaseNotification has comparable operations for the five first items
in the table above. Even though the specification does not define
GetStatus and SubscriptionEnd, these messages can be constructed with
the optional WS-ResourceFramework (WSRF) since WS-Notification
can handle subscriptions as WS-Resources in WSRF. In addition to the
five top most operations, WS-BaseNotification also has three more.
These operations defines how to pause/resume subscriptions and how
to the current message. (GetCurrentMessage).

2.7.1.3 Message delivery comparison

This sections covers in detail how to specify delivery in subscription
requests of WS-Eventing and WS-Notification.

25

Delivery mode: Both WS-Eventing and WS-Notification can use push,
pull and wrapped mode in order to deliver notification messages. The
wrapped mode can package several notification messages into one in
order to make the delivery more effective. Push mode is the default
mode within WS-Eventing. It uses the delivery extension point in the
subscription messages in order to support the other delivery modes.
Notification message formats are not defined in the specifications.
 WS-Notification defines a PullPoint interface, but it is not possible to
specify in a subscription message that pull delivery is supposed to be
used. A pull point needs to be created before a subscription is created
and the subscriber is treated as a regular push event consumer from a
publisher perspective.

Filter: WS-Notification defines three types of message filters:
TopicExpression, ProducerProperties (if subscription is handled as a
WS-Resources) and MessageContent. A subscriber can filter on any or
all of these. WS-Eventing conversely only supports one filter expression
in the subscription request. No filter topic expressions are specified as
in the WS-Topics specification. Both specifications can use any
expression (xsd:any) in a specified dialect that evaluates to a Boolean
value as a filtering criteria. WS-Eventing does not specify a way to filter
messages using the ProducerProperties of publishers.

2.7.1.4 Broker support comparison

The WS-BrokereredNotification specification is the specification in the
WS-Notification family that defines brokered support between
producers and notification consumers, and the specification acts as an
extension of WS-BaseNotification. The notification brokers can handle
publisher registration, and has support for demand based publishers. A
demand based publisher publishes only messages which consumers are
interested in. A notification broker can keep track of each message and
it can keep track of the number of consumers of each kind of message. It
can also pause or resume subscriptions to publishers based on the
demand. WS-Eventing does not define how to use a broker as the
intermediary between eventSink and eventSource. However, it is
possible to create a broker that implements both the eventSink
interface and the eventSource interface. Neither the publisher
registrations, nor the demand based publishers are defined in WS-
Eventing.

26

Chapter 3

Analysis

Introduction

This chapter analyses the current system, and the system to be built.
Both systems have a multitier architecture, however different types of
middleware are used to communicate between them. Furthermore the
architecture of the old system is more or less scaled vertically, while the
architecture of the new system has the ability to scale horizontally.

3.1 The current system

The current webpage is hosted by an internet information server 6.0
which is implemented with the classic ASP framework. This server side
ASP code is the first part of the processing level which renders the
HTML and JavaScript code that will act as presentation and processing
level on the client side. In order to render the client side code, the
server based processing level is dependent on data stored in a
Microsoft SQL server. This is the data level on the server; for the clients
however, the data level is hosted on a different server.
 The other part of the processing level is implemented with JavaScript
code, and it runs in a web browser. One might think the code running
on the web browser just contains the user-interface level, but the
webpage does not merely respond to user input. It also makes regular
requests to retrieve the current states of the measuring devices,
independent of what the user does. Hence, a part of the processing level
is also executed by the JavaScript code.
 All calls from the JavaScript code are made by the Java applet
mentioned in the problem description. This Java applet is a RPC
middleware that makes an asynchronous call to a web page called
“sfaxml.asp”, which dynamically renders a SOAP message. Depending
on which topics which are subscribed to, the SOAP message returns the
latest state changes. However, even though messages are
communicated with SOAP, this web page can not be considered a web
service since no WSDL description is presented. Rather “sfaxml.asp” is
also a RPC middleware part of the data level, which communicates with
another server that actually communicates with the measuring devices

3.1.1 The Data Level

The “sfaxml.asp” web page acts as one client that communicates with
one server. The server in turn communicates with the measuring

27

devices via either standard Ethernet connection or a modem. More
specifically the server is an OPC server.

3.1.1.1 OPC

OPC stands for Object Linking and Embedding (OLE) for Process
Control and is a standard defined by the OPC foundation. Over 300
companies such as Microsoft and nearly all of the world's major
providers of control systems are represented in the OPC foundation.
This representation assures OPC will remain the industry standard for
the foreseeable future. The purpose of OPC is to define application
interfaces in industrial automation software, which makes
interoperability possible between automation/control applications,
field systems/devices and business/office applications. Thanks to OPC,
it is no longer necessary for software application developers to write a
custom interface or server/driver to exchange data with hardware field
devices. OPC eliminates this requirement by defining a common
interface that allows this work to be done once. [12]

A typical system based upon OPC consists of OPC clients and OPC
servers. The OPC server provides real-time data from PLCs (a
Programmable Logic Controller is a device used to automate monitoring
and control of industrial plant) and other control devices. An OPC client
is an OPC data consumer and it is typically a visualization or database
application which presents or uses the OPC data provided by OPC
servers. [12]

Rather than one specific specification, OPC is actually a series of
specifications. The only standard this thesis focused on is called the
Data Access Specification or OPC DA. OPC DA is the result of a
collaboration of a number of leading worldwide automation suppliers
working in corporation with Microsoft. Originally based on Microsoft's
OLE COM (Component Object Model) and DCOM (Distributed
Component Object Model) technologies, the specification defined a
standard set of objects, interfaces and methods to facilitate
interoperability in process control and manufacturing automation
applications. The COM/DCOM technologies made it possible for clients
and servers to remotely interconnect, and they provided the framework
for software products to be developed. [12]

3.1.1.2 OPC Data Access Fundamentals

Any OPC client is able to connect to several OPC servers from different
vendors. On a higher level the clients contain three kinds of objects: The
server, the group and the items. The servers work as a container for the
OPC-groups, and the OPC groups in turn contains OPC items. An OPC
item, which is a topic, represents the connection to the data source
within the server, and for every item a value, a quality value and time
stamp is associated with it. The value is the value the OPC servers most
recently read from the data source, however, there can be several
factors which influence the quality of the value. The quality value which

28

indicates if the value is reliable or not, and the time stamp that is the
time when the last measurement was conducted. [13]

An OPC item is not directly accessible by the OPC client, but must
always be done via an OPC group. The purpose of an OPC group is thus
to organize data. When an OPC client registers itself on the OPC server,
it requests the server to continuously read the values of every data item
within the OPC clients group or groups. When the groups are registered
the OPC server automatically starts to poll each data source and
continue doing so until the clients unregister the groups. OPC clients
can then retrieve data from server by two means. One means of data
retrieval is to manually read the data from server, and the other means
is to activate a subscription. During the subscription, a client, rather
than manually requesting updates, waits for the server to notify the
client by calling a callback function via DCOM. In addition to set which
data a group should retrieve, a client can also control how often the OPC
server should poll the items in a group, and it defines how much a value
should change before update is returned. This naturally implies that an
OPC server is a message broker since it has business logic. [13]

Figure 3.1: Architectural overview of the current system

3.2 The Prototype System

Mostly the prototype system is a replacement for the two middleware
software shown above. Thus, the core of the data level is still the OPC
server and the previous user interface level does not need to be
changed. However, the processing level must be rewritten because the
applet middleware needs to be replaced, and a new middleware needs
to be implemented to integrate the OPC server with the processing
level.

29

3.2.1 Replacement of the Applet Middleware

There are several techniques to perform a data fetch without doing a
post back. One technique is to read the current status with an invisible
Iframe [15] containing a data string that might, for example, represent a
XML document. In this technique, a JavaScript loop regularly forces the
Iframe to read a page which renders the data, and then reads the data
saved within the Iframe. If the GUI is rendered via flash, the flash plugin
may also fetch data without doing a post back. However, by far the most
popular technique to solve the problem is to implement the Ajax
paradigm. [14]

Ajax stands for asynchronous java and XML and it is a paradigm for
creating web pages which retrieve data from the web server without
refreshing the entire page. The core component of Ajax is the
XMLHTTPRequest object, which is defacto standard today, and it is the
actual component which makes the asynchronous call. [14]
 In this case I have found three different suitable techniques for
performing data fetch operations: periodic refresh [15], HTTP
streaming[15] and long polling [16].

3.2.1.1 Periodic Refresh

The periodic refresh technique is the most basic pattern where the
XMLHTTPRequest object makes requests to the webserver at a regular
basis. Simply put, periodic refresh is the same thing as polling. Ideally
the interval between the requests should be zero but that is unrealistic.
Thus there will always be certain latency between the state change and
when the browser updates the user level. This latency might pose a
problem if the users are working with volatile server-side data. For
example, one user might be editing a data item while another user
deletes it. Another problem is the fact each request demands resources
at both the server and the client. In addition, each request has some
bandwidth which might add up to a substantial amount if refreshes
occur every few seconds. [15]
 So how long should the time span between refreshes be? The short
answer is it depends on the application. For example, a realtime stock
trading website should have a very short refresh interval, such as 20-
100 milliseconds. While a casual monitoring system can have a much
longer refresh interval (minutes), e.g. a system which monitors an rss
feed. In between these cases are web applications where the state
changes do not need to be propagated instantly, such as website which
monitors outdoor thermometer or heat consumption in a building. The
interval could be anything from a couple of seconds to minutes. [15]

3.2.1.2 HTTP Streaming

HTTP streaming happens when a request message is retrieved by the
web server, and a connection is established between the client and the
server. However, instead of the server sending a reply message back
and then closing the connection, the server keeps the connection open

30

and flushes new data to client’s web browser. Ajaxpatterns [15]
mention two kinds of solutions to implement HTTP streaming. One
solution is called Page Streaming, and this is where the data is streamed
through the first original page response. With Page Streaming, an initial
page is created that later on is changed by continuously added script
code which in turn changes the page’s DOM. DOM stands for Document
Object Model, which represents HTML documents as a tree of data
objects with methods for manipulating their content. The disadvantage
with Page Streaming is the web browsers which sooner or later run out
of memory. [15]

An alternative to solve the memory problem is to implement Service
Streaming rather than Page Streaming. In contrast to using the first
page request message an XMLHTTPRequest or an iframe call is used to
keep the connection open. Instead it is up to the XMLHTTPRequest
object or the iframe to keep the connection open, which makes it easier
to control the connection. Another difference is data is sent as ordinary
data rather than script code. The disadvantage with Service Streaming
is some browsers such as Internet Explorer requires the response
message from the XMLHTTPRequest object or the iframe is completed
before the browser can process the data. [15]

3.2.1.3 Long Polling

Long polling can be considered to be a compromise between the
periodic refresh and the HTTP streaming technique. Each time a
request is made, the server does not send a reply until a response is
available or when the request times out. As soon as the connection
closes, a new one is initiated. The result is lower latency and less
bandwidth consumption than using the periodic refresh technique, and
even though this technique has higher latency than HTTP streaming, it
is at least possible to implement it on all browsers that supports the
Ajax paradigm. [16]

3.2.2 Replacement of the Data Level Middleware

As previously mentioned, the goal of a webservice is to integrate
different applications using the internet as the common infrastructure
and XML as the data format. Thus one way of solving the problem on
how an AJAX webpage could communicate with an OPC server is via a
webservice interface. Furthermore if an AJAX webpage were to
communicate with either the WS-Notifcation or the WS-Eventing port
types, the goal of this thesis would be solved.

31

Chapter 4

Method

Introduction

The following chapter describes the development process of the
prototype. No formal software process was used, however from a wider
perspective; the thesis project contained two major iterations. The first
iteration was more of an experimental nature where I solved the
problems on how to fetch data without post back and how to read data
from the OPC server. In the second iteration I focused much more on
analysis in order to create a more robust system. Both of these
iterations will be explained.

4.1 Iteration One

There are several kinds of development environments that could solve
this thesis project. However Manodo has a strict policy to only use
Microsoft technologies since Manodo’s main customers use Internet
Explorer as their default web browser. Because of this policy, I used
.Net version 2.0. This is the motivation the iteration one prototype has
been implemented with the .Net 2.0 framework. Whether the .Net
platform is the best choice from a performance or development
perspective is out scope.
 The most important problem to solve during the start up phase was
to find a good replacement for the Java applet. This replacement needs
to retrieve data from the server without post back. Once that problem
was solved, I started writing simple console applications that read data
from the OPC server. Finally, I used that code to write server side code
which would process the calls from the clients.

4.1.1 Client Side

Even though using the XMLHTTPRequest component is not the only
solution, it is a de facto standard on all major web browsers [14].
Furthermore it is, as previously mentioned; a part of the Ajax paradigm
and therefore using this component would solve this first problem.
 When I decided to follow this approach I started to compare different
components or software libraries which would ease the development.
The ones I found were the following:

32

4.1.1 .1 ASP.Net Client Callback

The client callback feature of ASP.NET 2.0 is a wrapper for the
XMLHTTPRequest component. It allows the programmer to
asynchronously call a method on the web server. The method on the
webserver simply accepts a string as the input parameter and returns a
string as the output. [17]

4.1.1.2 Ajax .Net

Ajax.Net is an Ajax Framework for building interactive and responsive
web sites that work across many web browsers. The framework is
developed by Microsoft. [18]

4.1.1.3 Webservice Behavior

The webservice behavior is an XMLHTTPRequest component that
enables a webpage to call methods on webservices via JavaScript code.
The calls can be made synchronously or asynchronously and
programmers do not need to know anything about SOAP. [21]

4.1.2 Server side

I had two choices when implementing the server side code. Either as an
ordinary ASP.Net webpage that would render an XML document instead
of HTML code, or as an ASP.Net webservice. I choose to implement the
server side code as an ASP.Net webservice because I found it to be
simpler. Instead of manually constructing XML code, ASP.Net
webservice framework did the object to XML serialization
automatically.
 Ideally I would at this point implement three kinds of prototypes
based upon the three techniques Periodic refresh, HTTP streaming and
Long polling. However I did not implement an HTTP streaming
webservice due to time constraint. Furthermore it is impossible to
implement HTTP service streaming on Internet Explorer [15]. Thus I
only implemented webservices based upon the other two techniques.

4.1.2 .1 Periodic Refresh Webservice

The period refresh webservices exposed two operations. The first was
the Init operation, whose purpose was to initialize the OPC group in
order to start the subscription. This operation accepted an array of
strings where each string element represented an OPC item the client
wanted to subscribe to. After a successful initialization the operation
returned a GUID.
 As the client’s web browser received the GUID key, it started to poll
the other operation every five seconds, whose purpose was to retrieve

33

OPC item values. This second operation accepted the GUID as a
parameter, which it then used to retrieve the OPC group from memory.
If some item or items had been updated, the corresponding key value
pair or pairs would be returned and processed by the client’s web
browser.

4.1.2.2 Long Polling Webservice

Like the periodic refresh webservice, the long polling webservice
essentially exposed the same operations. In fact the first operation was
identical, returning the OPC group GUID key. Instead of polling every
five seconds though, as soon as the client received the reply, it
immediately performed a new request to the data fetch operation.
 The main difference between the data fetch operation of the Long
polling vs. the Periodic refresh webservice, is the long polling
webservice is not manually reading the OPC items via the OPC group.
Instead the OPC server will make a remote procedure call to webservice
whenever an OPC item has changed value. This call will be processed
and the corresponding thread that processes the client data fetch call
will be signaled the new data is available. To prevent time outs, the data
fetch operation only waits 10 seconds to be signaled or else an empty
response is returned to the client web browser. If the current OPC
group is called by the OPC server between requests, the data fetch
operation thread will deal with this as if it were signaled immediately.

4.1.2.3 Validation and Testing

In order to test that my code communicated correctly with an OPC
server I used the following software:

• OPC DA3 Test Client
• Graybox simulator

Graybox simulator is software that simulates an OPC server. The
purpose is to use it while developing OPC client software, such as my
webservices. Since it is irrelevant my prototypes receive any real world
data, the Graybox simulator was adequate for this testing. To validate
my data fetch operations returned correctly, I used the OPC DA3 Test
Client. OPC DA3 Test client is an OPC client where it is possible to create
OPC groups and subscribe to different OPC items. Thus I used it to
verify the values returned from the data fetch operation were correct.
Furthermore, it was possible to assign values to different OPC items the
webpage currently was subscribing to. This way I could also see that the
data fetch operation returned a correct value.
 Ideally I should have made additional tests such as stress test on
both of the webservices, and I tried to use Microsoft’s Application
Center test application in order to do just that. At first it seemed to be a
great application were you could record user input and send multiple
requests to webpages, who in turn would call the webservices.
However, it was not smart enough to poll the webservices with unique

34

GUID’s, but rather the one used when the record where commenced.
Therefore, I did not manage to perform any realistic tests, and I did not
have enough time to fix this issue.

4.2 Iteration Two

The first iteration was considered to be over at the point when I had
verified that both of the prototypes worked. The first step of iteration
two was to scrutinize them both. Was it a correct decision to implement
the server side code as webservices? If yes, how could I improve them?
What about the Periodic Refresh or Long Polling technique? Which one
seemed to be best for this particular situation?

4.2.1 Motivation for Periodic Refresh

I choose to not use the Long Polling technique because I found it to be
much more complicated. I thought the odds of succeeding in creating
the simpler Periodic Refresh technique were higher. In addition, since
the OPC groups themselves poll between certain intervals, the actual
gains were not that great. There was no way to fetch the data in real
time anyway.
 Neither of the Ajax libraries were used because none of them
supported the SOAP messages that were supposed to be sent. Thus all
the code that used the XMLHTTPRequest object had to be written from
scratch.

4.2.2 Motivation for WS-BaseNotification

It was pretty hard to find good information on what Webservices really
are about. Even though I immediately found webservices to be a great
tool where I could communicate via XML and the HTTP protocol, I
questioned whether Webservices were ideal in this case. As I stated in
the concepts chapter, the answer is yes for several reasons.

Next step, how could I improve the prototypes I made? What I found
were the two specifications WS-Notification and WS-Eventing. Any
publisher subscriber system supporting either of these specifications
would reasonably be better than the first prototype I constructed. First
and formost from a software design perspective, but also from a B2B
perspective since other software supporting these specifications could
be integrated with my prototype.

Due to the lack of time, I was only able to implement one of them. I
choose to implement a distributed webservice system using the WS-
BaseNotification specification, and the motivation for this was the fact it
had Pull Point interface. Although the WS-Eventing specification does
not explicitly prevent pulling delivery, WS-BaseNotification seemed like
a better choice in this case.

In order to implement a WS-BaseNotification webservice I had to be
able to customize the soap messages it sends and receives.
Unfortunately I was not able to implement such a webservice using the
ASP.Net 2.0 framework. Therefore I searched for alternatives and the

35

alternative I found that gave me the possibility was the Windows
communication foundation framework, which is a part of the .Net
framework from version 3.0. I choose to implement the prototype with
the 3.5 framework but I could have also chosen 3.0.

36

Chapter 5

Design

Introduction

This chapter describes the design of the webservice port types within a
WS-BaseNotification prototype system. Since I blindly followed a
previously written specification, there was not really any design
planning using a design process or the like, rather I just implemented
webservices using these specifications [7, 9]. Though the prototype
does follow the specification, due to time constraints the whole
specification was not implemented.

5.1 Architecture Overview

The prototype system consists of webservices exposed by the following
porttype interfaces:

• NotificationConsumer
• NotificationProducer
• SubscriptionManager
• PullPoint
• Create PullPoint

In an environment that is not restricted from pushing delivery,

webservices only have to expose the three topmost porttype interfaces.
The NotificationConsumer porttype acts as the client web service,
which subscribes to topics and receives events. Furthermore the
NotificationProducer porttype acts as an event producer, which sends
events to the notification consumer web services. Finally, the
SubscriptionManager provides operations for controlling and
regulating the subscriptions.

Environments such as the one investigated in this thesis also need
the webservices exposing the PullPoint and the Create PullPoint
porttype interfaces. In this case, clients fetch the data via a webservice
exposing the PullPoint porttype interface. Before data can be fetched
via the pull point it has to be created with pull point factory.

The rest of this chapter will cover the design of each porttype and
what part of the WS-Notification specification is supported. Because of
time constraints the whole specification has not been implemented in
the final prototype, however all messages sent from and to webservices
follow the specification correctly except for error messages. According
to WS-Notification incorrect data input and other errors have to return

37

certain error messages. Unfortunately, there was not time enough to
implement these in the prototype.

These XML namespaces are used in the prototype:

Prefix Name Namespace
wsnt WSNotification HTTP://docs.oasis-open.org/wsn/b-2
wsa WSAddressing HTTP://www.w3.org/2005/08/addressing
wstop WSTopic HTTP://docs.oasis-open.org/wsn/t-1
pn Prototype HTTP://PrototypeNamespace
s SOAP HTTP://www.w3.org/2003/05/soap-

envelope
Table 5.1: Prototype namespace

5.2 The SOAP Message Envelope

All messages sent to and from the webservices are sent via a SOAP
envelope. This is how a basic SOAP message looks, where the body
contains the message specific data and each message has a unique
action-URL.

<s:Envelope ...>

 <s:Header>
 <wsa:Action>

 HTTP://action-url

 </wsa:Action>
 </s:Header>

 <s:Body>
 </s:Body>

</s:Envelope>

Even though the header is not mandatory from a SOAP perspective,
each and every message specified in the WS-Notification uses the WS-
Addressing action property. According to the WS-Addressing
specification [19] an action represents “An identifier that uniquely (and
opaquely) identifies the semantics implied by this message”, or “the
verb or intent of the message”.

The XML specified in the rest of this paper is the data defined within
the body element.

5.3 Create PullPoint Porttype

In order to fetch data via a pullpoint, the pull point resource has to be
created by the Create PullPoint interface. If a requester wishes to create
a pull point the following request message has to be sent to the Create
PullPoint port type.

<wsnt:CreatePullPoint>

</wsnt:CreatePullPoint>

38

Action:
HTTP://docs.oasis-
open.org/wsn/bw2/CreatePullPoint/CreatePullPointRequest

If the CreatePullPoint request message is successfully processed, the
following message is returned:

<wsnt:CreatePullPointResponse>

 <a:Address>url-to-consumer</a:Address>
</wsnt:CreatePullPointResponse>

Action:
HTTP://docs.oasis-open.org/wsn/bw-
2/CreatePullPoint/CreatePullPointResponse.

The PullPoint endpoint reference (a:Address) returned with the
CreatePullPointResponse is not only the address to the PullPoint; it will
also be used later when creating a subscription on the
SubscriptionProducer.

5.4 NotificationProducer Porttype

The purpose of the NotificationProducer is to produce a sequence of
zero or more notifications. A subscriber can register the interest of a
subset of this sequence. In order to do that, the subscribers sends a
subscribe message to the NotificationProducer.

No matter which order subscribe requests are made, the amount of
subscribers or if NotifcationConsumers subscribes to the same topic
multiple of times. WS-BaseNotifcation is never restricted in which order
the notifications are produced. The NotificationConsumer can never be
guaranteed to receive the notification in a particular order.

The following request is sent to NotificationProducer to create a
subscription:

<wsnt:Subscribe>

 <wsnt:ConsumerReference>

 <a:Address>url-to-consumer</a:Address>
 </wsnt:ConsumerReference>

 <wsnt:Filter>
<wsnt:TopicExpression

Dialect=
"HTTP://docs.oasis-open.org/wsn/t-

1/TopicExpression/Simple"

xmlns:pn="HTTP://PrototypeNamespace" >
 pn:root-topic

 </wsnt:TopicExpression>
 <wsnt:InitialTerminationTime>

time-of-termination

</wsnt:InitialTerminationTime>
 </wsnt:Filter>

</Subscribe>

39

Action:
 HTTP://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest

The components of the subscribe request are as follows:

/wsnt:Subscribe/wsnt:ConsumerReference:

This is the url to the NotificationConsumer. In this case the url will be
the one returned from the CreatePullPoint operation

/wsnt:Subscribe/wsnt:Filter:

The purpose of the filter component is to allow the subscriber to
express the subset of notifications which the subscriber should
receive. WS-BaseNotification defines the filter TopicExpression,
ProducerProperties and MessageContent, however the thesis
prototype only supports TopicsExpression.

/wsnt:Subscribe/wsnt:Filter/wsnt:TopicExpression:

The TopicExpressions filters which topic or topics the
NotificationConsumer should be notified of. The grammar of the
topic expression is defined by the Dialect attribute. It can either be
one of the three defined in the WS-Topics specification (simple,
concrete or full TopicExpression) or some other. The value of the
Dialect attribute is a URL string.

This prototype supports the simple Simple TopicExpression
dialect. The value of the wsnt:TopicExpression element is a QName
where QName is defined as:

QName ::= PrefixedName | UnprefixedName
PrefixedName ::= Prefix ':' LocalPart
UnprefixedName ::= LocalPart

In this case the prefix is the topic namespace prefix and the LocalPart
is the root topic. A topic namesspace is a collection of topics. Topics
can either be root topics, where there is no parent topic, or child
topics, where there are zero or more child topics. The Simple
TopicExpression can filter on a single root topic which implies one
SubscribeRequest has to be made per topic.

The components of the response are as follows:

<wsnt:SubscribeResponse>

 <wsnt:SubscriptionReference>
<a:Address>

url-toSubscriptionManager

</a:Address>
 </wsnt:SubscriptionReference>

40

</wsnt:SubscribeResponse>

/wsnt:SubscribeResponse/wsnt:SubscriptionReference

The URL to the SubscriptionManager

5.5 NotificationConsumer Porttype

The NotificationConsumer may receive notifications “raw”, i.e. as
application specific content, or as a Notify message defined in the WS-
BaseNotification. The prototype sends notification messages as the
latter. The advantage of the Notify message is the NotificationConsumer
may receive a wide range of Notifications without having to publish
each Notification type in the WSDL document. It also allows a physical
message to contain a batch of notifications. However, since the
prototype only supports Simple TopicExpressions only one notification
per Message is sent.

The following request is sent from the NotificationProducer to the
NotificationConsumer:

<wsnt:Notify>

 <wsnt:NotificationMessage>
 <wsnt:SubscriptionReference>

 <a:Address>

SubscriptionManager-URL
</a:Address>

 <wsnt:/SubscriptionReference>
 <wsnt:Topic

 Dialect=

"HTTP://docs.oasis-open.org/wsn/t-
1/TopicExpression/Simple"

 xmlns:pn="HTTP://PrototypeNamespace">
 pn:root-topic

 </Topic>
 <wsnt:ProducerReference>

 <a:Address>

NotificationProducer-URL
</a:Address>

 </wsnt:ProducerReference>
 <wsnt:Message>

 <pn:NotifyContent>
 value

 </pn:NotifyContent>

 </wsnt:Message>
 </wsnt:NotificationMessage>

</wsnt:Notify>

Action:

HTTP://docs.oasis-open.org/wsn/bw-2/NotificationConsumer/Notify.

/wsnt:Notify/wsnt:NotificationMessage/wsnt:SubscriptionReference:

41

The URL to the SubscriptionManager

/wsnt:Notify/wsnt:NotificationMessage/wsnt:Topic:

The content of the Topic element is a TopicExpression. In this case it
is a Simple TopicExpression expressing which root topic has been
updated.

/wsnt:Notify/wsnt:NotificationMessage/wsnt:ProducerReference:

The URL to the NotificationProducer

/wsnt:Notify/wsnt:NotificationMessage/wsnt:Message:

This is message payload sent, according to WS-BaseNotification it
can literary be anything but in this prototype it is a pn:NotifyContent
element where the inner text contains a value

This operation is one way only, and does not send a return message.

5.6 PullPoint porttype

The PullPoint interface is an extension of the NotificationConsumer
which allows NotificationProducers to send Notification Messages to
the PullPoint. When the PullPoint receives new notifications, it can
either dispose of older Notification Messages or accumulate them. This
prototype saves the latest notification of each topic, and disposes of the
rest.

This porttype contains two operations; the first is GetMessages where
the request message looks like the following:

<wsnt:GetMessages>

</wsnt:GetMessages>

Action:

HTTP://docs.oasis-open.org/wsn/bw-
2/PullPoint/GetMessagesRequest.

The response is the following:

<wsnt:GetMessagesResponse>

 <wsnt:NotificationMessage>
 <wsnt:NotificationMessage>

 <wsnt:NotificationMessage>

 .
 .

 </wsnt:NotificationMessage>

42

<wsnt:GetMessagesResponse>

Action:
HTTP://docs.oasis-open.org/wsn/bw-
2/PullPoint/GetMessagesResponse.

/wsnt:GetMessagesResponse/wsnt:NotificationMessage/wsnt:Notificat
ionMessage:

The response is a simple zero or more NotificationMessage elements,
where the content is exactly the same as defined in
NotificationConsumer.

The second operation is DestroyPullPoint where the purpose is to
terminate the PullPoint resource. The request and response messages
are simply:

<wsnt:DestroyPullPoint />

Action:

HTTP://docs.oasis-open.org/wsn/bw-
2/PullPoint/DestroyPullPointRequest.

<wsnt:DestroyPullPointResponse />

Action:

HTTP://docs.oasis-open.org/wsn/bw-
2/PullPoint/DestroyPullPointResponse.

5.7 SubscriberManager Porttype

The purpose of the SubScriptionManager is to manipulate the
subscription resource. WS-BaseNotifications define operations such as
pausing and resuming subscriptions. The SubscriptionManager
implemented in the prototype only supports the Unsubscribe
operation, which destroys the subscription resource. In this case, a
subscription resource is an individual topic. The request and response
messages are simply:

<wsnt:Unsubscribe />

Action:

HTTP://docs.oasis-open.org/wsn/bw-
2/SubscriptionManager/UnsubscribeRequest.

<wsnt:UnsubscribeResponse />

43

Action:

HTTP://docs.oasis-open.org/wsn/bw-
2/SubscriptionManager/UnsubscribeResponse.

5.8 A Subscription from Beginning to the End

The picture below is a sequence diagram describing the interaction
between the different kinds of components within the prototype
system. Here we have a webpage which subscribes to different topics,
receives the notification and finally finishes the subscriptions.

Webpage presentation

layer
Create PullPoint

PullPoint / NotificationConsum

er
NotificationProducer SubscriptionManager

CreatePullPoint

Subscribe to root-topic 1

Subscribe to root-topic 2..N

Notify

GetMessages

Notify

GetMessages

Notify

GetMessages

DestroyPullPoint

Unsubscribe to root topic 1..N

Figure: 5.1: Sequence diagram describing a subscription lifetime

44

Chapter 6

Implementation

Introduction

This chapter describes the main parts of the prototype system and the
interaction between them. All of the server side code is, as mentioned in
the method chapter, implemented with the .Net 3.5 framework. From a
broader perspective the system can be divided into 4 components:

1. The server side application which renders the HTML and
JavaScript for the user web browser. Additionally this page
performs the create pull point and the subscribe operation for
the client.

2. The PullPoint webservice which exposes the Create PullPoint,
the PullPoint and the NotificationConsumer.

3. The NotificationProducers which exposes the
NotificationProducer and the SubscriptionManager port types

4. The webpage.

NotificationProducer 1 and 2

PullPointWS

OPC Server

Notification DB

Unsubscribe.

aspx

webserver

Subscribing

webpage

Figure 6.1: Architectural overview of the prototype system

45

6.1 Subscription Initiation and Page Render

When the web server starts to process the request from a web browser,
it first makes a request to the PullPoint webservice to create a
PullPoint. The PullPoint message returned contains the URL which the
web page will poll to receive topic updates.

As the PullPoint has been created, several subscribe requests are
sent to each of the NotificationProducers, with one request per topic to
subscribe to. Half of the subscription requests are sent to one
NotificationProducer and the other half are sent to the second
NotificationProducer.

For each subscribe request, the NotificationProducers expects the
URL to a NotificationConsumer. However since a PullPoint is used, the
URL returned from the create pull point response is used. Thus, this is
the URL the NotificationProducer sends the notifications to. Each
subscribe request to the NotificationProducers is returned with the URL
to the SubscribtionManager.

All the XML used when performing the Ajax calls on the web page is
generated during this phase.

6.2 The PullPoint Webservice

The purpose of the PullPoint webservice is to act as a node between the
web page and NotificationProducer. During the initialization phase the
create pull point port type is called by the web server when the page is
created. After the subscription has been created and the web page has
been loaded, both the web page and the NotificationProducers will start
to interact with the PullPoint webservice. The web page will, on a
regular basis, call the PullPoint port type: More specifically, the
GetMessages operation and the NotificationProducers will send
Notification messages to the NotificationConsumer port type. Finally,
when the user is finished observing the data, the DestroyPullPoint
operation is called on the PullPoint port type.

6.2.1 Creating the PullPoint

When the create pull point operation is executed, a GUID is generated.
This GUID will represent the ID of the subscription.
The pull point URL returned with the create pull point response is a
concatenation of the URL to this webservice and the GUID. No
resources or anything are created.

6.2.2 Pulling and notifying data

In order for the webservice to keep track of each subscription, it saves
all the notifications in a Microsoft SQL server database. This database
contains one table called Notifications:

46

Column name Description
Topic The name of the topic
Value The topic value
Timestamp The time when the

NotificationConsumer received the
notification

PullPointID The id of the pull point
ID The primary key of the row
ProducerReference The URL to the

NotificationProducer.
SubscriptionReference The URL to the

SubscriptionManager.
Table 6.1: The columns of the Notifications table

As the web page calls the GetMessages operation, it sends the message
to the URL returned by the Create PullPoint operation. This way the
PullPoint webservice can determine the pull point id by extracting the
GUID from the destination address. When the web service has extracted
the pull point id, it selects all the notifications from database having
that the same pull point id. Before sending back the reply containing all
the new notifications, it deletes them from the database.

At the same time as the web page is polling the PullPoint, the
NotificationProducers are sending notification messages when the topic
values have changed. When a notification message arrives, there are
two possible scenarios: either the database contains an older version of
the subscription topic or it does not exist. Depending on which, the row
is either updated or inserted.

6.2.3 Destroying the PullPoint

At the point when the web page calls this operation all the collected
notification rows for the pull points are deleted from the database.

6.3 The NotificationProducer webservice

The NotificationProducer webservices are the data level of the
prototype system and are in practice OPC clients. During the
initialization phase, the subscribe operation is called on the
NotificationProducer port type. As soon as the NotificationProducer
detects new state changes for subscribed topics, it sends notifications to
the PullPoint webservice. This will continue until the
SubscriptionManagers Unsubscribe operation is called.

6.3.1 Creating subscriptions

Each time the Subscribe operation is called, a new OPC subscription is
created. Even though OPC subscriptions may subscribe to several OPC
items, the Subscribe operation only supports the simple topic
expression. Thus, each subscribe request only contain one topic and

47

therefore each new OPC subscription will only contain one OPC item.
 The OPC subscription will be initiated to perform updates every
2000 milliseconds, and the name and the client handle of the OPC
subscription will be a newly generated GUID. Finally, a delegate is
assigned to the subscription which points to the method on the
NotificationProducer, which the OPC server will then remotely call
whenever an update occurs.
 In order for the NotificationProducer to keep track of which
NotificationConsumer subscribes to which operation, a hash map is
used; this is called a dictionary in the .Net framework. The hash map
key is the subscription handle GUID and the value is the class containing
the NotificationConsumer URL and the Subscription object.
 The reply message contains the URL, the subscription manager,
which is a concatenation of the URL to the NotificationProducer, and
the OPC subscription name GUID.

6.3.2 Sending Notifications

Every 2000 milliseconds, each OPC subscription reads the value of its
OPC item. Since this prototype communicates with an OPC server
simulator, each OPC item will update every time an OPC subscription
polls the items, however this would not necessarily be the case in a real
world application.
 When the OPC server detects that one or more of an OPC
Subscription’s items has changed value, it will remotely call the method
assigned to the OPC subscription, passing the client handle and update
OPC items as parameters. The method on the NotificationProducer will
in turn use the client handle GUID on the hash map specified in 6.3.1 in
order to get the NotificationConsumer URL. Subsequently, the updated
value of the topic is sent to the NotificationConsumer’s Notify operation
with the URL of the NotificationProducer and the SubscriptionManager
included. The URL of the SubscriptionManager is the URL of the
NotificationProducer concatenated with the client handle GUID.

6.3.3 Unsubscribing

Whenever a subscriber wants to cancel the subscription on a topic, it
sends a request to the Unsubscribe operation on the
SubscriptionManager port type. The GUID attached to the destination
URL is used to fetch the OPC subscription object from hash map
specified in 6.3.1. This object is then used to instruct the OPC server to
cancel the subscription and finally, the item is removed from hash map.

6.4 The Web Page

The purpose of the web page is simply to prove you can subscribe to
topics generated by a distributed publisher subscriber system. Thus the
only thing it does is to fetch the notifications generated by the

48

NotificationProducer. The topics and their values are displayed in an
ordinary table and the latest GetMessages response is printed.

Picture 6.2: Screenshot of prototype webpage printing notifications

Since the subscription initializations occur on the server before the

web page is rendered, the first interaction the web pages makes is to
the pull point webservice. The request message used in order to call the
GetMessages operation has already been generated, and the web page
will keep on sending the same request message until the stop button is
clicked.

After the web page receives the response from the GetMessages
operation, it checks whether any topics have changed value by parsing
the XML document. If one or more topics have changed value, the
corresponding rows in the table are updated.

Whenever the user clicks the stop button, the web page starts to
send UnsubscribeRequest messages to a web page called
Unsubscribe.aspx. This page is a proxy page which forwards the
UnsubscribeRequest messages to SubscriptionManager. For every topic
subscribed to, a separate UnsubscribeRequest message is sent. All of
the UnsubscribeRequest messages have been created during the
rendering of the web page, as were the GetMessages request messages.

For security reasons, the XMLHTTPRequest object prohibits any
request anywhere except the domain which hosts the web page [20]. In
this prototype the NotificationProducer webservice is not hosted within
the same domain, and therefore messages needs to be forwarded. The
PullPoint webservice is however hosted within the same domain; if that
were not the case, a similar GetMessages proxy page would have to
exist as well.

49

Chapter 7

Conclusion

7.1 Discussion

The goal of the thesis was to solve two kinds of problems, the first of
which was to find a way to retrieve data from a server without doing
any post back, and the second problem was to build a more scalable
system.
 The first problem was solved by implementing the periodic refresh
technique with the XMLHTTPRequest object. Despite the fact the other
techniques, HTTP streaming and long polling, makes the topic changes
appear faster on the clients. They are also significantly more
challenging to implement. Most importantly they require the server to
be able to handle multiple idle request threads. I found that the .Net
framework by default handles idle request threads quite poorly. This is
because the .Net framework can deal with relatively few requests
simultaneously, which is not a problem if the request are processed
quickly (milliseconds). However in this case when threads idles for
several seconds, which is a very long time in this perspective, many
more clients can be served by using the periodic refresh technique.

That being said, if I had to select between HTTP streaming and long
polling, I would have chosen the long polling technique for the main
reason that not all web browser supports HTTP streaming. Though long
polling might return updates slightly slower because of the fact it has to
establish new connections after a response. I think there are very few
cases where the users will notice any big difference, and if it is
extremely important the clients receive the updates immediately. The
client applications should not depend on web browsers in the first
place.

The second problem was solved by implementing WS-
BaseNotification specified webservices. In theory, this would allow
webservices supplied by different companies to communicate with each
other. For example, it would be relatively easy to replace a
NotificationProducer from a third party company. Or a third party
NotificationConsumer can subscribe to topics from my
NotificationProducer. Unfortunately as far as I am aware, there is not
much commercial software on the market which exposes this
specification or the WS-Eventing specification for that matter. Thus the
main success in implementing the WS BaseNotification is the ability to
implement any prototype system using a unifying standard, were one to
become available.

50

From a scaling perspective dividing the system into
NotificationProducers, NotificationConsumers, PullPoints etc. is a great
solution. This way it is possible to scale both horizontally and
geographically. If there are multiple servers hosting an OPC server
deployed at different locations. Each server would only have to expose a
NotificationProducer in order for a NotificationConsumer to
communicate with them. Furthermore if there is a huge work load on
the PullPoint serving thousands of clients. It would be possible to scale
horizontally using several servers which would host the PullPoints.

One flaw with current prototype is the NotificationProducers cannot
be added to the system dynamically; all of them have to be known by
system during the runtime. One possible solution to this is to
implement the WS-BrokeredNotification.

7.2 Future work

An interesting topic would be how to implement a webservice which
could process a large number of long polling clients. This is probably a
substantial topic on its own.
 Moreover I think it could be interesting to investigate how to scale
PullPoint’s from a horizontal perspective. There are opportunities to
choose from, such as investigating if SQL server is an ideal datastore, or
how to implement the Create PullPoint operastion to achieve optimal
load balance.

51

Bibliography

[1] Andrew S. Tanenbaum and Martin van Steen. Distributed systems

principles and paradigms. Prentice Hall, Upper Saddle River, NJ, USA,

2002.

[2] Gustavo Alonso, Fabio Casatio, Harumi Kuno and Vijay Machiraju.

Web services Conceps, architectures and applications. Springer Verlag.

Berlin Heidelberg, Germany, 2004.

[3] Jean Dollimore, Tim Kindberg and George Coulouris. Distributed

Systems: Concepts and Design, Third Edition. Addison-Wesley, Harlow,

England, 2001

[4] Elisa Bertino, Lorenzo D. Martino, Federica Paci and Anna C.

Squicciarini. Security for Web Services and Service-Oriented

Architectures. Springer Verlag, Berlin Heidelberg, Germany, 2004.

[5] W. Roy Schulte and Daniel Sholler, WS-Notification Standard

Ratified by OASIS Still Needs Work. Available:

HTTP://www.gartner.com/DisplayDocument?doc_cd=144177

[6] Don Box, Luis Felipe, et al., “Web Services Eventing (WS-

Eventing)”, Available: HTTP://www.w3.org/Submission/WS-Eventing/

[7] Steve Graham, David Hull and Bryan Murray, “Web Services Base

Notification 1.3 (WS-BaseNotification)”, Available: HTTP://docs.oasis-

open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

[8] Dave Chappell and Lily Liu, “Web Services Brokered Notification

1.3 (WS-BrokeredNotification)”, Available: HTTP://docs.oasis-

open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

52

[9] William Vambenepe, Steve Graham and Peter Niblett, “Web

Services Topics 1.3 (WS-Topics)”, Available: HTTP://docs.oasis-

open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

[10] Steve Graham, David Hull, et al., “Web Services Notification”,
Available:
HTTP://www.ibm.com/developerworks/library/specification/ws-
notification/

[11] Yi Huang and Dennis Gannon, “A Comparative Study of Web

Services-based Event Notification Specifications”, Available:

HTTP://www.cs.indiana.edu/~yihuan/research/yhuang-

comparativeStudy.pdf

[12] Frank Iwanitz and Jürgen Lange. OPC, fundamentals,

implementation and application. Hüthig GmbH & Co. KG Heidelberg,

Germany, 2006.

[13] OPC Foundation, OPC Data Access Custom Interface Specification

Version 3.0

[14] “Dynamic HTML and XML: The XMLHTTPRequest Object”,

HTTP://developer.apple.com/internet/webcontent/xmlhttpreq.html

[15] Michael Mahemoff. Ajax Design Patterns. O'Reilly Media, Inc,

Sebastopol, CA, 2006

[16] Dylan Schiemann, “The Long-Polling Technique”, Available:

HTTP://cometdaily.com/2007/11/15/the-long-polling-technique/

[17] “Implementing Client Callbacks Programmatically Without

Postbacks in ASP.NET Web Pages”, HTTP://msdn.microsoft.com/en-

us/library/ms178208.aspx

[18] “What is ASP.NET Ajax”, Available:

HTTP://www.asp.net/AJAX/what-is-ajax/

53

[19] Don Box, Erik Christensen, et al., “Web Services Addressing (WS-
Addressing)”, Available:
HTTP://www.w3.org/TR/XMLHTTPRequest/ [21] “About the
WebService Behavior”, Available: HTTP://msdn.microsoft.com/en-
us/library/ms531032(VS.85).aspx

