

Power Gating of the FlexCore Processor

Master of Science Thesis in Integrated Electronic System Design

Vineeth Saseendran

Donatas Siaudinis

VLSI Research Group

Division of Computer Engineering,

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

 Page 2 VLSI Research Group, Dept. of CSE, CHALMERS

The Authors grants to Chalmers University of Technology the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible on

the Internet. The Authors warrants that he/she is the author to the Work, and warrants

that the Work does not contain text, pictures or other material that violates copyright

law.

The Authors shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Authors has signed a copyright agreement with a third party regarding the Work, the

Authors warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology store the Work electronically and

make it accessible on the Internet.

Power Gating of the FlexCore Processor

Vineeth Saseendran and Donatas Siaudinis

© Vineeth Saseendran and Donatas Siaudinis, June 2010.

Examiner: Per Larsson-Edefors

VLSI Research Group

Department of Computer Science and Engineering

Chalmers University of Technology

SE- 412 96, Göteborg,

Sweden

Supervisor: Tung Thanh Hoang

VLSI Research Group

Department of Computer Science and Engineering

Chalmers University of Technology

SE- 412 96, Göteborg,

Sweden

Department of Computer Science and Engineering

Göteborg, Sweden,

 Page 3 VLSI Research Group, Dept. of CSE, CHALMERS

Abstract

The aim of this master thesis work is to reduce the leakage power of the

FlexCore processor by applying one of the most effective leakage reduction

techniques, power gating. The main principle of this technique is inserting

transistors named power switches, to cut off voltage supply of the

functional units when they are not in use. In the context of this thesis,

multiplier unit of the FlexCore processor, a novel architecture for

embedded systems, is selected to be power gated. This is because, initial

studies show that the multiplier, due to its relatively large size and

significant idle time leads to it being a major contributor to the leakage

power dissipation. A process of applying power gating onto the FlexCore's

multiplier is divided into two parallel branches, software analysis and

hardware implementation, and concluded in an integration phase. The

software analysis phase, using FlexTools tool-chain, involves profiling of

two EEMBC benchmarks and extending of the Native Instruction Set

Architecture (N-ISA) to adopt control bits that are enable to activate or

deactivate the multiplier unit on demand. The hardware implementation

phase focuses on the implementation of the power gating technique by

using power specification which is defined in the Common Power Format

(CPF) at both RTL level and physical level. In the final phase, the extended

N-ISA instruction is applied on the FlexCore processor with power gated

multiplier unit to estimate the power reduction at a small area cost. During

the physical implementation phase, the optimal power savings were

estimated taking in to account the overhead from the switches. For the two

examined benchmarks, energy efficiency was shown in range of 4-14%. In

real applications, the multiplier is less active than in the benchmarks

considered here and thus, it is possible to achieve higher energy reduction.

 Page 4 VLSI Research Group, Dept. of CSE, CHALMERS

Table of Contents:

Abstract ... 3

Table of Contents: .. 4

List of Figures: ... 5

List of Tables: ... 6

List of Abbreviations .. 9

Tools and Technology .. 10

1. Introduction ... 11

1.1 Motivation .. 12

2. Power Reduction ... 14

2.1 Power Dissipation in CMOS Circuit ... 14

2.2 Power Reduction Techniques .. 16

3. FlexCore Processor ... 19

3.1 Background .. 19

3.2 Baseline Architecture of the FlexCore ... 19

4. Power Gating for the FlexCore Processor ... 21

4.1 Power gating the Multiplier ... 24

5. Software Analysis ... 27

5.1 FlexSoC Tool-chain ... 27

5.2 EEMBC Benchmark .. 28

5.3 Localization of the Multiplier Function ... 29

5.4 Tools Chain .. 30

5.5 Evaluation of Multiplier Behaviour ... 31

5.6 N-ISA Extension for Power Gating ... 38

6. Hardware Implementation ... 40

6.1 Common Power Format ... 40

6.2 RTL Design and Synthesis .. 43

6.3 Power Control Module ... 46

6.4 Physical Implementation .. 48

7. Results and Analysis ... 52

7.1 Power Reduction Estimation after RTL Synthesis .. 52

7.2 Power Reduction Estimation after Physical Implementation 55

8. Conclusion & Future Work ... 64

9. Bibliography .. 65

Appendix – A: Software Analysis Makefile... 66

Appendix – B: FlexCore CPF ... 68

Appendix – C: Power Control Module ... 71

 Page 5 VLSI Research Group, Dept. of CSE, CHALMERS

 List of Figures:
FIGURE 1.1: TREND OF DYNAMIC AND LEAKAGE POWER FOR GENERAL PROCESSORS. 11
FIGURE 1.2: EFFECTS OF DIFFERENT POWER REDUCTION TECHNIQUES. .. 12
FIGURE 3.1: MULTIPLIER-EXTENDED FLEXCORE PROCESSOR ... 20
FIGURE 3.2: FLEXCORE N-ISA INSTRUCTION ... 20
FIGURE 4.1: HEADER AND FOOTER SWITCH PLACEMENT FOR POWER GATING A UNIT. 21
FIGURE 4.2: PLACEMENT OF POWER SWITCHES .. 22
FIGURE 4.3: ISOLATION CELLS INSERTED AT THE OUTPUT OF A POWER-GATED DOMAIN 23
FIGURE 4.4: STATE RETENTION FLIP-FLOP .. 23
FIGURE 4.5: POWER DOWN SEQUENCE .. 23
FIGURE 4.6: MULTIPLIER POWER GATED VIEW OF THE FLEXCORE ... 24
FIGURE 4.7: SWITCH CONTROL ARRANGEMENT .. 25
FIGURE 5.1: METHODOLOGY FLOW OF THE SOFTWARE ANALYSIS .. 28
FIGURE 5.2: MULTIPLICATION LOCALIZATION EXAMPLE IN THE AUTCOR APPLICATION C-CODE. 30
FIGURE 5.3: AUTCOR ‟PROFILE‟ FILES. ... 32
FIGURE 5.4: AN EXCERPT FROM THE AUTCOR ‟SHOWCODE‟ FILE ... 33
FIGURE 5.5: AN EXCERPT FROM THE AUTCOR ‟READABLE‟ FILE .. 33
FIGURE 5.6: MULTIPLIER USAGE IN EEMBC BENCHMARK, AUTCOR. .. 35
FIGURE 5.7: MULTIPLIER USAGE IN EEMBC BENCHMARK, FFT. ... 36
FIGURE 5.8: N-ISA INSTRUCTION MAPPING .. 37
FIGURE 5.9: SEVERAL INSTRUCTIONS OF AUTCOR N-ISA CODE ... 37
FIGURE 5.10: APPLYING POWER GATING CONTROL SIGNAL .. 38
FIGURE 5.11: EXTENDED N-ISA... 39
FIGURE 6.1: HARDWARE IMPLEMENTATION FLOW ... 40
FIGURE 6.2: CPF SPECIFICATION STRUCTURE ... 41
FIGURE 6.3: RTL SYNTHESIS FLOW .. 44
FIGURE 6.4: SCHEMATIC VIEW OF THE SYNTHESIZED NETLIST SHOWING ISOLATION CELLS HIERARCHY 45
FIGURE 6.5: SCHEMATIC VIEW OF THE ISOLATION CELLS IN THE HIERARCHICAL GROUP 46
FIGURE 6.6: NISA EXTENDED BITS FOR POWER CONTROL AND THEIR OPERATION 47
FIGURE 6.7: PHYSICAL IMPLEMENTATION FLOW .. 49
FIGURE 6.8: PHYSICAL VIEW OF THE MULTIPLIER DOMAIN, SWITCHES, ISOLATION CELLS AND

POWER/GROUND NETS ... 51
FIGURE 7.1: POWER COMPARISON FOR THE MULTIPLIER, BENCHMARK: AUTCOR, LIB: GP-LVT 53
FIGURE 7.2: POWER COMPARISON FOR THE MULTIPLIER, BENCHMARK:AUTOCOR, LIB:GP-SVT............... 53
FIGURE 7.3: POWER COMPARISON FOR THE MULTIPLIER, BENCHMARK: FFT, LIB: GP-LVT 54
FIGURE 7.4: POWER COMPARISON FOR THE MULTIPLIER, BENCHMARK: FFT, LIB: GP-SVT 54
FIGURE 7.5: OVERALL POWER/ENERGY REDUCTION FROM THE ORIGINAL DESIGN...................................... 55
FIGURE 7.6: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD,

BENCHMARK:AUTCOR, LIB:GP-LVT, NOMINAL ... 57
FIGURE 7.7: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD,

BENCHMARK:AUTCOR, LIB:GP-LVT, WORST CASE ... 57
FIGURE 7.8: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD,

BENCHMARK:AUTCOR, LIB:GP-SVT, NOMINAL ... 58
FIGURE 7.9: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD,

BENCHMARK:AUTCOR, LIB:GP-SVT, WORST CASE ... 58
FIGURE 7.10: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD, BENCHMARK:FFT,

LIB:GP-LVT, NOMINAL .. 59
FIGURE 7.11: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD, BENCHMARK:FFT,

LIB:GP-LVT, WORST CASE .. 59
FIGURE 7.12: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD, BENCHMARK:FFT,

LIB:GP-SVT, NOMINAL .. 60
FIGURE 7.13: POWER COMPARISON OF POWER REDUCTION AND SWITCHING OVERHEAD, BENCHMARK:FFT,

LIB:GP-SVT, WORST CASE ... 60
FIGURE 7.14: POWER/ENERGY REDUCTION FOR OVERALL DESIGN AFTER ESTIMATION AT PHYSICAL LEVEL

(ACTUAL) .. 61

 Page 6 VLSI Research Group, Dept. of CSE, CHALMERS

List of Tables:
TABLE 5.1: EEMBC APPLICATION PROFILING STATISTICS ... 29
TABLE 5.2: EEMBC APPLICATION PROFILING STATISTICS INCLUDING IIC ... 34
TABLE 6.1: POWER DOMAINS AND MODES FOR THE POWER GATED FLEXCORE DESIGN 43
TABLE 6.2: POWER AND GROUND NETS FOR THE POWER GATED FLEXCORE DESIGN 43
TABLE 7.1: OVERALL ENERGY & POWER REDUCTION AFTER RTL SYNTHESIS, BM: AUTCOR & FFT 55
TABLE 7.2: ENERGY CONSUMPTION OF ORIGINAL DESIGN AND REDUCTION ESTIMATIONS 62
TABLE 7.3: POWER CONSUMPTION OF ORIGINAL DESIGN AND REDUCTION ESTIMATIONS (ACTUAL) AFTER

PHYSICAL IMPLEMENTATION.. 62
TABLE 7.4: AREA COMAPRISON OF SPECIAL CELLS AND REST OF THE STANDARD CELLS 63

 Page 9 VLSI Research Group, Dept. of CSE, CHALMERS

List of Abbreviations

ALU Arithmetic and Logic Unit

Autcor Auto-correlation

ASIC Application Specific Integrated Circuit

BC Best Case

CMOS Complementary Metal Oxide Semiconductor

CPF Common Power Format

DIBL Drain Induced Barrier Lowering

EEMBC Embedded Microprocessor Benchmark Consortium

EIC Effective Idle Cycles

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GIDL Gate Induced Drain Leakage

GP General Purpose

GPP General Purpose Processor

HDL Hardware Description Language

IIC Intermediate Idle Cycles

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

LS Load/Store

LVT Low Voltage Threshold

MIPS Microprocessor without Interlocked Pipeline Stages

MMMC Multi Mode Multi Corner

NMOS Negative channel Metal Oxide Semiconductor

Nom Nominal

N-ISA Native Instruction Set Architecture

PC Counter

PLA Programmable Logic Array

PMOS Positive channel Metal Oxide Semiconductor

RF Register file

RTL Register Transfer Level

RTN Register Transfer Notation

SDC Synopsys Design Constraints

SoC System On Chip

SRAM Static Random Access Memory

SVT Standard Voltage Threshold

VTH Voltage threshold

WC Worst Case

 Page 10 VLSI Research Group, Dept. of CSE, CHALMERS

Tools and Technology

Tools:

Software Analysis

 GCC MIPS Cross-Compiler v 4.1.1

 FlexSoC Compiler

 FlexSoC Simulator

 FlexSoC HDL Generator

Hardware Implementation

 Cadence Encounter RTL compiler v 9.1

 Cadence SoC Encounter v 8.1

 Cadence Incisive Design Simulator v 8.2

 Common Power Format v 1.1

Benchmarks:

EEMBC, Telecom Suite

1. Auto-correlation (Autcor)

2. Fast Fourier Transform (FFT)

Technology:

STM 65 nm v 5.2.2

 General Purpose Standard threshold

 General Purpose Low threshold

 Operating Conditions:

o Nominal: 1.0 V, 25 C

o Worst Case: 0.9 V, 125 C

o Best Case: 1.1 V, -40 C

 Special Cells

o Isolation

o State retention

o Header power switch

Other Specifications:

Clock Period – 3500 ps (285 MHz)

Typical Supply Voltage – 1.0 V

 Page 11 VLSI Research Group, Dept. of CSE, CHALMERS

1. Introduction

Power consumption is predicted to be increasing with the scaling of the transistor size

and is heading to be an important concern in modern design [1] and [2]. One factor

contributing to power is the addition of more transistors per chip which contributes to

the increasing dynamic power and the other is increase in leakage current or stand-by

current due to the technology itself. The dynamic power is efficiently reduced by

scaling down supply voltage. But order maintain the circuit speed the threshold voltage

has to be reduced at the same time. This adversely affects the leakage power. For

example at 65 nm technology the leakage power is already comparable to dynamic

power.

Figure 1.1: Trend of dynamic and leakage power for general processors.

Source: Intel:”Power Consumption of Microprocessors”.

Another aspect of increasing power dissipation that needs attention is the increasing

complexity of embedded applications and the limitation of battery capacity for portable

devices. Increased complexity is due to addition of more functionality and thus more

units to the processor. This increases both the dynamic and leakage power, while the

requirement is to improve the battery life. With deep sub-micron transistor technologies

the situation will get worse. Hence there is need for effective power management to

reduce both dynamic power and leakage power. Another motivation for power

management of embedded processors is that, some major units are idle for most of the

operating time and some units when active might not be critical in terms of timing. The

first case provides an opportunity to reduce the leakage power and the second case

provides an opportunity to reduce the dynamic consumption of non-critical units by

voltage scaling.

Several power management techniques have been used to reduce dynamic and leakage

power dissipation. Scaling down the voltage is the most effective way of reducing

dynamic power due to its square dependency. Figure 1.2 shows a set of power reduction

techniques applied to a raw design. Clock gating and voltage islands reduce the active

power. Multi threshold (Multi VTH) and power gating are the most commonly used

techniques for leakage power reduction. Power gating is highly effective in leakage

0

50

100

150

200

250

300

250nm 180nm 130nm 90nm 65nm

L
ea

k
ag

e
p

o
w

er
 i

n
W

Technology

Leakage Power vs. Technology

Active

Leakage

 Page 12 VLSI Research Group, Dept. of CSE, CHALMERS

reduction compared to multi threshold transistor technique. Power gating can reduce

leakage power up to 50 times. However, multi-VTH transistor placement is automated,

so that there is no timing penalty, whereas power gating can have small timing penalty.

Area penalty is also higher for power gating. Although power gating has timing and

area penalties, if optimally used can have significant leakage reduction compared to

multi-VTH. Another technique to reduce leakage is substrate biasing, which is more

complex to implement and has less effect when voltage supply is scaled down for

technologies below 65 nm. These techniques are discussed in brief in Section 2.2.

Figure 1.2: Effects of different power reduction techniques.

Source: Chip Design Magazine – “Be Early With Power”.

1.1 Motivation

The importance of leakage power reduction and room for leakage reduction in

embedded applications mentioned in the previous section are the motivations for this

thesis.

The thesis aim is to reduce the leakage power of the FlexCore processor by power

gating functional units of the processor. Initial studies show that the multiplier is the

most suitable unit on which power gating can be applied since the multiplier is a

relatively huge block compared to the rest of the units of the FlexCore and evaluation of

several EEMBC benchmarks on the FlexCore shows that it is idle for a large duration.

This results in significant leakage power consumption. Power gating is employed to cut

down this leakage but this comes with the expense of some area and timing overheads.

There could also be power overhead if the technique is not employed appropriately,

which is possible only through an exhaustive software analysis on the applications

considered.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Raw Design Multi Vt v/s

Lo Vt

Clock Gating Voltage

Islands

Power Gating

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Effect of Power Reduction Techniques

Logic Leakage

Logic Active

Clock Leakage

Clock Active

Memory Leakage

Memory Active

 Page 13 VLSI Research Group, Dept. of CSE, CHALMERS

This thesis focuses on applying power gating technique to the multiplier unit of the

FlexCore. The thesis work is divided into the software analysis and the hardware

implementation. The software analysis phase involves evaluation and modification of

the instruction set to provide power gating control and to identify the best instants to

turn ON or OFF the unit. The hardware implementation phase focuses on the

implementation of the power gated architecture using the common power format at the

RTL level and physical level. The final integration phase will apply the information

from the software analysis on the new power-gated FlexCore to show the power and

energy reduction at the cost of some area overhead.

 Page 14 VLSI Research Group, Dept. of CSE, CHALMERS

2. Power Reduction

2.1 Power Dissipation in CMOS Circuit

Power dissipation in a CMOS circuit is contributed by dynamic power, short-circuit

power and the static power or leakage power. Dynamic power is a result of switching of

the gates when the circuit is operating in an active state. Short-circuit power is a result

of current flowing from VDD to ground every time a transistor switches. This occurs for

a short duration of the switching time due to finite rise and fall times of the gate signals,

which results in both the PMOS and NMOS being ON at the same instant and forming a

path from the supply to ground. Static power or leakage is the power consumed by a

circuit during stand-by i.e. when the circuit is not in use. The total power consumption

of the circuit thus can be written as

 [1]

The dynamic power of the circuit is a function of the switching activity (α), clock

frequency (fclk), supply voltage (VDD) and switching load capacitance (Cload) as given in

Equation 2.

 [2]

As Equation 2 suggests that dynamic power reduction can be achieved by reducing any

of the four factors and reducing the supply has the best efficiency. Techniques such as

clock gating, logic restructuring, operand isolation, voltage scaling, dynamic voltage

and frequency scaling techniques address one or more of these factors.

2.1.1 Leakage Dissipation

The leakage power is further contributed by four factors, the gate induced drain leakage

(GIDL), gate tunnelling leakage, reverse-biased junction leakage and the sub-threshold

leakage current [3].

 [3]

Reverse-biased junction leakage current is the same as the reverse saturation current in a

diode. The reverse biased diode here is formed between the source or drain and the

substrate. The minority carriers near the depletion region and generation of hole-

election pairs in the depletion regions form this reverse-biased leakage. Junction

reverse-bias leakage components from both the source-drain diodes and the well diodes

are generally negligible with respect to the other leakage components.

The gate induced drain leakage (GIDL) is caused by high drain to gate potential and the

effect is further increased by high drain to substrate potential. A band-to-band

tunnelling occurs in the small overlap region of the gate and the drain. For an NMOS

transistor this condition occurs when the transistor is OFF (low gate-voltage) and the

drain is at high potential. For a PMOS transistor it occurs when the transistor is OFF

(high gate-voltage) and the drain is at a low potential.

The gate leakage flows from the gate through the “leaky” oxide insulation to the

 Page 15 VLSI Research Group, Dept. of CSE, CHALMERS

substrate. The magnitude of the gate tunnelling current increases exponentially with the

decrease in gate oxide thickness (Tox) and increase in the gate supply voltage. Even

though the supply voltage is scaled with every technology and that helps reduce the gate

tunnelling current, the oxide thickness also has to be scaled for the gate to have effective

control over the channel. This again increases the gate leakage current. For an oxide

thickness in the range of 2 to 0.5 nm, nearly every 0.3 nm reduction in the thickness for

a constant gate voltage results in 10 times increase in the gate leakage current [3]. The

gate leakage depends on the gate voltage applied to a transistor. High-k is an effective

solution at the technology level.

The sub-threshold leakage is the drain-source current of a transistor operating in the

weak inversion region. Unlike the strong inversion region in which the drift current

dominates, the sub-threshold conduction is due to the diffusion current of the minority

carriers in the channel for a MOS device. The sub threshold current increases

exponentially with the linear decrease in the threshold voltage (VTH). As described in

[3], the sub-threshold leakage can be written as

 [4]

Where n is the slope factor between 1-1.5.

IS is a technology constant current given as

 [5]

And S is the sub-threshold swing in the range of 60 mV to 100 mV given by

 (

) [6]

Further drain induced barrier lowering (DIBL) also causes VTH to reduce in short

channel devices. This contributes to huge increase in the sub-threshold current. DIBL is

the process of reducing the depletion region near the drain at the influence of the drain

voltage. Thereby the threshold voltage near the drain end of the channel reduces. Sub

threshold leakage also increases with temperature as suggested by Equation 5.

Overall, the sub-threshold leakage and gate-tunnelling leakage are the main components

that contribute to the leakage power in today‟s transistor technologies. The sub-

threshold current is the major contributor to the overall leakage in the 65 nm technology

considered in this work. Gate tunnelling leakage will be higher with 45 nm and smaller

technologies.

The off state leakage current is the sum of all the above except gate-tunnelling

leakage. The gate-tunnelling leakage requires the gate - source - bulk potential to be

high.

 [7]

 Page 16 VLSI Research Group, Dept. of CSE, CHALMERS

2.2 Power Reduction Techniques

Section 1 and 2.1 show how and where power goes in a chip and some possible

techniques to reduce them. This section will discuss these techniques in brief. Among

the three components of power consumption as explained in the previous section,

dynamic power has been the largest contributor. But the leakage power has been

exponentially increasing which smaller transistor technologies (effect of reduced VTH).

The quadratic dependence of dynamic power on voltage implies that reduction of

voltage will have the highest impact. This has been the largest source of power

reduction. The Industry has steadily moved down to lower supply voltage [4]. But

reduction in voltage comes as the cost of reduced performance and must also be

accompanied with variation of other technology process parameters. Since dynamic

power is directly proportional to frequency, a reduction in frequency is suitable for low

performance requirements. But the average power consumed per cycle remains the

same. In order to reduce the dynamic power the switched capacitance must be

addressed. The dynamic power component is reduced either by reduction of the

switching activity or by reducing the capacitance or combination of both, like moving a

high switching to a node with low capacitance. Leakage power is mainly dependent on

the threshold voltage and the drain to source voltage. Higher threshold voltage would

decrease the speed of the circuit. One way to address this is to make use of the fact that

nearly 80% of a circuit is non-critical with respect to timing [4]. The other technique to

eliminate leakage dissipation is to simply disconnect the unit not being used from the

supply. This technique is called power gating, which is the technique used in this work

to reduce leakage. In the following section few techniques commonly employed for

power reducing are discussed.

2.2.1 Dynamic Power Reduction Techniques

 Transistor Sizing: The requirement on performance often leads to up sizing

transistors unnecessarily. This is especially true when IC‟s are custom designed.

This over design results in wastage of power. This method of power

optimization is concerned with identifying such sources of power wastage and

downsizes them. For example transistors on non-critical paths may be up sized

for better driving capability but since the overall performance is dependent on

the critical path, the up-sized transistors will result in wastage. For synthesized

blocks the synthesis tools can automatically identify such sources and downsize

them. But for manually designed block it may not be effective and may not be

always possible. Tools thus have a great impact. Logic restructuring involves

reducing the number of stages wherever possible, so that the total switching

activity is reduced. Such techniques are implemented by the modern tools

automatically [4].

 Voltage Scaling: Voltage has been the most important parameter for reducing

power, although there is some loss of performance. Voltage scaling must be

accompanied by reducing the threshold voltage (VTH) to maintain the

performance since the delay is approximately inversely proportional to VDD-

VTH. If speed is not to suffer excessively VDD must be at least four times VTH.

But the problem with such reduced VTH is increase in leakage current. This is

more significant in nano-meter technologies. This is a major concern when

designing caches, sense-amplifiers, static RAM‟s and PLA‟s. Low supply

 Page 17 VLSI Research Group, Dept. of CSE, CHALMERS

voltage also means that the effect of noise is more and thus reliability is also

less.

Voltage Island or multi-supply voltage is a better implementation of the voltage

scaling principle where different VDD is given to different blocks depending on

the performance requirements. The disadvantage of voltage scaling for the entire

design is that the maximum voltage scaling is limited by the performance

requirement of the most critical unit. Other units (less critical) might be able to

perform with a lower VDD. By voltage islands method, units are separated into

islands which operate on different voltage. This technique is more used in SOC

designs where there are several functional blocks of varying throughput

requirements. Each core has few voltage levels with which it can operate. No

islands are needed for blocks operating only at the chip voltage. In voltage island

technique level shifters must be added for communication between blocks of

different VDD.

Variable VDD or dynamic voltage scaling is another variation of voltage scaling

where VDD is dynamically scaled depending on the performance requirements.

This is usually employed along with frequency scaling.

 Clock gating and operand isolation are techniques which address the switching

activity factor in Equation 2. In clock gating technique clock signal to flip-flops

or registers is gated by an enable condition. When these storage elements are not

used, the clock is not passed through and unnecessary dynamic activity is

reduced. Generally the enable condition is shared with the enable condition for

the flip-flops or registers. Similarly operand isolation disables data-path blocks

which are not in use by inactivating their inputs through an enable signal. Clock

gating and operand isolation are performed by the synthesis tool by enabling

certain attributes. The scope for insertion of these is evaluated and inserted

during the synthesis step. This step has become an inevitable step in today‟s

design [5]. These techniques help in reducing dynamic power to certain extent.

For the FlexCore design the savings from enabling these techniques were small.

However as the main focus of this work was on the power gating

implementation, the above techniques were not enabled.

2.2.2 Leakage Power Reduction Techniques

 Multiple Threshold Transistors: Multiple threshold transistor design is used to

reduce the leakage current which is predominant in the nano-meter technologies.

In this technique low VTH transistors are used on the critical path so that the

performance is not affected and high VTH transistors are used on non-critical

paths so that the leakage power is reduced. Non-critical path means, the path

where there is a positive slack. Typically most designs have only about 20% of

the total transistors on the critical path, and therefore leakage power can be

reduced. Automatic placement by tools ensure that the timing overhead is almost

nil.

 Power gating is the most effective technique to reduce leakage power. In this

technique a unit which is not in use is disconnected from the supply or the

ground so that there is not path for leakage current. It is implemented with the

help of low leakage PMOS or NMOS transistors. The gate of the PMOS or

 Page 18 VLSI Research Group, Dept. of CSE, CHALMERS

NMOS transistor decides whether the supply or ground respectively is connected

to the unit. This method needs additional units to implement correct

functionality and thus leads to some area penalty. There could also be a small

timing penalty due to switching transition time. But 5% penalty is acceptable.

This technique is best suited for units with large idle times. In this case the

overhead is acceptable for the leakage gain that can be achieved. But to achieve

optimal leakage reduction, the application profile has to be understood for

effective control of the unit. Section 3 will explain about power gating in more

detail.

 Other techniques at circuit level include usage of long channel transistors,

thereby reducing the effect of drain induced barrier lowering (DIBL) and again

this technique is very useful for small channel length transistors. But the

increased channel length means more delay but this is compensated by making it

wide, which gives high area overhead. This method is especially useful for

SRAM‟s where delay is not important and its power consumption is mainly due

to static power. Parking states technique forces gates or block to low leakage

logic state when they are not in use. This method requires finding the input

vectors that puts the unit to least leakage logic. The technique might be suitable

for units that have higher non-idle time.

 Substrate biasing is a similar technique and an improvement over the MTCMOS,

where the back bias voltage of the transistor is altered so that VTH changes. The

substrate bias voltage can be varied dynamically depending on the requirement.

The threshold voltage varies on the substrate bias as

 √ √ [8]

Where φF is the Fermi-potential and VTH0 is threshold at zero bias. As seen from

the Equation 8 the threshold is square root function of the substrate source bias

voltage. As the technology goes to smaller transistor sizes the voltage is scaled

too. Hence the voltage VSB can only be changed by a limited extent, which leads

to only a small change in VTH. Hence it might not be effective with future

technologies. There is also extra routing overhead.

Altera‟s 40nm Stratix 4 FPGA‟s use programmable substrate biasing technique

to increase VTH on blocks which are on the non-critical path. In normal FPGA‟s

all paths are optimized for high speed, whereas in Stratix 4 only blocks on

critical path are optimized for high speed, and others are either give a back bias

or if they are not in use they are isolated from supply by using power gating

techniques [6].

 Page 19 VLSI Research Group, Dept. of CSE, CHALMERS

3. FlexCore Processor

3.1 Background

FlexCore embedded processor is the platform on which power gating is applied in order

to reduce leakage power [7]. FlexCore was developed as the first exemplar within the

FlexSoC project by the VLSI Research Group at the Chalmers University of

Technology. The FlexSoC approach moves away from the hard-coded instruction set

architecture (ISA) by introducing a reconfigurable interconnect which is governed by a

wide control word. In the FlexSoC framework, conventional methods to provide

application performance are replaced with fine-grained control. Though FlexCore is

based on the traditional five-stage pipeline architecture, it is a unique processor

designed to be flexible and eventually extensible depending on the application specifics.

Most importantly, the core stands out with its ability to have a reconfigurable datapath

depending on the application, within the same architecture and compilation framework

[7]. Subsequently, such flexible datapath configuration for each specific application

without affecting the baseline processor architecture results in improved performance

3.2 Baseline Architecture of the FlexCore

Original design of the processor is based on a simple MIPS R2000 processor‟s

architecture in order to maintain full general-purpose processor (GPP) functionality.

Therefore, FlexCore baseline architecture includes functional units to support the full

GPP programmability such as Program Counter (PC), Load/Store (LS), Register File

(RF), and Arithmetic and Logic Unit (ALU) (Figure 3.1). Two buffers are added which

allows data to be directly restored or taken by any functional unit for more efficiency

than writing data back to RF or memory. What distinguishes FlexCore processor

architecture from the GPP architecture is that instead of using a dedicated interconnect,

all functional units communicate through a flexible, fully connected interconnect.

Although reconfigurable interconnect incurs power and area overhead, it can be utilized

through trimming communication links under application profiling [7].

3.2.1 Multiplier Extension

FlexCore also distinguishes itself with a feature which allows its architecture to be

extended by adding more ports to switch-boxes of interconnect and extending the wide

control word to include control signals for the new units [7].

The core has been extended by adding a multiplier to the baseline architecture in order

to increase efficiency of executing multiplication-based embedded applications, such as

the Fast Fourier Transform (FFT). This efficiency comes at the expense of two factors.

First, the size: the multiplier unit is three times larger than the adder unit. Second, not

all applications use multiplier as often as the FFT application. Therefore multiplier

being a relatively large unit and used for a small fraction of the time results in

considerable amount of leakage power dissipation. Hence, multiplier unit is the focus in

this work which it is intended to be power-gated in order to reduce leakage power

dissipation of the FlexCore.

 Page 20 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 3.1: Multiplier-extended FlexCore processor

(The enable signals of the datapath units are not shown)

3.2.2 Flexible Interconnect

Switch-box based interconnect with 90 possible links is a key difference of the

FlexCore from other application-specific embedded processors. Together with another

key component, exposed datapath, this full interconnect provides freedom for data to be

routed among any function units of the processor [8].

3.2.3 Native Instruction Set Architecture (N-ISA)

While GPP instructions are hard-coded, datapath and interconnect operations are

exposed to the compiler in terms of a wide control word, named as Native-ISA (N-ISA).

Having this wide control word of an exposed datapath, the FlexCore framework allows

modelling various architectures and subsequently the N-ISA instruction permits the

compiler to have more opportunities to efficiently schedule the instructions [9].

Structure of the N-ISA instruction highly depends on the number of datapath units and

interconnect configuration. The N-ISA is mainly divided into two sections: datapath

control bits and interconnect addresses bits (Figure 3.2). Starting from the least

significant bit at the datapath control, the section consists of 5 bits for ALU, 18 bits for

register file, 5 bits for load/store unit, 1 bit each for two data buffers, 37 bit for program

counter, and 2 bits for multiplier. Overall, 69-bits are required for the datapath control.

N-ISA interconnect has total 40 bits in where 4 bits are required for every switch-box

dedicated for each functional unit.

Using long N-ISA comes to the cost of instruction bandwidth and a large memory

footprint, but it can be resolved through instruction compression [8].

Figure 3.2: FlexCore N-ISA instruction

 Page 21 VLSI Research Group, Dept. of CSE, CHALMERS

4. Power Gating for the FlexCore Processor

Power gating or power shut-off is a technique to reduce the leakage power of functional

units or modules in a design. The unit considered for power gating is shut-off or

deactivated when not in use and thereby reducing unnecessary leakage current. Shut-off

involves disconnecting the unit or a gate from the supply or the ground using header or

footer switches respectively. The gating is implemented with the help of either a header

or a footer cell which are low leakage PMOS or NMOS transistors respectively. Figure

4.1 shows the header and footer switch placement. In case of header switch

implementation the supply net to the CMOS circuit that connects to the switch is

referred to as virtual VDD or in case of footer cell implementation the internal ground net

is referred to as virtual ground.

Figure 4.1: Header and footer switch placement for power gating a unit.

The size of the switch depends on the maximum current consumption of the circuit and

the capacitance on the switched supply. In a practical implementation the switch size is

fixed and multiple switches are placed in parallel depending on the current requirement.

The number of power switches that are required for a design has to be determined

considering factors such switch area, leakage reduction and voltage drop. Small size

leads to larger voltage drop due to smaller resistance and this will impact the

performance [9].

The implementation of these switches can be performed either in a coarse-grained or

fine-grained fashion [5]. In a coarse-grained implementation switches controls an entire

block, where as in a fine-grained implementation several switches control smaller

sections of the unit like cells or gates. In coarse grained implementation although the

area overhead is small, switching capacitance is high and there will high rush currents.

In the fine grained implementation since several switches address smaller units, the

switching capacitance is low but the area overhead is much higher. This could also

result in some leakage from the large number of switches. Coarse grained is suitable if

all smaller units of the circuit being considered operate simultaneously. Fine grained is

CMOS Circuit

CMOS Circuit

Header

Switch

Footer

Switch

Sleep

Sleep

True -VDD
True - V

DD

Virtual -V
DD

Virtual - GND

 Page 22 VLSI Research Group, Dept. of CSE, CHALMERS

Virtual VDD

suitable if units have different operating profile. Also the coarse grained technique is

easier to place and route.

Further the switches can be placed in a ring or column fashion [5]. In a ring fashion as

the name suggests switches are placed around the unit being power gated. In a column

fashion they switches are placed in columns through the length of the unit. Ring

placement is more efficient in terms of routing, but area overhead is slightly higher as

compared to the column placement technique. Figure 4.2 shows the placement of these

two types.

Figure 4.2: Placement of power switches

Ring (left), Column (right)

When power gating, another important issue to be considered is the floating states of the

outputs of the power-gated unit. Also flip flops if present in the design will lose their

state. Hence special cells to eliminate these problems are needed. Isolation cells are

used to prevent floating outputs and state retention cells to save flip-flop states [5]. The

isolation and state retention cells are showed in Figure 4.3 and Figure 4.4. Isolation cells

are simple two input AND/NAND or OR/NOR gates with an isolation enable signal as

one input and data as the other input. AND or NAND work with an active low signal for

isolation and OR or NOR work with the active high signal for isolation. AND or NOR

gate drives the output to 0 when isolated and the OR or NAND gate drives the output to

1 when isolated. Isolation can also be achieved with D latches in which case the output

will be forced to the last output of the power-gated unit prior to shut down. State

retentions cells operate on the virtual supply when the power down unit is in normal

operation and switches to the global supply when the unit is shut down.

The cells can share the same enable signal. But there must be definite power up and

power down sequence for these cells. A power up of the switches has to happen before

the isolation and state retentions are disabled. If the power up occurs later then purpose

of preventing floating states and preserving states of flip flops is damaged. The

sequence followed in power down is isolation, state retention and power down of the

switch and the reverse sequence during power up. This either automatically performed

by the tool or manually performed by insertions of buffer cells. Figure 4.5 depicts the

required power up/down sequence. The isolation, state retention cells are specified

during the synthesis and place and route phase respectively. The switches are either

automatically or manually placed during physical implementation. The Cadence SoC

Power Gated

Unit

True VDD

Switches

 Page 23 VLSI Research Group, Dept. of CSE, CHALMERS

Virtual VDD

Retention

True VDD

Encounter tool used in this design performs the placement of the switches either in ring

or column fashion through special commands.

Figure 4.3: Isolation cells inserted at the output of a power-gated domain

Figure 4.4: State retention flip-flop

Figure 4.5: Power down sequence

Isolate (Power Down/ Sleep)

Power Gated

Unit (OFF) Always ON unit

Isolation cells

0

True VDD

State Retention

Flip Flop

Isolation Enabled

Retention Enabled

Power Down

Input (D)

Clk

Output (Q)

 Page 24 VLSI Research Group, Dept. of CSE, CHALMERS

4.1 Power gating the Multiplier

Figure 4.6 shows the block diagram of the Flex-Core with the multiplier power-gated. A

header switch is used to power gate the multiplier in this work
1
. A coarse grained power

gating is implemented. In a coarse grained implementation the switch(s) perform the

power shut-off for the entire unit by switching the virtual supply between the true VDD

(TVDD) and the off-state voltage. The off-state voltage is not at zero potential and is

usually a value close to the threshold of the header switch. The switches are placed in a

ring fashion since placement and routing are easier during the physical implementation
2
.

Figure 4.6: Multiplier power gated view of the FlexCore

The multiplier unit which is considered for power gating is defined in a different power

domain and the domain is termed as PD_mult. A power domain is a region of the design

having specific power architecture different from rest of the design region. All units in a

specific domain will follow the rules of power architecture specified for that domain.

The rest of the FlexCore modules are defined in the in the default power domain

PD_default. All modules and units unless specified to be in a specific domain will be

placed in the default power domain.

The technology libraries used in this work provides two types of cells for the switch

implementation, the switch control cell and the PMOS header switch. The control cell

receives the switch enable signal along with signals to control the transition current

consumption and signal to enable detection of valid states. The switch ON and OFF of

the multiplier is performed by PMOS header switches. The gate signal of these switches

called the “switch enable” defines the turn-ON and turn-OFF of the multiplier. The

switch control unit drives the switch enable signal of the PMOS switches. The switch

1
 The STM65 v5.2.2 library used here is provided with header switch only.

2
 The aim of this work is focused more towards estimating the power reduction rather than electrical

impact of the switche.

POWER

CONTROL MULTIPLIER

(Power Domain –

PD_mult)

REGISTER

FILE

ALU

INTERCONNECT (SWITCHBOX)

PC

ISOLATION CELLS

0/1/DATA

BUFFER

S

TOP

MODULE
Default Power

Domain

(PD_default)

64

32 32

LS

Switches

 REG1 REG2

 Page 25 VLSI Research Group, Dept. of CSE, CHALMERS

control cell provides more flexibility in terms of switch transition time by controlling

the current consumption to transit from the off-state supply to the true global supply, i.e.

It provides an option to have a more smoother transition at the expense of wake-up time.

The switch control cell also generates signals to indicate the detection or switching to a

certain valid state. A signal to indicate transition of the internal VDD or the virtual VDD

to the true global VDD is generated always. Other signals are generated only by enabling

the „detection ON’ for the switch control. Figure 4.7 shows the switch arrangement for

the multiplier.

Figure 4.7: Switch control arrangement

The switch control unit consists of two internal switches, two current controlled

sources and two detectors, one each for the virtual VDD and the PMOS gate control

signal. There is also control logic to generate different control signals based on the input

to the unit. The current control input signals to the unit controls the current output of

the current controlled source, which in turn decides the switching transition duration.

This unit has a dimension of 99.2 µm × 24 µm (2380.8 µm
2
).

The off-state multiplier will have outputs in floating state, which can affect the

functionality of other units that depends on these outputs. In order prevent the

propagation of these floating signals to other units, the multiplier outputs must be

isolated from units that depend on it. The only unit connected to the multiplier output is

the interconnect unit, through the multiplier registers. The actual multiplier unit in the

FlexCore hierarchy consists of the multiplier logic and the registers shown outside the

PD_mult domain in the Figure 4.6. By restricting the shut-down domain to the logic and

keeping the registers outside will eliminate the need for state retention cells. There will

be no gain in power but only a small increase in area if state retention cells were to be

used . Another option is to still define the registers inside the power gated domain and

include the D-latch isolation cells at the output of the registers. However in this work

only isolation cells with AND or NAND gates will be inserted in final design.

Power

Control

Module

Switch

Control

NISA 110 & 109

Multiplier

Header Switches

(PMOS)

Power Switch

Gate Control
Power Gate

Enable / Disable

Valid state detectors

Current Control (2 bit)

 Page 26 VLSI Research Group, Dept. of CSE, CHALMERS

The switch enable signal can be either controlled directly by the software via the NISA

binary instruction or by a dedicated “power control module”. The power control module

can be either an on chip or off chip controller. In this work an on-chip controller is used.

The power control module sends the power control information to the switches either by

in-built power-control logic or passing the information from the NISA instruction. The

power control module can operate in three modes which are explained in Section 6.3.

Power control for the multiplier is best achieved by software via the extended NISA

instruction. Hardware control is inefficient for this processor. Hardware control was

used only during the initial stages to verify functionality and to estimate power

reduction. Under software control the only important function to be performed by

hardware is to delay the power down by some cycles till the output is stable, which is

difficult to be implemented on the software.

 Page 27 VLSI Research Group, Dept. of CSE, CHALMERS

5. Software Analysis

5.1 FlexSoC Tool-chain

The FlexCore processor, targeting embedded systems, has been developed by VLSI

Research group at Chalmers in the context of FlexSoC project. The FlexCore processor

combines the advantages of power efficiency and high performance in Application-

Specific Integrated Circuits (ASICs) and flexibility and programmability of General

Purpose Processors (GPPs). A reconfigurable interconnect allows extensions to the

datapath as well as flexible routing of data between datapath units.

In order to support features of the FlexCore processor, a FlexSoC tool-chain

(FlexTools) was also developed as follows:

1. Software analysis

 FlexSoC Compiler – compiles MIPS-assembly code into Register Transfer

Notation (RTN) code of the FlexCore processor.

 FlexSoC Simulator – generates instruction and data binary codes from RTN

code which are used to verify and estimate power-performance of FlexCore

processor.

2. Physical implementation

 FlexSoC HDL Generator – generates RTL code for an instance of the

FlexCore processor with the specific datapath and interconnect

configurations.

 EDA tools for synthesis, place and route, and verification.

In addition, a Makefile was created to chain up all tools to evaluate the properties of the

FlexCore processor from C-code applications to physical implementation. In this

section, the focus is software analysis whose methodology flow is presented in Figure

5.1.

 Page 28 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.1: Methodology flow of the software analysis

5.2 EEMBC Benchmark

In order to examine performance of the FlexCore processor for a diverse range of the

applications, there are 10 benchmarks available from the Embedded microprocessor

benchmark consortium (EEMBC). They are from three suites, aifirf, canrdr, bitmnp of

the Automotive suite; rgbcmy, rgbhpg, rgbyiq of the Consumer suite, and Autcor,

conven, viterb, fft, of the Telecom suite. All these benchmarks are integer and no-

division applications because at the moment the FlexCore processor does not support

floating-point computation and hard-divider in its datapath [8].

Out of 10 available EEMBC benchmarks, we selected two benchmarks that are Autcor

(Auto-correlation) and FFT (Fast Fourier Transform) from the Telecom suite, for

evaluating the impacts of the power gating technique in the scope of our thesis. Autcor

and FFT are chosen because they are different in size and use the multiplication

operation in different ways. In detail, FFT benchmark is one of the largest among

EEMBC applications, with 162,967 cycles in total. Autcor uses 19,553 cycles, a number

fairly similar to the other provided EEMBC application.

 Page 29 VLSI Research Group, Dept. of CSE, CHALMERS

The multiplication property for two selected benchmarks is traced and reported in Table

5.1 It is clear that there is not a significant diversity in usage of the multiplier in both

applications. However, the cycle count of the FFT benchmark is 8.33x higher than

Autcor, making the FFT‟s multiplier utilization one of the largest among the other

available EEMBC benchmarks as determined in the initial pre-study.

Table 5.1: EEMBC application profiling statistics

Benchmark
Total

cycles count

MULT-only

Cycles % of total

AUTCOR 19553 400 2.05

FFT 162967 10240 6.28

In this multiplier-only usage (MULT-only) computation, the intermediate cycles

between all two consecutive multiplier activations were not included, only the cycles

during which multiplier was active.

Intermediate idle cycles (IIC) of the multiplier are significant factor when applying

power gating technique. Every benchmark has different values of IIC which changes

during its execution period. If the multiplier is power gated without considering IIC,

there would be a large number of switch transitions, which would lead to power

overhead. On the other hand, considering IIC in a way that makes multiplier to be ON

or OFF for a significant period of time would result in no power savings. In order to

achieve best power savings, the most optimal IIC (or effective idle cycles, Section 7.2)

must be determined. Multiplier‟s IIC computation and results are presented further

down the front-end flow in Section 5.5.1.

5.3 Localization of the Multiplier Function

After selecting applications to apply power gating technique in the FlexCore processor,

it is necessary to take into account the behaviour of the multiplier in the C-code of both,

Autcor and FFT benchmarks. Since multiplier unit of the FlexCore processor is chosen

to be power-gated, the active-cycle count and the idle-cycle count between two

consecutive multiplications are important features which need to be extracted through

application profiling by using FlexTools. In order to do so, the multiplication

instructions are localized in terms of a separate function with two or more input

parameters and this function is called within the main program. As a result, FlexTools

now are able to provide essential information which allows to us to estimate how often

the multiplier to be used as well as how long the multiplier to be activated or de-

activated in terms of a cycle count. An example of localizing multiplication instruction

is shown in Figure 5.2.

 Page 30 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.2: Multiplication localization example in the Autcor application C-code.

MultFunc is a name of the multiplication function, mult_result is an output of the MultFunc

Notice that localization of the multiplication instructions must not introduce errors in

the functionality of benchmarks. This is performed by verifying the re-organized C-code

to guarantee that it is exactly executed as the original benchmark. Afterward, the

verified C-codes are ready to be compiled. The goal of re-organizing the original C-

codes is to help FlexTools to identify individual multiplication functions and provide

application profiling information specifically related to the multiplier unit.

5.4 Tools Chain

5.4.1 MIPS Cross-compiler

GCC MIPS Cross-compiler is an open source tool that FlexTools relies upon. Since the

datapath of the FlexCore processor share almost the same functional units with the

conventional GPP processor (MIPS-lite datapath), GCC MIPS Cross-compiler is used to

compile the C-code into the MIPS assemble code which is provided to FlexSoC

compiler. Therefore, in the following step of the front-end flow, a re-organized C-code

together with the other required library‟s files are translated into MIPS assembly by a

GCC MIPS Cross-Compiler. In this study, the GCC-4.1.1 version was used to assemble

the C-code as a stable version. The other newer version of GCC might not be

compatible with the FlexSoC compiler, thus, they need to be pre-tested. The execution

of the MIPS Cross-compiler is controlled by rules in the Makefile (Appendix-A).

5.4.2 FlexSoC Compiler (FlexComp)

Next, a MIPS-assembled code is compiled by the FlexSoC compiler, named FlexComp,

which is a backbone of the FlexTools. As soon as MIPS assembly files are available,

FlexSoC compiler can produce RTN code for the FlexCore processor with a specific

datapath and interconnect configurations.

During the FlexComp compiling, MIPS assembly instructions are scheduled and

expressed in a single, long RTN instruction which makes it possible to achieve high

instruction level parallelism (ILP). It is clear that using a reconfigurable interconnect,

the datapath operation of the FlexCore processor is exposed to the compiler which is

exploited to gain ILP against to the GPP processor.

Multiplication in original C code:
Accumulator += ((e_s32) InputData[i] * (e_s32) InputData[i+lag]) >> Scale;

Localize multiplication instruction in the separate function:
MultFunc(InputData[i], InputData[i+lag]);

Call multiplication instruction in the main program:
Accumulator += (*mult_result >> Scale);

 Page 31 VLSI Research Group, Dept. of CSE, CHALMERS

5.4.3 FlexSoC Simulator (FlexSim)

The main target of this step is to generate all data which are required for application

profiling as well as hardware verification. FlexSim, a cycle-accurate simulator, takes

RTN code as inputs, simulate and generate data and instruction code in terms of Native

Instruction Set Architecture (N-ISA) for back-end phase. Furthermore, application

profiling can be performed through using outputs provided by FlexSim. Due to the fact

that FlexSim simulator provided an exposed N-ISA code, it is possible to trace of the

operation of the individual functional units in a cycle-by-cycle manner. Several

necessary options of FlexSim used for applications profiling are listed as follows:

-PROF Application profiling. Cycle-count and frequency for individual

functions used within applications.

-TRACENISAD Tracing and debugging. Mixed binary/RTN instruction format for

debug.

-TNISA Showing program as timed N-ISA instructions in binary format.

-TRINARYTNISA Showing program as timed N-ISA instructions in hexadecimal

format.

-SHOWCODE Showing program after static scheduling.

All output formats can be dumped into files for post-processing. As the FlexSoC

simulator generates required information for software analysis and, subsequently, to

apply power gating technique, the flow continues to the next stage of understanding

content of the output files.

5.5 Evaluation of Multiplier Behaviour

5.5.1 Computing IIC Value

The FlexSim is used with an option –PROFF to generate a file, named 'Profile', which

provides information related to cycle-count of individual function. Snapshots of profile

files for the original and re-organized C-code of the Autcor benchmark are shown in

Figure 5.3.

 Page 32 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.3: Autcor ’profile’ files.

Based on the original C-code (left-side), based on the C-code with localized multiplier (right-

side).

Profile of the benchmark shows information which concerns size, count, and

consequently, cycles of each function. In order to retrieve such multiplier related

information from the Profile, localization of the multiplier function is required to be

accomplished. Through the content of Profile, information of multiplier behaviour can

be collected which is the main reason for re-organizing C-code of benchmarks before

compilation and simulation. Right-side of Figure 5.3 shows multiplication is localized

as the separate function (MultFunc) in C-code benchmark (Line 21).

Furthermore, also from the profile, it is known that multiplier takes 4 cycles to execute

its function and is used 100 times in Autcor benchmark. However, it is not clear yet

when and how often exactly the multiplier is active in the benchmarks. In order to

determine the cycle index when multiplication is executed and finished, we need a

mapping step between several output files provided by FlexSim. For the sake of

simplicity, we should have a look to understand how the multiplication execution is

represented in RTN format.

Option –SHOWCODE in the runmips command statically schedules the benchmarks

and writes to a file, called Showcode file. This file presents every function of a

benchmark, their execution representation in RTN format, and equivalent program

counter (PC) value sorted in a numerical order. A short excerpt of the Showcode is

shown in Figure 5.4.

 Page 33 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.4: An excerpt from the Autcor ’showcode’ file

In Figure 5.4, multiplier function is labelled as 'MultFunc' (Line 201). From the Profile

file, it is known that multiplier takes 4 cycles to execute multiplication function. Here, it

is shown a representation of those 4 cycles in RTN format (Lines 202-205). Each cycle

has an equivalent PC values that, in MultFunc case, are 13-16. These numbers are

helpful to be known in cycle-accurate analysis, which is done by using FlexSim with an

option, -TRACENISAD to generate a file, named Readable, simply because this file

includes human-readable debug information. Figure 5.5 depicts a part of the Readable

file of the Autcor benchmark where multiplier activity is presented.

Figure 5.5: An excerpt from the Autcor ’readable’ file

In Figure 5.5, the first 4-integer values on the left represent the cycle number. There are

19,553 cycles in total for Autcor benchmark. Second column consists of N-ISA

instructions in hexadecimal format. Then, the third column depicts PC value and the

fourth one – equivalent RTN format of each cycle.

As PC values of the multiplier function are 13-16, in Readable file they are traced as

000013-000016 values (Lines 1321-1324 & 1339-1342). As it can be noticed from this

figure, here multiplier is active 2 times (out of 100 in Autcor application).

 Page 34 VLSI Research Group, Dept. of CSE, CHALMERS

Consequently, multiplier IIC cycles are computed by summing all the non-multiplier

cycles in between active multiplier cycles. In this example, there are 14 IIC cycles

(Lines 1325-1338). However, in other time-domain positions (see, Figure 5.5), Autcor

has 35 IIC cycles. Table 5.2 presents application profiling statistics including IIC data.

Table 5.2: EEMBC application profiling statistics including IIC

Benchmark
Total

cycles

MULT only
IIC Total IIC

MULT with IIC

Cycles % of total Cycles % of total

AUTCOR 19553 400 2.05 14, 34 1531 1931 9.88

FFT 162967 10240 6.28
1, 22, 47,

93, 2950
72148 82388 50.55

Activity of the multiplier including IIC consumes up to 1931 cycles, or 9.88% of total

benchmark cycles. It is determined by summing all the cycles from the first multiplier

activation to the last one. It also can be computed by adding total IIC of the multiplier to

actual multiplier activity cycles. In FFT case, summation of the IIC and multiplier-only

usage cycles (82,388) boosts the total multiplier usage up to 50.6% of total application

cycles. A diverse usage of a multiplier in Autcor (9.88%) and in FFT (50.6%)

benchmarks is one of the main reason of the selection of these applications. However,

there is another important factor that differentiates Autcor and FFT – a number of

multiplier‟s IIC which is irregular in both benchmarks.

Table 2 presents a range of IIC values. Instead of having one constant IIC value and,

hence, knowing an exact number of idle cycles between each multiplier execution, there

is an irregular number of IIC. Such irregularity of IIC complicates automatic application

of power gating technique which would require taking into consideration switching

power overhead. Without concerning switching power overhead, IIC parameter would

not affect power gating complexity. Therefore, further analysis of both benchmarks

related to irregular IIC is required in order to apply the most optimal power gating.

Figure 5.6 presents a graphical view of Autcor benchmark and its multiplier activity.

Subfigure A shows the full span of the application with total cycles showed in upper

line. The multiplier usage is presented in the lower line. Multiplier activity is illustrated

according its enable signal being „1‟ for one-cycle in the N-ISA instruction while

multiplier actually requires 4 cycles to complete its function. In subfigure B, it is shown

all the multiplier executions that are „separated‟ in 8 blocks, which few of them are

zoom in and presented in subfigure C. Lastly, in subfigure D, one of the blocks is

zoomed and depicted.

 Page 35 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.6: Multiplier usage in EEMBC benchmark, Autcor.

Upper line in each subfigure represents cycles and lower – multiplier activity

Notice that there are two IIC in Autcor benchmark (Figure 5.6.C). The larger „distance‟

between two multiplier executions is 35 cycles, which is what is meant by „separating‟

the multiplier activity in 8 sub-blocks. The smaller distance, which is also shown in

Figure 5.6.D, is 14 cycles – the minimum IIC of the benchmark.

The graphical view of the FFT application is shown in Figure 5.7. The entire multiplier

usage in FFT (50.6%) is presented in subfigure A. FFT multiplier activity is „divided‟

into two blocks that are closer zoomed in subfigure B to show the difference between

them. Each block is presented in further subfigures: the left block in subfigure C and the

right one – in D.

(A) Full view

8 blocks

(B) Multiplier zoom 1

35 14

(C) Multiplier zoom 2

14

 (D) Multiplier zoom 3

34

 Page 36 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.7: Multiplier usage in EEMBC benchmark, FFT.

Upper line in each subfigure represents cycles and lower – multiplier activity

Most attention in FFT multiplier usage requires the difference between the left (Figure

5.7.C) and the right (Figure 5.7.D) blocks. Each block has two different IIC which

makes FFT benchmark to have 5 different IIC. The fifth one is the largest that separates

the blocks and it contains 2950 cycles (Figure 5.7.B). The left block holds IIC of 1 and

22. The right block contains 47 and 93.

5.5.2 Tracing Multiplier Instructions

Method 1

In parallel with computing the IIC count based on Profile, Showcode, and Readable

files, a trace of multiplier instructions is performed using N-ISA code file generated by

the FlexSoC simulator. Multiplier instructions can be traced only using hexadecimal N-

ISA instruction. The original N-ISA consists of 109 bits of control signals for each

functional unit in the FlexCore. Figure 5.8 shows the mapping of the N-ISA.

(A) Full view

2950

Left block Right block

(B) Multiplier zoom

22 1

(C) Left block zoom

47 93

(D) Right block zoom

 Page 37 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.8: N-ISA instruction mapping

As mentioned previously, N-ISA instruction consists of address bits for interconnect

and control bits for datapath units. The last 8 LSB are reserved for the multiplier units'

addresses (108:101) in the interconnect. In the trinary N-ISA format, the only

instruction, that has other than X value in multiplier address, is on Line 15 where

multiplier executes its function (Figure 5.9). Datapath has two bits related to the

multiplier functional unit: stall (68) and enable (67). Enable signal is a key point of this

multiplier instruction tracing method.

Every time the multiplier is active, enable signal is triggered to '1' in trinary format,

otherwise, it is set by „0‟. Therefore, according to the enable signal of the multiplier,

activation of the multiplier can be traced by only using the N-ISA instruction.

Method 2

FlexSim generates N-ISA instructions in two formats: in hexadecimal and in trinary

codes. Data files for both formats are identical. Trinary format consists of 109 bits of

binary 0 and 1, and X (don't care) values. Hexadecimal code requires less storage space

by consisting of 28 bits of hexadecimal values (0-9 and A-F). Examples of both formats

of the same N-ISA instruction are presented in Figure 5.9.

Figure 5.9: Several instructions of Autcor N-ISA code

Trinary (left) and in hexadecimal formats (right).

 Page 38 VLSI Research Group, Dept. of CSE, CHALMERS

N-ISA instructions in both formats are not completely identical as instructions in the

Readable file (Figure 5.5, 2
nd

 column) per cycle. Here, N-ISA instructions are wrapped

and do not include repetitive cycles in loops. Therefore, it is impossible to detect all

multiplier activities using only N-ISA code. For example, in Autcor N-ISA instruction,

multiplier is instructed to be activated only once (Figure 5.9, Line 15) while the

benchmark actually uses multiplication function 100 times. The N-ISA instruction in

Line 15 is traced from the Readable file where it is identical to the instructions in Lines

1321 & 1340 (Figure 5.5). It means that multiplier performs its function at Line 15.

N-ISA instruction is a compact version of the Readable file excluding PC values and

RTN-format notations in order to avoid an excessive amount of instruction bandwidth

and a large memory footprint. Subsequently, because of its lower bandwidth,

hexadecimal N-ISA instruction format is standard input to the RTL level power

estimation where N-ISA is converted to the trinary format. Trinary N-ISA code is also

useful in another method of tracing multiplier instructions.

5.6 N-ISA Extension for Power Gating

In order to introduce a multiplier power gating control bit and a power gating mode

control bit, the instruction is required to be extended to 111 bits. Purpose of the power

gating mode control is to selected either software or hardware power gating control

mode (more information in Section 6.3). The flow of the procedure in order to activate a

power-gated multiplier by extending the N-ISA instruction is shown in Figure 5.10.

Figure 5.10: Applying power gating control signal

Hence, a structure of the new extended N-ISA instruction with extra power gating bits is

shown in Figure 5.11.

 Page 39 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 5.11: Extended N-ISA

 Page 40 VLSI Research Group, Dept. of CSE, CHALMERS

6. Hardware Implementation

Hardware implementation flow begins with the given RTL code for the original

FlexCore design (RTL-FlexCore). RTL code for the power control module and the

RTL-FlexCore are defined in another top-level module. The power intent in a low

power design is specified through the common power format (CPF) file. The synthesis

tool takes both RTL and the CPF files and produces the new netlist in which the

required low power methods are applied. Certain aspects of the architecture, such as

insertion of power switches will be added in the next step of physical implementation.

The function of the power-gated design is verified after synthesis and physical

implementation with the testbench used for the original design and the power gating

functionality is verified with Cadence Incisive Simulator. Figure 6.1 gives an overview

of the flow. This section gives a brief about the common power format, the RTL

synthesis and the implementation phases.

Figure 6.1: Hardware implementation flow

6.1 Common Power Format

The power intent of a design is specified through the CPF file [5]. It is a Si2 supported

format for specifying the power architecture of a design. The early version of CPF was

designed by Cadence. A single CPF is used throughout a digital design flow right from

the RTL synthesis to physical implementation and by various verification and

estimation tools. CPF defines the specific power architecture that has to be applied to a

design such as multi threshold, power gating, multi supply or all of these. No

modifications are required to be made to the original design. Tools read the original

design and its CPF to perform the required changes at the synthesis and physical

implementation phase. The CPF file structure begins with specifying the libraries and

RTL
Original

FlexCore

 Design

Power

Control

Module

CPF

RTL Synthesis

Netlist + SDC

Physical

Implementation

Verification

Results &

Analysis

 Page 41 VLSI Research Group, Dept. of CSE, CHALMERS

then the nominal conditions and rule for usage of special cells. The structure is shown in

Figure 6.2 and briefly discussed as follows [10]:

Figure 6.2: CPF specification structure

1. Specifying Libraries: The set of libraries used for design are specified here. The

library set specified includes all the libraries for the normal synthesis step and

special cells (power switch, isolation, state retention cells) to be used with the

chosen low power technique. A library set also contains multiple threshold

libraries which are used in implementing multi-VTH technique. Each library set

is given a name and referred later in the file to associate a set of rules. Library

sets for different operating corners can also be specified and each set is referred

with their unique name.

2. Specifying Special Cells: All specials cells to be used in the design like the

power switch cells, isolation cells, state retentions cells and level shifters are

defined here. The tools searches for the specified cells from the libraries defined

in the previous step. For power switch definition, parameters such as associated

power nets, the type of the switch cell (header or footer) and the switch enable

pin are specified. Similarly for isolation and state retention cells their enable

pins and their valid placement locations are specified.

3. Domains: A domain is a group of instances that operate on the same supply

voltage or is switched off in a power gated design. A default domain has to be

specified. All instances unless specified to be in defined domain, will belong to

this default domain. Section 4.1 explains the power domain split for the power

Nominal Operating Conditions

Specify Libraries

Specify Special Cells

Domain Definition

Modes of Operation

Design Rules

Operating Corners and Analysis View

 Page 42 VLSI Research Group, Dept. of CSE, CHALMERS

gated FlexCore design. Only two domains are present in the CPF for this work,

one is the default and the other domain is for the multiplier. A shut-off condition

must be associated with a domain definition which is used for power gating.

4. Nominal Operating Conditions: The possible operating voltages that different

domains operate at are defined as the nominal operating conditions. In multi

supply or dynamic voltage scaling design the chip or domains operates at

different voltage levels which are defined as nominal conditions. In a power

gated design there are only two nominal conditions i.e. when a domain is turned

ON (operate at the chip voltage) and turned OFF (0).

5. Modes of Operation: This step defines stable modes of operation for the design

in which each domain operates at one of the nominal operating conditions

specified in the previous step. A default mode has to be defined similar to a

default domain. The design operates in the mode until conditions for other

modes are satisfied. In a power gated design, the off state nominal condition

need not be specified as a 0 voltage level. Domains that are not associated with

any nominal operating condition in a mode are considered to operate at 0 V.

Table 6.1 shows the domains and modes defined for this power gated FlexCore

design.

6. Design Rules: The design rules specify how the special cells have to be used.

The specification includes, the type of special cell that have to be used from the

different special cells defined in step 2. For isolation cells the condition for

isolation, the domains associated and their location and for their insertion is

defined. Isolation cells can be inserted either at the input domain or the output

domain. For the power switches the associated domain and nets are defined.

State retention rules specify the registers that have to be replaced with the state

retention cells (retention flops).

7. Operating corners & Analysis view: Operating corners specify a set of process,

voltage and temperature values under which the design must operate

successfully. Analysis view associates these operating corners with a mode of

operation (step 5). The set of active views represent the different design

variations that will be timed and optimized through a multi-mode multi-corner

(MMMC) analysis.

Apart from the above main steps few other specifications are also present in the CPF.

 Power and ground nets considered for the design are defined. In this power gated

design 3 power nets and 1 ground net is defined, which are shown in Table 6.2

 Global connections for pins to the power and ground nets are defined. VDD Pins

in the PD_mult domain are connected to the Virtual VDD (VDD) power net and

the VDD pins for the rest of the design (PD_default) are connected to the True

VDD (TVDD). The gate inputs of the PMOS switches and the gate control single

from the switch control cell are connected to the SWVDD power net (Table 6.2).

 Rules for transition between the modes specified at step 5 can be defined when a

dynamic voltage scaling is to be implemented.

 Page 43 VLSI Research Group, Dept. of CSE, CHALMERS

 Timing constraints and activity information for each modes of operation is

defined. The timing constraints are specified through the SDC file.

 Dynamic and leakage power targets can also be specified.

 Defining „Always ON‟ cells in a power gated domain: If any cell in the power

gated domain is required to be ON while rest of the domain is turned OFF, then

it is to be defined as an „Always ON’ cell. During the physical implementation

these cells are connected to the True VDD instead of the Virtual VDD of the

domain through special routing. Too many such cells can lead to complexity in

placement and routing, in which case the power architecture must be

reconsidered.

Table 6.1: Power domains and modes for the power gated FlexCore design

Power Mode
Power Domain

PD_default PD_mult

PM_default 1.0 1.0

PM_mult_off 1.0 0.0

Table 6.2: Power and ground nets for the power gated FlexCore design

Net Type Description

TVDD Power Global or true VDD

VDD Power Virtual or PD_mult domain VDD

SWVDD Power PMOS switches gate control

VSS Ground Global ground

6.2 RTL Design and Synthesis

The only RTL design required for the implementation of the power gated FlexCore

design is the power control module. No modifications are made to the original design,

except for addition of isolation enable (input), power switch enable (input) and

transition complete (output) signals to the port list of the top level FlexCore HDL. For

evaluation purpose the current control bits for the switch control cell are defined as

external inputs. Similarly the test signal associated the switch control cell are also

defined as external signals.

The synthesis is carried out using Cadence RTL Compiler. The synthesis flow has few

additional steps to read the CPF file and apply the power intent to the design. The flow

used in this work is based on the recommended low power design flow in [11]. The

flow is shown in Figure 6.3. Synthesis is performed for the two library types (standard

VTH and low VTH) of the provided 65 nm technology. For each library type synthesis is

performed for and typical and worst case operating conditions
3
.

3
 Refer section “Tools and Technology”

 Page 44 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 6.3: RTL synthesis flow

The flow begins with the setup of library locations, HDL locations and setting attributes

required for the synthesis. It is followed by the normal steps of reading the libraries,

reading the HDL files and then elaborating them. Read and Check CPF step reads the

specified CPF file for the top level module and verifies the syntax and definitions. The

libraries specified in the CPF are read and the successfully read libraries are reported.

The domains specified are created in the hierarchy and instances are grouped to their

respective domains. Domains are associated with their respective libraries as defined in

the CPF. The timing constraints and activity information if specified in the CPF are

read. Isolation, state retention and library set definitions successfully read are reported.

Power switch insertion is not carried out in the RTL compiler and hence the power

switch definition is report to be unsupported. The report also indicates the number of

Setup

Read Libraries

Read HDL files and Elaborate

Read and Check the CPF

Apply Timing and Design

Constraints

Synthesize Design

Reload CPF

Execute CPF

Incremental Optimization

Annotate Switching Activity

Estimate Power (Power Shut off Aware)

 Page 45 VLSI Research Group, Dept. of CSE, CHALMERS

Isolation Cells

Hierarchy

usable isolations cells, retention cells and level shifters
4
 for the design. It also lists the

unusable cells. Finally a list of isolation rules or retention rules that have to be applied is

created.

The timing and other design constraints are applied and the actual synthesis step is

carried out. Cells from the libraries are mapped to their corresponding domain. During

synthesis, the state retentions cells replace the specified registers. The CPF file is

reloaded to ensure that isolation cells are considered as specified in the CPF file.

Synthesis step can add new nets or pins to the netlist and isolation rule might be

applicable to some of these nets or pins. The CPF is reloaded to ensure that all locations

are considered. When the CPF is executed the isolation cells are inserted in the netlist.

The number of isolation cells and their locations (input or output nets/pins) are reported.

The report can be checked to verify isolation cells are inserted as the user intended in

the CPF. In this design, isolation cells are inserted between the outputs of the multiplier

and the isolation outputs are connected to the registers. A total of 64 isolation cells are

inserted, which includes two enable signals for the registers (2*32 bit + 2). The registers

work on an active-high enable signal and hence a „0‟ isolation output for the enable

signals are required so that the floating values at the multiplier output when it is shut

down, is isolated from the output registers. An AND type or NOR type isolation cells

are thus needed. All isolations cells having the same enable signal, from and to domain,

and of the same cell and library type are grouped into a hierarchical instance.

Figure 6.4: Schematic view of the synthesized netlist showing isolation cells hierarchy

4
 There is no level shifter or retention rule specified in the design and hence no definitions or usable level

shifters cells are reported.

Multiplier

Isolation Cells

Hierarchical Instance

Input

Data

Registers

 Page 46 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 6.4 shows the hierarchical instance of isolation cells inserted between the output

of the multiplier and the input of the registers. All 64 isolation cells inserted in this

design and grouped into this hierarchy. Figure 6.5 shows the isolation cells inside the

hierarchy and their common enable signal. Level shifters if need (multi supply voltage

design), are also defined in this step similar to isolation cells.

Figure 6.5: Schematic view of the isolation cells in the hierarchical group

Power estimation is reported after reading the activity file for the chosen benchmarks in

each case of library type and operating condition combination. The estimation is same

as in any design flow except that an attribute has to be set to indicate that a power shut

off estimation is made. Also attribute has to be to set indicate if the activity is power

shut-off aware or not. The tools estimates the power considering the power down

domain and the activity for the wake-up and shut-off is derived from the power domain

shut-off condition specified in the CPF domain definition.

6.3 Power Control Module

An additional on-chip power control module was designed for the existing flex-core.

The power control module can operate in three different modes which can be controlled

from the NISA binary instruction. The 110 and 109 bits of NISA are used to set the

operation of the power control module to the required mode (Figure 6.6).

Isolation

Enable Signal

Data Input

(multiplier) Output to

Registers

AND type

Isolation Cell

 Page 47 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 6.6: NISA extended bits for power control and their operation

Mode 1 (01/00): In this mode the power control for the multiplier is directly received

from the NISA. Each NISA instruction will have the ON or OFF state for the multiplier.

The 111th bit is „0‟ in this mode and the bit 110th bit is either „1‟ or „0‟ signalling the

„turn-ON‟ or „turn-OFF‟ of the switch. The NISA power gating bit is set to “switch

enable =1” one cycle before the actual multiplication. The hardware takes care of the

„turn-OFF‟ of the switch by delaying the turn off for the required number of cycles. The

Multiplier takes two cycles for multiplication and another cycle of transferring the

results to the registers outside the domain PD_mult. The hardware delays the “switch-

enable = 0” signal condition four cycles after the 109
th

 bit of NISA goes to „0‟. For this

mode to operate efficiently, evaluation and modification of the input NISA instructions

is required based on the application profile, which is main aim of the software part of

this work.

Mode 2 (10): In this mode the power control module enables and disables the switches

based on some stored values. The first option is to store one or more threshold cycle. By

threshold cycles we mean the minimum idle cycles between consecutive usages of the

multiplier such that there is an optimal power gain or in the worst case there is no

overhead in the power. The power control module counts the number of idle cycles of

the multiplier, once the counter exceeds the threshold cycle the switch is disabled. If the

multiplier is to be turned ON immediately after the threshold cycle then this mode is not

effective
5
. But for the benchmarks considered here such a case does not appear. The

value stored must be a higher than the maximum threshold of a set of applications

considered to be running on the processor, which will be very inefficient if the idle

cycle profile of these applications differ to a great extent. If it is possible to choose an

optimal threshold value that is in good agreement with the entire application set

considered, then a run-time software analysis on the idle cycle is not required. The

second option is to receive the threshold value from the NISA instruction. The compiler

must have additional functionality to analyse idle cycles of the application being

executed and send the threshold cycle to the power control module either at the

beginning of the execution. This data can be received through some serial transaction

protocol, after setting the mode to 10.

Mode 3 (11): In this mode the power control module generates the switch enable signal

directly checking the multiplier enable bit from the NISA instruction input. Which

5
 In Mode 01/00 i.e. software control, idle cycles up to threshold value is not lost. Analysis on the entire

idle cycle profile is performed prior to the execution and hence power gating bit is enabled at the

beginning of multiplier idle cycle.

NISA - Extended

110

Mode Control

NISA - Extended

109

Switch Control in

Mode 0

0X – Software Control – Mode 1

10 – Software + Hardware Control – Mode 2

11 – Hardware Control – Mode 3

Original NISA

108:0

 Page 48 VLSI Research Group, Dept. of CSE, CHALMERS

means that the multiplier is turned ON as and when its required. But the switch needs to

operate with the least possible transition time. The switches used here have a transition

delay of 1 ns in the best case. So this mode is suitable for the 3.5 ns clock period

considered here. But the rush current will be high. Similar to the software mode, during

shut down the switch is disabled 4 cycles after the multiplier enable bit goes low. A 4

cycle delay is to ensure that he multiplier output is successfully read by the registers.

But no effort is made to check the idle cycles. This mode is only suitable for testing and

verification. This mode was initial power control operation designed before software

support was available. The mode was preserved after the power control module was

redesigned to have the above two modes.

6.4 Physical Implementation

The physical implementation of the power gated design of the FlexCore processor has

mainly three additional steps comparing to the conventional flow. Figure 6.7 shows the

flow of the entire physical implementation.

As highlighted in Figure 6.7 three additional steps involved in the physical

implementation phase of a low power design are

 Placement of special cells

 Defining special power network

 Routing special nets.

These steps are explained in detail along with the brief about the other steps.

 The flow begins with a general setup, which includes reading the netlist, timing

constraints, power architecture (CPF) and libraries. In the floor planning step

instances under the same module are grouped into regions and placed similar to

the block diagram view in Figure 4.6. The two domains defined are clearly

visible and all instances of the multiplier module are automatically placed in the

PD_mult domain. Partitions can be defined for the separate domain (PD_mult).

This will help carrying out the further steps separately for the two domains. The

isolations cells are grouped into a fenced block and placed close to the PD_mult

domain
6
. During floor planning it is ensured that enough space is available

around the multiplier domain to place the power switches and hence a halo of

required dimensions are defined for the PD_mult domain.

 Placement of Special Cells: Specials involved in a power gating design are the

power switches, switch filler cells, switch corner cells, isolation and state

retention cells. Isolation and state retention cells are added to the netlist in the

synthesis phase as explained in 6.2. The actual placement of these cells is carried

out during the step of “Placement of Standard Cells”
7
.

6
 Floor planning for level shifters are also carried out similarly

7
 Level shifters are also inserted into the netlist during synthesis phase and are placed along with other

standard cells similar to isolation cells.

 Page 49 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 6.7: Physical implementation flow

 The power switching is made of two types of cells as explained before in 4.1.

One is the switch control cell (VDD-CTRL) and the other is the actual PMOS

header switch (VDD-SWITCH) cell. They are placed with two separate

„addPowerSwitch’ commands. Switch filler and corner cells are automatically

placed with the same „addPowerSwitch’ command. The connection of cell pins

to their corresponding nets is also specified with the same command. The

switches are arranged in a ring fashion. VDD-CTRL (switch control) is placed

on the left side of the domain and the VDD-SWITCHES (PMOS header

switches) are placed on the remaining sides. The switch control can also be

placed as a separate instance outside the ring and allow switches to be arranged

on all sides of the domain. But for power network simplicity the switch control

is placed within the ring.

Setup

Floor Planning

Placement of Special Cells

Special Power Network

Core Power Network

Placement of Standard Cells

Clock Tree Synthesis

Routing Special Nets

Routing Other Nets

Verify and Check for Errors

Power and IR drop Analysis

 Page 50 VLSI Research Group, Dept. of CSE, CHALMERS

Additional isolation or level shifters can be placed if required. The switch

control cell provided by the library typically operates at 1.2 V and the rest of the

cells at 1.0 V. In this case level shifters should be placed for the switch enable,

control and valid state indication signals. However in this work the operating

voltage of the switch control cell is limited to 1.0 V as it can operate between

0.72 V – 1.43 V.

 Special Power Network: This step defines power rings and stripes around the

PD_mult. The rings are defined for the power connection to cells within the

domain and also ring type switches placed around it. In total 7 rings of 4

different power/ground nets are added. A virtual VDD (VDD) and ground (VSS)

are added for connection to cells in the domain. Global VDD or true VDD

(TVDD), virtual VDD and two VSS rings
8
 are added for the ring switches. As

explained before the switch control cell controls the gate terminal of the PMOS

switches (VDD-SWITCHES), which is also defined as a power net and a hence

ring is added (SWVDD) for this connection. This also defined in the CPF file

and shown in Table 6.2.

The rings placed on the switches are automatically connected to the metal lines

on the VDD-SWITCH and FILLER cells by the tool. To connect the pins of the

VDD-CTRL block, the special route command is used (sroute). Blockages must

be added appropriately to avoid unnecessary routing, which can lead to routing

congestion in the later steps.

 In the next step the core power network is defined as in a regular design by

adding supply (TVDD) and ground (VSS) rings around the core and stripes with

regular spacing. The TVDD stripes are limited to the PD_default domain.

Placement of standard cells is carried out in the usual manner, with pre place and

in place optimizations. The isolation and state retention cells are inserted into

their corresponding fence blocks. Clock Tree Synthesis is the next step and

carried out in the same manner as performed for the original design.

 Routing Special Nets: The enable signals for the switching and isolation cell

along with other control cells have to be routed first and fixed, as they are of

high priority. The nets include the isolation enable signal and the enable, current

control bits and testing control bits for the VDD-CTRL cell. After applying a

special route on these nets, their property is change to “fixed”.

 Remaining nets are routed and the design is checked for errors. The RC

extraction is performed, followed by power and IR Drop analysis. The netlist at

this step is extracted and verified with the chosen benchmarks using the Cadence

Incisive Simulator similar to the verification after RTL synthesis.

8
 The second VSS ring is to connect the Virtual VSS and SWGND pins of the switches and control cell.

These pins are used only if a footer cell is to be used and thus not considered in this design.

 Page 51 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 6.8 shows the view of the multiplier domain, the switches and the control cell

around it (ring) and the special power nets routed around it.

Figure 6.8: Physical view of the multiplier domain, switches, isolation cells and power/ground

nets

Switch Control

Cell

PMOS Switches

+ Filler Cells

Isolation Cells Multiplier Domain

(PD_mult)

SWVDD (gate)

TVDD (true)

VSS

VDD (virtual)

VSS (SWGND, VVSS)

 Page 52 VLSI Research Group, Dept. of CSE, CHALMERS

7. Results and Analysis

This section discusses the results that were obtained at the RTL synthesis and physical

implementations for two different libraries and two operating conditions. The results

presented are for the Autcor and fft benchmarks as explained in Section 5.2.

The libraries used are:

 GL - General Purpose Low Voltage Threshold

 GS - General Purpose Standard Voltage Threshold

Operating conditions are denoted throughout as

 Nom - Nominal or Typical: 1.0 V | 25 C

 WC - Worst Case or Maximum Timing: 0.9 V | 125 C

The results section begins with the early power saving analysis from the power gating of

the multiplier after the RTL synthesis step. Further as estimates of the power switches

are obtained after the physical implementation the actual possible power savings are

estimated. The entire design is simulated at a clock period of 3500 ps, which is

approximately 285 MHz.

7.1 Power Reduction Estimation after RTL Synthesis

The power reduction estimation after RTL synthesis is mainly performed as an early

evaluation of how much power can be saved with the chosen power reduction

technique. In the case of power gating technique, if the average switching overhead is

known beforehand, the savings estimated would be a closer approximate to the practical

case. However the switch overhead is not known prior to this work. The post RTL

synthesis power reduction estimations serve the purpose of a comparison with the later

estimations.

This section shows the maximum power reduction that can be achieved with power

gating of the multiplier unit of the FlexCore. This power reduction is estimated without

considering the dynamic or switching power of the switch control cell (VDD-CTRL).

Hence these results can be considered as ideal. The results give a picture of how much

reduction can be achieved with different libraries and operating conditions. Power

comparison for two types of libraries is shown. Further power for each library in the

best, nominal and worst case conditions are estimated. The low VTH libraries have the

best power reduction when considering that the dynamic power of the unit is much

smaller compared to the leakage. The leakage power also increases with the temperature

i.e. for the worst case.

 Page 53 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.1: Power comparison for the multiplier, Benchmark: Autcor, Lib: GP-LVT

The leakage and dynamic power estimated for the multiplier unit after RTL synthesis as

compared to that of the non-power gated design for the Autcor benchmark and low VTH

libraries is shown in Figure 7.1. The vertical axis shows the dynamic and leakage power

for nominal and worst case conditions. The numbers within the parenthesis indicate the

factor by which dynamic and leakage is reduced from the original design. The

horizontal axis gives the power in µW (log scale).

Figure 7.2 to Figure 7.4 shows the same results for Autcor benchmark with low VTH

library and FFT benchmark for both libraries.

Figure 7.2: Power comparison for the multiplier, Benchmark:Autocor, Lib:GP-SVT

1 10 100 1000

Leakage (45.5x)

Dynamic(38x)

Leakage(47.52x)

Dynamic(37.8x)

N
O

M
W

C

G
en

er
al

 P
u

rp
o

se
 L

o
w

 V
T

H

Power in µW

Autcor - GL

No-PG

PG

1 10 100 1000

Leakage(46.3x)

Dynamic(39.2x)

Leakage(47x)

Dynamic(39x)

N
O

M
W

C

G
en

er
al

 P
u

rp
o

se
 S

ta
n

d
ar

d
 V

T
H

Power in µW

Autocor - GS

No-PG

PG

 Page 54 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.3: Power comparison for the multiplier, Benchmark: FFT, Lib: GP-LVT

Figure 7.4: Power comparison for the multiplier, Benchmark: FFT, Lib: GP-SVT

It is clear from all the above cases (Figure 7.1 to Figure 7.4) that with increase in

temperature the leakage will increase rapidly. This is mainly due to the dependence of

temperature on the sub-threshold leakage which is evident from Equations 4 to 6. The

sub-threshold leakage has a complex exponential dependence on the temperature and is

the major source of leakage in the 65-nm technology. Hence the total leakage can

roughly vary by the same extent as the sub-threshold leakage. For a temperature

increase from 25 C (nominal) to 125 C (worst case) the total leakage approximately

increases by a factor 1.7 for the low VTH library and by a factor of 2.9 for the standard

VTH library.

Figure 7.5 summarises the overall power reduction estimation for the entire FlexCore

design by power gating the multiplier. For the standard VTH library overall reduction of

6% – 9% is estimated and for the low VTH library overall reduction of 11% – 15% is

estimated. Table 7.1 shows the overall energy and power reduction for all the

benchmark, library, and operating condition combinations.

1 10 100 1000 10000

Leakage (9.9x)

Dynamic (6.9x)

Leakage (10.1x)

Dynamic (6.5x)

N
O

M
W

C

G
en

er
al

 P
u

rp
o

se
 L

o
w

 V
T

H

Power in µW

FFT - GL

No-PG

PG

1 10 100 1000

Leakage (10x)

Dynamic (6.9x)

Leakage (10.1x)

Dynamic (6.6x)

N
O

M
W

C

G
en

er
al

 P
u

rp
o

se
 S

ta
n

d
ar

d
 V

T
H

Power in µW

FFT - GS

No-PG

PG

 Page 55 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.5: Overall power/energy reduction from the original design

Table 7.1: Overall energy & power reduction after RTL synthesis, BM: Autcor & FFT

Clock Period 3500 ps

AUTCOR FFT

GL GS GL GS

Nom WC Nom WC Nom WC Nom WC

Cycle Count 19553 162967

Energy Reduction in nJ 73.4 108.8 27.2 41.4 681.4 936.65 291.8 387.7

Power Reduction in µW 1072.85 1589.24 397.44 605 1194.68 1642.14 511.6 678.95

 [9]

7.2 Power Reduction Estimation after Physical Implementation

The power estimations after physical estimation consider the switching overhead. An

application will have different idle cycles between two consecutive usages of the

multiplier. In applications having looping multiplier operations, if the multiplier was the

be turned ON at every instant it is needed and turned OFF at every instant it is not

needed there would be a large activity on the switches. This would lead to significant

switching power and the gain achieved from power gating is lost. Thus a definite idle

cycle called the threshold idle cycles must be considered to decide if the unit is to be

turned OFF i.e. if the idle cycles between consecutive multiplier usage is less than the

threshold cycles, then the enable signal of the multiplier unit is retained. This leads to a

reduced switching overhead, however there will be a small decrease in the power

savings. For the switches and benchmarks used here the change in overhead is

significant compared to changes in the power savings. Input from the software analysis

is used for best threshold cycles evaluation which is called the effective idle cycles. The

effective idle cycles corresponds to the best possible reduction that can be obtained.

Software analysis provides the different benchmark codes (Autcor and FFT) with all the

possible threshold idle cycle considerations. The power reduction and switch overhead

is estimated at the physical implementation level using the Cadence SoC Encounter tool

for all the cases provided by the software.

0 5 10 15 20

Nom

WC

Nom

WC

Nom

WC

Nom

WC

G
L

G
S

G
L

G
S

A
U

T
C

O
R

F
F

T

Power/Energy Reduction (RTL Synthesis)

Percentage

 Page 56 VLSI Research Group, Dept. of CSE, CHALMERS

The evaluation is performed for all the library and operating condition combinations and

for the Autcor and FFT benchmarks as with the estimations in Section 7.1. Figure 7.6 to

Figure 7.13 shows the comparison of power reduction and switching overhead with

different threshold idle cycle considerations. The power reduction implies the reduction

for the entire design which is same as the power reduction from the multiplier
9
. The

horizontal axis represents the different threshold idle cycles considered for the

benchmark. These threshold cycles considered are obtained from the benchmark

profile
10

 and are not random values. The vertical axis gives the power in µW (log scale).

A threshold idle cycle of 0 on the horizontal axis means than the multiplier will be

either turned ON or OFF at every instant as explained in the previous paragraph. In

Figure 7.6 a threshold idle cycle of 7 means that multiplier unit remains ON, unless the

idle cycles is 7 or more. If the idle cycles is more than 7 then the multiplier is disabled.

For each threshold idle cycles the overall power reduction is shown at the top. A

negative value indicates that the switching overhead is higher than the savings and

hence the overall power will increase. Figure 7.6 shows the effective idle cycle

evaluation for the Autcor benchmark with GL
11

 library in a nominal operating

condition. A threshold cycle of 34 gives the best power reduction of 9.61 %. Threshold

idle cycle of 14 and 26 would also give a power gain, but the best reduction is obtained

for 34 idle cycles and hence it is the effective idle cycle (EIC) for this case. This is

indicated by the term EIC in the figure. Threshold idle cycle of 14 where some power

gain is present is called the minimum threshold idle cycle. The standby power and the

leakage power of the switch cells are insignificant compared to its switching power and

hence the switching overhead is relatively constant with operating condition. The

switching power mainly depends on the number of transitions.

9
 No other power reduction technique is implemented and reduction achieved is only due to power gating

of the multiplier hence the overall reduction will be same as the reduction for the multiplier.
10

 The threshold cycles are not multiples of any number nor do they have any relation with adjacent

values.
11

 For explanation of the term GL and GS refer to the start of this section (7).

1

10

100

1,000

10,000

0 7 14 26 34

P
o
w

er
 i
n
 µ

W

Threshold Idle Cycles for shut-off

Autcor
GL, Nominal

Power reduction

Switching Overhead

9.61 4.24 4.31 -65.26 -65.77

Overall Reduction (%)

EIC

 Page 57 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.6: Power comparison of power reduction and switching overhead, Benchmark:Autcor,

Lib:GP-LVT, Nominal

As observed in Figure 7.7 the EIC remains the same for the worst case condition for the

same Autcor benchmark and GL library as the previous case. However the overall

reduction is higher in the worst case as compared to the nominal case which is expected

as the leakage would increase with temperature (Section 7.1).

The break-even point is the number of idle cycles for which the overhead and leakage

reduction are equal. For the cases in Figure 7.6 and Figure 7.7 the break-even point

would lie between threshold idle cycle value of 7 and 14 where the overall reduction is

0% (overhead = leakage reduction).

Figure 7.7: Power comparison of power reduction and switching overhead, Benchmark:Autcor,

Lib:GP-LVT, Worst Case

In Figure 7.8 and Figure 7.9 it can be observed that there is no power gain for threshold

idle cycles of 14 and 26 compared to the previous two cases for the GL library. For the

Autcor benchmark the EIC remains the same for the two libraries (GL and GS). For a

different application it is possible that the EIC also changes with change in the library

(especially the threshold voltage), which must be taken in to consideration on the

software side.

1

10

100

1,000

10,000

0 7 14 26 34

P
o
w

er
 i
n
 µ

W

Threshold Idle Cycles for shut-off

Autcor
GL, Worst Case

Power reduction

Switching Overhead

13.13 8.36 8.45 -53.3 -53.7

Overall Reduction (%)

EIC

 Page 58 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.8: Power comparison of power reduction and switching overhead, Benchmark:Autcor,

Lib:GP-SVT, Nominal

Figure 7.9: Power comparison of power reduction and switching overhead, Benchmark:Autcor,

Lib:GP-SVT, Worst Case

The FFT benchmark is a bigger application compared to the Autcor and has more

threshold idle cycles to be considered (Section 5.5). In Figure 7.10 one can observe that

the EIC is 127 which is also the minimum threshold idle cycles for this case
12

.

12

 The EIC and minimum threshold idle cycles were different for the Autcor benchmark with GL library

(Figure 7.6 and Figure 7.7)

1

10

100

1,000

10,000

0 7 14 26 34

P
o

w
er

 i
n

 µ
W

Threshold Idle Cycles for shut-off

Autcor
GS, Nominal

Power reduction

Switching Overhead

4.7 -3.6 -3.5 -112.8 -112.5

Overall Reduction (%)

EIC

1

10

100

1,000

10,000

0 7 14 26 34

P
o
w

er
 i
n
 µ

W

Threshold Idle Cycles for shut-off

Autcor
GS, Worst Case

Power reduction

Switching Overhead

7.64 -0.45 -0.39 -106.8 -106.3

Overall Reduction (%)

EIC

 Page 59 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.10: Power comparison of power reduction and switching overhead, Benchmark:FFT,

Lib:GP-LVT, Nominal

 The power gain is reduced for threshold idle cycle of 3076 (compared to 127) which

means that the decrease in power reduction is larger than the decrease in power switch

overhead. For threshold idle cycles lesser than 68 the overhead is very large and are not

shown in all the FFT cases.

Figure 7.11: Power comparison of power reduction and switching overhead, Benchmark:FFT,

Lib:GP-LVT, Worst Case

1

10

100

1,000

10,000

68 98 127 168 3076

P
o

w
er

 i
n

 µ
W

Threshold Idle Cycles for shut-off

FFT
GL, Nominal

Power reduction

Switching Overhead

5.73 5.91 5.92 -13.8 -13.5

Overall Reduction (%)

EIC

1

10

100

1,000

10,000

68 98 127 168 3076

P
o
w

er
 i
n
 µ

W

Threshold Idle Cycles for shut-off

FFT
GL, worst case

Power reduction

Switching Overhead

7.4 7.7 7.7 -10.5 -10.17

Overall Reduction (%)

EIC

 Page 60 VLSI Research Group, Dept. of CSE, CHALMERS

Figure 7.12: Power comparison of power reduction and switching overhead, Benchmark:FFT,

Lib:GP-SVT, Nominal

Figure 7.13: Power comparison of power reduction and switching overhead, Benchmark:FFT,

Lib:GP-SVT, Worst Case

The effective idle cycles can also change with the operating temperature. Consider two

threshold cycles ”A” and ”B” (B > A) of application. In the nominal case B is the EIC

for this application (B has lesser switching overhead than A). If increase in power

reduction (from nominal to worst case) at A is larger than at B and the difference of

1

10

100

1,000

10,000

68 98 127 168 3076

P
o

w
er

 i
n

 µ
W

Threshold Idle Cycles for shut-off

FFT
GS, Nominal

Power reduction

Switching Overhead

3.43 3.47 3.5 -26 -25.74

Overall Reduction (%)

EIC

1

10

100

1,000

10,000

68 98 127 168 3076

P
o
w

er
 i
n
 µ

W

Threshold Idle Cycles for shut-off

FFT
GS, Worst Case

Power reduction

Switching Overhead

5.73 4.76 4.76 -24.72 -24.43

Overall Reduction (%)

EIC

 Page 61 VLSI Research Group, Dept. of CSE, CHALMERS

these increases is larger than the difference of switching overhead at A and B, then the

overall gain in the worst case will now be at A.

 [10]

  EIC at B [11]

  EIC at A [12]

Equation 11 denotes the initial case in the nominal operating condition. The effective

gain at B is more than at A. Equation 12 denotes the case with increased temperature

(worst case) in which the effective gain at A is larger than at B. More evaluation is

required on this effect by considering suitable applications and will be performed as

extension of this work.

Figure 7.14 summarises the overall FlexCore power/energy reduction that are estimated

after the physical implementation considering the switching overhead. These savings

are the actual possible savings for the design by power the multiplier. For a comparison

the overall savings estimated in the previous section is also shown. The estimations for

the Autcor benchmark after the RTL synthesis and physical implementation are nearly

the same (difference of 1% - 2%), whereas for the FFT benchmark the two estimations

differ by some extent (4% - 7%). This is also evident from the benchmark profiles

discussed in Section 5.2. FFT has high multiplier usages and thus more activity on the

power switches. Autcor has multiplier idle for large fraction of its time. Table 7.2 and

Table 7.3 give the comparison of the actual energy and power reductions possible with

the previously estimated reductions.

Figure 7.14: Power/Energy reduction for overall design after estimation at physical level

(Actual)

The results shown here are for a clock period of 3500 ps. At a lower speed the overall

dynamic power would decrease which means the fraction of leakage power of the total

power would increase. This would give increased power reduction. The EIC could

decrease depending on the benchmark. For example, in the Autcor benchmark

(GPLVT), if the dynamic power reduces by more than 5.5% (GL) - 7.2% (GS) then the

0 5 10 15 20

Nom

WC

Nom

WC

Nom

WC

Nom

WC

G
L

G
S

G
L

G
S

A
U

T
C

O
R

F
F

T

Power/Energy reduction - physical level estimation

Reduction

(RTL

synthesis)

Reduction

(physical

implementatio

n)

 Page 62 VLSI Research Group, Dept. of CSE, CHALMERS

EIC will change from 34 to 27 cycles. An EIC change for the FFT benchmark would be

more apparent, since it has much higher activity than Autcor.

Table 7.2: Energy consumption of original design and reduction estimations

Clock Period – 3500 ps

AUTCOR FFT

GL GS GL GS

Nom WC Nom WC Nom WC Nom WC

Cycle Count 19553 162967

Energy of Original Design in

nJ

635.9 712.5 412.4 423 6107 6539 4115 4107

Energy Reduction (Ideal) in nJ 73.4 108.8 27.2 41.4 681.4 936.65 291.8 387.7

Energy Reduction (Actual) in

nJ

61.15 93.59 19.35 32.34 361.8 503.9 143.9 195.8

Table 7.3: Power consumption of original design and reduction estimations (Actual) after

physical implementation

Clock Period – 3500 ps

AUTCOR FFT

GL GS GL GS

Nom WC Nom WC Nom WC Nom WC

Power of Original Design in

µW

9292 10410 6026 6181 10707 11464 7214 7201

Power Reduction (Ideal) in µW 1073 1589 397 605 1195 1642 512 679

Power Reduction (Actual) in µW 894 1368 283 473 634 883 252 343

Table 7.4 summarises the area overhead from the power gating implementation. For a

comparison the total cell area for all other units of the design except the special cells

(switches, isolation) and the power control module is also shown. It is clear that the area

overhead increases with the number of switches. Since the switch arrangement is of ring

type, the area increase will be constant up to certain number of switches depending on

the dimensions of the unit. If the switches were to be placed either on the top or bottom

side of the domain a maximum of 247 switches can be placed which will have an

overhead of 0.0047 mm
2
. Similarly if switches are placed both on top and bottom, a

maximum of 484 switches and if placed on the top, bottom and left a maximum of 600

switches can be placed. Switches more than 600 were not considered in this work, since

it needs a modification of the floor plan. One can observe that with 600 switches the

excess area is nearly 10% of the total cell area. The IR drop for the global supply up to

600 switches was around 0.114 V (Supply drops from 1 V to 0.886 V). Estimation of

appropriate number of switches needed for this design will be performed as an

extension of this work. Several factors have to be considered to estimate the number of

switches as explained in Section 4.

 Page 63 VLSI Research Group, Dept. of CSE, CHALMERS

Table 7.4: Area comparison of special cells and rest of the standard cells

Area Comparison

Switch Control Cell (VDD-CTRL) 0.0024 mm
2

PMOS Header Switches

(VDD-Switch)

No. of Switches

1 – 247 0.0047 mm
2

248 – 484 0.0095 mm
2

484 – 600 0.0122 mm
2

Isolation Cells 64 Cells 232.9 µm
2

Power Control Module 56.2 µm
2

Standard Cell Area 0.05 mm
2

Maximum IR drop of global supply (TVDD) – 0.114 V (11.4%) (Up to 600 Switches)

Tap Current – 25.96 mA.

 Page 64 VLSI Research Group, Dept. of CSE, CHALMERS

8. Conclusion & Future Work

Comparison of leakage and dynamic power in Section 7.1 upholds the facts that lead to

the motivation of this work. Leakage is comparable to the dynamic power at 65 nm and

this will get worse with smaller technologies. This work also substantiates the point that

power gating is an effective technique to reduce leakage power dissipation. The

previous section shows that with power gating a power reduction of 4-14% can be

achieved depending on the application. A promising fact is that in real applications

multiplier is used less intensely than the benchmarks considered here, in which case

there will be a definite improvement in power reduction. Section 7.2 shows that a good

evaluation of the application is required to identify the optimal reduction that can be

achieved. The exposed datapath of the FlexCore provides an efficient and easier

software control for power gating and also with very less hardware requirement (power

control module). Since the operating status of the FlexCore in each cycle is fully

exposed to the compiler, there is direct control of the power gating at each cycle and

this helps in utilizing the idle cycle profile of an application with ease. The leakage

power changes significantly with temperature. If software control is to be effective

throughout, the temperature change must be taken into account. We can conclude that

power, especially leakage power is an important concern in modern design and

techniques such as power gating provided with optimal software control can reduce

significant leakage.

The following tasks have to be carried out as future work. The whole step of effective

idle cycle evaluation has to be completely automated. Section 7.2 suggested how the

effective idle cycles can change with temperature. A detailed evaluation on this

possibility has to be performed considering suitable applications. The number of

switches to be used for power gating the multiplier unit has to be determined and the

changes in IR drop have to be measured. The break-even point for the multiplier has to

be determined for a general application.

 Page 65 VLSI Research Group, Dept. of CSE, CHALMERS

9. Bibliography

1. ITRS, International Technology Roadmap for Semiconductors, 2007 edition.

Available from: http://www.itrs.net/reports.html.

2. Chandra, G, Kapur P, Saraswat K.C. Scaling trends for the on chip power

dissipation. Interconnect Technology Conference, 2002. no., pp. 170- 172, 2002

Proceedings of the IEEE 2002 International, vol.

3. FALLAH F, PEDRAM M. Standby and Active Leakage Current Control and

Minimization in CMOS VLSI Circuits. IEICE Transaction on Electronics, Vols.

E88-C, pp. 509-519, 2005.

4. Tiwari V, Monteiro J, Patel R. Power Analysis and Optimization from Circuit to

Register-Transfer Levels. EDA for IC Implementation, Circuit Design, and Process

Technology. Mar 2006, ISBN: 978-1-4200-0795-4.

5. Power Forward Initiative (PFI). A Practical Guide to Low-Power Design, User,

Experience with CPF, May 2008. Available from: http://www.powerforward.org/

6. Altera Corp. Stratix IV FPGAs: The Lowest Power High-End 40-nm FPGA.

Available from: http://www.altera.com/products/devices/stratixfpgas/stratix-

iv/overview/power/stxiv-power.html#ppt

7. Thuresson M, Sjalander M, Bjork M, Svensson L, Larsson-Edefors P, Stenstrom P.

FlexCore: Utilizing Exposed Datapath Control for Efficient Computing. Embedded

Computer Systems: Architectures, Modeling and Simulation, 2007. IC-SAMOS

2007. International Conference on, pp.18-25, 16-19 July 2007

8. Hoang T.T, Jälmbrant U, Hagopian E.d, Subramaniyan K.P, Sjalander M, Larsson-

Edefors P. Design Space Exploration for an Embedded Processor with Flexible

Datapath Interconnect.

9. Rabaey J. Low Power Design Essentials. 1
st
 ed. Springer; 2009.

10. Cadence Design Systems, Inc. Common Power Format User Guide, 2007.

11. Cadence Design Systems, Inc. Low Power in Encounter RTL Compiler, 2008.

12. Homayoun H, Baniasadi A. Reduction Execution Unit Leakage Power in Embedded

Processors. Embedded Computer Systems: Architectures, Modelling and

Simulations, 299-308, Springer Berlin /Heidelberg, July 2006.

,

 Page 66 VLSI Research Group, Dept. of CSE, CHALMERS

Appendix – A: Software Analysis Makefile
#-------------------------------------#

#- Makefile of the Software Analysis -#

#-------------------------------------#

Definitions ####

Directories

WORK = Work directory

BENCHMARK = Benchmark directory

TELECOM = EEMBC, Telecom suite directory

MIPS = MIPS-assembly directory

FLEX = RTN-format for FlexCore directory

SHARED = Shared benchmark files directory

RESULTS = Results directory

BM_C_CODE = Benchmark C-code

C_CODE = C-code of power gating directory

Input files

BM = Selected benchmark

Options

MIPS_OPT = -mno-explicit-relocs -c -O2 -D NDEBUG -mno-abicalls

FLEX_OPT = --interconnect=../interconnect.csv \

 --flex=../flex.ini

RUNMIPS_OPT = -interconnect $(WORK)/interconnect.csv +RTS \

 -k500000000 -RTS -m 10M -flex $(WORK)/flex.ini

ITERATIONS = 1

Software Analysis of the EEMBC benchmark ####

Compiling C-code to MIPS-assembly code

cmips:

 @ # diffmeasure.c

@mips-elf-gcc-4.1.1 $(MIPS_OPT) -I$(TELECOM)/th_lite/mips/al\

 -I $(TELECOM)/th_lite/src -I diffmeasure -I. \

 -I $(TELECOM)/th_lite/mips/al -I$(TELECOM)/th_lite/src -S-o \

 $(TELECOM)/telecom/mgcc/asm_lite/diffmeasure/diffmeasure.S \

$(TELECOM)/telecom/diffmeasure/diffmeasure.c

 @ # verify.c

 @mips-elf-gcc-4.1.1 $(MIPS_OPT) -I$(TELECOM)/th_lite/mips/al\

 -I $(TELECOM)/th_lite/src -I diffmeasure -I. \

 -I $(TELECOM)/th_lite/mips/al -I $(TELECOM)/th_lite/src -S-o\

 $(TELECOM)/telecom/mgcc/asm_lite/diffmeasure/verify.S \

 $(TELECOM)/telecom/diffmeasure/verify.c

 @ # $(BM).c

 @mips-elf-gcc-4.1.1 $(MIPS_OPT) -I. \

 -I $(TELECOM)/th_lite/mips/al -I $(TELECOM)/th_lite/src\

 -I $(BM)00 -I $(TELECOM)/telecom/$(BM)00/datasets \

 -I $(TELECOM)/telecom/diffmeasure \

-DDATA_1 -DITERATIONS=DEFAULT \

 -I.-I$(TELECOM)/th_lite/mips/al-I$(TELECOM)/th_lite/src\

 -S -o $(MIPS)/$(BM)_mipsed.S $(BM_C_CODE)/$(BM).c

 Page 67 VLSI Research Group, Dept. of CSE, CHALMERS

 @ # bmark_lite.c

 @mips-elf-gcc-4.1.1 $(MIPS_OPT) -I. \

 -I $(TELECOM)/th_lite/mips/al -I $(TELECOM)/th_lite/src\

 -I $(bm)00 -I $(TELECOM)/telecom/$(BM)00/datasets \

 -I $(TELECOM)/telecom/diffmeasure \

-DDATA_1 -DITERATIONS=DEFAULT \

 -I.-I$(TELECOM)/th_lite/mips/al-I$(TELECOM)/th_lite/src\

 -S -o $(MIPS)/bmark_lite.S $(BM_C_CODE)/bmark_lite.c

Compiling MIPS-assembly code to RTN-format for the FlexCore

mipsflex:

 @flexcomp $(FLEX) $(BENCHMARK)/*.S

 @mv $(FLEX)/*.S $(SHARED)

 @flexcomp $(FLEX) $(MIPS)/*.S

 @mv $(FLEX)/$(BM)_mipsed.S $(FLEX)/$(BM)_flexed.S

Simulating the FlexCore and generating analysis related

information (files)

flextest:

 @runmips $(RUNMIPS_OPT) -arg -i$(ITERATIONS) -q \

 -proff $(RESULTS)/profile.$(bm) \

 -tracenisad $(RESULTS)/readable.$(bm) \

 -showcode > $(RESULTS)/showcode.$(bm) \

 -trinarytnisaf $(RESULTS)/trinary.$(bm) \

 -tnisaf $(RESULTS)/hex.$(bm) \

 $(SHARED)/*.S $(FLEX)/$(BM)_flexed/*.S

Running all the commands at once

test: cmips mipsflex flextest

 @gcc $(C_CODE)/powergate.c -o $(C_CODE)/powergate.out

 @$(C_CODE)/powergate.out

 @gedit $(RESULTS)/showcode.$(BM)

 @gedit $(RESULTS)/profile.$(BM)

 @gedit $(RESULTS)/hex.$(BM).code

 @gedit $(RESULTS)/trinary.$(BM).tcode

 @gedit $(RESULTS)/readable.$(BM)

END #

 Page 68 VLSI Research Group, Dept. of CSE, CHALMERS

Appendix – B: FlexCore CPF

Technology part of the CPF #

set_hierarchy_separator /

set_power_unit uW

Specify libraries #

define_library_set -name lib1d2v -libraries { \

$loc_switch /ESWITCH65LPSVTHVT_1V2_50A_nom_1.20V_25C.lib \

$loc_iso/CORI65LPSVT_nom_1./20V_25C.lib \

$loc_core/CORE65GPLVT_nom_1.00V_25C.lib \

$loc_corx/CORXT65GPLVT_nom_1.00V_25C.lib \

$loc_clck/CLOCK65GPLVT_nom_1.00V_25C.lib \

$loc_prhs/PRHS65_nom_1.20V_25C.lib }

Specify special cells #

Isolation Cells ##

define_isolation_cell -cells {"HS65_LS_ISOAND*"} -enable PE \

-valid_location to

define_isolation_cell -cells {"HS65_LS_ISOOR*"} -enable PD \

-valid_location to

Power Switch Cells ##

define_power_switch_cell -cells \

"SW65_LH_VDDSWITCH SW65_LH_VDDCTRL" \

 -power TVDD \

 -power_switchable VDD \

 -type header -stage_1_enable MACROEN

Retention Cells ##

 #define_state_retention_cell -cells {""} -restore_function

Always ON Cells ##

 #define_always_on_cell -cells ""

Design part of the CPF #

set_design FlexCore_top

Declare power/ground nets #

 create_power_nets -nets TVDD -voltage 1.0

 create_power_nets -nets VDD

 create_ground_nets -nets VSS -voltage 0

 create_power_nets -nets SWVDD

 Page 69 VLSI Research Group, Dept. of CSE, CHALMERS

Specify power domains #

create_power_domain -name PD_default -default

create_power_domain -name PD_mult \

-instances {core/MULTunit/MULTunit} \

 -shutoff_condition {!core/mult_en}

Nominal operating conditions #

create_nominal_condition -name off -voltage 0

create_nominal_condition -name on -voltage 1.0

Modes of operation #

create_power_mode -name PM1 -domain_conditions \

{PD_default@on PD_mult@on} -default

create_power_mode -name PM2 -domain_conditions \

{PD_default@on PD_mult@off}

Design rules #

Isolation rule ##

create_isolation_rule -name iso1 -from PD_mult \

 -isolation_condition {core/ise_m} -isolation_output low

Power switch rule ##

create_power_switch_rule -name psr1 -domain PD_mult \

 -external_power_net TVDD

State retention rule ##

#create_state_retention_rule -name st1 -domain PD_mult \

 -restore_edge {!pm_inst.pge_enable[0]} \

Update libraries #

Associate library sets with nominal conditions #

update_nominal_condition -name on -library_set lib1d2v

Update isolation the rules #

update_isolation_rules -names iso1 -location to \

-cells {"HS65_LS_ISOAND*"}

Update powerswitch rules #

update_power_switch_rule -name psr1 -prefix CPF_PS_ \

-cells "SW65_LH_VDDSWITCH"

 Page 70 VLSI Research Group, Dept. of CSE, CHALMERS

Specify timing constraints #
update_power_mode -name PM1 -sdc_files pm1.sdc

update_power_mode -name PM1 \

-activity_file Flex_top.tcf -activity_file_weight 100

Describing power nets #

create_global_connection -domain PD_default -net TVDD -pins "VDD

vddo"

create_global_connection -domain PD_default -net VSS -pins "VSS

gndo"

create_global_connection -domain PD_default -net VSS -pins "gndi

swgnd"

create_global_connection -domain PD_default -net SWVDD -pins swvdd

create_global_connection -domain PD_mult -net VDD -pins VDD

create_global_connection -domain PD_mult -net VSS -pins VSS

update Power Domain #

 update_power_domain -name PD_default -internal_power_net TVDD

 update_power_domain -name PD_mult -internal_power_net VDD

end_design

END #

 Page 71 VLSI Research Group, Dept. of CSE, CHALMERS

Appendix – C: Power Control Module

library IEEE;

use IEEE.std_logic_1164.all;

use ieee.numeric_std.all;

entity PowerControl is

 port (

 Clk : in std_logic;

 Reset : in std_logic;

 pc_in : in std_logic_vector(110 downto 109);

 --NISA 111th and 110th bits

 mult_en : in std_logic;

--NISA 67 , multiplier enable bit

 pse_m : out std_logic);

--multiplier switch and isolation control

end;

architecture rtl of PowerControl is

 type state_type is (S0, S00, S01, S10, S11);

 signal state_m,nstate_m: state_type;

 signal m:std_logic;

 signal c_delay_cycles_S00,n_delay_cycles_S00: natural range 0

to 3; --delay counter for mode 0

 signal c_delay_cycles_S11,n_delay_cycles_S11: natural range 0

to 3; --delay counter for mode 11

 signal c_idle_cycles,n_idle_cycles:natural;

 constant threshold_cycles: natural:=100; --threshold cycles for

mode 10

begin

seq: process

(Clk,Reset,nstate_m,n_delay_cycles_S00,n_delay_cycles_S11,n_idle_cy

cles)

 begin

 if Reset = '0' then

 state_m<=S0;

 elsif falling_edge(Clk) then

 state_m<=nstate_m;

 c_delay_cycles_S00<=n_delay_cycles_S00;

 c_delay_cycles_S11<=n_delay_cycles_S11;

 c_idle_cycles<=n_idle_cycles;

 end if;

 end process seq;

comb_m: process

(pc_in,state_m,c_delay_cycles_S00,c_delay_cycles_S11,c_idle_cycles)

 begin

 case state_m is

 when S0 => --Starting State

 n_delay_cycles_S00<=0;

 n_delay_cycles_S11<=0;

 n_idle_cycles<=0;

 m<='1';

 if pc_in= "00" then

 nstate_m<=S00;

 Page 72 VLSI Research Group, Dept. of CSE, CHALMERS

 elsif pc_in= "01" then

 nstate_m<=S01;

 elsif pc_in= "10" then

 nstate_m<=S10;

 elsif pc_in= "11" then

 nstate_m<=S11;

 else

 nstate_m<=S0;

 end if;

 when S00 => --Mode 0 - Multiplier OFF

 if pc_in = "01" then

 n_delay_cycles_S00 <= 0;

 m<='1';

 nstate_m<=S01;

 elsif pc_in= "00" then

 if c_delay_cycles_S00 < 3 then

 m<='1';

 n_delay_cycles_S00 <= c_delay_cycles_S00 +

1;

 else

 m<='0';

 end if;

 else

 m<='1';

 nstate_m<=S0;

 end if;

 when S01 => --Mode 0 - Multiplier ON

 m<='1';

 if pc_in = "00" then

 n_delay_cycles_S00 <= 1;

 nstate_m<=S00;

 elsif pc_in= "01" then

 nstate_m<=S01;

 else

 nstate_m<=S0;

 end if;

 when S10 => --Mode 10 Threshold Cycles

 if pc_in = "10" then

 if mult_en='1' then

 m<='1';

 n_idle_cycles<=0;

 elsif mult_en<='0' then

 if c_idle_cycles < threshold_cycles

then

 m<='1';

 n_idle_cycles<=c_idle_cycles+1;

 else

 m<='0';

 end if;

 else

 m<='1';

 nstate_m<=S0;

 end if;

 else

 m<='1';

 Page 73 VLSI Research Group, Dept. of CSE, CHALMERS

 nstate_m<=S0;

 end if;

 when S11 => --Mode 11 (Testing)

 if pc_in = "11" then

 if mult_en='1' then

 m<='1';

 n_delay_cycles_S11<=0;

 elsif mult_en='0' then

 if c_delay_cycles_S11 < 3 then

 n_delay_cycles_S11 <=

c_delay_cycles_S11 + 1;

 m<='1';

 else

 m<='0';

 end if;

 else

 nstate_m<=S0;

 m<='1';

 end if;

 else

 nstate_m<=S0;

 m<='1';

 end if;

 when others =>

 m<='1';

 nstate_m<=nstate_m;

 end case;

 end process comb_m;

 pse_m<=m;

end rtl;

