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ABSTRACT
We explore the gravitational instability of clumpy and turbulent gas discs, taking into account
the Larson-type scaling laws observed in giant molecular clouds (GMCs) and H I, as well as
more general scaling relations. This degree of freedom is of special interest in view of the
coming high-z interstellar medium surveys and is thus potentially important for understanding
the dynamical effects of turbulence at all epochs of galaxy evolution. Our analysis shows
that turbulence has a deep impact on the gravitational instability of the disc. It excites a rich
variety of stability regimes, several of which have no classical counterpart. Among other
diagnostics, we provide two useful tools for observers and simulators: (1) the stability map
of turbulence, which illustrates our stability scenario and relates it to the phenomenology
of interstellar turbulence: GMC/H I observations, simulations and models; (2) a Toomre-like
stability criterion, Q ≥ Q, which applies to a large class of clumpy/turbulent discs. We make
specific predictions about GMC and cold-H I turbulence and point out the implications of our
analysis for high-z galaxy surveys.

Key words: instabilities – turbulence – ISM: general – ISM: kinematics and dynamics –
ISM: structure – galaxies: ISM.

1 IN T RO D U C T I O N

Toomre’s (1964) stability criterion, Q ≥ 1, is one of the pillars of
disc galaxy dynamics (see e.g. Binney & Tremaine 2008). It is used
in a wide variety of contexts, in star formation for example, where
the gravitational instability of the interstellar gas plays a critical
role (e.g. Quirk 1972; Kennicutt 1989; Martin & Kennicutt 2001;
Schaye 2004, 2008; Burkert 2009; Elmegreen 2009).

So why introduce a new stability criterion? We do this because
behind Toomre’s criterion there is one fundamental assumption: the
medium is approximately in equilibrium, with well-defined surface
density � and velocity dispersion σ . But this is far from being true
in the clumpy and turbulent interstellar gas, where such quantities
depend strongly on �, the size of the region over which they are
measured. In fact, a fundamental aspect of interstellar turbulence
is the existence of density– and velocity–size scaling laws: � ∝ �a

and σ ∝ �b (see e.g. Elmegreen & Scalo 2004; McKee & Ostriker
2007). In giant molecular clouds (GMCs), the scaling exponents are
a ≈ 0 and b ≈ 1

2 (e.g. Larson 1981; Solomon et al. 1987; Bolatto
et al. 2008; Heyer et al. 2009; Hughes et al. 2010). In the H I compo-
nent, density and velocity fluctuations seem to have a Kolmogorov

�E-mail: romeo@chalmers.se

spectrum up to galactic scales: a ∼ 1
3 for � � 10 kpc and b ∼ 1

3
for � � 1 kpc (e.g. Lazarian & Pogosyan 2000; Elmegreen, Kim &
Staveley-Smith 2001; Begum, Chengalur & Bhardwaj 2006; Kim
et al. 2007; Dutta et al. 2008; Roy, Peedikakkandy & Chengalur
2008; Dutta et al. 2009a,b). Note, however, that the uncertainties
are large, especially in the H I case. Further evidence for interstel-
lar medium (ISM) turbulence is provided by the ‘Big Power Law
in the Sky’, i.e. the fact that electron density fluctuations show a
Kolmogorov spectrum over a wide range of scales: from 103 km
up to 10 pc (Armstrong, Rickett & Spangler 1995; see Chepurnov
& Lazarian 2010, for the most recent determination of the upper
scale).

Clumpy and turbulent gas is also observed in high-redshift star-
forming galaxies, where it dominates the morphology and dynamics
of the disc (e.g. Wadadekar, Casertano & de Mello 2006; Elmegreen
et al. 2007; Genzel et al. 2008; Shapiro et al. 2008; Förster Schreiber
et al. 2009). Coming surveys will tell us how � and σ scale with
� at high z and thus how turbulence develops in disc galaxies. This
is one of the hot topics in modern astrophysics (e.g. Krumholz &
Burkert 2010), and several state-of-the-art simulations have already
been designed for such a purpose (e.g. Wada, Meurer & Norman
2002; Kim & Ostriker 2007; Levine et al. 2008; Agertz et al. 2009a;
Bournaud & Elmegreen 2009; Dekel, Sari & Ceverino 2009; Tasker
& Tan 2009; Agertz, Teyssier & Moore 2009b). In order to interpret
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such data correctly, one must understand in detail how turbulence
affects the (in)stability of the disc.

All of these facts together motivate a thorough investigation of
the problem.

Elmegreen (1996) assumed Larson-type scaling relations, � ∝ �a

and σ ∝ �b, and investigated the case a = −1 and b = 1
2 . He found

that the disc is always stable at large scales and unstable at small
scales. To the best of our knowledge, this was the only theoretical
work devoted to the gravitational instability of clumpy/turbulent
discs before ours. In contrast, several investigations focused on the
effects of turbulence on Jeans instability (e.g. Bonazzola et al. 1987;
Just, Jacobi & Deiss 1994; Vázquez-Semadeni & Gazol 1995).

The goal of our paper is to explore the gravitational instability
of clumpy/turbulent discs, spanning the whole range of values for
a and b. Among other diagnostics, we provide the following two
useful tools for observers and simulators.

(i) The stability map of turbulence. Using a and b as coordinates,
we illustrate the natural variety of stability regimes possessed by
such discs and populate this diagram with observations, simulations
and models of interstellar turbulence (Fig. 1).

(ii) A Toomre-like stability criterion. We show that in our map
there is a densely populated domain where the stability criterion is
of the form Q ≥ Q, and determine the stability threshold Q as a
function of a, b and of the scale at which Q is measured (equation 17
and Fig. 2). If our criterion is fulfilled, then the disc is stable at all
scales [the case investigated by Elmegreen (1996) lies in another
stability regime].

The rest of the paper is organized as follows. In Section 2, we
determine a dispersion relation that takes fully into account the
scaling laws of interstellar turbulence as well as the thickness of
the gas layer. We then surf through the various stability regimes.
Our Toomre-like stability criterion is given in Section 2.7, together
with other important diagnostics: the most unstable scale and its
growth rate. In Section 3, we discuss the stability map of turbu-
lence. We then make specific predictions about strongly and weakly
supersonic turbulence. In Section 4, we explore the densely popu-
lated Toomre-like domain and illustrate the stability diagnostics in
a number of cases, taking into account the saturation of density and
velocity at large scales. In Section 5, we draw the conclusions.

2 STA BLE OR UNSTA BLE?

2.1 The turbulent dispersion relation

Consider a gas disc of scaleheight h and perturb it with axisymmetric
waves of frequency ω and wavenumber k. The response of the disc
is described by the dispersion relation

ω2 = κ2 − 2πG� k

1 + kh
+ σ 2 k2 , (1)

where κ is the epicyclic frequency, � is the surface density at equi-
librium and σ is the sound speed (Romeo 1990, 1992, 1994; see
also Vandervoort 1970). So the three terms on the right-hand side
of equation (1) represent the contributions of rotation, self-gravity
and pressure. For kh � 1, equation (1) reduces to the usual dis-
persion relation for an infinitesimally thin gas disc (see e.g. Binney
& Tremaine 2008). For kh � 1, one recovers the case of Jeans
instability with rotation, since �/h ≈ 2ρ. In other words, scales
comparable to h mark the transition from 2D to 3D stability. Note
that we can encapsulate the effect of thickness in a single quantity

and rewrite equation (1) as

ω2 = κ2 − 2πG�eff k + σ 2 k2 , (2)

where �eff = �/(1 + kh) is the effective surface density. �eff and
σ are two important quantities, which we discuss in detail below.

(i) The effective surface density. What is the relation between
�eff and ρ? Since �eff = �/(1 + kh) and � ∼ ρh, we find that
�eff ∼ ρh if kh � 1 and �eff ∼ ρ/k otherwise. This means that
the observational counterpart of �eff is the mass column density
measured over a region of size � = 1/k. In the cold ISM, which is
highly supersonic and hence strongly compressible, the amplitude
of density fluctuations is typically much larger than the mean den-
sity. Density fluctuations have a power-law energy spectrum, Eρ(k)
∝ k−r, which means ρ ∝ k−(r−1)/2 (see e.g. Elmegreen & Scalo
2004). A power-law spectrum is then imprinted on �eff :

�eff = �0

(
k

k0

)−a

. (3)

Using the relation between �eff and ρ that we have found above,
we can relate a to r: a = 1

2 (r − 1) for kh � 1, while a = 1
2 (r + 1)

for kh � 1. In the warm ISM, which is transonic or subsonic and
hence weakly compressible, the density contrast is typically small
so �eff is dominated by the mean density, as in the limiting case
of a non-turbulent disc: �eff = constant for small k, while �eff ∝
k−1 for large k. Hereafter we will omit the subscript ‘eff’, unless
otherwise stated.

(ii) The sound speed. The observational counterpart of σ is the
1D velocity dispersion measured over a region of size � = 1/k:
σ 2 = σ 2

ther + σ 2
tur (k), where σ ther and σ tur are the thermal and tur-

bulent 1D velocity dispersions, respectively. Velocity fluctuations
have a power-law energy spectrum, Ev(k) ∝ k−s, which means σ tur ∝
k−(s−1)/2 (see e.g. Elmegreen & Scalo 2004). Both thermal and turbu-
lent motions tend to support the gas against gravitational instability.
However, as pointed out by the referee, turbulent support results
in relations that are true only in a statistical sense, with individual
clouds collapsing even when the statistical criterion for stability is
well satisfied. In the cold ISM, σ has a power-law dependence on k
since it is dominated by σ tur(k):

σ = σ0

(
k

k0

)−b

, (4)

where b = 1
2 (s −1) and s is the velocity spectral index. In the warm

ISM, σ (k) deviates significantly from a power law since σ ther is no
longer negligible.

Hereafter we will only consider the cold ISM (H2 and cold H I),
since in such a case we can explicitly take into account the power-
law scaling of interstellar turbulence via equations (3) and (4). We
will regard the quantity �0 = 1/k0 introduced in those equations
as the fiducial scale at which the mass column density and the 1D
velocity dispersion are observed. This is also the scale at which Q
and other stability quantities are measured. Substituting equations
(3) and (4) into equation (2), we obtain the final dispersion relation:

ω2 = κ2 − 2πG�0k
a
0 k1−a + σ 2

0 k2b
0 k2(1−b) . (5)

Our phenomenological approach differs significantly from the
traditional way to include turbulent effects in the dispersion relation,
which is to identify σ with the typical 1D velocity dispersion ob-
served at galactic scales. Bonazzola et al. (1987), Just et al. (1994),
Vázquez-Semadeni & Gazol (1995) and Elmegreen (1996) adopted
an approach similar to ours for investigating the gravitational insta-
bility of clumpy/turbulent media.
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Equation (5) is the starting point of our stability analysis. As in
the usual case, stability at all scales requires that ω2 ≥ 0 for all
k.1 Whether this requirement can be satisfied or not depends on the
self-gravity and pressure terms, which now scale as kA and kB :

A = 1 − a, (6)

B = 2 (1 − b) . (7)

In the following, we explore all the various cases.

2.2 Case a = 1, b �= 1

Here the self-gravity term is independent of k (A = 0), like the
rotation term:

ω2 = κ2 − 2πG�0k0︸ ︷︷ ︸
C

+ σ 2
0 k2b

0 k2(1−b) . (8)

For b < 1, ω2 increases with k and tends to C as k → 0. Hence, the
sign of C determines whether the disc is stable at all scales or not.
Stability requires that C ≥ 0. For b > 1, ω2 decreases with k and
tends to C as k → ∞. So, again, stability requires that C ≥ 0. The
stability criterion is then

STABLE ∀k ⇐⇒ k0 ≤ kT = κ2

2πG�0
. (9)

Equation (9) resembles Toomre’s stability criterion for cold discs,
k ≤ kT, but there is one important difference: equation (9) is a
condition that must be fulfilled by k0 to ensure stability for all k,
whereas the cold Toomre criterion ensures stability for small k.

2.3 Case a �= 1, b = 1
2 (1 + a)

Here the pressure term has the same k dependence as the self-gravity
term (B = A):

ω2 = κ2 + (
σ 2

0 k1+a
0 − 2πG�0k

a
0

)︸ ︷︷ ︸
C

k1−a . (10)

If a < 1, then ω2 converges to κ2 as k → 0 and the sign of dω2/dk is
equal to the sign of C (for C < 0, ω2 diverges as k → ∞). Hence,
stability requires that C ≥ 0. If a > 1, then ω2 converges to κ2 as
k → ∞ and the sign of dω2/dk is opposite to the sign of C (for
C < 0, ω2 diverges as k → 0). So, again, stability requires that C ≥
0. The stability criterion is then

STABLE ∀k ⇐⇒ k0 ≥ kJ = 2πG�0

σ 2
0

. (11)

The resemblance between equation (11) and the 2D Jeans criterion,
k ≥ kJ, is superficial. In fact, equation (11) ensures that the disc is
stable at all, rather than small, scales. An analogous fact was noted
in the context of our first stability criterion (equation 9).

1 The dispersion relation assumes that kR � 1, where R is the radial co-
ordinate (see e.g. Binney & Tremaine 2008). This local condition is more
restrictive than the natural requirement k � 2π/L, where L is the size of
the gas disc. Since the above condition cannot be rigorously included in the
stability analysis, the usual procedure is to consider all k and to check a
posteriori whether kR � 1 or not.

2.4 Case a = 1, b = 1

Although this case seems the intersection of cases 2.2 and 2.3, the
stability criterion is not kJ ≤ k0 ≤ kT. In fact, this case is singular.
The self-gravity and pressure terms are independent of k (A = B =
0), like the rotation term, so ω2(k) is constant:

ω2 = κ2 − 2πG�0k0 + σ 2
0 k2

0︸ ︷︷ ︸
C

. (12)

As C is quadratic in k0, the inequality C ≥ 0 can be easily solved
and the resulting stability criterion is

STABLE ∀k ⇐⇒
{

k0 ≤ k− or k0 ≥ k+ if Q < 1 ,

0 < k0 < ∞ else .
(13)

Here k− and k+ are related to the Toomre wavenumber kT (and to
the Jeans wavenumber kJ = kT 4/Q2):

k± = kT
2

Q2

(
1 ±

√
1 − Q2

)
, (14)

and Q is the Toomre parameter:

Q = κσ0

πG�0
. (15)

The Q < 1 case of equation (13) resembles the corresponding
Toomre stability condition, but see the remarks following equa-
tions (9) and (11). In contrast, the Q ≥ 1 case is identical to Toomre’s
criterion.

2.5 Case a < 1, b > 1
2 (1 + a)

Now A > 0 and B < A. Hence, the self-gravity term gets dominant
for large k and makes ω2 negative. For small k, ω2 is positive since
it is dominated by the pressure term (B < 0) and/or the rotation term
(B ≥ 0). As the zero(s) of ω2(k) can only be determined numerically,
case by case, we do not give a stability criterion but note that the
disc is unstable at small scales, like a cold non-turbulent disc.

2.6 Case a > 1, b < 1
2 (1 + a)

In contrast to the previous case, A < 0 and B > A. So ω2 is dominated
by the self-gravity term and is negative for small k, while it is
dominated by the pressure/rotation term and is positive for large
k. Thus the disc is unstable at large scales, like a non-rotating
non-turbulent sheet.

2.7 Case a < 1, b < 1
2 (1 + a)

When 0 < A < B, the response of the disc is driven by pressure at
small scales and by rotation at large scales, while self-gravity acts
more strongly at intermediate scales. Therefore, this is a Toomre-
like case: ω2(k) has a minimum, which determines whether the disc
is stable or not. More precisely, the minimum of ω2(k) provides
three useful pieces of information: the stability threshold, the most
unstable scale and its growth rate. Such quantities are introduced
below, while illustrative cases are discussed in Section 4.

The stability threshold Q is the value of Q above which the disc
is stable at all scales:

STABLE ∀k ⇐⇒ Q ≥ Q . (16)

Q can be determined by imposing that the minimum of ω2(k) van-
ishes. Even though the calculations are very lengthy, the formula is
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simple, especially if expressed in terms of the ‘right’ parameters:

Q = 2

[
AAB−B (B − A)B−A

(
�0

�T

)2A−B
]1/(2A)

, (17)

where �T = 1/kT is the Toomre scale. Equation (16), with Q speci-
fied by equation (17), is our stability criterion. It reduces to Toomre’s
criterion Q ≥ 1 in the limiting case of a non-turbulent disc: A = 1,
B = 2 (a = b = 0).

The most unstable scale, �min = 1/kmin, is given by the formula

�min

�T
= L

(
Q/ Q

)2/(B−A)
, (18)

where Q/Q measures the stability level of the disc (like Q in
Toomre’s case) andL is the value of �min/�T at the stability threshold
(Q/Q = 1):

L =
[

B − A

B

(
�0

�T

)A−1
]1/A

. (19)

Equation (18) reduces to �min/�T = 1
2 Q2 in Toomre’s case.

The growth rate of the most unstable scale, γ min = (−ω2
min)1/2, is

given by the formula

ω2
min

κ2
= 1 − (

Q/ Q
)−2A/(B−A)

, (20)

which vanishes at the stability threshold. Equation (20) reduces to
ω2

min/κ
2 = 1 − Q−2 in Toomre’s case.

2.8 Case a > 1, b > 1
2 (1 + a)

Even B < A < 0 is a Toomre-like case. In fact, although the scales
at which pressure and rotation dominate are reversed, self-gravity
still controls intermediate scales and ω2(k) has a minimum, which
determines whether the disc is stable or not. This means that, even
now, the stability criterion is

STABLE ∀k ⇐⇒ Q ≥ Q . (21)

The stability threshold Q, the most unstable scale and its growth
rate, �min and γ min, are given by the same formulae as in equations
(17)–(20).

3 THE STABILITY MAP O F TURBULENCE

The results of Section 2 are summarized in Fig. 1. The (a, b) plane
is divided into four regions, where stability à la Toomre alternates
with instability at small or large scales. The two shaded lines that
separate these regions, and the point at which these lines intersect,
represent transitions between different stability phases. Thus, the
corresponding stability criteria are hybrid (see Sections 2.2–2.4).
The points (a, b) = (0, 0) and (a, b) = (−1, 1

2 ) represent the limiting
case of a non-turbulent disc and the case investigated by Elmegreen
(1996). To the best of our knowledge, this was the only theoretical
work devoted to the gravitational instability of clumpy/turbulent
discs before ours. Fig. 1 also illustrates the most interesting stabil-
ity regimes populated by models, simulations and observations of
astrophysical turbulence. Such points are discussed throughout the
rest of this section. Specific predictions about strongly and weakly
supersonic turbulence are then made in Section 3.1.

The mass–size scaling relation, M ∝ ��2 ∝ �a+2, tells us the
natural bounds of a. In fact, D = a + 2 is the fractal dimension of
the mass distribution, which ranges from 0 to 3, so we have −2 ≤
a ≤ 1. Note that the upper bound corresponds to the case in which

the destabilizing effect of self-gravity is scale-independent, i.e. to
the vertical shaded line introduced above.

Does even the other shaded line have a two-fold meaning? Yes,
and an important one! If the stabilizing effect of pressure has the
same scale dependence as the effect of self-gravity, b = 1

2 (1 + a),
then σ 2 ∝ �� ∝ M/�, which is the virial scaling relation. GMCs are
then expected to clump along that line, i.e. to populate the transition
regime between stability à la Toomre and instability at small scales.
For example, the well-known scaling laws � = constant and σ ∝
�1/2 (Larson 1981; Solomon et al. 1987) correspond to the point
(a, b) = (0, 1

2 ). Both Galactic and extragalactic GMCs show non-
negligible dispersion around that point, especially along the virial
line, as can be inferred from Bolatto et al. (2008) and Heyer et al.
(2009). The case of perturbed galactic environments seems differ-
ent. Rosolowsky & Blitz (2005) investigated the physical properties
of GMCs in M64 (NGC 4826), an interacting molecule-rich galaxy,
and found � ∝ M0.7±0.2 and σ ∝ �1.0±0.3, which means (a, b) = (5+13

−3 ,
1.0 ± 0.3). If such scaling relations apply to individual GMCs, as
was originally suggested, then each cloud is far from being in simple
virial equilibrium. Besides, since (a, b) is below the virial line and
on the right of the a = 1 line, the H2 disc is unstable at large scales
(in the sense specified in Section 2.6) and the fractal dimension
is formally higher than 3. Alternatively, one may argue that these
scaling relations arise from the superposition of more GMCs, each
characterized by the standard scaling laws, but with proportional-
ity factors varying significantly over the disc (Rosolowsky, private
communication).

Now what about H I ? A turbulence model that is becoming more
and more popular is the one introduced by Fleck (1996), which
predicts ρ1/3σ ∝ �1/3. To understand the meaning of this scaling
relation, compare it with Kolmogorov’s law σ ∝ �1/3. Fleck’s re-
lation tells us that in a turbulent medium with both velocity and
density fluctuations, the quantity ρ1/3σ plays a role similar to σ

in incompressible turbulence. Fleck (1996) assumed that � ∼ ρ�,
which means � � h (see Section 2.1). So his prediction corresponds
to the line b = 1

3 (2 − a), which crosses several stability regimes.
The limiting case of Kolmogorov turbulence, (a, b) = (1, 1

3 ), lies
in the transition regime between stability à la Toomre and instabil-
ity at large scales. Both high-resolution simulations of supersonic
turbulence and H I observations populate the Toomre-like domain.
Such simulations cluster along the Fleck line, near (a, b) = ( 1

2 , 1
2 ),

the case of Burgers turbulence (Kowal & Lazarian 2007; Kritsuk
et al. 2007; Schmidt, Federrath & Klessen 2008; Price & Federrath
2010; see also Fleck 1996, and references therein). In weakly super-
sonic regimes, simulations cluster closer to the Kolmogorov limit
(a, b) = (1, 1

3 ), as we will show in Section 3.1. Observed H I inten-
sity fluctuations, which are primarily due to cold2 H I (Lazarian &
Pogosyan 2000), show large scatter around (a, b) = ( 1

3 , 1
3 ), i.e. they

suggest a Kolmogorov scaling for both velocity and density fluc-
tuations (e.g. Lazarian & Pogosyan 2000; Elmegreen et al. 2001;
Begum et al. 2006; Dutta et al. 2008, 2009a,b). Such a scaling is also
consistent with other H I observations (e.g. Kim et al. 2007; Roy
et al. 2008). The simulations by Agertz et al. (2009a), designed to
explore the development of H I turbulence in disc galaxies, suggest
power-law indices consistent with the observed ones, except before
the fragmentation of the disc (Agertz et al., in preparation).

Note that there is a very interesting and unexpected case where
Fleck’s model fits the observations well: the transition from H I

2 Hereafter we will omit ‘cold’ when referring to H I, since our analysis also
focuses on the cold ISM (see Section 2.1).
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Figure 1. The stability map of turbulence. The coordinates a and b are the exponents of the density– and velocity–size scaling relations (see equations 3 and
4). The shaded lines, their intersection point and the regions between them represent the variety of stability regimes possessed by clumpy/turbulent discs. The
points (a, b) = (0, 0) and (a, b) = (−1, 1

2 ) correspond to the limiting case of a non-turbulent disc and to the case investigated by Elmegreen (1996). The
non-shaded part of the plane shows the natural range of a. The thick lines are phenomenological models of GMC and H I turbulence, the semiclosed-head
arrows represent observations, while the closed-head arrow represents simulations with increasing Mach number. The solid circles correspond to points of
special interest in astrophysical turbulence. Also shown are the cases illustrated in Figs 2 and 3 (hollow circles) and the degeneracy condition discussed in
Section 4 (thin line). Note that the stability criterion is Q ≥ 1 along such a line.

to GMC turbulence. Clumps that climb up the Fleck line become
progressively more self-gravitating and will virialize at (a, b) =
( 1

5 , 3
5 ). This is close to (a, b) = (0, 1

2 ), the reference point for GMC
observations. The predicted energy spectra are E�(k) ∝ d�2/dk ∝
k−7/5 and Eσ (k) ∝ dσ 2/dk ∝ k−11/5 (the Kolmogorov spectrum
scales as k−5/3).

Low-resolution simulations of supersonic turbulence suggest an
alternative scaling relation: ρ1/2σ ∝ �1/3 (Kitsionas et al. 2009). In
comparison with the Fleck case, this scaling gives more weight to
density fluctuations and translates into a steeper line: b = 1

2 ( 5
3 −a),

where it is again assumed that � ∼ ρ�. The cases of Kolmogorov
and Burgers turbulence correspond to (a, b) = (1, 1

3 ) and (a, b) =
( 2

3 , 1
2 ), while the virialization point is (a, b) = ( 1

3 , 2
3 ). The Kitsionas

line crosses the same stability regimes as the Fleck line, but lies
farther away from H I and GMC observations.

3.1 Strongly versus weakly supersonic turbulence

Although our analysis focuses on strongly supersonic turbulence
(see Section 2.1), here we extend it to weakly supersonic regimes
(the case of a transonic or subsonic medium was considered in
Section 2.1).

How does the Mach number affect the density– and velocity–size
scaling relations? And how does it affect the stability of the disc?

To answer these questions, one should not compute a and b directly
from the density and velocity spectral indices. One should first
evaluate the typical density contrast of the medium (see Section 2.1).
The density probability distribution is approximately lognormal,
and its mean μ and standard deviation (SD) depend on the rms
Mach number M (Padoan, Jones & Nordlund 1997): μ = 1

2 SD2 ≈
1
2 ln(1 + 1

4M2). For such a distribution, the mass-weighted median
density is ρmed = ρ̄eμ ≈ ρ̄ (1 + 1

4M2)1/2, where ρ̄ is the mean
density (see section 2.1.4 of McKee & Ostriker 2007). This provides
a robust estimate of the typical density (mean plus fluctuations) in
the medium. The corresponding density contrast is δmed = (ρmed −
ρ̄)/ρ̄.

In weakly supersonic turbulence (M ≈ 2), we have δmed ≈ 0.4
so the mass column density at scale � is dominated by the mean
density: �eff ≈ ρ̄� (hence a ≈ 1) for � � h, while �eff ≈ ρ̄h

(hence a ≈ 0) for � � h. In contrast, the 1D velocity dispersion at
scale � is dominated by the turbulent term: σ ≈ σ tur(�) ∝ �b. For
� � h, we can relate b to a using Fleck’s model, b = 1

3 (2 − a),
and get (a, b) ≈ (1, 1

3 ). Thus, weakly supersonic 3D turbulence
drives the disc to the boundary of the Toomre-like domain, near the
Kolmogorov point.

In strongly supersonic turbulence (M � 5), we have δmed � 2
so both the mass column density and the 1D velocity dispersion are
dominated by turbulent fluctuations. We can then compute a and
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b from the density and velocity spectral indices (see Section 2.1).
Simulations show that in an isothermal medium with negligible self-
gravity, with or without magnetic fields, the density spectrum flat-
tens (Beresnyak, Lazarian & Cho 2005; Kim & Ryu 2005; Kowal,
Lazarian & Beresnyak 2007) and the velocity spectrum steepens
(e.g. Kowal & Lazarian 2007; Kritsuk et al. 2007; Price & Federrath
2010) as the Mach number increases. At Mach 7, we find (a, b) ∼
(0.8, 0.4) from Kowal et al. (2007) and (a, b) ∼ (0.3, 0.6) from
Kowal & Lazarian (2007), using Fleck’s model in both cases.3 In
spite of the large uncertainties, it is clear that these points are on
the left of (1, 1

3 ) and, on average, closer to ( 1
2 , 1

2 ). Thus strongly su-
personic 3D turbulence drives the disc well inside the Toomre-like
domain, near the Burgers point.

4 ILLUSTRATIVE CASES

Let us now illustrate the stability characteristics of clumpy/turbulent
discs in a number of cases, those marked with hollow circles
in the Toomre-like domain of our map (see Fig. 1). The points
( 1

3 , 1
3 ), ( 1

2 , 1
2 ) and ( 2

3 , 1
2 ) are typical values of (a, b) inferred from

H I observations, high- and low-resolution simulations of super-
sonic turbulence. The points ( 1

3 , 0) and (0, 1
3 ) are the contributions

of density and velocity fluctuations to the observed (a, b) = ( 1
3 , 1

3 ).
For each case, we proceed in two ways. First, we assume that the
density– and velocity–size scaling relations are perfect power laws,
as given by equations (3) and (4), so that �0 = 1/k0 is the fiducial
scale at which density and velocity are observed. We then evaluate
the stability characteristics analytically using equations (17)–(20).
Secondly, we consider more realistic scaling relations, which take
into account the saturation of density and velocity at large scales:

�eff = �0 D� , D� =
{

(�/�0)a if � ≤ �0 ,

1 else ;
(22)

σ = σ0 V� , V� =
{

(�/�0)b if � ≤ �0 ,

1 else ;
(23)

where �0 is now the typical saturation scale. We then evaluate the
stability characteristics numerically using the dispersion relation,
equation (2), which we rewrite as

ω2

κ2
= 1 − D�

(�/�T)
+ Q2

4

V2
�

(�/�T)2
, (24)

where Q = κσ 0/πG�0 is the Toomre parameter and �T =
2πG�0/κ

2 is the Toomre scale.
Fig. 2 shows the stability threshold Q, i.e. the value of Q above

which the disc is stable at all scales. The first curious result is
that such a diagnostic is highly degenerate. For example, look at the
cases (a, b) = ( 1

3 , 1
3 ) and (a, b) = ( 1

2 , 1
2 ), which represent H I obser-

vations and high-resolution simulations of supersonic turbulence.
They have Q ≡ 1! Why do such cases degenerate into Toomre’s

3 In the first case, d ln Eρ/d ln k (i.e. − r) is given in table 2 of Kowal et al.
(2007), a is computed from r as in Section 2.1 (� � h): a = 1

2 (r + 1) and b

is computed from a using Fleck’s model: b = 1
3 (2−a). This yields (a, b) =

(0.75 ± 0.05, 0.42 ± 0.02) for the sub-Alfvénic simulation and (a, b) =
(0.80 ± 0.10, 0.40 ± 0.03) for the super-Alfvénic simulation. In the second
case (of the main text), d ln Ev/d ln k (i.e. −s) is given in fig. 1 of Kowal &
Lazarian (2007), b is computed from s as in Section 2.1: b = 1

2 (s − 1) and
a is computed from b using Fleck’s model: a = 2 − 3b. This yields (a, b) =
(0.29 ± 0.08, 0.57 ± 0.03). This simulation is sub-Alfvénic, like the first
one above.

Figure 2. The stability threshold of clumpy/turbulent discs, Q =
Q(a, b, �0), where a and b are the exponents of the density– and velocity–
size scaling relations and �0 is the typical scale at which density and velocity
saturate. In addition, �T is the Toomre scale. The dashed lines and the hol-
low circles show the power-law behaviour predicted by equation (17) when
density and velocity do not saturate; �0 is then the fiducial scale at which
these quantities are observed. The limiting case of a non-turbulent disc is
Q = 1.

case? Why does not turbulence show up? Equation (17) gives us
the answer: because the effects of density and velocity fluctuations
cancel out when 2A − B = 0, i.e. along the line b = a (see the map).
The cases (a, b) = ( 1

3 , 0) and (a, b) = (0, 1
3 ) allow us to disentan-

gle such effects. Density fluctuations that saturate at a typical scale
�0 tend to stabilize the disc by decreasing the stability threshold:
Q < 1 if �0 � 1

2 �T and Q = 1 otherwise. To understand this re-
sult, remember that such fluctuations reduce the self-gravity term
in the dispersion relation by a factor D� (see equations 22 and 24)
and that self-gravity is destabilizing. Velocity fluctuations have an
antagonistic effect. They reduce pressure by a factor V2

� (see equa-
tions 23 and 24) and tend to destabilize the disc by increasing the
stability threshold: Q > 1 if �0 � 1

2 �T and Q = 1 otherwise. When
density/velocity fluctuations do not saturate, their effect becomes
destabilizing/stabilizing if the fiducial scale is small.

Fig. 3 shows the most unstable scale, �min, for two values of
Q/Q. Remember that this quantity measures the stability level of
the disc, like Q in Toomre’s case. So Q/Q = 1 (top panel) means
that the disc is marginally unstable, while Q/Q = 0.7 (bottom
panel) means that the disc is moderately unstable. In contrast to
Q, �min is not degenerate. Turbulence now has a significant effect
in the case of H I observations, since the contributions of density and
velocity fluctuations are no longer antagonistic. For �0 ∼ �T, �min is
about 30–50 per cent smaller than in Toomre’s case, depending on
the value of Q/Q. The impact of turbulence is stronger in the case
of high-resolution simulations: the most unstable scale is typically
half an order of magnitude below the expected value. Turbulent
effects become less important at low resolution.

The growth rate of the most unstable scale, γ min, is independent
of �0 and vanishes for Q/Q = 1 (see equation 20). For Q/Q < 1,
the effects of density and velocity fluctuations cancel out when
A/(B − A) = 1, i.e. b = a. This degeneracy condition is the same
as that found for Q and has the same consequences.
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Figure 3. The most unstable scale of clumpy/turbulent discs, �min =
�min(a, b, �0, Q/ Q), where a and b are the exponents of the density– and
velocity–size scaling relations, �0 is the typical scale at which density and
velocity saturate and Q/Q is the stability level. In addition, �T is the Toomre
scale. The dashed lines show the power-law behaviour predicted by equa-
tions (18) and (19) when density and velocity do not saturate; �0 is then
the fiducial scale at which these quantities are observed. Also shown is the
limiting case of a non-turbulent disc (dotted line).

5 C O N C L U S I O N S

(i) Observations and simulations of the ISM are revealing its tur-
bulent nature with higher and higher fidelity. Such information must
then be taken into account when analysing the stability of galactic
discs. Our contribution is a natural extension to Toomre’s work,
which will prove useful for both low- and high-redshift analyses.

(ii) Turbulence has a deep impact on the gravitational instability
of the disc. It excites a rich variety of stability regimes, several
of which have no classical counterpart. We illustrate this result
in the form of a map, which relates our stability scenario to the

phenomenology of interstellar turbulence: GMC/H I observations,
simulations and models.

(iii) GMC turbulence drives the disc to a regime of transition be-
tween instability at small scales and stability à la Toomre. Toomre’s
criterion works instead typically well when applied to discs of cold
H I, since the effects of density and velocity fluctuations tend to
cancel out. Even so, H I turbulence produces a clear signature in
disc morphology. It reduces the characteristic scale of instability by
30–50 per cent or more, depending on the value of Q and on the
shape of the energy spectrum. The transition from H I to GMC tur-
bulence occurs when � ∼ �1/5 and σ ∼ �3/5 (for more information,
see Section 3).

(iv) Coming astronomical facilities such as Atacama Large Mil-
limeter/submillimeter Array (ALMA)4 will be able to resolve the
scaling properties of galactic turbulence up to very high redshifts.
Using our map, such data will show up as evolutionary tracks,
which will reveal the interplay between gravitational instability and
turbulence during the galaxy life. In turn, this will be useful for con-
straining the sources of galactic turbulence and for understanding
the evolution of cosmic star formation.
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