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Abstract 

Today, safety margins are causing significant amount of unnecessary power 

overhead or limiting the performance of the conventional digital designs. In order 

to minimize the overhead of safety margins, there is an increasing interest for 

adaptive techniques. One of the first and well known adaptive technique which 

minimizes the overhead of entire safety margins is dubbed Razor [1]. This thesis 

work is a case study of implementation and evaluation of the Razor approach on a 

processor which executes a subset of the AVR32 instruction set. ATMEL 150nm 

low leakage library is used for synthesize and evaluations.  A methodology is 

explained to introduce the Razor approach to the pipeline with one-cycle error 

recovery. Simulations showed that at least 26-28% reduction in energy is possible 

on typical library conditions over the supply voltage determined by the worst case 

safety margins. 
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1    Introduction 

1.1    Background  

Today, processors are designed with safety margins in order to make sure that they 

will function correctly even under the worst-case variations of temperature, process 

and supply voltage. Since these worst-case variations typically will not affect the 

processor at the same time, safety margins are causing significant amount of power 

overhead or performance loss [2]. 

In order to minimize the cost of the safety margins, adaptive techniques come into 

use. There are mainly two types of adaptive techniques [3]. The first type of 

techniques is not speculative. They can track very limited amount of variations. In 

addition, they need additional safety margins in order to make sure that processor 

will never malfunction during the self-tuning operation. There are some exceptions 

such as the triple latch monitor [4]. This technique can follow intra-die process 

variations and environmental variations without additional safety margins, but it is 

very hard to utilize in a complex processor since it continuously requires self-

testing. Otherwise, the processor will not function correctly. As a result, potential 

energy savings or performance improvements are limited for this type of adaptive 

techniques. They are, however, relatively easy to implement since no architecture 

level changes are needed [3].  

The second type of techniques is speculative. These techniques rely on error 

detection and correction mechanisms. They can follow all different kinds of 

variations. They may even save additional power while working with errors. One 

of the first and well known examples is the Razor approach [1]. In this approach, 

special sequential cells detect the setup time or maximum path delay violations and 

correct them, so that supply voltage can be reduced to the most energy-efficient 

point safely or throughput can be increased for a constant voltage level.  

1.2    Timing constraints and self-tuning of a pipelined design 

A simple part of a conventional flip-flop-based pipeline stage is shown in figure 1. 

Pipelines are usually synthesized so that the signal which is launched from the 

source flip-flop in the beginning of the clock period will be able to arrive to the 

destination flip-flop within a certain time before the end of the clock period. This 

certain time window is the setup time (see figure 2) of the destination flip-flop. If 

the signal arrives to the destination flip-flop during the setup time, the output of the 

flip-flop may become metastable, which will corrupt the data flow on the pipeline. 

The input of a flip-flop should also not change for a certain duration after the 

sampling edge of the clock signal; this duration is called hold time. But hold time is 

not a primary constraint on the performance of the pipeline and hold time 

violations may be fixed after the synthesis step.  

After the synthesize step, the pipeline is expected to be functional for the clock 

frequency which is defined as a constraint before the synthesis operation. Since the 
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delay of the logic gates vary with the factors like temperature, process and supply 

voltage, the correct functionality of the pipeline can only be guaranteed by 

calculating the critical path delay while assuming the worst case combinations of 

the variations. As seen from figure 2, in nominal conditions, a certain amount of 

the clock period is wasted due to safety margins related to the worst-case-based 

design methodology. This means power overhead, since the supply voltage could 

be lowered, or potential performance loss, since the clock period can be reduced. 

D Q

Main

FF

Stage i-1 Combinatorial logic D

Main

FF

Stage i+1Q

clk clk

source destination
 

Figure 1 - Flip-flop based pipeline structure 

As mentioned in the previous section, adaptive techniques are used in order to 

eliminate the overhead of the safety margins. It can be seen from figure 2 that once 

the supply voltage is started to reduce the critical path delay becomes closer to the 

setup time limit. In non-speculative self-tuning techniques, the critical path delay 

never violates the setup time. In contrast, in speculative self-tuning techniques like 

the Razor approach, the critical path delay can violate the setup time since special 

cells are capable of detecting and correcting these violations [1]. This is explained 

in detail in the following sections.  

During the runtime of a pipeline, it is not guaranteed that the most critical path will 

always be triggered. This means that while tracking the violations on shorter path, 

the most critical path delay can increase to a level so that it will be higher than the 

overall clock period. As a result, once a critical path is triggered, it may or may not 

violate the hold time on the main-flip. But since the delay is higher than the overall 

clock, incorrect data will sampled and the data flow will be corrupted anyway. This 

causes extra complexity for the detection of the error, as explained in detail in the 

following sections. All of these situations also apply when the supply voltage is 

kept constant and the frequency is increased. 

setup 

time hold

time

safety 

margins

critical path delay
delay on nominal cond. overhead due to safety margins

supply voltage 

launch capture

 

Figure 2 - Timing errors during the self-tuning operation 
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1.3    Razor Flip-Flop 

A block diagram of the Razor flip-flop is shown in figure 3 [1]. A shadow latch 

captures the input data with a delayed clock and compares it with the output of the 

master flip-flop. If they are different, error signal is asserted and the output is 

corrected on the following clock cycle with correct data sampled on the shadow 

latch. Conceptual timing diagram is shown on figure 4 [1]. The time window 

between the main clock and the delayed clock is the error detection window.  

Minimum path violation can also occur during the error detection window; this 

situation and the solution is explained in detail on the design flow section. Razor 

approach also requires architecture level changes in order to function correctly.    

Clock signal for the shadow latch is proposed to be selected as the falling edge of 

the main clock signal in the original Razor research, so that no additional clock tree 

is needed [1]. As explained in the previous section, a transition can happen on the 

input of the master flip-flop during the setup time or hold time window, and as a 

result its output may become metastable. This can cause the XOR gate to resolve 

the error situation wrongly. In order to avoid this situation, a metastability detector 

is also needed on the output of the master flip-flop [1]. 

D Q

Main

FF

Shadow 

Latch

E

delay

0

1

clk

clk

Met.

Detector

ERROR

D Q

RESTORE

COMBINATORIAL

LOGIC
COMBINATORIAL

LOGIC

Q
D Razor FF

 

Figure 3 - The Razor flip-flop 

In order to reduce the negative effects of the input multiplexer in terms of speed 

and power, different kind of restore approach is proposed in the real 

implementation of the original Razor flip-flop research [1]. It is shown in figure 5. 

Tri-state buffers are used in order to connect the output of the shadow latch to the 

input of the slave latch on the error recovery cycle. 

Another flip-flop, dubbed Blade (see figure 6), is proposed as an alternative to the 

Razor flip-flop [5]. Instead of the shadow latch, an input multiplexer is used to 

latch the data which arrives late. But the datapath metastability problem also exists 

for this flip-flop since the error signal is generated with comparing the output of the 

flip-flop with the output of the input multiplexer. As a result it is hard to say that it 

has an advantage over the Razor flip-flop. It must be noted that one error flip-flop 

is enough to collect all error signals of several Blade flip-flops inside a pipeline.  
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Figure 4 - Conceptual timing diagram of the Razor flip-flop 

1.4    Recent approaches 

Recently, other kinds of error detection and correction approaches have been 

proposed [6], [7].  These approaches use a single latch as a sequential cell. Instead 

of correcting the error in the sequential cell, the error is only detected with a 

transition detector, and the correctness of the program is provided by replaying the 

instructions which caused an error. The advantage of this scheme is that datapath 

metastability problem is avoided [6], [7]. 

D Q

EN

restore

restore

D Q

EN

D Q

EN

Master

Latch
Slave

Latch

Shadow 

Latch

clk

clk

D
Q

 

Figure 5 - Error recovery scheme on the real implementation of the Razor flip-flop 

The reason is that, error detection is carried out during the transparent phase of the 

latch. As a result, transitions due to the timing errors happen on the input while the 

latch is transparent. It is a big improvement since there is no need for metastability 

detector on every sequential cell. Because the error is not corrected in the 

sequential cell, frequency is decreased during the replay of instructions, otherwise 

it may cause a deadlock of errors until the voltage is increased to an error-free 
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level. Compared with the previous Razor approach, this approach is a little bit 

complex and suitable for very high-performance processors since the special cells 

are time borrowing latches.  

D Q

Main

FF

0

1

clk

ERROR

COMBINATORIAL
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LOGIC

DQ
Error

FF

Blade FF

delay

del_clk

CAPTURE

D
Q

 

Figure 6 - The Blade flip-flop 

1.5    Purpose of the thesis  

The main purpose of this thesis is to apply and evaluate the self-tuning technique 

with the Razor flip-flops on a processor which executes a subset of the AVR32 

instruction set. Evaluation includes investigating the possible power savings and 

throughput gain on typical library conditions. Several will be run on the self-tuning 

processor to see the effects of different timing paths. Additionally, overhead of this 

method will also be investigated. 

This work will improve understanding the challenges with self-tuning techniques 

and also investigate what kind of limitations they impose on the design. ATMEL 

150nm library will be used for synthesis and analysis. 
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2    Core Design 

In order to evaluate the self-tuning technique, a pipeline is designed from scratch 

which executes a subset of the AVR32 instruction set [8]. Verilog HDL is used for 

the design. 

2.1    AVR32 Instruction Set 

AVR32 is a 32-bit RISC architecture. It contains instructions with 32-bit and 16-bit 

lengths. Instructions with different lengths minimize the instruction memory 

requirements and lead to power savings [8]. Most of the instructions are available 

in different formats. For example; Format-I ADD instruction performs an addition 

operation without carry between two registers and the result is written to the first 

register. It is a 16-bit instruction. Format-II ADD instruction performs an addition 

operation without carry between two registers and the second operand can also be 

shifted left by 2 positions. The result can be written to a totally different register. It 

is a 32-bit instruction.  

2.2    Structure of the pipeline 

Figure 7 shows the structure of the pipeline. It consists of 5 stages. Instructions are 

executed in order. Memory write is not carried out on the same stage as memory 

read because of the speculative behavior of the self-tuning technique. The write 

address might be calculated wrongly when the voltage is reduced below the safe 

point. As a result, the write address passes one extra stage before it actually 

initiates the write operation. In that extra cycle, the write operation is aborted if the 

address is calculated wrongly on the execute stage. The correct write address 

arrives on the next cycle and initiates the write operation. The write address of the 

register file is decoded on the instruction decode stage and always passes one extra 

stage; as a result, the write address of a register file write operation is not 

speculative. Due to the self-tuning technique, a buffer is needed for the memory-

write operations. This buffer can cause a control hazard which is explained in 

section 2.5.1. 
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Figure 7 - Simplified block diagram of the pipeline 
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2.3    Instructions implemented 

Pipeline is capable of executing the following subset of AVR32 instruction set: 

ABS: 

 Format I 

ACR: 

 Format I 

ADC: 

 Format I 

ADD :  

 Format I  

 Format II 

ADDABS : 

 Format I  

ADD{cond4} : 

 Format I   

AND: 

 Format I 

 Format II 

 Format III 

AND{cond4} : 

 Format I   

ANDN: 

 Format I 

ASR: 

 Format I 

 Format II 

 Format III 

BR{cond}: 

 Format I 

 Format II 

CBR:  

 Format I 

COM: 

 Format I 

CP.W : 

 Format I 

 Format II 

 Format III 

EOR: 

 Format I 

 Format II 

 Format III 

EOR{cond4} : 

 Format I   

LD.W  

 Format I 

 Format II 

LSL:  

 Format I 

 Format II 

 Format III 

 

LSR: 

 Format I 

 Format II 

 Format III 

MOV: 

 Format I 

 Format II 

 Format III 

MULHH.W 

 Format I 

NEG: 

 Format I 

NOP: 

 Format I 

OR: 

 Format I 

 Format II 

 Format III 

OR{cond4}: 

 Format I 

RCALL: 

 Format I 

 Format II 

RET{cond}: 

 Format I 

ROR: 

 Format I 

ROL: 

 Format I 

SBC: 

 Format I 

SBR: 

 Format I 

SCR: 

 Format I 

ST.W : 

             Format I 

             Format II 

SUB: 

Format I 

Format II 

Format III 

Format IV 

Format V 

TST: 

 Format I
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2.4    Instruction Fetch 

In order to understand the real time challenges with self-tuning techniques better, a 

simplified AHB protocol is used for the instruction fetch unit. It is a pipelined and 

master/slave based protocol [9]. Once a read request is sent to the bus, the data 

must be read except in the case that slave is not ready. This can introduce 

additional challenges for the self-tuning processors. Some examples related to 

these challenges are explained in section 3.2.6. There are two finite state machines 

and a prefetch buffer on the instruction fetch unit (see figure 8). One finite state 

machine controls the AHB protocol and the other one controls the instruction flow. 

A prefetch buffer is used to minimize the potential stalls which can be caused by 

instructions with different lengths or pipelined bus architecture. A dedicated adder 

generates the fetch address. As soon as there is empty space on the prefetch buffer 

a 32-bit data is fetched on every clock cycle. The slave is assumed to be always 

ready. Since there is no exception handling mechanism on this pipeline, the PC is 

incremented on the execute stage. 

16-bit p.b.

4 x 32-bit

FIFO

Prefetch

buffer

v

IR
E

G
[3

1
:1

6
]

[31:16] [15:0]

IR
E

G
[1

5
:0

]

IR
E

G

HADDR

+

+4

ADC

FSM

FB

FSM

flush

stall

branch target address

data input

HTRANS

 

Figure 8 - Simplified block diagram of the IF stage 
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2.4.1    Handling of the instructions with different lengths 

Because the AVR32 instruction set has 32-bit and 16-bit instructions, the 

instruction fetch unit must be capable of handling instructions with different 

lengths. The 3 most significant bits of the instruction indicates its length. If all of 

them are logic „1‟, it indicates that the instruction is 32-bit, otherwise it is 16-bit.  

In order to make the decode stage simpler, 16-bit instructions can be placed starting 

from the most significant bit of the 32-bit instruction register as shown in figure 9. 

The reason is that some of the control signals like REGFILE write address will be 

placed on the same bits.   

31

0
i[3

1
:1

6
]

i[1
5

:0
]

31

0

i[1
5

:0
]

[1
6

'X
]

32-bit instruction 16-bit instruction

 

Figure 9 - Placement of the 32-bit and 16-bit instructions on the instruction register 

Every time a 32-bit entry is read from the prefetch buffer and placed in the 

instruction register, the low halfword of this entry is placed in a 16-bit buffer. If the 

instruction in the instruction register is 16-bit, the 16-bit buffer is used for the next 

instruction. Figure 10 shows the possible read combinations for the instruction. 

Since the low halfword of the instruction does not have any effect for the 16-bit 

instructions, it is possible to summarize it with 2 possibilities. The read state 

changes from read-1 to read-2 or read-2 to read-1 if the current instruction on the 

instruction register is 16-bit. These states are controlled by the fetch buffer finite 

state machine. The state transition diagram of the fetch buffer FSM is shown in 

figure 11. 

4 X 32-bit
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Buffer

16-bit p.b.

I[31:16] I[15:0]

O[31:16] O[15:0]

Instruction Register

4 X 32-bit

FIFO

Prefetch

Buffer

16-bit p.b.

I[31:16] I[15:0]

O[31:16] O[15:0]

Instruction Register

Read-1 Read-2

 

Figure 10 - Instruction feed scheme from the prefetch buffer 



10 
 

S:fb_IDLE

valid = ‘0’

FIFO_readp = ‘0’

fb_stall = ‘0’

fb_half_stall = ‘0’

RS:read-1

S:fb_EVALUATE

fb_stall = ‘0’

fb_half_stall = ‘0’

RS:read-1

flush = ‘1’

valid = ‘0’

FIFO_readp = ‘0’

S:fb_HALF_BUFFER

RS:read-2

flush = ‘1’

flush = ‘0’

empty = ‘0’ & stall = ‘0’ & compact = ‘0’

valid = ‘1’

FIFO_readp = ‘1’

(empty = ‘1’ | stall = ‘1’ ) & flush = ‘0’

valid = ‘0’

FIFO_readp = ‘0’

empty = ‘0’ & stall = ‘0’ & compact = ‘1’ & flush = ‘0’

valid = ‘1’

FIFO_readp = ‘1’

flush = ‘1’

valid = ‘0’

FIFO_readp = ‘0’

fb_stall = ‘0’

fb_half_stall = ‘0’

stall = ‘0’ & compact = ‘0’ & flush = ‘0’

valid = ‘1’

FIFO_readp = ‘1’

fb_stall = ‘0’

fb_half_stall = ‘0’

stall = ‘0’ & compact = ‘1’ & flush = ‘0’

Valid = ‘1’

FIFO_readp = ‘0’

fb_half_stall = ‘0’

fb_stall = ‘1’

stall = ‘1’  & flush = ‘0’

valid = ‘0’

FIFO_readp = ‘0’

fb_stall = ‘0’

fb_half_stall = ‘1’  

Figure 11 - State transition diagram of the fetch buffer FSM 

2.4.2    Prefetch of the instructions 

Instructions are read with undefined length burst read operation. During the 

undefined length burst operations, the address is incremented with a constant size. 

Figure 12 shows the timing diagram for this operation [9]. The entries in the 

HREAD section of the figure denote the address of the current data on the HREAD 

bus. 

 

  

The main part of the prefetch buffer is a 4-entry FIFO; each entry is 32-bit. The 

read probe of the FIFO is triggered when a 32-bit entry is read and sent to the 

instruction register. The write probe of the FIFO is controlled by the finite state 

machine which controls the AHB protocol.  

The HTRANS signal is controlled in a Moore machine manner for the stall 

situations, because when the self-tuning technique is introduced to the pipeline, the 

stall signal of this system might arrive very late. This is achieved by sampling the 

HTRANS output of the FSM with flip-flops. Output of the HTRANS flip-flops is 

Figure 12 - An example timing diagram of the undefined length burst read operation 
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sometimes masked by the flush signal in order reduce the stall cycles after the 

branch operations. The FSM (see figure 13) which controls the AHB protocol 

follows the current entry count of the FIFO. If there are 2 slots left and a stall will 

occur on the current cycle, HTRANS signal is set to busy because the FIFO can 

become full two cycles later. HTRANS signal is changed to sequential again if 

there are 2 slots left and no stall will happen on the current cycle, so that the FIFO 

will never become empty as soon as slave feeds instructions. There are two 

different types of stall signals for this FSM; one of them is caused by the usual stall 

operations of the pipeline architecture, second one is caused if two 16-bit 

instructions come in series. In this situation a 32-bit entry will not be read for 1 

cycle from the prefetch FIFO.  

S:adc_IDLE

HTRANS = NON_SEQ

addr_stall = ‘1’

FIFO_writep = ‘0’

S:adc_START

HTRANS = SEQ

addr_stall = ‘1’

FIFO_writep = ‘0’

S:adc_EVALUATE

flush = ‘1’

HTRANS = SEQ

Addr_stall = ‘0’

FIFO_writep = ‘0’

flush = ‘0’ & fifo_counter = 2 

& adc_stall = ‘1’

HTRANS = BUSY

addr_stall = ‘0’

FIFO_writep = ‘1’

S:adc_BUSY_0

flush = ‘0’ & ( fifo_counter != 2 

| adc_stall = ‘0’ )

HTRANS = SEQ

Addr_stall = ‘0’

FIFO_writep = ‘1’

flush = ‘1’

HTRANS =SEQ

addr_stall = ‘0’

FIFO_writep = ‘0’

 

S:adc_BUSY_1

flush = ‘0’

HTRANS = BUSY

addr_stall = ‘1’

FIFO_writep = ‘0’

 

S:adc_BTS

HTRANS = SEQ

addr_stall = ‘0’

FIFO_writep = ‘0’

flush = ‘0’ & ( fifo_counter != 3 | 

adc_stall = ‘1’ )

Htrans = BUSY

addr_stall = ‘1’

FIFO_writep = ‘0’

flush = ‘0’ &

 fifo_counter = 3  &

adc_stall = ‘0’ 

Htrans = BUSY

addr_stall = ‘1’

FIFO_writep = ‘0’

 

Figure 13 - State transition diagram of the AHB protocol control FSM 

 

2.4.3    Branches 

Branches are always treated as not taken [10],[11]. They are resolved on the 

execute stage. If the branch is resolved as taken on the execute stage, prefetch 

buffer and pipeline is flushed, and the following instructions are fetched starting 

from the target address of the branch instruction. This will cause a 2 cycle delay for 

the first instruction to arrive at instruction register. There will be no penalty if the 

branch is in fact not taken. This kind of speculative branch handling can cause 

some control hazards. These hazards are explained on the following sections.   
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2.5    Instruction Decode 

Instruction decode unit mainly consists of three components: a decoder circuit 

which generates the necessary control signals for the execute stage and memory 

stages; a hazard detection circuit which generates a stall signal whenever necessary 

for the instruction fetch unit and inserts bubble signals in order to stall the 

following stages (stall situations are explained in detail in section 2.5.1); and lastly 

a sign extension unit which generates the sign extended or zero extended 

immediate in order to be used as an operand on the execute stage. AVR32 

instruction set has many different immediate formats.  A simplified block diagram 

of the instruction decode unit is shown in figure 14. 
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Figure 14 - Simplified block diagram of the instruction decode unit 

 

2.5.1    Stalls 

The memory interface uses a simplified AHB protocol. The simple read and write 

operations are showed on figure 15 and figure 16 respectively [9]. Because of the 

pipelined structure of the protocol, data will become available one cycle after the 

read address is sent to the bus. Since load operations and the other instructions 

share the same register file write port, two stall cycles are inserted after the load 

operations; otherwise a conflict occurs if the upcoming instruction also writes to 
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the register file. These stall cycles affect the IPC depending on the application. If 

the application has many load operations and fewer operations related to 

processing of data, like the BSORT application explained in section 4, the IPC can 

be reduced by approximately 40%. But the reduction will be around 10% on the 

applications like the filter (also explained in section 4), since the arithmetic 

operations like multiplication, addition operations are the dominant instructions 

during the execution. During the format I,II load instructions both a load operation 

and a pre-decrement or post-increment of the pointer register is executed [8]. The 

new value of the pointer register is written to the register file during the first stall 

cycle of the load instruction. These instructions are heavily used during the 

processing of data arrays. In fact, the equivalent of 2 instructions are implemented 

during these load instructions. As a result, when these load instructions are heavily 

used, the IPC reduction can be said to be relatively smaller. 

Self-tuning technique can also cause a stall cycle for the store operations. Store 

operations cannot take place directly after the write address is calculated, because 

an error might have occurred during the calculation. So the write address passes 

one extra stage before actually write operation starts. This generates a conflict if a 

load operation comes directly after the store operation because in that situation, 

load operation and store operation will try to initiate a transaction at the same time. 

In order to avoid this conflict, one cycle stall is inserted after the store operations. 

This stall in fact can be avoided with compilers by re-scheduling the store 

instructions. But since the assembly language is used to prepare the benchmark 

applications, a stall cycle is inserted after the store operations in order to simplify 

the process.  

Lastly, the final timing error signal which is the output of the OR-tree of the timing 

error signals are also connected to the stall signal with an OR gate (see figure 14) 

after the synthesize step. Timing errors are treated as a usual stall situation. The 

difference of the timing error signal is that it has direct control for the clock gating 

of many flip-flops.  

 

2.5.2    Control hazards at the ID stage 

Important control signals like register file write, branch, and memory read/writes 

are first decoded in the instruction decode stage and propagated through execute 

stage. Since instruction fetch treats branches as not taken, the upcoming 

instructions after the branch instruction should not proceed if the branch is taken. A 

flush signal is used to mask the important control signals in this situation. Apart 

from that, the valid bit also masks the important control signals when the 

instruction in the instruction register is not valid. The valid bit is set to logic „1‟ if 

there is no stall situation and an instruction is read from the prefetch buffer within 

the program order. 
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Figure 15 - Timing diagram of the simple memory read operation 

 

 

Figure 16 - Timing diagram of the simple memory write operation 

 

2.6    Execute Stage 

The following tasks are performed on the execute stage: 

 All arithmetic and logic operations. 

 Multiplication. 

 Branch target address calculation. 

 Condition check for both branches and conditional instructions. 

 Address calculations for memory operations. 

 Flag calculations. 

Figure 17 shows the simplified block diagram of the execute stage. There is 

forwarding on this stage for the operands, because result is not directly written to 

the register file. It is very hard to write the results to the register file directly in a 

self-tuning processor, since it requires whole flip-flops in the register file to be 

capable of detecting the errors and this will cause excessive overhead. There are 

some instructions which use the operands directly as a control signal. Hence, some 

of the control signals also use forwarding. A detailed block diagram of the 

calculation blocks are shown in figure 18. 
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Figure 17 - A simplified block diagram of execute stage 

2.6.1    Program Counter 

Program Counter is directly linked to the register file so that it can be used as an 

usual operand. There is a dedicated adder for the PC. This counter increases the PC 

depending on the instruction size. Apart from this, output of the PC adder is 

directly connected to the Link Register when a call instruction is processed.  

The operation of the RCALL instruction [8] :

I.      

LR         PC + 2 

PC         PC + (SE(disp10)<<1) 

 

II. 

LR         PC  +  4 

PC          PC  +  (SE(disp21)<<1) 

The relative call instruction which is denoted with „I‟ is a 16-bit instruction. The 

other relative call instruction which is denoted with „II‟ is a 32-bit instruction. The 

difference between these two versions of the instruction is the displacement value 

of the PC. Displacement limit for the first instruction is between -1024/1022, limit 

for the second instruction is between -2097152/2097150. This is an example of the 

advantages described in section 2.1. Since the output of the PC adder is determined 

by the size of the instruction, the correct return address is automatically stored on 

the link register during the execution of the relative call instructions. 
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Most of the instructions can use the PC as destination register. If an instruction 

uses the PC as a destination register, it is treated as a branch. New value of the PC 

is calculated, the pipeline is flushed and new instructions are fetched from the 

newly calculated value of the PC. 

2.6.2    Register File 

The register file is designed according to the application register file configuration 

of the AVR32A architecture [10]. The first 13 registers (R0-R12) are general 

purpose registers. R13 is used as a stack pointer for the exception handling. R14 is 

the link register. The return address is kept on this register for the call instructions. 

Otherwise it can be used as a usual register. R15 is the program counter. The 

register file has 2 read ports and 1 write port. The PC has its own write port.  LR 

has two write ports; one is from the PC adder the other one is the general purpose 

one. 

2.6.3    Z-flag calculation 

My early experiments showed me that the Z flag calculation needs some 

adjustments. This calculation needs 32-bit NOR-tree after the output multiplexer of 

the ALU. Apart from that, it must also pass an AND gate and a second multiplexer, 

because there are some other combinations to calculate the Z flag. If this 

calculation is performed on the same stage as the ALU, it results in an unbalanced 

design because Z flag is always slower than the other paths. It even becomes more 

disadvantageous for the self-tuning technique, because when the voltage is scaled 

down a significant part of the error detection window is just used by the flag 

calculation. In order to avoid this situation, the z-flag calculation is performed after 

the execute stage. This is possible because the z-flag only needs the last result of 

the ALU. This is also useful to save power because the 32-bit NOR-tree is 

connected to the output of the ALU. The switching activity is very high at the 

output of the ALU. If this NOR-tree is synthesized on the same stage as the ALU, 

the capacitance will be very high because it has to be very fast. But, if it is moved 

to another stage the timing constraint will be relaxed significantly. As a result, the 

capacitance will be reduced. 

2.6.4    Condition Checker 

There are 16 different conditions inside the AVR32 instruction set [8]. Some of the 

instructions have 8 of them available and some of the instructions have all of them 

available. The output of the condition checker is also used to implement the 

conditional instructions. Conditional instructions are important because they can 

prevent the cycle penalties caused by the change of flow instructions. 

2.6.5    Control hazards at EXE stage 

Since the IF stage always treats the branch instructions as not taken, the flush 

signal must also mask the important signals, such as; branch, register file write, and 

flag write in the execute stage. Otherwise an instruction coming from the 

instruction decode stage will corrupt the program flow.   
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Figure 18 - A simplified block diagram of the calculation blocks in the execute stage 

2.7   Clock gating  

Clock gating is very important to reduce the power dissipation of the sequential 

cells. Synthesis tools are usually capable of understanding and inserting clock 

gating to register banks from the RTL code. If the tool cannot analyze the clock 

gating, the coding style must be changed in order to infer clock gating. Clock 

gating can also be very useful for reducing the area in some situations. Without 

clock gating, most of the flip-flops need a multiplexer to keep the current state. If 

flip-flops exist with enable inputs, compilers use those flip-flops when an input 

multiplexer would be needed. But these flip-flops are bigger in area compared to 

the flip-flops which do not have an enable input and also consume more power. 

Clock gating eliminates the need for the enable inputs or the state keeping 

multiplexers. The reduction in area becomes significant for the big register banks. 

There are two types of clock gaters: rising edge clock gater and falling edge clock 

gater. The rising edge clock gater prevents the rising of the clock signal for the 
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register bank with respect to a control signal. The falling edge clock gater prevents 

the falling of the clock signal for the register bank. If there are no integrated cells 

for clock gating, the compiler uses a latch and an AND gate or OR gate depending 

on the type of the clock gating. Integrated clock gater cells can also be designed. 

An example is shown in figure 19; „ce‟ signal controls the clock gating function, 

„se‟ signal disables the clock gating for the scan operations. 

2.8   Operand isolation 

Operand isolation is usually very important for the execute stage of the processors. 

The configuration of this stage causes many unnecessary switching activities on the 

inputs of the calculation blocks. In order to prevent these switching activities, the 

inputs of these blocks are masked with AND or OR gates so that there will be 

constant logic „0‟ or constant logic „1‟ on the inputs when they are not in use. 

Tools are usually capable of analyzing and performing operand isolation on 

specified blocks. It can be also manually inferred from the RTL code. For very 

complex processor designs it would be very hard to infer it from RTL code so a 

tool should be used for operand isolation. 

i z

ce se

clk

 

Figure 19 - Integrated clock gater latch 

2.9    Verilog-Mode 

In VHDL, usually packages are used in order to reduce the design time and effort 

[12], [13]. It makes design easy to read and simplifies the component instantiation 

significantly. In verilog-2001 there is no package, but some of the tools have very 

good extensions in order to compensate the absence of package. One of the well 

known tools is verilog-mode for Emacs [14]. 

The following example shows how useful it is. 

Input and outputs are written as usual but they are not included inside the module 

port list. Instead /*AUTOARG*/ description is used. With the compile AUTO 

option, the tool automatically fills the port list with the current input and outputs. 

module adder (/*AUTOARG*/); 

input [15:0] adder_as; 

input [15:0] adder_bs; 

input adder_ci; 

output [15:0] adder_o; 

output adder_co; 

<functional code> 

endmodule //adder 
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module zero_detect(/*AUTOARG*/); 

input [15:0] adder_o; 

output zero_o; 

<functional code> 

endmodule //zero_detect 

When these modules are instantiated in a higher level module, instead of the port 

list /*AUTOINST*/ description is used. In order to make the connections between 

sub-modules /*AUTOWIRE*/ description is used. There are other useful 

descriptions like /*AUTOREG*/, /*AUTORESET*/ but they must be carefully 

used. After the compilation, AUTO arguments are automatically filled by the 

editor. So, if the sub-modules have identical port names they will be automatically 

connected to each other on the hierarchically top module. Apart from that, the 

global signals like clock, reset will be automatically connected if they have the 

identical description.        

Before compilation: 

 

module TOP(/*AUTOARG*/); 

input [15:0] adder_as; 

input [15:0] adder_bs; 

input adder_ci; 

output adder_co; 

output zero_o; 

 

/*AUTOWIRE*/ 

 

adder u0 (/*AUTOINST*/); 

 

zero_detect u1 (*/AUTOINST*/); 

 

endmodule // TOP 

 

 

 

 

 

 

 

 

 

After compilation: 

module TOP(/*AUTOARG*/ 

  //outputs 

  adder_co,zero_o, 

 //inputs 

  adder_as,adder_bs,adder_ci 

 ); 

input [15:0] adder_as; 

input [15:0] adder_bs; 

input adder_ci; 

output adder_co; 

output zero_o; 

 

/*AUTOWIRE*/ 

wire [15:0] adder_o; //From u0 

 

adder u0 (/*AUTOINST*/ 

 //outputs 

.adder_o(adder_o[15:0]), 

 .adder_co(adder_co), 

 //inputs 

.adder_as(adder_as[15:0]), 

 .adder_bs(adder_bs[15:0]), 

 .adder_ci(adder_ci)); 

 

zero_detect u1 ( /*AUTOINST*/ 

            //outputs 

                            .zero_o(zero_o) 

            //inputs 

                            .adder_o(adder_o[15:0])); 

 

endmodule //TOP 
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2.10   Verification 

There are many complementary ways to verify a CPU. For example, Synopsys 

VCS simulator has a direct C interface: a test bench written in the C language can 

directly interfaced with RTL code or netlist. This is very useful because an 

instruction set simulator written in C can directly be interfaced with the CPU, 

which can significantly reduce the effort to write a testbench in a hardware 

description language. It will also reduce the debug effort. 

In this project, the intention was not to make a commercial processor, so a more 

conventional way is chosen of verifying the CPU. An existing instruction set 

simulator is used to generate a log file which includes the changes in the register 

file or in the flags with the corresponding program counter value through the 

program flow. Same log file with exact same structure is also generated by the 

testbench which is written in verilog. When the testbench is finished, the resulting 

log file is compared with the log file which is generated by the instruction set 

simulator. If there is no difference between these files, it indicates no errors in the 

implementation. The important point is to generate the events with the same order. 

In hardware, events might not happen in the same order as it happens in the 

instruction set simulator. 
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3    Design Flow  

This section explains the methodology followed to generate the self-tuning 

processor.  

3.1    Behavioral model and library view of the Razor flip-flop 

The behavioral model of the Razor flip-flop is prepared using the standard flip-

flop, multiplexer and latch UDPs [15]. It is very similar to the block diagram in the 

introduction section. Outputs of the master flip-flop and shadow latch UDPs are 

connected to a XOR gate to generate the error signal. A multiplexer on the main 

input connects the input of the master flip-flop to the main input or the output of 

the shadow latch depending on the control signal „restore‟. For the library view, the 

„restore‟ input and the „error‟ output are defined as blackbox. Only the flip-flop 

whose library model is used to generate the Razor flip-flop library view is allowed 

to be used in the synthesize step in order to avoid the problems with the pin 

connections.  

3.2    Design flow for error detection and correction system 

Today‟s traditional standard cell-based design flow usually consists of 3 main 

stages. The first stage is the definition of the hardware. The second stage is 

synthesis. The third stage is the layout. Since the layout stage does not have any 

significant effect on the self-tuning concept the focus on the design flow is on the 

synthesis stage.  

During the synthesis stage of the traditional design flow, the hardware description 

is mapped to real cells from libraries. This operation is done depending on the 

predefined timing constraints. Tools read the timing information from the library 

characterization files. Also, many important steps like insertion of the clock gating 

systems are performed. In addition many optimizations are performed in order to 

reduce the power consumption and increase the performance. The design flow for 

error detection and correction (EDCS) starts after these steps are performed.  

The design flow for EDCS is prepared using Synopsys Design Compiler. The main 

design idea of this flow is to make it almost independent from the RTL code. This 

will reduce the complexity of the design significantly. The design flow which 

introduces EDCS to the pipeline with Razor flip-flops resembles scan chain 

insertion. Scan chain insertion is a process where the flip-flops inside the design 

are replaced with special flip-flops with scan inputs by the tools in order to make 

the post-silicon validation very fast and accurate.   

The design flow consists of these following steps: 

1 – Define the libraries. 

2 – Identify the critical flip-flops for a given lowest voltage. 



23 
 

3 – Replace the critical flip-flops with Razor flip-flops. 

4 – Complete the connections for the Razor flip-flops. 

5 – Make the necessary changes on the clock-gating system. 

6 – Mask the necessary signals. 

7 – Fix the short path (hold time) violations. 

3.2.1    Define the libraries 

In order to proceed through the design flow, all the necessary worst case and best 

case library files must be defined. After that, operating conditions are defined in 

order to indicate which libraries are going to be used for max and min related 

operations. The worst case libraries are used to identify the critical flip-flops for a 

given lowest voltage and the best case libraries are used to fix the hold time 

violations. Usually library corners exist for a limited number of voltage, process 

and temperature levels since generation of library corners is a very time-consuming 

process and a few corners are enough for traditional design flow. For the self-

tuning techniques, more library corners might be needed. If only limited numbers 

of library corners are available, tools can be used to generate an interpolated library 

corner with the information from the existing libraries. It will be a very fast 

process, but the timing information will not be very accurate; hence it can be used 

to estimate some results.  

In this project, the scaling commands of the Synopsys Design Compiler were used 

[16]. Since the exact library corners for the intended lowest voltage and hold time 

fix voltage was were available, library scaling capability of the Design Compiler is 

used for both of them.  

3.2.2    Identify the critical flip-flops for a given lowest voltage 

First of all a voltage domain must be generated in order to change the supply 

voltage and use the library scaling groups for timing calculations. After the voltage 

domain is generated, VDD and GND voltages can be assigned to the power nets. 

Design compiler automatically updates the timing information if the voltage is 

changed on the power nets. For self-tuning technique, the most important timing is 

still the worst case timing since the error detection system should not fail even 

under the worst case combinations of process, temperature and voltage [1]. 

Therefore, worst case library is scaled to identify the critical flip-flops.  

On the following page, a portion of the static timing report is shown for the 

pipeline after the voltage is set to 1.46 V. The circuit was synthesized for 1.6 V. 

This information is dynamically used to identify the critical flip-flops. Endpoints 

starting with „u1‟ are the flip-flops on the instruction decode stage, endpoints 

starting with „u2‟ are the flip-flops on the execute stage.  
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Endpoint                         Path Delay     Path Required     Slack 

------------------------------------------------------------------------ 

u2_u0_alu_out_reg_28_/d (dfcrq1l7) 

                                   13.00 r            9.65        -3.35 

u2_u0_alu_out_reg_29_/d (dfcrq1l7) 

                                   12.96 r            9.63        -3.32 

u2_u0_alu_out_reg_30_/d (dfcrq1l7) 

                                   12.96 r            9.63        -3.32 

u2_u0_ALU_C_out_reg/d (dfcrq1l7) 

                                   12.91 r            9.60        -3.31 

u2_u0_alu_out_reg_26_/d (dfcrq1l7) 

                                   12.89 r            9.58        -3.31 

u2_u0_alu_out_reg_19_/d (dfcrq1l7) 

                                   12.90 r            9.62        -3.28 

u2_u0_alu_out_reg_16_/d (dfcrq1l7) 

                                   12.89 r            9.61        -3.28 

u2_u0_alu_out_reg_18_/d (dfcrq1l7) 

                                   12.89 r            9.61        -3.28 

u2_u0_ALU_V_out_reg/d (dfcrq1l7) 

                                   12.74 r            9.46        -3.28 

u2_u0_alu_out_reg_20_/d (dfcrq1l7) 

                                   12.95 f            9.68        -3.27 

u2_u0_alu_out_reg_22_/d (dfcrq1l7) 

                                   12.90 f            9.64        -3.26 

u2_u0_alu_out_reg_24_/d (dfcrq1l7) 

                                   12.90 f            9.64        -3.26 

u2_u0_alu_out_reg_14_/d (dfcrq1l7) 

                                   12.80 r            9.54        -3.26 

u2_u0_alu_out_reg_17_/d (dfcrq1l7) 

                                   12.90 f            9.64        -3.26 

u2_u0_alu_out_reg_15_/d (dfcrq1l7) 

                                   12.83 f            9.57        -3.26 

u2_u0_alu_out_reg_25_/d (dfcrq1l7) 

                                   12.84 r            9.58        -3.25 

u2_u0_alu_out_reg_23_/d (dfcrq1l7) 

                                   12.88 f            9.64        -3.24 

u2_u0_alu_out_reg_27_/d (dfcrq1l7) 

                                   12.88 f            9.64        -3.24 

u2_u0_alu_out_reg_31_/d (dfcrq1l7) 

                                   12.87 f            9.64        -3.23 

u2_u0_alu_out_reg_9_/d (dfcrq1l7) 

                                   12.83 r            9.61        -3.22 

u2_u0_ALU_N_out_reg/d (dfcrq1l7) 

                                   12.80 r            9.58        -3.22 

u2_u0_alu_out_reg_8_/d (dfcrq1l7) 

                                   12.76 r            9.54        -3.22 

u1/cond_reg_3_/d (dfcrq1l7)        12.72 f            9.52        -3.21 

u2_u0_alu_out_reg_0_/d (dfcrq1l7) 

                                   12.70 f            9.49        -3.21 

u2_u0_alu_out_reg_13_/d (dfcrq1l7) 

                                   12.82 r            9.62        -3.20 

u1/cond_reg_0_/d (dfcrq1l7)        12.72 f            9.52        -3.20 

u1/cond_reg_1_/d (dfcrq1l7)        12.72 f            9.52        -3.20 

u1/cond_reg_2_/d (dfcrq1l7)        12.72 f            9.52        -3.20 

u2_u0_alu_out_reg_3_/d (dfcrq1l7) 

                                   12.65 r            9.45        -3.20 

u2_u0_alu_out_reg_21_/d (dfcrq1l7) 

                                   12.83 f            9.64        -3.19 

u2_u0_alu_out_reg_4_/d (dfcrq1l7) 

                                   12.64 r            9.45        -3.19 

u2_u0_alu_out_reg_11_/d (dfcrq1l7) 

                                   12.80 r            9.61        -3.19 

u2_u0_alu_out_reg_7_/d (dfcrq1l7) 

                                   12.81 f            9.62        -3.18 

u2_u0_alu_out_reg_6_/d (dfcrq1l7) 

                                   12.79 f            9.61        -3.18 

u2_u0_alu_out_reg_10_/d (dfcrq1l7) 

                                   12.76 r            9.58        -3.18 

u1/op1rselect_reg_2_/d (dfcrq1l7) 

                                   12.60 r            9.43        -3.17 

u1/op1rselect_reg_0_/d (dfcrq1l7) 

                                   12.60 r            9.43        -3.17 
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3.2.3    Replace the critical flip-flops with special flip-flops 

After the voltage is set to an intended lowest value, the flip-flops which are located 

at the end of a timing path with a negative slack are critical and must be replaced 

with Razor flip-flops. The „change link‟ command is used to replace a cell. If the 

original flip-flop and the replaced flip-flop have identical pin names, nets 

connected to the original flip-flop‟s pins will be automatically connected to the 

pins of the replaced flip-flop.  

3.2.4    Complete the connections for Razor flip-flops 

The Razor flip-flops have an extra output and input. These are error and restore. 

Error signals are connected together to a OR-tree. The final error signal is 

connected to the restore input of the all Razor flip-flops. Since the replaced flip-

flops are kept in a collection on the replacement step, this step is very easy.  

The input-size of the OR-tree which collects the error signals is determined with 

finding the critical flip-flops explained in the previous sections. After that, the OR-

tree is synthesized before the pipeline and it is directly used as an instance with 

„don‟t_touch‟ attribute. This attribute prevents the compiler to make changes on an 

instance during synthesis or optimizations. This instance is synthesized before the 

pipeline since the critical flip-flops are not known before the actual pipeline is 

synthesized. 

3.2.5    Make the necessary changes on the clock-gating system  

During the error recovery cycle, only Razor flip-flops must receive the clock signal 

[1]. This could be achieved by clock gating. The circuits usually have clock gating 

structures before the EDCS system is introduced, so the clock gating scheme for 

the error recovery system must modify the existing clock gating structure of the 

circuit.   

The clock-gated register banks which only contain ordinary flip-flops needs 

masking for the clock-gating control signal. The control signal and the complement 

of the error signal are connected to an AND gate so that the control signal is 

masked when the error signal is high (see figure 20).  
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Figure 20 - Clock gating for ordinary flip-flops 
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Clock gating of those register banks which only contain Razor flip-flops must be 

disabled on error events. This could be achieved in two ways as shown in figure 

21. The first approach uses the clock enable signal of the clock gater latch. The 

error signal can be connected together with the control signal to an OR gate so that 

the control enable input of the clock gater cell will be high independently of the 

control signal on error events. The second approach uses the scan enable input of 

the clock gater latch. Since the scan enable input is used to disable the clock gating 

system, this input can be used for this purpose. If there is no scan system, logic 0 is 

connected to this input. In this case, error signal can be directly connected to scan 

enable input. If a scan enable signal exists already, it and the error signal can be 

connected to an OR gate so that both of them can disable the clock gating 

whenever necessary. 

If a register bank contains both ordinary flip-flops and Razor flip-flops, they must 

be separated from each other. The clock gating latch is cloned and the two steps 

which are described before are applied to this two latches. 
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Figure 21 - Clock gating for Razor flip-flops 

There could be flip-flops which do not have any clock gating. The Razor flip-flops 

without clock gaters do not need any modification, but the ordinary flip-flops 

without clock gaters need clock gating for the recovery cycle. An integrated clock 

gater is generated for these flip-flops. The complement of the error signal is used as 

the control signal for this clock gater latch. 
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3.2.6    Mask the necessary signals 

This step depends on the pipeline architecture and the type of the EDCS. In this 

pipeline structure, the error signal must be connected to the stall system, and it 

must mask the memory-write initiation signal. These steps can be done with 

different methods. First method can be used if the verilog module of the circuit 

which collects the error signals already exists; the module can be directly 

connected in RTL code since output of this circuit is independent from the Razor 

flip-flops. For the second method, the masking function can be written in RTL and 

the signal for the masking can be set as „dont_touch‟ before the circuit is 

synthesized. After the synthesize step, a newly generated module or cell can easily 

be connected to this port. For the last method, the masking connections can be done 

totally independent from the RTL code. This is achieved by generating the gate to 

implement the function and making the necessary connections using the shell of the 

Synopsys Design Compiler. 

After the connections had been made, some flip-flops in state machines of the 

instruction fetch unit became critical for the lowest intended voltage. These critical 

paths go through the error signal. The error signal becomes available after the error 

detection window and the delay of the OR-tree also added to this delay. Since these 

flip-flops are controlling the AHB protocol, it would be hard to make them 

speculative. So, these paths are over-constrained and the circuit is synthesized 

again until the state machine flip-flops go out of the critical region. The cost of 

over-constraining is very low since the state machine is not big.   

3.2.7    Fix the short path (hold time) violations 

In-situ error detection systems rely on the changes of the signal in the error 

detection window [1]. This window usually lies between the rising and the falling 

edge of the clock. The timing paths which have a delay shorter than this error 

detection window can also cause changes on the signal during the error detection 

phase. This will cause false errors. If such a false error is corrected in the 

sequential cell, it can cause data corruption. If only error detection exist in the 

sequential cell, a false error can cause a deadlock of continuous error detection. An 

example short path is shown in figure 22. A false error example due to a glitch 

caused by a short path is shown in figure 23.  In order to avoid these problems, 

buffer cells must be inserted to the short paths ending at the special flip-flops to 

slow them down [1]. This step is relatively easy because synthesis tools have 

commands to fix the hold time violations.  

Since the replaced flip-flop list is available in a collection during the flow, a clock 

uncertainty command is used to set the minimum acceptable delay ending at the 

Razor flip-flops which are the duration of the error detection window. If there are 

timing paths which is shorter than the uncertainty limit, tool inserts buffer cells on 

those paths during the hold time fixing process. The voltage for hold time fixing is 

set to 1.65 V. This voltage level is the safe voltage limit for the maximum 

frequency including all different safety factors. This is essential in order to be able 

to turn the error detection system on or off or on the fly and work at the safe 
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voltage level.  As shown in figure 24, when the EDCS is turned on, supply voltage 

will start to drop from the highest safety limit voltage and the hold time 

requirements for the error detection system will start directly. Similar event 

happens when EDCS is turned off. The EDCS system cannot be turned off until the 

supply voltage reaches to the safety limit. As a result, the hold time requirements 

for EDCS will be valid until the voltage reaches to safety limit. The hold time 

fixing process may be performed for a lower voltage level with excluding some of 

the safety margin, for a possible gain in buffer count. In that case, the error 

detection system must be turned on continuously since there is no safe way to 

increase the supply voltage to the safe limit or decrease it from the safe limit while 

the EDCS system is turned on and off.  
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Figure 23 - Timing diagram of a false error 
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During hold time violation fixing step, some of the non-critical flip-flops may fall 

into the critical region for the low voltage limit when the fix is complete. This 

usually happens when the hold time is directly fixed from the source registers. In a 

processor, this is likely to happen at the instruction decode stage, since instruction 

register is used to decode many different signals. As a result, if the tool inserts 

buffers directly at the output of the instruction register, it might affect many flip-

flops at the end of this stage. In order to avoid this situation, setup time uncertainty 

can be defined for the noncritical flip-flops at this stage. This will force the 

compiler to fix the hold time violations differently. If this constraint precludes the 

hold time fixing for some paths, the constraint must be removed and flip-flop must 

be replaced with Razor flip-flop. There are some buffer cells which are designed to 

fix the hold time violations efficiently. The reason is that they are relatively slow 

compared to other buffers or inverters: instead of a chain of fast buffers or 

inverters, a single slow buffer cell can be inserted. As a result the power overhead 

will be low. A special command can be used to prioritize these cells in hold time 

fixing process. But the usage of this special buffer cells will be limited due to the 

maximum delay constraints on the path.  
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Figure 24 – The important region for turning the error detection system on or off 

3.3    Complete architecture after the design flow 

After all the steps are completed, the new structure of the pipeline is shown in 

figure 25. This structure is very similar to the on cycle recovery pipeline approach 

of the original Razor approach [17]. Timing investigations showed that critical flip-

flops are on the ID and EXE stage. But the memory is not included. Memory read 

may become critical in a real implementation, and memory reads can also benefit 

from the Razor approach. An active-low transparent latch is needed after the OR-

tree of the error signals in order to keep the restore signal high until the falling edge 

of the recovery cycle. Pipeline flow on an example error event is shown in figure 

26; the timing error occurs in the EXE stage. 
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Figure 25 - Pipeline with error detection and correction system 

 

Figure 26 - Pipeline flow on an error event 
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4    Evaluations and Results  

The pipeline is synthesized for the 1.6 V worst case library corner. The maximum 

frequency is 100 MHz. ATMEL 150 nm low leakage library is used for synthesis. 

The self-tuning technique is evaluated for throughput gain, for power/energy 

reduction, and also for  the overhead it incurs. 

4.1    Quality of Results (QoR) 

 

Timing Path Group 'REGIN' 

Levels of Logic 3.00 

Critical Path Length 1.79 

Critical Path Slack  4.88 

Critical Path Clk Period 10.00 

Total Negative Slack 0.00 

No. of Violating Paths 0.00 

Worst Hold Violation 0.00 

Total Hold Violation 0.00 

No. of Hold Violations 0.00 

Timing Path Group 'clk' 

Levels of Logic 28.00 

Critical Path Length 9.75 

Critical Path Slack 0.00 

Critical Path Clk Period 10.00 

Total Negative Slack 0.00 

No. of Violating Paths         0.00 

Worst Hold Violation 0.00 

Total Hold Violation 0.00 

No. of Hold Violations 0.00 

Cell Count 

Hierarchical Cell Count 31 

Hierarchical Port Count 464 

Leaf Cell Count 6580 

Buf/Inv Cell Count 1021 

CT Buf/Inv Cell Count 0 

Area 

Combinational Area 17567.0 

Noncombinational Area 6651.0 

Net Area 0.0 

Cell Area 24218.0 

Design Area 24218.0 

Design Rules 

Total Number of Nets 6721 

Nets With Violations 0 

Table 1 - Quality of Results 
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4.2    Applications 

Different types of basic applications are written in AVR32 assembly language in 

order to evaluate different timing paths.  

4.2.1    Recursive Fibonacci 

This application calculates the Fibonacci numbers recursively from 0 to 

2971215073 and stores the results in the memory. This application is mainly based 

on the addition instruction. 

4.2.2    Bubble Sort 

This is a basic sorting application. 150 random numbers both positive and negative 

are generated from the Matlab. Application reads these numbers from the memory 

and swaps them in order to sort the list from small to large. This application is 

mainly based on compare instruction. The correctness of the application is verified 

by comparing the results with MATLAB.  

4.2.3    Filtering of a nosiy signal 

This is a basic DSP application. A noisy sinusoidal input signal is stored in the 

memory. The application filters this noisy signal and generates a smooth 100 Hz 

signal. The filter is an 8
th
 order symmetric FIR filter. The filtering operation is done 

with fixed point arithmetic. The filter coefficients are stored as halfwords, so 3 

registers are enough to store the 5 coefficients. This application heavily uses the 

arithmetic shift right, addition and halfword multiplication instructions. The 

correctness of the application is verified by comparing the results with MATLAB.  

4.2.4    Sum of absolute differences 

This application is a basic image processing algorithm. An occurrence of a block is 

searched in an array. This application heavily uses subtraction and add absolute 

value instructions. Verification is very easy since the result of the program just 

shows the start address of the block found.   

4.3    Overhead investigation 

Self-tuning techniques have some overheads due to the special sequential cells, 

short path fixing, and some auxiliary circuits. 

4.3.1   The effect of the constraints on Razor approach 

The constraints used for synthesize operation are important for the effectiveness of 

the Razor approach. In order for the Razor approach to be effective, the circuit 

must be synthesized for a very strict timing constraint. If the circuit were 

synthesized for a relaxed timing constraint, it would instead be possible to 

synthesize it for a lower voltage. That would cause some extra capacitance, but the 

supply voltage could be lowered. In this case, there is no reason to apply Razor 

approach, since synthesizing circuit for a lower voltage corner will be more 
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effective compared to the overhead of the Razor approach. In addition, if the Razor 

approach is applied to a circuit which has a very relaxed timing constraint 

compared to the library corner, the number of critical flip-flops will be less 

compared to aggressively clocked approach, but the number of buffers to fix the 

hold violations is usually high in this case. Here, the pipeline is synthesized for 100 

MHz which is almost the limit for the 1.6 V worst case library corner.  

4.3.2    Buffer amount, replaced flip-flops and the overhead 

On my early experiments with adder circuits showed me that the compiler was 

unable to fix the hold time violations higher than 33-34% of the clock period. It 

was almost the same as for the pipeline. This is a natural limitation for the 

approach described here. The relation between the worst case library corner and the 

best case library corner determines the possible maximum error detection window. 

After some stage, it is not possible to fix the short path violations without violating 

any setup time.  

The error detection window which has duration of 33% of the clock period can 

detect the errors on worst case library conditions down to 1.46 V for 100 MHz 

operating frequency. Since the EDCS must not fail under the worst case conditions, 

it is not safe to reduce the voltage below 1.46 V. If the supply margin is also 

considered, the minimum will be higher than this value. In contrast, minimum 

voltage level for the conventional design is 1.65 V. Self-tuning approach can not 

directly remove the supply margin, but it can allow compensating for it at the 

expense of bigger error detection window. It must be also considered that supply 

margin might be smaller when the voltage is reduced. Bigger error detection 

window means more hold time buffers also.  

When the supply voltage was reduced to 1.46 V on worst case library conditions, 

63 flip-flops out of 855 were critical and replaced with Razor flip-flops. The total 

flip-flop count includes the register file also. So the Razor flip-flop count might not 

be very low since the architecture of the pipeline does not allow the timing paths 

ending at the register file flip-flops to be critical. 

The power overhead due to the inserted buffers for different applications is shown 

in table 2. For the maximum available error detection window, power consumption 

increases on average by 6.7%.  

Buffer and area increase in connection with the error detection window duration 

are shown in table 3. For the maximum possible error detection window, 709 

buffers are inserted and the area increases by 4.6%.  

Because there was no dynamic OR-gate structure available, the OR-tree for 

collection of the Razor flip-flop error signals is generated with static gates. This 

structure was synthesized to be as fast as possible. The area of the resulting circuit 

was 545 gates. That means additional increase in area by 2.1% after the buffer 

insertion. Dynamic OR-gate structure would be much suitable for the collection of 
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error signals for one cycle recovery approach since it would be faster and smaller. 

A structure for dynamic OR-gate is proposed on the original Razor research [1]. 

It is hard to estimate the overhead of the Razor flip-flops since there was no actual 

Razor flip-flop cell. It can be estimated that it will cause a power overhead close to 

the buffer insertion. It must be noted that these overheads are calculated just for the 

pipeline. The effect of memory is not included. So, if the memory is included in the 

calculations the overhead due to the EDCS system will decrease. On the other 

hand, if many different modules inside a chip use this self-tuning technique, power 

overhead may become high. Still, the pipeline is not very detailed. If there are more 

non-critical parts inside the pipeline, the overhead of the buffer and the Razor flip-

flops will be reduced. 

1.65 V-100 MHz 

 typical corner 
Error detection window 

applications power (mW) 2.6 ns 2.7 ns 2.8 ns 2.9 ns 3 ns 3.1 ns 3.2 ns 3.3 ns 

REC. FIB. 5.826 5.965 6.008 6.039 6.054 6.119 6.137 6.222 6.308 

BSORT 5.474 5.576 5.61 5.64 5.656 5.689 5.705 5.753 5.854 

FILTER 9.294 9.421 9.459 9.517 9.548 9.665 9.779 9.858 9.932 

SAD 7.472 7.650 7.706 7.748 7.773 7.791 7.813 7.888 7.941 

Table 2 - Power overhead of the buffers 

Error detection window 

parameters default 2.6 ns 2.7 ns 2.8 ns 2.9 ns 3 ns 3.1 ns 3.2 ns 3.3 ns 

Area 

(gate count) 
24218 24479 24569 24695 24754 24943 25088 25174 25349 

BUF/INV count 1021 1183 1232 1299 1327 1466 1554 1617 1730 

Table 3 - Area overhead of the buffers 

4.4    Simulations for typical library conditions 

Investigations about the error detection window showed that for 3.3 ns error 

detection window, the supply voltage cannot go below 1.46 V for worst case 

library conditions. It should be noted that supply margin is not considered. This 

value might be a little bit pessimistic since only 1.6 V and 1.2 V worst case library 

corners were available and these were are used for scaling. 

This lowest voltage requirement for the worst case library corner will not prevent 

running simulations on typical library conditions since delays are much faster and 

the extra delay on the timing paths will not exceed the 3.3 ns error detection 

window. In order to understand the potential energy savings from the self-tuning 

technique, some simulations have been run in typical library conditions. There 

were two typical library corners at 1.6 V and 1.3 V. These two libraries are used 

for scaling in Synopsys Prime Time in order to generate the timing information for 

the voltage steps of 0.01 V.  

After every simulation, the correctness of the program is always validated by 

comparing the result with the instruction set simulator in order to make sure that, 

the EDCS has not caused any corruption on the program flow during the execution. 
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Instruction and data memory are generated on the testbench as a behavioral model. 

The testbench mimics a basic AMBA slave response.  

Simulations are run on Synopsys VCS. The setup time check for the Razor flip-

flops is disabled during the simulations because on an event of a setup violation of 

the main flip-flop, „X‟ value is propagated to its output. As a result it affects the 

comparator XOR gate and „X‟ is propagated through the design. In order to avoid 

this situation, an average setup time margin is added to the voltage or frequency 

after the simulations. 

4.4.1    Short path fixing and the error rate  

Before the short path fixing step, there are some short paths and long paths ending 

at Razor flip-flops. After the buffer cells are inserted in order to fix the short path 

violations of the shadow latch, short paths ending at the Razor flip-flops are longer. 

This has two consequences. The first one is that first-point-of-failure voltage for 

different applications approach to each other. The second one is that the error rate 

increases dramatically after the first point of failure. Previous research about the 

adder circuits also points out this behavior [18]. This might be advantageous in a 

real design, since the effective supply voltage will not be very different if different 

timing paths are triggered during the program execution. Short paths ending at 

Razor flip-flops are fixed to the maximum possible error-detection window of 

3.3ns before the simulations. 

4.4.2    Power and energy savings  

The potential power and energy savings are first investigated at 100 MHz for 

typical library conditions. Applications are simulated for different voltage levels. 

Error rates are logged. After the simulations, power consumption is calculated 

using Synopsys PrimeTime PX. 

Supply voltage and energy relation of the different applications near to the critical 

voltage levels are shown on figure 27, 28, 29 and 30 for 100 MHz operating 

frequency. If the supply voltage is further decreased after the first point of failure, 

there could still be small amount of energy savings, but at the expense of increase 

in the total execution time. Error rate is increasing dramatically after the first point 

of failure since these errors are data dependent. After some point recovery energy 

outweighs the energy savings and the total energy starts to increase. The region 

where the energy is saved with the expense of errors resembles asynchronous 

processor behavior.  

Razor flip-flops consume extra energy during the recovery events, but this is not 

modeled in these simulations. Thus the results may be a little bit optimistic for the 

region where the energy is reduced with errors. But, because the pipeline recovers 

in 1 cycle, the extra energy for the recovery events will be relatively small 

compared to the instruction-replay approaches.  

Potential energy savings without significant or any throughput loss are summarized 

on table 4 for different applications. For the energy savings at equal throughput, it 
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is possible to say that power consumption is also reduced by the same amount. It 

should be noted again that the worst case library analysis shows that, the error 

detection window only allows reducing the supply voltage down to 1.46 V for the 

worst case combinations of process variations and temperature.  

Potential additional energy savings while working with errors are summarized on 

table 5.  Decrease in execution time is denoted for the minimum energy points on 

the corresponding figures (see figure 27, 28, 29, 30). 

Among the four different applications, sum of absolute differences application has 

the highest first point of failure voltage. Only this application uses the ADDABS 

instruction. When this instruction is executed, some of the control signals are set 

depending on the operand value, and as a result they come from an additional 

forwarding multiplexer; this might cause this instruction to exercise a very long 

critical path. First point of failure voltage is close to each other for different 

applications due to the buffer insertion step. If all of the margins are considered 26-

28% amount of energy can be saved on typical library conditions without 

significant throughput loss. 

 

 

APPLICATIONS 

Freq:100 MHz 

Operating voltage 

without or negligible 

error rate 

Energy savings 

compared to the 

worst case process 

and temperature 

margin (1.6 V) 

Energy savings 

compared to the 

worst case margin 

including supply 

margin  (1.65 V) 

REC. FIB 1.4 23.5% 28% 

BSORT 1.41 22.4% 27% 

FILTER 1.4 23.5% 28% 

SAD 1.42 21.3% 26% 

Table 4 - Energy savings at equal throughput freq: 100 MHz 

 

 

APPLICATIONS 

Freq:100 MHz 

Extra energy savings 

with errors 

REC. FIB 2% 

BSORT 4.16% 

FILTER 4.8% 

SAD 4.6% 

Table 5 - Extra energy savings after the first point of failure freq: 100 MHz 
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Figure 27 - Critical region operation for the filter application for 100 MHz operating frequency 

  

 

Figure 28 - Critical region operation for the BSORT application for 100 MHz operating frequency 
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Figure 29 - Critical region operation for the Recursive Fibonacci application for 100 MHz operating 
frequency 

 

Figure 30 - Critical region operation for the SAD application for 100 MHz operating frequency 
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4.4.3    Power and energy savings on lower frequencies 

On traditional DVFS systems, frequency is reduced in order to reduce the supply 

voltage and save energy at the expense of longer execution time. Power and energy 

savings for lower frequencies was also investigated. Because the lowest typical 

corner was 1.3 V, simulations were run for 95 MHz and partly for 90 MHz. Tools 

cannot scale if the voltage is out of the maximum and minimum voltage range. 

First, the lowest supply voltage is determined for the intended frequency, after that 

the potential power or energy savings are compared to this voltage level. Available 

results are shown in table 6 and 7 for 95 MHz operating frequency and in table 8 

for 90 MHz operating frequency. For 90 MHz operating frequency only one of the 

lowest voltages for equal throughput can be found because of the limitations of the 

library corners.  

Energy savings with self-tuning techniques tend to increase when the frequency is 

reduced. This is mainly caused by the different scaling rates of the worst case and 

typical case library. When the voltage is reduced by a small step, increase in the 

delay is different between the worst case library conditions and typical library 

conditions. As a result, the gap between delays is starting to increase when the 

frequency is lowered. It should not be forgotten that with a given error detection 

window, the possible minimum voltage range is not decreasing as the typical 

library conditions since it is determined on the worst case library corner. For 

example, when the frequency is reduced to 90 MHz, the supply voltage can be 

lowered to 1.55 V on traditional DVS and for the self-tuning approach 3.3 ns error 

detection window corresponds to 1.41 V. This means the gap for the error detection 

window and the first point of failure is also increasing. 

 

APPLICATIONS 

Freq: 95MHz 

Operating voltage 

without or negligible 

error rate 

Energy savings 

compared to the 

worst case process 

and temperature 

margin (1.58 V) 

Energy savings 

compared to the 

worst case margin 

including supply 

margin  (1.63 V) 

REC. FIB 1.38 23.8% 28.4% 

BSORT 1.38 23.8% 28.4% 

FILTER 1.37 24.9% 29.4% 

SAD 1.39 22.7% 27.3% 

Table 6 - Energy savings at equal throughput freq: 95 MHz 

 

 

APPLICATIONS 

Freq: 95 MHz 

Extra energy savings 

with errors 

Decrease in 

execution time 

REC. FIB 1.6% 9.9% 

BSORT 4.05% 10.7% 

FILTER 4.7% 10.3% 

SAD 4.4% 6.9% 

Table 7 - Extra energy savings after the first point of failure freq: 95 MHz 
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APPLICATIONS 

Freq:90MHZ 

Operating voltage 

without or negligible 

error rate 

Energy savings 

compared to the 

worst case process 

and temperature 

margin (1.55 V) 

REC. FIB =< 1.35 => 24.2% 

BSORT =< 1.35 => 24.2% 

FILTER =< 1.35 => 24.2% 

SAD 1.35 24.2% 

Table 8 - Power savings at equal throughput freq: 90 MHz 

 

4.4.4    Clock frequency and throughput 

One of the other advantages of the self-tuning technique is that the clock frequency 

can be increased further from the target clock frequency for which the circuit is 

synthesized. As a result throughput will increase and the total execution time will 

decrease. While the frequency is increased, errors will start to occur at some point 

and they will increase if the frequency is kept on increasing. Up to a point, the 

execution time will still continue to decrease with errors, but at some point error 

rate will start to affect the throughput significantly and the execution time will start 

to increase dramatically. 

Maximum achievable frequency is limited by the error detection window. The 

analyze step for the frequency is very similar to the voltage scaling. But this time 

instead of analyzing the timing for the lowest voltage, the timing is analyzed by 

changing the clock frequency at a constant voltage.  The analysis showed that with 

16 additional flip-flops the clock period can be decreased to 7.25 ns for the worst 

case library corner at 1.6 V, but timing paths from error signal to the instruction 

fetch needs further over constraints and it requires some additional buffers.  

The four different applications were simulated at 1.6 V typical library corner. The 

average reduction in execution time is around 25.9%. Throughput gain starts to 

decrease if the error rate comes around 1%, as a result maximum decrease in 

execution time for all of the applications are almost same. Decreases on the 

execution time for four different applications are shown on figure 31, 32, 33 and 34 

at 1.6 V operating voltage.  

In addition the throughput gain was also investigated for two lower voltages 1.55 V 

and 1.5 V. The relative performance gain is show on figure 33. The throughput 

gain is calculated by first finding the traditional limit for the supply voltage. For 

example, in order to run at 1.55 V, frequency must be reduced to 90 MHz and in 

order to run at 1.5 V frequency must be reduced to 80 MHz. The relative 

performance gain denotes the reduction in execution time depending on the 

execution time calculated by the limit frequency for the corresponding voltage. The 

simulations showed that even with 1.5 V, it is possible to run faster than the 

conventional case of 1.6 V supply voltage and 100 MHz clock frequency. 
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However, the error detection window requirement increases for the high relative 

performance gain. For example, at 1.55 V in order to reach 26.5% relative 

performance gain, the error detection window must have duration of 3 ns and for 

the 1.5 V 3.55 ns error detection window is needed in order to reach 28.4% relative 

performance gain. This kind of error detection scheme may not be suitable for one 

cycle recovery approach; but the latch based designs with instruction replay are 

much suitable for throughput gain since the critical path for the error signal is much 

shorter [6], [7]. Increase in relative performance for lower supply voltages is 

caused as the same reason for the increased power savings for lower frequencies.  

 

 

 

 

Figure 31 - Decrease in execution time for the SAD application at 1.6 V 
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Figure 32 - Decrease in execution time for the BSORT application at 1.6 V 

 

Figure 33 - Decrease in execution time for the filter application at 1.6 V 
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Figure 34 - Decrease in execution time for the Rec. Fibonacci application at 1.6 V 

 

Figure 35 - Relative performance increase for different supply voltages 
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5    Limitations 

Increase in power/energy savings on lower frequencies might not be that accurate 

since the scaling functions of the tools are used. The gap between first point of 

failure and the worst case margin for error detection window is also increasing 

while the frequency is reduced. The throughput gain is also affected similarly. 

The memory is not physically included in the simulations. Some extra Razor flip-

flops may be needed for the memory read operations.  

One-cycle-recovery approach with Razor flip-flops in fact needs an extra buffer 

stage before WB in order to resolve the metastability of the error signal. Due to the 

risk of metastable error signal propagating to the pipeline logic, the pipeline must 

be flushed in case of the error signal becomes metastable [1]. This requires 

instruction replay mechanisms. The only advantage of the one cycle recovery 

approach is that, it has a low penalty for the recovery events. This might potentially 

increase the gains on the region where the processor works with errors, but in the 

simulations the error rate was increasing catastrophically after the first point of 

failure so it is not possible to conclude this from the simulations.  

The recovery energy of the Razor flip-flop is not included in the simulations.   

Self-tuning processors are not deterministic in the error detection and correction 

mode; hence, it is hard to employ this kind of processors in real time systems. 

One of the other interesting points with self-tuning technique is determining the 

lowest voltage limit for the error detection window. The limit for the process and 

temperature variations can be calculated from the library characterizations. This 

limit voltage is smaller compared to the voltage limit which the circuit is 

synthesized for. As a result, local supply droops might be smaller in amplitude 

when the supply voltage is reduced. This will require a smaller supply margin for 

the lowest voltage limit; hence, it will lead to increase in possible power or energy 

savings. 

 

 

 

 

 

 

 

 



46 
 

6    Conclusions  

Self-tuning techniques can lead to significant energy savings; but the overhead of 

the self-tuning approach must also be considered. Reduction in energy might be a 

little bit higher when the frequency is reduced compared to the traditional DVFS 

approach. Apart from the energy reduction, operating frequency can also be 

increased. This allows doing more processing with same amount of energy.  

Apart from the overhead of the buffer cells and special sequential cells, duty cycle 

of the clock must be controlled which might require a more complex clock 

generator. The power regulator must also have a high precision for the voltage 

adjustment in order to maximize the possible energy savings from the self-tuning 

techniques.  

Datapath metastability is a big practical problem on the implementation of the 

Razor flip-flop. Recent approaches solve this problem with a different kind of 

special sequential cell [6], [7]. They have some trade-offs but they are more 

practical to use. 

Designing a self-tuning processor is not very easy and verification is harder 

compared to the conventional design approach. Still it is a workable approach for 

the variability problem. As device geometries continue to shrink, this kind of 

speculative adaptive techniques may become necessary for efficient designs. 
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8    Appendix 

8.1    Abbreviations 

AHB AMBA High-performance Bus 

ALU Arithmetic Logic Unit 

CPU Central Processing Unit 

disp Displacement 

DSP Digital Signal Processing 

DVFS Dynamic Voltage Frequency Scaling 

EDCS Error Detection and Correction System 

EXE Execute 

FIFO First In First Out 

FIR Finite Impulse Response 

FSM Finite State Machine 

HDL Hardware Description Language 

ID Instruction Decode 

IF Instruction Fetch 

LR Link Register 

MUL Multiplier 

PC Program Counter 

REG Register 

RTL Register Transfer Level 

SE Sign Extension 

UDP User Defined Primitive 

WB Write Back 

Table 9 – Abbreviations 
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8.2    Top level module of the designed pipeline  

Memory interface is inside the u2 (Execute) instance. This Verilog definition is 

compatible to be compiled with EMACS Verilog mode. 

module AVR32_subset(/*AUTOARG*/ 
  // Outputs 
  haddr_instr_out, htrans_instr_out, htrans_dmem_out, hwdata, haddr_dmem, 
  hwrite, 
  // Inputs 
  clk, reset, hread_instr, hrdata_dmem 
  ); //top_level cpu module 
  input clk,reset; 
  input [31:0] hread_instr; 
  input [31:0] hrdata_dmem; 
  output [31:0] haddr_instr_out; 
  output [1:0] htrans_instr_out; 
  output [1:0] htrans_dmem_out; 
  output [31:0] hwdata,haddr_dmem; 
  output hwrite; 
 
  /*AUTOWIRE*/ 
 
  wire [70:0] error_in; 
  wire error_out; 
  wire clk_gate; 
 
  instruction_fetch u0 (/*AUTOINST*/); 
  instruction_decode u1 (/*AUTOINST*/); 
  execute u2 (/*AUTOINST*/); 
  register_file u3 (/*AUTOINST*/); 
 
  error_correction u4(.in (error_in[70:0]), 
                      .clk(clk), 
                      .clk_gate (clk_gate), 
                      .out (error_out) ); 
  
endmodule // AVR32_subset 

8.3    Tcl code fragments related to design flow 

8.3.1    Library definitions and replacement of the critical flip-

flops 

#Minimum intended voltage level 
set MinDVS 1.46 
 
set_operating_conditions -min bcs_1v60 -max max -min_library L7SClib-bcs_1v60+tm40 -
max_library L7SClib-max+ind 
 
#generate top level power domain and supply pins 
create_power_domain TOP_LEVEL   
create_supply_net VDD -domain TOP_LEVEL 
create_supply_net GND -domain TOP_LEVEL 
set_domain_supply_net TOP_LEVEL -primary_power_net VDD -primary_ground_net GND 
 
#define scaling groups 
define_scaling_lib_group -name g1 {  L7SClib-wcs_1v20+t100.db L7SClib-max+ind.db } 
define_scaling_lib_group -name g3 {  L7CSClib-wcs_1v20+t100.db L7CSClib-max+ind.db }   
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define_scaling_lib_group -name g2 { L7SClib-bcs_1v95+tm40.db L7SClib-bcs_1v60+tm40 } 
define_scaling_lib_group -name g4 { L7CSClib-bcs_1v95+tm40.db L7CSClib-bcs_1v60+tm40 }  
set_scaling_lib_group -max "g1 g3" -min "g2 g4" -object_list [get_cells *] 

 
#set the voltage to the intended lowest voltage level 
set_voltage $MinDVS -object_list VDD 
set_voltage 0 -object_list GND 
 
#generate a collection of the critical flip-flops 
foreach_in_collection p [get_timing_paths -slack_lesser_than 0 -max_paths 1000] { 
    append_to_collection regs_critical [get_cell -of [get_attribute $p endpoint]] 
} 
 
#replace the critical flip-flops 
change_link $regs_critical L7razorlib-max+ind/rzr1l7 –force 
 

8.3.2    Extra connections for razor flip-flops 

#connect the error signals to the error_correction circuit 
set z 0 
foreach_in_collection p $regs_critical { 
    disconnect_net [get_nets -of u4/in[$z]] u4/in[$z] 
    connect_pin -from [get_pins -filter "name==er" -of $p] -to u4/in[$z] -port_name 
error_connection_$z 
    incr z 
} 
echo "Error signals connected..." 
 
#connect the restore signals 
set z 0 
foreach_in_collection p $regs_critical { 
    connect_pin -from u4/out -to [get_pins -filter "name==rtr" -of $p] -port_name 
restore_connection_$z 
    incr z 
} 
echo "Restore signals connected..." 
 
 

8.3.3    Example of a signal masking 

#mask the memory write (hwrite) signal if an error occurs 
set tmp_pin [get_pins -filter "full_name=~u2_memory_rw_reg*" -of u2_memory_rw] 
disconnect_net u2_memory_rw $tmp_pin 
create_cell u2_hwrite_mask  L7SClib-max+ind/an02d1l7 
connect_pin -from u4/out_inv -to [get_pins -filter "name==a1" -of u2_hwrite_mask] -port_name 
hwrite_mask_connection 
connect_pin -from $tmp_pin -to [get_pins -filter "name==a2" -of u2_hwrite_mask] -port_name 
hwrite_tmp_connection 
connect_net u2_memory_rw [get_pins -filter "name==z" -of u2_hwrite_mask] 
echo "hwrite masked..." 
 

8.3.4    Example modification on clock gating 

 
set z 0 
foreach_in_collection p [get_nets -filter "name==EN" -of [get_cells -filter "full_name=~u1/clk_gate* 
and full_name=~*latch*" -hierarchical]] { 
  set pp [get_object_name $p] 
  set gate_location [get_object_name [get_cell -of $pp]] 
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  set tmp_pin [get_pins -filter "name==ce" -of $pp] 
  disconnect_net $pp $tmp_pin 
  create_cell $gate_location/rzr_clkg_mask L7SClib-max+ind/an02d1l7 
  connect_net $pp [get_pins -filter "name==a1" -of $gate_location/rzr_clkg_mask] 
  connect_pin -from u4/out_inv -to [get_pins -filter "name==a2" -of $gate_location/rzr_clkg_mask] -
port_name rzr_clkg_mask_u1_input_$z 
  connect_pin -from [get_pins -filter "name==z" -of $gate_location/rzr_clkg_mask] -to $tmp_pin -
port_name rzr_clkg_conn_$z 
  incr z 
} 
echo "Clock gates masked for the instruction decode...." 
 

8.3.4    Short Path Fixing for the Razor flip-flops 

set_clock_uncertainty -hold 3.3 [get_pins -filter "name==cp" -of $regs_critical] 

set_voltage 1.6 –min 1.65 -object_list VDD 

set_max_area 100000 

set_fix_hold [all_clocks] 

set_dont_touch [get_cells -hierarchical -filter "name!=u1" * ] 

set_prefer -min L7CSClib-max+ind/bufdd* 

set decode_non_crit_reg [get_cells -filter "ref_name!~*rzr* and name=~*reg* "  u1/*] 

set_clock_uncertainty -setup 2.51 [get_pins -filter "name==cp" -of $decode_non_crit_reg] 

compile_ultra -incremental -only_design_rule 
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