

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, December 2009

Wireless Sensor Networks in a Vehicle
Environment
Master of Science Thesis

RAFAEL BASSO

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company); acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Wireless sensor networks in a vehicle environment

RAFAEL BASSO

© RAFAEL BASSO, December 2009.

Examiner: LARS BENGTSSON

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden December 2009

Abstract

A wireless sensor network is composed of autonomous distributed sensors that
cooperate to monitor physical conditions. In a vehicle these conditions can be tire
pressure, cargo temperature, trailer door status, presence detection and others.
Furthermore, with this technology available in vehicles, many other applications can
be implemented for the truck, driver and dispatcher like remote keyless entry, remote
control and much more. The final benefits are safer, securer and more efficient
operations.

The objective of this thesis work carried out at Volvo Technology AB was to
implement and evaluate a prototype solution for wireless sensor networks in vehicles.

Volvo has developed the Telematics Gateway, which is a device that is installed in
the trucks to collect information from the vehicle, log and send this information to a
web portal. Therefore the main objective of this project was to integrate wireless
sensors with the Telematics Gateway. The technology chosen for the wireless
network is Zigbee.

In order to have a complete system, wireless sensor prototypes were also developed.
Additionally an evaluation was prepared for the hardware and cost needed to
incorporate Zigbee networks into the Telematics Gateway circuit board.

Acknowledgements

This master thesis has been a great team effort since different departments at Volvo
Technology AB were involved and also Datachassi AB took part in the project.
Without the engagement of all the interested parts it would not have been possible to
achieve a successful result in the end.

I would like to thank my examiner Lars Bengtsson who first of all suggested this
master thesis, then agreed to work with me and assisted me when I needed.

Special thanks to my two supervisors at Volvo, Pontus All who chose me for the job,
guided me through the first steps and believed in my work, and Fredrik Bode who
was always available to help me and supported me during the last steps of the
project.

I would like also to express my deepest gratitude to Ignacio Mancha and Per Olof
Näfverborn at Datachassi, for the excellent team work, timely responses and for
being exceptionally cooperative with me. My thanks extend to Werner Hilliges as
well.

Thanks also to my colleagues at Volvo: Dorreh Dormishian who shared the
introductory part of the project with me; Martin Hansson for helping me learning
Rhapsody and answering all my questions; Daniel Eriksson for the support with the
TGW issues and for developing the business layer of the software; Patrik Stenberg
and Sven Claesson who developed the web portal part of the application; Torbjörn
Alsätra and Otto Emanuelsson who were also part of the project. My appreciation
goes to all other colleagues at Volvo who somehow helped, or simply were there to
chat while having a coffee in a “fika” time.

I believe that it is impossible to do anything completely alone, so without all these
persons I would not have been able to carry out this work.

Last but not least, a very special thanks to Teresinha, Eloi, Aline, Gabriel and Jessica
for the unconditional support and love.

Table of Contents

Definitions, acronyms and abbreviations .. 8

1. Introduction ... 9
1.1. Background .. 9
1.2. Problem description ... 10

1.2.1. Fleet Management Platform and the TGW .. 10
1.2.2. Datachassi sensors ... 10

1.2.3. Zigbee protocol .. 11
1.3. Expected results .. 11

2. Methodology and Tools .. 13

2.1. UML ... 13
2.1.1. Structure Diagrams .. 14
2.1.2. Behavior Diagrams .. 14

2.2. Rhapsody ... 14

2.3. TGW Software ... 17
2.4. Sensors .. 18

3. Initiation and Planning .. 20
3.1. Scope ... 20

3.2. Delimitations .. 21
3.3. Stakeholders .. 21
3.4. Risks .. 22

3.5. Schedule .. 23

4. Analysis and Design ... 25
4.1. Requirements ... 25
4.2. System model .. 26

4.3. Protocol specification ... 27
4.3.1. Zigbee protocol .. 27

4.3.2. uGW protocol... 29
4.3.3. Sensors protocol .. 29

5. Implementation ... 30

5.1. TGW software .. 30
5.1.1. DPM Layer .. 30

5.1.1.1. Link Layer ... 31

5.1.1.2. Data Layer .. 31

5.1.1.3. APS Layer and Primitives ... 32
5.1.1.4. ZDO Application and Commands .. 36
5.1.1.5. Endpoints, Devices and Groups .. 38
5.1.1.6. ZCL Frame .. 40
5.1.1.7. Module Interface ... 41

5.1.1.8. Debug and Serial Port ... 42
5.1.1.9. Tests ... 43

5.1.2. Core Layer ... 44
5.1.2.1. Zigbee Cluster Library ... 44
5.1.2.2. Applications... 45

5.1.2.3. Sensors ... 47
5.1.2.4. Module Interface ... 52
5.1.2.5. Persistent data .. 53
5.1.2.6. Tests ... 53

5.2. Hardware ... 53

5.2.1. uGW prototype .. 54
5.3. Sensor prototypes .. 55

5.3.1. Door sensor simulator ... 56

5.3.2. Movable panic button .. 57
5.3.3. Temperature sensor .. 57

6. Verification and Tests ... 58
6.1. General tests .. 58
6.2. Sensor tests ... 59

7. Closing.. 60
7.1. Hardware proposal ... 60
7.2. Cost estimation .. 60

8. Conclusions .. 61

8.1. Future Work ... 61
References ... 62
Appendixes ... 64
I. TGW Description ... 64

II. Communication Protocol ... 65
III. Sensors protocol ... 73
IV. Example of frames .. 74

V. Communication log (TGW, uGW and E-Seal) ... 77
VI. Circuit Schematic .. 82
VII. Bill of Materials .. 83

List of Figures

Figure 1 – Datachassi modified lamps .. 11

Figure 2 – Class Diagram ... 15
Figure 3 – Statechart .. 16
Figure 4 – Different views of the Features window ... 17
Figure 5 – Atmel Raven kit ... 18
Figure 6 – AVR JTAGICE mkII ... 18

Figure 7 – AVR Studio 4 ... 19
Figure 8 – TGW and uGW connection overview ... 20
Figure 9 – TGW, uGW and E-Seal ... 20

Figure 10 – Project schedule .. 24
Figure 11 – System model overview ... 26
Figure 12 – Outline of the Zigbee Stack Architecture ... 28
Figure 13 – DPM layer overview ... 30

Figure 14 – Link layer frame format (in yellow) ... 31
Figure 15 – LinkLayer statechart .. 31
Figure 16 – Data layer frame format (in blue) ... 31
Figure 17 – Data layer ack/nack frame format (in blue) .. 31

Figure 18 – DataLayer statechart ... 32
Figure 19 – APS primitive classes .. 33
Figure 20 – APSLayer statechart .. 34

Figure 21 – ZDO and commands ... 37

Figure 22 – ZDOApplication statechart ... 38
Figure 23 – Endpoint classes ... 39
Figure 24 – ZCLFrame class .. 41

Figure 25 – Module interface .. 42
Figure 26 – Test class .. 43

Figure 27 – Cluster classes .. 45
Figure 28 – Read response command classes ... 45
Figure 29 – Application and ZCL classes ... 46

Figure 30 – ZigbeeApplication statechart ... 47
Figure 31 – ESealFactory composite class... 48

Figure 32 – E-Seal sensor class and interface ... 49

Figure 33 – ESealDevice statechart ... 50

Figure 34 – WirelessSensorsMng class and interfaces .. 52
Figure 35 – Atmel EVK1101 ... 54
Figure 36 – RCB231ED .. 54
Figure 37 – uGW Prototype .. 55
Figure 38 – TGW unit ... 58

Definitions, acronyms and abbreviations

Term Definition

ECU Electrical Control Unit

VTEC Volvo Technology

TGW Telematics Gateway

TTU Telematics Terminal Unit

uGW Micro Gateway

WPAN Wireless Personal Area Network

WSN Wireless Sensors Network

MAC Media Access Control

ZDO Zigbee Device Object

ZCL Zigbee Cluster Library

APS Application Support Sublayer

UML Unified Modeling Language

USART Universal Serial Asynchronous Receiver/Transmitter

SPI Serial Peripheral Interface

USD United States Dollar

1. Introduction

A vehicle and its environment are increasingly connected. Different parts of the
vehicle, road infrastructure, other vehicles and dispatchers are getting connected and
able to gather and distribute data, which could be used to enable better operations.
Sensor networks of various kinds are of high interest due to potentially many vehicle
applications. Today, functionality is limited by expensive installation and harnessing,
which could be reduced by the introduction of wireless sensor networks. The
challenge is at the same time to transform the capabilities of sensor networks to be
useful services for the truck, driver and its dispatcher.

1.1. Background

In January 2008 an internal report [1] was issued at Volvo Technology (VTEC) with a
feasibility study of implementing a Common Wireless Gateway for vehicle sensors.
According to this report, there are many reasons why such a system is desirable.
Among them we can cite reduced costs by not having a harness, easier installation of
new sensors and high flexibility to add current and future systems.

The applications include a broad range of devices such as remote keyless entry,
remote control, tire pressure monitoring, wireless accessories etc. But one of the
highlighted applications was truck and trailer communication since there are many
advantages of using this feature. On the other hand, it is not commonly used
nowadays mainly because there is no “de-facto” standard and wires are a
complication for this system.

The final conclusion of the Common Wireless Gateway report was that at this
moment a completely new Common Wireless Gateway was not economically
feasible. The recommendation was to add this functionality in an existing Electrical
Control Unit (ECU) in the vehicle. Following this recommendation, it was decided that
the Volvo Telematics Gateway (TGW) would be the one to have the wireless
interface. Nonetheless the technologies to be used were not chosen completely
according to the recommendations in this report, but according to the trends in the
wireless sensors technology by the time that this thesis work began.

One of the companies that has been working with wireless sensors and was
mentioned in the report is Datachassi AB [2]. At that time this company was working
on a wireless sensor technology based on the IEEE 802.15.4 [3] [4] and their own
proprietary protocol. Because the company was partially owned by Volvo and had
some knowledge of the technology, it was chosen to be a partner in the project.

Some other examples of the use of sensors can be cited as for instance the
experiments conducted by the Wal-Mart Stores. According to an article published in
the InformationWeek magazine [5], they want to speed products to shelves and
provide customers with better quality products. The idea is to have the products
available in the right moment, like in the perfect ripeness for fruits, improving the
quality and throwing away less food. Sensors Magazine [6] adds that this initiative is
not the only one in the market, as it cites GE’s Veriwise system, and predicts that as
RFID adoption was strongly influenced by the mandate Wal-Mart gave to all its

suppliers, if the retail industry giant chooses to use wireless sensors technology, it
will very likely push the whole market towards it.

1.2. Problem description

The main purpose of this thesis work was to integrate the wireless sensor solution
developed by the company Datachassi with the TGW developed by VTEC. Although
some ideas of how to do that were already being discussed, a solution was not
chosen and it was part of the work to investigate further and select the best
alternative.

1.2.1. Fleet Management Platform and the TGW

The TGW developed by Volvo is part of the Fleet Management Platform, which is a
transport information system that aims to improve the logistics operations of Volvo’s
customers. The system is composed of a back office web portal, the TGW and the
Telematics Terminal Unit (TTU). One of the applications that run in the web portal is
the Dynafleet portal. The main role of the TGW is to collect information from the truck
and send it to the web server. The TTU is connected to the TGW and has a display
and a keyboard to interact with the driver.

The TGW can communicate with other vehicle’s ECU (tachograph, FMS ECUs,
Cobra Alarm etc) using several communication lines like J1939 CAN bus, J1708 bus,
RS232 interface, K line etc. It also includes an USB device interface, which allows
connecting either the TTU or a host pocket PC. In addition it communicates with the
web server via its internal GSM/GPRS module. The device is also equipped with an
internal GPS, which gives an accurate positioning of the vehicle.

All the software of the TGW runs on top of the Nucleus Real Time Operating System
[7] in an ARM9 microcontroller.

For more information about the TGW and TTU see Appendix I and [8].

1.2.2. Datachassi sensors

The Datachassi sensors use a wireless network technology based on Zigbee Pro.
The company’s main product is the DC/-Net, which is a set of modified side-marker
lights that create an electronic “fence” around the trailer and can detect if an
unauthorized person is trying to access the truck’s cargo, steal its fuel or anything
else from the vehicle. The network is composed by the lamps and the micro gateway
(uGW), which is the Zigbee coordinator and has the intelligence to process the
messages from the lamps and identify and alarm situation. The concept is shown in
Figure 1.

Figure 1 – Datachassi modified lamps

Another product is a wireless door sensor that uses Zigbee for communication and
RFID to detect if the trailer door is open or closed.

Although the company attempted to specify its own proprietary protocol on top of the
IEEE 802.15.4 in the beginning, it reviewed its plans and adopted the Zigbee Pro
protocol for its products in order to have more flexibility and be able to hook up third
party products.

1.2.3. Zigbee protocol

Zigbee is a wireless communication protocol standard based on the IEEE 802.15.4.
The target applications are wireless personal area networks (WPANs) that require
low data rate, long battery life and secure networking [9].

One of the main advantages of using Zigbee for this application is that it supports
mesh topologies. By using that it is possible to have a very flexible network where the
communication is done by “hopping” from node to node until the destination is
reached [10]. The main advantages of this topology are that it is possible to
reconfigure the network to skip broken nodes and it is possible to choose the shortest
path to a certain destination. In a vehicle environment it represents more reliability
since if something happens to one node, the communication with the others will not
be lost and the best path will always be chosen independently of any radio
interference.

The Zigbee Alliance [11] is a group of companies that maintain and publish the
Zigbee standard.

More details about the Zigbee protocol will be discussed in chapter 4.3.1, but for a
more complete introduction of Zigbee see [12].

1.3. Expected results

What was seen as a success for this project was the demonstration of the
Datachassi sensors integrated with the TGW in a real environment test case.

It was part of the project to define which functionalities were going to be developed
and demonstrated, as well as how the test was going to be conducted.

In order to have a successful demonstration of the system, it was needed to develop
the software for the TGW and also sensor prototypes. Additionally a preliminary
proposal for the Zigbee integration into the TGW circuit board was also prepared.

2. Methodology and Tools

In order to have an ordered work, some planning and scheduling were used to break
down the work and structure it in different phases and tasks. The project
management methodology described in the Project Management Body of Knowledge
(PMBOK) [13] was used as a basis for planning, but as this project is not complex,
this methodology was very much simplified and only some parts were used.

The main phases were divided as follows:

1. Initiation and Planning
The first step for the project was to clearly describe the project work, scope,
limitations and risks. This work was based on studies of the technologies and
alternatives for the project, as well as meetings with the main stakeholders.
Based on that, a plan and schedule were prepared.

2. Analysis
To refine even more the scope of work, a requirements analysis and modeling
of the system needed to be done. Subsequently, the software needed to be
modeled using the Unified Modeling Language (UML) and the hardware
components needed to be determined.

3. Implementation
This phase is the development of the system itself, composed by the hardware
interface, low-level software including protocol implementation and the
software application.

4. Verification and Tests
To check the system functionality, a prototype of the hardware and software
was needed. With that, preliminary tests and simulations needed to be carried
out. Furthermore, to demonstrate the system, a test in a real environment was
planned.

5. Closing
Concluding the project, a proposal for hardware integration was planned to be
done. A presentation and the final report were also included in this phase.

The tools to be used in the development were the IBM Rhapsody, a model-driven
development tool used for the embedded software for the TGW, and the IBM
Clearcase, which is a version control system. Since Clearcase was only used within
Rhapsody, there was not much to learn about it. On the other hand, learning how to
use the Rhapsody modeling environment posed a big task in the project because it
was a completely different approach for development compared to the traditional
development, in which the model diagrams are separated from the source code.

2.1. UML

The Unified Modeling Language (UML) is a software modeling language created by
the Object Management Group. It includes a series of diagrams and graphical
notation to create structure and behavior models for object oriented software
development.

2.1.1. Structure Diagrams

The structure diagrams emphasize the static structure of the system using objects,
attributes, operations and relationships. The diagrams used mostly in this project
were Class Diagrams and Composite Diagrams.

A Class Diagram describes classes’ attributes, methods and the relationships
between the classes.

A Composite Diagram describes the internal structure of a class and the
collaborations that this structure provides.

2.1.2. Behavior Diagrams

The behavior diagrams emphasize the dynamic behavior of the system by showing
collaborations among objects and changes to the internal states of objects. The
diagrams used mostly in this project were Statecharts (state machine diagrams).

A Statechart is a finite state machine diagram. It describes states and transitions of
an object.

2.2. Rhapsody

The IBM Rational Rhapsody is a complete solution for analysis, design,
implementation and test of embedded or real-time systems. It uses UML diagrams to
abstract the complexity of the systems and generate most of the source code based
on these diagrams.

By designing the structure of the system with class and object diagrams, adding
behavior with the activity and statechart diagrams, and writing additional code, it is
possible to generate and test the complete system using the Rhapsody development
environment.

Figure 2 – Class Diagram

Rhapsody implements Class and Composite diagrams in the same diagram. As
shown in Figure 2, the classes Building and Elevator are composite classes and the
class Itinerary is a regular class. When generating code, the tool takes care of the
class structure and generates it based on what the user modeled. Attributes,
methods, relationships etc, are all generated following the Rhapsody framework.

Figure 3 – Statechart

To describe behavior, Rhapsody has statechart diagrams, as shown in Figure 3,
which allow the user to describe states, transitions, events, triggers and guards in a
graphical way. The system also generates all the controlling code for the state
machine, leaving for the user only custom coding.

Figure 4 – Different views of the Features window

An essential tool of Rhapsody is the Features window, shown in Figure 4, which
allows the user to edit the settings of any element in the system. In the Features
window it is also possible to write custom code for methods, state transitions etc.

As said before, one of the most important features of Rhapsody is code generation.
For this project the chosen language was C++ since all TGW software is written in
this language. Based on the models and additional code developed by the user, it is
possible to generate the final source files, compile and run the system very easily.

Learning this development tool consumed part of the time of the thesis. The
documents deployed with the software [14] [15] and some training material [16] were
used for this purpose and in the end it took less time than expected to start using the
system.

2.3. TGW Software

The approach for the software architecture of the TGW is layers with well defined
interfaces [17]. For more information about it see Appendix I.

2.4. Sensors

The hardware used for the development of the sensor prototypes was the Atmel
Raven Evaluation kit [18] shown in Figure 5.

Figure 5 – Atmel Raven kit

The kit comprises two AVR Raven boards with 2.4 GHz RF transceiver, on board
processors and LCD display, and one USB stick with a 2.4 GHz RF transceiver for
USB connection to a PC.

The AVR Raven hardware is based on 2 microcontrollers and one radio transceiver
chip. One microcontroller handles the sensors and the user interface, including the
LCD and the other handles the AT86RF230 radio transceiver and the RF protocol
stacks. The microcontrollers and the radio communicate via serial interfaces.
Additionally it includes a joystick button and a thermistor that were used in the
sensors. The power can be an external 5 to 12V power supply or the included
batteries. For more information about the Atmel Raven kit see [19] and [20].

The Zigbee stack used was the BitCloud Zigbee stack downloadable for free at the
Atmel website. It includes a Software Development Kit with specific support for the
Raven kit. Moreover it comes with application examples, which make the
development process much faster. For more information about the BitCloud Zigbee
stack see [21] and [22].

The programmer and debugger used to develop the sensor application was the AVR
JTAGICE mkII [23], shown in Figure 6.

Figure 6 – AVR JTAGICE mkII

The development software used was the AVR Studio 4 [24], shown in Figure 7. This
software includes all the tools needed to develop, debug and download the firmware
to the microcontrollers in the circuit boards. A particularly interesting feature is the
debugging, because it was possible to use the programmer mkII connected to the
JTAG interface of the boards and then be able to run the software step by step, add
breakpoints, check the values of variables with watches, and all the common
debugging features.

Figure 7 – AVR Studio 4

3. Initiation and Planning

3.1. Scope

The main objective of this project was to integrate the Datachassi solution with the
TGW.

After considerations about the most efficient way for connecting the Datachassi
sensors with the TGW, it was decided that the Micro Gateway (uGW) designed by
Datachassi would be used as the interface and the connection would be done directly
using an RS232 serial interface as shown in Figure 8. A communication protocol
between the two devices defined by Datachassi and Volvo was also part of the work.
The objective of this protocol is to transport Zigbee Application layer messages which
will be processed by the TGW.

Datachassi D-Nets

TGW

Sensor

uGW

RS232

Figure 8 – TGW and uGW connection overview

The uGW serves as the coordinator for the Zigbee network, and encapsulates the
Zigbee stack and functionally, which is all the network management processes,
permission of devices to join the network, bindings, as well as routing the messages
to the TGW.

One important feature the system should support is that other sensors might be
attached to the network. The messages from these third party sensors will be
forwarded from the sensors to the TGW directly, so the uGW works only as a
gateway.

For the pilot application a wireless door sensor being developed by Datachassi was
decided to be used. The sensor is known as CombiSeal or E-Seal and it identifies if
the trailer door is open and sends the information using Zigbee to the uGW. This
application is show in Figure 9.

TGW

CombiSeal

(E-Seal)

Zigbee
uGW

RS232

Figure 9 – TGW, uGW and E-Seal

The software to be developed is an application that will run on the TGW
microcontroller, on top of the Nucleus RTOS and the low level layers that are already
working. The main purpose of this application is to have a means to test the system
and demonstrate how it can be used. The definition of the functionalities of this
application is part of the work.

During the project, as the scope was being refined, some additional work was
decided to be done by other software engineers at Volvo. It was decided that the
wireless sensor network in the vehicle should be integrated with a web portal. In this
way all the messages received by the TGW from the sensors would be forwarded to
an application in the web portal. Messages received from the portal would be
processed by the TGW and sent to the sensors accordingly. With this additional work
it would be possible to have a complete end to end system.

For this project, instead of using the Fleet Management portal, a development portal
was used. The Wip Server Research Platform is used to develop and test
applications which later can be put in the Fleet Management Platform and used by
the customers. Therefore the Wip Server together with a glassfish application server
was used for the wireless sensors web application.

Another part of the work was to develop sensor prototypes to enhance the tests.
These sensors were developed using the Atmel Raven evaluation kit [18]. The
complete Zigbee stack is provided by Atmel, so the work needed was to implement
the application on top. The sensors developed were a simulation for the E-Seal, a
wireless panic button with messaging capabilities and a temperature sensor.

To have an alternative integration for Zigbee sensors instead of using Datachassi
uGW, another task was set to propose a way of integrating the Zigbee hardware and
protocol directly in the TGW circuit board. This is particularly interesting for Volvo
because a new version of the TGW is under development.

3.2. Delimitations

Regarding the integration of this system with the Web portal, none of the work is in
the scope of this thesis work. The support from the TGW side and the development
of components for the web portal will be done by other engineers at Volvo.

All the development of the uGW and E-Seal are responsibility of Datachassi. Any
issues with power consumption, electromagnetic compatibility and any wireless
transmission problems with the uGW and E-Seal are also Datachassi responsibility.

3.3. Stakeholders

At Volvo the persons involved in the project were the supervisor and the other
engineers responsible for the integration with the web portal.

At Datachassi the persons who were part of the project were the engineers
responsible for the uGW and E-Seal.

At Chalmers the examiner was also involved in the project.

One of the challenges of this project was to handle the communication with different
groups of developers and synchronize the work. Issues had to be reported in a timely
manner and tests had to be performed thoroughly before handing out any part of the
system. The follow up of the other developers work was also very important to detect
any delay or possible missing of important dates. When such a problem occurred, a
solution or work around had to be agreed with the people involved.

3.4. Risks

There were a couple of uncertainties and risks in this project. Most of them involved
third parties. But in the end, the problems that appeared were fixed with proper
solutions or workarounds.

Since the tool that was used for the development of the TGW software is Rhapsody
and Volvo has a limited number of licenses for this tool, the first risk was a shortage
of licenses. However, this problem occurred only a few times and did not interfere in
the progress of the work.

The second risk, also involving Rhapsody, was the learning curve for the software.
According to previous experiences at Volvo, the time consumed to learning how to
use the tool was sometimes a bit long. Nonetheless, with the use of the right training
material, the time to learn the tool remained as planned.

Some other risks for the project were related to Datachassi. Most of the potential
problems were the unfinished products and the risk of not meeting the schedule. By
the time that the thesis work began, neither the uGW nor the E-Seal had prototypes
ready to test. So target dates were proposed to deliver the hardware and software,
even if it was not the final versions.

The uGW prototype was delivered on time, but it was composed of two development
kits put together with soldered wires. For the development and preliminary tests it
worked without problems. However, with this hardware it was impossible to have the
tests in a real environment, with a moving truck.

The E-Seal prototype was not delivered on time because the project was delayed.
Some alternatives to solve this problem were entertained but in the end the
development of a simulation for the door sensor was added to the scope of this
project.

The last risk involving Datachassi was the definition of the interface protocol between
the uGW and the TGW. In the first meeting with Datachassi some preliminary ideas
for the protocol were discussed and settled. However, there were some problems
with the timing because some key personnel were on vacations during the beginning
of the thesis work and the protocol was considered a cornerstone for the project. In
the end the protocol definition worked smoothly and the process was sped up by
making a preliminary suggestion and then revising it until reaching the final version.

Because there were engineers at Volvo responsible for integrating the system with
the web portal, there was a risk with the synchronization of the work. In the end it
proved to be real and some engineers did not meet the planned delivery dates

because they were involved in other projects. For that reason the scope of the final
tests and demonstration had to be reviewed and reduced.

Another risk added in the course of the project was the complexity of the Zigbee
stack for the prototype sensors. Since there was no previous knowledge of the
implementation of the Zigbee stack for the microcontroller used in the Atmel Raven
development kit, it could prove to be a bit more difficult and time consuming to
develop the sensor prototypes. However, the stack was very easy to use and the
implementation of the sensor software was done in half of the time planned.

3.5. Schedule

In the first week of the thesis work a preliminary schedule was proposed. During the
following week it was adjusted and in the course of the project it suffered some other
minor changes.

Most of these changes were due to scope changes. The most significant one was
when the development of the sensor prototypes was added to the work in week 39.

Although the study of technologies and the test phases appear within delimited time
slots, they actually spread within all phases of the project.

Another important thing to notice is that the beginning and end of the phases were
not clearly delimited since some work for the next phase could be started without
completing the previous one. This happened mostly because of external
dependencies. While waiting for something to be delivered from someone else, other
tasks were carried out.

The final schedule for the project is shown in Figure 10.

Figure 10 – Project schedule

4. Analysis and Design

The analysis and design of the system to be developed was done during the process
of development. An iterative approach was chosen because Rhapsody is a model
driven development tool, which means that by creating the model it is possible to
generate most of the source code. That changes the development approach
drastically, since the focus changes from coding to modeling.

In this phase, as the model would be done during the development, the most
important artifact was the protocol specification. With that it was possible to have a
better understanding to model the system.

4.1. Requirements

Based on the meeting with Datachassi, discussion with stakeholders and other
documents, the requisites were listed and prioritized as shown in Table 1.

No. Pty. Description

1 1 The TGW should be able to communicate with the Combiseal and
DNet lamps through the uGW.

2 1 The uGW will use Zigbee to communicate with the DNet lamps and the
Combiseal.

3 1 The communication between the TGW and the uGW is specified in a
Protocol Description document. The objective of this protocol is to
transport Zigbee Application layer messages using an RS232 link.

4 1 The uGW will be the Zigbee coordinator and will be responsible for the
network management of the devices in the network.

5 1 The TGW has to be able to configure, turn on or off the CombiSeal
door alarm and other alarms.

6 1 The Combiseal will monitor if the trailer door is open or closed and
send this information to the TGW, which will send this information to
the web portal.

7 1 The TGW should be able to use the web portal through a GPRS
connection as a user interface.

8 1 The TGW will use the user interfaces to show sensor status, alarms
and to configure the sensors.

9 2 The uGW should allow third party devices in the Zigbee network.

10 2 Messages from third party devices should be forwarded directly to the
TGW.

11 3 For this first version, the integration with the DNet lamps will not be
implemented, but the system has to support this addition later.

12 3 A secure authentication procedure between the uGW and TGW has to
be supported for later implementation.

13 3 The system should be able to identify hardware and software versions
as well as manufacturer and model identification to improve
compatibility

14 4 The system should be able to confirm the identity of the Combiseal
device

Table 1

This list was updated a few times during the project but in the end most of the
requisites were implemented in the final version of the system.

The most important changes in the requisite list are regarding the user interfaces.
The first plan was to use both the TTU and the web portal as user interfaces, to be
able to show information to the driver and at the same time have this information in
the control center. After some considerations, the implementation of the TTU
integration was removed from the scope.

Another important modification was the way that the system would work with third
party wireless sensors. A simplification of the procedures was done for this first
version, but future improvements can be done to make the wireless network more
secure.

4.2. System model

After careful consideration of the TGW software architecture, of the Zigbee protocol
stack and of the system functionalities, a model was drawn with basic layers and
modules of the system. This model is shown in Figure 11.

Zigbee

 (DPM)

USART

(BPS)

ZCL

 (Core)

Application

 (Business)
TTU

Web Portal

uGW

E-Seal sensor

TGW

Figure 11 – System model overview

Some connections with other modules of the TGW software were not specified in this
general model. Some of them are the persistent data management, watchdog,
debug, etc.

The USART module resides in the BPS layer and was already implemented. The
Zigbee module uses it to access the serial port and communicate with the uGW. Only
some minor changes were needed in this module.

The Zigbee software module is in the DPM layer and is responsible for managing the
communication with the uGW.

The ZCL software module is in the Core layer and is responsible for managing the
sensors. This module is also responsible for managing the persistent data of the
sensors, for instance the door status of the E-Seal.

The Application software module is in the Business layer and manages the
communication with the portal and TTU. It was developed by other engineers at
Volvo and in this first version only communicates with the web portal.

4.3. Protocol specification

The main idea for the communication between the TGW and the uGW was to use a
protocol that could transport Zigbee application messages on top of an RS232
connection. Some other additions had to be done to enable network management.
The final specification is included in Appendix II and examples of the frames are
included in Appendix IV.

4.3.1. Zigbee protocol

The Zigbee stack is composed of four layers which have entities responsible for data
transmission services and management services [25]. An overview of the stack can
be seen in Figure 12 below.

Figure 12 – Outline of the Zigbee Stack Architecture

On top of the stack resides the manufacturer defined applications and the Zigbee
Device Object (ZDO), which is responsible for most of the management functions.
They use the features of the network through a set of services provided by the
Application Support Sublayer (APS).

Every sensor in a Zigbee network communicates using a subset of the Zigbee
Cluster Library [26], defined in the form of an Application Profile. For example there is
a standard application profile for Home Automation. Within this profile there is a
thermostat cluster, used to provide functionality mostly for temperature devices like
air conditioning and heating systems.

One Zigbee device can support more than one application. This is achieved by
having more than one Application Object running in different endpoints, supporting
different clusters and possibly different application profiles. The supported clusters
can also be either client or servers. All this information is stored in the device simple
descriptor, which is shown in Appendix IV.

To establish the communication of two devices, a procedure called binding is carried
out by the network coordinator. For example a lighting switch has to connect to a light
bulb to turn it on or off. The switch can have the client side of the On/Off cluster and
the bulb can have the server side. Both devices report their simple descriptor to the
coordinator, which in turn matches their clusters and send binding commands to
each of them. After that the communication between the switch and the bulb is
established.

4.3.2. uGW protocol

In order to have all the functionality needed in the TGW for wireless sensors, the
protocol to communicate with the uGW was specified in 5 layers:

1. Application layer
2. APS layer
3. Data layer
4. Link layer
5. Physical layer

The Application layer follows the ZCL specification for messages exchanged with
Application Objects. For messages exchanged with the ZDO, the Zigbee Device
Profile was used with some small changes.

The APS layer is a subset of the APS sublayer of the standard Zigbee specification.
The primitives included follow exactly the Zigbee specification, but only a few were
implemented since there was no need for using all of them in this project. However,
the protocol allows future implementation of other primitives if the need arises.

The Data layer specifies which APS primitive it is transporting and also provides
some fault tolerance mechanisms by implementing a simple checksum and
acknowledgements.

The Link layer manages the beginning and ending of frames.

The Physical layer is the RS232 serial interface.

For detailed information about the communication protocol see Appendix II and
Appendix IV.

4.3.3. Sensors protocol

The protocol for communicating with the sensors was based on the ZCL. A small set
of clusters was chosen to make the application simple but at the same time give all
the functionality needed for the project.

The E-Seal protocol was defined by Datachassi, but later in the project it was
decided to implement only a subset of the complete set of clusters.

The panic button sensor and the temperature sensor protocols were defined during
the work and they included only essential characteristics.

More information about the sensors protocol can be seen in Appendix III.

5. Implementation

5.1. TGW software

The TGW software is the most important deliverable of this project. Because of that
most of the work was dedicated to develop the software modules.

The architecture of the software followed the structure defined in the system model
(see chapter 4.2).

5.1.1. DPM Layer

The DPM layer includes all functionality to manage the communication with the uGW.
It is composed of the 4 base layers of the uGW protocol (see chapter 4.3.2). All the
classes implemented in this layer are contained within the ZigbeePkg package in the
DPMPkg package of the TGW software.

An overview of the protocol implementation is shown in Figure 13.

LinkLayer

LinkLayer()

init():void

readMsg(msg:unsign...

sendMsg(msg:unsig...

1

IComport

«Interface»

111

DataLayer

DataLayer()

receiveMsg():void

notifyIncoming():void
11

ZigbeeEndpoint

ZigbeeEndpoint(subscr...

bind(profileId:unsigned ...

bind(clusterId:unsigne...

notifyInd(msg:APSDat...

notifyRes(result:bool):v...

sendMsg(device:IZigbe...

sendMsg(group:IZigbe...

APSLayer

sendDataReq(endpoint:unsigned ...

notifyResult(result:bool):void

notifyIncoming(primitive:PrimitiveI...

sendUpdReq(msg:APSUpdateRe...

1

1

1

*

endpoint

1

1

1

*

endpoint

ZDOApplication

ZDOApplication()

init():void

notifyUpdInd(msg:APSU...

notifyDataInd(msg:APS...

notifyRes(result:bool):void

sendDataReq(clusterId:u...

1

1

1

1

Figure 13 – DPM layer overview

5.1.1.1. Link Layer

The LinkLayer class is responsible for managing the serial port communication and
interpreting the Link layer of the uGW protocol. An overview of the protocol link layer
can be seen in Figure 14.

DLE STX Payload DLE ETX

Figure 14 – Link layer frame format (in yellow)

In order to read from the serial port, a polling scheme is used. Every 50ms the class
checks if the serial port received something and if it matches the beginning of a
frame, it starts reading until it reaches the end of the frame or a timeout. When a
frame is read successfully, it is sent to the DataLink class. The LinkLayer statechart
is shown in Figure 15.

idle

[openComport()][openComport()]

[else]

preStart
evStartLink

[else]

evStartLink

reading

tm(50)[sizeBufferIn==0]

[readDLE()]

[else]

tm(50)[sizeBufferIn==0]

[readDLE()]

[else]

[else][else]

readingFrame

readFrame();...
[readSTX()]/

finished=false;

readings=0;

[readSTX()]/

finished=false;

readings=0;

[finished][finished] [else] waiting

tm(50)

[else]

tm(50)

Figure 15 – LinkLayer statechart

5.1.1.2. Data Layer

The DataLayer class is responsible for processing the Data layer frames of the uGW
protocol. It identifies the Zigbee APS Sublayer primitive that is being transported and
has some fault tolerance mechanisms using frame sequence numbers, checksum
and acknowledgements. The frame format of the Data layer is shown in Figure 16
and Figure 17.

DLE STX Primitive Sequence Length Payload Checksum DLE ETX

Figure 16 – Data layer frame format (in blue)

DLE STX Ack or Nack Sequence Checksum DLE ETX

Figure 17 – Data layer ack/nack frame format (in blue)

Another important function of the DataLayer class is to manage re-transmission, in
case a Nack is received or an Ack is not received within the time limit. The statechart
for this class can be seen in Figure 18

idle

evReadData

reading

evReadData

evWriteData/

write();

writing

evWriteData/

write();

waitAck evReadDataevReadData

[else]

[waitingAck]

[else]

[waitingAck]

tm(5000)

[sendTimes < MAX_SEND]

[else]/

sendFailed();

tm(5000)

[sendTimes < MAX_SEND]

[else]/

sendFailed();

Figure 18 – DataLayer statechart

5.1.1.3. APS Layer and Primitives

The APSLayer class implements the functionality of the Zigbee APS Sublayer.

To process all the primitives used in the uGW protocol, each primitive has a
corresponding class, shown in Figure 19, which is responsible for encoding and
decoding the messages in the primitives. The objects of these classes are used for
communication with the higher layer classes.

APSDataIndication

asdu:unsigned char*=0

asduLength:int=0

dstEndpoint:unsigned ch...

dstAddrMode:unsigned c...

dstAddress:unsigned sho...

srcAddrMode:unsigned c...

srcShortAddress:unsigne...

srcExtAddress:ExtAddre...

srcEndpoint:unsigned ch...

profileId:unsigned short=0

clusterId:unsigned short=0

status:unsigned char=0

securityStatus:unsigned ...

linkQuality:unsigned char=0

rxTime:unsigned int=0

grpAddress:unsigned sho...

APSDataIndication(msg:u...

~APSDataIndication()

APSDataIndication(data:...

APSPrimitive

APSDataRequest

asdu:unsigned char*=0

asduLength:int=0

clusterId:unsigned short=0

dstShortAddress:unsigne...

dstAddrMode:unsigned ch...

dstEndpoint:unsigned cha...

grpAddress:unsigned shor...

profileId:unsigned short=0

srcEndpoint:unsigned cha...

txOptions:unsigned char=0

radius:unsigned char=0

dstExtAddress:ExtAddres...

getMsg(msg:unsigned ch...

APSDataRequest(profileId...

setAddrModeGrp(grpAddr...

setAddrModeExt(dstExtA...

setAddrModeShort(dstSh...

~APSDataRequest()

APSDataRequest(data:A...

APSDataConfirmation

dstEndpoint:unsig...

dstAddrMode:unsi...

dstExtAddress:Ex...

dstShortAddress:u...

srcEndpoint:unsig...

status:unsigned c...

txTime:unsigned i...

grpAddress:unsign...

APSDataConfirma...

APSDataConfirma...

APSUpdateRequest

destAddress:Ex...

deviceAddress:...

status:APSUpd...

deviceShortAdd...

APSUpdateReq...

getMsg(msg:un...

APSUpdateReq...

APSUpdateIndication

srcAddress:ExtAd...

deviceAddress:Ex...

status:APSUpdat...

deviceShortAddre...

APSUpdateIndicat...

APSUpdateIndicat...

Figure 19 – APS primitive classes

The APSDataIndication is used to receive messages from the uGW and has the
frame format below:

APSDE-DATA.indication = { DstAddrMode, DstAddress, DstEndpoint, SrcAddrMode, SrcAddress,
SrcEndpoint, ProfileId, ClusterId, asduLength, asdu, Status, SecurityStatus, LinkQuality, RxTime }

The APSDataRequest is used to send messages to the uGW and has the frame
format shown below.

APSDE-DATA.request = { DstAddrMode, DstAddress, DstEndpoint, ProfileId, ClusterId, SrcEndpoint,
ADSULength, ADSU, TxOptions, RadiusCounter }

The APSDataConfirm is received from the uGW after an APSDataRequest is sent
and is used to confirm the transmission of the message. The frame format is shown
below.

APSDE-DATA.confirm = { DstAddrMode, DstAddress, DstEndpoint, SrcEndpoint, Status, TxTime }

The APSUpdateRequest is sent to the uGW in the initialization procedure and has
the frame format shown below.

APSME-UPDATE-DEVICE.request = { DestAddress, DeviceAddress, Status, DeviceShortAddress }

The APSUpdateIndication is received from the uGW in the initialization procedure
and has the frame format shown below.

APSME-UPDATE-DEVICE.indication = { SrcAddress, DeviceAddress, Status, DeviceShortAddress }

For more information about the Zigbee APS Sublayer primitives see [25].

Because each primitive has a different frame format, dynamic length and is used for
different purposes, it is important to identify which primitive is being received or sent
and process it accordingly. After creating the appropriate object according to the
primitive being received, the APSLayer dispatches the message to its recipient.
Outgoing messages are sent to the DataLayer, but some need waiting for a
confirmation. Incoming messages are sent to the destination endpoint application or
to the ZDO. The statechart for the APSLayer is shown in Figure 20.

idle

evAPSDataInd/

processDataInd();

receivingInd

evAPSDataInd/

processDataInd();

tm(250)

evAPSUpdInd/

processUpdInd();

tm(250)

evAPSUpdInd/

processUpdInd();

sendingReq

tm(5000)/

processDataRes(false);

tm(5000)/

processDataRes(false);

waitingConf

tm(10000)/

processDataRes(false);

evAPSDataConf/

processDataRes(processDataConf());

tm(10000)/

processDataRes(false);

evAPSDataConf/

processDataRes(processDataConf());

evAPSDataReq

[else]/

processDataRes(false);

[processDataReq()]

evAPSDataReq

[else]/

processDataRes(false);

[processDataReq()]

evAPSResult

[params->result]

[else]/

processDataRes(false);

evAPSResult

[params->result]

[else]/

processDataRes(false);

sendingUpd
evAPSResult/

processUpdRes(params->result);

tm(4000)/

processUpdRes(false);

evAPSResult/

processUpdRes(params->result);

tm(4000)/

processUpdRes(false);

evAPSUpdReq

[processUpdReq()]

[else]/

processUpdRes(false);

evAPSUpdReq

[processUpdReq()]

[else]/

processUpdRes(false);

Figure 20 – APSLayer statechart

As this communication channel is used by multiple endpoints and the ZDO, queues
for incoming and outgoing messages are implemented.

Fragments of code are shown below and demonstrate how the messages are
processed:

void APSLayer::notifyIncoming(const PrimitiveID& primitive, unsigned char* msg, int size) {

 APSDataIndication *dataInd;

 APSUpdateIndication *updInd;

 switch (primitive) {

 case DATAindication:

 dataInd = new APSDataIndication(msg, size);

 queueDataInd.push(dataInd);

 if (IS_IN(idle)) GEN(evAPSDataInd);

 break;

 case DATAconfirm:

 if (IS_IN(waitingConf)) {

 incDataConf = new APSDataConfirmation(msg, size);

 GEN(evAPSDataConf);

 }

 break;

 case UPDATEindication:

 updInd = new APSUpdateIndication(msg, size);

 queueUpdInd.push(updInd);

 if (IS_IN(idle)) GEN(evAPSUpdInd);

 break;

 }

}

bool APSLayer::processDataConf() {

 bool result = false;

 dbgDebug(ID_ZIGBEE, "APS Layer: receiving DATA.conf");

 if (queueDataReq.front()->getSrcEndpoint() == incDataConf->getSrcEndpoint()) {

 if (incDataConf->getStatus() == APSPrimitive::APS_SUCCESS) {

 result = true;

 } else {

 dbgDebug(ID_ZIGBEE, "APS Layer: invalid status in DATA.conf");

 }

 } else {

 dbgDebug(ID_ZIGBEE, "APS Layer: invalid endpoint in DATA.conf");

 }

 delete incDataConf;

 incDataConf = NULL;

 return result;

}

void APSLayer::processDataInd() {

 APSDataIndication *dataInd;

 ZigbeeEndpoint* app;

 dbgDebug(ID_ZIGBEE, "APS Layer: receiving DATA.indication");

 dataInd = queueDataInd.front();

 if (checkAddress(dataInd)) {

 if (dataInd->getDstEndpoint() == 0) {

 if(itsZDOApplication) itsZDOApplication->notifyDataInd(dataInd);

 } else {

 app = getItsZigbeeEndpoint(dataInd->getDstEndpoint());

 if(app) app->notifyInd(dataInd);

 else dbgDebug(ID_ZIGBEE, "APS Layer: invalid endpoint in DATA.indication");

 }

 } else {

 dbgDebug(ID_ZIGBEE, "APS Layer: invalid address in DATA.indication");

 }

 delete queueDataInd.front();

 queueDataInd.pop();

}

bool APSLayer::processDataReq() {

 APSDataRequest *dataReq;

 unsigned char* msgOut;

 int size;

 bool result = false;

 dbgDebug(ID_ZIGBEE, "APS Layer: sending DATA.request");

 dataReq = queueDataReq.front();

 size = dataReq->getMsg(&msgOut);

 result = itsDataLayer->sendMsg(DATArequest, msgOut, size);

 if (msgOut) delete msgOut;

 return result;

}

void APSLayer::processDataRes(bool result) {

 ZigbeeEndpoint *app;

 if (result)

 dbgDebug(ID_ZIGBEE, "APS Layer: sending DATA.request OK");

 else

 dbgDebug(ID_ZIGBEE, "APS Layer: sending DATA.request failed");

 if (queueDataReq.front()->getSrcEndpoint() == 0) {

 if(itsZDOApplication) itsZDOApplication->notifyRes(result);

 } else {

 app = getItsZigbeeEndpoint(queueDataReq.front()->getSrcEndpoint());

 if(app) app->notifyRes(result);

 }

 mutexDataReq.lock();

 delete queueDataReq.front();

 queueDataReq.pop();

 mutexDataReq.unlock();

}

void APSLayer::sendDataReq(unsigned char endpoint, APSDataRequest* msg) {

 APSDataRequest *data;

 data = new APSDataRequest(msg);

 mutexDataReq.lock();

 queueDataReq.push(data);

 mutexDataReq.unlock();

 GEN(evAPSDataReq);

}

5.1.1.4. ZDO Application and Commands

The partial ZDO implemented in the TGW is responsible for two management
functions: initialization and binding.

The initialization procedure is used to tell the uGW which endpoints are active in the
TGW and what functionalities they support. To do that, the ZDO in the TGW support
the endpoint request command and the simple descriptor request command. For
more information about these commands see [25]. For a sequence diagram of the
initialization procedure see Appendix II.

Binding is the process that virtually connects the TGW to a wireless sensor. In the
initialization the TGW tells the uGW what kind of sensor it supports, so whenever the
uGW finds a matching sensor in the network, it tells the TGW using the binding
commands. For this purpose, the standard end device bind command was slightly

modified to add the destination endpoint. For more information see [25] and
Appendix II.

An overview of the ZDOApplication class and the commands can be seen in Figure
21.

ZDOApplication

ZDOApplication()

init():void

notifyUpdInd(msg:APSU...

notifyDa taInd(msg :APS...

notifyRes(resu lt:bool):void

sendDataReq(clusterId:u...

ZDOCommand

id:unsigned short

receiveMsg (msg:unsign...

1

*

id

1

*

id

ZDOCmdSimpleReq

receiveMsg(ms...

ZDOCmdSimpleRsp

receiveMsg(ms...

sendMsg(sequ...

«Usage»«Usage»

ZDOCmdEndpointsReq

receiveMsg(msg:...

ZDOCmdEndpointsRsp

receiveMsg(msg:...

sendMsg(sequen...«Usage»«Usage»

ZDOCmdBindReq

receiveMsg(...

ZDOCmdBindRsp

receiveMsg(...

sendMsg(se...

«Usage»«Usage»

ZDOCmdDeviceBindReq

receiveMsg(msg:un...

ZDOCmdDeviceBindRsp

receiveMsg (msg:un. ..

sendMsg(sequence:...

«Usage»«Usage»

Figure 21 – ZDO and commands

Each command that the ZDO supports is implemented in a class responsible for
decoding the received commands, performing the necessary actions for the
command and triggering the response command.

The ZDO statechart is shown in Figure 22.

startup

STARTUP_DONE

idle

evZDODataReq/

processDataReq(params->value)

sending

SENDING_DONE

evZDODataReq/

processDataReq(params->value)

receiving

evZDODataInd/

processDataInd(params->value);

evZDODataInd/

processDataInd(params->value);

prestart

evZDOStartevZDOStart

startup

sendingUpReq

waitingUpRes
tm(3000)

tm(1000)/

sendUpReq();

waitingUpInd

tm(3000)
evZDOUpRes

[params->result]

[else]

evZDOUpInd

[else]

STARTUP_DONE

[processUpdInd(params->value)]

tm(3000)

tm(1000)/

sendUpReq();

tm(3000)
evZDOUpRes

[params->result]

[else]

evZDOUpInd

[else]

[processUpdInd(params->value)]

sending

writingReq

evZDODataRes

SENDING_DONE

tm(15000)

[params->result]

[else]

evZDODataRes
tm(15000)

[params->result]

[else]

Figure 22 – ZDOApplication statechart

5.1.1.5. Endpoints, Devices and Groups

The Zigbee endpoints are implemented in the DPM layer by the ZigbeeEndpoint
class. However, the application running on that endpoint is implemented in the Core
layer, so an interface between these layers is needed. An overview of these classes
and interfaces is shown in Figure 23.

ZDOApplication

ZDOApplication()

init():void

notifyUpdInd(msg:APSUpd...

notifyDataInd(msg:APSDa...

notifyRes(result:bool):void

sendDataReq(clusterId:un...

deviceShortAddress:unsig...

deviceExtAddress:ExtAdd...

* 1
endpoint

ZigbeeEndpoint

endpoint:unsigned c...

ZigbeeEndpoint(subs...

getDeviceExt(addres...

getDeviceShort(addr...

bind(clusterId:unsign...

bind(profileId:unsigne...

notifyInd(msg:APSD...

notifyRes(result:bool...

sendMsg(device:IZig...

sendMsg(group:IZigb...

* 1
endpoint

CbZigbeeEndpoint

«Interface»

notifyIncoming(devic...

getSimpleDescriptor...

notifyResponse(resu...

notifyNewDevice(dev...

notifyNewGroup(gro...

11

IZigbeeEndpoint

«Interface»

sendMsg(device:IZi...

sendMsg(group:IZig...

* 1* 1

ZigbeeDevice

dstEndpoint:unsi...

dstExtAddress:E...

dstShortAddress:...

ZigbeeDevice(end...

getEndpoint():uns...

getAddress():Ext...

getShortAddress(...

setShortAddress(...

*

1
dstGrpAddress

ZigbeeGroup

dstGrpAddress:u...

ZigbeeGroup(addr...

getAddress():unsi...

*

1
dstGrpAddress

IZigbeeDevice

«Interface»

getAddress():Ext...

getEndpoint():un...

getShortAddress...

IZigbeeGroup

«Interface»

getAddress():un...

Figure 23 – Endpoint classes

The interface for the Application Object in the Core layer is composed by two
interfaces: IZigbeeEndpoint and CbZigbeeEndpoint. The Application Object should
implement the CbZigbeeEndpoint interface to be able to receive the responses and
notifications from the ZigbeeEndpoint, which implements the public interface
IZigbeeEndpoint.

The same endpoint can be virtually connected to more than one sensor. For
instance, multiple E-Seal sensors can be monitoring the doors of two or more trailers
in the truck, but these E-Seal sensors will be bound to the same endpoint in the
TGW. The sensors are mapped in the class ZigbeeDevice in the DPM layer, which
provides the communication functions to the Core Layer through the interface
IZigbeeDevice.

Another feature of the Zigbee networks is grouping. It is possible to have a group of
similar devices mapped to one network address. However, this is only partially
implemented in the TGW software.

Every time a device that matches one of the endpoints is found in the network, the
uGW notifies the ZDO in the TGW, which in turn calls the bind method of the
endpoint. This method is shown below.

bool ZigbeeEndpoint::bind(unsigned short profileId, unsigned short shortAddress,

ExtAddressType extAddress, unsigned char endpoint) {

SimpleDescriptor* simpleDescriptor= itsCbZigbeeEndpoint->getSimpleDescriptor();

ZigbeeDevice* device;

// Check if the profile matches

if (simpleDescriptor->getProfileId() != profileId) {

 dbgDebug(ID_ZIGBEE, "Endpoint: profile id doesn't match in binding");

 return false;

}

device = getDeviceExt(extAddress, endpoint);

if (device == NULL) {

 device = new ZigbeeDevice(endpoint, extAddress, shortAddress);

 addItsZigbeeDevice(device);

} else {

 dbgDebug(ID_ZIGBEE, "Endpoint: device already exists in binding");

 device->setShortAddress(shortAddress);

}

itsCbZigbeeEndpoint->notifyNewDevice(device);

return true;

}

What the bind method does is checking if a device with the same MAC address is
already registered. If it does, it updates the network address of this device, but if it
does not exist, it creates a new device. After that it notifies the Application Object
running in the core layer that a device was found or updated.

5.1.1.6. ZCL Frame

The ZCL Frame is an important class in the communication between the DPM and
Core layer modules. This class implements encoding and decoding of the ZCL frame.
Objects of this class are passed between the interface classes of ZigbeePkg and
WirelessSensorsPkg.

The ZCL frame format is shown below.

ZCL Frame = { FrameControl, ManufacturerCode, Transaction, CommandId, Payload }

FrameControl = { FrameType, ManufacturerSpecific, Direction, DisDefaultRes }

The ZCLFrame class can be seen in Figure 24.

ZCLFrame

frameType:unsigned char=0

manufacturerSpecific:bool=0

direction:unsigned char=0

disableResponse:bool=0

manufacturerCode:unsigned short=0

transaction:unsigned char=0

commandId:unsigned char=0

payload:unsigned char*=0

payloadLength:unsigned char=0

ZCLFrame(msg:unsigned char*,size:int)

ZCLFrame(commandId:unsigned char,payload:un...

ZCLFrame(frame:ZCLFrame*)

getMsg(msg:unsigned char**):int

~ZCLFrame()

Figure 24 – ZCLFrame class

5.1.1.7. Module Interface

In the previous sections a part of the interface with the Core layer was shown.
However, according to the TGW software architecture, the main interface between
modules should be a Singleton class. This class has only one instance in the system
and is managed by the SystemModeManager in the System layer.

As shown in Figure 25, the ZigbeeMng class is responsible for instantiating all the
objects for this module. It also provides a connection with the IComport interface.

The singleton ZigbeeMng class is an active class, which means that it runs in its own
thread. By instantiating all the other objects properly, it is possible to make them run
in the same thread as ZigbeeMng, making the whole module run in a single thread.
Furthermore, this thread has to register itself to the watchdog and ping it regularly to
show that it is executing properly.

ZigbeeMng

«SingletonImplementation»

ZigbeeMng()

getId():ModuleId

getName():const char*

deActivateModuleInit...

addEndpoint(endpoin...

IComport

«Interface»

11

IModule

«Interface»IZigbeeMng

«SingletonInterface»

init():void

addEndpoint(end...

1

ZigbeeFactory

itsZDOApplication:ZDOApplication1

itsAPSLayer:APSLayer1

itsLinkLayer:LinkLayer1

itsDataLayer:DataLayer1

1

Figure 25 – Module interface

The two methods of the interface provide all the functionality needed for the startup
of the system. After that, the ZigbeeEndpoint objects and the ZDO take care of the
communication themselves.

The init method attaches the LinkLayer object to the Comport object and starts the
statecharts of the other classes.

The addEndpoint method creates the ZigbeeEndpoint object and attaches it to the
ZDO and to the APSLayer objects. Subsequently all the data transmission will be
done directly to this object and the management will be done by the ZDO.

5.1.1.8. Debug and Serial Port

The debug unit and the serial port of the TGW had to be modified to connect the
external serial port to the uGW. At the same time it was necessary to receive the
debug messages.

The first part of this task was to be able to receive debug messages. That was not
difficult, since the messages could be enabled in the USB port. After that the serial
port was connected to the ZigbeePkg module by adding an extra port to the
ComportHandler.

For more information about the debug and serial port of the TGW see Appendix I.

5.1.1.9. Tests

For the tests of this module a composite class was created containing a ZigbeeMng
object, a Comport object and a stub for the SystemModeManager. The class is
shown in Figure 26.

ZigbeeTestFactory

itsWinComPort:WinComPort1
itsZigbeeMng:ZigbeeMng

1 «SingletonImplementation»

itsSystemModeManagerStub:SystemModeManagerStub
1 «SingletonImplementation»

Figure 26 – Test class

The initial tests were executed in Windows and used a serial port of the computer.
Because the uGW was not available by the time that this module was finished, it was
tested simulating the protocol with frames written according to what was specified in
the uGW protocol. To do that, a software that creates two virtual serial ports
interconnected was used. One port was used by the TGW simulation software and
another was connected to a terminal program, used to send and receive the frames
to the application. With that it was possible to verify that the Zigbee software module
was working as it was supposed to do. A partial log of the initialization is shown
below. In red are the TGW frames and in blue the uGW simulation.

// UPDATE-DEVICE.request

10 02 03 00 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 11 10 03

// Acknowledgement

10 02 FF 00 FF 10 03

// UPDATE-DEVICE.indication

10 02 04 00 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 16 10 03

// Acknowledgement

10 02 FF 00 FF 10 03

// DATA.indication = Active Endpoints Request

10 02 02 01 14 02 00 00 00 02 00 00 00 00 00 05 00 03 00 00 00 00 AF 00 00 BE 10 03

// Acknowledgement

10 02 FF 01 FE 10 03

// DATA.request = Active Endpoints Response

10 02 00 01 0F 00 00 00 05 80 00 06 00 00 00 00 01 80 00 00 0C 10 03

// Acknowledgement

10 02 FF 01 FE 10 03

// DATA.confirm

10 02 01 02 07 02 00 00 00 00 00 00 06 10 03

// Acknowledgement

10 02 FF 02 FD 10 03

// DATA.indication = Simple Descriptor Request

10 02 02 03 15 02 00 00 00 02 00 00 00 00 00 04 00 04 00 00 00 80 00 AF 00 00 3B 10 03

// Acknowledgement

10 02 FF 03 FC 10 03

// DATA.request = Simple Descriptor Response

10 02 00 02 1C 00 00 00 04 80 00 13 00 00 00 00 0E 80 01 00 01 00 10 10 00 03 00 00 06 00 00

05 00 00 17 10 03

// Acknowledgement

10 02 FF 02 FD 10 03

// DATA.confirm

10 02 01 04 07 02 00 00 00 00 00 00 00 10 03

// Acknowledgement

10 02 FF 04 FB 10 03

5.1.2. Core Layer

The Core layer includes all functionality to manage the communication with the
sensors. It is composed of the application layer of the uGW protocol (see chapter
4.3.2). All the classes implemented in this layer are contained within the
WirelessSensorsPkg package in the CorePkg package of the TGW software.

5.1.2.1. Zigbee Cluster Library

The ZCL implementation is one of the most important parts of the WirelessSensors
module. It provides all the classes needed to build Application Objects. These
classes implement clusters, attributes and commands.

The Zigbee clusters are a set of attributes and commands specific for certain
functionality. There are a number of standard commands that can be used for any
kind of cluster and a number of specific commands used only for a particular cluster.
For this project, four cluster classes were implemented, a generic cluster, an OnOff
cluster, a Basic cluster and an IASZone cluster with their respective commands.
These clusters can be seen in Figure 27.

ZigbeeCluster

id:unsigned short

type:clusterType=CLUSTER_U...

ZigbeeCluster(id:unsigned short)

notifyIncoming(device:Wireless...

ZigbeeOnOffCluster

ZigbeeOnOffClu...

notifyIncoming(...

ZigbeeGeneralCluster

ZigbeeGeneralClu...

notifyIncoming(dev...

ZigbeeIASZoneCluster

ZigbeeIASZoneClu...

notifyIncoming(devi...

Figure 27 – Cluster classes

For the attributes, only a generic class ZigbeeAttrib was implemented.

For the commands, each one was implemented in a different class that encodes and
decodes the frames for that specific command.

Some commands have payloads with multiple attributes, as for instance the read
response. In this case, another class links this command to its attributes, as shown in
Figure 28.

ZCLCmdReadRes

ZCLCmdReadRes(clu...

getMsg(msg:unsigned...

setMsg(msg:unsigned...

addError(attribute:unsi...

addAttribute(attribute:...

getTypeId(pos:unsigne...

getAttribId(pos:unsign...

getAttribute(pos:unsig...

getValue(pos:unsigne...

getStatus(pos:unsigne...

quantAttrib():unsigned...

ZigbeeAttrib
1

ZCLCmdReadResField

status:ZCLStatus

attribute:unsigned short

value:unsigned char*=...

valueLength:unsigned ...

typeId:TypeId

1**

Figure 28 – Read response command classes

The Read Attribute Response command frame format is described below.

Read Attributes Response = { ReadRecord1, ReadRecord2, …, ReadRecordN }

ReadRecord = { AttributeId, Status, DataType, Data}

5.1.2.2. Applications

The Zigbee Application Objects are implemented in the TGW software in the
ZigbeeApplication class and its relationships. Each application has a unique
SimpleDescriptor that describes the features of that specific application. This set of
features is composed by clusters and attributes.

An overview of the classes can be seen in Figure 29.

SimpleDescriptor

endpoint:unsigned char=0

profileId:unsigned short=0

deviceId:unsigned short=0

deviceVer:unsigned cha...

inClusterCount:unsigne...

outClusterCount:unsign...

inClusterList:unsigned ...

outClusterList:unsigned...

SimpleDescriptor(endpo...

getString(msg:unsigned...

addInCluster(cluster:un...

addOutCluster(cluster:u...

clusterMatches(clusterI...

ZigbeeCluster

id:unsigned short

type:clusterType=CLUS...

ZigbeeCluster(id:unsign...

notifyIncoming(device:W...

1 *
id

1 *
id

ZigbeeAttrib

id:unsigned short=0

typeId:TypeId=Zigb...

ZigbeeAttrib(id:unsi...

ZigbeeApplication

ZigbeeApplication(endp:unsigned char)

getSimpleDescriptor():SimpleDescrip...

notifyResponse(result:bool):void

notifyIncoming(device:IZigbeeDevice*...

notifyNewGroup(group:IZigbeeGroup*...

notifyNewDevice(device:IZigbeeDevic...

setEndpoint(endpoint:IZigbeeEndpoi...

deviceReady(device:IWirelessSensor...

sendMsg(device:IZigbeeDevice*,clust...

1

1 *
id

1

1 *
id

CbZigbeeEndpoint

«Interface»

1

IZigbeeEndpoint

«Interface»

1

WirelessDevice

online:bool=false

authorized:bool=false

unauthorized:bool=false

WirelessDevice(device:I...

notifyIncoming(comman...

authorize():void

unauthorize():void

isAuthorized():bool

sendMsg(command:ZCL...

sendDefaultRes(cluster:...

1

*

1

*
IZigbeeDevice

«Interface»

11

Figure 29 – Application and ZCL classes

When a command is received from the associated endpoint, it is processed by the
ZigbeeApplication class if it is a general command. If it is a cluster specific command,
it is sent to the cluster that supports that command. If it is an unknown command, the
Default Response is sent with a failure status. As each application can send and
receive commands from multiple sensors, incoming and outgoing queues are used.
The statechart for the ZigbeeApplication can be seen in Figure 30.

idle

evZAppOutgoing/

processSending();
sending

evZAppOutgoing/

processSending();

waiting

tm(10000)
evZAppResponse

tm(10000)
evZAppResponse

receiving

evZAppIncoming/

processIncoming();

evZAppIncoming/

processIncoming();

changing

evZAppNewDevice/

processNewDevice(params->device);

evZAppNewGroup/

processNewGroup(params->group);

evZAppNewDevice/

processNewDevice(params->device);

evZAppNewGroup/

processNewGroup(params->group);

Figure 30 – ZigbeeApplication statechart

Every time a new device is found on the network and bound, the ZigbeeApplication
creates an object of a derived class from WirelessDevice and associates it with the
IZigbeeDevice from the DPM layer. This procedure for the ESealApplication class is
shown below.

void ESealApplication::processNewDevice(IZigbeeDevice* device) {

 ESealDevice *wDev;

 wDev = (ESealDevice*)getDevice(device->getAddress(), device->getEndpoint());

 if (wDev == NULL) {

 wDev = new ESealDevice(device, this->getActiveContext());

 wDev->setOnline(true);

 addItsWirelessDevice(wDev);

 wDev->startBehavior();

 dbgDebug(ID_WSENSORS, "ESealApplication: unknown device online");

 } else {

 wDev->setItsIZigbeeDevice(device);

 wDev->setOnline(true);

 dbgDebug(ID_WSENSORS, "ESealApplication: known device online");

 }

 wDev->init();

}

After the device is initialized, it reports back to this class using the method
deviceReady, which is used to notify the Business layer that a new device is ready.

5.1.2.3. Sensors

To implement the support for different sensors, a derived class from
ZigbeeApplication has to be created, basically with the overridden method
processNewDevice. Also a new class derived from WirelessDevice has to be
implemented.

To facilitate the creation of all the clusters and attributes of the application class, the
chosen approach was to use a composite class. For the E-Seal application it is
shown in Figure 31.

ESealFactory

itsAttrib_Model:ZigbeeAttrib1

itsAttrib_PowerSource:ZigbeeAttrib1

itsAttrib_DeviceEnabled:ZigbeeAttrib1

itsAttrib_DoorAlarmOnOff:ZigbeeAttrib1

itsAttrib_AlarmStatus:ZigbeeAttrib1

itsSimpleDescriptor:SimpleDescriptor1

itsESealApplication:ESealApplication1

itsCluster_IASZone:ZigbeeIASZoneCluster1

itsCluster_Basic:ZigbeeGeneralCluster1

itsCluster_OnOff:ZigbeeOnOffCluster1

itsAttrib_Manufacturer:ZigbeeAttrib1

itsAttrib_HwVersion:ZigbeeAttrib1

itsAttrib_AppVersion:ZigbeeAttrib1

Figure 31 – ESealFactory composite class

Still using the E-Seal as example, the class for the sensor is shown in Figure 32.

The interfaces IWirelessSensor, IESealSensor and CbESealSensor are used to
interface with the Business layer. In the same way, for the panic button and
temperature sensor there are the interfaces WPanicSensor, CbWPanicSensor,
WTempSensor and CbWTempSensor with specific functionality for these sensors.

WirelessDevice

IWirelessSensor

«Interface»

getAddress():unsigned long long

getEndpoint():unsigned char

getId():unsigned char

isAuthorized():bool

getType():sensorType

«Realization»«Realization»

ESealDevice

«Realization»

IESealSensor

«Interface»

updateAttributes():void

setDeviceEnabled(value:bool):void

setDoorAlarm(value:bool):void

getAppVersion():unsigned char

getHwVersion():unsigned char

getDeviceEnabled():bool

getDoorAlarm():bool

getDoorAlarmStatus():bool

getManufacturer():unsigned char*

getModel():unsigned char*

getPowerSource():unsigned char

subscribe(subscriber:CbESealS...

unsubscribe(subscriber:CbESea...

«Realization»

*

CbESealSensor

«Interface»

attributesUpdated(sensor:IESealSensor*):...

doorStatusChanged(sensor:IESealSensor*...

operationCompleted(sensor:IESealSensor...

*

Figure 32 – E-Seal sensor class and interface

The ESealDevice class processes the commands received from the real sensor and
send the responses. It also receives the requests from the Business layer and takes
the corresponding actions. The statechart for this class is shown in Figure 33.

idle
updatingBasic1evESealDevUpdBasic1evESealDevUpdBasic1

updatingOnOff

updatingIASZone
evESealDevUpdIASZone

evESealDevUpdFinished/

notifyUpdate(true);

tm(20000)/

notifyUpdate(false);

tm(20000)

evESealDevUpdIASZone

evESealDevUpdFinished/

notifyUpdate(true);

tm(20000)/

notifyUpdate(false);

tm(20000)

evESealDevEnable/

enableDevice(params->value);

enablingDevice

tm(20000)/

notifyCompleted(false);

evESealDevCompleted/

notifyCompleted(params->result);

evESealDevEnable/

enableDevice(params->value);

tm(20000)/

notifyCompleted(false);

evESealDevCompleted/

notifyCompleted(params->result);

evESealDevAlarm/

enableAlarm(params->value);

enablingAlarm

tm(20000)/

notifyCompleted(false);

evESealDevCompleted/

notifyCompleted(params->result);

evESealDevAlarm/

enableAlarm(params->value);

tm(20000)/

notifyCompleted(false);

evESealDevCompleted/

notifyCompleted(params->result);

updatingBasic2

evESealDevUpdOnOff

tm(20000)

tm(20000)

evESealDevUpdBasic2

evESealDevUpdOnOff

tm(20000)

tm(20000)

evESealDevUpdBasic2

Figure 33 – ESealDevice statechart

Taking as an example the processing of a Read Attributes Response command, part
of the code is shown below. Observe that depending on the state of the object, it can
trigger other events using the Rhapsody macro GEN.

void ESealDevice::cmdReadRes(ZCLCmdReadRes* command) {

 unsigned char *value;

 unsigned char valueLength;

 dbgDebug(ID_WSENSORS, "ESealDevice: read response");

 for (int i=0; i<command->quantAttrib(); i++) {

 if (command->getStatus(i)==ZCLFrame::ZCL_SUCCESS) {

 valueLength = command->getValue(i, &value);

 storeAttrib(command->getClusterId(), command->getAttribId(i),

 command->getTypeId(i), value, valueLength);

 delete value;

 }

 }

 if (IS_IN(updatingBasic1) && (command->getClusterId()==0x0000))

 GEN(evESealDevUpdBasic2);

 else if (IS_IN(updatingBasic2) && (command->getClusterId()==0x0000))

 GEN(evESealDevUpdOnOff);

 else if (IS_IN(updatingOnOff) && (command->getClusterId()==0x0006))

 GEN(evESealDevUpdIASZone);

 else if (IS_IN(updatingIASZone) && (command->getClusterId()==0x0500))

 GEN(evESealDevUpdFinished);

}

void ESealDevice::storeAttrib(unsigned short clusterId, unsigned short attribId, const

ZigbeeAttrib::TypeId& typeId, unsigned char* value, unsigned char valueLength) {

 unsigned short alarm;

 switch (clusterId) {

 //Basic Cluster

 case 0x0000:

 switch (attribId) {

 case 0x0001:

 if (typeId==ZigbeeAttrib::ZCL_TYPE_UNSINT8) {

 appVersion = value[0];

 }

 break;

 case 0x0003:

 if (typeId==ZigbeeAttrib::ZCL_TYPE_UNSINT8) {

 hwVersion = value[0];

 }

 break;

 case 0x0004:

 if (typeId==ZigbeeAttrib::ZCL_TYPE_STRING_CHAR) {

 if (manufacturer) delete manufacturer;

 manufacturer = new unsigned char[valueLength];

 memcpy(manufacturer,value,valueLength);

 }

 break;

 case 0x0005:

 if (typeId==ZigbeeAttrib::ZCL_TYPE_STRING_CHAR) {

 if (model) delete model;

 model = new unsigned char[valueLength];

 memcpy(model,value,valueLength);

 }

 break;

 case 0x0007:

 if (typeId==ZigbeeAttrib::ZCL_TYPE_ENUM8) {

 powerSource = value[0];

 }

 break;

 case 0x0012:

 if (typeId==ZigbeeAttrib::ZCL_TYPE_LOGICAL) {

 if (value[0]==0) deviceEnabled = false;

 else deviceEnabled = true;

 }

 break;

 }

 break;

 //OnOff Cluster

 case 0x0006:

 if (attribId==0x0000 && typeId==ZigbeeAttrib::ZCL_TYPE_LOGICAL) {

 if (value[0]==0) doorAlarmOn = false;

 else doorAlarmOn = true;

 }

 break;

 //IASZone Cluster

 case 0x0500:

 if (attribId==0x0002 && typeId==ZigbeeAttrib::ZCL_TYPE_BITMAP16) {

 alarm = doorAlarm;

 doorAlarm = value[1];

 doorAlarm = doorAlarm << 8;

 doorAlarm = doorAlarm | value[0];

 if (IS_IN(idle) && ((alarm&0x0001)!=(doorAlarm&0x0001)))

 notifyAlarm();

 }

 break;

 }

}

When the sensor is first created or become online, the object is in the initialization
state, which means that it will perform a series of commands with the remote sensor
to update the attributes, enable the device, set alarms etc.

As an example, the updateAttributes method can be called from the Business layer to
read all the attributes in the remote sensor and update the attribute values in the
TGW memory. When this method is called, it triggers the event
evESealDevUpdBasic1, which will make the object change to state updateBasic1.
When the object enters this state, it calls the private method updateBasicCluster1,
which sends a read attributes command to the sensor. After the response for this
command is received, the values for the attributes are stored and it triggers the event
evESealDevUpdBasic2, which changes the object state to updateBasic2. This
process goes on until all the attributes are read. If a response for one command does
not arrive, the states have timeouts and change to the following state. The method
updateBasicCluster1 is shown below.

void ESealDevice::updateBasicCluster1() {

 ZCLCmdRead *cmd;

 ZigbeeCluster *cluster;

 dbgDebug(ID_WSENSORS, "ESealDevice: updating Basic Cluster");

 cluster = itsZigbeeApplication->getItsZigbeeCluster(0x0000);

 cmd = new ZCLCmdRead(cluster);

 cmd->addAttribute(cluster->getItsZigbeeAttrib(0x0001));

 cmd->addAttribute(cluster->getItsZigbeeAttrib(0x0003));

 cmd->addAttribute(cluster->getItsZigbeeAttrib(0x0004));

 sendMsg(cmd);

 delete cmd;

}

5.1.2.4. Module Interface

In the same way as the interface of the ZigbeePkg, the interface of this module is
composed of an active Singleton class, shown in Figure 34. It also has its own thread
and is attached to the watchdog.

IModule

«Interface»

IWirelessSensorsMng

«SingletonInterface»

authorizeSensor(sensor:IWirel...

unauthorizeSensor(sensor:IWi...

getSensors(sensors:std::list<I...

subscribe(subscriber:CbWirel...

unsubscribe(subscriber:CbWi...

getAuthorizedSensors(sensor...

getUnauthorizedSensors(sens...

WirelessSensorsMng

«SingletonImplementation»

1 *

ZigbeeApplication

1 *

*

CbWirelessSensorsMng

«Interface»

onlineSensor(sensor:IWirelessS...

*

Figure 34 – WirelessSensorsMng class and interfaces

Regarding the interface with the Business layer, the WirelessSensorsMng class
implements a set of methods defined in the interface IWirelessSensorsMng, and
uses the callback interface CbWirelessSensorsMng to notify when a sensor is online.

The methods getSensors, getAuthorizedSensors and getUnauthorizedSensors return
a list of all the sensors, of the authorized sensors and of the unauthorized sensors
respectively. A sensor is authorized when it is recognized by the application as being
a valid sensor. This is done using the method authorizeSensor. On the other hand, a
sensor is unauthorized using the method unauthorizeSensor when it is recognized as
being an unknown or invalid sensor.

The methods subscribe and unsubscribe are used to register and unregister a
listener object that implements the interface CbWirelessSensorsMng.

5.1.2.5. Persistent data

In order to preserve the information of which sensors were authorized and which
ones were unauthorized, the system needed some kind of persistent data. To do
that, the idea was to store the list of all sensors in the persistent memory of the TGW.

The persistence of data in the TGW is a particular and interesting case. The system
implements support for Serializable classes, which means that the objects of these
classes encode and decode themselves into stream buffers. Furthermore, there is a
module called SettingsManager, which is responsible for storing and retrieving these
buffers from the persistent memory.

The approach then was to make the ZigbeeApplication class derive from Serializable
and implement the encode and decode methods. However, the WirelessSensorsMng
object was the responsible for saving this information whenever a change occurred
and reading the list of sensors at startup.

5.1.2.6. Tests

To test the WirelessSensorsPkg a similar approach to the tests of the ZigbeePkg was
taken. A class ZigbeeTestFactory was created in this module too, but this class has
some additional functionality. It implements the callback interfaces
CbWirelessSensorsMng, CbESealSensor, CbWPanicSensor and CbWTempSensor.
This was done to test the system in Windows and be able to receive the messages
from the sensors.

The next test was to run the software in the TGW hardware. It was necessary to add
the ZigbeePkg and WirelessSensorsPkg to the rest of the TGW software and put the
ZigbeeMng and WirelessSensorsMng in the creation list at startup. After that the
software was compiled and downloaded to the TGW hardware.

5.2. Hardware

In the beginning of this project it was expected to be received a uGW and an E-Seal
devices. The estimated dates for delivering these equipments were set in the first
week. However, none of them was received in the prototype form. The E-Seal project

was delayed and was removed from the scope of this project. The uGW was received
in the form of an early development prototype.

5.2.1. uGW prototype

The uGW prototype received was composed of two development kits connected with
soldered wires. One kit has the microcontroller and the other has the RF interface.

The first kit is the Atmel EVK1101[27] with an AVR32 AT32UC3B microcontroller as
shown in Figure 35. The second kit is the RCB231ED [28] with and AT86RF231 RF
chip, similar to the one shown in Figure 36, designed by Dresden Elektronik.

Figure 35 – Atmel EVK1101

Figure 36 – RCB231ED

The combination of the two kits resulting in the uGW prototype is shown in Figure 37.

Figure 37 – uGW Prototype

With this prototype it was possible to complete the development of the system and
perform all the tests. However, with this configuration it was impossible to do the
demonstration in a moving truck, because the soldered wires would break apart.

5.3. Sensor prototypes

Mostly because the E-Seal was excluded from the scope, it was decided to develop
prototypes for sensors. The most important was a simulator for the E-Seal. It was
also decided to develop a movable panic button and a temperature sensor.

The first step of the development of the sensors was to change the application that
run in the ATmega3290P microcontroller to read the temperature from the thermistor
and to monitor the joystick to identify if the button was pressed. It was also necessary
to send this information to the ATmega1284P microcontroller for processing and
sending to the Zigbee network.

This first task was made easy because all these functions are present in the original
Raven firmware [29], downloadable at the Atmel website. Subsequently these
functions were merged in the BitCloud firmware.

The second step of the development was to read the information sent from the
ATmega3290P microcontroller and take the necessary actions. This was also
facilitated by using some code present in the original Raven firmware and the
WSNDemo application example of the BitCloud SDK. However, the final code was
not very good in structure because the BitCloud encapsulates the serial port
communication in the LCD support drivers. A workaround with a callback function

was developed, since it was not necessary to have production level code for the
sensors. Part of the code is shown below.

/***

 Process the message received from the 3290P

 ***/

static void checkMsg(void)

{

 // If it is a key command and the key is ENTER

 if (buffer[1]==0x01 && buffer[2]==0x10) {

 if (alarmValue) {

 visualizeNormal();

 alarmValue = 0;

 } else {

 visualizeAlarm();

 alarmValue = 1;

 }

 if (WAITING_DEVICE_STATE == appDeviceState) {

 sendDeviceStatus();

 appDeviceState = SENDING_DEVICE_STATE;

 appPostSubTaskTask();

 }

 }

 rxSize = 0;

}

/***

 Reads the incoming message from the 3290P processor

 ***/

void usartRxCallback(uint8_t readBytesLen)

{

 uint8_t sizeRead = 0;

 if (rxSize + readBytesLen < 10) {

 sizeRead = BSP_ReadUart(buffer+rxSize, readBytesLen);

 rxSize += sizeRead;

 if (buffer[rxSize-1]==SIPC_EOF) checkMsg();

 } else {

 rxSize = 0;

 }

}

An interesting feature of the BitCloud stack is that it has a task manager implemented
which is responsible for scheduling the protocol tasks and user tasks. Most of the
development for this stack has to be done using callback functions. For instance to
process the data received from the RF interface, it is necessary to register a callback
function in the stack. This function is supposed to have a short execution time, so if
more processing is needed, it is possible to post a task to the scheduler.

5.3.1. Door sensor simulator

The door sensor developed simulates the E-Seal by changing the door status when
the button is pressed. Every time the joystick is pressed, the software checks if the
status of the door is open or closed, inverts it and sends the new status to the TGW.

Apart from that, it answers all the commands from the TGW accordingly. This helped
to test and debug all the initialization procedure and the alarm notification in the TGW
software.

A communication log of the TGW and the E-Seal simulator can be seen in Appendix
V.

5.3.2. Movable panic button

The idea of the movable panic button is that it can be installed anywhere in the truck
or even taken with the driver when he/she leaves the truck.

An additional function is message reception. The device is able to receive text
messages from the TGW and show them in the LCD display. For messages longer
than the display, it scrolls to the sides. With this feature it is possible to send a
message from the web portal directly to the driver.

5.3.3. Temperature sensor

The temperature sensor is based in a Negative Temperature Coefficient thermistor
attached to the Analog-Digital converter in the Raven board. This implementation has
some issues. The first is that the thermistor is located very near the power supply of
the board. As a result the power supply might increase the temperature read. The
second issue is because one of the AD lines used to read the value of the thermistor
is also connected to the JTAG interface. Consequently to be able to read the value of
the thermistor it is necessary to disable the JTAG and the debugging features.

As this sensor is supposed to be installed in the trailer, for demonstration purposes it
was also added a Trailer ID in the same device. The idea is to be able to identify
which trailer is connected to the truck.

6. Verification and Tests

Most of the verification and tests of the system were done during the development.
Every time a new feature was added, it was tested to make sure that it was working
as expected. With this incremental test approach the tests to be performed in the end
of the development process were drastically reduced.

6.1. General tests

The first tests during the development were done imputing the uGW protocol frames
manually, as discussed in chapter 5.1.1.9. The objective of these tests was to make
sure that the protocol parser was working properly and that the communication with
the uGW would work. This represented a big step forward to the project because
when the uGW prototype was received, the communication worked smoothly with
only a few adjustments in the TGW software and in the uGW software.

The tests with the TGW hardware were very important too, because many issues
appeared with the integration, compilation, download and execution of the software.
The TGW unit used in the tests is shown in Figure 38.

Figure 38 – TGW unit

The integration didn’t pose very difficult, but it was needed to understand the
connections between many different modules of the TGW software to successfully
generate the code.

The compilation was more complicated, since the complete process used to take
more than 3 hours in the computer used. After the first compilation, the time was
reduced and depended on how many source files were changed. The steps for
compiling were: generating the code in Rhapsody, compiling and linking.

For more information about how to upgrade the TGW software see Appendix I.

6.2. Sensor tests

The tests of the sensor prototypes were performed after the WirelessSensorPkg was
in its last steps of development. The objective of these tests was to test and validate
the communication with the sensors. Many problems were fixed in the TGW software,
in the uGW software and even some bugs in the BitCloud stack. As the sensors
responded to all the TGW commands as they should, it was possible to test the
timing of all parts of the system and check all layers of the protocol. The initial tests
were run using the TGW software compiled for Windows with a serial port sniffer to
monitor the communication.

To debug the software running the sensor boards, the JTAG interface was used.
That made the testing much easier for this part of the system.

The communication log for the TGW, uGW and the E-Seal simulator is shown in
Appendix V.

7. Closing

The last part of the work for this project was to evaluate available hardware for
Zigbee devices and prepare a cost estimation for this solution.

7.1. Hardware proposal

The idea was to know what hardware is involved to implement a Zigbee sensor or to
include in the TGW circuit board for the next generation equipment.

As the TGW microcontroller is from the manufacturer Freescale, the initial idea was
to have something from the same brand. However, it showed to be more expensive
and information about the license for the use of the Zigbee stack from Freescale is
not completely available in their website.

The solution proposed is based in Atmel parts. The main advantages are the low
cost, availability, free and simple Zigbee stack. The experience implementing the
sensor prototypes contributed for this choice because the Zigbee stack from Atmel
proved to be very simple to work with.

The circuit schematic is shown in Appendix VI and the bill of materials in Appendix
VII. This solution includes the Zigbee RF hardware, a PCB antenna and the
microcontroller with the Zigbee stack. The microcontroller can also be used for other
purposes depending on the application.

If a new wireless sensor was to be developed with this hardware, the only additional
hardware needed would be for the sensor itself. That means that all the hardware for
the Zigbee network and the microcontroller are included in this solution.

If the support for Zigbee networks was to be included in the TGW circuit board, the
proposed solution could be used and connected to the TGW main processor using a
USART serial port or an SPI port for instance.

7.2. Cost estimation

The component count for this solution is very low, which contributed for having a
reduced cost. It has only 3 resistors, 10 small capacitors, 2 ICs and 5 other
components, summing 20 parts in total.

The estimated total cost for this hardware is only USD 8,23. However, this cost is
based on prices available on the internet, which means that it can probably be
reduced with higher volumes, supplier agreements etc.

8. Conclusions

The achievement of this project is a complete end to end wireless network trial
system. From the sensors in one end to the internet portal in the other end,
everything was developed. However, the tests were carried out only in simulated
environments since the uGW hardware was unsuitable for installation in a real truck.

Although the scope of work was changed during the way, the goal of this thesis work
is considered to be accomplished. When problems were found, solutions were
discussed among the stakeholders and decisions were made on what to do to solve
or get around the problems. In the end even without receiving some of the hardware
as planned, the demonstration of the system was possible.

With this thesis work it was possible to see that the implementation of the software to
support Zigbee networks is of medium to low complexity. This implies that with the
right level of investment it is possible to develop a complete system within a
reasonable time frame.

It was also shown that the hardware integration is feasible, with simple circuits, low
cost parts and complete support for the Zigbee stack.

8.1. Future Work

Although the software developed for the TGW was intended to be a proof of concept,
it was developed with the best practices in mind and can be re-used in future
projects. In addition the classes were built in a way that new sensors can be added
with very little effort.

The sensors were developed only as prototypes and the firmware for these devices
would have to be improved in order to have real products. The intention of this work
was to have the sensors to complete the system and be able to test everything.

Although many issues related with Zigbee networks have been studied by others, like
Wi-Fi coexistence [30], some additional work is needed regarding tests. When the
proper hardware for the uGW is received, it is very advisable to have experiments in
real trucks. Radio frequency interference, distance between sensors, mechanics and
other issues might arise when the equipment is placed in the actual environment of a
truck.

References

[1] All, P. Common Wireless Gateway, Volvo Technology, January 2008

[2] Datachassi AB
URL: http://www.datachassi.com [verified 2009-10-23]

[3] Wikipedia, IEEE 802.15.4-2006
URL: http://en.wikipedia.org/wiki/IEEE_802.15.4-2006 [verified 2009-10-23]

[4] IEEE 802.15 Working Group for WPANs
URL: http://www.ieee802.org/15/ [verified 2009-10-23]

[5] Sullivan, L. Wal-Mart Tests Sensor Networks in Supercenters, Information Week,
March 2006

[6] Goode, B. Prediction: Wal-Mart Will Influence Sensors, Sensors Magazine, March
2006

[7] Nucleus RTOS – Mentor Graphics
URL: http://www.mentor.com/products/embedded_software/nucleus_rtos/ [verified
2009-10-23]

[8] Actia, Telematic Gateway and Terminal Unit System Specification, 2006

[9] Wikipedia, Zigbee
URL: http://en.wikipedia.org/wiki/Zigbee [verified 2009-10-23]

[10] Wikipedia, Mesh networking
URL: http://en.wikipedia.org/wiki/Mesh_networking [verified 2009-10-26]

[11] The Zigbee Alliance
URL: http://www.zigbee.org [verified 2009-10-23]

[12] Daintree Networks, Getting Started with ZigBee and IEEE 802.15.4, 2008

[13] Project Management Institute, Project Management Body of Knowledge, Fourth
Edition, 2008

[14] Telelogic (IBM), Rhapsody Getting Started Guide, 2008

[15] Telelogic (IBM), Rhapsody User Guide, 2008

[16] I-Logix (Telelogic IBM), “Essential” Tool Training – Introduction to Rhapsody in
C++, 2005

[17] Volvo Technology AB, Dynafleet Evolution On-Board Software Architectural
Document (SWAD), 10 October, 2005

http://www.datachassi.com/
http://en.wikipedia.org/wiki/IEEE_802.15.4-2006
http://www.ieee802.org/15/
http://www.mentor.com/products/embedded_software/nucleus_rtos/
http://en.wikipedia.org/wiki/Zigbee
http://en.wikipedia.org/wiki/Mesh_networking
http://www.zigbee.org/

[18] Atmel Raven Evaluation Kit
URL: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4291 [verified
2009-11-06]

[19] Atmel, AVR2015: RZRAVEN Quick Start Guide, revision B, March 2008

[20] Atmel, AVR2016: RZRAVEN Hardware User's Guide, revision D, April 2008

[21] Atmel, AVR2050: BitCloud User Guide, revision D, May 2009

[22] Atmel, AVR2052: BitCloud Quick Start Guide, revision E, August 2009

[23] Atmel, AVR JTAGICE mkII
URL: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3353, [verified
2009-11-06]

[24] Atmel, AVR Studio 4
URL: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725, [verified
2009-11-06]

[25] Zigbee Alliance, Zigbee Specification, January 17, 2008

[26] Zigbee Alliance, Zigbee Cluster Library Specification, October 19, 2007

[27] Atmel EVK1101 Evaluation Kit
URL: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4175, [verified
2009-11-06]

[28] Dresden Elektronik, Radio Controller Board RCB231ED V4.1.1
URL: http://www.dresden-elektronik.de/shop/prod71.html?language=en, [verified
2009-11-06]

[29] Atmel, AVR2017: RZRAVEN Firmware, revision A, May 2008

[30] Schneider Electric, Zigbee WiFi Coexistence, April 15, 2008

[31] Volvo Technology AB, Rhapsody Guideline, Dynafleet Evolution, 14 March, 2006

[32] HHD Software, Free Serial Port Monitor
URL: http://www.serial-port-monitor.com/index.html, [verified 2009-11-09]

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4291
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3353
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4175
http://www.dresden-elektronik.de/shop/prod71.html?language=en
http://www.serial-port-monitor.com/index.html

Appendixes

I. TGW Description

Confidential Information

II. Communication Protocol

1. Scope

This document describes the protocol used by the TGW and the uGW for data-
exchange.

2. Link Layer

The frame starts with the frame header DLE, STX followed by data of variable length.
After the data the frame footer follows, DLE, ETX. If data contains a value equal to
DLE it should be escaped with an additional DLE to prevent false frame ends or
frame starts to appear inside a frame.

Link Layer frame format
Byte Number Description Value Notes

0 DLE 0x10 Data link escape. Indicates that next character is a control character.

1 STX 0x02 Start of frame

2 Data Data to be transmitted.

N-1 DLE 0x10 Data link escape. Indicates that next character is a control character.

N ETX 0x03 End of frame

Example 1:
Data message to be transmitted is 0x20, 0x30, 0x40
After framing the message will be transmitted on the serial link as:
DLE, STX, 0x20, 0x30, 0x40, DLE, ETX.

Example 2:
Data message to be transmitted is 0x20, 0x10, 0x30, 0x40
Note the DLE, 0x10, control-character that is part of the data message.
After framing and escaping the message will be transmitted as follows:
DLE, STX, 0x20, DLE, DLE, 0x30, 0x40, DLE, ETX
The data byte that is equal to the control character DLE, 0x010 has been escaped
with an additional DLE.

Example 3:
Data message to be transmitted is 0x20, 0x10, 0x03, 0x30, 0x40
Note the false frame end inside the message.
After framing and escaping the message will be transmitted as follows:
DLE, STX, 0x20, DLE, DLE, 0x03, 0x30, 0x40, DLE, ETX
Note the extra escape character DLE inserted in the message to indicate that the
DLE inside the message is part of the data message and not a control-character.

3. Data layer

The data layer consists of three header bytes followed by a variable data payload
and ended with one byte footer.

Data Layer frame format
Byte Number Description Notes

0 Primitive Indicates the APS primitive.

1 Sequence Sequence number.

2 Data Length Length of the data to be transmitted.

3 Data Data to be transmitted.

N Checksum Checksum of the frame.

When the Not Acknowledgement primitive is received a retransmission of the original
message should be done.

3.1. Header

The sequence number is incremented every time a message is transmitted. The
uGW has one sequence and the TGW has another.

Application Support Sub-Layer (APS) primitives
ID Description Notes

0 APSDE-DATA.request From the TGW to the uGW

1 APSDE-DATA.confirm From the uGW to the TGW

2 APSDE-DATA.indication From the uGW to the TGW

3 APSME-UPDATE-DEVICE.request Tells the uGW that the TGW is present

4 APSME-UPDATE-DEVICE.indication

0xFE Not acknowledged Transmitted if data was corrupted, i.e checksum didn’t match.

0xFF Acknowledged Transmitted after receiving a correct data message.

3.2. Footer

The footer consists of 1 byte that holds the checksum. The checksum is calculated
using 8-bit XOR of all bytes from the data header to the end of the data payload.

4. Application Support Sub-Layer

For this first implementation, only a few primitives had to be implemented. Their
frame formats and utilization follow the description in items 2.2.4 and 4.4.4 of the
Zigbee specification.

The fixed addresses in the network are as follows:

Address Description

0x0000 uGW

0x0000 TGW

0xFFFF Broadcast

0xFFFC All lamps and uGW

0xFFFD All nodes with CS_RX_ON_WHEN_IDLE set to true.

The use of the APSME-UPDATE-DEVICE primitive is described in item 4.6.3.2.2 of
the Zigbee specification.

4.1. Frame formats

The frame format for the APSDE-DATA.request is as follows, according to item
2.2.4.1.1 of the Zigbee specification:

Field

DstAddrMode

DstAddress

DstEndpoint

ProfileId

ClusterId

SrcEndpoint

ADSULength

ADSU

TxOptions

RadiusCounter

The frame format for the APSDE-DATA.confirm is as follows, according to item
2.2.4.1.2 of the Zigbee specification:

Field

DstAddrMode

DstAddress

DstEndpoint

SrcEndpoint

Status

TxTime

The frame format for the APSDE-DATA.indication is as follows, according to item
2.2.4.1.3 of the Zigbee specification:

Field

DstAddrMode

DstAddress

DstEndpoint

SrcAddrMode

SrcAddress

SrcEndpoint

ProfileId

ClusterId

ASDULength

ASDU

Status

SecurityStatus

LinkQuality

RxTime

The frame format for the APSME-UPDATE-DEVICE.request is as follows, according
to item 4.4.4.1.1 of the Zigbee specification:

Field

DestAddress

DeviceAddress

Status

DeviceShortAddress

The frame format for the APSME-UPDATE-DEVICE.indication is as follows,
according to item 4.4.4.2.1 of the Zigbee specification:

Field

SrcAddress

DeviceAddress

Status

DeviceShortAddress

For the APSDE-DATA frames the ASDULength field should be 1 byte, the security
status should also be 1 byte and the rxTime and txTime fields should be 4 bytes.
The status field should be 1 byte according to the table below:

APS_SUCCESS_STATUS = 0x00, //!<SUCCESS

APS_ASDU_TOO_LONG_STATUS = 0xa0, //!<ASDU_TOO_LONG

APS_DEFRAG_DEFERRED_STATUS = 0xa1, //!<DEFRAG_DEFERRED

APS_DEFRAG_UNSUPPORTED_STATUS = 0xa2, //!<DEFRAG_UNSUPPORTED

APS_ILLEGAL_REQUEST_STATUS = 0xa3, //!<ILLEGAL_REQUEST

APS_INVALID_BINDING_STATUS = 0xa4, //!<INVALID_BINDING

APS_INVALID_GROUP_STATUS = 0xa5, //!<INVALID_GROUP

APS_INVALID_PARAMETER_STATUS = 0xa6, //!<INVALID_PARAMETER

APS_NO_ACK_STATUS = 0xa7, //!<NO_ACK

APS_NO_BOUND_DEVICE_STATUS = 0xa8, //!<NO_BOUND_DEVICE

APS_NO_SHORT_ADDRESS_STATUS = 0xa9, //!<NO_SHORT_ADDRESS

APS_NOT_SUPPORTED_STATUS = 0xaa, //!<NOT_SUPPORTED

APS_SECURED_LINK_KEY_STATUS = 0xab, //!<SECURED_LINK_KEY

APS_SECURED_NWK_KEY_STATUS = 0xac, //!<SECURED_NWK_KEY

APS_SECURITY_FAIL_STATUS = 0xad, //!<SECURITY_FAIL

APS_TABLE_FULL_STATUS = 0xae, //!<TABLE_FULL

APS_UNSECURED_STATUS = 0xaf, //!<UNSECURED

APS_UNSUPPORTED_ATTRIBUTE_STATUS = 0xb0, //!<UNSUPPORTED_ATTRIBUTE

5. Application Layer

The application Layer will receive and transmit in the payload (ASDU) of the
Application Support Sub-Layer.

Each application running on the TGW on its Endpoint will only receive messages
addressed to it.

The Application Layer will implement a partial ZDO running on endpoint 0 (zero) with
only some basic functionality, like information of the Simple Descriptors of each
Endpoint for binding purposes.

The uGW will have the complete ZDO and will be responsible for bindings, security,
binding table management, network management, service and device discovery, etc.

In order to get the necessary information from the partial ZDO running in the
Application Layer, the standard Zigbee Device Profile commands will be used. For
instance, to get the Simple Descriptor of one endpoint, the command
Simple_Desc_req will be issued by the uGW and the TGW will respond with the
Simple_Desc_rsp command.

If necessary, the partial ZDO can be extended later with more functionality.

5.1. Zigbee Device Profile

The list of the Zigbee Device Profile commands supported by the partial ZDO running
in endpoint 0 of the TGW are as follows:

Supported ZDO commands from the uGW

Command Cluster ID Zigbee Specification

Simple_Desc_req 0x0004 2.4.3.1.5

Active_EP_req 0x0005 2.4.3.1.6

End_Device_Bind_req 0x0020 2.4.3.2.1

Bind_req 0x0021 2.4.3.2.2

Supported ZDO commands from the TGW

Command Cluster ID Zigbee Specification

Simple_Desc_rsp 0x8004 2.4.4.1.5

Active_EP_rsp 0x8005 2.4.4.1.6

End_Device_Bind_rsp 0x8020 2.4.4.2.1

Bind_rsp 0x8021 2.4.4.2.2

The End_Device_Bind_req request frame does not follow the Zigbee standard
specification and will have the following format:

Name Type Valid Range Description

Binding Target Device Address 16 bit The address of the target for the binding.
This can be either the primary binding
cache device or the short address of the
local device.

SourceIEEE Address IEEE Address A valid 64 bit IEEE
address

IEEE address of the device generating the
request

Source Endpoint 8 bits 1-240 The endpoint of the device

Destination Endpoint 8 bits 1-240 The endpoint of the TGW

Profile ID Integer 0x0000 – 0xFFFF Profile ID that matched

NumInClusters Integer 0x00 – 0xFF The number of Input Clusters provided for
end device binding within the InClusterList.

InClusterList 2*NumInClusters List of Input ClusterIDs to be used for
matching. The InClusterList is the desired
list to be matched by the ZigBee
coordinator with the Remote Devices
output clusters (the elements of the
InClusterList are supported input clusters
of the Local Device).

NumOutClusters Integer 0x00 – 0xFF The number of Output Clusters provided
for end device binding within the
OutClusterList.

OutClusterList 2*NumOutClusters List of Output ClusterIDs to be used for
matching. The InClusterList is the desired
list to be matched by the ZigBee

coordinator with the Remote Devices
output clusters (the elements of the
OutClusterList are supported input clusters
of the Local Device).

The simple descriptor must be specified for each endpoint according to the following
format, described in the Zigbee Specification item 2.3.2.5.

Simple Descriptor

Field Name Length (bits)

Endpoint 8

Application profile identifier 16

Application device identifier 16

Application device version 4

Reserved 4

Application input cluster count 8

Application input cluster list 16*i (where i is the value of the application
input cluster count)

Application output cluster count

Application output cluster list 16*o (where o is the value of the
application output cluster count)

5.2. Start up

The TGW sends the primitive APSME-UPDATE-DEVICE.request once every second
indicating that it is connected. The message is acknowledged by the uGW. After that
the uGW send the APSME-UPDATE-DEVICE.indication to the TGW, which indicates
that the link is established and running.

The first time the APSME-UPDATE-DEVICE.request is received by the uGW, it
should start the procedure to discover the endpoints in the TGW and try to match
them with endpoints in the network. The uGW will send an Active_EP_Req and
receive the number of active endpoints in the TGW. The endpoint numbers 0-127 are
reserved for uGW internal use and the TGW can use endpoint number starting with
index 128.

Endpoint Description

0 Reserved for ZDO

1-127 Reserved for uGW

128-240 Reserved for TGW

After the endpoint discovery the uGW will ask for the simple descriptors of each
endpoint through the Simple_Descr_req. The descriptors will be matched with
services provided by nodes in the network. If one output cluster and profile id
matches against a node input cluster and profile id, the uGW will issue an
end_device_bind_req for each device match indicating the address and the endpoint
of the node. The same method applies to the TGW input clusters. The TGW can then
start communicating directly with the end device.

The sequence diagram for the startup procedure is as follows:

5.3. Zigbee Cluster Library

For endpoints 128 to 240, standard and custom clusters will be supported.
The ZCL frame format is as follows, according to the ZCL Specification item 2.3.1:

Bits: 8 0/16 8 8 Variable

Frame control Manufacturer code Transaction
sequence number

Command identifier Frame payload

The details of each field of the frame can be found in item 2.3.1 of the ZCL
Specification.

A list of standard commands is presented in item 2.4 of the ZCL Specification.

The size in octets of each Data Type will follow item 2.5.2 of the ZCL Specification.

III. Sensors protocol

E-Seal Clusters

Cluster Attribute

ID Name ID Name Type Range Value

0x0000 Basic 0x0001 ApplicationVersion Unsigned 8-bit integer 0x00 - 0xff 0x00

0x0000 Basic 0x0003 HWVersion Unsigned 8-bit integer 0x00 - 0xff 0x00

0x0000 Basic 0x0004 ManufacturerName Character string 0 - 32 bytes empty string

0x0000 Basic 0x0005 ModelIdentifier Character string 0 - 32 bytes empty string

0x0000 Basic 0x0007 PowerSource 8-bit Enumeration 0x00 - 0xff 0x00

0x0000 Basic 0x0012 DeviceEnabled Boolean 0x00 – 0x01 0x01

0x0006 On/Off 0x0000 OnOff Boolean 0x00 – 0x01 0x00

0x0500 IAS Zone 0x0002 ZoneStatus bit in 16-bit register 0x0000 – 0xffff 0x00

Movable Panic Button Clusters

Cluster Attribute

ID Name ID Name Type Range Value

0x0000 Basic 0x0001 ApplicationVersion Unsigned 8-bit integer 0x00 - 0xff 0x00

0x0000 Basic 0x0003 HWVersion Unsigned 8-bit integer 0x00 - 0xff 0x00

0x0000 Basic 0x0004 ManufacturerName Character string 0 - 32 bytes empty string

0x0000 Basic 0x0005 ModelIdentifier Character string 0 - 32 bytes empty string

0x0000 Basic 0x0007 PowerSource 8-bit Enumeration 0x00 - 0xff 0x00

0x0000 Basic 0x0012 DeviceEnabled Boolean 0x00 – 0x01 0x01

0x0500 IAS Zone 0x0002 ZoneStatus bit in 16-bit register 0x0000 – 0xffff 0x00

0x1000 Message 0x0000 Message Character string 0 - 32 bytes empty string

Wireless Temperature Sensor Clusters

Cluster Attribute

ID Name ID Name Type Range Value

0x0000 Basic 0x0001 ApplicationVersion Unsigned 8-bit integer 0x00 - 0xff 0x00

0x0000 Basic 0x0003 HWVersion Unsigned 8-bit integer 0x00 - 0xff 0x00

0x0000 Basic 0x0004 ManufacturerName Character string 0 - 32 bytes empty string

0x0000 Basic 0x0005 ModelIdentifier Character string 0 - 32 bytes empty string

0x0000 Basic 0x0007 PowerSource 8-bit Enumeration 0x00 - 0xff 0x00

0x0000 Basic 0x0012 DeviceEnabled Boolean 0x00 – 0x01 0x01

0x1001 Trailer ID 0x0000 Trailer ID Character string 0 - 32 bytes empty string

0x0002 Temperature 0x0000 CurrentTemperature Signed 16-bit integer -200 to +200 0

IV. Example of frames

V. Communication log (TGW, uGW and E-Seal)

This log was captured running the TGW software for Windows connected to the uGW
with an RS232 cable. The software used to monitor the communication in the serial
port was Free Serial Port Monitor from HHD Software[32].

Port opened by process "TGW.exe" (PID: 2168)

Request: 2009-11-09 10:29:08.61764 (+158.0955 seconds)

 10 02 03 00 13 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 01 00 00 11 10 03

Answer: 2009-11-09 10:29:08.80564 (+0.1719 seconds)

 10 02 FF 00 FF 10 03 10 02 04 00 13 00 00 00 00 ..ÿ.ÿ...........

 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 16

 10 03 ..

Request: 2009-11-09 10:29:08.00864 (+0.2031 seconds)

 10 02 FF 00 FF 10 03 ..ÿ.ÿ..

Answer: 2009-11-09 10:29:08.11764 (+0.0938 seconds)

 10 02 02 01 14 02 00 00 00 02 00 00 00 00 00 05

 00 03 00 00 00 00 AF 00 00 BE 10 03 ¯..¾..

Request: 2009-11-09 10:29:08.24264 (+0.1250 seconds)

 10 02 FF 01 FE 10 03 10 02 00 01 11 00 00 00 05 ..ÿ.þ...........

 80 00 08 00 00 00 00 03 80 81 82 00 00 1D 10 03 �.......��‚.....

Answer: 2009-11-09 10:29:09.74264 (+0.0625 seconds)

 10 02 FF 01 FE 10 03 10 02 01 02 07 02 00 00 00 ..ÿ.þ...........

 00 00 00 06 10 03

Request: 2009-11-09 10:29:09.96164 (+0.2188 seconds)

 10 02 FF 02 FD 10 03 ..ÿ.ý..

Answer: 2009-11-09 10:29:09.07064 (+0.1094 seconds)

 10 02 02 03 15 02 00 00 00 02 00 00 00 00 00 04

 00 04 00 00 00 80 00 AF 00 00 3B 10 03 €.¯..;..

Request: 2009-11-09 10:29:10.50864 (+0.1250 seconds)

 10 02 FF 03 FC 10 03 10 02 00 02 1C 00 00 00 04 ..ÿ.ü...........

 80 00 13 00 00 00 00 0E 80 01 00 01 00 10 10 00 €.......€.......

 03 00 00 06 00 00 05 00 00 17 10 03

Answer: 2009-11-09 10:29:10.07064 (+0.1563 seconds)

 10 02 FF 02 FD 10 03 10 02 01 04 07 02 00 00 00 ..ÿ.ý...........

 00 00 00 00 10 03

Request: 2009-11-09 10:29:10.33664 (+0.2656 seconds)

 10 02 FF 04 FB 10 03 ..ÿ.û..

Answer: 2009-11-09 10:29:10.46164 (+0.1094 seconds)

 10 02 02 05 15 02 00 00 00 02 00 00 00 00 00 04

 00 04 00 00 00 81 00 AF 00 00 3C 10 03 •.¯..<..

Request: 2009-11-09 10:29:11.82064 (+0.3594 seconds)

 10 02 FF 05 FA 10 03 10 02 00 03 1C 00 00 00 04 ..ÿ.ú...........

 80 00 13 00 00 00 00 0E 81 00 10 10 01 00 10 10 €.......•.......

 00 03 00 00 00 05 00 10 10 00 00 10 10 10 03

Answer: 2009-11-09 10:29:11.46164 (+0.2031 seconds)

 10 02 FF 03 FC 10 03 10 02 01 06 07 02 00 00 00 ..ÿ.ü...........

 00 00 00 02 10 03

Request: 2009-11-09 10:29:12.72664 (+0.2656 seconds)

 10 02 FF 06 F9 10 03 ..ÿ.ù..

Answer: 2009-11-09 10:29:12.82064 (+0.0938 seconds)

 10 02 02 07 15 02 00 00 00 02 00 00 00 00 00 04

 00 04 00 00 00 82 00 AF 00 00 3D 10 03 ‚.¯..=..

Request: 2009-11-09 10:29:12.21164 (+0.3906 seconds)

 10 02 FF 07 F8 10 03 10 02 00 04 1C 00 00 00 04 ..ÿ.ø...........

 80 00 13 00 00 00 00 0E 82 00 10 10 01 00 10 10 �.......‚.......

 00 03 00 00 02 00 01 10 10 00 00 12 10 03

Answer: 2009-11-09 10:29:13.85164 (+0.2344 seconds)

 10 02 FF 04 FB 10 03 10 02 01 08 07 02 00 00 00 ..ÿ.û...........

 00 00 00 0C 10 03

Request: 2009-11-09 10:29:13.28964 (+0.4375 seconds)

 10 02 FF 08 F7 10 03 ..ÿ.÷..

Answer: 2009-11-09 10:29:31.43064 (+18.0782 seconds)

 10 02 02 09 28 02 00 00 00 02 00 00 00 00 00 20 (..........

 00 17 00 2B 48 88 88 44 44 33 33 22 12 01 80 01 ...+HˆˆDD33"..€.

 00 03 00 00 06 00 00 05 00 00 AF 00 00 68 10 03 ¯..h..

Request: 2009-11-09 10:29:32.71164 (+0.2813 seconds)

 10 02 FF 09 F6 10 03 10 02 00 05 0B 00 00 00 20 ..ÿ.ö..........

 80 00 02 00 00 00 00 AC 10 03 €......¬..

Answer: 2009-11-09 10:29:32.24264 (+0.1875 seconds)

 10 02 FF 05 FA 10 03 10 02 01 0A 07 02 00 00 00 ..ÿ.ú...........

 00 00 00 0E 10 03

Request: 2009-11-09 10:29:33.49264 (+0.2500 seconds)

 10 02 FF 0A F5 10 03 10 02 00 06 15 02 2B 48 01 ..ÿ.õ........+H.

 01 00 00 00 80 09 00 00 00 01 00 03 00 04 00 00 €...........

 00 FD 10 03 .ý..

Answer: 2009-11-09 10:29:33.71164 (+0.1875 seconds)

 10 02 FF 06 F9 10 03 10 02 01 0B 07 02 00 00 01 ..ÿ.ù...........

 00 00 00 0E 10 03

Request: 2009-11-09 10:29:33.13364 (+0.1094 seconds)

 10 02 FF 0B F4 10 03 ..ÿ.ô..

Answer: 2009-11-09 10:29:33.33664 (+0.2031 seconds)

 10 02 02 0C 28 02 00 00 80 02 2B 48 01 01 00 00 (...€.+H....

 00 17 00 00 01 01 00 00 20 01 03 00 00 20 01 04

 00 00 42 05 56 4F 4C 56 4F 00 AF CB 04 BE 10 03 ..B.VOLVO.¯Ë.¾..

Request: 2009-11-09 10:29:34.63364 (+0.2969 seconds)

 10 02 FF 0C F3 10 03 10 02 00 07 15 02 2B 48 01 ..ÿ.ó........+H.

 01 00 00 00 80 09 00 00 00 05 00 07 00 12 00 00 €...........

 00 EA 10 03 .ê..

Answer: 2009-11-09 10:29:34.21164 (+0.2500 seconds)

 10 02 FF 07 F8 10 03 10 02 01 0D 07 02 00 00 01 ..ÿ.ø...........

 00 00 00 08 10 03

Request: 2009-11-09 10:29:34.46164 (+0.2500 seconds)

 10 02 FF 0D F2 10 03 ..ÿ.ò..

Answer: 2009-11-09 10:29:35.55564 (+0.0938 seconds)

 10 02 02 0E 29 02 00 00 80 02 2B 48 01 01 00 00 )...€.+H....

 00 18 00 00 01 05 00 00 42 06 45 2D 53 45 41 4C B.E-SEAL

 07 00 00 30 02 12 00 00 10 10 00 00 AF CB A4 1A ...0........¯Ë¤.

 10 03 ..

Request: 2009-11-09 10:29:35.80564 (+0.2500 seconds)

 10 02 FF 0E F1 10 03 10 02 00 08 11 02 2B 48 01 ..ÿ.ñ........+H.

 01 00 06 00 80 05 00 00 00 00 00 00 00 FB 10 03 €........û..

Answer: 2009-11-09 10:29:35.33664 (+0.1875 seconds)

 10 02 FF 08 F7 10 03 10 02 01 0F 07 02 00 00 01 ..ÿ.÷...........

 00 00 00 0A 10 03

Request: 2009-11-09 10:29:36.75864 (+0.1094 seconds)

 10 02 FF 0F F0 10 03 ..ÿ.ð..

Answer: 2009-11-09 10:29:36.96164 (+0.2031 seconds)

 10 02 02 10 10 19 02 00 00 80 02 2B 48 01 01 00 €.+H...

 06 00 08 00 00 01 00 00 00 10 10 01 00 AF CB 54 ¯ËT

 C6 10 03 Æ..

Request: 2009-11-09 10:29:36.24264 (+0.2813 seconds)

 10 02 FF 10 10 EF 10 03 10 02 00 09 11 02 2B 48 ..ÿ..ï........+H

 01 01 00 00 05 80 05 00 00 00 02 00 00 00 FB 10 €........û.

 03 .

Answer: 2009-11-09 10:29:37.74264 (+0.1719 seconds)

 10 02 FF 09 F6 10 03 10 02 01 11 07 02 00 00 01 ..ÿ.ö...........

 00 00 00 14 10 03

Request: 2009-11-09 10:29:37.14864 (+0.0938 seconds)

 10 02 FF 11 EE 10 03 ..ÿ.î..

Answer: 2009-11-09 10:29:37.35264 (+0.1875 seconds)

 10 02 02 12 1A 02 00 00 80 02 2B 48 01 01 00 00 €.+H....

 05 09 00 00 01 02 00 00 19 00 00 00 AF CB E0 7B ¯Ëà{

 10 03 ..

Request: 2009-11-09 10:29:38.57064 (+0.2188 seconds)

 10 02 FF 12 ED 10 03 10 02 00 0A 0F 02 2B 48 01 ..ÿ.í........+H.

 01 00 06 00 80 03 40 00 01 00 00 A0 10 03 €.@.... ..

Answer: 2009-11-09 10:29:38.08664 (+0.1875 seconds)

 10 02 FF 0A F5 10 03 10 02 01 13 07 02 00 00 01 ..ÿ.õ...........

 00 00 00 16 10 03

Request: 2009-11-09 10:29:39.49264 (+0.0938 seconds)

 10 02 FF 13 EC 10 03 ..ÿ.ì..

Answer: 2009-11-09 10:29:39.69564 (+0.1875 seconds)

 10 02 02 14 16 02 00 00 80 02 2B 48 01 01 00 06 €.+H....

 00 05 00 00 0B 01 00 00 AF CC FE 77 10 03 ¯Ìþw..

Request: 2009-11-09 10:29:39.93064 (+0.2344 seconds)

 10 02 FF 14 EB 10 03 10 02 00 0B 13 02 2B 48 01 ..ÿ.ë........+H.

 01 00 00 00 80 07 00 00 02 12 00 10 10 01 00 00 €...........

 FF 10 03 ÿ..

Answer: 2009-11-09 10:29:40.50864 (+0.2344 seconds)

 10 02 FF 0B F4 10 03 10 02 01 15 07 02 00 00 01 ..ÿ.ô...........

 00 00 00 10 10 10 03

Request: 2009-11-09 10:29:40.72764 (+0.2188 seconds)

 10 02 FF 15 EA 10 03 ..ÿ.ê..

Answer: 2009-11-09 10:29:40.82064 (+0.0781 seconds)

 10 02 02 16 17 02 00 00 80 02 2B 48 01 01 00 00 €.+H....

 00 06 00 00 04 00 12 00 00 AF CC 76 E5 10 03 ¯Ìvå..

Request: 2009-11-09 10:29:40.07064 (+0.2500 seconds)

 10 02 FF 16 E9 10 03 ..ÿ.é..

Answer: 2009-11-09 10:30:10.66464 (+29.5939 seconds)

 10 02 02 17 17 02 00 00 80 02 2B 48 01 01 00 00 €.+H....

 05 06 40 00 00 00 00 00 00 AF CD F6 36 10 03 ..@......¯Íö6..

Request: 2009-11-09 10:30:10.77464 (+0.1094 seconds)

 10 02 FF 17 E8 10 03 ..ÿ.è..

Answer: 2009-11-09 10:30:40.71164 (+29.9221 seconds)

 10 02 02 18 17 02 00 00 80 02 2B 48 01 01 00 00 €.+H....

 05 06 40 01 00 00 00 00 00 AF CE 76 BB 10 03 ..@......¯Îv»..

Request: 2009-11-09 10:30:40.93064 (+0.2188 seconds)

 10 02 FF 18 E7 10 03 ..ÿ.ç..

Answer: 2009-11-09 10:31:01.85264 (+20.8908 seconds)

 10 02 02 19 17 02 00 00 80 02 2B 48 01 01 00 00 €.+H....

 05 06 40 02 00 01 00 00 00 AF CD 78 B5 10 03 ..@......¯Íxµ..

Request: 2009-11-09 10:31:01.35264 (+0.5000 seconds)

 10 02 FF 19 E6 10 03 ..ÿ.æ..

Answer: 2009-11-09 10:31:05.89964 (+3.5313 seconds)

 10 02 02 1A 17 02 00 00 80 02 2B 48 01 01 00 00 €.+H....

 05 06 40 03 00 00 00 00 00 AF CD AA 64 10 03 ..@......¯Íªd..

Request: 2009-11-09 10:31:05.00864 (+0.1094 seconds)

 10 02 FF 1A E5 10 03 ..ÿ.å..

VI. Circuit Schematic

VII. Bill of Materials

Qty Designator Description Manufacturer Part Number
Price
(USD)

Total Price
(USD)

Min
Qty

1 L201 SMD RF inductor 0805. Murata BLM21AG102SN1D 0,03850 0,03850 4000

2 L202, L203 RF Inductor, 2.7nH, 0,17ohm, 300mA, 0402
Johanson
Technology L-07C2N7SV6T 0,01215 0,02430 10000

1 XC201 16MHz uXtal GSX-323, 2.0 x 2.5 mm SMD 10ppm Golledge GSX-323/111BF 16.0MHz 0,76399 0,76399 3000

1 U201 2.4GHz ZigBee/802.15.4 tranceiver Atmel AT86RF230-ZU 2,06400 2,06400 100

1 XC202 32.768kHz SMD crystal, 85SMX style Rakon Ltd LF XTAL016207 0,65000 0,65000 3000

1 U204 AVR 8-bit RISC MCU Atmel ATmega1284PV-10MU 4,29600 4,29600 4000

 Additional components (3 Resistors, 10 Capacitors) 0,39184

 Total 8,23

All prices have been collected from the website www.digikey.com during the month of October 2009.
The cost of the Additional components is only estimated by being 5% of the total cost of the other components.

http://www.digikey.com/

