
Automatic Searching in Electronic Health Records
Master of Science Thesis in the Programme Computer Science –
Algorithms, Languages and Logic

MARGARETHA MICHNIK

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
GÖTEBORG, SWEDEN, JUNE 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author of the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Automatic Searching in Electronic Health Records

MARGARETHA MICHNIK

© MARGARETHA MICHNIK, June 2010.

Examiner: PETER DAMASCHKE

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2010

Abstract
Modern day patient records consist largely of structured information. Such information
makes it easy for healthcare professionals to get an overview of a patient's health status.
The patient records also contain a large amount of unstructured data, in other words,
descriptions of patients in plain text. This information is much more difficult for the
healthcare professionals to find, since there is often a lot of text to read through. At each
new hospital visit the patient must often repeat what diseases he or she has. Important
information may be lost if the patient forgets to inform or can not inform (for instance
an unconscious patient) the staff of a particular disease he or she may suffer from. In
this case, it would be helpful to have a program that automatically searches for diseases
in a patient record. This master thesis examines if it is feasible that one could introduce
automatic searches that would work in the context of retrieving information from
electronic health records. Different algorithms were examined to see if they could be a
part of the solution to such an automatic search. In addition to the theoretical
examinations, a java application was developed in order to test these algorithms. The
result shows that an automatic search could work in reality but much further research
needs to be done in order to make such a program totally trustworthy. It was
unfortunately impossible to access real patient records since they are classified.
Therefore, fictitious patient records were used in the testing of the application.

I

Sammanfattning
Dagens patientjournaler består till stor del av strukturerad information, som gör det lätt
för vårdpersonalen att få en överblick över en patient. Men patientjournalerna innehåller
även en stor mängd ostrukturerad information, det vill säga beskrivningar om en patient
i löpande text. Denna information är mycket mer svåråtkomlig för vårdpersonalen
eftersom det ofta kan bli mycket text att gå igenom. Ofta måste patienten upprepa vilka
sjukdomar han eller hon har vid varje nytt sjukhusbesök. Viktig information kan gå
förlorad om patienten glömmer bort att säga eller inte kan säga, (till exempel en
medvetslös patient), om han eller hon har en speciell sjukdom. I sådana fall skulle det
vara till hjälp att ha ett program som automatiskt söker efter sjukdomar i en
patientjournal. I detta examensarbete studerades det om det är möjligt att utföra
automatiska sökningar i elektroniska patientjournaler. Olika algoritmer undersöktes om
de skulle kunna vara en del av lösningen för en sådan automatisk sökning. Förutom den
teoretiska undersökningen, har även en javaapplikation skrivits för att testa dessa
algoritmer. Resultatet visar att en automatisk sökning skulle kunna bli verklighet men
mycket kvarstår att undersöka för att få ett sådant program att vara helt och hållet
tillförlitligt. Eftersom patientjournaler är hemligstämplade och då det inte fanns
möjlighet att få tillgång till dessa under arbetets gång användes istället fiktiva
patientjournaler till testningen av applikationen.

II

Preface
This report is a Master Thesis in Computer Science at the Department of Computer
Science and Engineering, Chalmers University of Technology. The master thesis was
conducted at Know IT Göteborg AB. I would like to thank my supervisor Fredric
Landqvist and Head of Unit Fredrik Abrahamson at the company. I would also like to
thank my examiner Peter Damaschke at Chalmers, Dag Wedelin at Chalmers, Dimitrios
Kokkinakis at University of Gothenburg and Svetoslav Marinov at Findwise AB who
were helpful and responsive in regard to my questions. A special thanks to the medical
students Maria Mårin, Sara Fredh, Mattias Svensson, Emelie Wiktorson and the intern
Johanna Berg for their contribution of the fictitious records.

The following services were helpful in the process of accomplishing this work:
Talbanken05 (Swedish treebank of around 300 000 words), hunpos (an open source
hidden Markov model tagger), the web service Nyckelordtjänst developed by Findwise
AB and the file with Swedish abbreviations from Öresunds Översättningsbyrå.

III

Table of Contents
Abstract..
Sammanfattning...
Preface...
1 Introduction..2

1.1 Background...2
1.2 Purpose..3
1.3 Limitations..3

2 Analysis..4
2.1 Tokenization..4
2.2 Stemming of words and removing irrelevant words...5
2.3 Making the computer recognize a sentence..6

2.3.1 Concept learning...7
2.3.2 Applying concept learning on sentences...8
2.3.3 Algorithms to construct hypotheses..9
2.3.4 How to go further after the categorization of a sentence?.............................12

3 Method..14
3.1 Tokenization..14
3.2 Assigning correct word class to each token in a text..15
3.3 Removing unimportant words and stemming...20

3.3.1 Construct a table with most frequent words..21
3.4 Implementation of concept learning...21
3.5 Search in text...24

4 Result..27
4.1 Frequently used words..27
4.2 Using Talbanken05...27
4.3 Determining whether there is a new sentence after an abbreviation....................30
4.4 Construction of the hypothesis tables...30
4.5 Searching for diseases in a patient record...34

5 Discussion...38
6 Conclusion..40
References...41
Bibliography..44
Appendixes..47

Appendix A. The demo application – user guide..47
Appendix B. Word classes from Talbanken05..49
Appendix C. Word classes from hunpos...50
Appendix D. Levenshtein Distance..51
Appendix E. The removed suffixes in the stemmer..52

1 Introduction

1.1 Background
A big problem within the Swedish healthcare system is the keeping of electronic health
records (EHR). There are several different EHR systems since different practices use
different terminologies to describe a patient's health status. The information about a
patient in one EHR system may be important for a person who treats that patient but
uses another EHR system. The easiest option would be if a patient only had one health
record so that all the information about the patient would be in one place. To cover all
the different healthcare systems the EHR would have to be very big and that would not
be very user-friendly. The solution to this problem would be to let different health
departments select the EHR system which meets their needs the best, but at the same
time make the EHR systems interoperate with each other. This would make it easier for
both the patient and the person who treats the patient. For example, the patient would
not have to repeat to the healthcare professionals over and over again what he or she is
allergic to or what disease he or she had before or has now. Such things would
automatically pop-up when the doctor or nurse searches for information regarding the
patient. Such a solution would also be needed when, for instance, a patient who comes
unconscious to the hospital needs urgent care. An unconscious patient cannot share what
he or she is allergic to and if the doctors and nurses do not find out, there could be
terrible consequences. If there was a program which could search through all the
patient's old records to find such alerts, the risk of medical errors would decrease.

When considering such a solution, several problems become apparent. The first problem
concerns structured and unstructured data in an EHR system. Structured data is data
which is easy to interpret. If there is, for example, an attribute called “blood pressure”
one may assume that it involves some information about the patient's blood pressure.
The unstructured data is all the information which is given in plain text. The problem is
to interpret this unstructured data and obtain relevant information from the text. Let us
look at an easy example: In one EHR system there is an attribute which lists a patient's
allergies and in another system the patient's allergies may appear in plain text. But
regardless of where this information is, the healthcare professionals will be alerted
about the patient's allergies.

Another problem is that different health departments use different terminologies with
different abbreviations. An abbreviation can have different signification at two different
health departments. The challenge is to recognize what real medical term corresponds to
one specific abbreviation.

2

1.2 Purpose
The purpose of this work is to find possible algorithms which search through patient
records and output any diseases the patients may suffer from. Medical terms from
MeSH[1] (Medical Subject Headings) will be used to exemplify possible diseases
described in the patient records. “MeSH, Medical Subject Headings, is a list of
controlled terms used for indexing, searching and cataloging of biomedical journals.”[2]
Only a few medical terms from MeSH are examined and tested in this master thesis. To
test all existing medical terms would be impossible within the time constraints of this
work. Consequently, the algorithms of this work and the analysis will build on those few
terms. A demo application in Java[3] will show how the algorithms can be used
practically. This Java application will be tested with fictitious patient records[4][5][6][7]
and fictitious sentences which describe various diseases. This is due to the fact that real
patient records are classified. Therefore, the tests will unfortunately not be based on real
data. However, they will still convey interesting facts about the algorithms in question.
The demo application may interpret sentences describing a particular disease and ignore
the rest of the sentences. In other words, the application may not interpret the whole
text, just the parts that include information of possible relevance for the healthcare
professionals.

1.3 Limitations
Since this subject is very extensive some limitations were inevitably needed. One big
limitation was to not try to solving this problem so that it suited all the medical terms in
MeSH. Only a few diseases' names from MeSH were covered. The work consists of
several programming steps and to develop each step from scratch would not have been
realistic. Therefore, some already finished programs were used to facilitate the work
process. One open source project that was used is hunpos[8] which is part of speech
tagger. It tags the words, periods, commas etc. in a text with a corresponding word class.
To construct such a program from scratch would have taken too much time from the
actual problem. Another open source project that was used in this master thesis is
Apelon DTS[9], “(...) that provides comprehensive terminology services in distributed
application environments.”[9]. Findwise AB[10] is a company in Gothenburg that has
build web services[11] on Apelon DTS. The web service Nyckelordtjänst[11] is one of
them and its functions are used in this work. The functions made it possible to search
after diseases in MeSH. The use of these functions saved a lot of time. To simplify the
problem even more, it is assumed that the sentences do not refer to each other. A
sentence is only describing itself.

3

2 Analysis
To make a computer understand a whole text is very difficult. In this work the computer
does not need to understand the whole text. It is sufficient that it can interpret the
sentences in the text. So the first thing that must be done is to divide the text into
sentences. In section 2.1 it is described how text can be divided into sentences and into
even smaller pieces. The computer must only understand a sentence if it is describing a
disease. Hence, many words which have nothing to do with the diseases can be
eliminated. How to know which words can be eliminated is described in section 2.2.
After the computer has divided the text into smaller parts and removed some words, it
should be easier for the computer to interpret the sentences. In section 2.3, possible
solutions regarding this, are described.

2.1 Tokenization
In order for a computer to understand a text, it must first tokenize the text. That means
the text must be divided into sentences and tokens. A token can be a word, period,
comma, exclamation mark etc. When tokenizing a text the computer must follow some
rules and not just separate words by spaces. Let us look at some Swedish sentences as
an example:

“Maria vann 200 000 kr, hon blev väldigt glad.“ (Maria won 200 000 kr, she became very happy.)

“Äpplen kan t.ex. vara gröna och gula.” (Apples can for example be green and yellow.)

“Vad heter du? frågade Anna.” (What is your name? Anna asked.)

If a human being would tokenize this, she would not have any problem recognizing
what parts of the sentences constitute a token. But the computer must be able to handle
for example the following cases:

kr, This is an abbreviation for the word “kronor” (SEK) without a
period, since in the Swedish language there is no period after
abbreviations consisting of the first and last letter of the word.
[12] This string consists of two tokens: “kr” and “,” .

glad. The period following this word shows that the sentence ends. But
how will the computer know if it is an abbreviation or an end of
a sentence? This is also two tokens.

t.ex. These two punctuation marks signify that this word is an
abbreviation of the expression “till exempel” (for example).

du? Here the question mark implies that there is a question, but the
sentence continues after the question mark since the word after
the mark starts with a lower case.

4

There are plenty of sequences of characters that a computer does not know how to
interpret. The computer does not know that “kr,” is the same type as “kr”. Therefore the
computer needs many rules to follow.[13]

When dividing text into sentences the rule is to check if the next word after a sentence
terminator such as period, question mark, exclamation mark or semicolon begins with a
capital letter or a small letter. If the next word has a small letter the conclusion is that it
is not the end of a sentence. But if the word following a sentence terminator does have a
capital letter, the punctuation mark may indicate that it is indeed the end of a sentence.
However, it may also denote that it is an abbreviation followed by a name of something,
as in the sentence below:

“Patienten är allergisk mot en del läkemedel, t.ex. Penicillin, Aspirin och Kodein.”

(The patient is allergic to some drugs e.g. Penicillin, Aspirin and Codeine.)

How will the computer know the sentence does not end after the word “t.ex.” (e.g.)?
Such situations must be taken into account because if such a sentence is wrongly
interpreted the computer can miss that a patient has hypersensitivities to some drugs.
The sentence above can be interpreted by the computer in two different ways. Either it
is interpreted as the correct sentence above or it is interpreted as two sentences. To make
the computer choose as accurately as possible it can be a good idea to let the computer
choose the combination with the highest probability. This is described more in section
3.1.[13]

2.2 Stemming of words and removing irrelevant words
The purpose of stemming is to reduce the number of types in a document. Very often
there are words which are not written in their root form. Let us for instance look at the
Swedish word “stolar” (chairs), with the root form “stol” (chair). To change a word to
its root form is called stemming. Each language has its own stemming algorithm. Often
it is easy to remove or replace a word's suffix based on simple rules. But there are words
which are not so easy to stem. Take for example the Swedish word “fick” (got) with the
stem “få” (get). Such words are much more complicated since they do not follow any
rules. Another problem emerges when a word has different meanings as for example the
Swedish word “satt” which has different meanings in the sentences “Han satt.” (He sat.)
and “Han är satt.” (He is stocky.). In the first sentence “satt” is the preterite form of
“sitta” (sit), and in the second sentence it is an adjective which means stocky. Therefore,
a stemming algorithm may be insufficient and it may be a good idea to have a stemming
dictionary also.[14]

5

It would be favorable if the interpreted text could be cleaned. In other words, remove all
unimportant words, so that only those words that can be possible medical terms remain.
An easy way to do this is to look at what words a document consists of, how often these
words appear, how ordinary they are in other documents etc. Words that appear several
times in the records can be removed. These words, for example the words “patient” or
“he”, are probably not very important since they do not describe the health of a patient.
[15]

2.3 Making the computer recognize a sentence
A disease can be described in different ways. For instance, in Swedish you can describe
the fact that someone has nut hypersensitivity as “Han tål inte nötter.” (He does not
tolerate nuts.), “Han reagerade negativt mot nötter.” (He reacted negatively to nuts.),
“Han är allergisk mot nötter.” (He is allergic to nuts.) etc. We see that the word
“hypersensitivity” does not even need to appear in the sentence to describe an allergy. A
human being can easily recognize that all sentences above relate to hypersensitivity but,
a computer can not. To make a computer recognize when a sentence describes nut
hypersensitivity one must teach the computer. In other words one must tell the computer
which words describe the disease nut hypersensitivity. One method could be to collect
all words that describe nut hypersensitivity. This method can of course cause problems,
considering, for example, the following sentence: “Han är inte allergisk mot nötter.” (He
is not allergic to nuts.). The words “allergisk” (allergic) and “nötter” (nuts) describe nut
hypersensitivity but the word “inte” (not) is saying that the person does not have any
allergy to nuts. How can one collect words that describe a particular disease in a smooth
manner? The solution is to teach the computer which word combinations describe a
disease and which combinations do not describe a disease.

If one were to tell the computer that the sentences “Han tål inte nötter.” (He does not
tolerate nuts.) and “Han reagerade negativt mot nötter.” (He reacted negatively to nuts.)
describe nut hypersensitivity then the computer may think the key words that describe
nut hypersensitivity are “han” (he) and “nötter” (nuts) since they appear in both
sentences. To avoid such misinterpretation, words can be removed as described in
section 2.2. Then the number of words in the sentences would be smaller. Words such as
“han” (he) probably not only appear in sentences that define an allergy and therefore
such words would be removed. In other words, the solution is to remove as many words
as possible that certainly do not describe a disease.

When a computer has learned which sentences describe a particularly disease a text can
be reviewed to check if it contains a sentence which defines a particular disease.

6

2.3.1 Concept learning
As mentioned in section 2.3, the computer must be taught to recognize whether a
sentence describes a particularly disease. The solution is to use a machine learning
method: Concept learning. By giving good and bad training examples where good
examples are members in the concept and bad are not you can construct a boolean-
valued function that tells if next coming instance is in the category or not. A concept is a
subset of the instances that are positive, and therefore members. An instance consists of
a collection of conditions that together decide if it is a member or nonmember of the
concept. One condition consist of an attribute and its value. Each attribute can choose
between several values.[16]

Let us take a look at the following example: There is a couple with a child and they
want to learn what their child likes to eat. They have the following training examples:

The food consists of a banana. Wants to eat.

The food consists of an apple. Wants to eat.

The food consists of a carrot. Does not want to eat.

In this example there are three attributes: banana, apple and carrot. Each attribute can
choose between the values yes and no. In Table 1 you can see the same example but
more structured.

In this example there is a total of eight possible instances since there are three attributes
with two possible values each. In an arbitrary example of concept learning with n
attributes, where each attribute have a1 , a2 ,… , an values, there are total a1∗a2∗...∗an
instances. Without seeing any training examples you have to do assumptions of which
instances are members of the concept and which are not. This is called to do a
hypothesis. There can be several hypotheses. More specifically, if there are m instances
then there are 2m possible hypotheses, since every instance may or may not be in a
hypothesis. All these hypotheses are elements in a hypothesis space H. One of the
hypotheses equals the target concept. The purpose of concept learning is to reduce the
hypotheses so that one gets as close to the target concept as possible[17][18]

Banana Apple Carrot Wants to eat

Yes No No Yes
No Yes No Yes
No No Yes No

Table 1: Training examples for the concept “Wants to eat”.

7

One way to reduce the hypothesis space is to let a hypothesis be a vector with attribute
constraints, which conveys which attributes are good. Either the constraint is assigned a
value v of an attribute which means that this value is the correct one, or it has a question
mark, ? , which means that all values of an attribute are good, or it is assigned ∅ ,
which means that none of the values of an attribute are good. So a constraint in a
hypothesis can assign two (? and ∅) plus the number of values of the attribute that
the constraint represents. If there are n attributes and each attribute has ak values
where 1kn then there are 2a1∗2a2∗…∗2an hypotheses which is much
lesser than 2a1∗a 2∗...∗a n hypotheses.[19]

The hypothesis h1=〈 yes ,? , ?〉 , says that it contains the instances  yes ,no ,no ,
 yes , no , yes ,  yes , yes ,no and  yes , yes , yes . The hypothesis h2=〈 yes , no ,?〉
is more specific[20] than the hypothesis h1 , and h1 is more general[20] than h2 . In
other words, h1 contains the same positive instances as h2 but also some more positive
instances. The most general hypothesis 〈? ,? ,?〉 is the one that says that no matter
what values the attributes have, the attributes give a positive instance. The most specific
hypothesis 〈∅ ,∅ ,∅〉 is the one that says that none of the instances are positive.

2.3.2 Applying concept learning on sentences
The technique in the previous section is a possible solution to make a computer
understand the main purpose of a sentence. One can produce training examples by
seeking the records and finding sentences that describe a particular disease. Assume that
the sentences “Han tål inte nötter.” (He does not tolerate nuts.) and “Han kan inte äta
nötter.” (He can not eat nuts.) were found in some records. By applying concept
learning on these sentences a table as the one in Table 2 can be constructed. Looking at
the table, it is evident that the mutual words are “han” (he), “inte” (not) and “nötter”
(nuts). Therefore, if such words are in a sentence the computer can assume that this
sentence is about nut hypersensitivity. But suppose the computer encounter a sentence
which has “hon” (she) instead of “han” (he). In this case the computer will not
recognize the sentence as nut hypersensitivity. By elimination of unimportant words,
described in section 2.2, the number of words in the table would be decreased.

han
he

tål
tolerate

inte
not

nötter
nuts

kan
can

äta
eat

nut hypersensitive

yes yes yes yes no no yes
yes no yes yes yes yes yes

Table 2: Instances constructed from sentences.

8

Another problem is for example the two sentences “Hon är allergisk mot vete.” (She is
allergic to wheat.) and “Hon har en allergi mot vete.” (She has an allergy to wheat.). The
two words “allergisk” (allergic) and “allergi” (allergy) refer to the same thing but will
be two different words in the table. To avoid this, each word can go through a stemmer
to obtain the root form of the word as described in section 2.2.

Diseases are divided into categories, for example, nut hypersensitivity and wheat
hypersensitivity belong to the category food hypersensitivity.[21] Instead of having
many different tables, one for each disease, another option is to have one table for the
whole category. On the upside, lesser training examples would be needed since
sentences containing both nut and wheat hypersensitivity etc. would be used in the same
table. But this would not solve the problem of finding the correct disease. The table
would only show to which category the sentence belongs, if any. Knowing that a
sentence belongs to a category it is sufficient to search after a word that characterizes a
disease's name in the category. If, for instance, the computer has detected a sentence that
belongs to the category food hypersensitivity it is enough to search after the words nut,
wheat, milk, peanut and egg which categorize each disease under the category food
hypersensitivity.[21] In section 2.3.4 it is described more precisely how to solve this.

After having cleaned the words in the training examples it is time to choose the right
algorithm that constructs hypotheses which are as close as possible to the target concept.
There are some algorithms to choose between. In the next section it is analyzed what
algorithm is best for this problem.

2.3.3 Algorithms to construct hypotheses
There are algorithms which construct hypotheses going from the most general
hypothesis to more specific or the opposite namely begins with the most specific and
generate more general hypotheses. Before any explanation of the different algorithms it
would be good to explain what version space is. Version space is a subset of the
hypothesis space H but it is consistent with all training examples. It contains all possible
versions of the target concept.[22]

The List-Then-Eliminate algorithm is an algorithm that uses version space. From the
beginning the version space contains all possible hypotheses. The List-Then-Eliminate
algorithm eliminates all hypotheses which are inconsistent with any training example. If
for example the hypotheses h1=〈? , ? , ?〉 and h2=〈? ,? , yes 〉 are in the version space
and there is a training example t=yes ,no ,no then h2 is not consistent with t and
will be eliminated. This method is not suitable for the problem which is treated in this
work since if one shall collect training examples from the records it is unlikely to find
negative training examples, that is sentences which for example says that a patient does
not have a disease. For example, if a patient is not allergic to wheat then there probably
is not anything written about it, the sentence “Han är inte allergisk mot vete.” (He is not
allergic to wheat.) would probably never appear in a record. The negative examples are

9

important when using the List-Then-Eliminate algorithm since a hypothesis as h1
would never be eliminated. Suppose there are three attributes “tål” (tolerate), “inte”
(not) and “allergisk” (allergic). Then if, and of course it is a small probability but the
risk still remains, a sentence as “Hon är inte allergisk mot nötter.” (She is not allergic to
nuts.) appears in a record the attributes “inte” (not) and “allergisk” (allergic) would
obtain the value yes and “tål” (tolerate) would obtain the value no. Therefore, this
sentence would be classified as a positive instance even if it is negative. So to
summarize, the algorithm would also count sentences which negate diseases to positive
instances.[23]

Another algorithm in concept learning is the Candidate Elimination algorithm which is
similar to the List-Then-Eliminate algorithm but instead of remembering all the
hypotheses in the version space it stores only the most specific and most general
hypotheses. Then the hypotheses between are automatically included. Since this
algorithm also depends on negative instances it is not suitable for this problem.[24]

Find-S is also an algorithm in concept learning and this algorithm depends only on
positive training examples. This algorithm starts with the most specific hypothesis and
after each positive training example it generalize the hypothesis so that the training
example fits the hypothesis. Negative training examples are ignored. For each new
positive training example, Find-S goes through all attribute constraints in the hypothesis
and compare to related attributes. If the attribute constraint is consistent with the
attributes value then nothing is done but if not then the attribute constraint is replaced
with a more general one.[25]

Let us apply the Find-S algorithm at the training examples in Table 1. From the
beginning the hypothesis h is as specific as possible:

h=〈∅ ,∅ ,∅〉

Looking at the first training example t 1= yes , no , no , which is positive, one can see
that h must be generalized. But only such that t 1 fits h. The new hypothesis is:

h=〈 yes , no ,no〉

This hypothesis contains only one instance. Looking at the next example
t 2=no , yes , no which also is positive the conclusion can be made that h must be
generalized once again:

10

h=〈? ,? ,no〉

Next training example is negative, t 3=no , no , yes  . As mentioned above, negative
examples are ignored. One can see that h satisfies t 3 . h says that the child likes to eat
apple, banana, apple with banana and nothing, but this can of course be wrong, maybe
the child does not like apple with banana. If this is the case then h does not equal the
target concept and this is of course a problem. Regardless of the order of the training
examples, the hypothesis is the same. Another negative aspect of the Find-S algorithm
becomes evident when the training examples have errors.[26] If an example indicates
that it is positive, but it actually is negative then the hypothesis becomes wrong.

The problem named above, that a negative instance can be found positive by the
hypothesis, is an issue for this project. Assume that there are two sentences “Hon tål inte
nötter.” (She does not tolerate nuts.) and “Hon är allergisk mot nötter.” (She is allergic
to nuts.). From these two sentences the training examples as in Table 3 are constructed.
When applying the Find-S algorithm on these examples the following steps are
calculated:

h=〈 yes , yes , no ,no〉
h=〈? ,? ,? ,?〉

This hypothesis creates a problem. Assume the sentence “Han är inte allergisk mot
vete.” (He is not allergic to wheat.) which gets the instance no , yes , yes , yes . This
instance is negative but the hypothesis finds it positive. Or even more probable, if there
is a sentence which includes none of these words then it classifies the sentence as
belonging to this category. To avoid such errors the hypothesis must be modified a little
to fit this project. Rules must be introduced and the hypothesis will not contain only one
vector with attribute constraint but instead a disjunction of vectors. So the example from
Table 3 will get the hypothesis

h=〈 yes , yes , no ,no〉∨〈no ,no , yes , yes 〉 .

tål
tolerate

inte
not

är
is

allergisk
allergic

food
hypersensitive

yes yes no no yes
no no yes yes yes

Table 3: Constructed training examples from the sentences "Hon tål inte nötter." and
"Hon är allergisk mot nötter.".

11

If an instance suits one of the vectors then it is consistent with the hypothesis. But now
another problem has appeared. If a sentence as “Han tål inte nötter, dvs. han är
allergisk.” (He does not tolerate nuts, that is, he is allergic.) which constructs the
instance  yes , yes , yes , yes  . The hypothesis will find this instance negative even if
the sentence is describing food hypersensitivity. A solution to this problem is to replace
the value no to ?. So the hypothesis will instead be

h=〈 yes , yes , ? , ?〉∨〈? ,? , yes , yes 〉 .

Of course this will contribute to categorize sentence as “Han är inte allergisk mot vete.”
(He is not allergic to wheat.) as a positive instance but sentences which have none of
these words will not be classified as members of the hypothesis, which is desired. It is
better that the computer wrongly assumes that a patient has a disease even if he or she
does not have any, than the other way around. In section 3.4 it is described more
precisely what rules are used and what calculations are needed.

2.3.4 How to go further after the categorization of a sentence?
When a sentence is classified as belonging to a category the problem still remains of
finding out what disease is described in the sentence. By saving all the names of
diseases, along with their categories, one would know which possible diseases the
sentence is describing. Several thousands possible diseases are reduced to maybe
between ten and twenty, which is much easier to handle. MeSH medical terms are sorted
in a tree structure, see Illustration 1. As one can see in the illustration, wheat
hypersensitivity, nut hypersensitivity etc. belongs to category food hypersensitivity
which in turn belongs to the category hypersensitivity, immediate. A node can have
several parents, meaning one disease can belong to several categories. The functions
from Findwise's web service Nyckelordtjänst make it possible to search for medical
terms in MeSH. When searching for a word one gets returned all possible nodes this
word can represent. If, for example, one searches for “nöt” (nut), then the returned
nodes are “nötkreatur” (cattle), “nötkreatursjukdomar” (cattle diseases),
“nötöverkänslighet” (nut hypersensitivity) and “nötter” (nuts). One can also get a node's
parents, (the categories the node belongs to), and children if it has any.

If someone is allergic to, for example, nuts, then the word nut or its inflection must exist
in the sentence in some way. So when searching for that word one receives four nodes.
If a node belongs to the same category as this sentence the conclusion is that the
sentence is describing this node. If one was to use Findwise's web service
Vokabulärtjänst[11] instead, one could find the correct disease by searching for the
category, acquiring all children to the corresponding node and comparing them to the
words in the sentence. If a word equals the beginning of a node's name then it can be
concluded that the sentence is describing that specific node (disease). These two

12

methods are probably equivalent, but with the latter method one needs the path to the
node which can cause problems when, for example, a path changes. Therefore, the first
method seems to be better for this work.

When searching on a word the received nodes are only those that begin with that word.
If for example one searches on the word “nut” and there is a node containing that word
but not in the beginning, then the node is not returned. Each node name has synonyms
and if a synonym starts with the search word then the node will be returned also. In
Swedish most of the compound words have their primary importance at the last part of
the word.[27] Therefore the word “nötöverkänslighet” (nut hypersensitivity) is a
hypersensitivity (“överkänslighet”) and nut (“nöt”) is describing which hypersensitivity
it is. The descriptive words are in most cases the search words, hence it is not often a
problem. But sometimes it is a problem, for example the disease “typ 2-diabetes”
(diabetes mellitus, type 2) can be described as “diabetes mellitus, icke-insulinberoende”
(diabetes mellitus, not insulin dependent) with the descriptive word “icke-
insulinberoende” (not insulin dependent). A solution to this is presented in section 3.5.

Another problem is that if for example a sentence that belongs to the category diabetes
mellitus and describes the disease diabetes mellitus type 2, consists of the words
“diabetes”, “mellitus” and “icke-insulinberoende” among others, a search will be done
on each of the word. The only hit is obtained by the word “diabetes”, but there are
several node names beginning with “diabetes” that belong to the category diabetes. So
the problem is to find only the node that is the correct one. In section 3.5 it is also
described how this problem is handled.

13

Illustration 1: A screen shot from MeSH searching on "Food Hypersensitivity".

3 Method
The aim with this work is to make a computer understand and retrieve important
information from electronic health records. In this chapter all used methods and
algorithms are described and how they were implemented practically. A demo
application in Java was written and in the following sections the main classes that were
constructed for the application are described. Illustration 2 shows the main steps in the
demo program.

3.1 Tokenization
As mentioned in section 2.1 a text must be divided into tokens. There are a lot of things
to take in consideration when writing an application which tokenize. There are a couple
of rules that are rather easy for a computer to follow in order to recognize a sentence.
But there are also many difficult rules and there may be exceptions which are very hard
to handle. A class called SentenceDivider was written which divides text into sentences
and tokens. The first thing SentenceDivider does is to send text to WordDivider, which
reads a string and divides it on spaces but also when a word starts or ends with for
example the marks: ” (, etc. WordDivider does not separate when a word ends with a
sentence terminator.

The next thing SentenceDivider does is to check if a word ends with a sentence
terminator. If this is the case then it determines whether the word following the sentence
terminator starts with an upper case. If it does not then SentenceDivider assumes the
sentence continues. But if the next word starts with an upper case then it checks if the
word is an abbreviation. All abbreviations shall be listed in the file Abbreviations.txt. If
it is not an abbreviation then SentenceDivider assumes that the sentence ends after this
word. But if it is an abbreviation then SentenceDivider must calculate which
combination of the words gives the highest probability. So the different possible
combinations of the sentences are sent to HunposString and after that to
ClassCombinationReducer, both of which are described in 3.2. The result consists of the
sequence of word classes together with the probability that this sequence will occur. If
there is a combination of words that can be interpreted as one sentence or as two then
the probability that one sentence occurs is compared to the probability that the two
sentences will occur. The probability that it will be two sentences is computed from the
probabilities that these two sentences will occur by them self multiplying with each
other and then multiplied with a , where a=10−2⋅the number of the sentences . The reason for this
procedure is that when testing, the output was much better when multiplying the product
of the probabilities that the sentences will occur with a . This is shown in the result in
section 4.3. If sending the sentence

14

Illustration 2: An overview over the main steps in the demo program.

Sentence Word class sequence Probability that the sequence of
word classes will occur

Patienten är allergisk mot en del
läkemedel, t.ex. Penicillin,
Aspirin och Kodein.

NN – VV – AJ – PR – EN – NN
– NN – IK – AB – NN – IK – NN

– ++ – NN – IP
6.84⋅10−11

Patienten är allergisk mot en del
läkemedel, t.ex.

NN – VV – AJ – PR – EN – NN
– NN – IK – NN – IP 3.24⋅10−9

Penicillin, Aspirin och Kodein. NN – IK – NN – ++ – NN – IP 3.97⋅10−3

Table 4: Sentences which SentenceDivider can choose between.

“Patienten är allergisk mot en del läkemedel, t.ex. Penicillin, Aspirin och Kodein.”

(The patient is allergic to some drugs e.g. Penicillin, Aspirin and Codeine.)

to SentenceDivider it can choose between sentences showed in Table 4. If multiplying
the probabilities from row two and three and multiplying it with a , one obtains the
probability 1.27⋅10−15 , which is less than 6.84⋅10−13 so SentenceDivider chooses the
combination from row one in Table 4. In the end the SentenceDivider has hopefully
divided the text correctly in sentences and tokens.

3.2 Assigning correct word class to each token in a text
Hunpos[8] is a hidden Markov model-based part of speech tagger. A Markov process is
a stochastic process but without memory. A stochastic model is a deterministic model
which means it depends on previous cases. A Markov process does not care about what
has passed, it only takes into account the current state. In Illustration 3 there is a state
which tells that if a student studies for ten hours then the probability that the student will
fail an exam is 80%. If a student has failed an exam it is with a certainty of 50% that he
or she next time will study thirty hours for the exam. But this probability does not
depend on the previous state. One does not know if the student has studied ten hours or
thirty before the exam. The nodes “glad”, “nervous”, “tired” and “sad” are observations
of what a student feels when he or she jumps to the respective state. So if a student is
first tired and then glad one know that the student has studied for thirty hours and
passed the exam. In a hidden Markov model there can be several possible observations
to a node as in Illustration 4. So if a student is tired and then glad one can not say which
states he or she has passed and therefore the state sequence is hidden.[28][29]

The patient records are in Swedish, hence a Swedish model was needed to hunpos. A
class HunposArrayList and HunposString were written which sends an ArrayList as
well as a list of strings to hunpos and receives the output from it. The output is the
words together with the assigned hunpos word classes. Some word classes from hunpos
are listed in Appendix C.

15

Word class from HunPos Word class from Talbanken05

NN ID
nn.utr.sin.def.gen 99.07%
pm.nom 72.83% 24.4%

Table 5: An example on how hunpos is assigning word classes to words comparing with
the word classes of Talbanken05. For explanations, see Appendix B. and Appendix C.

To see how good and precise hunpos is it was tested with Swedish sentences from files
in Talbanken05[30]. Talbanken05 contains Swedish sentences divided into words,
periods, commas etc. with corresponding word classes. A class HunposVSTalbanken
was written which reads from .conll files in Talbanken05 and collects statistic about
how often a word class from hunpos is representing a word class from Talbanken05.
When HunposVSTalbanken reads from the .conll files it sends all sentences to hunpos
and the output from hunpos is compared to the word classes in the files. The result was
written to the file OutputStatUTF8kop.txt. Some word classes from hunpos are almost
always correct and some are much more uncertain. See the example in Table 5. If a
word class from hunpos matches a word class from Talbanken05 with less than 4% it is
ignored since it is assumed that it is a misinterpretation from hunpos which does not
occur as many times. If all values would be taken into account (also those beneath 4%)
it would cause problems later on, which is described below in this section. As shown in
Table 5 the word class pm.nom can correspond to a noun (NN) with 72.83% certainly
and to a multi-word unit (ID) with 24.4% certainly. Why is this? In which
circumstances does pm.nom appear as NN and when as ID?

To obtain an answer to this question, sequences of word classes from files in
Talbanken05 were analyzed. A class called CalcWordSeq was written which reads
from .conll files. CalcWordSeq reads all the sentences in the files and collects all
combinations of three word classes that occur in the files and also all sequences each
sequence can jump to. It also stores sequences of word classes which start or end a
sentence. Some word classes in Talbanken05 are converted into a more general one, for
example adjectival noun (AN) is converted into a usual noun (NN), thus there will be
fewer different sequences which will be easier to take care of. When all sequences are
calculated the result is written to the file OutputStatComb3.txt. CalcWordSeq is based

16

Illustration 3: A Markov model. Illustration 4: A Hidden Markov model.

on a Markov process, since the probability to jump to a sequence depends only on the
last sequence. The description of a Markov process was described in the beginning of
this section.

Combining the information from the files OutputStatComb3.txt and
OutputStatUTF8kop.txt must give more correct answers than if one would only take
information from the last named file. Lets look at the following sentence which is sent
to hunpos: “Idag är det mycket hetsigare och stressigare.” (Today it is much more
heated and stressful.). The output is shown in Table 6. In Table 7 it is shown which
word classes from Talbanken05 the output from hunpos could be assigned to. If one
would take only these word classes from Talbanken05 with the highest probability the
sentence above would get the following sequence of word classes:

AB VV PO AJ AJ ++ AJ IP

Words Word classes from hunpos

Idag ab

är vb.prs.akt

det pn.neu.sin.def.sub/obj

mycket ab.pos

hetsigare jj.kom.utr/neu.sin/plu.ind/def.nom

och kn

stressigare jj.kom.utr/neu.sin/plu.ind/def.nom

. mad

Table 6: The output from hunpos when giving the sentence "Idag är det mycket
hetsigare och stressigare." as input. For explanations, see Appendix C.

ab AB 90.63%

vb.prs.akt VV 99.31%

pn.neu.sin.def.sub/obj PO 98.24%

ab.pos AJ 49.41% AB 43.02%

jj.kom.utr/neu.sin/plu.ind/def.nom AJ 78.02% PO 15.73% AB 5.544%

kn ++ 80.12% UK 12.35%

jj.kom.utr/neu.sin/plu.ind/def.nom AJ 78.02% PO 15.73% AB 5.544%

mad IP 98.64%

Table 7: Word classes from hunpos representing the word classes from Talbanken05.
For explanations, see Appendix B. and Appendix C.

17

But if one would choose these word classes which together with belonging sequences
give the highest probability (see Illustration 6), one would instead get the following
sequence of word classes:

AB VV PO AB AJ ++ AJ IP

This sequence is also the correct one. Of course this method is not a hundred percent
right but it makes it more likely that more correct sequences of word classes would be
assigned to a text, which is shown in the result in 4.2. The class

18

Illustration 5: A tree with all possible sequences
of word classes. For explanations, see Appendix
B.

Illustration 6: A graph, where the nodes are assigned probabilities that the word classes
will occur. The most likely path from the Start node to the End node is AB VV PO AB AJ
++ AJ IP. For explanations, see Appendix B.

ClassCombinationReducer was written to make the computer choose the most probable
sequence of word classes from Talbanken05 when inputting a sequence of word classes
from hunpos. The ClassCombinationReducer reads and stores the information from the
files OutputStatComb3.txt and OutputStatUTF8kop.txt. First ClassCombinationReducer
creates a tree, that lists all possible sequences of word classes from Talbanken05 which
the input sequence can represent, see Illustration 5. It goes through all the nodes and
together with the information from the files mentioned above it creates nodes with three
word classes in each and calculates the probabilities to jump to respective node, see
Illustration 6. If there is no representation for a sequence then the sequence is ignored
since it is assumed that such sequences are unlikely.

In Illustration 6, the percentage given in the first node following the start node
represents the product of the respective accuracy of the three different word classes. The
percentages in the subsequent nodes only represent the probability that the last word
class in each node is correct, since the first two word classes are already included in the
calculations. An edge shows the probability to jump to the next node taken into account
the node that the edge came from. When calculating the probability of a path all
probabilities on the way must be multiplied. ClassCombinationReducer uses Dijkstra's
algorithm[31] to calculate the most probable way in the graph. According to the
example above, the following path is the one with the highest probability:

P AB VV PO∣Start* P AB∣ab * P VV∣vb.prs.akt * P PO∣pn.neu.sin.def.sub/obj*
P VV PO AB∣AB VV PO* P AB∣ab.pos*
P PO AB AJ∣VV PO AB*P AJ∣jj.kom.utr/neu.sin/plu.ind/def.nom *
P AB AJ ++∣PO AB AJ* P ++∣kn*
P AJ ++ AJ∣AB AJ ++* P AJ∣jj.kom.utr/neu.sin/plu.ind/def.nom *
P ++ AJ IP∣AJ ++ AJ * P IP∣mad*
P End∣++ AJ IP=1.006∗10−6

As mentioned above in this section the probabilities that a word class from hunpos
corresponds to a word class from Talbanken05 were ignored if they were beneath 4%.
Looking at the example above there are already many paths to choose from. If all
probabilities would be taken into account the number of paths would grow
exponentially and it would be too time-consuming for the computer to find the best
path. Hence there will be outputs from hunpos that could not be interpreted correctly as
for example the sentence “Detta vill jag bestämt bemöta.”[30] (This, I would certainly
like to address.) with the right word class sequence being

PO VV PO AJ VV IP

The output from hunpos with corresponding probabilities is shown in Table 8. The word
class AJ is not even given as a possibility. Therefore, such situations will unfortunately
always be associated with the wrong word classes.

19

Output from hunpos Word classes from Talbanken05 that the output from
hunpos can represent.

pn.neu.sin.def.sub/obj PO 98.24%

vb.prs.akt VV 99.31%

pn.utr.sin.def.sub PO 99.07%

vb.sup.akt VV 92.81% TP 4.80%

vb.inf.akt VV 97.90%

mad IP 98.64%

Table 8: The output from hunpos when giving the sentence “Detta vill jag bestämt
bemöta.” as input. For explanations, see Appendix B. and Appendix C.

++ Coordinating conjunction IQ Colon

PO Pronoun IR Parenthesis

EN Indefinite article or numeral “en”, “ett” (one) IM Infinitive marker

YY Interjection PU List item (bullet or number)

IK Comma I? Question mark

PR Preposition IS Semicolon

IP Period IT Dash

IC Quotation mark IU Exclamation mark

UK Subordinating conjunction

Table 9: If a word has any of these tags the word is removed.

A few sentences may not get a translation between the output from hunpos to
Talbanken05's word classes. This can occur in three different situations. Either the
sentence is too short, it consists of less than three tokens or there is a lack of nodes that
fit the possible word class sequences. If so, the only thing to do is to choose the word
classes with the highest probability. The third thing it can depend on is when a word
class from hunpos has no corresponding word class from Talbanken05. If such a
situation occur, the sentence's word classes from hunpos are not converted to
Talbanken05's word classes.

3.3 Removing unimportant words and stemming
After one has sent the text to ClassCombinationReducer and received the different word
classes it is time to clean the text. The class WordElimination goes through all the text
and eliminates tokens which are prepositions, conjunctions etc. Such tokens are not
interesting when looking for a medical significance. All tokens that belong to some of
the word class in Table 9 are eliminated. After the elimination of words and marks, the

20

rest of the words go to the class Stemmer which removes the end of a word such that it
is in the root form. Stemmer builds on a Swedish stemmer algorithm[32]. The Swedish
stemmer algorithm looks for the region after the first consonant following a vowel. This
region is the ending of the word which will be modified. If there is no such consonant
then there is no ending of the word which can be modified. The region to be modified in
the word “allergic” is “lergic”. When this region is defined Stemmer removes letters
from the ending of this region depending on which word class the word belongs to.
Normally the Stemmer only takes into account the word classes from Talbanken05 but if
the word is a noun, it also looks at the word class from hunpos since nouns can have
different inflections depending if the word is in plural, definite, genitive, non-neuter etc.
When Stemmer knows which word class the word belongs to it first determines if the
longest removable ending is in the region and then the shorter one and so on. All
removed endings are listed in Appendix E. Stemmer also searches for words that equal
the words in the file Wordlist.txt. Wordlist.txt lists all words and their inflections,
together with belonging word classes, that distinguish one disease from another. If a
word class and the word are conformable with some word in the file Wordlist.txt then
the word is replaced with the word in the base form. The reason for doing this is that it
is more important that these words are in the base form since in most cases they are in
base form in MeSH.

3.3.1 Construct a table with most frequent words
Different types of documents consist of different types of words. A historian uses
different words in his research texts than a natural scientist. When care staff write
patient records they also use specific words to describe patients and their diseases. Some
words appear more often than others, such as the word “patient”. As mentioned in
section 2.2 such words are often not that important since they generally do not describe
any specific disease about a patient. Therefore, they can be removed. But to know
which words can be removed all words in the patient records must be counted and
divided into right types. A class ConstructWordTable was constructed to handle this.
ConstructWordTable reads from text files and counts how many times different types of
words appears. First it sends all the text to the SentenceDivider, described in section 3.1,
so that all text will be divided into words, dots, commas etc. Then the text is sent to
WordEliminator so that unimportant words can be removed and also so that words go
through the stemmer. After the text is cleaned all words are counted and stored in a
table. When the whole table is finished the words that appear most often are written to
the file MostFrequentWords.txt. Words which occurred at least as many times as there
were records were classified as frequent words, since these words do not seem to be
unique.

3.4 Implementation of concept learning
As it is described in section 2.3 there must be an algorithm that recognizes a sentence.
In that section it was established that the Find-S algorithm is the best option in this case,
but the hypothesis must be a little modified. The purpose is to construct hypotheses
which later can be used when analyzing sentences. The easiest way to do this is to

21

construct tables of words that show which word combinations are accepted, in other
words hypothesis tables which list keywords of diseases. As previously mentioned,
hypotheses' attribute constraints can either be a value of the corresponding attribute, a
question mark or the empty mark. In this case, the empty mark can be reduced at the
beginning since a word is either in a sentence or not, or it does not matter if the word is
in the sentence at all. It never occurs that none of the values are correct. To have
something that describes the attribute constraints a new data type, Value, was
constructed. Value can have three different values. EXIST, which means that the word
(attribute) must exist in the sentence. EXIST_NOT, which means that the word may not
appear in the sentence and EXIST_DOES_NOT_MATTER, meaning that it does not
matter if a word is in the sentence or not.

To construct a hypothesis table several components are needed. The main class which
was constructed was TrainingData. This class reads from a file with sentences that
describe a category (the name of the file) and writes the calculated hypothesis to a file.
At the first row in the file all words which distinguish one disease from another in this
category are listed. So if the category is food hypersensitivity one can see from
Illustration 1 that the words which distinguish one disease from another are “ägg” (egg),
“mjölk” (milk), “nöt” (nut), “jordnöt” (peanut) and “vete” (wheat). Therefore, all these
words shall be listed in the first row of the file separated with spaces. The reason why
these words shall be listed is because they will be ignored when the computer learns
from the sentences. They do not characterize the category but instead only describe
more precisely the diseases which belong to the category. Such words are not desirable
in the table. Since there are not that many such describing words, it is not hard to list all
such words in the beginning of the file. From second row down to the last, all possible
sentences that belong to that category are listed. When TrainingData reads such a file it
sends all sentences to the class SentenceDivider described in section 3.1. The reason is
to separate the words from periods, commas etc. After this is done, all sentences are
sent to the class WordEliminator, also described in 3.1, to eliminate unimportant words
and also to stem the words.

After the sentences have been cleaned, all words are examined to determine whether
they start with any of the words that shall be ignored. Looking at the previous example,
this would involve determining whether some of the words start with “ägg” (egg),
“mjölk” (milk) etc. If this is the case then that part is replaced by a star. For example, let
us look at the word “nötöverkänslig” (nut hypersensitive). Since “nöt” (nut) shall be
ignored the word is replaced with “*överkänslig”, meaning there may exist words which
end on “överkänslig”. When removing such words the table becomes broader since
“*överkänslig” also covers words as “mjölköverkänslig” (milk hypersensitive),
“jordnötsöverkänslig” (peanut hypersensitive) etc. instead of only “nötöverkänslig”.
Also, frequently occurring words are removed. Finally there are only those words left
that may have something to do with the description of the category. When this is done
all training examples can be constructed. A table that lists what word combinations
occurs in the sentences is constructed. If a word occurs in a sentence then the attribute
constraint assigns the value EXIST and if the word does not exist in the sentence the
constraint gets the value EXIST_NOT. If two words are almost equal meaning they only

22

differ regarding one letter and if the length of one of the words is more than six letters
then these words are treated as one word since such words can be treated as misspelling
or that the stemmer has done something wrong. For example if one word is
“överkänslig”, and another is “överkänsli” then both words are actually the same word.
To calculate how many letters differ between two words Levenshtein Distance[33] is
used which is described in section 3.5.

When the table is complete the hypothesis must be calculated. FindSModel is a class
which constructs a hypothesis by adding training examples, one by one. A training
example is represented by a Vector object. The class Vector consists of a list with Values
and a boolean which tells if it is a positive or negative instance. The FindSModel adds
only positive training examples as the Find-S algorithm. The FindSModel contains a list
with all possible vectors represented by Vector objects. When adding a new training
example the hypothesis is updated by iterating through all vectors in the hypothesis. If a
training example can change a vector, so that this training example becomes a member
of the hypothesis, the change will be done. Otherwise the training example will be
added to the rest of the vectors. The requirement of changing a vector is that at least one
value must have value EXIST at the same place in both the vector and the training
example. If that is the case all values of the vectors are compared to corresponding
values of the training example. If the value of a vector in the hypothesis is EXIST and
the value of the training example is EXIST_NOT then the value of the vector is
assigned EXIST_DOES_NOT_MATTER. The same thing is done if the value of the
training example is EXIST and the value of the vector is EXIST_NOT. When a vector's
value is assigned EXIST_DOES_NOT_MATTER then all other values in the vectors
which are at the same place are also assigned EXIST_DOES_NOT_MATTER unless a
value is the only attribute constraint in the vector which has the value EXIST, then this
value is not changed. A hypothesis before and after a new training example:

hbeforet=〈 yes , no , no , no〉∨〈no , yes , no , yes〉∨〈no , no , yes , no〉

t= yes , no , yes , no
hafter t=〈 yes ,no ,? ,no〉∨〈? , yes , ? , yes 〉∨〈? ,no , yes , no 〉

The reason to do it like this is that much more cases will be covered. If it does not
matter if a word exists in a sentence it probably does not matter if it exists in another
sentence also. For example if the computer has found that it does not matter if the word
“har” (have) exists then the computer has hopefully found that this word has nothing to
do with the category so it is needless to care about it in another kind of sentence.

When all training examples are added, one has a hypothesis table with vectors which
have values EXIST, EXIST_NOT and EXIST_DOES_NOT_MATTER. In 2.3.3 it was
described about a sentence that is describing a certain disease and therefore should be
classified as a member of a hypothesis contains words which are consistent with a

23

vector's positive attribute constraints but the sentence also contains some words which
are negative in the vector. Such sentence will be classified as a non member of the
hypothesis. To avoid this all attribute constraints that have the value EXIST_NOT are
replaced with EXIST_DOES_NOT_MATTER. Thus such sentences will be classified as
members of the hypothesis. After all vectors are complete they are, together with all the
words, written to a file. A hypothesis table is constructed and can be used in the
categorization of a sentence.

3.5 Search in text
When all preparations are done it is time to search through a text. Search is a class
which receives a text that will be checked through. Search reads from files with the
hypothesis tables, described in 3.4 so that it stores all hypothesis tables. Then it sends
the text to the SentenceDivider in order to tokenize the text. After this is done, the text is
sent to WordElimination so that irrelevant words are eliminated. Frequently used words
are also eliminated. Then for each sentence Search goes through all the hypothesis
tables and checks if the remaining words are satisfying the attributes in the tables. If
there is a vector in the hypothesis table which can represent a sentence then the
conclusion is that this sentence belongs to the category which the table represents, but it
is not certain that this sentence describes a disease in this category.

Since a word can be misspelled and the stemmer may not always stem as desired, words
that are similar to some attribute are regarded as this attribute. To decide if a word is
sufficiently similar to an attribute, an algorithm called Levenshtein Distance is used,
which measures the difference between two strings. Levenshtein Distance calculates
how many changes must be done to one string for it to equal another string, meaning it
calculates the number of deletions, insertions and substitutions.[33] The distance
between the words “allergic” and “allergy” is two since these two words are equal up
until letter g. Then the letter y in “allergy” is substituted to i and after that an insertion of
c is done. The whole algorithm is shown in Appendix D. In Dimitrios Kokkinakis
papers[34] it is written that one can assume that words which have seven or more letters
are more likely to be misspelled. In the Dimitrios Kokkinakis's research, words that
have a Levenshtein Distance of at most one are treated as the same word. This work
also deals with MeSH terminologies as the Dimitrios Kokkinakis research does, hence it
can be a good idea to follow these restrictions. Hence, the words “allergy” and “alergy”
are classified as the same word. Here “alergy” has only six letters but since “allergy”
has seven Search will accept it as a candidate to calculate the Levenshtein Distance.

When a sentence is classified as belonging to a category, one still can not know which
disease, if any, the sentence is describing. But the problem has become less severe
considering the fact that the sentence originally could describe many thousand different
diseases and now only up to maybe twenty. To find out what disease the sentence
describes, the sentence is sent to SearchApelon. As described in 2.3.4 functions from
Findwise's web service Nyckelordtjänst are used for this work. The main function

24

searches and outputs all possible nodes which begin with the words in a string. So if a
cleaned sentence that consists of the words “patient” (patient), “är” (is), “allergi”
(allergy) and “nöt” (nut) is the input to the Findewise's function one receives all nodes
that begin with these words. To find out what categories these nodes belong to, their
parents are fetched. If any parent equals the category of the sentence then one of these
nodes is the name of the disease which the sentence is describing. The nodes in which
parents are not equal to the category are ignored. If none of the parents of the nodes
equal the category then the conclusion is made that this sentence does not describe any
disease.

Assume that a sentence contains the words “sockersjuka” (another word for diabetes in
Swedish) and “icke-insulinberoende” (not insuline-dependent) and the sentence belongs
to the category “diabetes” (diabetes mellitus) then no node will be found since there is
no node with synonyms that start with these two words and with parent nodes that equal
the category. One solution is to add the name of the category to the words in the
sentence. In that case, the search string will instead be “sockersjuka icke-
insulinberoende diabetes”. This will solve the situations in where a node is describing a
category and is not in the beginning of the word. Unfortunately there will be cases that
will not be covered.

As mentioned in 2.3.4 one can receive several nodes that belong to the same category as
the sentence. To solve this problem, the node with name or synonyms most similar to
the words in the sentence is chosen as the final disease. To measure how similar a
sentence is to a node's synonyms all words which are a substring of the synonyms are
combined in all possible combinations. If a word with over six letters has a Levenshtein
Distance to a word in the synonyms which is at most one it is also tested in the
combination. For each of these combinations the Levenshtein Distance is calculated to
the synonyms. The smallest distance is counted as this node's distance to the sentence. If
for example one will calculate the distance between the words “överkänslig”
(hypersensitive) and “nöt” (nut) and the node's name “nötöverkänslighet” (nut
hypersensitivity) then it calculates the distance between “överkänslig nöt” and
“nötöverkänslighet” which is six. It then calculates the distance between “nöt
överkänslig” and “nötöverkänslighet” which is four. Therefore the distance between
these two words no matter the combination and the node is four. To obtain a fair rating
of which node is closest to the sentence, the percentage distances are compared. The
percentage distance is calculated from the distance between two strings divided by the
sum of the letters in these two strings. The node that has the smallest percentage
distance to the sentence is chosen as the disease that the sentence is describing. No node
is returned when only the name of the category is similar to the nodes, that is, no other
words in the search string are substrings to the nodes' names or synonyms. Sometimes
several nodes can have the same percentage distance to a sentence. If this is the case, all
these nodes are returned as diseases.

25

In conclusion, the output from SearchApelon is the disease the sentence is describing, or
nothing if the sentence is not describing any disease. The output from Search are all
diseases which are described in the input text.

26

4 Result
In this section results from the different parts of the work are presented. Although some
of the results are not very remarkable, reviewing them may still be interesting.

4.1 Frequently used words
As mentioned in the beginning of this report fictitious patient records were used. In
Table 10 one can see the words which appear most frequently in the records after
eliminating the irrelevant words in the WordEliminator. All words that have appeared
fourteen or more times (there are fourteen fictitious patient records) are listed in the
table. These words are eliminated from the sentences that are training examples and
from the text which is scanned.

4.2 Using Talbanken05
All possible sequences of three word classes which occurred in Talbanken05 were
collected. The probability of jumping from one sequence to another was calculated.
There are a lot of sequences, hence it is hard to show them all here. Table 11 shows
some few probabilities to jump from one sequence to another. The node START refers
to the beginning of a sentence, a jump from START to a sequence means that a sentence
starts with this sequence. If a sequence jumps to the END node it means that a sentence
ends with this sequence.

Word Number of occurrence The percentage occurrence

har 39 2.78%

normal 31 2.21%

ej 30 2.14%

patient 25 1.78%

höger 20 1.43%

dag 20 1.43%

mg 20 1.43%

t 19 1.35%

u.a. 17 1.21%

nu 16 1.14%

blodtryck 16 1.14%

sedan 15 1.07%

arm 15 1.07%

vänster 15 1.07%

var 14 1.00%

Table 10: Most frequent words in the patient records.

27

From node To node PO VV PO PO VV AB AB VV AB AB VV PO END

START 2.79% 7.93% 0.778% 3.77% -

IK PO VV 14.9% 20.8% - - -

PO AB VV - - 11.4% 19.0% -

++ PO VV 13.6% 40.3% - - 0.188%

Table 11: Probabilities to jump from one sequence of three word classes to another. A
jump from START to a sequence means that a sentence starts with this sequence. A jump
from a sequence to END means that a sentence ends with this sequence.

Word classes
from HunPos

Word classes
from

Talbanken05
NN ++ VV EN AJ IK PO IP ID UK IQ I?

nn.neu.sin.def.nom 0.97

kn 0.8 0.12

nn.utr.sin.def.nom 0.96

vb.prs.akt 0.99

dt.utr.sin.ind 0.9 0.1

jj.pos.utr.sin.ind.nom 0.78 0.17

nn.utr.sin.ind.nom 0.93 0.05

mid 0.77 0.05 0.05

Table 12: Probabilities that a word class from HunPos is representing a word class
from Talbanken05.

Section 3.2 covers the research of the precision of hunpos. Sentences from Talbanken05,
which are divided into words, punctuation marks etc. with corresponding word class
were sent to hunpos. The word classes which were allocated the tokens in hunpos were
compared with the word classes in Talbanken05. In Table 12 one can see some of the
probabilities that a word class from hunpos is representing a word class from
Talbanken05. To show all probabilities would take up to much space.

To get a better result when assigning word classes to tokens, the output from hunpos
were combined with the probabilities as in Table 11 and Table 12. This is described in
3.2. Tests were done to see how good this solution was. The sentences from
Talbanken05 were sent to hunpos. When converting the output from hunpos to the word
classes from Talbanken05 only the highest probabilities as those shown in Table 12
were taken into account. If, for example, one would get the word class kn from hunpos
and wanted to get the representing word class from Talbanken05 one would always
choose ++ and skip UK. The assigned word classes were then compared to the right
word classes in Talbanken05, the error was 10.31%. The error is instead 9.47% when
taking into account the probabilities in both Table 11 and Table 12 and choosing the

28

combination of word classes which gives the highest probability when combining the
probabilities from these two tables. This may seem like not that big of an improvement,
but the error has nevertheless been reduced by 8.16% which of course is better.

Sentences sent to SentenceDivider
No

multiplication
with a

Multiplication
with a

Jag är allergisk mot en del läkemedel som t.ex. Penicillin, Alvedon
och Kortison.

x

Jag har övers. Nyhetsposten tre gånger. x

Jag har bott i många städer, bl.a. Warszawa, Berlin och Göteborg med
sina fina områden, t.ex. Slottskogen, Delsjön m.m. Där brukar jag gå
på promenader.

x x

Jag tycker om Anna, Lisa och Mia m.m. Men jag tycker inte om Lova. x x

Jag har haft en del mobiler, bl.a. Samsung och Nokia. x x

Hon ligger på avd. Smörblomman. x x

Hon ligger på en avd. Hon mår inte så bra. x x

Jag vill sälja min beg. Volvo740, den är ganska risig. x

Jag vill sälja min beg. Volvo740. Den är ganska risig. x x

Olle kommer hit m. Anna och deras dotter. x

Jag har besökt Ida, Elisabet m.fl. De var alla jättesnälla. x x

I n.ö. Göteborg ligger Angered, Bergsjön m.m. I Angered ligger
Vättlefjäll.

x x

Det är tre nya tjejer, näml. Anna, Tova och Lisa. x x

Vi säljer äpplen, päron, apelsiner o.s.v. Men vi har även godis. x x

Vi måste hålla stängt p.g.a. Lisas operation. x

Målet rör. Olle går snabbt framåt, sa Johan iron. Ja precis, svarade
Linda.

Min opp. Lisa ska själv ha redovisning om två v. Hon förbereder sig
redan.

x x

Här jobbar vaktm. Olle som har jobbat här i fyra år. x

Den ligger u. Lisas arm, ser du? x

Vi hade det trevl. Maria, jag, Sara m.fl. Vi tittade på Saras kort som
hon har tagit i bl.a. London och Paris.

Table 13: Sentences with abbreviations followed by a word which starts with an
uppercase. The column “No multiplication with a” means that only the possible
sentence's probabilities are multiplied and “Multiplication with a” means that the
possible sentence's probabilities are multiplied and the product is multiplied with a,
a=10−2⋅the number of the sentences . An “x” means that the sentence is interpreted correctly.

29

4.3 Determining whether there is a new sentence after an
abbreviation

In 3.1 it is shown that when a sentence contains an abbreviation followed by a word
which starts with an uppercase, SentenceDivider must determine whether there is a new
sentence after the abbreviation or whether the sentence continues. SentenceDivider
chooses the combination which gives the highest number when multiplying the
probabilities of the occurrence of each sentence and then multiplying with a where
a=10−2∗the number of the sentences . Table 13 shows sentences that contain abbreviations
followed by a word starting with uppercase. The table shows which sentences are
interpreted correctly when only the possible sentences' probabilities are multiplied with
each other and when possible sentences' probabilities are multiplied with each other and
then multiplied with a . From the table, one can see that when there is no multiplication
with a the interpretation is not that bad; eleven out of twenty sentences are interpreted
correctly. But when multiplying with a eighteen sentences are interpreted correctly
which is much better.

4.4 Construction of the hypothesis tables
The algorithm which constructs hypothesis tables was tested with some training
examples. “Diabetes” was the first hypothesis table which was constructed. The file, as
in Illustration 7 was sent to the class TrainingData, described in 3.4, and the constructed
hypothesis table was as that in Table 14. This hypothesis table is pretty accurate.
Sentences containing words as “åldersdiabetes” (diabetes of old age), “sockersjuka”
(another word for diabetes) and “diabetisk” (diabetic) will be categorized as possible to
describe a sub-disease to diabetes. This table is of course not ideal considering for
example a sentence including the expression “prediabetisk fas” (prediabetic state). In
this case, according to the table, the word “konstatera” (find out), “konstater” in the
table, must also be in the sentence. This word has nothing to do with diabetes. Hence
the table also consists of errors. To see how good this algorithm is it was also tested
with similar sentences, but some of them were longer. In Illustration 8 one can see the
file that was sent to TrainingData and in Table 15 the hypothesis table that was
constructed. As one can see some words that occur in Table 14 are missing in Table 15,
such as “*diabeti”. Therefore, the sentence “Är diabetisk.” (Is diabetic.) would not be
classified as a member of this hypothesis. Another factor that will classify a sentence as
a member of the hypothesis is the occurrence in the sentence of the word “uppsikt”
(supervision), which is represented by the word “uppsik” in the table. The word
“uppsikt” has nothing to do with diabetes, so the sentence will probably be wrongly
classified.

30

31

Illustration 7: A file with training examples which will be used when constructing the
hypothesis table for diabetes. The words in the first row are words that will be ignored
when the computer constructs the hypothesis table.

Illustration 8: A file with somewhat longer sentences which will be used when
constructing the hypothesis table for diabetes. The words in the first row are words that
will be ignored when the computer constructs the hypothesis table.

*diabetes sockersjuk *diabeti fas konstater mody niddm donohue syndrom diabetes-
ketoacidos diabe

yes ? ? ? ? ? ? ? ? ? ?

? yes ? ? ? ? ? ? ? ? ?

? ? yes yes yes ? ? ? ? ? ?

? ? ? ? ? yes ? ? ? ? ?

? ? ? ? ? ? yes ? ? ? ?

? ? ? ? ? ? ? yes yes ? ?

? ? ? ? ? ? ? ? ? yes ?

? ? ? ? ? ? ? ? ? ? yes

Table 14: The hypothesis table which was constructed after sending the file in
Illustration 7 to TrainingData. Words that have the value ? in all rows were omitted.
This hypothesis table shall represent sentences that describe diabetes.

*diabetes syndrom sockersjuk uppsik mody niddm diabetes-
ketoacidos diabe

yes ? ? ? ? ? ? ?

? ? yes ? ? ? ? ?

? ? ? yes ? ? ? ?

? ? ? ? yes ? ? ?

? ? ? ? ? yes ? ?

? yes ? ? ? ? ? ?

? ? ? ? ? ? yes ?

? ? ? ? ? ? ? yes

Table 15: The hypothesis table which was constructed after sending the file in
Illustration 8 to TrainingData. Words that have the value ? in all rows were omitted.
This hypothesis table shall represent sentences that describe diabetes.

32

The algorithm was also tested with sentences that describe food hypersensitivity. Again,
the algorithm was tested with short and long sentences. In Illustration 9 and Illustration
10, the two files that were sent to TrainingData are shown, and Table 16 and Table 17
contain the hypothesis tables that were constructed from each file. The same problem
arises as in the previous tests. Words that have nothing to do with the diseases occur in
the table. But many words that do describe the diseases are actually listed in the table
which is very good. The hypothesis table based on the shorter sentences is somewhat
better than the other table. But if there were more sentences in the file with the longer
sentences, the table would probably be better. For example, if there was an additional
sentence containing the word “över.” (an abbreviation of hypersensitive) it probably
would not contain the word “barndom” (childhood) so the latter word would also be
assigned the value ? which would make the table more adjusted to reality.

33

Illustration 9: A file with training examples which will be used when constructing the
hypothesis table for food hypersensitivity. The words in the first row are words that will
be ignored when the computer constructs the hypothesis table.

Illustration 10: A file with somewhat longer sentences which will be used when
constructing the hypothesis table for food hypersensitivity. The words in the first row
are words that will be ignored when the computer constructs the hypothesis table.

*allergi inte reagera överkänsl över. *all *intol

yes ? ? ? ? ? ?

? yes ? ? ? ? ?

? ? yes ? ? ? ?

? ? ? yes ? ? ?

? ? ? ? yes ? ?

? ? ? ? ? yes ?

? ? ? ? ? ? yes

Table 16: The hypothesis table which was constructed after sending the file in
Illustration 9 to TrainingData. Words that have the value ? in all rows were omitted.
This hypothesis table shall represent sentences that describe food hypersensitivity.

*allergi inte får överkänsl över. barndom *intol. dock små

yes ? ? ? ? ? ? ? ?

? yes ? ? ? ? ? ? ?

? ? yes ? ? ? ? ? ?

? ? ? yes ? ? ? ? ?

? ? ? ? yes yes ? ? ?

? ? ? ? ? ? yes yes yes

Table 17: The hypothesis table which was constructed after sending the file in
Illustration 10 to TrainingData. Words that have the value ? in all rows were omitted.
This hypothesis table shall represent sentences that describe food hypersensitivity.

4.5 Searching for diseases in a patient record
The final aspect of the work was to see if the demo application could go through a text
in a patient record and output all diseases that are mentioned in the record. Since this
report covers only the sub-diseases to diabetes and food hypersensitivity, tests were
done only in order to find these particular diseases. The tests are divided into three
parts. The first one tests patient records that are not describing any disease. The second
one is to test patient records that include sentences that are classified as a members of a
hypothesis table but are not describing a sub-disease. The third test is to test records that
include sentences describing sub-diseases to diabetes and food hypersensitivity. All tests
were conducted using the hypothesis tables from Table 14 and Table 16.

34

Sentences placed randomly in the records Output from Search

Har pollenallergi. x

Har inte visat tecken på andnöd. x

Kan inte umgås med pälsdjur. x

Reagerat med utslag för länge sedan på något hon tror var penicillin. x

Har överkänslighet mot Penicillin. x

Allergisk mot hamster och kiwifrukt. x

Har diabetes och hypertoni, behandlas med tabletter. x

Har diabetes i släkten. x

Har sockersjuka. x

Patientens pappa var diabetiker. Typ 1-diabetes, Typ 2-diabetes

Allergisk mot kåvepenin (reagerade med utslag och klåda efter en
pneumonibehandling -92). x

Pupiller reagerar liksidigt på direkt och indirekt ljus. x

Ingen känd allergi. x

Table 18: Sentences which are members of the hypotheses in Table 14 and Table 16 but
which are not describing any sub-diseases to the diseases that the hypotheses represent.
The sentences were placed randomly in the patient records. An “x” in the column
“Output from Search” means that the output was empty.

When the first test was implemented all answers were positive. Fourteen records, that
did not describe any sub-diseases to diabetes and food hypersensitivity, were sent to
Search and the output was empty. Some of the sentences in the records were classified
as members of the hypotheses but further searches did not find any relation between the
sentences and the sub-diseases. The purpose of the subsequent test was to examine if the
output is empty or not when one sends records with sentences that are classified as
members of the hypotheses but are not describing sub-diseases to the diseases the
hypothesis tables represent. Sentences in Table 18 were placed randomly in different
patient records. Only one sentence out of thirteen in the table outputs names on diseases
that are assumed to be described.

The last test was aimed at determining whether or not the computer can capture diseases
that are written down in the records. Sentences in Table 19 were placed randomly in the
patient records and the records were sent to Search. Some of the words in the sentences
are intentionally misspelled. The aim is that the computer should be able to find the
correct diseases despite of the spelling errors. Most of the diseases are found by the
computer, but some sentences are more difficult for the application to understand. The
sentence “Har diabetes ketoacidos.” (Has diabetic ketoacidosis.) is misspelled, the
correct spelling being “Har diabetesketoacidos.”. When Nyckelordtjänst's function has
as input the word “diabetes” it should be able to find the disease “diabetesketoacidos”

35

since the disease starts with the word “diabetes”, but for some unknown reason it does
not. The application classifies this sentence correctly, hence the error does not depend
on the constructed algorithms. The sentence “Är insuliberoende, har diabetes.” (Is
insulin dependent, has diabetes.) has the misspelled word “insuliberoende” which
should be “insulinberoende” (insulin dependent). Since the word becomes stemmed to
“insuliberoend” the Levenshtein Distance between this word and “insulinberoende”
becomes two which does not fit the criteria for being the same word. The word
“allergisk” (allergic) in the sentence “Fick allergisk chock av nötter.” (Got allergic
shock from nuts.) is assigned the word class pronoun but the real word class is
adjective. Since all words that are pronouns are eliminated, this word is eliminated also.
Therefore the sentence is classified as a nonmember of the hypotheses and the disease is
not found. The sentence “Över. mot nöter.” (Hypersensitive to nuts.) is classified
correctly as a member of the hypothesis representing food hypersensitivity, but since the
word “nöter” is misspelled, the correct spelling being “nötter” (nut), it is stemmed
wrongly and Nyckelordtjänst's function is not able to find the correct disease. The last
sentence that was misinterpreted is “Regerade med utslag då patienten drack mjölk.”
(Reacted with a rash when the patient drank milk.). The word “regerade”, which is
misspelled, the correct spelling being “reagerade” (reacted) instead, is stemmed to
“regerad” and the Levenshtein Distance between this word and the word “reagera” in
the hypothesis in Table 16 is two. This number is too high, hence the sentence is not
classified as a member of this hypothesis.

36

Sentences placed randomly in the records Output from Search Correct disease

Har diabetes, typ 1. Typ 1-diabetes Typ 1-diabetes

Fick diabetes under graviditeten. Graviditetsdiabetes Graviditetsdiabetes

Tablettbehandlad diabetes mellitus typ II. Typ 1-diabetes
Typ 2-diabetes Typ 2-diabetes

Har diabetesketoacidos. Diabetesketoacidos Diabetesketoacidos

Har diabetes ketoacidos. x Diabetesketoacidos

Är insulinberoende, har diabetes. Typ 1-diabetes Typ 1-diabetes

Lider av juvenildiabetes. Typ 1-diabetes Typ 1-diabetes

Har åldersdibetes. Typ 2-diabetes Typ 2-diabetes

Sockersjuka, typ 1. Typ 1-diabetes Typ 1-diabetes

Är insuliberoende, har diabetes. x Typ 1-diabetes

Kan inte dricka mjölk. Mjölköverkänslighet Mjölköverkänslighet

Fick allergisk chock av nötter. x Nötöverkänslighet

Kan inte äta jordnötter. Jordnötsöverkänslighet Jordnötsöverkänslighet

Har veteall. Veteöverkänslighet Veteöverkänslighet

Reagerade negativt mot ägg. Äggöverkänslighet Äggöverkänslighet

Överkänslig mot nötter. Nötöverkänslighet Nötöverkänslighet

Över. mot nöter. x Nötöverkänslighet

Regerade med utslag då patienten drack mjölk. x Mjölköverkänslighet

Är mjölkintol sen några år tillbaka. Mjölköverkänslighet Mjölköverkänslighet

Har alergi mot nötter. Nötöverkänslighet Nötöverkänslighet

Table 19: Sentences which are describing sub-diseases to food hypersensitivity and
diabetes. The sentences were placed randomly in the patient records. An “x” in the
column “Output from Search” means that the output was empty.

37

5 Discussion
There are some questions that are interesting to discuss. Is the method described in this
report good? Could it be better? If yes, then how? Can healthcare professionals rely on
this method? Are there other methods that may be more suitable? In the following
paragraphs these questions are discussed among others.

When looking at the results shown in 4.5 one can see that this method is rather
satisfying. The algorithms could at least find many of the diseases which were
mentioned in the patient records. But of course there could have been more rightly
interpreted diseases. The question is whether this would work on other diseases and not
only on the ones that were tested in this master thesis. Since many diseases have similar
structure this method would probably work on other diseases too, but probably some
more rules would have to be added. Of course this theory needs to be tested. To make
this method more accurate there are some aspects that could probably be improved on.
First there is the issue of elimination of words. In 4.2 it is written that the error from
hunpos is 10.31%, but when using hunpos together with combinations of three word
classes the error is reduced to 9.47%. If this error could be reduced even more,
additional irrelevant words would be eliminated and errors such as the one in 4.5, where
the word “allergisk” (allergic) was assigned the wrong word class and was incorrectly
eliminated, would also be decreased. Maybe a combination of four or more word classes
instead of three would contribute to a better output. But the longer the combinations of
the word classes, the longer it would take for the computer to find the correct sequences.
One could also ask if the error, when sending the patient records to hunpos, is not even
more extensive, considering that the sentences in the patient records are not always
grammatically correct. For example, healthcare professionals often write short and
concrete sentences in a record.[35] For instance, the sentence “He got rashes.” may be
reduced to “Got rashes.” which can be more difficult for the tagger to interpret. So
maybe the patient records should have a tagger of their own. Since many medical terms
are used in the patient records and these are important it could potentially be very
dangerous if they were eliminated. Maybe a word-list which lists all medical terms that
can not be removed could be a solution? Another improvement on the search in records
would be to produce a better stemmer. For instance, a stemmer with more specific rules
and which also has a word-list with all irregular words.

If the words would be eliminated and stemmed correctly the hypothesis tables would
become more consistent with reality. But they can still fail to classify a positive
sentence as a member of the hypothesis, as for example in 4.5, which had the word
“reagerade” (reacted) misspelled and wrongly stemmed to “regerad”. If the word were
to be correctly spelled and stemmed it would fit the keyword “reagera” (react) in Table
16 but now the Levenshtein Distance is two which contributes to wrong classification of
that sentence. Perhaps the limit, that the distance between two words may at most be
one, is too low. Maybe one should allow the distance between two words to be two
when the words get stemmed. Another problem when constructing these hypothesis

38

tables is if the wrong word is assigned the value ?. But if there are many training
examples (sentences) the keyword may appear again with other words and thus in
another vector the word may obtain the value yes again.

When a sentence is classified as a member of a hypothesis it still remains to be found
which disease it relates to. The problem here was that misspelled words could not return
correct nodes. The word “nötter” (nuts) in 4.5 with the stemmed form “nöt” (nut) was
misspelled to “nöter” and therefore it did not get stemmed correctly. This word is a short
one so it is difficult for the computer to guess what the correct word is. Maybe the
misspelled word already has a meaning as in this case in which the word “nöter” means
“wears”. That makes it even harder to find out which real meaning this word should
have. Of course one could have a word-list with commonly misspelled words but there
can always occur new spelling errors. To avoid problems, also mentioned in 4.5,
concerning the words “insuliberoend” and “insulinberoende” (insulin-dependent) being
classified as two different words, one could allow a bigger Levenshtein Distance
between longer words, since it is more likely that the long words will be misspelled and
wrongly stemmed.

Another big question is if healthcare professionals can rely on this method. This method
must of course be developed further and then maybe it could become a helpful tool for
professionals. But, since computers can always miss a disease maybe one can not rely
on them completely. But, if, for example, an unconscious patient arrives to the
emergency room and the healthcare professional does not know anything about what he
or she is allergic to then such a application may be helpful. A problem arises if a disease
is negated in a record. If, for example, tests are done so that a disease can be excluded
then it is probably mentioned in the record. In this case, the sentence which negates the
disease can be found by the application as describing the disease. This can cause
problems.

There may exist methods more suitable to finding diseases in a text. Maybe an
algorithm which also takes negative training examples into account so that the issues
described in the last paragraph do not appear. This is of course a very big subject which
can be investigated extensively. In this master thesis the application assumes that a
patient does not have any diseases from the beginning and then searches if he or she has
one. Maybe it would be better to assume that a patient has all diseases until the opposite
is proven.

This work only treats sentences that refer to themselves, but there can of course be
sentences that refer to each other. Therefore, an algorithm that takes this into account
would be better. Also, English medical words can occur in the records, hence a
collection of these are a good idea also.

39

6 Conclusion
The subject automatic searching in electronic health records is probably solvable and it
is absolutely worth further investigations. There may of course exist much better
methods than the method described in this report. A good idea would be to make
surveys and examine various methods to perform automatic searching in electronic
health records. By implementing several tests one can find the necessary rules and
reduce the error rate. Of course this requires a lot of extensive research. Maybe one can
not rely on this method a hundred percent but it may still prove to be an aid in
healthcare.

A program such as the demo application can in addition to searching through a patient's
health record and alerting the healthcare professionals to what diseases he or she has,
also be used for other things. For example if there are scientists who need a group of
people with a particular disease to test a new medicine on, they would only need to
search through all the records and find these people very quickly. Another situation in
which such a program could be used is when a healthcare professional writes in a
patient record. The program could then automatically detect if he or she writes about for
example an allergy and alert the healthcare professional to the fact that this information
should be put in a special field called Allergy. Such a program could also be useful in
other areas. Of course the program must be adapted in order to suit the given area.

Another aspect which would be interesting to investigate is whether a similar method
could work when making a search on the Internet. That is, when one searches for
something on the Internet, could one also receive the documents belonging to the same
category as the search phrase even if they do not contain the particular search words.
This is of course a much more difficult problem since the Internet is very big, it might
even be too big. However, this would be a very interesting research subject.

40

References
[1] Karolinska Institutet, Svensk MeSH - Sökhjälp - medicinsk information - Biblioteket
- ki.se, http://mesh.kib.ki.se/swemesh/swemesh_se.cfm, 2010-05-11.
[2] Karolinska Institutet, MeSH Indexing Manual - A Guide to MeSH Indexing -
Karolinska Institutet, http://ki.se/ki/jsp/polopoly.jsp;jsessionid=aeNI9cLM010hAkuuhI?
l=en&d=4358&a=11716, 2010-05-11.
[3] Oracle Corporation and/or its affiliates, Java SE Downloads - Sun Developer
Network (SDN), http://java.sun.com/javase/downloads/index.jsp, 2010-05-11.
[4] G. Petersson, diktatex, http://www.oron.mas.lu.se/utbildning/diktatex.html, 2010-
05-13.
[5] Linköpings universitet, Journalexempelvt2010.pdf (application/pdf-objekt),
http://www.hu.liu.se/lakarprogr/t5/dokumentarkiv/1.178223/Journalexempelvt2010.pdf,
2010-05-13.
[6] Kandidaterna, Kandidaterna, http://www.kandidaterna.se/, 2010-05-13.
[7] Medical students at Läkarprogrammet, University of Gothenburg, 2010
[8] Google, hunpos - Project Hosting on Google Code,
http://code.google.com/p/hunpos/, 2010-05-11.
[9] Apelon Inc., Apelon DTS - Welcome to Apelon DTS, http://apelon-
dts.sourceforge.net/, 2010-05-11.
[10] Findwise, Findwise | Findwise - Search Driven Solutions, http://findwise.se/,
2010-05-11.
[11] Google, Wiki Pages - oppna-program-metadata-service - Project Hosting on
Google Code, http://code.google.com/p/oppna-program-metadata-service/w/list, 2010-
05-11.
[12] Regeringskansliet, Språkliga frågor och svar, http://www.regeringen.se/sb/d/2729,
2010-05-13.
[13] S. M. Weiss, N. Indurkhya, T. Zhang, F. J. Damerau, TEXT MINING Predictive
Methods for Analyzing Unstructured Information, 20-21. Springer Science+Business
Media, Inc., New York ,2005.
[14] S. M. Weiss, N. Indurkhya, T. Zhang, F. J. Damerau, TEXT MINING Predictive
Methods for Analyzing Unstructured Information, 21, 23. Springer Science+Business
Media, Inc., New York ,2005.
[15] S. M. Weiss, N. Indurkhya, T. Zhang, F. J. Damerau, TEXT MINING Predictive
Methods for Analyzing Unstructured Information, 25-26. Springer Science+Business
Media, Inc., New York ,2005.
[16] T. M. Mitchell, MACHINE LEARNING, 20-21. McGraw-Hill Companies, Inc.,
United States of America ,1997.
[17] P. Damaschke, The course in Algorithms for machine learning and inference
(TDA231), Chalmers University of Technology, January-March 2009.
[18] T. M. Mitchell, MACHINE LEARNING, 22-23. McGraw-Hill Companies, Inc.,
United States of America ,1997.
[19] T. M. Mitchell, MACHINE LEARNING, 21. McGraw-Hill Companies, Inc., United
States of America ,1997.
[20] T. M. Mitchell, MACHINE LEARNING, 22. McGraw-Hill Companies, Inc., United
States of America ,1997.

41

[21] Karolinska Institutet, Food Hypersensitivity,
http://mesh.kib.ki.se/swemesh/show.swemeshtree.cfm?
Mesh_No=C20.543.480.370&tool=karolinska, 2010-05-11.
[22] T. M. Mitchell, MACHINE LEARNING, 26-30. McGraw-Hill Companies, Inc.,
United States of America ,1997.
[23] T. M. Mitchell, MACHINE LEARNING, 30. McGraw-Hill Companies, Inc., United
States of America ,1997.
[24] T. M. Mitchell, MACHINE LEARNING, 32-33. McGraw-Hill Companies, Inc.,
United States of America ,1997.
[25] T. M. Mitchell, MACHINE LEARNING, 26. McGraw-Hill Companies, Inc., United
States of America ,1997.
[26] T. M. Mitchell, MACHINE LEARNING, 28. McGraw-Hill Companies, Inc., United
States of America ,1997.
[27] T. G. Hultman, Svenska Akademiens språklära, 32. Svenska Akademien,
Stockholm ,2003.
[28] M. W. Kadous , Hidden Markov models,
http://www.cse.unsw.edu.au/~waleed/phd/tr9806/node12.html, 2010-05-11.
[29] J. Enger, J. Grandell, MARKOVPROCESSER OCH KÖTEORI, 9-11. Department
of Mathematical Sciences Chalmers University of Technology and Göteborgs
University, Göteborg ,2009.
[30] Lund University, Talbanken05,
http://stp.lingfil.uu.se/~nivre/research/Talbanken05.html, 2010-05-11.
[31] M. T. Goodrich, R. Tamassia, Data Structures & Algorithms in Java, 621-625. John
Wiley & Sons, Inc., United States of America ,2006.
[32] M. Porter or R. Boulton, Swedish stemming algorithm,
http://snowball.tartarus.org/algorithms/swedish/stemmer.html, 2010-05-11.
[33] M. Gilleland, Levenshtein Distance, http://www.merriampark.com/ld.htm#REFS,
2010-05-11.
[34] D. Kokkinakis, Lexical granularity for automatic indexing and means to achieve it
- the case of Swedish MeSH®., 25-26. In Information Retrieval in Biomedicine : Natural
Language Processing for Knowledge Integration. Prince V. and Roche M. (eds). pp. 11-
37., IGI Global, 2009.
[35] J. Berg, Facts from the intern Johanna Berg, Gothenburg, 2010-05-07
[36] Öresunds Översättningsbyrå, Oversættelse svensk dansk - Statsaut. translatører -
Online ordbog, http://www.dansk-og-svensk.dk/, 2010-05-12.
[37] G. Andersson, Den stora svenska ordlistan, http://dsso.se/download.html, 2010-
05-13.
[38] J. Nivre, Lexical categories in MAMBA,
http://stp.lingfil.uu.se/~nivre/research/MAMBAlex.html, 2010-05-11.
[39] E. Ejerhed, D. Ridings, PAROLE -> SUC tagset,
http://spraakbanken.gu.se/parole/tags.phtml, 2010-05-11.
[40] E. Andersson, Grammatik från grunden - En koncentrerad svensk satslära, 28-30,
34-35, 42-44, 46-47, 48. Hallgren & Fallgren Studieförlag AB ,1993.

42

[41] D. Kokkinakis, Lexical granularity for automatic indexing and means to achieve it
- the case of Swedish MeSH®., 19-20. In Information Retrieval in Biomedicine : Natural
Language Processing for Knowledge Integration. Prince V. and Roche M. (eds). pp. 11-
37., IGI Global, 2009.

43

Bibliography

These books were used in the research of this master thesis

Andersson E. 1993. Grammatik från grunden - En koncentrerad svensk satslära, 28-30,
34-35, 42-44, 46-47, 48. Hallgren & Fallgren Studieförlag AB.

Enger J. & Grandell J. 2009. MARKOVPROCESSER OCH KÖTEORI, 9-11.
Department of Mathematical Sciences Chalmers University of Technology and
Göteborgs University, Göteborg.

Goodrich M. T. & Tamassia R. 2006. Data Structures & Algorithms in Java, 621-625.
John Wiley & Sons, Inc., United States of America.

Hultman T. G. 2003. Svenska Akademiens språklära, 32. Svenska Akademien,
Stockholm.

Kokkinakis D. 2009. Lexical granularity for automatic indexing and means to achieve
it - the case of Swedish MeSH®., 19-20, 25-26. In Information Retrieval in Biomedicine
: Natural Language Processing for Knowledge Integration. Prince V. and Roche M.
(eds). pp. 11-37., IGI Global.

Mitchell T. M. 1997. MACHINE LEARNING, 20-23, 26-30, 32-33. McGraw-Hill
Companies, Inc., United States of America.

Weiss S. M., Indurkhya N., Zhang T. & Damerau F. J. 2005. TEXT MINING Predictive
Methods for Analyzing Unstructured Information, 20-21, 23, 25-26. Springer
Science+Business Media, Inc., New York.

These homepages were used in the research of this master thesis

Gilleland M. [2010-05-11] Levenshtein Distance,
http://www.merriampark.com/ld.htm#REFS

Kadous M. W. 1998. [2010-05-11] Hidden Markov models,
http://www.cse.unsw.edu.au/~waleed/phd/tr9806/node12.html

44

Karolinska Institutet [2010-05-11] Svensk MeSH - Sökhjälp - medicinsk information -
Biblioteket - ki.se, http://mesh.kib.ki.se/swemesh/swemesh_se.cfm

Porter M. and Boulton R. [2010-05-11] Swedish stemming algorithm,
http://snowball.tartarus.org/algorithms/swedish/stemmer.html

Regeringskansliet [2010-05-13] Språkliga frågor och svar,
http://www.regeringen.se/sb/d/2729.

These are other sources used in the research of this master thesis

Berg J. [2010-05-07] Facts from the intern Johanna Berg, Gothenburg.

Damaschke P. [January-March 2009] The course in Algorithms for machine learning
and inference (TDA231), Chalmers University of Technology.

Services from these sources have been used in this master thesis

Andersson G. 2003. [2010-05-13] Den stora svenska ordlistan,
http://dsso.se/download.html

Apelon Inc. 2007-2010. [2010-05-11] Apelon DTS - Welcome to Apelon DTS,
http://apelon-dts.sourceforge.net/

Ejerhed E. & Ridings D. 2010. [2010-05-11] PAROLE -> SUC tagset,
http://spraakbanken.gu.se/parole/tags.phtml

Findwise 2010. [2010-05-11] Findwise | Findwise - Search Driven Solutions,
http://findwise.se/

Google 2010. [2010-05-11] hunpos - Project Hosting on Google Code,
http://code.google.com/p/hunpos/

45

Google 2010. [2010-05-11] Wiki Pages - oppna-program-metadata-service - Project
Hosting on Google Code, http://code.google.com/p/oppna-program-metadata-
service/w/list

Kandidaterna [2010-05-13] Kandidaterna, http://www.kandidaterna.se/

Linköpings universitet 2010. [2010-05-13] Journalexempelvt2010.pdf (application/pdf-
objekt),
http://www.hu.liu.se/lakarprogr/t5/dokumentarkiv/1.178223/Journalexempelvt2010.pdf

Lund University 2006. [2010-05-11] Talbanken05,
http://stp.lingfil.uu.se/~nivre/research/Talbanken05.html

Medical students at Läkarprogrammet 2010. University of Gothenburg

Nivre J. [2010-05-11] Lexical categories in MAMBA,
http://stp.lingfil.uu.se/~nivre/research/MAMBAlex.html

Oracle Corporation and/or its affiliates 2010. [2010-05-11] Java SE Downloads - Sun
Developer Network (SDN), http://java.sun.com/javase/downloads/index.jsp

Petersson G. 1999. [2010-05-13] diktatex,
http://www.oron.mas.lu.se/utbildning/diktatex.html

Öresunds Översättningsbyrå [2010-05-12] Oversættelse svensk dansk - Statsaut.
translatører - Online ordbog, http://www.dansk-og-svensk.dk/

46

Appendixes
This chapter contains some clarifications to the report. The first appendix contains an
explanation of how one installs and uses the demo application. The remaining
appendixes contain some explanations.

Appendix A. The demo application – user guide
Make sure you have Java[3] installed on your computer and that .jar files are opened
with Java. To install the demo application just unpack the file ExjobbDemo.rar in a
folder. Make sure that none of the parent folders have names with spaces etc. After the
unpacking you can start the application by opening the file demo.jar located in the
folder ExjobbDemo. If you want to add a record make sure that the file is UTF-8
encoded and place the file in the folder ExjobbDemo\Files\Records. Add headlines that
appear in the file but which are missing in the file Headlines1.txt. The file
Headlines1.txt is located in the folder ExjobbDemo\Files\IgnoreHeadlines. When you
want to search in a record write the name of the record in the field and click on the
button Search, see Illustration 11. Illustration 12 shows the result after a search. Table
Table 20 lists the files and folders, located in ExjobbDemo\Files, and what they contain.

Illustration 11: Before the search in the patient record "Journal2.txt".

Illustration 12: After the search in the patient record “Journal2.txt”.

Abbreviations.txt A file with Swedish abbreviations from Öresunds Översättningsbyrå[36].

OutPutStatComb3.txt The file contains combinations of three word classes and the probabilities that
sequences of word classes can jump to another sequences.

OutputStatUTF8kop.txt The file contains probabilities that word classes from hunpos are representing
word classes from Talbanken05.

Wordlist.txt[37] The file contains words, with inflections and belonging word classes, that
distinguish one disease from another but which belong to the same category.

HypothesisTables The folder contains files with hypothesis tables. The file names must be equal
to the name of the categories that these files are representing.

IgnoreHeadlines The folder contains the file Headlines1.txt. The file lists all headlines that
appear in the patient records.

Records The folder contains patients records. They are UTF-8 encoded text files.

TableHypothesesLong The folder contains files with hypothesis tables. These hypothesis tables are
constructed from somewhat longer sentences. The file names must be equal to
the name of the categories that these files are representing.

TrainingExamples The folder contains files that include sentences which are used to construct
hypothesis tables. The first row in each file lists words that distinguish one
sub-disease to a category from another sub-disease.

WordFrequence The folder contains the file MostFrequentWords.txt which lists the most
frequently occurring words.

Table 20: Files and folders located in ExjobbDemo\Files.

Appendix B. Word classes from Talbanken05
Abbreviations of word classes with explanations[30][38], that were used in this work.

ID part of idiom (multi-word unit) UK subordinating conjunction

NN noun IK comma

PO pronoun IP period

EN indefinite article or numeral “en”, “ett” (one) I? question mark

RO other numeral IU exclamation mark

AJ adjective IQ colon

VV verb IS semicolon

TP perfect participle IT dash

SP present participle IR parenthesis

AB adverb IC quotation mark

PR preposition PU list item (bullet or number)

IM infinitive marker IG other punctuation mark

++ coordinating conjunction YY interjection

XX unclassifiable part-of-speech

Appendix C. Word classes from hunpos
The word classes from hunpos that were mentioned in this report.[39]

nn.utr noun non-neuter

nn.utr.sin.def.gen noun non-neuter singular definite genitive

nn.utr.sin.def.nom noun non-neuter singular definite nominative

nn.utr.sin.ind.nom noun non-neuter singular indefinite nominative

nn.utr.sin.ind.gen noun non-neuter singular indefinite genitive

nn.utr.plu.def.gen noun non-neuter plural definite genitive

nn.utr.plu.ind.gen noun non-neuter plural indefinite genitive

nn.utr.plu.def.nom noun non-neuter plural definite nominative

nn.utr.plu.ind.nom noun non-neuter plural indefinite nominative

nn.neu noun neuter

nn.neu.sin.def.nom noun neuter singular definite nominative

nn.neu.sin.def.gen noun neuter singular definite genitive

nn.neu.sin.ind.gen noun neuter singular indefinite genitive

nn.neu.sin.ind.nom noun neuter singular indefinite nominative

nn.neu.plu.def.gen noun neuter plural definite genitive

nn.neu.plu.ind.gen noun neuter plural indefinite genitive

nn.neu.plu.def.nom noun neuter plural definite nominative

nn.neu.plu.ind.nom noun neuter plural indefinite nominative

pm.nom proper noun nominative

ab adverb

vb.prs.akt verb present active

pn.neu.sin.def.sub/obj pronoun neuter singular definite

ab.pos adverb positive

jj.kom.utr/neu.sin/plu.ind/def.nom adjective comparative non-neuter/ neuter singular/plural
indefinite/ definite nominative

kn conjunction

mad sentence separation punctuation

pn.utr.sin.def.sub pronoun non-neuter singular definite subject form

vb.sup.akt verb past perfect participle active

vb.inf.akt verb infinitive active

dt.utr.sin.ind determiner non-neuter singular indefinite

jj.pos.utr.sin.ind.nom adjective positive non-neuter singular indefinite nominative

mid punctuation

Appendix D. Levenshtein Distance
Illustration 13 shows Levenshtein Distance that was used in this work.[33]

Illustration 13: Levenshtein Distance written in Java.

Appendix E. The removed suffixes in the stemmer
If a word belongs to the following word classes from Talbanken05 or hunpos and it ends
with corresponding suffixes listed to the right, the suffix is removed from the word.[32]
[40][41] See Appendix B. and Appendix C. for explanation of the abbreviations of the
word classes.

AB re, st

SP anden, andes, endes, ande, ende, nde

TP ersta, erst, aste, ast, are, ste, sta, re, st, dd, de, d, t, a, e

VV dde, te, de, er, tt, it, r, t

AJ ersta, erst, aste, ast, are, ste, sta, re, st, sk, ad, ig, a, e, t

NN ion, ing, tik, ik

nn.neu.plu.def.gen arnas, ernas, enas, rnas, ars, ens, nas, s

nn.neu.-.-.- ets, ts, et, t, s

nn.neu.plu.ind.gen ars, ers, ens, rs, ns, s

nn.neu.plu.def.nom arna, erna, ena, rna, ar, en, na

nn.neu.plu.ind.nom en, ar, er, n

nn.neu.sin.def.gen ets, ts, s

nn.neu.sin.ind.gen es, s

nn.neu.sin.def.nom et, t

nn.neu.sin.ind.nom e

nn.utr.-.-.- ens, ns, en, n, s

nn.utr.plu.def.gen arnas, ernas, ornas, nas, s

nn.utr.plu.ind.gen ars, ers, ors, s

nn.utr.plu.def.nom arna, erna, orna, na

nn.utr.plu.ind.nom ar, er, or, r

nn.utr.sin.def.gen ans, ens, ns, s

nn.utr.sin.ind.gen as, es, s

nn.utr.sin.def.nom an, en, n

nn.utr.sin.ind.nom e, a

All words heterna, hetens, heter, heten, arens, andet, arne, aren,
ades, erns, ade, het, ern, at, lig, els, ig

All words. Removes only the last letter if the
word ends with any of these suffixes.

löst, fullt, dd, gd, nn, dt, gt, kt, tt

	Abstract
	Sammanfattning
	Preface
	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Limitations

	2 Analysis
	2.1 Tokenization
	2.2 Stemming of words and removing irrelevant words
	2.3 Making the computer recognize a sentence
	2.3.1 Concept learning
	2.3.2 Applying concept learning on sentences
	2.3.3 Algorithms to construct hypotheses
	2.3.4 How to go further after the categorization of a sentence?

	3 Method
	3.1 Tokenization
	3.2 Assigning correct word class to each token in a text
	3.3 Removing unimportant words and stemming
	3.3.1 Construct a table with most frequent words

	3.4 Implementation of concept learning
	3.5 Search in text

	4 Result
	4.1 Frequently used words
	4.2 Using Talbanken05
	4.3 Determining whether there is a new sentence after an abbreviation
	4.4 Construction of the hypothesis tables
	4.5 Searching for diseases in a patient record

	5 Discussion
	6 Conclusion
	References
	Bibliography
	Appendixes
	Appendix A. The demo application – user guide
	Appendix B. Word classes from Talbanken05
	Appendix C. Word classes from hunpos
	Appendix D. Levenshtein Distance
	Appendix E. The removed suffixes in the stemmer

