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Abstract
Modern day patient records consist largely of structured information. Such information 
makes it easy for healthcare professionals to get an overview of a patient's health status. 
The patient records also contain a large amount of unstructured data, in other words, 
descriptions of patients in plain text. This information is much more difficult for the 
healthcare professionals to find, since there is often a lot of text to read through. At each 
new hospital visit the patient must often repeat what diseases he or she has. Important 
information may be lost if the patient forgets to inform or can not inform (for instance 
an unconscious patient) the staff of a particular disease he or she may suffer from. In 
this case, it would be helpful to have a program that automatically searches for diseases 
in a patient record. This master thesis examines if it is feasible that one could introduce 
automatic  searches  that  would  work  in  the  context  of  retrieving  information  from 
electronic health records. Different algorithms were examined to see if they could be a 
part  of  the  solution  to  such  an  automatic  search.  In  addition  to  the  theoretical 
examinations, a java application was developed in order to test these algorithms. The 
result shows that an automatic search could work in reality but much further research 
needs  to  be  done  in  order  to  make  such  a  program  totally  trustworthy.  It  was 
unfortunately  impossible  to  access  real  patient  records  since  they  are  classified. 
Therefore, fictitious patient records were used in the testing of the application.
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Sammanfattning
Dagens patientjournaler består till stor del av strukturerad information, som gör det lätt 
för vårdpersonalen att få en överblick över en patient. Men patientjournalerna innehåller 
även en stor mängd ostrukturerad information, det vill säga beskrivningar om en patient 
i  löpande  text.  Denna  information  är  mycket  mer  svåråtkomlig  för  vårdpersonalen 
eftersom det ofta kan bli mycket text att gå igenom. Ofta måste patienten upprepa vilka 
sjukdomar han eller  hon har vid varje nytt  sjukhusbesök. Viktig information kan gå 
förlorad  om  patienten  glömmer  bort  att  säga  eller  inte  kan  säga,  (till  exempel  en 
medvetslös patient), om han eller hon har en speciell sjukdom. I sådana fall skulle det 
vara  till  hjälp  att  ha  ett  program  som  automatiskt  söker  efter  sjukdomar  i  en 
patientjournal.  I  detta  examensarbete  studerades  det  om  det  är  möjligt  att  utföra 
automatiska sökningar i elektroniska patientjournaler. Olika algoritmer undersöktes om 
de skulle kunna vara en del av lösningen för en sådan automatisk sökning. Förutom den 
teoretiska  undersökningen,  har  även  en  javaapplikation  skrivits  för  att  testa  dessa 
algoritmer. Resultatet visar att en automatisk sökning skulle kunna bli verklighet men 
mycket  kvarstår  att  undersöka för  att  få  ett  sådant  program att  vara  helt  och hållet 
tillförlitligt.  Eftersom  patientjournaler  är  hemligstämplade  och  då  det  inte  fanns 
möjlighet  att  få  tillgång  till  dessa  under  arbetets  gång  användes  istället  fiktiva 
patientjournaler till testningen av applikationen.
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1 Introduction

1.1 Background
A big problem within the Swedish healthcare system is the keeping of electronic health 
records (EHR). There are several different EHR systems since different practices use 
different  terminologies  to describe a patient's  health  status.  The information about  a 
patient in one EHR system may be important for a person who treats that patient but 
uses another EHR system. The easiest option would be if a patient only had one health 
record so that all the information about the patient would be in one place.  To cover all 
the different healthcare systems the EHR would have to be very big and that would not 
be  very user-friendly.  The  solution  to  this  problem would  be to  let  different  health 
departments select the EHR system which meets their needs the best, but at the same 
time make the EHR systems interoperate with each other. This would make it easier for 
both the patient and the person who treats the patient. For example, the patient would 
not have to repeat to the healthcare professionals over and over again what he or she is 
allergic  to  or  what  disease  he  or  she  had  before  or  has  now.  Such  things  would 
automatically pop-up when the doctor or nurse searches for information regarding the 
patient. Such a solution would also be needed when, for instance, a patient who comes 
unconscious to the hospital needs urgent care. An unconscious patient cannot share what 
he or she is allergic to and if the doctors and nurses do not find out, there could be 
terrible  consequences.  If  there  was  a  program  which  could  search  through  all  the 
patient's old records to find such alerts, the risk of medical errors would decrease.

When considering such a solution, several problems become apparent. The first problem 
concerns structured and unstructured data in an EHR system. Structured data is data 
which is easy to interpret. If there is, for example, an attribute called “blood pressure” 
one may assume that it involves some information about the patient's blood pressure. 
The unstructured data is all the information which is given in plain text. The problem is 
to interpret this unstructured data and obtain relevant information from the text. Let us 
look at an easy example: In one EHR system there is an attribute which lists a patient's 
allergies  and in  another  system the patient's  allergies may appear  in plain text.  But 
regardless  of  where  this  information  is,  the  healthcare  professionals  will  be  alerted 
about the patient's allergies.

Another problem is that different health departments use different terminologies with 
different abbreviations. An abbreviation can have different signification at two different 
health departments. The challenge is to recognize what real medical term corresponds to 
one specific abbreviation.

2



1.2 Purpose
The purpose of this work is to find possible algorithms which search through patient 
records  and  output  any diseases  the  patients  may suffer  from.  Medical  terms  from 
MeSH[1] (Medical  Subject  Headings)  will  be  used  to  exemplify  possible  diseases 
described  in  the  patient  records.  “MeSH,  Medical  Subject  Headings,  is  a  list  of 
controlled terms used for indexing, searching and cataloging of biomedical journals.”[2] 
Only a few medical terms from MeSH are examined and tested in this master thesis. To 
test all existing medical terms would be impossible within the time constraints of this 
work. Consequently, the algorithms of this work and the analysis will build on those few 
terms.  A demo  application  in  Java[3] will  show  how  the  algorithms  can  be  used 
practically. This Java application will be tested with fictitious patient records[4][5][6][7] 
and fictitious sentences which describe various diseases. This is due to the fact that real 
patient records are classified. Therefore, the tests will unfortunately not be based on real 
data. However, they will still convey interesting facts about the algorithms in question. 
The demo application may interpret sentences describing a particular disease and ignore 
the rest of the sentences. In other words, the application may not interpret the whole 
text,  just  the  parts  that  include information  of  possible  relevance  for  the healthcare 
professionals.

1.3 Limitations
Since this subject is very extensive some limitations were inevitably needed. One big 
limitation was to not try to solving this problem so that it suited all the medical terms in 
MeSH. Only a few diseases' names from MeSH were covered. The work consists of 
several programming steps and to develop each step from scratch would not have been 
realistic. Therefore, some already finished programs were used to facilitate the work 
process. One open source project that was used is hunpos[8] which is part of speech 
tagger. It tags the words, periods, commas etc. in a text with a corresponding word class. 
To construct such a program from scratch would have taken too much time from the 
actual  problem.  Another  open  source  project  that  was  used  in  this  master  thesis  is 
Apelon DTS[9], “(...)  that provides comprehensive terminology services in distributed 
application environments.”[9]. Findwise AB[10] is a company in Gothenburg that has 
build web services[11] on Apelon DTS. The web service Nyckelordtjänst[11] is one of 
them and its functions are used in this work. The functions made it possible to search 
after diseases in MeSH. The use of these functions saved a lot of time. To simplify the 
problem even  more,  it  is  assumed that  the  sentences  do  not  refer  to  each  other.  A 
sentence is only describing itself.
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2 Analysis
To make a computer understand a whole text is very difficult. In this work the computer 
does  not  need  to  understand the  whole text.  It  is  sufficient  that  it  can  interpret  the 
sentences in  the text.  So the first  thing that  must  be done is  to  divide the text into 
sentences. In section 2.1 it is described how text can be divided into sentences and into 
even smaller pieces. The computer must only understand a sentence if it is describing a 
disease. Hence,  many  words  which  have  nothing  to  do  with  the  diseases  can  be 
eliminated. How to know which words can be eliminated is described in section  2.2. 
After the computer has divided the text into smaller parts and removed some words, it 
should be easier  for the computer to interpret the sentences.  In section  2.3, possible 
solutions regarding this, are described.

2.1 Tokenization
In order for a computer to understand a text, it must first tokenize the text. That means 
the text must be divided into sentences and tokens.  A token can be a word,  period, 
comma, exclamation mark etc. When tokenizing a text the computer must follow some 
rules and not just separate words by spaces. Let us look at some Swedish sentences as 
an example: 

“Maria vann 200 000 kr, hon blev väldigt glad.“  (Maria won 200 000 kr, she became very happy.)

“Äpplen kan t.ex. vara gröna och gula.” (Apples can for example be green and yellow.)

“Vad heter du? frågade Anna.” (What is your name? Anna asked.)

If a human being would tokenize this, she would not have any problem recognizing 
what parts of the sentences constitute a token. But the computer must be able to handle 
for example the following cases:

kr, This is an abbreviation for the word “kronor” (SEK) without a 
period,  since in  the Swedish language there is  no period after 
abbreviations consisting of the first and last letter of the word.
[12] This string consists of two tokens: “kr” and “,” .

glad. The period following this word shows that the sentence ends. But 
how will the computer know if it is an abbreviation or an end of 
a sentence? This is also two tokens.

t.ex. These  two  punctuation  marks  signify  that  this  word  is  an 
abbreviation of the expression “till exempel” (for example).

du? Here the question mark implies that there is a question, but the 
sentence continues after the question mark since the word after 
the mark starts with a lower case.
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There are plenty of sequences of characters  that  a computer  does not know how to 
interpret. The computer does not know that “kr,” is the same type as “kr”. Therefore the 
computer needs many rules to follow.[13]

When dividing text into sentences the rule is to check if the next word after a sentence 
terminator such as period, question mark, exclamation mark or semicolon begins with a 
capital letter or a small letter. If the next word has a small letter the conclusion is that it 
is not the end of a sentence. But if the word following a sentence terminator does have a 
capital letter, the punctuation mark may indicate that it is indeed the end of a sentence. 
However, it may also denote that it is an abbreviation followed by a name of something, 
as in the sentence below:

“Patienten är allergisk mot en del läkemedel, t.ex. Penicillin, Aspirin och Kodein.”

(The patient is allergic to some drugs e.g. Penicillin, Aspirin and Codeine.)

How will the computer know the sentence does not end after the word “t.ex.” (e.g.)? 
Such  situations  must  be  taken  into  account  because  if  such  a  sentence  is  wrongly 
interpreted the computer can miss that a patient has hypersensitivities to some drugs. 
The sentence above can be interpreted by the computer in two different ways. Either it 
is interpreted as the correct sentence above or it is interpreted as two sentences. To make 
the computer choose as accurately as possible it can be a good idea to let the computer 
choose the combination with the highest probability. This is described more in section 
3.1.[13]

2.2 Stemming of words and removing irrelevant words
The purpose of stemming is to reduce the number of types in a document.  Very often 
there are words which are not written in their root form. Let us for instance look at the 
Swedish word “stolar” (chairs), with the root form “stol” (chair). To change a word to 
its root form is called stemming. Each language has its own stemming algorithm. Often 
it is easy to remove or replace a word's suffix based on simple rules. But there are words 
which are not so easy to stem. Take for example the Swedish word “fick” (got) with the 
stem “få” (get). Such words are much more complicated since they do not follow any 
rules. Another problem emerges when a word has different meanings as for example the 
Swedish word “satt” which has different meanings in the sentences “Han satt.” (He sat.) 
and “Han är satt.” (He is stocky.). In the first sentence “satt” is the preterite form of 
“sitta” (sit), and in the second sentence it is an adjective which means stocky. Therefore, 
a stemming algorithm may be insufficient and it may be a good idea to have a stemming 
dictionary also.[14]
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It would be favorable if the interpreted text could be cleaned. In other words, remove all 
unimportant words, so that only those words that can be possible medical terms remain. 
An easy way to do this is to look at what words a document consists of, how often these 
words appear, how ordinary they are in other documents etc. Words that appear several 
times in the records can be removed. These words, for example the words “patient” or 
“he”, are probably not very important since they do not describe the health of a patient.
[15]

2.3 Making the computer recognize a sentence
A disease can be described in different ways. For instance, in Swedish you can describe 
the fact that someone has nut hypersensitivity as “Han tål inte nötter.” (He does not 
tolerate nuts.), “Han reagerade negativt mot nötter.” (He reacted negatively to nuts.), 
“Han  är  allergisk  mot  nötter.”  (He  is  allergic  to  nuts.) etc.  We  see  that  the  word 
“hypersensitivity” does not even need to appear in the sentence to describe an allergy. A 
human being can easily recognize that all sentences above relate to hypersensitivity but, 
a  computer  can  not.  To make a  computer  recognize  when a  sentence  describes  nut 
hypersensitivity one must teach the computer. In other words one must tell the computer 
which words describe the disease nut hypersensitivity. One method could be to collect 
all words that describe nut hypersensitivity. This method can of course cause problems, 
considering, for example, the following sentence: “Han är inte allergisk mot nötter.” (He 
is not allergic to nuts.). The words “allergisk” (allergic) and “nötter” (nuts) describe nut 
hypersensitivity but the word “inte” (not) is saying that the person does not have any 
allergy to nuts. How can one collect words that describe a particular disease in a smooth 
manner? The solution is to teach the computer which word combinations describe a 
disease and which combinations do not describe a disease.

If one were to tell the computer that the sentences “Han tål inte nötter.” (He does not 
tolerate nuts.) and “Han reagerade negativt mot nötter.” (He reacted negatively to nuts.) 
describe nut hypersensitivity then the computer may think the key words that describe 
nut  hypersensitivity  are  “han”  (he)  and  “nötter”  (nuts)  since  they  appear  in  both 
sentences.  To  avoid  such  misinterpretation,  words  can  be  removed  as  described  in 
section 2.2. Then the number of words in the sentences would be smaller. Words such as 
“han” (he) probably not only appear in sentences that define an allergy and therefore 
such words would be removed. In other words, the solution is to remove as many words 
as possible that certainly do not describe a disease.

When a computer has learned which sentences describe a particularly disease a text can 
be reviewed to check if it contains a sentence which defines a particular disease.
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2.3.1 Concept learning
As mentioned  in  section  2.3,  the  computer  must  be  taught  to  recognize  whether  a 
sentence  describes  a  particularly disease.  The solution is  to  use a  machine  learning 
method:  Concept  learning.  By giving  good  and  bad  training  examples  where  good 
examples are members in the concept and bad are not you can construct a boolean-
valued function that tells if next coming instance is in the category or not. A concept is a 
subset of the instances that are positive, and therefore members. An instance consists of 
a collection of conditions that together decide if it is a member or nonmember of the 
concept. One condition consist of an attribute and its value. Each attribute can choose 
between several values.[16]

Let us take a look at the following example: There is a couple with a child and they 
want to learn what their child likes to eat. They have the following training examples:

The food consists of a banana. Wants to eat.

The food consists of an apple. Wants to eat.

The food consists of a carrot. Does not want to eat.

In this example there are three attributes: banana, apple and carrot. Each attribute can 
choose between the values  yes and  no. In  Table 1 you can see the same example but 
more structured.

In this example there is a total of eight possible instances since there are three attributes 
with  two possible  values  each.  In  an  arbitrary example  of  concept  learning  with  n 
attributes, where each attribute have a1 , a2 ,… , an  values, there are total a1∗a2∗...∗an  
instances. Without seeing any training examples you have to do assumptions of which 
instances  are  members  of  the  concept  and  which  are  not.  This  is  called  to  do  a 
hypothesis. There can be several hypotheses. More specifically, if there are m instances 
then there are  2m  possible hypotheses, since every instance may or may not be in a 
hypothesis.  All  these  hypotheses  are  elements  in  a  hypothesis  space  H.  One of  the 
hypotheses equals the target concept. The purpose of concept learning is to reduce the 
hypotheses so that one gets as close to the target concept as possible[17][18]

Banana Apple Carrot Wants to eat

Yes No No Yes
No Yes No Yes
No No Yes No

Table 1: Training examples for the concept “Wants to eat”.
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One way to reduce the hypothesis space is to let a hypothesis be a vector with attribute 
constraints, which conveys which attributes are good. Either the constraint is assigned a 
value v of an attribute which means that this value is the correct one, or it has a question 
mark,  ? , which means that all values of an attribute are good, or it is assigned  ∅ , 
which means that  none of the values of  an attribute  are  good. So a constraint  in  a 
hypothesis can assign two ( ?  and ∅ ) plus the number of values of the attribute that 
the constraint  represents. If there are  n  attributes and each attribute has  ak  values 
where 1kn  then there are 2a1∗2a2∗…∗2an  hypotheses which is much 
lesser than 2a1∗a 2∗...∗a n  hypotheses.[19]

The  hypothesis  h1=〈 yes ,? , ?〉 ,  says  that  it  contains  the  instances   yes ,no ,no , 
 yes , no , yes ,   yes , yes ,no  and   yes , yes , yes . The hypothesis  h2=〈 yes , no ,?〉  
is more specific[20] than the hypothesis  h1 , and h1  is more general[20] than h2 . In 
other words, h1  contains the same positive instances as h2  but also some more positive 
instances. The most general hypothesis  〈? ,? ,?〉  is the one that says that no matter 
what values the attributes have, the attributes give a positive instance. The most specific 
hypothesis 〈∅ ,∅ ,∅〉  is the one that says that none of the instances are positive.

2.3.2 Applying concept learning on sentences
The  technique  in  the  previous  section  is  a  possible  solution  to   make  a  computer 
understand the  main  purpose  of  a  sentence.  One can  produce  training  examples  by 
seeking the records and finding sentences that describe a particular disease. Assume that 
the sentences “Han tål inte nötter.” (He does not tolerate nuts.) and “Han kan inte äta 
nötter.”  (He  can  not  eat  nuts.)  were  found  in  some  records.  By  applying  concept 
learning on these sentences a table as the one in Table 2 can be constructed. Looking at 
the table, it is evident that the mutual words are “han” (he), “inte” (not) and “nötter” 
(nuts). Therefore, if such words are in a sentence the computer can assume that this 
sentence is about nut hypersensitivity. But suppose the computer encounter a sentence 
which  has  “hon”  (she)  instead  of  “han”  (he).  In  this  case  the  computer  will  not 
recognize the sentence as nut hypersensitivity. By elimination of unimportant words, 
described in section 2.2, the number of words in the table would be decreased. 

han
he

tål
tolerate

inte
not

nötter
nuts

kan
can

äta
eat

nut hypersensitive

yes yes yes yes no no yes
yes no yes yes yes yes yes

Table 2: Instances constructed from sentences.

8



Another problem is for example the two sentences “Hon är allergisk mot vete.” (She is 
allergic to wheat.) and “Hon har en allergi mot vete.” (She has an allergy to wheat.). The 
two words “allergisk” (allergic) and “allergi” (allergy) refer to the same thing but will 
be two different words in the table. To avoid this, each word can go through a stemmer 
to obtain the root form of the word as described in section 2.2.

Diseases  are  divided  into  categories,  for  example,  nut  hypersensitivity  and  wheat 
hypersensitivity  belong  to  the  category  food  hypersensitivity.[21] Instead  of  having 
many different tables, one for each disease, another option is to have one table for the 
whole  category.  On  the  upside,  lesser  training  examples  would  be  needed  since 
sentences containing both nut and wheat hypersensitivity etc. would be used in the same 
table. But this would not solve the problem of finding the correct disease. The table 
would  only  show  to  which  category  the  sentence  belongs,  if  any.  Knowing  that  a 
sentence belongs to a category it is sufficient to search after a word that characterizes a 
disease's name in the category. If, for instance, the computer has detected a sentence that 
belongs to the category food hypersensitivity it is enough to search after the words nut, 
wheat,  milk,  peanut and egg which categorize each disease under the category food 
hypersensitivity.[21] In section 2.3.4 it is described more precisely how to solve this.

After having cleaned the words in the training examples it is time to choose the right 
algorithm that constructs hypotheses which are as close as possible to the target concept. 
There are some algorithms to choose between. In the next section it is analyzed what 
algorithm is best for this problem.

2.3.3 Algorithms to construct hypotheses
There  are  algorithms  which  construct  hypotheses  going  from  the  most  general 
hypothesis to more specific or the opposite namely begins with the most specific and 
generate more general hypotheses. Before any explanation of the different algorithms it 
would  be  good  to  explain  what  version  space is.  Version  space  is  a  subset  of  the 
hypothesis space H but it is consistent with all training examples. It contains all possible 
versions of the target concept.[22]

The List-Then-Eliminate algorithm is an algorithm that uses version space. From the 
beginning the version space contains all possible hypotheses. The List-Then-Eliminate 
algorithm eliminates all hypotheses which are inconsistent with any training example. If 
for example the hypotheses h1=〈? , ? , ?〉  and h2=〈? ,? , yes 〉  are in the version space 
and there is a training example  t=yes ,no ,no  then  h2  is not consistent with  t and 
will be eliminated. This method is not suitable for the problem which is treated in this 
work since if one shall collect training examples from the records it is unlikely to find 
negative training examples, that is sentences which for example says that a patient does 
not have a disease. For example, if a patient is not allergic to wheat then there probably 
is not anything written about it, the sentence “Han är inte allergisk mot vete.” (He is not 
allergic to wheat.) would probably never appear in a record. The negative examples are 
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important  when  using  the  List-Then-Eliminate  algorithm since  a  hypothesis  as  h1  
would never be eliminated.  Suppose there are  three attributes “tål”  (tolerate),  “inte” 
(not) and “allergisk” (allergic). Then if, and of course it is a small probability but the 
risk still remains, a sentence as “Hon är inte allergisk mot nötter.” (She is not allergic to 
nuts.) appears in a record the attributes “inte” (not)  and “allergisk” (allergic) would 
obtain  the  value  yes and  “tål”  (tolerate)  would  obtain  the  value  no. Therefore,  this 
sentence  would  be  classified  as  a  positive  instance  even  if  it  is  negative.  So  to 
summarize, the algorithm would also count sentences which negate diseases to positive 
instances.[23]

Another algorithm in concept learning is the Candidate Elimination algorithm which is 
similar  to  the  List-Then-Eliminate  algorithm  but  instead  of  remembering  all  the 
hypotheses  in  the  version  space  it  stores  only  the  most  specific  and  most  general 
hypotheses.  Then  the  hypotheses  between  are  automatically  included.  Since  this 
algorithm also depends on negative instances it is not suitable for this problem.[24]

Find-S is  also an algorithm in concept learning and this  algorithm depends only on 
positive training examples. This algorithm starts with the most specific hypothesis and 
after  each positive training example it  generalize the hypothesis  so that  the training 
example  fits  the  hypothesis.  Negative  training  examples  are  ignored.  For  each  new 
positive training example, Find-S goes through all attribute constraints in the hypothesis 
and  compare  to  related  attributes.  If  the  attribute  constraint  is  consistent  with  the 
attributes value then nothing is done but if not then the attribute constraint is replaced 
with a more general one.[25]

Let  us  apply  the  Find-S  algorithm  at  the  training  examples  in  Table  1.  From the 
beginning the hypothesis h is as specific as possible:

h=〈∅ ,∅ ,∅〉

Looking at the first training example t 1= yes , no , no , which is positive, one can see 
that h must be generalized. But only such that t 1  fits h. The new hypothesis is:

h=〈 yes , no ,no〉

This  hypothesis  contains  only  one  instance.  Looking  at  the  next  example 
t 2=no , yes , no  which also is positive the conclusion can be made that  h must be 
generalized once again:
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h=〈? ,? ,no〉

Next training example is  negative,  t 3=no , no , yes  .  As mentioned above,  negative 
examples are ignored. One can see that h satisfies t 3 . h says that the child likes to eat 
apple, banana, apple with banana and nothing, but this can of course be wrong, maybe 
the child does not like apple with banana. If this is the case then h does not equal the 
target concept and this is of course a problem. Regardless of the order of the training 
examples, the hypothesis is the same. Another negative aspect of the Find-S algorithm 
becomes evident when the training examples have errors.[26] If an example indicates 
that it is positive, but it actually is negative then the hypothesis becomes wrong.

The  problem named  above,  that  a  negative  instance  can  be  found  positive  by  the 
hypothesis, is an issue for this project. Assume that there are two sentences “Hon tål inte 
nötter.” (She does not tolerate nuts.) and “Hon är allergisk mot nötter.” (She is allergic 
to nuts.). From these two sentences the training examples as in Table 3 are constructed. 
When  applying  the  Find-S  algorithm  on  these  examples  the  following  steps  are 
calculated:

h=〈 yes , yes , no ,no〉
h=〈? ,? ,? ,?〉

This  hypothesis  creates  a  problem. Assume the sentence “Han är  inte  allergisk mot 
vete.” (He is not allergic to wheat.) which gets the instance  no , yes , yes , yes . This 
instance is negative but the hypothesis finds it positive. Or even more probable, if there 
is  a  sentence which  includes  none of  these words  then it  classifies  the  sentence as 
belonging to this category. To avoid such errors the hypothesis must be modified a little 
to fit this project. Rules must be introduced and the hypothesis will not contain only one 
vector with attribute constraint but instead a disjunction of vectors. So the example from 
Table 3 will get the hypothesis

h=〈 yes , yes , no ,no〉∨〈no ,no , yes , yes 〉 .

tål
tolerate

inte
not

är
is

allergisk
allergic

food 
hypersensitive

yes yes no no yes
no no yes yes yes

Table  3: Constructed training examples from the sentences "Hon tål inte nötter." and  
"Hon är allergisk mot nötter.".

11



If an instance suits one of the vectors then it is consistent with the hypothesis. But now 
another  problem  has  appeared.  If  a  sentence  as  “Han  tål  inte  nötter,  dvs.  han  är 
allergisk.”  (He  does  not  tolerate  nuts,  that  is,  he  is  allergic.)  which  constructs  the 
instance   yes , yes , yes , yes  . The hypothesis will find this instance negative even if 
the sentence is describing food hypersensitivity. A solution to this problem is to replace 
the value no to ?. So the hypothesis will instead be

h=〈 yes , yes , ? , ?〉∨〈? ,? , yes , yes 〉 .

Of course this will contribute to categorize sentence as “Han är inte allergisk mot vete.” 
(He is not allergic to wheat.) as a positive instance but sentences which have none of 
these words will not be classified as members of the hypothesis, which is desired. It is 
better that the computer wrongly assumes that a patient has a disease even if he or she 
does  not  have  any,  than  the  other  way around.  In  section  3.4 it  is  described  more 
precisely what rules are used and what calculations are needed.

2.3.4 How to go further after the categorization of a sentence?
When a sentence is classified as belonging to a category the problem still remains of 
finding  out  what  disease  is  described  in  the  sentence.  By saving  all  the  names  of 
diseases,  along  with  their  categories,  one  would  know which  possible  diseases  the 
sentence  is  describing.  Several  thousands  possible  diseases  are  reduced  to  maybe 
between ten and twenty, which is much easier to handle. MeSH medical terms are sorted 
in  a  tree  structure,  see  Illustration  1.  As  one  can  see  in  the  illustration,  wheat 
hypersensitivity,  nut  hypersensitivity  etc.  belongs  to  category  food  hypersensitivity 
which in turn belongs to the category hypersensitivity,  immediate.  A node can have 
several parents, meaning one disease can belong to several categories. The functions 
from Findwise's  web service Nyckelordtjänst  make it  possible to search for medical 
terms in MeSH. When searching for a word one gets returned all possible nodes this 
word can represent.  If,  for example,  one searches for “nöt” (nut), then the returned 
nodes  are  “nötkreatur”  (cattle),  “nötkreatursjukdomar”  (cattle  diseases), 
“nötöverkänslighet” (nut hypersensitivity) and “nötter” (nuts). One can also get a node's 
parents, (the categories the node belongs to), and children if it has any.

If someone is allergic to, for example, nuts, then the word nut or its inflection must exist 
in the sentence in some way. So when searching for that word one receives four nodes. 
If  a  node  belongs  to  the  same  category as  this  sentence  the  conclusion  is  that  the 
sentence  is  describing  this  node.  If  one  was  to  use  Findwise's  web  service 
Vokabulärtjänst[11] instead,  one  could  find  the  correct  disease  by searching  for  the 
category, acquiring all children to the corresponding node and comparing them to the 
words in the sentence. If a word equals the beginning of a node's name then it can be 
concluded  that  the  sentence  is  describing  that  specific  node  (disease).  These  two 
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methods are probably equivalent, but with the latter method one needs the path to the 
node which can cause problems when, for example, a path changes. Therefore, the first 
method seems to be better for this work.

When searching on a word the received nodes are only those that begin with that word. 
If for example one searches on the word “nut” and there is a node containing that word 
but not in the beginning, then the node is not returned. Each node name has synonyms 
and if a synonym starts with the search word then the node will be returned also. In 
Swedish most of the compound words have their primary importance at the last part of 
the  word.[27] Therefore  the  word  “nötöverkänslighet”  (nut  hypersensitivity) is  a 
hypersensitivity (“överkänslighet”) and nut (“nöt”) is describing which hypersensitivity 
it is. The descriptive words are in most cases the search words, hence it is not often a 
problem.  But  sometimes  it  is  a  problem,  for  example  the  disease  “typ  2-diabetes” 
(diabetes mellitus, type 2) can be described as “diabetes mellitus, icke-insulinberoende” 
(diabetes  mellitus,  not  insulin  dependent) with  the  descriptive  word  “icke-
insulinberoende” (not insulin dependent). A solution to this is presented in section 3.5.

Another problem is that if for example a sentence that belongs to the category diabetes 
mellitus  and  describes  the  disease  diabetes  mellitus  type  2,  consists  of  the  words 
“diabetes”, “mellitus” and “icke-insulinberoende” among others, a search will be done 
on each of the word. The only hit is obtained by the word “diabetes”, but there are 
several node names beginning with “diabetes” that belong to the category diabetes. So 
the problem is to find only the node that is the correct one. In section  3.5 it is also 
described how this problem is handled.
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3 Method
The  aim  with  this  work  is  to  make  a  computer  understand  and  retrieve  important 
information  from  electronic  health  records.  In  this  chapter  all  used  methods  and 
algorithms  are  described  and  how  they  were  implemented  practically.  A  demo 
application in Java was written and in the following sections the main classes that were 
constructed for the application are described. Illustration 2 shows the main steps in the 
demo program.

3.1 Tokenization
As mentioned in section 2.1 a text must be divided into tokens. There are a lot of things 
to take in consideration when writing an application which tokenize. There are a couple 
of rules that are rather easy for a computer to follow in order to recognize a sentence. 
But there are also many difficult rules and there may be exceptions which are very hard 
to handle. A class called SentenceDivider was written which divides text into sentences 
and tokens. The first thing SentenceDivider does is to send text to WordDivider, which 
reads a string and divides it on spaces but also when a word starts or ends with for 
example the marks: ” ( , etc. WordDivider does not separate when a word ends with a 
sentence terminator.

The  next  thing  SentenceDivider  does  is  to  check  if  a  word  ends  with  a  sentence 
terminator. If this is the case then it determines whether the word following the sentence 
terminator starts with an upper case. If it does not then SentenceDivider assumes the 
sentence continues. But if the next word starts with an upper case then it checks if the 
word is an abbreviation. All abbreviations shall be listed in the file Abbreviations.txt. If 
it is not an abbreviation then SentenceDivider assumes that the sentence ends after this 
word.  But  if  it  is  an  abbreviation  then  SentenceDivider  must  calculate  which 
combination  of  the  words  gives  the  highest  probability.  So  the  different  possible 
combinations  of  the  sentences  are  sent  to  HunposString  and  after  that  to 
ClassCombinationReducer, both of which are described in 3.2. The result consists of the 
sequence of word classes together with the probability that this sequence will occur. If 
there is a combination of words that can be interpreted as one sentence or as two then 
the probability that  one sentence occurs is  compared to the probability that  the two 
sentences will occur. The probability that it will be two sentences is computed from the 
probabilities  that these two sentences will  occur by them self  multiplying with each 
other and then multiplied with a , where a=10−2⋅the number of the sentences . The reason for this 
procedure is that when testing, the output was much better when multiplying the product 
of the probabilities that the sentences will occur with a . This is shown in the result in 
section 4.3. If sending the sentence
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Sentence Word class sequence Probability that the sequence of 
word classes will occur

Patienten är allergisk mot en del 
läkemedel, t.ex. Penicillin, 
Aspirin och Kodein.

NN – VV – AJ – PR – EN – NN 
– NN – IK – AB – NN – IK – NN 

– ++ – NN – IP 
6.84⋅10−11

Patienten är allergisk mot en del 
läkemedel, t.ex.

NN – VV – AJ – PR – EN – NN 
– NN – IK – NN – IP 3.24⋅10−9

Penicillin, Aspirin och Kodein. NN – IK – NN – ++ – NN – IP 3.97⋅10−3

Table 4: Sentences which SentenceDivider can choose between.

“Patienten är allergisk mot en del läkemedel, t.ex. Penicillin, Aspirin och Kodein.”

(The patient is allergic to some drugs e.g. Penicillin, Aspirin and Codeine.)

to SentenceDivider it can choose between sentences showed in Table 4. If multiplying 
the probabilities from row two and three and multiplying it with  a , one obtains the 
probability 1.27⋅10−15 , which is less than 6.84⋅10−13  so SentenceDivider chooses the 
combination from row one in  Table 4. In the end the SentenceDivider has hopefully 
divided the text correctly in sentences and tokens.

3.2 Assigning correct word class to each token in a text
Hunpos[8] is a hidden Markov model-based part of speech tagger. A Markov process is 
a stochastic process but without memory. A stochastic model is a deterministic model 
which means it depends on previous cases. A Markov process does not care about what 
has passed, it only takes into account the current state. In Illustration 3 there is a state 
which tells that if a student studies for ten hours then the probability that the student will 
fail an exam is 80%. If a student has failed an exam it is with a certainty of 50% that he 
or she next time will  study thirty hours for the exam. But this probability does not 
depend on the previous state. One does not know if the student has studied ten hours or 
thirty before the exam. The nodes “glad”, “nervous”, “tired” and “sad” are observations 
of what a student feels when he or she jumps to the respective state. So if a student is 
first  tired and then glad one know that  the student  has studied for thirty hours and 
passed the exam. In a hidden Markov model there can be several possible observations 
to a node as in Illustration 4. So if a student is tired and then glad one can not say which 
states he or she has passed and therefore the state sequence is hidden.[28][29]

The patient records are in Swedish, hence a Swedish model was needed to hunpos. A 
class HunposArrayList  and HunposString were written which sends an ArrayList  as 
well as a list of strings to hunpos and receives the output from it.  The output is the 
words together with the assigned hunpos word classes. Some word classes from hunpos 
are listed in Appendix C. 
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Word class from HunPos Word class from Talbanken05

NN ID
nn.utr.sin.def.gen 99.07%
pm.nom 72.83% 24.4%

Table 5: An example on how hunpos is assigning word classes to words comparing with 
the word classes of Talbanken05. For explanations, see Appendix B.  and Appendix C. 

To see how good and precise hunpos is it was tested with Swedish sentences from files 
in  Talbanken05[30].  Talbanken05  contains  Swedish  sentences  divided  into  words, 
periods, commas etc.  with corresponding word classes. A class HunposVSTalbanken 
was written which reads from .conll files in Talbanken05 and collects statistic about 
how often a word class from hunpos is representing a word class from Talbanken05. 
When HunposVSTalbanken reads from the .conll files it sends all sentences to hunpos 
and the output from hunpos is compared to the word classes in the files. The result was 
written to the file OutputStatUTF8kop.txt. Some word classes from hunpos are almost 
always correct and some are much more uncertain. See the example in  Table 5.  If a 
word class from hunpos matches a word class from Talbanken05 with less than 4% it is 
ignored since it is assumed that it is a misinterpretation from hunpos which does not 
occur as many times. If all values would be taken into account (also those beneath 4%) 
it would cause problems later on, which is described below in this section. As shown in 
Table 5 the word class pm.nom can correspond to a noun (NN) with 72.83% certainly 
and  to  a  multi-word  unit  (ID)  with  24.4%  certainly.  Why  is  this?  In  which 
circumstances does pm.nom appear as NN and when as ID?

To  obtain  an  answer  to  this  question,  sequences  of  word  classes  from  files  in 
Talbanken05  were  analyzed.  A class  called  CalcWordSeq  was  written  which  reads 
from .conll  files.  CalcWordSeq  reads  all  the  sentences  in  the  files  and  collects  all 
combinations of three word classes that occur in the files and also all sequences each 
sequence can jump to. It also stores sequences of word classes which start or end a 
sentence. Some word classes in Talbanken05 are converted into a more general one, for 
example adjectival noun (AN) is converted into a usual noun (NN), thus there will be 
fewer different sequences which will be easier to take care of. When all sequences are 
calculated the  result is written to the file OutputStatComb3.txt. CalcWordSeq is based 
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on a Markov process, since the probability to jump to a sequence depends only on the 
last sequence. The description of a Markov process was described in the beginning of 
this section.

Combining  the  information  from  the  files  OutputStatComb3.txt  and 
OutputStatUTF8kop.txt must give more correct answers than if one would only take 
information from the last named file. Lets look at the following sentence which is sent 
to  hunpos:  “Idag  är  det  mycket  hetsigare  och  stressigare.”  (Today it  is  much more 
heated and stressful.). The output is shown in  Table 6. In  Table 7 it is shown which 
word classes from Talbanken05 the output from hunpos could be assigned to. If one 
would take only these word classes from Talbanken05 with the highest probability the 
sentence above would get the following sequence of word classes:

AB VV PO AJ AJ ++ AJ IP

Words Word classes from hunpos

Idag ab

är vb.prs.akt

det pn.neu.sin.def.sub/obj

mycket ab.pos

hetsigare jj.kom.utr/neu.sin/plu.ind/def.nom

och kn

stressigare jj.kom.utr/neu.sin/plu.ind/def.nom

. mad

Table  6:  The  output  from  hunpos  when  giving  the  sentence  "Idag  är  det  mycket  
hetsigare och stressigare." as input. For explanations, see Appendix C. 

ab AB 90.63%

vb.prs.akt VV 99.31%

pn.neu.sin.def.sub/obj PO 98.24%

ab.pos AJ 49.41% AB 43.02%

jj.kom.utr/neu.sin/plu.ind/def.nom AJ 78.02% PO 15.73% AB 5.544%

kn ++ 80.12% UK 12.35%

jj.kom.utr/neu.sin/plu.ind/def.nom AJ 78.02% PO 15.73% AB 5.544%

mad IP 98.64%

Table 7: Word classes from hunpos representing the word classes from Talbanken05.  
For explanations, see Appendix B.  and Appendix C. 
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But if one would choose these word classes which together with belonging sequences 
give the highest  probability  (see  Illustration 6), one would instead get the following 
sequence of word classes:

AB VV PO AB AJ ++ AJ IP

This sequence is also the correct one. Of course this method is not a hundred percent 
right but it makes it more likely that more correct sequences of word classes would be 
assigned  to  a  text,  which  is  shown  in  the  result  in  4.2.  The  class 
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Illustration 5: A tree with all possible sequences  
of word classes. For explanations, see Appendix
B. 

Illustration 6: A graph, where the nodes are assigned probabilities that the word classes  
will occur. The most likely path from the Start node to the End node is AB VV PO AB AJ  
++ AJ IP. For explanations, see Appendix B. 



ClassCombinationReducer was written to make the computer choose the most probable 
sequence of word classes from Talbanken05 when inputting a sequence of word classes 
from hunpos. The ClassCombinationReducer reads and stores the information from the 
files OutputStatComb3.txt and OutputStatUTF8kop.txt. First ClassCombinationReducer 
creates a tree, that lists all possible sequences of word classes from Talbanken05 which 
the input sequence can represent, see  Illustration 5. It goes through all the nodes and 
together with the information from the files mentioned above it creates nodes with three 
word classes in each and calculates the probabilities to jump to respective node, see 
Illustration 6. If there is no representation for a sequence then the sequence is ignored 
since it is assumed that such sequences are unlikely.

In  Illustration  6,  the  percentage  given  in  the  first  node  following  the  start  node 
represents the product of the respective accuracy of the three different word classes. The 
percentages in the subsequent nodes only represent the probability that the last word 
class in each node is correct, since the first two word classes are already included in the 
calculations. An edge shows the probability to jump to the next node taken into account 
the  node  that  the  edge  came  from.  When  calculating  the  probability  of  a  path  all 
probabilities on the way must be multiplied. ClassCombinationReducer uses Dijkstra's 
algorithm[31] to  calculate  the  most  probable  way  in  the  graph.  According  to  the 
example above, the following path is the one with the highest probability:

P AB VV PO∣Start* P AB∣ab * P VV∣vb.prs.akt * P PO∣pn.neu.sin.def.sub/obj*
P VV PO AB∣AB VV PO* P AB∣ab.pos*
P PO AB AJ∣VV PO AB*P AJ∣jj.kom.utr/neu.sin/plu.ind/def.nom *
P AB AJ ++∣PO AB AJ* P ++∣kn*
P AJ ++ AJ∣AB AJ ++* P AJ∣jj.kom.utr/neu.sin/plu.ind/def.nom *
P ++ AJ IP∣AJ ++ AJ * P IP∣mad*
P End∣++ AJ IP=1.006∗10−6

As mentioned above in this  section the probabilities  that  a word class from hunpos 
corresponds to a word class from Talbanken05 were ignored if they were beneath 4%. 
Looking at  the  example  above there  are  already many paths  to  choose  from.  If  all 
probabilities  would  be  taken  into  account  the  number  of  paths  would  grow 
exponentially and it would be too time-consuming for the computer to find the best 
path. Hence there will be outputs from hunpos that could not be interpreted correctly as 
for example the sentence “Detta vill jag bestämt bemöta.”[30] (This, I would certainly 
like to address.) with the right word class sequence being

PO VV PO AJ VV IP

The output from hunpos with corresponding probabilities is shown in Table 8. The word 
class AJ is not even given as a possibility. Therefore, such situations will unfortunately 
always be associated with the wrong word classes.
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Output from hunpos Word classes from Talbanken05 that the output from 
hunpos can represent.

pn.neu.sin.def.sub/obj PO 98.24%

vb.prs.akt VV 99.31%

pn.utr.sin.def.sub PO 99.07%

vb.sup.akt VV 92.81% TP 4.80%

vb.inf.akt VV 97.90%

mad IP 98.64%

Table  8: The output  from hunpos when giving the sentence “Detta vill  jag bestämt  
bemöta.” as input. For explanations, see Appendix B.  and Appendix C. 

++ Coordinating conjunction IQ Colon

PO Pronoun IR Parenthesis

EN Indefinite article or numeral “en”, “ett” (one) IM Infinitive marker 

YY Interjection PU List item (bullet or number) 

IK Comma I? Question mark

PR Preposition IS Semicolon

IP Period IT Dash

IC Quotation mark IU Exclamation mark

UK Subordinating conjunction

Table 9: If a word has any of these tags the word is removed.

A few  sentences  may  not  get  a  translation  between  the  output  from  hunpos  to 
Talbanken05's  word  classes.  This  can  occur  in  three  different  situations.  Either  the 
sentence is too short, it consists of less than three tokens or there is a lack of nodes that 
fit the possible word class sequences. If so, the only thing to do is to choose the word 
classes with the highest probability. The third thing it can depend on is when a word 
class  from  hunpos  has  no  corresponding  word  class  from  Talbanken05.  If  such  a 
situation  occur,  the  sentence's  word  classes  from  hunpos  are  not  converted  to 
Talbanken05's word classes.

3.3 Removing unimportant words and stemming
After one has sent the text to ClassCombinationReducer and received the different word 
classes it is time to clean the text. The class WordElimination goes through all the text 
and eliminates  tokens which are prepositions,  conjunctions etc.  Such tokens are not 
interesting when looking for a medical significance. All tokens that belong to some of 
the word class in Table 9 are eliminated. After the elimination of words and marks, the 
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rest of the words go to the class Stemmer which removes the end of a word such that it 
is in the root form. Stemmer builds on a Swedish stemmer algorithm[32]. The Swedish 
stemmer algorithm looks for the region after the first consonant following a vowel. This 
region is the ending of the word which will be modified. If there is no such consonant 
then there is no ending of the word which can be modified. The region to be modified in 
the word “allergic” is “lergic”. When this region is defined Stemmer removes letters 
from the ending of this region depending on which word class the word belongs to. 
Normally the Stemmer only takes into account the word classes from Talbanken05 but if 
the word is a noun, it also looks at the word class from hunpos since nouns can have 
different inflections depending if the word is in plural, definite, genitive, non-neuter etc. 
When Stemmer knows which word class the word belongs to it first determines if the 
longest  removable  ending  is  in  the  region  and then  the  shorter  one  and so  on.  All 
removed endings are listed in Appendix E.  Stemmer also searches for words that equal 
the  words  in  the  file  Wordlist.txt.  Wordlist.txt  lists  all  words  and  their  inflections, 
together with belonging word classes, that distinguish one disease from another. If a 
word class and the word are conformable with some word in the file Wordlist.txt then 
the word is replaced with the word in the base form. The reason for doing this is that it 
is more important that these words are in the base form since in most cases they are in 
base form in MeSH.

3.3.1 Construct a table with most frequent words
Different  types  of  documents  consist  of  different  types  of  words.  A historian  uses 
different  words  in  his  research  texts  than  a  natural  scientist.  When care  staff  write 
patient records they also use specific words to describe patients and their diseases. Some 
words  appear  more often  than  others,  such as  the word “patient”.  As mentioned in 
section 2.2 such words are often not that important since they generally do not describe 
any specific  disease  about  a  patient.  Therefore,  they can  be  removed.  But  to  know 
which words can be removed all  words in  the patient  records must be counted and 
divided into right types. A class ConstructWordTable was constructed to handle this. 
ConstructWordTable reads from text files and counts how many times different types of 
words appears. First it sends all the text to the SentenceDivider, described in section 3.1, 
so that all text will be divided into words, dots, commas etc. Then the text is sent to 
WordEliminator so that unimportant words can be removed and also so that words go 
through the stemmer. After the text is cleaned all words are counted and stored in a 
table. When the whole table is finished the words that appear most often are written to 
the file MostFrequentWords.txt. Words which occurred at least as many times as there 
were records were classified as frequent words, since these words do not seem to be 
unique.

3.4 Implementation of concept learning
As it is described in section 2.3 there must be an algorithm that recognizes a sentence. 
In that section it was established that the Find-S algorithm is the best option in this case, 
but the hypothesis must be a little modified. The purpose is to construct hypotheses 
which later  can be used when analyzing sentences. The easiest  way to do this  is to 
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construct tables of words that show which word combinations are accepted, in other 
words  hypothesis  tables  which  list  keywords  of  diseases.  As  previously mentioned, 
hypotheses' attribute constraints can either be a value of the corresponding attribute, a 
question mark or the empty mark. In this case, the empty mark can be reduced at the 
beginning since a word is either in a sentence or not, or it does not matter if the word is 
in  the  sentence  at  all.  It  never  occurs  that  none  of  the  values  are  correct.  To have 
something  that  describes  the  attribute  constraints  a  new  data  type,  Value,  was 
constructed. Value can have three different values. EXIST, which means that the word 
(attribute) must exist in the sentence. EXIST_NOT, which means that the word may not 
appear in the sentence and EXIST_DOES_NOT_MATTER, meaning that it  does not 
matter if a word is in the sentence or not.

To construct a hypothesis table several components are needed. The main class which 
was constructed was TrainingData.  This  class  reads  from a file  with sentences  that 
describe a category (the name of the file) and writes the calculated hypothesis to a file. 
At the first row in the file all words which distinguish one disease from another in this 
category  are  listed.  So  if  the  category  is  food  hypersensitivity  one  can  see  from 
Illustration 1 that the words which distinguish one disease from another are “ägg” (egg), 
“mjölk” (milk), “nöt” (nut), “jordnöt” (peanut) and “vete” (wheat). Therefore, all these 
words shall be listed in the first row of the file separated with spaces. The reason why 
these words shall be listed is because they will be ignored when the computer learns 
from the sentences. They do not characterize the category but instead only describe 
more precisely the diseases which belong to the category. Such words are not desirable 
in the table. Since there are not that many such describing words, it is not hard to list all 
such words in the beginning of the file. From second row down to the last, all possible 
sentences that belong to that category are listed. When TrainingData reads such a file it 
sends all sentences to the class SentenceDivider described in section 3.1. The reason is 
to separate the words from periods, commas etc. After this is done, all sentences are 
sent to the class WordEliminator, also described in 3.1, to eliminate unimportant words 
and also to stem the words.

After the sentences have been cleaned, all words are examined to determine whether 
they start with any of the words that shall be ignored. Looking at the previous example, 
this  would  involve  determining  whether  some of  the  words  start  with  “ägg”  (egg), 
“mjölk” (milk) etc. If this is the case then that part is replaced by a star. For example, let 
us look at the word “nötöverkänslig” (nut hypersensitive). Since “nöt” (nut) shall be 
ignored the word is replaced with “*överkänslig”, meaning there may exist words which 
end on “överkänslig”.  When removing such words  the table  becomes broader  since 
“*överkänslig”  also  covers  words  as  “mjölköverkänslig”  (milk  hypersensitive), 
“jordnötsöverkänslig”  (peanut  hypersensitive) etc.  instead  of  only  “nötöverkänslig”. 
Also, frequently occurring words are removed. Finally there are only those words left 
that may have something to do with the description of the category. When this is done 
all  training examples  can be constructed.  A table  that  lists  what  word combinations 
occurs in the sentences is constructed. If a word occurs in a sentence then the attribute 
constraint assigns the value EXIST and if the word does not exist in the sentence the 
constraint gets the value EXIST_NOT. If two words are almost equal meaning they only 
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differ regarding one letter and if the length of one of the words is more than six letters 
then these words are treated as one word since such words can be treated as misspelling 
or  that  the  stemmer  has  done  something  wrong.  For  example  if  one  word  is 
“överkänslig”, and another is “överkänsli” then both words are actually the same word. 
To calculate how many letters differ between two words Levenshtein Distance[33] is 
used which is described in section 3.5.

When the table is complete the hypothesis must be calculated. FindSModel is a class 
which  constructs  a  hypothesis  by adding  training  examples,  one  by one.  A training 
example is represented by a Vector object. The class Vector consists of a list with Values 
and a boolean which tells if it is a positive or negative instance. The FindSModel adds 
only positive training examples as the Find-S algorithm. The FindSModel contains a list 
with all possible vectors represented by Vector objects. When adding a new training 
example the hypothesis is updated by iterating through all vectors in the hypothesis. If a 
training example can change a vector, so that this training example becomes a member 
of the hypothesis,  the change will  be done.  Otherwise the training example will  be 
added to the rest of the vectors. The requirement of changing a vector is that at least one 
value must have value EXIST at the same place in both the vector and the training 
example. If that is the case all values of the vectors are compared to corresponding 
values of the training example. If the value of a vector in the hypothesis is EXIST and 
the  value  of  the  training  example  is  EXIST_NOT then  the  value  of  the  vector  is 
assigned EXIST_DOES_NOT_MATTER. The same thing is done if the value of the 
training example is EXIST and the value of the vector is EXIST_NOT. When a vector's 
value is assigned EXIST_DOES_NOT_MATTER then all other values in the vectors 
which are at the same place are also assigned EXIST_DOES_NOT_MATTER unless a 
value is the only attribute constraint in the vector which has the value EXIST, then this 
value is not changed. A hypothesis before and after a new training example:

hbeforet=〈 yes , no , no , no〉∨〈no , yes , no , yes〉∨〈no , no , yes , no〉

t= yes , no , yes , no
hafter t=〈 yes ,no ,? ,no〉∨〈? , yes , ? , yes 〉∨〈? ,no , yes , no 〉

The reason to do it like this is that much more cases will be covered. If it does not 
matter if a word exists in a sentence it probably does not matter if it exists in another 
sentence also. For example if the computer has found that it does not matter if the word 
“har” (have) exists then the computer has hopefully found that this word has nothing to 
do with the category so it is needless to care about it in another kind of sentence.

When all training examples are added, one has a hypothesis table with vectors which 
have values EXIST, EXIST_NOT and EXIST_DOES_NOT_MATTER. In 2.3.3 it was 
described about a sentence that is describing a certain disease and therefore should be 
classified  as  a  member of  a  hypothesis  contains  words  which are  consistent  with  a 
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vector's positive attribute constraints but the sentence also contains some words which 
are negative in the vector.  Such sentence will be classified as a non member of the 
hypothesis. To avoid this all attribute constraints that have the value EXIST_NOT are 
replaced with EXIST_DOES_NOT_MATTER. Thus such sentences will be classified as 
members of the hypothesis. After all vectors are complete they are, together with all the 
words,  written  to  a  file.  A hypothesis  table  is  constructed  and  can  be  used  in  the 
categorization of a sentence.

3.5 Search in text
When all preparations are done it is time to search through a text. Search is a class 
which receives a text that will be checked through. Search reads from files with the 
hypothesis tables, described in 3.4 so that it stores all hypothesis tables. Then it sends 
the text to the SentenceDivider in order to tokenize the text. After this is done, the text is 
sent to WordElimination so that irrelevant words are eliminated. Frequently used words 
are  also  eliminated.  Then for  each  sentence  Search  goes  through all  the  hypothesis 
tables and checks if the remaining words are satisfying the attributes in the tables. If 
there  is  a  vector  in  the  hypothesis  table  which  can  represent  a  sentence  then  the 
conclusion is that this sentence belongs to the category which the table represents, but it 
is not certain that this sentence describes a disease in this category.

Since a word can be misspelled and the stemmer may not always stem as desired, words 
that are similar to some attribute are regarded as this attribute. To decide if a word is 
sufficiently similar to an attribute, an algorithm called Levenshtein Distance is used, 
which measures the difference between two strings.  Levenshtein Distance calculates 
how many changes must be done to one string for it to equal another string, meaning it 
calculates  the  number  of  deletions,  insertions  and  substitutions.[33] The  distance 
between the words  “allergic” and “allergy” is two since these two words are equal up 
until letter g. Then the letter y in “allergy” is substituted to i and after that an insertion of 
c is done.  The whole algorithm is shown in  Appendix D.   In  Dimitrios Kokkinakis 
papers[34] it is written that one can assume that words which have seven or more letters 
are more likely to be misspelled. In the Dimitrios Kokkinakis's research,  words that 
have a Levenshtein Distance of at most one are treated as the same word. This work 
also deals with MeSH terminologies as the Dimitrios Kokkinakis research does, hence it 
can be a good idea to follow these restrictions. Hence, the words “allergy” and “alergy” 
are classified as the same word. Here “alergy” has only six letters but since “allergy” 
has seven Search will accept it as a candidate to calculate the Levenshtein Distance.

When a sentence is classified as belonging to a category, one still can not know which 
disease,  if  any,  the sentence is  describing.  But  the problem has  become less  severe 
considering the fact that the sentence originally could describe many thousand different 
diseases  and now only up  to  maybe twenty.  To find  out  what  disease  the  sentence 
describes, the sentence is sent to SearchApelon. As described in  2.3.4 functions from 
Findwise's  web  service  Nyckelordtjänst  are  used  for  this  work.  The  main  function 
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searches and outputs all possible nodes which begin with the words in a string. So if a 
cleaned  sentence  that  consists  of  the  words  “patient”  (patient),  “är”  (is),  “allergi” 
(allergy) and “nöt” (nut) is the input to the Findewise's function one receives all nodes 
that begin with these words. To find out what categories these nodes belong to, their 
parents are fetched. If any parent equals the category of the sentence then one of these 
nodes is the name of the disease which the sentence is describing. The nodes in which 
parents are not equal to the category are ignored. If none of the parents of the nodes 
equal the category then the conclusion is made that this sentence does not describe any 
disease.

Assume that a sentence contains the words “sockersjuka” (another word for diabetes in 
Swedish) and “icke-insulinberoende” (not insuline-dependent) and the sentence belongs 
to the category “diabetes” (diabetes mellitus) then no node will be found since there is 
no node with synonyms that start with these two words and with parent nodes that equal 
the  category.  One  solution  is  to  add the  name of  the  category to  the  words  in  the 
sentence.  In  that  case,  the  search  string  will  instead  be  “sockersjuka  icke-
insulinberoende diabetes”. This will solve the situations in where a node is describing a 
category and is not in the beginning of the word. Unfortunately there will be cases that 
will not be covered.

As mentioned in 2.3.4 one can receive several nodes that belong to the same category as 
the sentence. To solve this problem, the node with name or synonyms most similar to 
the words in the sentence is  chosen as the final  disease.  To measure how similar a 
sentence is to a node's synonyms all words which are a substring of the synonyms are 
combined in all possible combinations. If a word with over six letters has a Levenshtein 
Distance  to  a  word  in  the  synonyms  which  is  at  most  one  it  is  also  tested  in  the 
combination. For each of these combinations the Levenshtein Distance is calculated to 
the synonyms. The smallest distance is counted as this node's distance to the sentence. If 
for  example  one  will  calculate  the  distance  between  the  words  “överkänslig” 
(hypersensitive)  and  “nöt”  (nut)  and  the  node's  name  “nötöverkänslighet”  (nut 
hypersensitivity)  then  it  calculates  the  distance  between  “överkänslig  nöt”  and 
“nötöverkänslighet”  which  is  six.  It  then  calculates  the  distance  between  “nöt 
överkänslig” and  “nötöverkänslighet” which is four. Therefore the distance between 
these two words no matter the combination and the node is four. To obtain a fair rating 
of which node is closest to the sentence, the percentage distances are compared. The 
percentage distance is calculated from the distance between two strings divided by the 
sum of  the  letters  in  these  two  strings.  The  node  that  has  the  smallest  percentage 
distance to the sentence is chosen as the disease that the sentence is describing. No node 
is returned when only the name of the category is similar to the nodes, that is, no other 
words in the search string are substrings to the nodes' names or synonyms. Sometimes 
several nodes can have the same percentage distance to a sentence. If this is the case, all 
these nodes are returned as diseases.
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In conclusion, the output from SearchApelon is the disease the sentence is describing, or 
nothing if the sentence is not describing any disease. The output from Search are all 
diseases which are described in the input text.
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4 Result
In this section results from the different parts of the work are presented. Although some 
of the results are not very remarkable, reviewing them may still be interesting.

4.1 Frequently used words
As mentioned in the beginning of this report fictitious patient records were used. In 
Table  10 one  can  see  the  words  which  appear  most  frequently  in  the  records  after 
eliminating the irrelevant words in the WordEliminator. All words that have appeared 
fourteen or more times (there are fourteen fictitious patient records) are listed in the 
table. These words are eliminated from the sentences that are training examples and 
from the text which is scanned.

4.2 Using Talbanken05
All  possible  sequences  of  three  word  classes  which  occurred  in  Talbanken05  were 
collected.  The probability of jumping from one sequence to another was calculated. 
There are a lot of sequences, hence it is hard to show them all here.  Table 11 shows 
some few probabilities to jump from one sequence to another. The node START refers 
to the beginning of a sentence, a jump from START to a sequence means that a sentence 
starts with this sequence. If a sequence jumps to the END node it means that a sentence 
ends with this sequence.

Word Number of occurrence The percentage occurrence

har 39 2.78%

normal 31 2.21%

ej 30 2.14%

patient 25 1.78%

höger 20 1.43%

dag 20 1.43%

mg 20 1.43%

t 19 1.35%

u.a. 17 1.21%

nu 16 1.14%

blodtryck 16 1.14%

sedan 15 1.07%

arm 15 1.07%

vänster 15 1.07%

var 14 1.00%

Table 10: Most frequent words in the patient records.
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From node To node PO VV PO PO VV AB AB VV AB AB VV PO END

START 2.79% 7.93% 0.778% 3.77% -

IK PO VV 14.9% 20.8% - - -

PO AB VV - - 11.4% 19.0% -

++ PO VV 13.6% 40.3% - - 0.188%

Table 11: Probabilities to jump from one sequence of three word classes to another. A 
jump from START to a sequence means that a sentence starts with this sequence. A jump 
from a sequence to END means that a sentence ends with this sequence.

Word classes 
from HunPos

Word classes 
from 

Talbanken05
NN ++ VV EN AJ IK PO IP ID UK IQ I?

nn.neu.sin.def.nom 0.97

kn 0.8 0.12

nn.utr.sin.def.nom 0.96

vb.prs.akt 0.99

dt.utr.sin.ind 0.9 0.1

jj.pos.utr.sin.ind.nom 0.78 0.17

nn.utr.sin.ind.nom 0.93 0.05

mid 0.77 0.05 0.05

Table  12: Probabilities that a word class from HunPos is representing a word class  
from Talbanken05.

Section 3.2 covers the research of the precision of hunpos. Sentences from Talbanken05, 
which are divided into words, punctuation marks etc. with corresponding word class 
were sent to hunpos. The word classes which were allocated the tokens in hunpos were 
compared with the word classes in Talbanken05. In  Table 12 one can see some of the 
probabilities  that  a  word  class  from  hunpos  is  representing  a  word  class  from 
Talbanken05. To show all probabilities would take up to much space.

To get a better result when assigning word classes to tokens, the output from hunpos 
were combined with the probabilities as in Table 11 and Table 12. This is described in 
3.2.  Tests  were  done  to  see  how  good  this  solution  was.  The  sentences  from 
Talbanken05 were sent to hunpos. When converting the output from hunpos to the word 
classes from Talbanken05 only the highest  probabilities  as those shown in  Table 12 
were taken into account. If, for example, one would get the word class kn from hunpos 
and wanted to get the representing word class from Talbanken05 one would always 
choose ++ and skip UK. The assigned word classes were then compared to the right 
word classes in Talbanken05, the error was 10.31%. The error is instead 9.47% when 
taking into account the probabilities in both  Table 11 and  Table 12 and choosing the 
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combination of word classes which gives the highest probability when combining the 
probabilities from these two tables. This may seem like not that big of an improvement, 
but the error has nevertheless been reduced by 8.16% which of course is better.

Sentences sent to SentenceDivider
No 

multiplication 
with a

Multiplication 
with a

Jag är allergisk mot en del läkemedel som t.ex. Penicillin, Alvedon 
och Kortison.

x

Jag har övers. Nyhetsposten tre gånger. x

Jag har bott i många städer, bl.a. Warszawa, Berlin och Göteborg med 
sina fina områden, t.ex. Slottskogen, Delsjön m.m. Där brukar jag gå 
på promenader.

x x

Jag tycker om Anna, Lisa och Mia m.m. Men jag tycker inte om Lova. x x

Jag har haft en del mobiler, bl.a. Samsung och Nokia. x x

Hon ligger på avd. Smörblomman. x x

Hon ligger på en avd. Hon mår inte så bra. x x

Jag vill sälja min beg. Volvo740, den är ganska risig. x

Jag vill sälja min beg. Volvo740. Den är ganska risig. x x

Olle kommer hit m. Anna och deras dotter. x

Jag har besökt Ida, Elisabet m.fl. De var alla jättesnälla. x x

I n.ö. Göteborg ligger Angered, Bergsjön m.m. I Angered ligger 
Vättlefjäll.

x x

Det är tre nya tjejer, näml. Anna, Tova och Lisa. x x

Vi säljer äpplen, päron, apelsiner o.s.v. Men vi har även godis. x x

Vi måste hålla stängt p.g.a. Lisas operation. x

Målet rör. Olle går snabbt framåt, sa Johan iron. Ja precis, svarade 
Linda.

Min opp. Lisa ska själv ha redovisning om två v. Hon förbereder sig 
redan.

x x

Här jobbar vaktm. Olle som har jobbat här i fyra år. x

Den ligger u. Lisas arm, ser du? x

Vi hade det trevl. Maria, jag, Sara m.fl. Vi tittade på Saras kort som 
hon har tagit i bl.a. London och Paris.

Table  13:  Sentences  with  abbreviations  followed  by  a  word  which  starts  with  an 
uppercase.  The  column  “No  multiplication  with  a”  means  that  only  the  possible  
sentence's  probabilities  are  multiplied  and  “Multiplication  with  a”  means  that  the  
possible sentence's probabilities  are multiplied and the product is multiplied with a, 
a=10−2⋅the number of the sentences . An “x” means that the sentence is interpreted correctly.
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4.3 Determining whether there is a new sentence after an 
abbreviation

In  3.1 it is shown that when a sentence contains an abbreviation followed by a word 
which starts with an uppercase, SentenceDivider must determine whether there is a new 
sentence  after  the  abbreviation  or  whether  the  sentence  continues.  SentenceDivider 
chooses  the  combination  which  gives  the  highest  number  when  multiplying  the 
probabilities of the occurrence of each sentence and then multiplying with  a  where 
a=10−2∗the number of the sentences .  Table  13 shows  sentences  that  contain  abbreviations 
followed  by  a  word  starting  with  uppercase.  The  table  shows  which  sentences  are 
interpreted correctly when only the possible sentences' probabilities are multiplied with 
each other and when possible sentences' probabilities are multiplied with each other and 
then multiplied with a . From the table, one can see that when there is no multiplication 
with a  the interpretation is not that bad; eleven out of twenty sentences are interpreted 
correctly.  But when multiplying with  a  eighteen sentences are interpreted correctly 
which is much better.

4.4 Construction of the hypothesis tables
The  algorithm  which  constructs  hypothesis  tables  was  tested  with  some  training 
examples. “Diabetes” was the first hypothesis table which was constructed. The file, as 
in Illustration 7 was sent to the class TrainingData, described in 3.4, and the constructed 
hypothesis  table  was  as  that  in  Table  14.  This  hypothesis  table  is  pretty  accurate. 
Sentences  containing  words  as  “åldersdiabetes” (diabetes  of  old age),  “sockersjuka” 
(another word for diabetes) and “diabetisk” (diabetic) will be categorized as possible to 
describe  a  sub-disease  to  diabetes.  This  table  is  of  course not  ideal  considering for 
example a sentence including the expression “prediabetisk fas” (prediabetic state). In 
this case, according to the table, the word “konstatera” (find out), “konstater” in the 
table, must also be in the sentence. This word has nothing to do with diabetes. Hence 
the table also consists of errors. To see how good this algorithm is it was also tested 
with similar sentences, but some of them were longer. In Illustration 8 one can see the 
file  that  was  sent  to  TrainingData  and  in  Table  15 the  hypothesis  table  that  was 
constructed. As one can see some words that occur in Table 14 are missing in Table 15, 
such as “*diabeti”. Therefore, the sentence “Är diabetisk.” (Is diabetic.) would not be 
classified as a member of this hypothesis. Another factor that will classify a sentence as 
a member of the hypothesis is the occurrence in the sentence of the word “uppsikt” 
(supervision),  which  is  represented  by  the  word  “uppsik”  in  the  table.  The  word 
“uppsikt” has nothing to do with diabetes, so the sentence will probably be wrongly 
classified.

30



31

Illustration 7: A file with training examples which will be used when constructing the 
hypothesis table for diabetes. The words in the first row are words that will be ignored 
when the computer constructs the hypothesis table.

Illustration  8:  A  file  with  somewhat  longer  sentences  which  will  be  used  when  
constructing the hypothesis table for diabetes. The words in the first row are words that  
will be ignored when the computer constructs the hypothesis table.



*diabetes sockersjuk *diabeti fas konstater mody niddm donohue syndrom diabetes-
ketoacidos diabe

yes ? ? ? ? ? ? ? ? ? ?

? yes ? ? ? ? ? ? ? ? ?

? ? yes yes yes ? ? ? ? ? ?

? ? ? ? ? yes ? ? ? ? ?

? ? ? ? ? ? yes ? ? ? ?

? ? ? ? ? ? ? yes yes ? ?

? ? ? ? ? ? ? ? ? yes ?

? ? ? ? ? ? ? ? ? ? yes

Table  14:  The  hypothesis  table  which  was  constructed  after  sending  the  file  in  
Illustration 7 to TrainingData. Words that have the value ? in all rows were omitted.  
This hypothesis table shall represent sentences that describe diabetes.

*diabetes syndrom sockersjuk uppsik mody niddm diabetes-
ketoacidos diabe

yes ? ? ? ? ? ? ?

? ? yes ? ? ? ? ?

? ? ? yes ? ? ? ?

? ? ? ? yes ? ? ?

? ? ? ? ? yes ? ?

? yes ? ? ? ? ? ?

? ? ? ? ? ? yes ?

? ? ? ? ? ? ? yes

Table  15:  The  hypothesis  table  which  was  constructed  after  sending  the  file  in  
Illustration 8 to TrainingData. Words that have the value ? in all rows were omitted.  
This hypothesis table shall represent sentences that describe diabetes.
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The algorithm was also tested with sentences that describe food hypersensitivity. Again, 
the algorithm was tested with short and long sentences. In Illustration 9 and Illustration
10, the two files that were sent to TrainingData are shown, and Table 16 and Table 17 
contain the hypothesis tables that were constructed from each file. The same problem 
arises as in the previous tests. Words that have nothing to do with the diseases occur in 
the table. But many words that do describe the diseases are actually listed in the table 
which is very good. The hypothesis table based on the shorter sentences is somewhat 
better than the other table. But if there were more sentences in the file with the longer 
sentences, the table would probably be better. For example, if there was an additional 
sentence containing the word “över.” (an abbreviation of hypersensitive) it  probably 
would not contain the word “barndom” (childhood) so the latter word would also be 
assigned the value ? which would make the table more adjusted to reality.
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Illustration 9: A file with training examples which will be used when constructing the 
hypothesis table for food hypersensitivity. The words in the first row are words that will  
be ignored when the computer constructs the hypothesis table.

Illustration  10:  A  file  with  somewhat  longer  sentences  which  will  be  used  when  
constructing the hypothesis table for food hypersensitivity. The words in the first row 
are words that will be ignored when the computer constructs the hypothesis table.



*allergi inte reagera överkänsl över. *all *intol

yes ? ? ? ? ? ?

? yes ? ? ? ? ?

? ? yes ? ? ? ?

? ? ? yes ? ? ?

? ? ? ? yes ? ?

? ? ? ? ? yes ?

? ? ? ? ? ? yes

Table  16:  The  hypothesis  table  which  was  constructed  after  sending  the  file  in  
Illustration 9 to TrainingData. Words that have the value ? in all rows were omitted.  
This hypothesis table shall represent sentences that describe food hypersensitivity.

*allergi inte får överkänsl över. barndom *intol. dock små

yes ? ? ? ? ? ? ? ?

? yes ? ? ? ? ? ? ?

? ? yes ? ? ? ? ? ?

? ? ? yes ? ? ? ? ?

? ? ? ? yes yes ? ? ?

? ? ? ? ? ? yes yes yes

Table  17:  The  hypothesis  table  which  was  constructed  after  sending  the  file  in  
Illustration 10 to TrainingData. Words that have the value ? in all rows were omitted.  
This hypothesis table shall represent sentences that describe food hypersensitivity.

4.5 Searching for diseases in a patient record
The final aspect of the work was to see if the demo application could go through a text 
in a patient record and output all diseases that are mentioned in the record. Since this 
report  covers only the sub-diseases to diabetes  and food hypersensitivity,  tests  were 
done only in order to find these particular diseases. The tests  are divided into three 
parts. The first one tests patient records that are not describing any disease. The second 
one is to test patient records that include sentences that are classified as a members of a 
hypothesis table but are not describing a sub-disease. The third test is to test records that 
include sentences describing sub-diseases to diabetes and food hypersensitivity. All tests 
were conducted using the hypothesis tables from Table 14 and Table 16.
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Sentences placed randomly in the records Output from Search

Har pollenallergi. x

Har inte visat tecken på andnöd. x

Kan inte umgås med pälsdjur. x

Reagerat med utslag för länge sedan på något hon tror var penicillin. x

Har överkänslighet mot Penicillin. x

Allergisk mot hamster och kiwifrukt. x

Har diabetes och hypertoni, behandlas med tabletter. x

Har diabetes i släkten. x

Har sockersjuka. x

Patientens pappa var diabetiker. Typ 1-diabetes, Typ 2-diabetes

Allergisk mot kåvepenin (reagerade med utslag och klåda efter en 
pneumonibehandling -92). x

Pupiller reagerar liksidigt på direkt och indirekt ljus. x

Ingen känd allergi. x

Table 18: Sentences which are members of the hypotheses in Table 14 and Table 16 but  
which are not describing any sub-diseases to the diseases that the hypotheses represent.  
The sentences  were  placed  randomly  in  the  patient  records.  An “x” in  the  column 
“Output from Search” means that the output was empty.

When the first test was implemented all answers were positive. Fourteen records, that 
did not describe any sub-diseases to diabetes and food hypersensitivity, were sent to 
Search and the output was empty. Some of the sentences in the records were classified 
as members of the hypotheses but further searches did not find any relation between the 
sentences and the sub-diseases. The purpose of the subsequent test was to examine if the 
output is empty or not when one sends records with sentences that are classified as 
members  of  the  hypotheses  but  are  not  describing  sub-diseases  to  the  diseases  the 
hypothesis tables represent. Sentences in  Table 18 were placed randomly in different 
patient records. Only one sentence out of thirteen in the table outputs names on diseases 
that are assumed to be described.

The last test was aimed at determining whether or not the computer can capture diseases 
that are written down in the records. Sentences in Table 19 were placed randomly in the 
patient records and the records were sent to Search. Some of the words in the sentences 
are intentionally misspelled. The aim is that the computer should be able to find the 
correct diseases despite of the spelling errors. Most of the diseases are found by the 
computer, but some sentences are more difficult for the application to understand. The 
sentence  “Har  diabetes  ketoacidos.”  (Has  diabetic  ketoacidosis.)  is  misspelled,  the 
correct spelling being “Har diabetesketoacidos.”. When Nyckelordtjänst's function has 
as input the word “diabetes” it should be able to find the disease “diabetesketoacidos” 
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since the disease starts with the word “diabetes”, but for some unknown reason it does 
not. The application classifies this sentence correctly, hence the error does not depend 
on  the  constructed  algorithms.  The  sentence  “Är  insuliberoende,  har  diabetes.”  (Is 
insulin  dependent,  has  diabetes.)  has  the  misspelled  word  “insuliberoende”  which 
should be “insulinberoende” (insulin dependent). Since the word becomes stemmed to 
“insuliberoend”  the  Levenshtein  Distance  between  this  word  and  “insulinberoende” 
becomes  two  which  does  not  fit  the  criteria  for  being  the  same  word.  The  word 
“allergisk”  (allergic)  in  the  sentence  “Fick  allergisk  chock  av  nötter.”  (Got  allergic 
shock  from  nuts.)  is  assigned  the  word  class  pronoun  but  the  real  word  class  is 
adjective. Since all words that are pronouns are eliminated, this word is eliminated also. 
Therefore the sentence is classified as a nonmember of the hypotheses and the disease is 
not  found.  The  sentence  “Över.  mot  nöter.”  (Hypersensitive  to  nuts.)  is  classified 
correctly as a member of the hypothesis representing food hypersensitivity, but since the 
word  “nöter”  is  misspelled,  the  correct  spelling  being  “nötter”  (nut),  it  is  stemmed 
wrongly and Nyckelordtjänst's function is not able to find the correct disease. The last 
sentence that was misinterpreted is “Regerade med utslag då patienten drack mjölk.” 
(Reacted with a  rash when the patient  drank milk.).  The word “regerade”,  which is 
misspelled,  the  correct  spelling  being  “reagerade”  (reacted)  instead,  is  stemmed  to 
“regerad” and the Levenshtein Distance between this word and the word “reagera” in 
the hypothesis in  Table 16 is two. This number is too high, hence the sentence is not 
classified as a member of this hypothesis.
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Sentences placed randomly in the records Output from Search Correct disease

Har diabetes, typ 1. Typ 1-diabetes Typ 1-diabetes

Fick diabetes under graviditeten. Graviditetsdiabetes Graviditetsdiabetes

Tablettbehandlad diabetes mellitus typ II. Typ 1-diabetes
Typ 2-diabetes Typ 2-diabetes

Har diabetesketoacidos. Diabetesketoacidos Diabetesketoacidos

Har diabetes ketoacidos. x Diabetesketoacidos

Är insulinberoende, har diabetes. Typ 1-diabetes Typ 1-diabetes

Lider av juvenildiabetes. Typ 1-diabetes Typ 1-diabetes

Har åldersdibetes. Typ 2-diabetes Typ 2-diabetes

Sockersjuka, typ 1. Typ 1-diabetes Typ 1-diabetes

Är insuliberoende, har diabetes. x Typ 1-diabetes

Kan inte dricka mjölk. Mjölköverkänslighet Mjölköverkänslighet

Fick allergisk chock av nötter. x Nötöverkänslighet

Kan inte äta jordnötter. Jordnötsöverkänslighet Jordnötsöverkänslighet

Har veteall. Veteöverkänslighet Veteöverkänslighet

Reagerade negativt mot ägg. Äggöverkänslighet Äggöverkänslighet

Överkänslig mot nötter. Nötöverkänslighet Nötöverkänslighet

Över. mot nöter. x Nötöverkänslighet

Regerade med utslag då patienten drack mjölk. x Mjölköverkänslighet

Är mjölkintol sen några år tillbaka. Mjölköverkänslighet Mjölköverkänslighet

Har alergi mot nötter. Nötöverkänslighet Nötöverkänslighet

Table  19:  Sentences  which  are  describing  sub-diseases  to  food hypersensitivity  and 
diabetes. The sentences were placed randomly in the patient records. An “x” in the  
column “Output from Search” means that the output was empty.
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5 Discussion
There are some questions that are interesting to discuss. Is the method described in this 
report good? Could it be better? If yes, then how? Can healthcare professionals rely on 
this  method? Are  there  other  methods that  may be more suitable?  In the  following 
paragraphs these questions are discussed among others.

When  looking  at  the  results  shown  in  4.5 one  can  see  that  this  method  is  rather 
satisfying.  The  algorithms  could  at  least  find  many  of  the  diseases  which  were 
mentioned in the patient records.  But  of course there could have been more rightly 
interpreted diseases. The question is whether this would work on other diseases and not 
only on the ones that were tested in this master thesis. Since many diseases have similar 
structure this method would probably work on other diseases too, but probably some 
more rules would have to be added. Of course this theory needs to be tested. To make 
this method more accurate there are some aspects that could probably be improved on. 
First there is the issue of elimination of words. In  4.2 it is written that the error from 
hunpos is 10.31%, but when using hunpos together with combinations of three word 
classes  the  error  is  reduced  to  9.47%.  If  this  error  could  be  reduced  even  more, 
additional irrelevant words would be eliminated and errors such as the one in 4.5, where 
the word “allergisk” (allergic) was assigned the wrong word class and was incorrectly 
eliminated, would also be decreased. Maybe a combination of four or more word classes 
instead of three would contribute to a better output. But the longer the combinations of 
the word classes, the longer it would take for the computer to find the correct sequences. 
One could also ask if the error, when sending the patient records to hunpos, is not even 
more extensive,  considering that the sentences in  the patient  records are  not always 
grammatically  correct.  For  example,  healthcare  professionals  often  write  short  and 
concrete sentences in a record.[35] For instance, the sentence “He got rashes.” may be 
reduced to “Got rashes.” which can be more difficult  for the tagger to interpret.  So 
maybe the patient records should have a tagger of their own. Since many medical terms 
are  used in  the patient  records  and these  are  important  it  could  potentially be very 
dangerous if they were eliminated. Maybe a word-list which lists all medical terms that 
can not be removed could be a solution? Another improvement on the search in records 
would be to produce a better stemmer. For instance, a stemmer with more specific rules 
and which also has a word-list with all irregular words.

If the words would be eliminated and stemmed correctly the hypothesis tables would 
become  more  consistent  with  reality.  But  they  can  still  fail  to  classify  a  positive 
sentence as a member of the hypothesis, as for example in  4.5, which had the word 
“reagerade” (reacted) misspelled and wrongly stemmed to “regerad”. If the word were 
to be correctly spelled and stemmed it would fit the keyword “reagera” (react) in Table
16 but now the Levenshtein Distance is two which contributes to wrong classification of 
that sentence. Perhaps the limit, that the distance between two words may at most be 
one, is too low. Maybe one should allow the distance between two words to be two 
when the words  get  stemmed.  Another  problem when constructing these  hypothesis 
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tables  is  if  the wrong word is  assigned the value  ?.  But  if  there  are  many training 
examples  (sentences)  the  keyword  may appear  again  with  other  words  and  thus  in 
another vector the word may obtain the value yes again.

When a sentence is classified as a member of a hypothesis it still remains to be found 
which disease it relates to. The problem here was that misspelled words could not return 
correct nodes. The word “nötter” (nuts) in 4.5 with the stemmed form “nöt” (nut) was 
misspelled to “nöter” and therefore it did not get stemmed correctly. This word is a short 
one so it is difficult for the computer to guess what the correct word is.  Maybe the 
misspelled word already has a meaning as in this case in which the word “nöter” means 
“wears”. That makes it even harder to find out which real meaning this word should 
have. Of course one could have a word-list with commonly misspelled words but there 
can  always  occur  new  spelling  errors.  To  avoid  problems,  also  mentioned  in  4.5, 
concerning the words “insuliberoend” and “insulinberoende” (insulin-dependent) being 
classified  as  two  different  words,  one  could  allow  a  bigger  Levenshtein  Distance 
between longer words, since it is more likely that the long words will be misspelled and 
wrongly stemmed.

Another big question is if healthcare professionals can rely on this method. This method 
must of course be developed further and then maybe it could become a helpful tool for 
professionals. But, since computers can always miss a disease maybe one can not rely 
on  them  completely.  But,  if,  for  example,  an  unconscious  patient  arrives  to  the 
emergency room and the healthcare professional does not know anything about what he 
or she is allergic to then such a application may be helpful. A problem arises if a disease 
is negated in a record. If, for example, tests are done so that a disease can be excluded 
then it is probably mentioned in the record. In this case, the sentence which negates the 
disease  can  be  found  by  the  application  as  describing  the  disease.  This  can  cause 
problems.

There  may  exist  methods  more  suitable  to  finding  diseases  in  a  text.  Maybe  an 
algorithm which also takes negative training examples into account so that the issues 
described in the last paragraph do not appear. This is of course a very big subject which 
can be investigated extensively.  In this  master  thesis  the application assumes that  a 
patient does not have any diseases from the beginning and then searches if he or she has 
one. Maybe it would be better to assume that a patient has all diseases until the opposite 
is proven. 

This work only treats sentences that refer to themselves, but there can of course be 
sentences that refer to each other. Therefore, an algorithm that takes this into account 
would  be  better.  Also,  English  medical  words  can  occur  in  the  records,  hence  a 
collection of these are a good idea also.
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6 Conclusion
The subject automatic searching in electronic health records is probably solvable and it 
is  absolutely  worth  further  investigations.  There  may  of  course  exist  much  better 
methods  than  the  method  described  in  this  report.  A good  idea  would  be  to  make 
surveys  and examine  various  methods  to  perform automatic  searching  in  electronic 
health  records.  By implementing  several  tests  one can  find  the  necessary rules  and 
reduce the error rate. Of course this requires a lot of extensive research. Maybe one can 
not  rely  on  this  method  a  hundred  percent  but  it  may  still  prove  to  be  an  aid  in 
healthcare.

A program such as the demo application can in addition to searching through a patient's 
health record and alerting the healthcare professionals to what diseases he or she has, 
also be used for other things. For example if there are scientists who need a group of 
people with a particular disease to test a new medicine on, they would only need to 
search through all the records and find these people very quickly. Another situation in 
which such a  program could be used  is  when a  healthcare  professional  writes  in  a 
patient record. The program could then automatically detect if he or she writes about for 
example an allergy and alert the healthcare professional to the fact that this information 
should be put in a special field called Allergy. Such a program could also be useful in 
other areas. Of course the program must be adapted in order to suit the given area. 

Another aspect which would be interesting to investigate is whether a similar method 
could  work when making a  search  on the  Internet.  That  is,  when one  searches  for 
something on the Internet, could one also receive the documents belonging to the same 
category as the search phrase even if they do not contain the particular search words. 
This is of course a much more difficult problem since the Internet is very big, it might 
even be too big. However, this would be a very interesting research subject.

40



References
[1]  Karolinska Institutet, Svensk MeSH - Sökhjälp - medicinsk information - Biblioteket  
- ki.se, http://mesh.kib.ki.se/swemesh/swemesh_se.cfm, 2010-05-11.
[2]  Karolinska Institutet, MeSH Indexing Manual - A Guide to MeSH Indexing -  
Karolinska Institutet, http://ki.se/ki/jsp/polopoly.jsp;jsessionid=aeNI9cLM010hAkuuhI?
l=en&d=4358&a=11716, 2010-05-11.
[3]  Oracle Corporation and/or its affiliates, Java SE Downloads - Sun Developer 
Network (SDN), http://java.sun.com/javase/downloads/index.jsp, 2010-05-11.
[4]  G. Petersson, diktatex, http://www.oron.mas.lu.se/utbildning/diktatex.html, 2010-
05-13.
[5]  Linköpings universitet, Journalexempelvt2010.pdf (application/pdf-objekt), 
http://www.hu.liu.se/lakarprogr/t5/dokumentarkiv/1.178223/Journalexempelvt2010.pdf, 
2010-05-13.
[6]  Kandidaterna, Kandidaterna, http://www.kandidaterna.se/, 2010-05-13.
[7] Medical students at Läkarprogrammet, University of Gothenburg, 2010
[8]  Google, hunpos - Project Hosting on Google Code, 
http://code.google.com/p/hunpos/, 2010-05-11.
[9]  Apelon Inc., Apelon DTS - Welcome to Apelon DTS, http://apelon-
dts.sourceforge.net/, 2010-05-11.
[10]  Findwise, Findwise | Findwise - Search Driven Solutions, http://findwise.se/, 
2010-05-11.
[11]  Google, Wiki Pages - oppna-program-metadata-service - Project Hosting on 
Google Code, http://code.google.com/p/oppna-program-metadata-service/w/list, 2010-
05-11.
[12]  Regeringskansliet, Språkliga frågor och svar, http://www.regeringen.se/sb/d/2729, 
2010-05-13.
[13] S. M. Weiss, N. Indurkhya, T. Zhang, F. J. Damerau, TEXT MINING Predictive  
Methods for Analyzing Unstructured Information, 20-21. Springer Science+Business 
Media, Inc., New York ,2005.
[14] S. M. Weiss, N. Indurkhya, T. Zhang, F. J. Damerau, TEXT MINING Predictive  
Methods for Analyzing Unstructured Information, 21, 23. Springer Science+Business 
Media, Inc., New York ,2005.
[15] S. M. Weiss, N. Indurkhya, T. Zhang, F. J. Damerau, TEXT MINING Predictive  
Methods for Analyzing Unstructured Information, 25-26. Springer Science+Business 
Media, Inc., New York ,2005.
[16] T. M. Mitchell, MACHINE LEARNING, 20-21. McGraw-Hill Companies, Inc., 
United States of America ,1997.
[17] P. Damaschke, The course in Algorithms for machine learning and inference 
(TDA231), Chalmers University of Technology, January-March 2009.
[18] T. M. Mitchell, MACHINE LEARNING, 22-23. McGraw-Hill Companies, Inc., 
United States of America ,1997.
[19] T. M. Mitchell, MACHINE LEARNING, 21. McGraw-Hill Companies, Inc., United 
States of America ,1997.
[20] T. M. Mitchell, MACHINE LEARNING, 22. McGraw-Hill Companies, Inc., United 
States of America ,1997.

41



[21]  Karolinska Institutet, Food Hypersensitivity, 
http://mesh.kib.ki.se/swemesh/show.swemeshtree.cfm?
Mesh_No=C20.543.480.370&tool=karolinska, 2010-05-11.
[22] T. M. Mitchell, MACHINE LEARNING, 26-30. McGraw-Hill Companies, Inc., 
United States of America ,1997.
[23] T. M. Mitchell, MACHINE LEARNING, 30. McGraw-Hill Companies, Inc., United 
States of America ,1997.
[24] T. M. Mitchell, MACHINE LEARNING, 32-33. McGraw-Hill Companies, Inc., 
United States of America ,1997.
[25] T. M. Mitchell, MACHINE LEARNING, 26. McGraw-Hill Companies, Inc., United 
States of America ,1997.
[26] T. M. Mitchell, MACHINE LEARNING, 28. McGraw-Hill Companies, Inc., United 
States of America ,1997.
[27] T. G. Hultman, Svenska Akademiens språklära, 32. Svenska Akademien, 
Stockholm ,2003.
[28]  M. W. Kadous , Hidden Markov models, 
http://www.cse.unsw.edu.au/~waleed/phd/tr9806/node12.html, 2010-05-11.
[29] J. Enger, J. Grandell, MARKOVPROCESSER OCH KÖTEORI, 9-11. Department 
of Mathematical Sciences Chalmers University of Technology and Göteborgs 
University, Göteborg ,2009.
[30]  Lund University, Talbanken05, 
http://stp.lingfil.uu.se/~nivre/research/Talbanken05.html, 2010-05-11.
[31] M. T. Goodrich, R. Tamassia, Data Structures & Algorithms in Java, 621-625. John 
Wiley & Sons, Inc., United States of America ,2006.
[32]  M. Porter or R. Boulton, Swedish stemming algorithm, 
http://snowball.tartarus.org/algorithms/swedish/stemmer.html, 2010-05-11.
[33]  M. Gilleland, Levenshtein Distance, http://www.merriampark.com/ld.htm#REFS, 
2010-05-11.
[34] D. Kokkinakis, Lexical granularity for automatic indexing and means to achieve it  
- the case of Swedish MeSH®., 25-26. In Information Retrieval in Biomedicine : Natural 
Language Processing for Knowledge Integration. Prince V. and Roche M. (eds). pp. 11-
37., IGI Global, 2009.
[35] J. Berg, Facts from the intern Johanna Berg, Gothenburg, 2010-05-07
[36]  Öresunds Översättningsbyrå, Oversættelse svensk dansk - Statsaut. translatører -  
Online ordbog, http://www.dansk-og-svensk.dk/, 2010-05-12.
[37]  G. Andersson, Den stora svenska ordlistan, http://dsso.se/download.html, 2010-
05-13.
[38]  J. Nivre, Lexical categories in MAMBA, 
http://stp.lingfil.uu.se/~nivre/research/MAMBAlex.html, 2010-05-11.
[39]  E. Ejerhed, D. Ridings, PAROLE -> SUC tagset, 
http://spraakbanken.gu.se/parole/tags.phtml, 2010-05-11.
[40] E. Andersson, Grammatik från grunden - En koncentrerad svensk satslära, 28-30, 
34-35, 42-44, 46-47, 48. Hallgren & Fallgren Studieförlag AB ,1993.

42



[41] D. Kokkinakis, Lexical granularity for automatic indexing and means to achieve it  
- the case of Swedish MeSH®., 19-20. In Information Retrieval in Biomedicine : Natural 
Language Processing for Knowledge Integration. Prince V. and Roche M. (eds). pp. 11-
37., IGI Global, 2009.

43



Bibliography

These books were used in the research of this master thesis

Andersson E. 1993. Grammatik från grunden - En koncentrerad svensk satslära, 28-30, 
34-35, 42-44, 46-47, 48. Hallgren & Fallgren Studieförlag AB.

Enger J. & Grandell J. 2009. MARKOVPROCESSER OCH KÖTEORI, 9-11. 
Department of Mathematical Sciences Chalmers University of Technology and 
Göteborgs University, Göteborg.

Goodrich M. T. & Tamassia R. 2006. Data Structures & Algorithms in Java, 621-625. 
John Wiley & Sons, Inc., United States of America.

Hultman T. G. 2003. Svenska Akademiens språklära, 32. Svenska Akademien, 
Stockholm.

Kokkinakis D. 2009. Lexical granularity for automatic indexing and means to achieve 
it - the case of Swedish MeSH®., 19-20, 25-26. In Information Retrieval in Biomedicine 
: Natural Language Processing for Knowledge Integration. Prince V. and Roche M. 
(eds). pp. 11-37., IGI Global.

Mitchell T. M. 1997. MACHINE LEARNING, 20-23, 26-30, 32-33. McGraw-Hill 
Companies, Inc., United States of America.

Weiss S. M., Indurkhya N., Zhang T. & Damerau F. J. 2005. TEXT MINING Predictive  
Methods for Analyzing Unstructured Information, 20-21, 23, 25-26. Springer 
Science+Business Media, Inc., New York.

These homepages were used in the research of this master thesis

Gilleland M. [2010-05-11] Levenshtein Distance, 
http://www.merriampark.com/ld.htm#REFS

Kadous M. W. 1998. [2010-05-11] Hidden Markov models, 
http://www.cse.unsw.edu.au/~waleed/phd/tr9806/node12.html

44



Karolinska Institutet [2010-05-11] Svensk MeSH - Sökhjälp - medicinsk information -  
Biblioteket - ki.se, http://mesh.kib.ki.se/swemesh/swemesh_se.cfm

Porter M. and Boulton R. [2010-05-11] Swedish stemming algorithm, 
http://snowball.tartarus.org/algorithms/swedish/stemmer.html

Regeringskansliet [2010-05-13] Språkliga frågor och svar, 
http://www.regeringen.se/sb/d/2729.

These are other sources used in the research of this master thesis

Berg J. [2010-05-07] Facts from the intern Johanna Berg, Gothenburg.

Damaschke P. [January-March 2009] The course in Algorithms for machine learning 
and inference (TDA231), Chalmers University of Technology.

Services from these sources have been used in this master thesis

Andersson G. 2003. [2010-05-13] Den stora svenska ordlistan, 
http://dsso.se/download.html

Apelon Inc. 2007-2010. [2010-05-11] Apelon DTS - Welcome to Apelon DTS, 
http://apelon-dts.sourceforge.net/

Ejerhed E. & Ridings D. 2010. [2010-05-11] PAROLE -> SUC tagset, 
http://spraakbanken.gu.se/parole/tags.phtml

Findwise 2010. [2010-05-11] Findwise | Findwise - Search Driven Solutions, 
http://findwise.se/

Google 2010. [2010-05-11] hunpos - Project Hosting on Google Code, 
http://code.google.com/p/hunpos/

45



Google 2010. [2010-05-11] Wiki Pages - oppna-program-metadata-service - Project  
Hosting on Google Code, http://code.google.com/p/oppna-program-metadata-
service/w/list

Kandidaterna [2010-05-13] Kandidaterna, http://www.kandidaterna.se/

Linköpings universitet 2010. [2010-05-13] Journalexempelvt2010.pdf (application/pdf-
objekt), 
http://www.hu.liu.se/lakarprogr/t5/dokumentarkiv/1.178223/Journalexempelvt2010.pdf

Lund University 2006. [2010-05-11] Talbanken05, 
http://stp.lingfil.uu.se/~nivre/research/Talbanken05.html

Medical students at Läkarprogrammet 2010. University of Gothenburg

Nivre J. [2010-05-11] Lexical categories in MAMBA, 
http://stp.lingfil.uu.se/~nivre/research/MAMBAlex.html

Oracle Corporation and/or its affiliates 2010. [2010-05-11] Java SE Downloads - Sun 
Developer Network (SDN), http://java.sun.com/javase/downloads/index.jsp

Petersson G. 1999. [2010-05-13] diktatex, 
http://www.oron.mas.lu.se/utbildning/diktatex.html

Öresunds Översättningsbyrå [2010-05-12] Oversættelse svensk dansk - Statsaut.  
translatører - Online ordbog, http://www.dansk-og-svensk.dk/

46



Appendixes
This chapter contains some clarifications to the report. The first appendix contains an 
explanation  of  how  one  installs  and  uses  the  demo  application.  The  remaining 
appendixes contain some explanations.

Appendix A. The demo application – user guide
Make sure you have Java[3] installed on your computer and that .jar files are opened 
with Java. To install  the demo application just unpack the file ExjobbDemo.rar in a 
folder. Make sure that none of the parent folders have names with spaces etc. After the 
unpacking you can start  the application by opening the file  demo.jar  located in  the 
folder  ExjobbDemo.  If  you want  to  add a  record  make sure  that  the file  is  UTF-8 
encoded and place the file in the folder ExjobbDemo\Files\Records. Add headlines that 
appear  in  the  file  but  which  are  missing  in  the  file  Headlines1.txt.  The  file 
Headlines1.txt is located in the folder ExjobbDemo\Files\IgnoreHeadlines. When you 
want to search in a record write the name of the record in the field and click on the 
button Search, see Illustration 11.  Illustration 12 shows the result after a search. Table 
Table 20 lists the files and folders, located in ExjobbDemo\Files, and what they contain.

Illustration 11: Before the search in the patient record "Journal2.txt".

Illustration 12: After the search in the patient record “Journal2.txt”.



Abbreviations.txt A file with Swedish abbreviations from Öresunds Översättningsbyrå[36].

OutPutStatComb3.txt The file contains combinations of three word classes and the probabilities that 
sequences of word classes can jump to another sequences.

OutputStatUTF8kop.txt The file contains probabilities that word classes from hunpos are representing 
word classes from Talbanken05.

Wordlist.txt[37] The file  contains  words,  with inflections  and belonging word  classes,  that 
distinguish one disease from another but which belong to the same category.

HypothesisTables The folder contains files with hypothesis tables. The file names must be equal 
to the name of the categories that these files are representing.

IgnoreHeadlines The folder contains the file Headlines1.txt.  The file lists  all  headlines that 
appear in the patient records.

Records The folder contains patients records. They are UTF-8 encoded text files.

TableHypothesesLong The folder contains files with hypothesis tables. These hypothesis tables are 
constructed from somewhat longer sentences. The file names must be equal to 
the name of the categories that these files are representing.

TrainingExamples The folder contains files that include sentences which are used to construct 
hypothesis tables. The first row in each file lists words that distinguish one 
sub-disease to a category from another sub-disease.

WordFrequence The  folder  contains  the  file  MostFrequentWords.txt  which  lists  the  most 
frequently occurring words.

Table 20: Files and folders located in ExjobbDemo\Files.



Appendix B. Word classes from Talbanken05
Abbreviations of word classes with explanations[30][38], that were used in this work.

ID part of idiom (multi-word unit) UK subordinating conjunction

NN noun IK comma

PO pronoun IP period

EN indefinite article or numeral “en”, “ett” (one) I? question mark

RO other numeral IU exclamation mark

AJ adjective IQ colon

VV verb IS semicolon

TP perfect participle IT dash

SP present participle IR parenthesis

AB adverb IC quotation mark

PR preposition PU list item (bullet or number)

IM infinitive marker IG other punctuation mark

++ coordinating conjunction YY interjection

XX unclassifiable part-of-speech



Appendix C. Word classes from hunpos
The word classes from hunpos that were mentioned in this report.[39]

nn.utr noun non-neuter

nn.utr.sin.def.gen noun non-neuter singular definite genitive 

nn.utr.sin.def.nom noun non-neuter singular definite nominative

nn.utr.sin.ind.nom noun non-neuter singular indefinite nominative

nn.utr.sin.ind.gen noun non-neuter singular indefinite genitive

nn.utr.plu.def.gen noun non-neuter plural definite genitive

nn.utr.plu.ind.gen noun non-neuter plural indefinite genitive

nn.utr.plu.def.nom noun non-neuter plural definite nominative

nn.utr.plu.ind.nom noun non-neuter plural indefinite nominative

nn.neu noun neuter

nn.neu.sin.def.nom noun neuter singular definite nominative

nn.neu.sin.def.gen noun neuter singular definite genitive

nn.neu.sin.ind.gen noun neuter singular indefinite genitive

nn.neu.sin.ind.nom noun neuter singular indefinite nominative

nn.neu.plu.def.gen noun neuter plural definite genitive 

nn.neu.plu.ind.gen noun neuter plural indefinite genitive

nn.neu.plu.def.nom noun neuter plural definite nominative

nn.neu.plu.ind.nom noun neuter plural indefinite nominative

pm.nom proper noun nominative

ab adverb 

vb.prs.akt verb present active

pn.neu.sin.def.sub/obj pronoun neuter singular definite 

ab.pos adverb  positive

jj.kom.utr/neu.sin/plu.ind/def.nom adjective comparative non-neuter/ neuter singular/plural 
indefinite/ definite nominative

kn conjunction

mad sentence separation punctuation 

pn.utr.sin.def.sub pronoun non-neuter singular definite subject form 

vb.sup.akt verb past perfect participle active

vb.inf.akt verb infinitive active

dt.utr.sin.ind determiner non-neuter singular indefinite 

jj.pos.utr.sin.ind.nom adjective positive non-neuter singular indefinite nominative

mid punctuation 



Appendix D. Levenshtein Distance
Illustration 13 shows Levenshtein Distance that was used in this work.[33]

Illustration 13: Levenshtein Distance written in Java.



Appendix E. The removed suffixes in the stemmer
If a word belongs to the following word classes from Talbanken05 or hunpos and it ends 
with corresponding suffixes listed to the right, the suffix is removed from the word.[32]
[40][41] See Appendix B.  and Appendix C.  for explanation of the abbreviations of the 
word classes.

AB re, st

SP anden, andes, endes, ande, ende, nde

TP ersta, erst, aste, ast, are, ste, sta, re, st, dd, de, d, t, a, e

VV dde, te, de, er, tt, it, r, t

AJ ersta, erst, aste, ast, are, ste, sta, re, st, sk, ad, ig, a, e, t

NN ion, ing, tik, ik

nn.neu.plu.def.gen arnas, ernas, enas, rnas, ars, ens, nas, s

nn.neu.-.-.- ets, ts, et, t, s

nn.neu.plu.ind.gen ars, ers, ens, rs, ns, s

nn.neu.plu.def.nom arna, erna, ena, rna, ar, en, na

nn.neu.plu.ind.nom en, ar, er, n

nn.neu.sin.def.gen ets, ts, s

nn.neu.sin.ind.gen es, s

nn.neu.sin.def.nom et, t

nn.neu.sin.ind.nom e

nn.utr.-.-.- ens, ns, en, n, s

nn.utr.plu.def.gen arnas, ernas, ornas, nas, s

nn.utr.plu.ind.gen ars, ers, ors, s

nn.utr.plu.def.nom arna, erna, orna, na

nn.utr.plu.ind.nom ar, er, or, r

nn.utr.sin.def.gen ans, ens, ns, s

nn.utr.sin.ind.gen as, es, s

nn.utr.sin.def.nom an, en, n

nn.utr.sin.ind.nom e, a

All words heterna, hetens, heter, heten, arens, andet, arne, aren, 
ades, erns, ade, het, ern, at, lig, els, ig

All words. Removes only the last letter if the 
word ends with any of these suffixes.

löst, fullt, dd, gd, nn, dt, gt, kt, tt
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