
Concurrency and Parallel Methods
for multi-core Platforms
Master of Science Thesis in Software Engineering and Technology

Johannes Fredén Jansson and Jonas Hellberg

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2010

The Author grants to Chalmers University of Technology and University
of Gothenburg the non-exclusive right to publish the Work electronically
and in a non-commercial purpose make it accessible on the Internet. The
Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party
about this agreement. If the Author has signed a copyright agreement
with a third party regarding the Work, the Author warrants hereby that
he/she has obtained any necessary permission from this third party to let
Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Concurrency and Parallel Methods for multi-core Platforms
© Johannes Fredén Jansson and Jonas Hellberg, 2010

Examiner: Per Stenström

Department of Computer Science and Engineering
Chalmers University of Technology
SE-41296 Gothenburg
Sweden

Tel. +46-(0)31 772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2010

ii CHALMERS, Master Thesis 2010

Abstract

This master thesis has been written at Saab Electronic Defence Sys-
tems. Its main purpose is to evaluate the amount of resources needed
to rewrite sequential Java components running in Saabs systems, in
such a way that they can take advantage of multi-core processors.
The research of the thesis addresses issues with concurrent program-
ming in Java, available frameworks and methods and how they can
be implemented for different kinds of applications. The research
has been used to parallelize a Saab component called Threat Evalua-
tion and Weapons Allocation (TEWA). As a result of the parallelization,
a general purpose concurrency framework, called Concurrent Event-
handling and Loop Parallelization (CELP) framework, has been devel-
oped. CELP can be used, together with standard Java concurrency
tools, to parallelize more of Saabs event based components, making
them scalable and safe. This has been shown with the results of the
parallelized TEWA, which includes good scalability, 15 times perfor-
mance increase compared to the sequential version and improved de-
terministic behavior.

iii CHALMERS, Master Thesis 2010

Contents

1 Introduction 1
1.1 Method . 2

1.1.1 The Study stage . 2
1.1.2 The Implementation stage 3

2 Java Concurrency and Theory 3
2.1 Concurrency Concepts . 4
2.2 Java 5 and Java 6 Concurrency 5

2.2.1 The Task Execution Framework 5
2.2.2 Collections . 6
2.2.3 Other Tools . 9

2.3 Java 7 Concurrency . 10
2.3.1 Fork/Join . 11
2.3.2 Phaser . 13
2.3.3 ThreadLocalRandom 13

2.4 Java Virtual Machine Tuning 14
2.4.1 Java Ergonomics . 15
2.4.2 Garbage Collecting . 15

2.5 Code Analysis . 16
2.5.1 Findbugs . 17
2.5.2 Concurrencer . 18

2.6 Design . 18
2.6.1 General Design . 18
2.6.2 Design Patterns . 20

2.7 Theory Conclusion . 22

3 Tools 24
3.1 Development and Debugging 24
3.2 Analysis . 25
3.3 Simulation Environments . 26

4 Experimentation 26
4.1 Merge sort Implementation 27

4.1.1 Fork/Join Implementation 29
4.1.2 ThreadPoolExecutor Implementation 30
4.1.3 Comparison . 31

4.2 Matrix Multiplication . 36
4.2.1 Barrier Implementation 37
4.2.2 ThreadPoolExecutor Implementation 37

iv CHALMERS, Master Thesis 2010

4.2.3 Fork/Join Implementation 40
4.2.4 Comparison . 43

4.3 Minimum Spanning Tree . 46
4.3.1 ThreadPoolExecutor Implementation with Concur-

rentLinkedQueue . 49
4.3.2 ThreadPoolExecutor Implementation with Synchro-

nizedList . 50
4.3.3 ThreadPoolExecutor Implementation with Synchro-

nization Block . 50
4.3.4 Comparison . 51

4.4 Producer/Consumer based Graph Viewer 54
4.4.1 Synchonized LinkedList Implementation 56
4.4.2 LinkedBlockingQueue Implementation 57
4.4.3 Comparison . 58

4.5 Experiment Results . 60
4.5.1 Performance and Scalability 60
4.5.2 Fork/Join Framework and ThreadPoolExecutor . . . 60
4.5.3 Context Switching vs. Work Stealing 61
4.5.4 Memory . 61
4.5.5 Collections . 61
4.5.6 Atomic Variables . 62

5 Threat Evaluation and Weapons Allocation Component 62
5.1 Sequential Implementation 64

5.1.1 Problem . 64
5.2 Parallelization . 65

5.2.1 Method . 65
5.2.2 Exchanging Collections 67
5.2.3 Exchanging Primitive Types for Atomic Wrappers . . 71
5.2.4 Parallelizing Loops . 72
5.2.5 CORBA Event Handling 77

6 Concurrent Event-Handling and Loop Parallelization Framework
(CELP) 79
6.1 Introduction . 79
6.2 Implementation . 81

6.2.1 Loop Parallelization 84
6.2.2 Benchmarking Tool . 88
6.2.3 Critical Task Executor 91
6.2.4 Event-Handling . 96

v CHALMERS, Master Thesis 2010

7 Simulation 99
7.1 Setting up the Environments 100

7.1.1 Windows based, Basic Environment 102
7.1.2 Linux based, Lab Environment 102

7.2 Parallelized TEWA: Varying Concurrency Settings 103
7.3 Parallelized TEWA: Varying Synchronization Methods 105
7.4 Timings Comparison of Parallelized and Sequential TEWA . 106

8 Discussion 110

9 Conclusions 111

10 Future Work 113

Appendices 116

A List of Tools and Libraries 116

B CELP Framework Class Diagram 118

C Windows Simulation Environment 119

vi CHALMERS, Master Thesis 2010

1 Introduction

Electronic Defence Systems (EDS) is a part of the Saab group and is work-
ing with different kind of sensors, for example radar IR and laser. The
department OEGPPK, where the thesis is written, handles system develop-
ment for communication and tactical functions that connects sensors and
weapon systems.

The thesis uses some of the software running on the Giraffe AMB, which
is one of the leading products in the field of radar in its price range. This
software has a major part in the logic used to handle collected data about
the position, speed, altitude etc. of air-units (ex. airplanes) within range of
the radar.

The hardware used in the products by Saab, more and more depend
on the software implementation to give the customer a tactical advantage.
This is complicated by the fact that sensors deliver huge amounts of high
precision data and it is the responsibility of the software to analyze and
evaluate this data to create a set of services for an operator.

The requirements of the software also increase when more functional-
ity is added to the software, both in the sense of complexity and perfor-
mance. Today there are a lot of computers in many of Saabs products and
they work together to provide the services that the customers require. The
reason for this approach is that redundancy in computing performance is
required, but also that the tasks in the systems are natural to divide among
several computers to increase performance. There is however a limit as of
how many computers that are practically feasible to have in one product.

The research in multi-core technology, where one single computer can
contain several independent processor cores, provides the possibility to use
one computer instead of several. In traditional software development with
only one processor core present, the parallelization of a system does not
necessarily mean increased performance. It is more common that the over-
head, because of task switching, decreases the performance of the software.
For this reason Saab has chosen to implement their algorithms in a sequen-
tial manner. A lot of performance can be gained by changing existing se-
quential algorithms to parallel algorithms and run the software on a multi-
core system.

Saab has no general guidelines or methods for developing concurrent
software, or any applications that scale with multi-core systems today. This
thesis provides a major study of guidelines for concurrent programming in
Java and the study can later be used as a reference document at Saab when
parallelizing software components. The study is also used as the theoret-

1 CHALMERS, Master Thesis 2010

ical foundation of the master thesis, which is then used to implement a
parallelized version of the Threat Evaluation and Weapons Allocation (TEWA)
component. As a part of this component parallelization, a general frame-
work suitable for Saabs components is developed. The goal with the thesis
is that by using the study, the framework and the parallelized TEWA com-
ponent, the software developers at Saab will be able to parallelize other
existing components, or write completely new ones that are scalable and
safe.

The theoretical part only goes through some of the basic concurrent
programming terms and assumes that the reader has some knowledge of
concurrent programming and programming in general. The programming
language is limited to Java, since that is what is used at OEGPPK. The Java
software running in the Giraffe AMB consists of several components, this
thesis focuses on one of the more CPU demanding components.

The implementation has only been tested in a simulated environment,
not on the live systems due to the extensive testing and verification needed
for software to be allowed to execute there. Since the simulation hardware
has a maximum of eight cores we have not been able to test the performance
scaling of the implementations on more cores than eight.

1.1 Method

To structure the work of the thesis, it is divided into two main stages. The
first stage is the study, which also is divided into two parts. The first part
is presented as a theoretical chapter (Chapter 2), the second part of it is the
experimentation chapter (Chapter 4) in which the theories are tested and
conclusions are drawn. The second stage is the implementation, Chapter 5
and Chapter 6, where the results and conclusions from the previous stage
are used to parallelize the TEWA component running in the software for
the Giraffe AMB. As a result of this component parallelization an general
parallelization framework called CELP, was developed as well.

1.1.1 The Study stage

The study stage focuses on concurrent programming in Java and inves-
tigates tools in current and upcoming Java versions, along with general
methods and tools for concurrent programming. It has been created by us-
ing the latest published articles on Java concurrency, as well as the most
common methods from the best selling books on the subject. An exper-
imentation part is conducted, where some of the latest technologies are

2 CHALMERS, Master Thesis 2010

tested and evaluated by developing and performing experiments that par-
allelize common sequential algorithms, with the help from modern concur-
rency tools.

1.1.2 The Implementation stage

The theories presented and the knowledge gained from the study stage
have been used to parallelize the TEWA component. The component was
first analyzed in several stages and then carefully modified to allow con-
currency while still maintaining its initial functionality. Initial testing and
verification was done on dual-core Windows based machines, with an en-
vironment that roughly simulates the real, Giraff AMB, system where the
TEWA component is used. Further simulation was done in a lab at Saab
where the real environment have been realistically simulated. The paral-
lelized software then executed on an eight-core multi-threaded server. To
avoid unnecessary and hard to avoid programming and concurrency errors
all advanced algorithms have been implemented using Pair Programming as
the development technique.

2 Java Concurrency and Theory

The basic building block for all Java concurrency frameworks is the Java
class Thread, which supports an easy way to create and execute threads.
Threads are instantiated as normal Java classes, with a runnable task repre-
senting the task being performed concurrently with the main execution. Al-
ternatively the Thread class can be overridden to define what that runnable
task should be. When the thread is started it is up to the JVM and the op-
erating system to decide on which physical processor core the thread will
execute. Because the JVM handles the thread mapping, it is not possible
to control how the threads are mapped between the available CPUs on the
system. This is generally not a problem though, since the JVM is smart
enough to optimally map CPU intense threads to available CPU cores. [10]

Up until Java 5 the only way to synchronize these threads was
through low-level language features. Java 5 changed this by adding the
java.util.concurrent package, allowing more high-level synchroniza-
tion. The package was further improved in Java 6 by for example adding
new features such as improved concurrent queues and will be further im-
proved in the upcoming Java 7 [1].

3 CHALMERS, Master Thesis 2010

2.1 Concurrency Concepts

In this Section some basic concurrency concepts will be covered.
An application is concurrent if parts of it are divided in such a way that

they are to be run at the same time. If an application is concurrent it does
not necessarily mean that the concurrent parts physically run at the same
time, they could for example be run by a scheduler to get a concurrent
behavior.

Parallel is a subset of concurrent. When an application is parallel, the
concurrent parts of the software are physically running at the same time[2].

A task is a computation that is performed in a thread and it can be a sub-
problem of a bigger problem. Tasks that represent sub problems of a bigger
problem can be executed in parallel and combined to give a complete solu-
tion.

A thread run one task at a time. Many threads can process several tasks
in parallel to speed up the computations of a problem. For example one
problem can be divided into hundreds or thousands of tasks which is pro-
cessed by only a few threads to speed up the computation.

The granularity of a computation is the number of tasks the problem is
divided into. A computation that is divided into many tasks is called a
fine-grained computation and a computation that does not involve a lot of
tasks is called coarse-grained. So, the more tasks the more fine-grained is
the computation. [2]

An atomic operation is when an action like incrementing a number is
executed in one single instruction, with one possible outcome; success or
failure.

When queuing up threads and tasks different techniques can be used
to decide who is next in line, this is often refereed to as fairness. If a thread
eventually is guaranteed to get to execute, the queue is fair otherwise it is
said to be unfair.

Context switching is performed when the operative system switches out
a running thread, in favor for another thread that is allowed to execute
instead. This is done by a scheduler whenever a single CPU runs more
then one thread, to get a concurrent behavior. Context switches causes big
performance penalties and the operative system therefore generally tries to
avoid them.

4 CHALMERS, Master Thesis 2010

2.2 Java 5 and Java 6 Concurrency

The java.util.concurrent package abstracts away many of the low
level difficulties. Programming constructs such as new Thread(), Ob-

ject.notify() and synchronized should, as much as possible, be
avoided. In favor for such low level constructs, the classes from the
java.util.concurrent package should be used[11]. The ThreadPoolEx-

ecutor which is widely used in Java based server applications[6] was
added via this package as a part of the Executors framework, together with
many other classes that help with synchronization. Java 6 added even more
features resulting in abstracting away even more of the need to use the low
level features in most cases. Advanced queue algorithms is available since
Java 6, for example SynchronousQueue and LinkedBlockingDeque[1][18]
which eliminates the need to use error prone Object.wait() and Ob-

ject.notify() methods to wait for conditions like empty lists.

2.2.1 The Task Execution Framework

The main idea of the executor framework is to have designated executors
which execute tasks in separate threads. This framework handles the cre-
ation and termination of threads and tasks so the developer does not have
to. In the simplest versions the user only needs to create a ThreadPoolEx-

ector instance with the number of CPUs on the system as argument and
then use ThreadPoolExector.submit(mRunnable)method to submit a task
which a thread will process.

Much performance can be gained by submitting tasks to running
threads instead of repeatedly creating and tearing down threads. For
example to create and execute a task in a new thread using new

Thread(mRunnable).start() causes much more overhead than submit-
ting the task to a running thread in a thread pool.

To determine the amount of threads to use the method Run-

Time.availableProcessors(), obtaining the number of CPUs (Ncpu), can
be called. Usually Ncpu + 1 is an optimal amount of threads for compute
intensive non-blocking implementations. How to configure the Thread-

PoolExector along with rejection polices, thread factories and other con-
figuration options is explained in great detail in Concurrency in Practice
by Doug Lea[1] as well as in the API documentation for ThreadPoolEx-

ector[18].
The ThreadPoolExector implementation uses a single queue (which is

customizable for different needs) to queue task waiting to be processed.
This causes some inefficiency and synchronization problems when task

5 CHALMERS, Master Thesis 2010

counts go up and many threads compete for the queue. The fork/join
thread pool implementation of Java 7 has another approach where each
worker thread has its own queue and also solves some of the other prob-
lems that exists with the ThreadPoolExector, see Section 2.3.1.

2.2.2 Collections

Java has both synchronized collections that wrap all vital methods in
synchronized blocks and concurrent collections which use other means
of synchronization that allows for a greater throughput. The concurrent
collections were released in Java 5 and Java 6 added some more blocking
queues which are excellent when implementing a producer-consumer
design.

Synchronized implementations for a lot of the available collections exist
and can be created with the methods:

Collections.synchronizedCollection(Collection c)

Collections.synchronizedList(List list)

Collections.synchronizedMap(Map m)

Collections.synchronizedSet(Set s)

Collections.synchronizedSortedMap(SortedMap m)

Collections.synchronizedSortedSet(SortedSet s)

Synchronized collections are thread-safe but there still exists some
problems the developer must be familiar with. To iterate over a synchro-
nized collection until it is exhausted is still thread-safe, but might not give
the expected result. If for example a counter says that the last element in a
collection is at a certain index and the next operation is getting that element
from the collection, another thread can interleave between the operations
and remove the next element. The operation might then return null,
something unexpected or throw an exception. This problem addresses
the main issue with synchronized collections, just because their methods
are thread-safe does not mean one can stop caring about concurrency.
To solve the problem the whole iteration can be synchronized or copied,
iterated and returned. If a lot of threads are working with the collection, a
performance gain can be seen when copying, but there is of course a trade
off between performance gain and copying overhead. [1]

Concurrent collections were first introduced in Java 5. The difference

6 CHALMERS, Master Thesis 2010

between the concurrent collections and the synchronized collections is
that the concurrent collections are designed to improve performance when
there is a lot of concurrent access to the collection, while the synchronized
collections are designed to be thread-safe. All the concurrent collections
provide iterators that do not throw concurrent modification exceptions
and that can handle concurrent access to the collection while iterating.
This makes it unnecessary to lock the collection when iterating over
it. However, the iterators are weakly consistent instead of fail-fast as the
synchronized versions are. Weakly consistent means that the iterator can
tolerate concurrent modifications, it iterates over the elements as they were
present when the iterator was constructed and may reflect changes in the
collection while iterating. Following is a list of the available concurrent
collections:

ConcurrentHashMap
ConcurrentHashMap is a lock-free implementation of the Collec-

tions.synchronizedMap() which is a thread-safe version of the Java
Map. The ConcurrentHashMap should almost always be preferred over the
synchronized version when writing concurrent applications, but there are
some rare situations where it should not be used. For instance when it
is important that the size() operation returns an exact value should it
not be used, since the number of elements can be updated, and then it
can not return an exact value. In some cases the whole collection needs
to be locked for concurrent access, this feature is not included in the
ConcurrentHashMap. These two situations are the only cases where the
synchronized version is preferred, otherwise the ConcurrentHashMap

should be used.[1]

CopyOnWriteArrayList
CopyOnWriteArrayList is a concurrent replacement for the synchronized
List. It is, as the name suggests, a List that when written to is copied. It
preserves its thread safety1by being immutable. It can not be modified after
creation. Copying the entire list on each write is a costly operation, but if
there are a lot of reads and not many writes, huge performance gain can
be achieved by using the CopyOnWriteArrayList. The case where a lot of
reads are performed and not that many writes, are common in for example
event-notification systems. [1]

1The following exhaustive definition of thread safety is made in Concurrency in Practice:
”A class is thread-safe if it behaves correctly when accessed from multiple threads, regardless of the

7 CHALMERS, Master Thesis 2010

CopyOnWriteArraySet
The CopyOnWriteArraySet works in the same way as the CopyOnWriteAr-

rayList, but instead of a List it implements concurrent functionality for a
Set.

SynchronousQueue
A SynchronousQueue is a queue that has no internal capacity. If a thread
wants to add an element to the queue there must be some other thread
waiting for an element. That means that if an element is put in the queue
with the put(E element) the operation will block until some other thread
is performing a take(). A SynchronousQueue is very well suited for
hand-off implementations where one thread must wait and synchronize
information with another thread.

PriorityBlockingQueue
The PriorityBlockingQueue is an unbounded queue and therefore does
not block on the put operation, it still blocks on the retrieval operations.
The elements in the queue are ordered in their natural order, which means
that all elements must implement the Comparable interface.

LinkedBlockingQueue
The LinkedBlockingQueue is like the PriorityBlockingQueue but it is
ordered in a FIFO (first-in-first-out) manner. So, the head of the queue is
the element that has been the longest on the queue and tail is the one that
has been in the queue the shortest time.

ArrayBlockingQueue
The ArrayBlockingQueue has the same properties as the LinkedBlock-

ingQueue but it is bounded, that means a fixed sized array is holding the
elements in the queue.

DelayQueue
A DelayQueue is an unbounded queue where each element has a delay
time, which means they can not be taken from the collection before that
time has passed.

LinkedBlockingDeque

scheduling or interleaving of the execution of those threads by the runtime environment, and with
no additional synchronization or other coordination on the part of the calling code.”[1]

8 CHALMERS, Master Thesis 2010

The LinkedBlockingDeque is a two sided version of the LinkedBlock-

ingQueue. This means that it has operations to take elements from the
back of the queue as well as from the front. The two sided nature of this
queue means that it is effective to use when implementing the work steal-
ing principle[1].

2.2.3 Other Tools

In this section some useful tools from Java 5 and Java 6 for developing
efficient concurrent Java application will be covered.

Synchronized Barrier
A barrier is used to make a number of threads wait at a certain point before
continuing. In Java this is possible through the class CyclicBarrier. The
term cyclic refers to the possibility for threads to continue and reach the
barrier several times until the computation is performed. This is useful for
computing result where parallel computations are dependent on previous
computations before continuing.

Atomic Variables
Atomic variables are wrapper classes that provide lock-free and thread

safe programming on single variables. Instead of locking they provide
operations based on low level assembly instructions such as compare-

and-swap. Though they are very limited and only provide a few methods
per class, they can be very useful in various applications. For example in
shared loops they can be used to increment or decrement counters. [1][18]

Reentrant locks
A reentrant lock is a form of extension of the synchronized block in
Java that inherits the Lock interface [18]. Generally, using a concurrent
collection from the concurrent package is a better solution to achieve
synchronization. But in cases where locking is really needed usual syn-
chronized blocks are more than enough and when an application requires
more features a reentrant lock can be used. It provides the possibility
to interrupt a thread while it is waiting for a lock and the possibility to
acquire a lock without being willing to wait for it forever. It should be used
carefully though; in contrast to the synchronized block which is released
when the block ends, it must be released by the programmer. This can be
a problem if some error occurs, if for example an exception is thrown that
result in an unexpected execution path. To get around this the release of a

9 CHALMERS, Master Thesis 2010

lock should always be put in a finally block to guarantee that the lock is
released[1].

Latch
A latch is a synchronizer that waits for a number of threads until they all
reach a terminal state. It can be thought of as a gate. Until the application
reaches a terminal state no threads can pass the gate. It can for example
be used when a task has been divided into many subtasks and the ap-
plication must wait for all of the subtasks to finish before continuing. In
Java there exists a latch implementation called CountDownLatch which
provides a class that can be instantiated with an initial number to count
down from. Then threads can use the thread safe method CountDown-

Latch.countDown() to decrease the counter. The thread/threads that wait
for the latch calls CountDownLatch.await() and when the counter reaches
zero they are released. [1]

Future
A Future<E> instance is used as an asynchronous response of a computa-
tion. The asynchronous methods for executing threads of ThreadPoolEx-
ector and ForkJoinPool returns Future<E> instances representing the re-
sult of a task handled by their worker thread(s). The blocking method Fu-

ture<E>.get() returns the generic result of the computation. This means
that a task can be started asynchronously and then some work can be per-
formed and when the result of the task is needed the application can block
until it is available.

2.3 Java 7 Concurrency

In the upcoming release of Java JDK 7 which is due to late 2010 there will be
an update of the concurrency library java.util.concurrent. A package
containing the updates which is targeted for the JDK 7 release can be down-
loaded from the JSR-166 Interest Site [10]. It contains the classes targeted for
the next release, another package called extra166y can also be downloaded
from there but those classes are not targeted for the JDK 7 release.

The jsr166y package contains the official concurrency news for Java 7,
the main improvement in this package is the fork/join framework [10].
This new framework allows for speed-ups where parallel computations is
applicable, it is not suited for all types of problems though. It is mostly
suited for divide-and-conquer type problems, this means it can not com-
pletely replace all kinds of concurrency issued dealt with using Executors

10 CHALMERS, Master Thesis 2010

and Threads from Java 5 and 6 [17]. Other new classes are the Phaser class
and the ThreadRandom class. The Phaser implements functionality similar
to the CyclicBarrier and CountDownLatch from Java 5 and the Thread-

Random generates thread specific random data[18].

2.3.1 Fork/Join

The fork/join framework is the most promising news that most likely will
be included in the util.concurrent package of Java 7. This framework shows
good performance on test cases compiled by Doug Lea, who leads it spec-
ification and implementation[20]. In general it does show very good scala-
bility and tests we have performed shows that it scales better in some cases
compared to similar frameworks like the ThreadPoolExecutor from Java
5. It has its own kind of thread pool which implementation is similar to the
ThreadPool from Java 5, so it does not suffer from creating new threads for
each new tasks, it just submits the work to the thread pool. However, there
exist some minor limitations in scalability when the number of threads in-
creases due to the fact that the number of tasks that are processed per sec-
ond decreases[10].

The framework is based on the idea of Divide and Conquer style algo-
rithms which takes a set of input data and repeatedly splits the data set
in two until it reaches some limit where the problem is small enough, sub
problems are then solved and combined to form the full solution. This type
of algorithms is usually expressed with recursion where each recursion step
is independent of the others, this makes it more suitable for some problems
than others[10].

Resul t compute (Task task) {
i f (problem i s small) {

Solve s e q u e n t i a l l y
}
e lse {

s p l i t i n t o : Task l e f t , Task r i g h t
fork (so lve (l e f t) , so lve (r i g h t))
Wait for r e s u l t s of subtasks
compose r e s u l t s

}
}

Listing 1: Divide and Conquer Structure.

This basic idea for the fork/join framework is to create new tasks ev-
ery time a Divide and Conquer algorithm splits the data into two new sub
problems, as seen in listing 1. These tasks can then be solved in parallel by

11 CHALMERS, Master Thesis 2010

letting the framework divide them among the active worker threads. It is
a very light-weight framework because it has been optimized to solve such
problems where usually the only synchronization is for tasks to wait for
subtasks. This approach helps the framework scale very well.

Another reason for its good scalability and performance is that the
fork/join framework implements work stealing which is based on the
producer-consumer design pattern and the use of deques. The idea is to
have a number of worker threads, for example equal to the number of pro-
cessors, which processes a large number of tasks.

The challenge is to divide a problem into suitable number of subtasks
which depends as little as possible on each other. To use worker threads
and tasks is not new for fork/join but the main difference from the closest
version from Java 5, the ThreaPoolExecutor, is this use off work stealing
[17]. This is implemented by letting each worker thread have its own pri-
vate work queue that contains tasks which it processes.

The work is pushed and popped to the queue by the thread that owns
it. The take operation is protected by a lock but since pop and take (steal)
operations work on different ends of the queue they rarely interfere. It is
vital to size these tasks so that they are not too big and not too small. If they
are to small the overhead of creating tasks will be greater then the gain and
if they are to big the threads will not be able to steal work from each other.
In other words, the tasks should have a fine-grained partitioning while still
out-weighing the overhead of tasks management[19].

Table 1 shows a sequence which illustrates the potential of work
stealing and why it is important to have fine granularity tasks. At t=0 both
threads have their work queues full of work, illustrated by o for thread
one and x for thread two. At t=1 thread two has run out of work; because
of inhomogeneous size of the tasks of the problem or uneven distribution
of CPU time on the CPUs which each thread is running. When thread
two detects that its work queue is empty it randomly select another queue
by scanning through all other worker queues until it finds one that is not
empty. In this example there is only one other queue and it is not empty, so
it performs a take operation on the end of thread ones queue and steal the
work. This example shows why a problem needs to be divided into many
sub problems for the work-stealing to be effective. If for example both
threads had one task each with four times the size of their current tasks
thread two would not be able to steal any work at t=1 and would go idle
instead and waste precious clock cycles [20][10].

12 CHALMERS, Master Thesis 2010

Threads & Workqueues, t=0
Threads Queue content Queue Size
Thread#1 o o o o 4
Thread#2 x x x x 4

Threads & Workqueues, t=1
Threads Queue content Queue Size
Thread#1 o o - - 2
Thread#2 - - - - 0

Threads & Workqueues, t=2
Threads Queue content Queue Size
Thread#1 o - - - 1
Thread#2 o - - - 1

Table 1: Work stealing sequence

2.3.2 Phaser

A new feature in the new Java 7 release is a class called Phaser. The Phaser
was originally a part of the ForkJoinTask class, but after a lot of requests
it was extracted and put in a separate class. The Phaser is an updated
version of the CyclicBarrier and CountDownLatch from Java 5 which are
covered in 2.2.3. The new functionality is that after creation new parties
can be added and removed from the Phaser. In comparison to the Cyl-

cicBarrier where the number of parties using the barrier is set when the
barrier is created, the Phaser can add and remove from the number of par-
ties dynamically. When using the new fork/join framework and a barrier
is required, the Phaser is recommended for optimal performance. [17]

2.3.3 ThreadLocalRandom

When random numbers are generated through the java.util.Random

concurrently by many threads it can cause a lot of overhead and con-
tention. Rather then sharing a Random class instance between threads the
static method ThreadLocalRandom.currrent() should be used to obtain a
ThreadLocalRandom instance that can be used to generate pseudo random
numbers in threads.

13 CHALMERS, Master Thesis 2010

2.4 Java Virtual Machine Tuning

The Java Virtual Machine (JVM) has several hundreds of options that can be
set to tweak performance or to customize the behavior of a running virtual
machine. There are three categories of options that can be given to the
virtual machine at startup:

• Regular options that are supported for any version of JVM for a spe-
cific operating system.

• Options that begin with -X are non-standard (not guaranteed to be
supported on all JVM implementations) that are subject to change
without notice in subsequent releases of the JDK.

• Options that are specified with -XX. Not stable and are not recom-
mended for casual use. These options are subject to change without
notice. [12]

Almost all of the options regarding concurrency are -XX options, that is
why when tuning the JVM one must always keep in mind the risks and
the possibility of the option used on the current JVM may not exist on an-
other. Some of the options that are available as -X options are useful for
concurrent applications even though it is not their main purpose. Setting
the minimum heap size to something bigger than the default values, which
is 1/64th of the machine physical memory or at least 3670kB, and the max-
imum to something bigger than the default which is the minimum of 1/4th
of the physical memory and 1GB, is important for memory intense appli-
cations. This can be achieved by setting the options:

• -Xms <initial java heap size>

• -Xmx <maximum java heap size>

This is useful for applications with a lot of threads since each new
thread get its own stack which by default is set to 256 kB [13]. So, with
a lot of threads the memory requirements soon increase. When thread pool
solutions are used instead, certain situations may require a big amount of
tasks to achieve fine granularity through creating many task class instances,
which in turn may require much memory. If for example a solution with
the fork/join library is to be implemented, which is discussed in detail in
Section 2.3.1, several thousands of tasks can be created and these can each
contain individual data.

14 CHALMERS, Master Thesis 2010

2.4.1 Java Ergonomics

Since the release of Java 5 the JVM default settings regarding default min-
imum and maximum size of the heap, what garbage collector to use, max-
imum garbage collection pause time and throughput goal are set dynam-
ically by looking at the platform the system is running on. This is called
Java Ergonomics. It is a very good functionality if only one JVM is running
on a system, but with several JVMs’ present there might be problems since
it does not take that into account.

If an application does not perform as expected or if several JVMs’ are
running on one machine it can be a good idea to tweak the parameters to
the JVM. These are:

• -XX:+UseSerialGC, use the single threaded garbage collector.

• -XX:+UseParallelGC, use the parallel garbage collector.

• -XX:MaxGCPauseMillis=<n>, Maximum GC pause time goal.

• -XX:GCTimeRatio=<n>, Throughput goal (GC Time : Application
time = 1/(1 + n) e.g. -XX:GCTimeRatio=19 (5% of time in GC)).

And as mentioned before:

• -Xms <initial java heap size>

• -Xmx <maximum java heap size>

2.4.2 Garbage Collecting

One very important issue to address when developing concurrent appli-
cations is to tune the Java garbage collector. On single core systems with
only one processor core a small application that has one percent of its to-
tal throughput assigned to garbage collecting seem reasonable. When the
same application is run on a multi-core system the throughput spent on
garbage collecting increases. In Figure 1 it can be viewed how throughput
is affected when moving the software to multi-core platforms. [14]

To avoid these problems there exist three different garbage collectors
for the JVM: the serial garbage collector, the parallel garbage collector and
the concurrent garbage collector.

The serial garbage collector is most well suited for single core machine
since it does all the garbage collecting in one thread. It can also be used on
multi-core platforms where applications handle small data sets (up to 100
MB). To enable it, give the -XX:+UseSerialGC flag to the JVM.

15 CHALMERS, Master Thesis 2010

Figure 1: Scalability of a small software running on a unicore system with one
percent garbage collecting, up to a 32 core system. [14]

The parallel collector or throughput collector performs minor collec-
tions in parallel. It can reduce overhead and is designed for multi-core
platforms with medium- to large data-sizes. It can be enabled by giving
the -XX:+UseParallelGC flag to the JVM.

The concurrent collector performs garbage collection concurrently with
the application. It is enabled by giving the -XX:+UseConcMarkSweepGC
flag to the JVM.

The Java ergonomics selects one of the serial and parallel collectors but
does not include the concurrent one. On multi-core systems that ”pre-
fer shorter garbage collection pauses and that can afford to share processor re-
sources with the garbage collector while the application is running” [14], running
the concurrent garbage collector can result in big performance gain, so it
should always be considered.

2.5 Code Analysis

A lot of different tools exist to help a software developer to write more se-
cure and dependable code. To abstract as much as possible without los-
ing too much performance is important. For concurrency, libraries like
the fork/join library, the ThreadPoolExecutor from Java 5, different col-

16 CHALMERS, Master Thesis 2010

lections, atomic variables and a lot more tools are used to be able to con-
struct dependable software on a higher level. These tools are good ways
to work towards safer code. A complement to these tools, using static and
dynamic code analysis to find bugs and design flaws in a system is impor-
tant. However, finding bugs in a concurrent environment can be hard. A
lot of the bugs may come from low-probability events that are sensitive to
load, timing and might be hard to reproduce. [1]

Static code analysis finds bugs in the code by checking the code, while
dynamic code analysis finds bugs by running the program and checking
for errors. We will only cover the static analysis.

2.5.1 Findbugs

Findbugs is a tool for static code analysis for Java programs. It is a
general bug finding software but can be used to find bugs in concurrent
applications. Findbugs is available as a plugin for the Eclipse IDE and is
very easy to use. It has support for finding the following concurrent bugs:

Inconsistent synchronization. Reported when an object using a lock on access
to its variables is inconsistent. That is, the variable is sometimes locked on
access and sometimes not.

Invoking Thread.run(). Reported when the method run() in Thread is
invoked directly. Usually it is desired to use Thread.start().

Empty synchronized block. Empty synchronized blocks are often used
incorrectly and almost all of the time there exists a better solution.

Starting a thread from the constructor. Introduces a lot of risks like subclass-
ing problems and escaping this references.

Notification Errors. These errors occur when a notify() or notifyAll() is
called without changing the state of the monitor they are called from.

Condition wait errors. When a wait() or an await() is called outside a loop
that is looping on the condition the thread is waiting for.

Misuse of Lock and Condition. Using a Lock as the lock argument of
a synchronized block is probably a typo as well as calling wait() on a
condition variable instead of await().

17 CHALMERS, Master Thesis 2010

Sleeping or Waiting while holding a lock. Since there probably are a lot of
other threads waiting for a lock it is a bad idea to sleep while having it.

Spin loops. Also known as busy waiting loops takes a lot of CPU and should
be avoided as far as possible [1][15].

2.5.2 Concurrencer

Concurrencer is the result of a study done at MIT by Danny Dig, John Mar-
rero, and Michael D. Ernst [5]. It is not a tool for finding bugs, but rather
a static code analyzer that updates code for the user. Concurrencer is used
to automatically exchange integer variables in the code to AtomicInteger,
HashMap to ConcurrentHashMap (for more information see Section 2.2.2)
and Recursion to ForkJoinTask (for more information see Section 2.3.1).
The Concurrencer is a plugin for the Eclipse IDE and is very simple to use.
It is simply a matter of selecting the object you want to change to a concur-
rent version and the Concurrencer will do the rest for you. In case of the
recursion exchanged to a ForkJoinTask the user just provides a sequential
threshold where the algorithm will stop executing concurrently and do the
rest of the work sequentially.

2.6 Design

When building a safe concurrent program in Java it is important to follow
some general guidelines, more details about these guidelines can be found
in Java Concurrency in Practice by Doug Lea [1]. Several important design
patterns that are very helpful when designing concurrent applications ex-
ists along with some patterns which do more harm then good.

2.6.1 General Design

The Java memory model, defined in Java Language Specification, third edi-
tion[3], has certain rules which decide when objects shared between threads
are visible. These rules are very important when writing safe concurrent
programs. Shared objects can be divided in two parts, mutable and im-
mutable.

Mutable objects can be protected with a weak form of synchroniza-
tion using the volatile keyword. The specification guarantees that an
object declared as volatile which is written to is visible for all subse-
quent reads. Note the specification allows for read and writes of 64 bit

18 CHALMERS, Master Thesis 2010

values like long and double to be divided into separate 32 bit operations.
This means that normal reads and writes of such values are not guaran-
teed to be atomic and should always be declared as volatile or be somehow
synchronized[3]. Also note that the ++ operation is not an atomic write op-
eration, the java.util.concurrent.atomic package provides such meth-
ods, see Section 2.2.3. Other ways to make sure that shared mutable objects
are visible to all accessing threads at the same is time is to publish them
safely as following:

• Static initializing (see Singleton Pattern, Section 2.6.2)

• Storing the reference in a final AtomicReference

• Only accessing the reference through a lock

Immutable objects are created with the final keyword, it can be used
both for primitive types and references. It can also be used to assure visi-
bility among all threads but it must be initialized before it is published and
if it is a reference it is only its final- or volatile fields which are guaranteed
to be up to date. This only holds until an object is fully constructed before
it is published to other threads.

The final and volatile keywords rely on which sequences actions are
executed, or what happens before anything else. The Happens-before- and syn-
chronization order relationships are defined in the specification and guar-
antees, among other things, that all actions in a given thread happens in
the expected order. More interestingly it guarantees that a thread invoking
Thread.join() on another thread synchronizes on all actions that thread
has performed. It also guarantees the read/write order mentioned when
using the volatile keyword, that is: writing to volatile field is always vis-
ible to a subsequent read of this field.

These relationships also means that a thread must never be started in a
constructor since it often is an inner class which keeps a hidden reference to
its parent. This could result in a thread getting access to the this reference
of the constructing class before it is fully constructed. The specification
only guarantees that all actions before a thread is started are visible to the
started thread, so any actions after starting the thread in the constructor
might or might not be visible to the thread [3][11].

It is important to encapsulate and not leak private references, the restric-
tions of final or volatile —keywords, or other synchronization, does not
hold if the protected object is dereferenced by another unprotected refer-
ence. As a good practice all non-mutable objects should be made final and

19 CHALMERS, Master Thesis 2010

any mutable shared objects should be accessed with synchronization. It
will not, for example, help if a ConcurrentHasMap instance is published to
two threads if it is not guaranteed to be an up to date reference of the ob-
ject. Any references that can be made static should be so and be initialized
when they are defined[1].

2.6.2 Design Patterns

Here some general useful design patterns as well as anti-patterns, which
should be avoided since they describe design techniques that are not
recommended, are described and discussed.

The Java Monitor Pattern
The Java Monitor Pattern is Javas version of the Monitor Pattern proposed
in the 70’s. It can be used by surrounding code in the synchronized block.
Less sophisticated synchronized collections like Vector uses it to handle
concurrent writes and reads. It is generally better to use more sophisticated
collections like the ones mentioned in Section 2.2.2 to achieve synchroniza-
tion [1]. This pattern also supports the Object.wait and Object.notify

operations which can be used to block threads and notify other threads
when they should wake up [3]. These actions are very error prone and
again it is best to use well tested collections in the java.util.concurrent

package which use these operations to implement safe and well tested
means of synchronization.

The Producer-Consumer Pattern
The Producer Consumer Pattern is based on the idea of a set o producers
which add data to queue that is shared with a set of consumers. The pro-
ducer and consumers need not be aware of each other, they should only
communicate by taking and adding data to the shared queue. This is a very
useful pattern and it is best implemented with the blocking queues intro-
duced in Java 5 and 6[1]. It is used in the fork/join and Executor frame-
works to implement the sharing of tasks among worker threads.

Normally in a Producer-Consumer implementation the producers asyn-
chronously add work to the work-queue and the consumers synchronously
obtain work by blocking if the queue is empty. Another way to do is to let
both producers and consumers block, this means that the queue instead
works as a direct hand-off between threads. Such a queue, called Syn-

chronousQueue, was first introduced in Java 5 but was later replaced with
a new version in Java 6. The new queue greatly outperforms the Java 5 ver-

20 CHALMERS, Master Thesis 2010

sion regardless off fairness, but mostly in fair mode [6]. It can be used as a
producer-consumer direct exchange queue, by passing it as the queue im-
plementation when creating a ThreadPoolExecutor. If the conditions are
right it can greatly improve the ThreadPoolExecutor performance but it is
most suitable in a many consumers - few producers scenario so that there
always is a consumer thread waiting to accept work [1][6].

The queues can be bounded or unbounded. Generally it is better to
have a bounded queue and handle the case of it getting full to avoid
resource exhaustion problems[1]. This is possible with the blocking queue
implementations of the java.util.concurrent package. For example, by
using the LinkedBlockingDeque.offer() method which returns false if
the queue is full and the element could not be inserted [18].

Singleton Pattern
The singleton pattern is used to have a private single instance of a class

which can be easily obtained by a using a public method as seen in listing
2. The problem with this example in a concurrent environment is the race
condition2when checking if the instance is null. It is possible that a thread
obtains an instance which has not been fully constructed.

c l a s s Single ton {
private s t a t i c Single ton s ;

public s t a t i c Single ton g e t I n s t a n c e () {
i f (s == null) {

s = new Single ton () ;
}
return s ;

}
}

Listing 2: Not thread safe Singleton Pattern

An easy way to make the example in listing 2 thread safe is to use static
initialization as seen in listing 3. This causes the JVM to initialize the object
when the class is loaded which guarantees that it is fully constructed before
it is published.

c l a s s Single ton {
private s t a t i c Single ton s = new Single ton () ;

public s t a t i c Single ton g e t I n s t a n c e () {
return s ;

2A race condition is defined as a timing error, where the result of some action depends
on the execution timing of two ore more threads[2].

21 CHALMERS, Master Thesis 2010

}
}

Listing 3: Thread safe Singleton Pattern

Barrier Pattern
The idea of the Barrier Pattern is to synchronize a set of threads at a
given point which they all must reach before they continue. The class
CyclicBarrier in the concurrent package supports this, see Section 2.2.3.
The class Phaser from Java 7 also acts as a barrier and is designed to be
used together with the fork/join framework, see Section 2.3.2.

The Double-checked locking AntiPattern
The Double Checked AntiPattern is explained in listing 4. This might seem
efficient since it prevents some contention of the lock but it is very danger-
ous. The reason for this is that obj might get a non null value before it
is constructed and a thread might return with a reference to an object in an
invalid state[1].

c l a s s DOCClass{
Object ob j

ob j ge tOb jec t () {
i f (ob j == null) {

synchronized (t h i s) {
obj = new Object ()

}
}
return obj ;

}
}

Listing 4: Not thread safe D.C.L Anti-Pattern

2.7 Theory Conclusion

There are a lot of different tools that can be used to tweak the performance
of a Java application. There is almost always a better solution than using
synchronization blocks over several lines which can lead to poor concur-
rency . For single integer/boolean/long operations one can use the non-
blocking atomic variables and gain a lot of performance since they require
only one assembly instruction that need no synchronization.

To gain most throughput on multi-core platforms the concurrent
garbage collector should be used and when tweaking an application the
garbage collector should always be taken into account. As mentioned in

22 CHALMERS, Master Thesis 2010

Section 2.4 JVM tuning is a very important thing to consider and a lot of
performance gain, gained by programming in a good concurrent way can
be lost if the garbage collector, heap size and thread stack size is not set
properly. Another issue/opportunity with the garbage collector is the Java
ergonomics (Section 2.4.1), which sets the size of the heap, which garbage
collector to use and some more properties depending on which platform
the system is running on. This is very good when running a single JVM on
a machine, but when several JVMs are running on a system it does not take
that into account. So, one must keep that in mind if efficient use of several
concurrent JVMs is desired.

When trying to implement a safe multi-threaded application with the
least effort it is import to use the right tools. In our research we have
found that the java.util.concurrent package has many useful tools that
should be used as much as possible to write safe programs with a minimum
amount of effort. This package together with tools like FindBugs and Con-

currencer allows for writing, refactoring and performing static analysis of
concurrent programs that are safe in the shortest possible time.

Since Java is designed with concurrent support in mind with keywords
like synchronized it is easy to use these low level tools instead of safer,
more effective and often easier to use tools from the concurrency package.
It is however important to use some basic keywords like final, volatile
and static as explained in Section 2.6.1.

When designing concurrent solutions that are handled by the Thread-

PoolExecutor and/or the ForkJoinPool the tasks should be constructed
with isolation in mind. The ThreadPoolExecutor should not have any task
dependencies which could cause a deadlock and thread-safety can be guar-
anteed if the task data is isolated from each other. In the ForkJoinPool

case the basic structure of a divide-and-conquer algorithm assures isolation
between the tasks, which only wait for each other through join operations.
If no other dependencies are introduced thread-safety can be guaranteed
through isolation.

When sharing more data which is accessed in more complex ways than
incrementing a number it is often not enough with atomic numbers, instead
concurrent collections can be used to achieve consistency. We found that
many concurrent collections such as LinkedBlockingQueue can be used
safely when sharing data between threads. The different implementations
are good for different problems. The LinkedBlockingQueue is good for im-
plementing the producer-consumer pattern, a LinkedBlockingDeQue are
good when implementing the work stealing principle. Collections like Con-
currentHashMap has many uses as well but some operations like the size

23 CHALMERS, Master Thesis 2010

operation is slower than in the synchronized counterpart and returns a
value that may not be up-to-date. There are a lot of issues with the synchro-
nized collections, for example: the individual operations are thread safe but
that does not mean that compound operations are safe (eg. iterating over
a synchronized collection) and the programmer can not stop caring about
concurrency. A full list of concurrent and synchronized collections and fur-
ther explanations can be seen under Section 2.2.2.

3 Tools

To develop and test our implementations, and perform analysis on existing
systems used within Saab we have used several different tools and simu-
lated environments. For a full list of tools used, see appendix A.

The eclipse Integrated Development Environments (IDE) has been used for
development and for local —and remote debugging. The Threat Evaluation
and Weapons Allocation (TEWA) component that has been parallelized, is
very complex; therefore several analysis tools have been used to perform
both static and dynamic analysis. Study related experiments have been
analyzed as well but primarily with dynamic tools that monitor CPU and
memory usage etc. Since most of the experiments and simulation has been
performed on a multi-core server, several tools have been used to monitor
them via a remote machine.

The development of the experiments, concurrency framework and
TEWA parallelization has been done on Windows machines. Therefore ini-
tial testing has been done with local windows based environment which
roughly simulates the real system. More advanced testing and verification
has been performed in a lab environment which very realistically simulates
the real Giraffe AMB system.

3.1 Development and Debugging

The eclipse IDE running on a Windows machine has been used as the main
development environment. The study related experiments has been de-
veloped in this IDE and debugged with the built in debugger for trou-
bleshooting and to verify their correctness. Critical classes are also tested
using JUint test-cases to further verify them. To draw any conclusions in
regards to performance, runtime benchmarks have been performed for all
implementations, using the JFreeChart library to generate vector graphic
based charts. As of the writing of this thesis, the current Java JDK version
is number 6, so JRE 1.6 has been the main execution environment of all tests

24 CHALMERS, Master Thesis 2010

and implementations. To add support for the latest concurrency tools sup-
ported by Java 7, an external library, jsr166y.jar, which contains all the
coming Java 7 concurrency tools has been used.

The Linux based lab simulated environment is isolated from the normal
network, therefore eclipse, which includes the Java JDK, has been installed
on this Linux system as well. The intent of this is to attach the remote debug-
ger on the remote JVM which runs the parallelized software on the multi-
core server. The Giraffe AMB radar system is simulated on several different
machines which runs Linux and communicates via an isolated network.
This network is not accessible from the external network due to security
reasons. In contrast to the windows based simulation, a GUI is available
when running this, lab environment, simulation.

3.2 Analysis

The TEWA component has been statically and dynamically analyzed with
different tools to find internal dependencies as well as to measure its per-
formance. The documentation tool doxygen together with the graph draw-
ing software Graphviz are used to perform a static dependency analysis of
the component. This software creates call/caller graphs which show how
methods invoke each other, it also creates class diagrams that represent
the dependencies between classes. Further static analyze is supported by
FindBugs which finds common programming errors, including inconsistent
locking and other dangerous synchronization problems.

Dynamic analysis are done with JConsole and VisualVM, they both at-
tach to an application and performs runtime analysis of CPU, memory,
thread status and more. VisualVM also support runtime profiling analy-
sis to find hotspots in the code that take up a large portion of CPU time,
and therefore are suitable to parallelize. Both JConsole and VisualVM sup-
port remote monitoring of applications. With VisualVM this is enabled by
running the jstatd application on the server that is running the remote JVM.
To gain more information about a specific application running on a remote
machine, a JMX connection can be used. To allow a remote JVM to listen for
such JMX connections, it must be started with the correct arguments[22].

Both JConsole and VisualVM are Java based, they are therefore multi-
platform, and they have been used in both Linux and Windows environ-
ments. When running a Windows environment, the tool perfmon has been
used to monitor more operative specific information, like context switching
and current CPU load on the different cores. A similar, but more limited,
tool called top, has been used in the Linux environment to monitor how the

25 CHALMERS, Master Thesis 2010

load is distributed between the different CPU cores.

3.3 Simulation Environments

The Windows based simulator uses a set of programs which communicates
via CORBA interfaces, just as the real components do. When running the
TEWA component in this environment, the real system can roughly be sim-
ulated using the test equipment. This is valuable when performing initial
testing, as well as executing and verifying use cases. The software can then
be easily debugged in eclipse without the need to set up a remote debug-
ging session. This environment is limited though, it does not support the
real GUI used, it is difficult to simulate any realistic scenario and the archi-
tecture is only a dual-core machine which is not enough when performing
scalability analysis.

The lab simulated environment simulates real scenarios very realisti-
cally. It has a view that shows a map, among with position and other data,
including threat values and designation to air units from the TEWA compo-
nent. The GUI and the logical components, like the TEWA, runs on different
machines. The logical components including the TEWA run on the eight-
core multi-thread server. In this environment the parallelized components
can be tested for correctness, scalability and be compared to its sequential
counter-parts in a realistic way.

4 Experimentation

To test the theories and compare algorithms with various characteristics,
using different frameworks from Java versions 5, 6 and 7, a few test cases
have been implemented. Timings are measured on these different imple-
mentations, to see how well they scale when tested on a multi-core archi-
tecture. To be able to draw any conclusions about the timings, the tests
have been performed without garbage collection (GC) during the actual test
runs. GC is instead performed between test runs. To assure that the Java
JIT compiler does not affect our tests, each unique test run is preceded by
a warm up run. This minimizes the risk of any compilation from byte code
taking place when the timings are measured. Each test run is also further
strengthened by taking the mean of several runs. To monitor memory us-
age and OS related issues, like context switching, we have used jConsole
and the windows tool perfmon.

Algorithms with some different characteristics have been implemented
using different methods:

26 CHALMERS, Master Thesis 2010

• Matrix multiplication, where all basic computations can be performed
independent of each other, which makes it suitable for concurrent
computations.

• Merge sort, which cannot, in contrast to the previous, compute all
tasks individually since tasks must wait for subtasks to compute their
results.

These problems are suitable to be solved directly without any synchroniza-
tion between tasks, except for the waiting for subtasks in merge sort. To
test various synchronized collections, from the various Java versions, along
with design patterns and atomic operations, two other implementations
have been developed as well:

• Minimum spanning tree problem, which requires synchronization with
shared lists

• Producer-consumer implementation, where producers communicate
their computation results through a shared queue, with consumers.
The consumers then use the results obtained from the queue, to dy-
namically updated graph.

The goal of the tests have been to find optimal settings for each algorithm
on different platforms and to compare the different methods in sense of
scalability, consistency, isolation and programming effort.

4.1 Merge sort Implementation

Merge sort is one of the most well-known sorting algorithms and it is
a divide and conquer algorithm. Divide and conquer algorithms are
especially well suited for the fork/join library, since it is what the fork/join
library was designed for. The merge sort algorithm sorts a sequence of
comparable items by dividing them in half and then sorting the divided
halves recursively. A sequence is divided until it reaches a single item,
then that item is merged and sorted with the other half of that subset,
which can be one or two items. The result of the merge and sort is then
merged and sorted with the corresponding result of the other half of its
subset and so on. A sequential version of merge sort can look like in listing
5.

void mergeSort (a , tmpArray , l e f t , r i g h t) {
i f (l e f t < r i g h t) {

27 CHALMERS, Master Thesis 2010

c e n t e r = (l e f t + r i g h t) / 2 ;
mergeSort (a , tmpArray , l e f t , c e n t e r) ;
mergeSort (a , tmpArray , c e n t e r + 1 , r i g h t) ;
merge (a , tmpArray , l e f t , c e n t e r + 1 , r i g h t) ;

}
}

void merge (a , tmpArray , l e f t P o s , r ightPos , rightEnd) {
l e f tEnd = r ightPos − 1 ;
tmpPos = l e f t P o s ;
numElements = rightEnd − l e f t P o s + 1 ;

while (l e f t P o s <= le f tEnd && rightPos <= rightEnd)
i f (a [l e f t P o s] . compareTo (a [r ightPos]) <= 0)

tmpArray [tmpPos++] = a [l e f t P o s ++] ;
e lse

tmpArray [tmpPos++] = a [r ightPos ++] ;

while (l e f t P o s <= le f tEnd)
tmpArray [tmpPos++] = a [l e f t P o s ++] ;

while (r ightPos <= rightEnd)
tmpArray [tmpPos++] = a [r ightPos ++] ;

for (i n t i = 0 ; i < numElements ; i ++ , rightEnd−−)
a [rightEnd] = tmpArray [rightEnd] ;

}

Listing 5: Sequential merge sort.

At the recursive call to mergeSort, the divide part of the algorithm
is performed. The two subparts are totally independent from each other
until the result is to be merged. That is why that part can be parallelized
by invoking the mergeSort on each subpart as a separate task, wait for the
two subparts to complete, and then merge and sort the result back into the
main array.

void mergeSort (a , tmpArray , l e f t , r i g h t)
{

i f (l e f t < r i g h t) {
c e n t e r = (l e f t + r i g h t) / 2 ;

concurrentInvoke {
mergeSort (a , tmpArray , l e f t , c e n t e r) ;
mergeSort (a , tmpArray , c e n t e r + 1 , r i g h t) ;

}

merge (a , tmpArray , l e f t , c e n t e r + 1 , r i g h t) ;

28 CHALMERS, Master Thesis 2010

}
}

Listing 6: Concurrent merge sort.

As seen in listing 6 this approach enables the possibility to execute the
subparts concurrently (fork them), wait until the two subtasks complete
(join them) and then merge the result. Even though the worst case time
complexity still is O(n log(n)) as in sequential merge sort (since the decrease
in computational time is constant due to a limited amount of processor
cores), huge performance increase can be observed when sorting big data
sets.

Three implementations with merge sort (using a sequential approach,
the new Java 7 fork/join approach and an approach using the Java 5
ThreadPoolExecutor) have been developed and compared focusing on
scalability, consistency and isolation. The sequential algorithm has no pa-
rameters, except the size of the input data, affecting the execution time of
computing the result. The parallelized versions, the ThreadPoolExecutor

and fork/join implementations, on the other hand, have some settings that
affects the execution time.

4.1.1 Fork/Join Implementation

Since the fork/join implementation always has as many threads as pro-
cessor cores, no context switching is needed. Instead, to balance the com-
putations it has implemented work stealing, work stealing is explained in
detail in Section 2.3.1. Since it uses work stealing with a constant number
of threads in the fork/join pool, the number of tasks is the main concern
when tweaking the performance of the algorithm. The number of tasks is
set by adjusting the sequential threshold of the algorithm, which specifies
at what limit, it is not feasible to divide the work into more concurrent sub-
tasks, because of granularity problems with too much overhead. In more
general terms, the sequential threshold is the limit where the divide and
conquer algorithm stops assigning its work to new tasks, and the task are
computed sequentially. It also specifies the size of the smallest task. The
larger the number of tasks, or the more fine-grained the granularity is, the
more work-stealing can be performed, but the overhead for spawning new
tasks also increases and the amount of memory required increases because
more tasks need to be queued.

When dealing with problems like merge sort it is hard to follow the rec-
ommendation specified in the fork/join api: ”As a very rough rule of thumb,
a task should perform more than 100 and less than 10000 basic computational

29 CHALMERS, Master Thesis 2010

steps.” [17]. The reason for this is that the largest task always is as large as
the number of elements in the array to sort (O(n)), the second biggest is as
big as half the number of elements and so on. To find the best sequential
threshold tests have been run on one 8 core machine with hyper-threading
and on a dual core machine. The result can be viewed in Figure 2.

Figure 2: A comparison of different fork/join thresholds.

From Figure 2 it is clear that the sequential threshold may be pretty high
without actually affecting the performance. There is no reason to set the
threshold lower than necessary because that would result in more subtasks
and more subtasks require mote memory.

4.1.2 ThreadPoolExecutor Implementation

The ThreadPoolExecutor take one parameter, which is the number of
threads to use. Since the merge sort blocks while waiting for subtasks to
complete, the number of tasks to compute, must not be more than num-

30 CHALMERS, Master Thesis 2010

ber of threads in the ThreadPoolExecutor, otherwise the computation will
deadlock. A deadlock will occur if all current threads blocks, waiting
for subtasks to complete, but there are no more available threads in the
thread pool. This is called thread starvation deadlock and there is always a
risk that it will occur if tasks submitted to a ThreadPoolExecutor are not
independent[1]. Considering this, regular threads could be used instead,
since one thread is needed per task anyway, making the work queue of the
ThreadPoolExecutor redundant. But the ThreadPoolExecutor is easier to
use, making it preferable with this type of problem. This is much thanks to
the ThreadPoolExecutor.invokeAll method that allows for easy submit-
ting of subtasks. This makes the blocking part of the algorithm a lot easier
then for example manually starting new threads in each task. However,
regular threads could be used anyway, possibly resulting in a small per-
formance improvement since the ThreadPoolExecutor has some overhead
for task and queue management.

It is difficult to determine which thread count that result in the fastest
execution times. The amount of threads may vary between different plat-
forms, different algorithms and different implementations of an algorithm.
To see how a various number of threads affect the execution time, tests
have been performed on a dual core processor and on an 8 core processor
with hyper-threading. The result can be viewed in Figure 3 and in Fig-
ure 4. These two graphs shows how various amount of threads affect the
execution times, on different problem sizes, and different systems with a
varying amount of processors. From the graphs it can be seen that an ef-
ficient amount of threads on the 8 core machine with hyper-threading is
around 80 threads and on the dual core machine it is around 20. The differ-
ence however, is not that big. It can be seen that for small problem sizes, a
smaller amount of threads is better but when the problem size increases a
bit more threads are better.

4.1.3 Comparison

The different methods all have their pros and cons but, since the fork/join
library is made for these kinds of problems it should overall perform best.

Scalability
The merge sort algorithm is a scalable algorithm. Its work can be divided
among a lot of worker tasks. With a big problem size, a system with a
fixed amount of processors can at some point during the execution keep
all of them busy to some extent. But, since the division of work requires

31 CHALMERS, Master Thesis 2010

Figure 3: Execution Time vs. Problem Size with different amount of threads on a
dual core machine.

each subpart to wait for its underlying tasks, the algorithm can not be fully
parallelized. Therefore the scalability is limited and the speed up achieved
can not come close to of the merge sort is far from linear.

Different parts of the problem require different amounts of ”merging”,
that is why the problem gets unbalanced. The time some of the top merging
operations must wait before being able to merge its subparts, varies a lot
on big calculations. While a task is waiting, the thread currently occupied
by the task is also waiting. The ThreadPoolExecutor implementation and
the fork/join implementation handle this in two different ways:

The ThreadPoolExecutor freezes the current thread and does nothing.
When it has used up all its assigned threads it stops assigning its work to
subtasks and calculates the rest of the problem sequentially. While a task is
waiting for its subtasks to complete, the task in the thread can be exchanged

32 CHALMERS, Master Thesis 2010

Figure 4: Execution Time vs. Problem Size with different amount of threads on an
8 core machine with hyper-threading.

for another task while that task is waiting for execution. This is performed
by, so called, work stealing. That is exactly what it does; a so called context
switch is performed. This can be taken advantage of by creating a bit more
threads than there are processor cores on the system and letting the operat-
ing system context switch between these threads. One must keep in mind
that since a context switch has a lot of overhead, creating too many threads
may decrease performance. In the sense of scalability it is not feasible to do
too much context switching and after a certain amount the overhead is just
too big. This makes the ThreadPoolExecutor implementation scalable to a
certain level but not further than that.

The fork/join is more scalable than the ThreadPoolExecutor algorithm.
It always creates as many threads as there are processor cores on the ma-
chine and then divides the work among these threads. While a task is wait-
ing for its subtasks to complete the task in the thread can be exchanged for

33 CHALMERS, Master Thesis 2010

Figure 5: The difference in execution time for fork/join, ThreadPoolExecutor and
a sequential implementation of merge sort, on an 8 core machine with
hyper-threading.

another task that is waiting for execution, by performing so called work
stealing. Work stealing is discussed in 2.3.1.

The difference between fork/join, ThreadPoolExecutor and a sequen-
tial implementation can be viewed in Figure 5 and 6. As one can see in the
figures, both the ThreadPoolExecutor and the fork/join implementation
scales very well up to 8 cores with hyper-threading (simulating 16 cores).
In theory the fork/join should scale a lot better than the ThreadPoolEx-

ecutor on more cores.

Memory
The memory required for the sequential implementation compared to the
two concurrent ones is a bit less memory than for the ThreadPoolExecutor
implementation and a lot less memory than for the fork/join implementa-

34 CHALMERS, Master Thesis 2010

Figure 6: The difference in execution time for fork/join, ThreadPoolExecutor and
a sequential implementation of merge sort, on a dual core machine.

tion. The ThreadPoolExecutor implementation creates a new thread and
a new class for each task. Since the fastest configuration does not require
very many tasks, the total memory required is not a lot. The fork/join
implementation on the other hand, where a lot of tasks are created in
the fastest configuration, may require huge amount of memory when
dealing with large computations. The fork/join creates a queue of tasks
to each worker-thread to be able to perform work stealing, and for this
work stealing to be efficient, there must be many small tasks. These tasks
are new objects and when dealing with a lot of tasks, the total memory
requirements can reach above 2 gigabytes.

Programming Effort and Thread Safety
The fork/join approach is by far the safest and easiest way to program a
divide and conquer algorithm, which is not surprising since it is what it is

35 CHALMERS, Master Thesis 2010

designed for. On the other hand, the ThreadPoolExecutor approach might
cause a thread starvation deadlock, caused by the thread pool running out
of threads to handle more subtasks. This complicates the implementation
and if done poorly, it might be fatal for the application. The fork/join
implementation does not have this problem. It will queue the result and
switch tasks when one task is waiting for a subtask, removing the risk for
the thread starvation deadlock situation. This makes it safer and easier to
implement.

Conclusion
The merge sort example is the one used by the authors of the fork/join
framework, so it should really show the advantages of it. [10][8] It does
show the advantages, but on the whole it does not completely outperform
the other implementations and it uses a lot of memory compared to the
other solutions. But, a performance increase is seen and the scalability is
better than with the others. Looking at the safety and programming effort;
programming a solution with the fork/join is a lot simpler and the risk of
a deadlock which the other implementations suffer from is gone.

4.2 Matrix Multiplication

With this implementation two thread frameworks (fork/join, Executors)
and one barrier synchronized worker thread pool will be compared. A
Matrix multiplication calculation is a good example of how a computation
can be parallelized. Because when multiplying two matrices the resulting
matrix indexes can be computed individually. There is no need for any
synchronization or blocking in the form of task dependencies so this com-
parison show how the implementations work in a fully non blocking case.
For example, an 8x8 matrix times an 8x8 matrix forms a new equally sized
matrix, where all indexes can be computed separately. This theoretically
means that 8 ∗ 8 = 64 individual tasks can be created which are solved in
parallel on a machine with an equal amount of cores. In the above example
this would mean that the problem is split six times, 26 = 64, to create the
64 sub-tasks.

Three different concurrent implementations have been developed for
this algorithm, similar to the previously discussed merge sort. A sequential
implementation is made for verification and the concurrent implementa-
tions are made with the ThreadPoolExecutor, ForkJoinPool and a thread
pool synchronized with the CyclicBarrier. All implementations have dif-
ferent settings which influence their execution time.

36 CHALMERS, Master Thesis 2010

4.2.1 Barrier Implementation

By manually constructing worker threads that compute individual index
ranges the problem can be solved very efficiently. When using this ap-
proach no work queue exists and threads are started directly with a des-
ignated Runnable (a task) which computes the assigned indices. The
CyclicBarrier class is used but the computation is performed on only one
cycle, so it would be possible to get the same effect by using for example
a CountDownLatch, which counts down for every thread that has finished.
The CyclicBarrier is created with the number of worker threads plus one
as argument, the main thread also waits for the workers using the barrier
which is why the extra one is needed.

When using an approach with many threads, the matrix can be com-
puted very fast as seen in Figure 9. There is a certain amount of memory
needed to handle big amount of threads and there is a risk of a lot of over-
head due to the context switching. But when running this implementation
the memory requirements were rather low when measured with jConsole
and there was almost no context switching when monitoring Windows with
the perfmon tool. The reason for the low amount of context switching is that
the implementation is basically lock free, except for when joining the all
the threads in the end of the computation. This also leads to good scalabil-
ity with an amount of threads equal to the number of processors, since the
threads are allowed to finish their computations before being switched out.
If they where switched out, it would result in them having to be switched
back in to get CPU time again and finish the computation, resulting in un-
necessary overhead.

Since this type of solution does not use a work queue and the developer
is fully responsibly of the threads life cycles it has several problems. It is for
example not possible to start a group of barrier synchronized workers and
assign them more work while they are running since they do not share any
work queue or any other individual queues. This means that all threads
have to be started every time the computation is performed which results
in large overhead for starting and tearing down the threads. The Thread-

PoolExecutor implementation shown in the next section deals with these
problems.

4.2.2 ThreadPoolExecutor Implementation

The ThreadPoolExecutor approach is implemented by creating runnable
tasks, which are submitted, in an iterative manner, to the executor instance.
This is comparable with the CyclicBarrier implementation but the tasks

37 CHALMERS, Master Thesis 2010

do not have to be handed directly to the threads when they are stared, the
framework handles all thread and task management. The tasks are put in
the queue with ThreadPoolExecutor.submit, waiting to be processed by a
thread. It is also possible to hand over the tasks indirectly to a thread with-
out waiting in a queue by using a SynchronousQueue as the queue imple-
mentation (which is passed with the constructor of ThreadPoolExecutor).
Using a SynchronousQueue is only useful when there always is a worker
thread waiting to get work from the queue [1]. This is also implemented
and the result can be seen in Figure 4.2.4.

The basic implementation of this problem with the ThreadPoolExecu-

tor can be implemented as shown in listing 7, where the ThreadPoolEx-

ecutor is created and then the computing tasks are created. After each task
has finished its computation a CountDownLatch, which is set to the number,
of threads is decreased. The method latch.await() blocks until the latch
reaches zero which means that the computation is finished.

The ThreadPoolExecutor is created using the Execu-

tors.newFixedThreadPool(NTHREADS), with the number of worker
threads as argument. A customized instance with a SynchronousQueue is
created for comparison, as well.
ThreadPoolExecutor exec (N THREADS)
Latch l a t c h (N THREADS)
. . .
exec . submit (new Runnable () {

@Override
public void run () {

for (a l l index in t h i s t a s k s index range) {
C al c u a l t e r e s u l t i n t o r e s u l t matrix

}
l a t c h . countDown ()

}
})
. . .
l a t c h . await ()

Listing 7: Matrix Multiplication using ThreadPoolExecutor.

Tests show that the amount of threads may have a great impact on per-
formance just as with the CyclicBarrier implementation. Compared to
the merge sort algorithm, where any non leaf tasks have to merge the re-
sults of its subtasks and thus have a dependency between tasks, matrix
multiplication does not have any dependencies between tasks. This makes
the implementation with the ThreadPoolExecutor simpler since there is no
risk for thread starvation deadlock. Deadlocks might occur when using fewer
threads than there are tasks and there are dependencies between tasks[1].

38 CHALMERS, Master Thesis 2010

The scalability chart in Figure 7 show how the ThreadPoolExecutor with a
standard FIFO queue scales when the amount of threads increase, it has its
peek around sixteen threads. This optimal thread count is in line with the
general Ncpu + 1 for a block free computation intense implementation.

The ThreadPoolExecutor with a SynchronousQueue scale slower than
the one with a standard FIFO queue and does not reach optimal perfor-
mance until around 32 threads, as seen in Figure 7. The reason for this is
that the SynchronousQueue requires that there always is a waiting thread
to receive a task, to achieve optimal performance. For this example it is
necessarily not the case when the thread count is low, which makes it a bad
choice since a normal FIFO queue scale faster.

Figure 7: The difference in execution time for ThreadPoolExecutor with a stan-
dard FIFO queue and a SynchronousQueue.

The task size is another important aspect when using a ThreadPoolEx-

ecutor. Unlike the CyclicBarrier implementation the amount of tasks are
not equal to the amount of threads due to the work queue. The task size
here is controlled by the range of indices computed as seen in listing 7, the
smaller range the more tasks are needed to compute the full solution and

39 CHALMERS, Master Thesis 2010

the smaller each task are. As seen in Figure 8, when the amount of compu-
tations/task is low and there are many tasks, the overhead for managing
the tasks is too great and the execution time is long. There is also the as-
pect of uneven workload between threads due to the amount of tasks and
the amount of processors to divide them among. This explains the peaks
in the execution time that the ThreadPoolExecutor implementation exhibit
for some task sizes. The work stealing design can be used to address this
problem as explained in the next implementation, also see the fork/join
Section 2.3.1.

Task Size

Figure 8: The difference in execution time for fork/join and ThreadPoolExecutor

in relation to tasks size.

4.2.3 Fork/Join Implementation

When using the fork/join approach the solution is similar as with the
ThreadPoolExecutor, since the fork/join version of the ThreadPoolEx-

ecutor class, the ForkJoinPool class, implements the same interfaces.
Fork/join, however, is easier to use and reason about when designing

40 CHALMERS, Master Thesis 2010

the solution in a recursively manner, see Section 2.3.1. Assuming that a
matrix computation task is represented as a MtxTask class and a matrix is
represented as a Matrix class this can be written in pseudo code as seen in
8.

f i n a l Matrix mtxLhs
f i n a l Matrix mtxRhs
Matrix mtxProduct

/ * * c l a s s t h a t s t o r e s which i n d e x e s o f t h e r e s u l t mat r i x t o
compute . Extends R e c u r s i v e A c t i o n o f t h e F / J f ramework .

* /
c l a s s MtxTask extends RecursiveAction{

@Constructor
MtxTask (indexes to compute)
. . .

@Override
void compute () {

i f (Only one index to compute) {
S e q u e n t i a l l y compute r e s u l t of mtxProduct for the

index stored in t h i s MtxTask
}
e lse {

s p l i t i n t o p ar t s : MtxTask L e f t (l e f t h a l f of i n d i c e s)
and MtxTask r i g h t (r i g h t h a l f of indexes)

/ / Compute p a r t s in p a r a l l e l
fork (l e f t . compute () , r i g h t . compute ())

}
}

}

Listing 8: Pseudo code for matrix multiplication implementation with the
fork/join framework.

This pseudo code is based on the class RecursiveAction of the
fork/join framework. Extending it allows for overriding the compute()

method, which is called from the framework to solve a task. Recursive-

Action is meant for computations that do not return a value (it in turn
extends ForkJoinTask<Void>). That is suitable for this example, since all
tasks write their results to individual indexes in the shared result matrix
data structure, instead of returning an explicit value from compute. In the
else statement of compute two new MtxTask instances are created, each
holding half the index count. This is continued until the last recursion step
where a task only hold one index which is computed since the if statement
becomes true. If relating to the previous 8x8 matrices, this would causes all

41 CHALMERS, Master Thesis 2010

64 indexes to be computed by one task each.
If for example eight threads compute these tasks and there are a total

of 64 tasks it is a good opportunity for work stealing. All threads have
their own work queues which can then store eight tasks each. If one thread
computes all its eight tasks while another thread only manages to compute
two tasks, the first thread can steal a task from the others queue, instead of
going idle and wasting processor time.

This approach has a problem: In reality this would not be efficient
due to the overhead of creating and managing each task. The sequential
threshold for a task should instead be related to the size of the matrix,
since the bigger the matrix, the more computations is needed for that
index. In this case (with an 8x8 matrix times an 8x8 matrix) each index
in the resulting matrix requires 64 multiplications, which is too little and
the overhead for managing the task will outweigh the gain. A better way
is to compute the threshold according to the matrix size, for example
three indexes per task as seen in listing 9. The sequential threshold is also
discussed in Section 4.1.1

i f (This task has l e s s then 4 indexes to compute) {
Compute r e s u l t of mtxProduct for the index stored in t h i s task

}

Listing 9: Example of computing threshold.

This type of solution is more suited for bigger matrices where the com-
putations can be divided into bigger tasks that outweigh the overhead. But
it should still be plenty of tasks so that the work stealing method is effi-
cient. Figure 8 shows how the execution time increases when the task size
increase. The execution time also gets a lot harder to predict when tasks
go up since there are a lot of different factors which can effect how much
CPU time a specific tasks computation will get. At this stage, it gets a lot
harder for the work stealing method to balance any uneven computation
time between the threads.

The optimal configuration for thread pool size in this implementation
is around the ForkJoinPool default setting which is set to the amount of
available processors, as seen in Figure 9.

There is a compromise between how big and small a task should be
depending on the overhead for managing the queues. There is also the
fact that the main advantage with fork/join, the work-stealing, basically
only gets into effect when threads are running out of work. This happens
in the end of a computation, since this implementation has tasks that are

42 CHALMERS, Master Thesis 2010

equally large, it means that the longer a computation gets and the more
coarse-grained it is, the less influence works-stealing has.

4.2.4 Comparison

The three implementations are compared considering their performance,
safety and memory usage as well as how much programming effort is
needed to implement them.

Performance and memory usage
Considering performance and scalability all implementations show good
speed-ups when increasing the amount of threads on the target system.
This can be seen in Figure 9, where it also can be seen that they scale
about the same. The ForkJoinPool report some work stealing but it is
less than a percent of the total work consumed and this problem is not
a real divide-and-conquer problem, which the fork/join framework is opti-
mized for. Merge sort, on the other hand, is and its implementation in
Section 4.1.1 with the fork/join approach shows different performance ad-
vantages from the ones seen here. The ForkJoinPool uses a queue for each
worker thread, compared to the ThreadPoolExecutor, where all threads
are contending for the same queue. When the task sizes are tuned they both
show good performance. The CyclicBarrier show good performance but
it lacks much of the flexibility and safety which is seen in especially the
fork/join framework but also in the Executors framework.

The fork/join approach shows some limitations when attempting to di-
vide too big problems into many small tasks since the memory require-
ments get very high.

When creating worker threads and using the CyclicBarrier as syn-
chronization all thread management is performed by the programmer
and even though it shows good performance it is not recommend to use
this approach. One reason for its good performance is that the tasks are
completely independent of each other. Therefore each task is easily solved
by each thread without any context switching due to lock contention
and/or blocking due to waiting for subtasks (like the merge operations
in merge sort, see Section 4.1). For big problems it would require a huge
amount of threads to simulate the behavior of the fork/join framework
[8]. If instead a higher threshold is used to keep the thread count down,
performance will suffer due to big tasks that take too long and are switched
out before they finish. Threads are also expensive to create and to be able
to keep the thread creation overhead down the threads must continuously

43 CHALMERS, Master Thesis 2010

Figure 9: Scalability measured for fork/join, ThreadPoolExecutor and
CyclicBarrier synchronized —implementations of the matrix multi-
plication algorithm.

be fed with work. To do this, some queuing system must be used and
that is already implemented in the mentioned frameworks, which also are
very configurable. It is for example possible to supply a thread factory
and queue implementation to the ThreadPoolExector. If a direct hand
off between the main thread and a worker thread is needed, without a
queue, a SynchronousQueue can be used which might show very good
performance increases in some cases[1][6]. In this case it resulted in slower
scaling performance though, as explained in the ThreadPoolExector

implementation (Section 4.2.2). When using this approach with the
ThreadPoolExector it is possible to continuously feed the threads with
work as they run, without the tasks having to wait in a queue.

Safety and programming effort
To implement the matrix multiplication using the ForkJoinPool of the
fork/join framework is very straight forward, especially if the program-

44 CHALMERS, Master Thesis 2010

mer is used to implement recursive algorithms. All problems are divided
in the same way by using a threshold value which defines how many in-
dexes are computed per task. This is easy with the fork/join framework by
simply letting a task class extend the RecursiveAction class and override
the compute method. It is for example easy to know when all computations
are done by the ForkJoinPool worker threads by simply waiting for the
first submitted task (by calling the Future.get() method of the submitted
tasks future, see 2.2.3) since it recursively waits for all subtasks. This could
be done with the ThreadPoolExector as well because the matrix multipli-
cation does not have the join part of the fork/join approach, i.e. tasks do
not wait for subtasks to join their results. This means that there is no risk of
thread deadlock starvation if the tasks are submitted using an asynchronous
method like ThreadPoolExector.submit, when using this recursive ap-
proach. If there are such dependencies the ThreadPoolExecutor must be
carefully configured so there is no risk of all threads waiting forever when
there are no more available threads in the pool. The ForkJoinPool does
not have this risk at all since it is designed for tasks that wait for subtasks
[8] but in this example some of its design advantage is lost since this is not
a pure divide-and-conquer problem.

The CyclicBarrier approach is not very flexible and requires the
most effort to implement since all worker threads have to be created and
started with runnable tasks. It is normally safer and more flexible to let a
framework handle the threads life cycles.

Conclusion
All the implementations show equal performance and scalability. It should
be noted though, that if repeated computations where to be made, the ex-
ecutors and fork/join frameworks, in theory, will show much better over-
all performance then the CyclicBarrier. This advantage comes from the
fact that, the frameworks have thread pools that can be kept alive between
the computations, while the CyclicBarrier needs to restart all its threads,
causing more overhead.

The safest and easiest implementation is done by using either; the
ForkJoinPool and the RecuriveTask of the fork/join framework or the
ThreadPoolExecutor with a standard FIFO queue, of the executors frame-
work. The fork/join framework has some advantage due to the work steal-
ing. The ThreadPoolExecutor approach has the advantage of being more
flexible, with its queue implementation being exchangeable. This prob-
lem is not a divide-and-conquer problem, it lacks the specific join part of the
fork/join design, and that causes it to lose some of the advantages when

45 CHALMERS, Master Thesis 2010

using the fork/join framework to solve it.

4.3 Minimum Spanning Tree

To test a not so straight forward parallelization problem, that can be tried
out with different parallelization techniques, an implementation of Prim’s
algorithm has been tested. Prim’s algorithm finds the minimum spanning
tree in a weighted graph. A minimum spanning tree (MST) is a sub graph of
a graph with the following properties: It is a tree, contains all nodes in the
graph and has the minimal sum of edges. There can be several spanning
trees in a graph (a sub graph that is a tree and contains all nodes) and there
can be several minimum spanning trees in a graph. The two most common
and well known algorithms for finding a MST in a graph are called Kruskal’s
algorithm and Prim’s algorithm. In this example Prim’s algorithm has been
used because it is very well suited for concurrency [2].

With the MST algorithm, the performance of the
java.util.concurrent.ConcurrentLinkedQueue and the Collec-

tions.synchronizedList have been compared and evaluated, also an
implementation with a synchronized block instead of a synchronizing
collection has been tested. The difference between these collections is that
the ConcurrentLinkedQueue is implemented with a non-blocking algorithm
for synchronization[21], while the other two (synchronizedList and
implementation with synchronized block) uses course grained locking for
synchronization, that locks the entire collection on any access. When many
threads attempt to access the course grained locking collections, at the same
time, only one gets through and the others have to wait. This should cause
bad throughput when contention of the collection is high. The non-blocking
technique, on the other hand, should allow for better throughput, since
many threads can access the collection at the same time.

Prim’s algorithm works in three steps. As an initialization it picks a
node to start from then the following three steps are iterated:

1. Find the node that is closest to the current node.

2. When the closest has been found, the edge from the current node to
this closest node is saved in a result list.

3. Mark the found node as used. Go back to 1. and continue until all

46 CHALMERS, Master Thesis 2010

nodes have been visited.

A sequential Java implementation is listed in listing 10.

public void prims () {
i n t i , j , k = 0 ;
i n t [] nearNode = new i n t [N] ;
f l o a t [] minDist = new f l o a t [N] ;
f l o a t min = 0 ;

/ / Save t h e d i s t a n c e t o a l l o t h e r nodes from node 0 as i n i t
minDist = Arrays . copyOfRange (weightMatrix [0] , 0 , weightMatrix .

length) ;

/ / Find a l l e d g e s in t h e p a r t i a l t r e e , N−1 e d g e s in t r e e
for (i = 0 ; i < N−1; i ++) {

/ / S t ep 1 .
/ / Find t h e s h o r t e s t edge from node nearNode [k]
/ / t o any o t h e r node and s a v e i t in k
min = I n t e g e r .MAX VALUE;
for (j = 1 ; j < N; j ++) {

i f (0 < minDist [j] && minDist [j] < min) {
min = minDist [j] ;

k = j ;
}

}

/ / S t ep 2 .
/ / C l o s e s t node i s s a v e d in r e s u l t a r r a y
T [i] [0] = nearNode [k] ; / / From
T [i] [1] = k ; / / To
minDist [k] = −1; / / So i t won ’ t be t a k e n a g a i n

/ / S t ep 3 .
/ / Check i f t h e nex t n e a r e s t node i s on t h e new node
/ / E l s e j u s t k e e p go ing on t h e c u r r e n t one
for (j = 1 ; j < N; j ++) {

i f (weightMatrix [j] [k] < minDist [j]) {
minDist [j] = weightMatrix [j] [k] ;
nearNode [j] = k ;

}
}

}
}

Listing 10: Sequential Implementation of Prim’s algorithm

Prim’s algorithm might at first glance not be very straight forward to
parallelize. The main loop can not be run concurrently since when a min-

47 CHALMERS, Master Thesis 2010

imal distance to a node has been found it must be entered into the partial
tree in a sequence, because that is what the partial tree contains, a sequence
of edges. So, the content of the main loop must be parallelized instead
of the whole loop somehow. Looking at Step 1 and the first loop inside
the main loop, one can observe that the loop only writes values to the min

variable and the k variable. This makes the loop possible to parallelize by
dividing the loop into intervals and either synchronizing on the min and
k element, or when done, having some kind of join operation on the sub-
parts to obtain the correct value of min and k. Step 2 can not be parallelized
as mentioned before because here the result is saved in a partial tree and
the partial tree contains a sequence of edges in the graph which makes up
the minimum spanning tree. After looking at the loop in Step 3, one soon
realizes that each iteration of the loop is completely independent, so it can
be divided into subtasks very easily. In this case no tests are needed to de-
cide how many sub tasks the iterations will be divided into. The optimal
solution is always when there are as many threads as processor cores since
there is no waiting in the threads and the application will deadlock if there
are more tasks than threads.

Four different methods have been implemented to test different Java
concurrent utilities. The different implementations are constructed to test
how the various lists and queue implementations, that uses two main dif-
ferent synchronization techniques, affects the execution time of the algo-
rithm. Only the ThreadPoolExecutor from the executors framework has
been used in the various methods. Previous implementation also used
the fork/join framework, but Prim’s algorithm is not a divide and con-
quer style algorithm, which is what fork/join framework is designed for.
And since the main goal with this implementation is to test various syn-
chronization techniques, the fork/join framework has been omitted in this
case. The different methods are:

• Sequential approach where no concurrency exists, called PrimsSe-

quential.

• ThreadPoolExecutor with ConcurrentLinkedQueue approach, called
PrimsThreadPool.

• ThreadPoolExecutor with SynchronizedList approach, called
PrimsThreadPoolCollection.

• Using an unsynchronized collection and a synchronized block in
each loop iteration, called ThreadPoolSync.

48 CHALMERS, Master Thesis 2010

4.3.1 ThreadPoolExecutor Implementation with Concur-
rentLinkedQueue

The implementation with the ConcurrentLinkedQueue has the main differ-
ence from the sequential implementation that the loops in Step 1 and Step
3 from listing 10 are divided among several subtasks. The code for the first
loop can be viewed in listing 11. The result of each subtask is saved in the
results list and then the results of the subtasks are joined in a join opera-
tion that iterates over the results of the subtasks and compiles a result.

/ / S t ep 1
ConcurrentLinkedQueue<MinFinder> r e s u l t s = new

ConcurrentLinkedQueue<MinFinder >() ;
/ / Find a l l e d g e s in t h e p a r t i a l t r e e
for (i = 0 ; i < N−1; i ++) {

/ / Find t h e s h o r t e s t edge from node nearNode [k] t o any o t h e r
node and s a v e i t in k

r e s u l t s . c l e a r () ;
l a t c h = new CountDownLatch (nrTasks) ;
i n t index = 1 ;
for (i n t i i = 0 ; i i < nrTasks ; i i ++) {

MinFinder mf ;
i f (i i == nrTasks − 1)

mf = new graphalgorithms . PrimsThreadPool . MinFinder (index ,
index + s i z e O f I t r + r e s t) ;

e lse
mf = new graphalgorithms . PrimsThreadPool . MinFinder (index ,

index + s i z e O f I t r) ;

threadPool . submit (mf) ;
r e s u l t s . add (mf) ;

index += s i z e O f I t r + 1 ;
}
k = j o i n (r e s u l t s) ;

.

.

.

Listing 11: Step 1 in the loop of the ThreadPoolExecutor with
ConcurrentLinkedQueue implementation of Prims’s Algorithm.

For each iteration of the inner loop an object MinFinder is created. Min-
Finder calculates the minimum distance from the current node in the graph
to the nodes in a range between the indices provided in the constructor
when the MinFinder is created. So, for each subtask the minimum distance
is found and then the total minimum distance is found by iterating over the
results from the subtasks. Step 2 still can not be parallelized since that is

49 CHALMERS, Master Thesis 2010

where the result is saved in the sequential minimum spanning tree. Step 3
can be parallelized in the same way as Step 1, but without a join operation
since the results of each iteration is completely independent of each other.
Step 3 will look like in listing 12.

l a t c h = new CountDownLatch (nrTasks) ;
index = 1 ;
for (i n t i i = 0 ; i i < nrTasks ; i i ++) {

NodeUpdater updater ;
i f (i i == nrTasks − 1)

updater = new NodeUpdater (index , index + s i z e O f I t r + r e s t , k
) ;

e lse
updater = new NodeUpdater (index , index + s i z e O f I t r , k) ;

threadPool . submit (updater) ;
index += s i z e O f I t r + 1 ;

}

t r y {
l a t c h . await () ;

} catch (InterruptedExcept ion ex) {
ex . p r i n t S t a c k T r a c e () ;

}

Listing 12: Step 3 in Prim’s concurrent version

As can be viewed in listing 12 there is no need to join the results, so
another class called NodeUpdater takes care of the update and then finishes.

4.3.2 ThreadPoolExecutor Implementation with SynchronizedList

The ThreadPoolExecutor implementation with SynchronizedList is ex-
actly the same as in Section 4.3.1 except it uses a SynchronizedList instead
of a ConcurrentLinkedQueue.

4.3.3 ThreadPoolExecutor Implementation with Synchronization Block

The ThreadPoolExecutor implementation with the synchronized block
does not need a join operation in Step 1, but instead all the subtasks
synchronize when updating the minimum distance to the next node. This
is achieved with a synchronized block that can be viewed in listing 13.

i f (0 < minDist [j] && minDist [j] < min) {
synchronized (minLock) {

i f (0 < minDist [j] && minDist [j] < min) {
min = (i n t) minDist [j] ;

50 CHALMERS, Master Thesis 2010

minIndex = j ;
}

}
}

Listing 13: Synchronized block used in Prims’s Algorithm.

However, the synchronization is not necessary to perform every time,
since it is only needed when the value is supposed to be updated. That
is why there are two if clauses doing the same thing. Instead of the join
operation in the collection implementations a synchronization is performed
in the MinFinder implementation.

4.3.4 Comparison

The ThreadPoolExecutor implementations with the SynchronizedList

and with the ConcurrentLinkedQueue have almost the same performance
if looking at the graphs in Figure 10 and Figure 11. Even though it is not
visible from the graphs, on average, the ConcurrentLinkedQueue is a few
milliseconds faster than the SynchronizedList on 8 cores with hyper-
threading, and a little bit slower on the dual core machine. However, for
this particular application it seems that the two perform about the same.
The paper that the ConcurrentLinkedQueue is based on says that for more
than 2 threads and a lot of concurrent access to the queue it is a lot more
effective than a synchronized version [7]. On the dual core machine there
are exactly two threads accessing the queue, and looking at the test, it can
be seen that the SynchronizedList is slightly faster. On the 8 core machine
with hyper-threading the ConcurrentLinkedQueue is a bit faster but not a
lot. That is because each thread only accesses the queue once, so there is
not a lot of concurrent access to it.

Scalability
The scalability for Prim’s algorithm is quite good. Looking at the graphs
it can be observed that the performance of the concurrent algorithms com-
pared to the sequential is significantly increased when running on an 8
core machine with hyper-threading compared to running on a dual core
machine. On the 8 core machine with multi-threading the increase in per-
formance is roughly 2.4 and on the dual core it is roughly 1.3.

For an increase in threads and computational size, the ThreadPoolEx-

ecutor with ConcurrentLinkedQueue is the best choice, because it scales
best for more concurrent access [7].

The Implementation with synchronized blocks is, as can be viewed

51 CHALMERS, Master Thesis 2010

Figure 10: Comparison of Sequential, ConcurrentLinkedQueue, SynchronizedList
and Synchronized block on a dual core machine.

in Figure 10 and in Figure 11, a bit slower on the dual core machine
and a lot slower on the 8 core machine with multi-threading. This is
due to the amount of synchronizations needed. With more threads and
bigger computations more synchronizations are needed and therefore the
synchronized implementation does not scale very well. So, in the sense of
scalability it is the worst choice.

Memory
As for memory usage, the implementation with ThreadPoolExecutor

requires a queue, but since the number of tasks are as many as the number
of threads, and the thread count is low, this is not an issue. The two
ThreadPoolExecutor implementations also save the result of each subtask
in a ConcurrentLinkedQueue or a SynchronizedList. These two take up
roughly the same amount of space and the maximum size of these are

52 CHALMERS, Master Thesis 2010

Figure 11: Comparison of Sequential, ConcurrentLinkedQueue, SynchronizedList
and Synchronized block on an 8 core machine with hyper-threading.

as big as the number of nodes in the graph. So when calculations on big
graphs are performed, a lot of additional memory is needed, compared to
the sequential version and the version using synchronized blocks.

Programming Effort and Safety
Even though parallelizing Prim’s algorithms is not as straight forward as
for example the merge sort in 4.1 it is not very hard to do. The different
concurrent implementations both have their pros and cons. The imple-
mentations with the ConcurrentLinkedQueue and SynchronizedList

have the downside that they must perform a join operation, but still that
is not much of a safety issue and is not very hard to implement. The
collections handle all the thread safety which is a very good thing for the
developer. The synchronized block on the other hand can be hard to get
right. Even though it is not much data that need to be synchronized it

53 CHALMERS, Master Thesis 2010

is easy to implement it the wrong way and end up with race-conditions.
The best thread safety is achieved when the programmer does not need to
implement thread-safety manually.

Conclusion
As a conclusion it can be stated that a MST implementation is not the
ultimate test for comparing a ConcurrentLinkedQueue and a Synchro-

nizedList, but it most certainly is a very good algorithm to parallelize.
The difference in execution time between the ConcurrentLinkedQueue

and the SynchronizedList is very small. As for safety it is always good
to use the concurrent version in a concurrent environment, but if one has
a complete system, this test shows that it is not always feasible to change
an entire system because of the low performance gain compared to the
synchronized version.

4.4 Producer/Consumer based Graph Viewer

The primary purpose of this implementation is to compare some different
collections, available in Java, by using them as a queue that is concurrently
accessed by threads both reading and writing to it. The secondary pur-
pose is to investigate the Producer/Consumer and Java Monitor —patterns, as
well as using atomic operations through the AtomicLong class. This is done
by implementing a Producer/Consumer based application that dynamically
updates a graph, which is displayed on a JFrame window.

The producers perform calculations and submit data to the shared
queue, which is read by the consumers who fetch the data and display it
to the JFrame window, in the form of a graph. The queue implementation
is based on an interface, so the differences in the queue implementations
are invisible for the producers and consumers. The interface has methods
for adding and getting an object to and from the display list, i.e. the shared
queue, which is processed by the consumers for values to display on the
graph. The interface can be seen in listing 14, where the getDisplayOb-

ject() method should block. Both the producers and consumers share
an instance of an IDisplayList implementation. Various implementations
can then handle the actual queuing of work in different ways.
public i n t e r f a c e I D i s p l a y L i s t<E>{

E getDisplayObjec t () ;
void addDisplayObject (E ob j) ;

}
Listing 14: Display queue interface

54 CHALMERS, Master Thesis 2010

The IDisplayList interface has been implemented using two different
collections as the underlying work queue implementation:

• Standard non thread safe LinkedList, needs to be manually synchro-
nized and handle any blocking if the queue is empty.

• A LinkedBlockingQueue, from the concurrency package, supporting
access from several threads as well as blocking if the queue is empty.

To keep track of the amount of tasks processed by the producer and con-
sumer instances, an AtomicLong, which is declared as final (to guarantee
visibility, see Section 2.6.1 about general design) is used. When sharing a
final instance of an atomic number between threads it can be used atom-
ically and count common operations without any extra synchronization,
this would not be safe when using an int and the ++ operation. To gen-
erate random work in the producer threads the ThreadLocalRandom class
is used to minimize overhead and contention between the worker threads
when generating random numbers.

A simple example, showing the idea of this design, is shown in listing
15. In this listing, the queue implementation is shared between producers
and consumers tasks. For this design to be thread safe, the implementa-
tion o f the IDisplayList interface must guarantee thread safety. An ar-
bitrary number of producer and consumer tasks can then be run safely in
several threads. The AtomicLong.incrementAndGet() operation prevents
ans, regarding the work statistics, when several threads are producing or
consuming work concurrently.

/ / * P r o d u c e r s and Consumers t h a t s h a r e a work queue *

c l a s s GraphProducer implements Runnable{
private f i n a l I D i s p l a y L i s t<Work> queue = . . . ;
private f i n a l AtomicLong workProduced = . . . ;

public void run () {
while (t rue) {

queue . addDisplayObject (new Work ()) ;
workProduced . incrementAndGet ()

}
}

}
. . .
c l a s s GraphConsumer implements Runnable{

private f i n a l I D i s p l a y L i s t<Work> queue = . . . ;
private f i n a l AtomicLong workConsumed = . . . ;

55 CHALMERS, Master Thesis 2010

f i n a l public void run () {
while (t rue) {

Work producedWork = queue . getDisplayObjec t () ;
showOnGraph (producedWork) ;
workConsumed . incrementAndGet () ;

}
}

}
Listing 15: Display queue interface

In the following subsections the two different queue implementations
of the IDisplayList interface, used as seen in listing 15, are explained.
Note that the call, queue.getDisplayObject(), in the GraphConsumer

class, must block, otherwise there will be a busy waiting loop polling the
status of the queue. This is straight forward when using the LinkedBlock-

ingQueue as the underlying queue implementation, since it has a block-
ing operation that does not return until the queue is non-empty. The syn-

chonized LinkedList, on the other hand, does not have such a blocking
operation, so it must be implemented manually.

4.4.1 Synchonized LinkedList Implementation

As stated earlier, the implementation of the IDisplayList interface must
guarantee thread safety. When using a non thread safe LinkedList, as the
work queue implementation, this must be achieved manually in some way.
One way is to use the static method Collections.synchronizedList(new

LinkedList<V>()), which returns a wrapper around the linked list, where
all its methods are synchronized using a single lock, see Section 2.2.2 about
collections. This would solve the synchronization problem, but not the
blocking problem mentioned earlier. Since the queue could be empty for
a long period of time, the IDisplayList.getDisplayObject() method im-
plementation should block if the queue is empty, until a producers adds
work to the queue.

As the LinkedList has no blocking operations, all get operation return
immediately with either failure or success. To handle this, two simple ap-
proaches can be made:

• Poll the queue for new content added by the producers, until it is
updated.

• Sleep and check the queue status in regular intervals.

Both these approaches have major drawbacks. The first idea of polling
might lead to overuse of the CPU and the second approach might led

56 CHALMERS, Master Thesis 2010

to oversleeping and bad responsiveness. A better way is to use the Java
Monitor Pattern, to wait on an object and let any thread that modifies the
queue notify the waiting thread, which then immediately will be notified
of the queue modification. This has been implemented as seen in listing 16.
When using this method, the synchronized blocks must be added man-
ually, so the wrapper returned by Collections.synchronizedList(new

LinkedList<V>()) (which adds synchronized blocks internally) has not
been used. The IDisplayList.addDisplayObject implementation is syn-
chronized, adds the new object to the list, representing the work queue,
and then calls queue.notify(). If any consumer threads are waiting, in the
queue.wait(WAIT TIMEOUT) operation, since the queue was empty, it will
automatically be notified. The method queue.notifyAlll() could also be
used but it is not necessary in this example, since there is only one condi-
tion predicate(if the queue is empty) and only one thread can be notified at
a time (max one thread is first in line to use getDisplayObject()).

public void addDisplayObject (V obj) {
synchronized (queue) {

queue . add (ob j) ;
queue . n o t i f y () ;

}
}
. . .
public V getDisplayObjec t () {

synchronized (queue) {
/ / I f empty b l o c k f o r some t ime and wa i t f o r n o t i f i c a t i o n
i f (queue . isEmpty ()) {

t r y {
queue . wait (WAIT TIMEOUT) ;

} catch (InterruptedExcept ion . . .) { . . . }
}
/ / Check r e a s o n f o r queue . wa i t t o u n b l o c k
/ / Could be t i m e o u t or new queue c o n t e n t
i f (! queue . isEmpty ())

dispObj = queue . remove (queue . s i z e () − 1) ;
}

}

Listing 16: Implementation with synchronized list

4.4.2 LinkedBlockingQueue Implementation

The LinkedBlockingQueue use sophisticated internal fine grained locking
which should give it better concurrent performance than the synchronized
LinkedList, since it allows several threads to access the list at the same

57 CHALMERS, Master Thesis 2010

time. The synchronized LinkedList was implemented with a single lock
for the entire collection, or course grained locking, meaning that only
one thread can access it at any given time.

With the LinkedBlockingQueue it is possible to block when the queue
is empty, allowing for good responsiveness when the queue is modified,
without directly using the Java Monitor Pattern. This is very helpful since,
as noted in Section 2.6.2, it is not recommend to implement the Java Monitor
Pattern directly, as done in the previous section, due to the safety risks. This
approach makes the implementation of the IDisplayList interface very
simple and safe, as seen in listing 17.

public void addDisplayObject (V obj) {
public void addDisplayObject (V obj) {

queue . push (ob j) ;
}

}
. . .
public V getDisplayObjec t () {

V val = null ;
t r y {

val = queue . p o l l L a s t (TIMEO, TimeUnit . MILLISECONDS) ;
} catch (InterruptedExcept ion . . .) { . . . }
return val ;

}

Listing 17: Implementation with synchronized list

4.4.3 Comparison

The implementations are compared regarding scalability, programming
effort and safety.

Scalability
Initially not much performance could be gained when using the Linked-

BlockingQueue, even though many producers accessed the queue at the
same time as an equal amount of consumers accessed the other side of
the queue. The problem seems to be to that the contention of the shared
queue was not high enough for the LinkedBlockingQueue to show any big
concurrent improvements. It also seems that objects had to be allocated
at such a high rate that garbage collection and other factors made perfor-
mance advantage over the synchronized linked list impossible to notice.
But when minimizing object allocation and letting producer workers add
data to the shared queue at a very high rate the performance advantages
with the LinkedBlockingQueue became visible, as seen in Figure 12.

58 CHALMERS, Master Thesis 2010

Figure 12: Comparison of LinkedBlockingQueue and LinkedList on a 8 core ma-
chine with hyper-threading.

Due to the shared lock of all write and read operations when using the
synchronized LinkedList, it performs poorly when the list lock contention
increase. This can be seen in Figure 12 as the amount of processed work
can not keep up with the LinkedBlockingDeQue implementation.

Programming Effort and Safety
To use a LinkedList with the synchronized blocks or the Collec-

tions.synchronizedList(new LinkedList<V>()) together with no-

tify() and wait() methods is not recommended. It is much more error
prone and complicated to implement than simply using a blocking queue
from the java.util.concurrent package. Even more effort is required
to develop an implementation that has similar performance to the API
queues and is even more error prone. Therefore it is recommended to use
a queue implementation from the concurrent package.

Conclusion

59 CHALMERS, Master Thesis 2010

It was surprising how much tweaking was needed to see any real perfor-
mance gain from using the LinkedBlockingQueue. However, the safety
issues alone are argument enough to prefer it over the synchronized coun-
terpart and if using it correctly, it also performs better.

4.5 Experiment Results

The result of the experiment part is an overview of what methods, frame-
works, collections and other tools that are suited for which problems and
their pros and cons.

4.5.1 Performance and Scalability

Comparing the four implementations in Chapter 4, it can be seen that they
scale very differently. Some solutions are better for certain problem sizes,
some are better on more cores and some are better on fewer. A lot of the
problems scale well to a certain level, but some parts of a program just is not
concurrent.

• The merge part of the merge sort algorithm is not concurrent (Section
4.1).

• The step where a new edge is saved to the minimum spanning tree in
the minimum spanning tree algorithm is not concurrent (Section 4.3).

• The display of the graph in the graph viewer is not concurrent (Sec-
tion 4.4).

• The only algorithm that is completely concurrent is the matrix multi-
plication and that is a very specific problem (Section 4.2).

4.5.2 Fork/Join Framework and ThreadPoolExecutor

The fork/join library is very good for a specific type of problems: recursive divide
and conquer problems and in most other cases the ThreadPoolExecutor should
be used. The most important usage of the fork/join framework is to be able
to program secure divide and conquer algorithms with no risk of deadlock.
The merge sort algorithm in Section 4.1 scales very well with the fork/join
implementation, because algorithms like merge sort is exactly what the
fork/join library is designed for. However, due to the properties of the
merge sort algorithm the scalability is not linear. The matrix multiplication
is not a typical fork/join problem, the matrix multiplication does not join

60 CHALMERS, Master Thesis 2010

like the merge sort does and therefore it can be solved by different means
and still achieve about the same performance with the same programming
effort. Though, there is no loss in performance if using the fork/join ap-
proach with the matrix multiplication. The graph viewer in Section 4.4 is
not a suitable problem for the fork/join implementation and the minimum
spanning tree problem in Section 4.3 is not either, since they can not be
implemented efficiently as recursive algorithms.

4.5.3 Context Switching vs. Work Stealing

The graphs in Figure 6 and in Figure 5, pages 35 and 34, shows that
the ThreadPoolExecutor scales almost as good as the fork/join approach
when solving the merge sort algorithm. Here the work stealing is responsi-
ble for the advantage of the fork/join compared to the ThreadPoolExecu-

tor. The ThreadPoolExecutor uses context switching to balance calcula-
tions, which works on the platform used (8 cores with hyper-threading). If
the number of cores would increase the advantage of using the fork/join
and work stealing would be more visible, because the overhead of the con-
text switching would increase.

4.5.4 Memory

A downside with the fork/join library and other frameworks/methods
that use a lot of tasks has been discovered; they use a lot of memory. Since
a new object is allocated for every new task there can be several thousand
new objects created while running the calculation. The memory consump-
tion can however be kept down by not creating more tasks than needed.

4.5.5 Collections

In the implementations of Prim’s algorithm (Section 4.3) and in the graph
viewer (Section 4.4) different collections have been researched and tested.
How good the collections scale varies a lot from application to application.
It is of course in every case recommended to use the concurrent implemen-
tations of all collections since they are developed to be concurrent while the
synchronized collections are developed to be thread-safe.

Prim’s algorithm implementation shows almost no difference at all
between concurrent and synchronized collections, only a few milliseconds.
The graph viewer showed significant improvements with the concurrent
collection case, but only after a lot of tweaking. It was tweaked to keep

61 CHALMERS, Master Thesis 2010

object allocation down so that the queue could be accessed often enough
to show the benefits of the concurrent collection. The result from these
tests addresses the issue with the concurrent collections and when they are
actually needed. They are in many cases more secure but if there are not a
lot of threads accessing a collection, refactoring an entire system too change
their collections to concurrent ones is not worthwhile. However when
designing a new system the concurrent versions are always preferable.

Collections like ConcurrentHashMap is very useful, but some operations
like the size operation is slower than in the synchronized counterpart and
the values returned is not guaranteed to be up to date. The concurrent col-
lections might not always outperform the synchronized collections as much
as expected as seen in implementations of producer-consumer graph viewer
and Prim’s algorithm. There are other issues with the synchronized collec-
tions, the individual operations are thread safe but that does not mean that
compound operations are safe (for example iterating over a synchronized
collection) and the programmer can not stop caring about concurrency. A
full list of concurrent and synchronized collections and further explana-
tions can be seen under Section 2.2.2.

4.5.6 Atomic Variables

When sharing a counter or using primitive operations that need to be syn-
chronized an atomic variable like AtomicLong can be used. This has been
implemented and tested in the producer-consumer implementation in Sec-
tion 4.4, it is also used in the fork/join framework to keep track of the
amount of work stolen between threads. It allows for basic increment
and compare and get operations in a single instruction, which for exam-
ple means that several threads with a shared up to date reference of such a
class safely can increment it with minimal performance loss.

5 Threat Evaluation and Weapons Allocation Compo-
nent

The Giraffe AMB software system consists of several software components
that are responsible for different parts of the system. Threat Evaluation and
Weapons Allocation (TEWA) is a component that handles threat evaluation
of air units, weapons allocation and bookkeeping of designations in the
system. The TEWA algorithm will periodically retrieve data of the local air

62 CHALMERS, Master Thesis 2010

picture and data about available firing units and defended assets. A threat
picture is created and then it is used to calculate an optimized engagement
plan. The result of the calculations will be presented to an operator, so en-
gagements may be initiated. The algorithm can also be instructed to select
engagements automatically. When an engagement between an air unit and
a firing unit has been chosen, either by the operator or automatically by
the TEWA algorithm, the firing unit and air unit is put in an engagement
and sent to the rest of the system. The TEWA algorithm can manage firing
control over locally connected firing units, including hold and cease fire
commands. The TEWA algorithm also calculates the availability of firing
units based on their reported status. The result of the algorithm can be
viewed in Figure 13 where the red lines represent an engagement between
a firing unit and an air unit.

Radar Sensor

Firing Unit

Hostile Air Unit

Figure 13: A scenario from the simulation of the TEWA system. The light blue
firing units are engaged to the red hostile airplanes, this is visualized
with the red lines.

The TEWA algorithm is performed in four steps:

• First, all information is updated. All air units are gathered from other
components in the system and the status and availability of all firing
units and defended assets are updated.

63 CHALMERS, Master Thesis 2010

• Second, a protection of friends step is performed. It makes sure that
a hostile engagement or command is not put on an air unit that is a
friend.

• Third, a threat evaluation is performed based on the defended assets
and air units.

• Fourth, a suggestion of how weapons would be assigned in a possi-
ble counter attack is proposed, or the TEWA algorithm automatically
assigns firing units to air units.

Communication with other parts of the system is handled through Common
Object Request Broker Architecture (CORBA). The CORBA approach enables
the possibility for other components in the system to communicate with the
TEWA component at any time throughout execution. To be able to answer
requests and perform actions right away several threads are continuously
running, and are ready to process the request as soon as another compo-
nent tries to communicate with the TEWA component. This means that at
any time a thread can receive an event that may modify internal data struc-
tures. For example a hold fire command on an air unit can be received
while allocating weapons and suddenly a certain air unit must be excluded
from the weapons allocation.

5.1 Sequential Implementation

The currently used implementation of the TEWA in the Giraffe AMB is se-
quential. To handle direct manipulation of internal data structures from
several CORBA threads, all access to internal data structures have been
synchronized using the synchronized keyword. The synchronization is
performed in several layers to make sure that the access to data structures
will not be done concurrently.

5.1.1 Problem

To gain linear performance increase when the number of processor cores
increases every part of a system must be made concurrent. In the sequen-
tial version of TEWA the only concurrent parts are the CORBA threads. In
this case they are not performance intense at all which implies that when
the number of processor cores increase, the performance of the TEWA re-
mains constant. To keep the data structures from being corrupted by sev-
eral threads reading and writing the same data, synchronization in several
layers has been performed. Since the sequential TEWA implementation has

64 CHALMERS, Master Thesis 2010

several authors and has been rewritten a few times, a lot of the synchro-
nization done is unnecessary and the effect is a huge overhead time for
unnecessary synchronization. In conclusion the two main problems with
this implementation are that it does not scale to a multi-core system and
it has a lot of unnecessary synchronization to protect the data from being
corrupted by CORBA threads.

5.2 Parallelization

To resolve the issues with the sequential TEWA implementation a concur-
rent solution has been developed in this thesis. The concurrent solution
resolves the problems by running the most performance critical parts of
the system concurrently, removing all old and unnecessary synchroniza-
tion and by handling the CORBA threads in a separate event handler.

5.2.1 Method

The parallelization of the TEWA component has been preformed with the
intention of making the locking of the code more fine grained than before.
That means moving high level locks to an as low level as possible and to
use the tools from the Java concurrency library when-ever needed. The
more fine grained the locking is in the implementation, the better it scales
to a multi-core system. In a sense, contradictory, very high level locking
has been introduced as well; but this only intended to prevent unimportant
events from slowing down the critical main execution, by exposing low
level locks to unnecessary lock-contention. Such events could also be
dangerous for any algorithms that require that specific data-structures
are not updated at certain times, more about that in Chapter 6. The
parallelization has been preformed in a few steps: static analysis, software
profiling, thread profiling, debugging, library development and implementation.

Static Analysis
The static analysis has been performed by generating call graphs and
UML diagrams with the applications doxygen and Graphviz, these are also
discussed in Section 3.2. The call graphs and UML diagrams have been
very valuable when investigating where synchronization is needed and
where it is unnecessary. They can be used to learn which functions modify
which data structures and which functions are called from several threads.
The result of a completed static analysis may result in code that has no
unnecessary synchronization and no unused code, it is also a good way to

65 CHALMERS, Master Thesis 2010

review the code in general and a lot of bugs can be found this way.

Software Profiling
To find the most performance critical sections of the code, a software pro-
filer called Visual VM has been used, for more information see 3.2. Visual
VM was run locally on a dual core machine in a simulation environment.
After the profiling had been preformed the most invoked methods and
most performance intense parts, with a high percentage self time, of the
software was found to be, as excepted, in loops. The two most performance
intense steps of the TEWA algorithm were found to be the threat evaluation
and the weapons allocation step, which are the third and forth steps of the
main loop. In the threat evaluation it was the loop that iterates over all
defended assets for each air unit to determine a threat value for each air
unit. The most CPU was used by the weapons allocation, more specifically
the part that calculates which weapons to assign to what air unit.

Thread Profiling
Before removing the old means of synchronization the software was
profiled. The profiling was run with the CPU intensive loops parallelized,
running the loops on 16 concurrent threads. This was done to determine
how much better the new modern synchronization techniques are in
comparison to the old synchronization. Thread profiling was also done
after the implementation of the new synchronization to assure that the
threads do not use unnecessary locks.

Debugging
To determine the exact behavior of an application can be hard, especially
in this case, where running CORBA threads can invoke methods that
modify data structures at any time. To find out how these CORBA threads
behave we have used the debugger included with Eclipse IDE. It was run
on the actual simulation system for the Giraffe AMB software. This made it
possible to test the behavior of all the methods that are invoked remotely
by other components. When each methods behavior was decided, they
were all classified into different type of events, more on how they are
classified can be found in Section 6.2.

Framework Development
Based on the result from the profiling, most of the execution time was
spent in loops computing performance critical tasks, so functionality to
handle loop concurrency was developed. The CORBA threads must be

66 CHALMERS, Master Thesis 2010

handled somehow, this is achieved by separating them from the rest of the
application and handling them in a more controlled manner. We realized
that whenever a CORBA thread received an event the internal state of
the TEWA component could be changed, so functionality to handle the
different CORBA threads and their events were developed. This soon
evolved into a framework that we call CELP, for more information see
Chapter 6.

Implementation Method
The implementation and parallelization of the system was performed in
several steps.

• Exchange all concurrently accessed collections with new modern col-
lection from the concurrent package.

• Exchange all concurrently accessed primitive types with their equiv-
alent atomic wrappers.

• Parallelize the most performance intense loops with the CELP frame-
work.

• Move all the CORBA thread handling by creating events (by extend-
ing celp.Event<E>), which are then added to the internal Even-

tHandler in the CriticalTaskExecutor from the CELP framework.

• Prioritize all the different events received in the CORBA threads.

• Identify critical tasks.

• Remove all old synchronization with the synchronized keyword.

• Identify code that can use the fork/join framework and parallelize
that code.

5.2.2 Exchanging Collections

The first step was to exchange all the collections that can be accessed
concurrently with their concurrent counterpart and remove the old
synchronization. All the get and set operations have the exact same
behavior as before but the iterations over the collections vary a bit. As
described in Section 2.2.2 the concurrent collections do not guarantee to
mirror all the updates done to the collection immediately while iterating
over it. After carefully examine the old code we found that this was not

67 CHALMERS, Master Thesis 2010

an issue since none of the collections that were iterated could gain or
loose elements during an iteration. The collections we have used are:
ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArrayList,
LinkedBlockingQueue and PriorityBlockingQueue. We will here address
the ones that are used the most, for more information on the other collec-
tions, see Section 2.2.2.

ConcurrentHashMap
The most valuable collection has been the ConcurrentHashMap, since
functionality that took many lines of code in the old implementation, to
achieve thread safety only takes one line with the ConcurrentHashMap. An
example of how the ConcurrentHashMap has replaced the non thread-safe
HashMap can be viewed in listing 18 and in listing 19. In the old TEWA
component there was a higher level lock that locked the function in
listing 18 but since we want to move the locking dependency from the
programmer to the internal collections, that locking needed to be removed
in the concurrent version. A higher level lock also decreases the lock
granularity and has the effect that only one thread at a time can run the
method. Listing 18 is not thread safe on its own so it needed to be changed,
this was achieved by exchanging the HashMap by ConcurrentHashMap and
some minor changes in the implementation.

private f i n a l Map<Short , Integer> overk i l lCount =
new HashMap<Short , Integer >() ;

public i n t getOverki l lCount (short atTn) {
i f (atTn == 0)

return 0 ;
I n t e g e r i = overk i l lCount . get (atTn) ;
i f (i == null)

return 0 ;
return i ;

}

public void increaseOverki l lCount (short atTn) {
i f (atTn != 0) {

i n t i = getOverki l lCount (atTn) ;
overk i l lCount . put (atTn , i + 1) ;

}
}
Listing 18: HashMap used in the old sequential TEWA. This function increases a

variable called overKillCount it contains information about how many
firing units that are assigned to a certain air unit.

68 CHALMERS, Master Thesis 2010

The difference between the two implementations is the putIfAbsent

method, which is available in the ConcurrentHashMap, and the use of
AtomicInteger instead of Short. putIfAbsent is atomic which means
that only one thread can execute it at a time, it returns the old value if
a previous mapping for the current key atTn was found, otherwise it
returns null. Since the inserted AtomicInteger is one by default it will be
incremented to a correct value if putIfAbsent is called by a second thread,
where putIfAbsent returns that AtoimicInteger resulting in the statement
if(oldKillCount != null) being true. Because it is atomic, the reference
returned can be guaranteed to be valid. The returned AtomicInteger is
an atomic wrapper for an integer which means that only one thread can
update it at a time, so the increment function is always valid. The old
implementation does not use atomic variables and therefore they can not
guarantee that the value is correctly updated if several threads are running
the function concurrently.

private f i n a l ConcurrentHashMap< . . .> o v e r k i l l C o u n t s =
new ConcurrentHashMap<Short , AtomicInteger >() ;

/ * *
* I n c r e a s e t h e o v e r k i l l count t h r e a d s a f e .

* @param atTn

* /
public void increaseOverki l lCount (short atTn) {

i f (atTn != 0) {
AtomicInteger overki l lCount = new AtomicInteger (1) ;
AtomicInteger oldKil lCount =

o v e r k i l l C o u n t s . putIfAbsent (atTn , overki l lCount) ;
i f (oldKil lCount != null)

oldKil lCount . incrementAndGet () ;
}

}

Listing 19: ConcurrentHashMap used in the TEWA parallelization. This function
increases a variable called overKillCount it contains information
about how many firing units that are assigned to a certain air unit.

CopyOnWriteArrayList
Another valuable collection is the CopyOnWriteArrayList which is very
useful when using a collection that has a lot of reads and only a few writes,
for more information see Section 2.2.2. During the weapons allocation step
in the TEWA a value that prioritizes the different engagements between
a firing unit and an air unit is calculated. In the old implementation
this value is calculated in two nested loops sequentially, these loops are

69 CHALMERS, Master Thesis 2010

illustrated in listing 21. To be able to do it concurrently the loops have been
substituted for a concurrent loop from the CELP framework. In listing
20, the compute(Integer loopIndex) is run as many times as the nested
loops in listing 21, numberOfFiringUnits * numberOfAirUnits times. Each
iteration gets a value from the CopyOnWriteArrayList with firing units
and one from the CopyOnWriteArrayList containing the air units. Usually
no removals or additions to the collections are performed, but they may
occur. This makes the handling optimal for the CopyOnWriteArrayList,
see listing 20. This is not possible with a regular list implementation like
LinkedList since it is not thread safe, and the ConcurrentModifica-

tionException can be thrown.

@Override
public void compute (I n t e g e r loopIndex) {

/ / Get t h e two i n d i c e s f o r c u r r e n t Ai rTrack and c u r r e n t
F i r i n g U n i t from t h e l o o p i n d e x

/ / which g o e s o v e r a l l i n d e x e s .
i n t airTrackIndex = loopIndex / nrOfFir ingUnits ;
i n t f i r i n g U n i t I n d e x = loopIndex % nrOfFir ingUnits ;

CopyOnWriteArrayList<AirTrack> a t s ;
CopyOnWriteArrayList<Fir ingUnit> f u s ;

AirTrack at = a t s . get (a irTrackIndex) ;
F i r ingUni t fu = f u s . get (f i r i n g U n i t I n d e x) ;
.
.
.

Listing 20: Used to calculate a constant that determines the priorities between an
air unit and a firing unit. New thread safe implementation using the
CELP framework.

LinkedList<AirTrack> a t s ;
LinkedList<Fir ingUnit> f u s ;

for (AirTrack a t : a t s)
for (F i r ingUni t fu : f u s)

.

.

.

Listing 21: Two nested loops used to calculate a constant that determines the
priorities between an air unit and a firing unit. Old non thread safe
implementation.

70 CHALMERS, Master Thesis 2010

5.2.3 Exchanging Primitive Types for Atomic Wrappers

Instead of using synchronized blocks when updating primitive types,
atomic variables can be used, see Section 2.2.3 for more information.
All operations on atomic variables are executed in a single instruction
and therefore require no locking. This can be very useful for example in
concurrent loops with a shared counter, or when a class need to be updated
concurrently and contains a shared variable, or when running a concurrent
loop on a shared condition. An example how this has been used in the
parallelization can be viewed in listing 22, the previous non-atomic version
can be viewed in listing 23. It is an example from one of the containers in
the TEWA that hold information on at what time the container was last
updated. If several threads are updating the container at the same time,
the access to that variable need to be thread safe and that is why using an
atomic variable is a good approach.

private f i n a l AtomicLong las tUpdate = new AtomicLong (0) ;
. . .
public boolean addDesignation (DesignationData designationData ,

T Designation Command command,
T Engagement Status s ta tus ,
DesignationType type) {

. . .
l as tUpdate . s e t (System . currentTimeMil l i s ()) ;

}
Listing 22: When a container is updated the time need to be saved by the

application this is done in a local class variable. In the concurrent
implementation that variable is atomic and therefore thread safe.

private f i n a l long las tUpdate = 0 ;
. . .
public boolean addDesignation (DesignationData designationData ,

T Designation Command command,
T Engagement Status s ta tus ,
DesignationType type) {

. . .
synchronized (d e s i g n a t i o n s) {

las tUpdate = System . currentTimeMil l i s () ;
}

}
Listing 23: When a container is updated the time need to be saved by the

application this is done in a local class variable. In the old
implementation the variable was a primitive type and therefore had
to be synchronized.

71 CHALMERS, Master Thesis 2010

5.2.4 Parallelizing Loops

The three most performance intense hot spots in the code are in three
loops. The first is in the main loop in the threat evaluation, the second is
in the main loop in the weapons allocation and the third is an optimize
function where all possible engagements between fire units and air units
are optimized. To parallelize the two first loops the CELP framework has
been used, for the last one the fork/join library from Java 7 has been used.

Threat Evaluation Loop
The first loop in the threat evaluation in its sequential form works as fol-
lows:

1. Collect all air tracks and Defended Assets.

2. Order calculation of threat values.

3. Send threat levels to the rest of the system.

The basic implementation looks like in listing 24. It basically calculates
the threat value for each air track based on all defended assets.

public void evaluate () {
/ / Air u n i t s
AirTrack [] atArr = a i r T r a c k s . getAirTracks () ;
/ / De fended a s s e t s
DefendedAsset [] defendedAssets =

defendedAssets . getDefendedAssets () ;
/ / C o l l e c t i o n t o s a v e t h r e a t v a l u e s in
Lis t<T Lap Threat Value Data> tvDataLis t =

new ArrayList<T Lap Threat Value Data >() ;

/ / I t e r a t e o v e r a l l a i r u n i t s
for (AirTrack a t : atArr) {

/ / C a l c u l a t e t h e t h r e a t v a l u e f o r t h e a i r u n i t
ThreatValue currentThreatValue =

evaluate (at , defendedAssets) ;
a t . setThreatValue (currentThreatValue) ;

/ / F i l t e r t h e t r e a t v a l u e
double currentThreat = currentThreatValue . getValue () ;
double f i l t e r e d T h r e a t = f i l t e r T h r e a t (a t) ;

/ / C a l c u l a t e t h e t h r e a t l e v e l
T Threat Level oldLevel = a t . getThreatLevel () . getLevel () ;
T Threat Level newLevel =

72 CHALMERS, Master Thesis 2010

t h r e a t L e v e l C a l c u l a t o r . c a l c u l a t e T h r e a t L e v e l (
f i l t e r e d T h r e a t , oldLevel

) ;

/ / C r e a t e t h r e a t l e v e l o b j e c t and s e t i t in t h e a i r u n i t
ThreatLevel t h r e a t L e v e l =

new ThreatLevel (f i l t e r e d T h r e a t , newLevel) ;
a t . se tThrea tLeve l (t h r e a t L e v e l) ;

/ / Add t h e c a l c u l a t e d t h r e a t v a l u e t o a l i s t o f c a l c u l a t e d
/ / t h r e a t v a l u e s
tvDataLis t . add (

new T Lap Threat Value Data (
a t . getTrackNumber () , t h r e a t L e v e l . convert ())

) ;
}

}

Listing 24: Sequential implementation of the threat evaluation.

To parallelize this loop the CELP framework has been used. The
first thing done was to create a task from the loop-computations, which
means that we tried to extract each iteration from the loop and make them
independent so they can run concurrently. In the CELP framework that
means implementing the LoopComputation interface, the implementation
can be viewed in listing 25, for more information on the CELP framework
see Chapter 6. To make sure each iteration is independent each call to a
function in the loop has been analyzed by going through all call graphs. To
make each iteration independent all shared collections have been changed
to concurrent ones and the content of the loop has been moved to the
compute method.

/ * *
* Task used t o compute a l l t h r e a t s f o r a range o f t r a c k s

* /
private c l a s s ThreatEvalComputation implements LoopComputation {

/ / Queue s h a r e d among t h r e a d s t o s t o r e c a l c u l a t e d t h r e a t l e v e l s
private f i n a l ConcurrentLinkedQueue<T Lap Threat Value Data>

tvQueue ;
/ / L i s t o f a l l a i r t r a c k s . A l l t a s k s use i n d i v i d u a l i n d e x e s .
private f i n a l CopyOnWriteArrayList<AirTrack> atArr ;
/ / L i s t o f a l l d e f e n d e d a s s e t s . A l l i n d e x e s a c c e s s e d by a l l

t a s k s .
private f i n a l CopyOnWriteArrayList<DefendedAsset>

defendedAssets ;

/ * *

73 CHALMERS, Master Thesis 2010

* C o n s t r u c t o r , s e t s t h e s h a r e d r e s o u r c e s f o r t h e l o o p .

* /
public ThreatEvalComputation (

ConcurrentLinkedQueue<T Lap Threat Value Data> q ,
CopyOnWriteArrayList<AirTrack> ats ,
CopyOnWriteArrayList<DefendedAsset> das) {

tvQueue = q ;
a tArr = a t s ;
defendedAssets = das ;

}

@Override
public void compute (i n t i) {

computeThreat (a tArr . get (i)) ;
}

/ * *
* Does t h e a c t u a l t h r e a t c o m p u t a t i o n in e a c h i t e r a t i o n .

* /
private void computeThreat (f i n a l AirTrack at) {

ThreatValue currentThreatValue =
evaluate (at , defendedAssets) ;

. . .
tvQueue . add (

new T Lap Threat Value Data (
a t . getTrackNumber () , t h r e a t L e v e l . convert ())

) ;
}

}

Listing 25: Concurrent implementation of the threat evaluation.

When the loop computation has been implemented it is simple to run it
in the loop task factory until there are no more tasks. This can be viewed
in listing 26. To determine the number of tasks to divide the loop into, the
benchmarking utility in the CELP framework has been used, for more in-
formation see Section 6.2.2. For the CELP framework to be able to handle an
InterruptedException, the exception thrown by taskFac.awaitLoop()

can not be caught. If it would be caught the framework can not effectively
stop critical tasks when a type 3 event is received, more on this in Chapter 6.

LoopTaskFactory taskFac =
new LoopTaskFactory (nrOfTasks , atArr . s i z e () , comp) ;

t r y {
while (taskFac . hasNextTask ())

exec . submit (taskFac . createNewTask ()) ;
} catch . . .

74 CHALMERS, Master Thesis 2010

taskFac . awaitLoop () ;

Listing 26: The task is run in a loop like this.

Weapons Allocation Loop
The loop in the weapons allocation step performs the most CPU demand-
ing computations in the TEWA component, and has also been parallelized
with the CELP library. The allocation loop iterates over all air and firing
units and finds all possible engagements between these two types of units.
It then adds the engagement to a list containing all possible engagements.
In the sequential case the loop looks like in listing 27. The heavy computa-
tions are performed in the calculateEngagementValue(fu,at) operation,
which is run in every iteration. The calculations are independent of each
other and are therefore very well suited to run in a task.

for (AirTrack a t : a t s) {

short atTn = at . getTrackNumber () ;
boolean e x t e r n a l =

externa l lyDes ignatedTracks . conta ins (a t . getTrackNumber ()) ;
for (F i r ingUni t fu : fus) {

short fuTn = fu . getTrackNumber () ;
DesignationData dData = new DesignationData (

new T Designation Data (fuTn , atTn , source)
) ;
. . .
double ev = calculateEngagementValue (fu , a t) ;

}
}

Listing 27: The sequential allocation loop.

The concurrent version can be viewed in listing 28. This version is very
similar to the sequential one but there are some important modifications.
The loop has been modified so it is performed as one loop instead of two
nested loops, in that loop each iteration can be run concurrently. In each
loop, the compute method is run by the framework, and the air unit and
the firing unit is obtained from the containers that holds all firing units
and air units. The implementation is slightly slower than the nested loop
solution in the single threaded case, because of the get operation, but since
the work now can be divided over several tasks, the gain on a multi-core
system is much greater. In Figure 14 the possible division of work in the
old implementation can be viewed and compared with the new in Figure
15. From these two figures it can be seen that a more fine grained division
of work allows for more tasks, and therefore a more fine grained solution.
A more fine grained division is always preferable and scales a lot better to

75 CHALMERS, Master Thesis 2010

a multi-core system, it also allows for a better partition of the work when
input is small.

private c l a s s WeaponAllocComputation implements LoopComputation{
private f i n a l short source ;

/ / Used t o a c c e s s a i r T r a c k s be tween a l l t a s k s
private f i n a l CopyOnWriteArrayList<AirTrack> a t s ;
/ / used t o a c c e s s a l l f i r i n g u n i t s c o n c u r r e n t l y
private f i n a l CopyOnWriteArrayList<Fir ingUnit> f u s ;
private f i n a l i n t nrOfFir ingUnits ;

public WeaponAllocComputation (CopyOnWriteArrayList<
AirTrack> ats ,

CopyOnWriteArrayList<Fir ingUnit> fus , short source) {
source = source ;

a t s = a t s ;
f u s = fus ;

nrOfFir ingUnits = f u s . s i z e () ;
}

@Override
public void compute (i n t loopIndex) {

/ / Get t h e two i n d e x e s f o r c u r r e n t Ai rTrack and c u r r e n t
F i r i n g U n i t from t h e l o o p i n d e x

/ / which g o e s o v e r a l l i n d e x e s .
i n t airTrackIndex = loopIndex / nrOfFir ingUnits ;
i n t f i r i n g U n i t I n d e x = loopIndex \% nrOfFir ingUnits ;

AirTrack at = a t s . get (a irTrackIndex) ;
short atTn = at . getTrackNumber () ;
boolean e x t e r n a l =

externa l lyDes ignatedTracks . conta ins (atTn) ;

F i r ingUni t fu = f u s . get (f i r i n g U n i t I n d e x) ;
short fuTn = fu . getTrackNumber () ;

DesignationData dData = new DesignationData (new
T Designation Data (fuTn , atTn , source)) ;

. . .
double ev = calculateEngagementValue (fu , a t) ;

e v L i s t . addDesignation (dData , (f l o a t) ev) ;
}

}
Listing 28: The concurrent allocation loop.

Optimize Function
When a weapons allocation has been performed it is sent to an optimize
function that optimizes away unnecessary information from the proposed

76 CHALMERS, Master Thesis 2010

F1 F2 F3 F1 F2 F3

F1 F2 F3 F1 F2 F3

For each air unit

Figure 14: The old implementation where the two loops are nested.

allocation, for example engagements between fire and air units that can not
be used. It also optimizes for the best probability of taking out a target and
how much threat that target is to the defended assets. Since the algorithm
is classified it can not be displayed here, but it can be explained in general
terms. After some investigation we realized that the algorithm is a spe-
cialized version of bubble sort, which have a lot of things in common with
the merge sort that was implemented in Section 4.1. So, the merge sort im-
plementation with the fork/join framework from Java 7 could be applied
to the optimize algorithm easily. The speedup gained when running the
optimized version concurrently is almost identical to the merge sort even
though the implementation is a bit customized. It works very well, and
since the optimize function is a pretty performance intense function a lot
performance is gained.

5.2.5 CORBA Event Handling

To get rid of all the unnecessary synchronization in the system the non-
deterministic behavior of the CORBA threads had to be removed and ex-
changed for a more controllable approach. In the old TEWA implementa-
tion, a CORBA thread could at any time request access to a shared data
structure and modify its content. To have a completely safe version of that
approach all data structures must be locked when a running CORBA thread
receives an event. The old implementation did that, even though the initial
thought probably was to lock only a part of the system. The result of this
behavior is that the system does not scale to a multi-core system at all. So,
to be able to remove all the synchronization the handling of the CORBA

77 CHALMERS, Master Thesis 2010

For all air units * all fire units

F1 F2 F3

F1 F2 F3

F1 F2 F3

F1 F2 F3

Figure 15: The new implementation where the two loops have been exchanged for
one.

threads has to be performed at safe points in time when no other threads
are accessing the internal data structures.

To achieve this, the software must be divided into critical tasks, or tasks
that run event critical code sections as described in Section 6.2. When a certain
task is running it has exclusive rights to all the data structures and if a
CORBA thread receives an event that modifies any data it must wait to
be executed after the task is done. An exception from this rule is if it is a
type 3 event like for example cease fire or hold fire (see Chapter 6), then it
will interrupt the current running task, execute the event, then the main
program is responsible for handling any corrupted data and resubmission
of the task. As recalled from earlier the main loop of the software is divided
into to four main parts:

1. All information is updated

2. Protection of friends

3. Threat evaluation

4. Weapons allocation

Each of the main parts is implemented as a critical task in the CELP
framework. The division into critical tasks that run event critical code sections
are described in Chapter 6.

In the new TEWA version, the remote component communication is
handled via CORBA threads as events. They have been categorized ac-

78 CHALMERS, Master Thesis 2010

cordingly to the three different types of events as explained in Chapter 6.2.
Everywhere where an event may be received it is, instead of executing it di-
rectly, handled by the event handler from the CELP framework. For more
information on the CELP framework and the event handling see Chapter 6.
The result of the event implementation with the CELP framework is that, all
the synchronization previously present in the component can be removed,
and the huge overhead for all unnecessary synchronization is no longer
present. The only synchronization that is still needed is when executing
the critical events and when running the concurrent loops. Both of which
are handled internally by the CELP framework. The concurrent collections
used to assure concurrency also handles all synchronization internally. This
results in that the TEWA component has been implemented without the use
of the synchronized keyword or without performing any other dangerous
locking. The scalability and performance results can be viewed in Chapter
7, where both the sequential and concurrent TEWA are run and compared
in different environments.

6 Concurrent Event-Handling and Loop Paralleliza-
tion Framework (CELP)

As part of the process of parallelizing the Threat Evaluation and Weapons
Allocation (TEWA) component, used for threat analysis/weapons allocation
of hostile radar detected air units, a general concurrency framework has
been developed. It is motivated by the need to ease the implementation of
scalable event-based components, like the ones used at Saab.

6.1 Introduction

This framework handles two major problems concerning concurrency that
where detected in the analysis of the TEWA component, and similar com-
ponents, used at Saab.

• Components communicate synchronously by invoking methods in
other components, which can be invoked at any time in a separate thread
handled by the Common Object Request Broker Architecture (CORBA)
architecture.

• No scalability in current algorithms. To gain scalability CPU inten-
sive loops must be parallelized in an effective way, so that the right
balance between overhead and task granularity is found.

79 CHALMERS, Master Thesis 2010

The first point requires an explanation of the CORBA architecture
and how it is used in SAAB components. CORBA is used to enable
components written in different languages to communicate with each
other through common interfaces. In Java, this is implemented by having
a ThreadPoolExecutor instance run several threads which may receive
call-backs or events from other components in separate threads. Each
thread blocks to receive an event from the CORBA naming service server,
the events may for example update internal data-structures or just return
data. This may make parallelization of a component especially difficult
since it is impossible to know when a data-structure is updated. This is
further explained in Section 5 and illustrated in Figure 16.

The second point regards the very CPU intensive loops that for example
exist in the TEWA component. Several difficulties must be dealt with even
if not considering any possible dependencies between loop iterations. First
off, the iterations must be divided into separate computable tasks that can
be distributed to running threads and mapped to available processor cores
on the system. Secondly these tasks must be correctly sized somehow. Too
small and the overhead will overcome any performance gain and too big
tasks will result in poor concurrency since the computations can not be
performed in parallel.

Figure 16 illustrates the first problem by showing how the main thread
runs both safe and event critical code. The critical code could for example
be a loop that accesses a shared data-structure that is not allowed to be
modified during the entire loop. This shared data-structure could easily be
made thread-safe and support concurrency by using a concurrent collection
(see Section 2.2.2). But the algorithm that uses the shared data-structure
might still require that it is not modified for the entire loop. In other words,
it runs code that is sensitive to events that modify shared data and therefore
runs an event critical code section. To handle this case in an easy way without
a global lock and still handling the events in an efficient way, complicates
the parallelization of any CPU intensive parts in the main thread. Figure
16 also shows that some events always are safe to invoke since they do not
modify any critical state, i.e. they do not enter any event critical code section
like Corba thread #3 in the Figure. Corba thread #1 executes an event critical
code section but does not interfere with the main threads critical section so
it may safely execute. However, Corba thread #2 executes a critical section
that interferes with the main threads critical section, which is dangerous and
might have nondeterministic consequences.

80 CHALMERS, Master Thesis 2010

Main Thread

Corba Thread #1

Corba Thread #2

Event #1

Event #2

Corba Thread #3

Event #3

Running Safe Section

Running Critical Section

Wating

Figure 16: An illustration of how CORBA threads invoke events concurrently with
the main execution.

The idea of the CELP framework is to make it easy to handle such
events in a safe way with an event-handler and define critical code sec-
tions as critical tasks. The other idea is to support easy loop parallelization
by dividing loops into the optimal sized tasks, in a way that allows for easy
and performance effective parallelization. The different parts of the frame-
work work excellent together. Loops that for example share data structures
with an event might not be possible to parallelize without making the event
thread safe. This can easily be handled with use of the built in event han-
dling and loop parallelization. When using this technique it is also possible
to easily interrupt long running computations if important events are re-
ceived. This is possible since the loop parallelization supports interruption
and the CriticalTaskExecutor supports handling of those interrupts. To
use the framework properly, however, it is still very important to have a
good knowledge about how the Java Memory Model works and how to use
the java.util.concurrent package (see Chapter 2 Section 2.6.1).

6.2 Implementation

The implementation has been done in a package called concurrent.celp

with a sub package called concurrent.celp.benchm, all classes reside in

81 CHALMERS, Master Thesis 2010

these packages which can be reviewed in appendix B.
Event-handling, critical task execution and loop parallelization are han-

dled with the use of the three classes: CriticalTaskExecutor, CorbaEven-
tHandler and LoopTaskFactory. The CriticalTaskExecutor executes
critical tasks, and uses the internal event-handler to handle events. Events
are handled by executing them if possible, or by queuing them for later
execution otherwise. A critical task is defined by implementing the Crit-

icalTask interface, shown in listing 29. Any execute implementation of
this interface is not meant to be called directly, instead, this is handled by
the CriticalTaskExecutor.execute(CriticalTask task, ...) method
in the framework. This method executes the task in a safe way and when
the main thread calls this method it is equivalent to the main thread entering
the critical section, as in Figure 16.

public i n t e r f a c e C r i t i c a l T a s k<E , V> {
V execute (E arg) throws InterruptedExcept ion ;

}

Listing 29: Interface that defines a critical task. The implementation of executed
is considered to be critical. Generic parameters are used for variable
return and parameter types.

When such a critical task is executed incoming events are han-
dled differently considering how they have been invoked by the event-
handler. The EventHandler instance should be obtained from the Crit-

icalTaskExecutor with the CriticalTaskExecutor.getEventHandler()

method. Events can then be invoked by the different invoke* methods
which are listed in the Event-Handling Section 6.2.4. The invoke* methods
takes implementations of the Event<E> interface as arguments, the inter-
face is seen in listing 30.

public i n t e r f a c e Event<E> {
E handleEvent () throws Exception ;

}

Listing 30: Interface that defines an event that could be both critical and non-
critical it can also throw an exception and/or return a value defined
by the generic parameter.

Depending of how the events are invoked, i.e which Even-

tHandler.invoke* method is used, the events are treated differently. They
have been classified according to their importance, timing requirements
and the side effects of the code they execute, as listed here:

• Type 1: Time Critical Events that run Non-Critical Event Code Sections.
These events must be executed right away, concurrently with the

82 CHALMERS, Master Thesis 2010

running main thread. The most common case is getters, for exam-
ple when data is obtained from the TEWA component by some other
component in the system. They can be executed in parallel with the
main execution and other events since the code they run are not criti-
cal to the main thread or other events.

• Type 2: Non Time Critical Events that run Critical Event Code Sections,
are events that are executed as soon as the current critical task is done.
For example the getting and updating of references from a Concur-

rentHashMap. These events must not intervene with any critical tasks
in the main thread or other events that are running critical code sec-
tions.

• Type 3: Time Critical Events run Critical Event Code Sections. They
are events that can interrupt the execution of the currently running
critical task in the main thread and can therefore also be called In-
terrupting Events. This applies to events that are time critical but at
the same time execute at least one code section that is critical for the
main thread or other Type 2 event, for example cease- and hold- fire
commands in the TEWA component.

An example of how the CriticalTaskExecutor can be used is shown in
listing 31. Here an implementation of a CriticalTask is executed concur-
rently while receiving events that modify shared data as seen in listing 32.
The invokeLater() method is used to invoke the events as Type 2 events
which means that they are enqueued if the current main thread execution
is in the try { criticalExec.execute(...) } block, and invoked after
that block has finished executing instead.

s t a t i c void main (S t r i n g [} args) {

C r i t i c a l T a s k E x e c u t o r c r i t i c a l E x e c =
C r i t i c a l T a s k E x e c u t o r . g e t I n s t a n c e () ;

/ / S t a r t e v e n t r e c e i v i n g and run s a f e i n i t i a l i z i n g c o d e
s ta r t Ev e nt Re ce iv in g () ;
i n t i a l i z e () ;

I n t e g e r taskArg = new I n t e g e r (0) ;
t r y {

/ / Run c r i t i c a l c o d e
c r i t i c a l E x e c . execute (new C r i t i c a l T a s k I m p l () , taskArg) ;

} catch (. . .) { . . . }

83 CHALMERS, Master Thesis 2010

}

Listing 31: An example of how critical tasks can be executed with the use of a
CriticalTaskExecutor and event handling as shown in listing 32.

public c l a s s EventReciever implements EventLis tener {

private f i n a l C o l l e c t i o n sharedData = . . .
private f i n a l eventHandler =

C r i t i c a l T a s k E x e c u t o r . g e t I n s t a n c e () . getEventHandler () ;

@Override
public void eventCallBack () {

ResizeEvent event = new ResizeEvent () ;
eventHandler . invokeLater (event) ;

}

private c l a s s ResizeEvent implements Event<Void> {

@Override
public Void handleEvent () {

/ / M o d i f i e s t h e s h a r e d d a t a when t h e e v e n t i s i n v o k e d
sharedData . r e s i z e (. . .) ;

return null ;
}

}
}

Listing 32: Example of how to invoke an event later if a critical task is executed at
the same time otherwise it will be executed directly.

When using these facilities, for example as shown in listing 31 and 32,
an event based system can be made thread-safe without any further syn-
chronization. This alone does not give the system any scalability though,
for this to happen any CPU intensive loop must be parallelized, which can
be achieved by using the celp.LoopTaskFactory class. This may execute
several loop iterations in parallel with a customizable amount of indexes
per task. Its implementation and use is further explained in Section 6.2.1.

6.2.1 Loop Parallelization

The loop parallelization part of the framework is meant as a tool to divide
loop computations into reasonably large subtasks. It is up to the user to
find the correct size of a task, so that the performance gain of parallel com-
putations out-weights the overhead induced by creating and distributing
the tasks among running threads.

84 CHALMERS, Master Thesis 2010

Input

Dual-Core Processor

Core #1, computing... Core #2, computing...

Queued tasks, waiting... Tasks being processed...

1. 2. 3.

4.

Input data Compuations divided
into tasks

Partioned data -
computations

Figure 17: How input data can be partitioned, divided into tasks and mapped to
different processor cores.

The general idea of how to parallelize an algorithm by distributing its
smallest computations among tasks is illustrated in Figure 17, which is in-
fluenced by the PCAM model[4]. The flow is as follows:

1. Identify the input data. This could for example be a data-structure
used for some computation.

2. Identify each minimal computation performed on the input data. If
using the collection data-structure this could for example be a com-
putation performed on each entry in the collection, i.e. iterating over
the entire collection.

3. Each of these computations must now be distributed among suitably
large tasks. Each task will be computed sequentially on a separate
processor core. Two things are especially important at this stage; first
dependencies must be detected, for example, is any computations de-
pending on other computations being performed prior to them? Sec-
ondly, how demanding is each computation? I.e. how many com-
putations must be done in a task so that the overhead of distributing
them is less than the gain of parallel computation?

85 CHALMERS, Master Thesis 2010

4. When the computations are distributed among tasks they should be
queued up to wait being processed by available processor cores. This
can be easily done in Java by for example submitting the tasks to a
ThreadPoolExecutor

Each computation of stage two in Figure 17 is represented in CELP
by the interface LoopComputation, shown in listing 33. The parameter
supplied to compute tells which index in the loop is currently being
processed or which entry in an array is currently being processed.

public i n t e r f a c e LoopComputation<E> {
public void compute (E entry) ;

}

Listing 33: Interface representing a basic computation

When defining a computation by implementing this interface a Loop-

TaskFactory instance can be used to create tasks of the desired size. By
emanating from the example showed in Figure 17 it can be shown how the
LoopTaskFactory makes loop parallelization easier. As seen in listing 34
where input data stored in the collection list, is divided into the five tasks
from Figure 17.

LoopTaskFactory<E> taskFac =
LoopTaskFactory (5 , l i s t , new LoopComputationImpl<E>()) ;

Listing 34: LoopTaskFactory usage where the iteration over a List list is divided
into five tasks.

These tasks can easily be submitted to an ExecutorService which
in turn queues the tasks to available threads that optimally runs on
individual cores, represented by the fourth stage in Figure 17 and shown
in listing 35. The compute method is called with the correct parameter in
the Runnable returned when creating new loop computation tasks with
the LoopTaskFactory.createNewTask(). Depending on the size of the
task, a different number of computations will be performed. For example,
in the left-most task of stage three in Figure 17, compute will be called
seven times. Note that the LoopTaskFactory.awaitLoop() throws an
InterruptedException, this should not be caught if the computation is
used inside a CriticalTask implementation (which is the intention). It
should be re-thrown since this means that it can be used to interrupt a
lengthy computation, by for example receiving a critical interrupting event.

86 CHALMERS, Master Thesis 2010

private f i n a l exec = new ThreadPoolExecutor (. . .)
. . .
t r y {

while (taskFac . hasNextTask ())
exec . submit (taskFac . createNewTask ()) ;

} catch (. . .) { . . . }

taskFac . awaitLoop () ;

Listing 35: Submitting tasks and waiting for computation to complete

The LoopTaskFactory(...) has two constructors, as seen in listing 36.
They differ at one argument, the first one takes a List<E> interface and
the second takes the number of iterations as argument. The one taking
the number of iterations allows for the users own implementation of what
value to get when compute is called since the index is returned (as an Inte-

ger wrapper), instead of the actual generic entry from the collection. The
index version might be useful when iterating over multiple collections but
the List<E> might be more convenient when only one collection holds all
values used for the computations and each entry is used in exactly one com-
putation. Both of the constructors take the number of tasks that should be
created as argument, it also takes the implementation of the computation.
The actual amount of tasks could differ from the argument since it must be
smaller or equal to the size of the loop being parallelized (second argument
to the constructor). The size of a task is defined by how many computations
it computes sequentially, which is calculated by dividing the total amount
of computations with the amount of tasks. This must not be less than one
since one computation basically is one iteration in the parallelized loop and
thus the smallest possible computation, the size is defined by equation 1.
The remainder from this division is distributed among the created tasks to
get uniformly sized tasks. This can be very important when performing
computations on big input data to prevent unevenly sized computations
and poor concurrency as seen from the Experiments section.

public LoopTaskFactory (int , L i s t<E> , LoopComputation<E>)
public LoopTaskFactory (int , int , LoopComputation)
public boolean hasNextTask ()
public Runnable createNewTask ()
public void awaitLoop ()

Listing 36: LoopTaskFactory methods.

taskSize = max(1,
nrComputations

nrTasks
) (1)

The LoopTaskFactory.hasNextTask() method, seen in listing 36,

87 CHALMERS, Master Thesis 2010

checks if the all computations has been returned in the form of tasks with
the LoopTaskFactory.createNewTask() method. In other words, Loop-
TaskFactory.hasNextTask() returns false when for example all five tasks
in Figure 17, containing all computations, have been created. LoopTask-

Factory.createNewTask() creates the actual task which is returned in the
form of a Runnable, the run method is implemented as shown in listing 37.
The difference between the start and end variables defines the size of the
task which also is how many times the LoopComputation.compute(...)

method is called. The private field entryGetter is a interface, the imple-
mentation used determines if the index or the generic entry of the supplied
collection should be sent to compute(...). This is decided by which con-
structor is used, the one taking a List<E> interface or the one taking an
int representing the number of iterations. A CountDownLatch is used to
keep track of when all tasks have been computed. This latch is called with
CountDownLatch.await(); in LoopTaskFactory.awaitLoop() to block un-
til the completion of all tasks.

new Runnable () {
public void run () {

for (i n t i = s t a r t ; i < end ; i ++)
loopTask . compute (e n t r y G e t t e r . get (i)) ;

l a t c h . countDown () ;
}

} ;

Listing 37: The runnable returned by LoopTaskFactory.createNewTask().

6.2.2 Benchmarking Tool

To obtain optimal results for a loop parallelization all the variables that
affect the outcome must be tweaked. The variables in a loop paralleliza-
tion are the task size and the number of threads. For this reason a package
containing benchmarking tools for optimizing those variables has been im-
plemented in the framework. The benchmarking utility creates statistics
that can be displayed in a graph or in text. It tests different combinations
of task sizes and number of threads for a given loop computation, for more
information on the loop utility see Section 6.2.1.

To use the benchmarking tool an instance of the BenchmarkConcurrent-
TaskSize<E> class must be created. There are a few different constructors
that provide the programmer with different choices. All the constructors
take an implementation of the BenchmarkLoopTaskFactory<E>, which is
a factory similar to the regular LoopTaskFactopry<E>. It is created in the

88 CHALMERS, Master Thesis 2010

same manner but without the task size and its implementation is exactly
the same as the regular LoopTaskFactory with some benchmarking tools
added. The best way to use the benchmarking utility is to use it in the
actual implementation, so where a loop task factory is created also create a
BenchmarkLoopTaskFactory<E>. This is illustrated in listing 38.

comp = new SomeComputation (someParameters . . .) ;

LoopTaskFactory<Integer> taskFac =
new LoopTaskFactory<Integer >(nrOfTasks , someList . s i z e () ,

comp) ;

BenchmarkLoopTaskFactory<Integer> benchmarkTaskFac =
new BenchmarkLoopTaskFactory<Integer >(someList . s i z e () , comp) ;

Listing 38: An implementation of a regular loop factory and following is the
benchmarking loop factory

When a factory has been created an instance of the BenchmarkConcur-

rentTaskSize<E> can be created with one of the different constructors.
As an option the programmer can pass an implementation of the Bench-

markReset interface, that is intended to reset modified states so that the
benchmark will not harm the rest of the execution of the algorithm. The
method resetBenchmark() is run after each performed benchmark.

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks , TimeUnit t ,
L i s t<Integer> nrThreadsToTest)

Listing 39: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop, the time
unit for the tests (nano or milli) and a list of different number of threads
to test.

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks ,
L i s t<Integer> nrThreadsToTest)

Listing 40: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop and a list
of different number of threads to test.

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks ,
BenchmarkReset resetImpl , TimeUnit t ,

89 CHALMERS, Master Thesis 2010

Lis t<Integer> nrThreadsToTest)

Listing 41: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop, the
maximum number of tasks to create, a reset implementation, a time
unit (only nano and milli) and a list of different number of threads to
test.

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks , TimeUnit t)

Listing 42: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop, the
maximum number of tasks to create, a time unit (only nano and milli)
and a list of different number of threads to test.

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks ,
BenchmarkReset resetImpl , TimeUnit t)

Listing 43: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop, the
maximum number of tasks to create, a reset implementation and a time
unit (only nano and milli).

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks ,
BenchmarkReset rese t Impl)

Listing 44: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop, the
maximum number of tasks to create, and a reset implementation.

BenchmarkConcurrentTaskSize (BenchmarkLoopTaskFactory<E> fac tory ,
i n t nrTests , i n t t a s k I n t e r v a l l , i n t maxNrTasks)

Listing 45: A constructor taking a factory, the number of tests to obtain a mean
from, the interval or step between each new task in the loop and the
maximum number of tasks to create.

When the benchmarker has been created it can be used to run
several tests. To be able to reuse the same benchmarker each run,
a set method for the loop task factory has been implemented. It
can be called with a new instance of a factory with setLoopTaskFac-

tory(BenchmarkLoopTaskFactory<E> factory), this allows for the test to
obtain the mean of several benchmarkings. The benchmarker is started
by calling the benchMark() method. When the benchmarking is done the
result can be written to a graph file. To write the values to a graph-svg

90 CHALMERS, Master Thesis 2010

file, use the printAsGraphLatestMean(String title, String folder,

String filePrefix) function. It will write the mean of all run bench-
marks so far and clear out the means so that a clear benchmarking can
be started. There are also three methods for getting the total mean of all
benchmarking run since the object was created, it is the getBestTime(),

getBestNrThreads() and getBestNrTasks(). To reset the values returned
by getBestTime(), getBestNrThreads() and getBestNrTasks() the ob-
ject must be recreated.

6.2.3 Critical Task Executor

The Critical Task Executors main responsibility is to execute Critical Tasks
without the risk of receiving any Critical Event that may corrupt important
data-structures. It also support fast interruption of these critical tasks if
they are waiting for a parallelized loop and re-throws any InterruptedEx-

ception. Otherwise the interruption response is depended upon how often
the threads interrupted status is polled, or the use of any blocking methods.
The task execution is handled from a singleton instance of the Critical-

TaskExecutor which has an internal EventHandler that should be used to
handle any events, see listing 46.

Since the idea of this executor is to handle the main execution of pro-
grams, which parts in turn are parallelized, it is not thread-safe and should
only be used in the main thread to execute its critical tasks.

private f i n a l EventHandler evHandler =
new EventHandler () ;

. . .
public EventHandler getEventHandler () {

return evHandler ;
}

Listing 46: The internal EventHandler of the CriticalTaskExecutor.

A critical task must implement the CriticalTask interface, for example
as shown in listing 47. To make sure that the execution is safe when exe-
cuting this critical task, as seen in listing 31 on page 83, a ReentrantLock

is used internally by the EventHandler. How this is done is explained in
detail in Chapter 6.2.4.

c l a s s ConcurrentAnalyzer implements C r i t i c a l T a s k<Integer , Void>{
@Override
public Void execute (I n t e g e r arg) throws InterruptedExcept ion {

t h i s . analyze (arg) ;
return null ;

91 CHALMERS, Master Thesis 2010

}
Listing 47: Ex critical task.

The method <E> boolean execute(final CriticalTask<E, Void>,

final E) of CriticalTaskExecutor is the only method that needs to be
used by a developer. Internally there are some other methods including an
override of the Listener.update() used to listen on the EventHandler for
events that should interrupt the execution in the execute(...) method.
All of the methods are as listed here in listing 48:
private C r i t i c a l T a s k E x e c u t o r ()
public s t a t i c C r i t i c a l T a s k E x e c u t o r g e t I n s t a n c e ()
public EventHandler getEventHandler ()
public <E>
boolean execute (f i n a l C r i t i c a l T a s k<E , Void> , f i n a l E)
private <E>
void i n v o k e C r i t i c a l T a s k (f i n a l C r i t i c a l T a s k<E , Void> , f i n a l E)
@Override public void update ()

Listing 48: CriticalTaskExecutor methods.

The CriticalTasks are executed in a single-threaded executor which is
created using Executors.newSingleThreadExecutor() in the constructor.
The constructor is private and is invoked when creating the instance using
the getInstance() method. In classes that are listeners for events, like
the example in listing 32 on page 84, the events should be handled by the
EventHandler instance retrieved by the getEventHandler() method. The
execute method executes a critical tasks with a generic input parameter by
invoking the private method invokeCriticalTask(...), this method uses
the internal event-handler to lock any critical event from being executed as
seen in listing 49. This is executed in the internal single-threaded executor to
allow interruption and handling of the critical task while it is running, this
is shown in listing 50. Such interruption is done through the cancellation of
the submitted tasks from the callback method update(), this is explained
further in the next paragraph.

eventHandler . l o c k C r i t i c a l E v e n t s () ;
t r y {

task . execute (execParam) ;
} catch (InterruptedExcept ion) {

/ / * F a l l th rough t o f i n a l l y b l o c k and u n l o c k *
} f i n a l l y {

eventHandler . u n l o c k C r i t i c a l E v e n t s () ;
}
Listing 49: The execution of a critical task while locking the event-handler from

invoking critical events. This is implemented in
invokeCriticalTask(...) method.

92 CHALMERS, Master Thesis 2010

private v o l a t i l e Future<?> t a s k R e s u l t ;
private f i n a l AtomicBoolean hasBeenCanceled =

new AtomicBoolean (f a l s e) ;
. . .

/ / Wait f o r any e x e c u t i n g i n t e r r u p t e v e n t s t o f i n i s h b e f o r e
/ / s u b m i t t i n g t h e t a s k .
evHandler . wai tForInterruptEvent () ;
t a s k R e s u l t = mainExecutor . submit (cTask) ;

/ / Cance l t h e t a s k d i r e c t l y i f an i n t e r r u p t i n g e v e n t i s w a i t i n g
i f (evHandler . hasInterruptEventsWait ing ())

t a s k R e s u l t . cance l (t rue) ;

t r y {
t a s k R e s u l t . get () ;

} catch (Cance l la t ionExcept ion e) {
hasBeenCanceled . s e t (t rue) ;

. . .
}
. . .

Listing 50: The submittal of a critical task to the single threaded executor. It is
possible for another thread to interrupt the execution which is handled
with an atomic boolean and a Future<?> instance representing the
asynchronous response of the critical task

To handle the cancellation off a critical task some special measures have
to be taken. Critical tasks can be canceled if a Type 3 event that may inter-
rupt is received as defined on page 83, the implementation details are also
explained in Chapter 6.2.4 about event-handling. The Future<?> instance
returned from the Excecutor.submit(...) method is stored in a local
volatile field of the CriticalTask and represent the pending result of
the critical task, as seen in listing 50. The update() method is called when
the internal CorbaEventHandler receives an event that may interrupt. The
CriticalTask constructor registers itself as a listener to its internal event-
handler to receive such updates, when an update come the current running
critical tasks is canceled as seen in listing 51.

When a critical task is canceled it results in the thread that runs this
task gets interrupted, this basically means that the threads interrupt sta-
tus flag is set to true. The flag can be checked manually by polling the
Thread.isInterrupted() method or, automatically by catching an Inter-

ruptedException that is thrown by any wait method . Since the LoopTask-
Factory.awaitLoop() is such a method a CriticalTask that performs
such a parallelized loop computation will always support fast interruption.

93 CHALMERS, Master Thesis 2010

For this to work it is important that any caught InterruptedException in the
critical task is re-thrown or not caught at all, otherwise the executor will never
know that the task has been interrupted.

@Override
public void update () {

t a s k R e s u l t . cance l (t rue) ;
}

Listing 51: Cancellation of running critical tasks through a callback caused by a
critical event that may interrupt.

If one or several events that interrupts the critical tasks execution is
received it is important that they get invoked before another critical task is
executed. That is why the hasBeenCanceled flag is set to true and checked
in listing 50. The call eventHandler.waitForInterruptEvent() is there
to wait for any such events in case a critical task has been canceled and a
new one has been executed before the critical tasks are done executing.

Figure 18 attempts to illustrate how the different events, received
through CORBA threads, interacts with the main thread. The main threads
execution of this Figure could for example be as shown in listing 52 where
the comments represent the main execution in Figure 18. The sequence of
executions and events in Figure 18 is described in the following list.

1. Before the first critical task is executed, a Type 2 event is received,
and executed since the main thread is in a non event critical code
section. Since this event is executing at the time of calling criti-

calExec.execute(...) the main execution is blocked until the event
has completed. this is represented by the orange Waiting to Execute
part.

2. The main thread executes the critical task until a Type 3 event
is received. This causes the critical task to be canceled and the
thread it runs in gets interrupted. When this happens the criti-

calExec.execute(...) returns false which causes if(!status) to
be true. When a critical task has been canceled it is the implementers’
responsibility to make sure it is handled in a proper way.

3. The cancellation has been handled and the second critical task is exe-
cuted but as seen in the Figure the Type 3 event is not finished execut-
ing and a second Type 3 event has been received and begun execution
as well. The critical task is not executed until both of these Type 3
events have finished execution.

94 CHALMERS, Master Thesis 2010

4. The second critical task has finished execution without any cancella-
tion. A Type 2 event is received during executing this critical task, this
i handled by the event-handler in criticalExec which enqueues the
event. All such enqueued events gets invoked after the critical task is
done.

Main Thread

Corba Thread #1

Corba Thread #2

T2 event

T3 event

Corba Thread #3
T1 event

1. Exec...

T3 event

Canceled! 3. Exec... 4. Done.

T1 event

T2 event

2.

T1 event

T2 event

T3 event

Type 1 event received. Always
executed direclty.

Type 2 event received. Executed
when safe.

Type 3 event received. Executed direcly.
Interrupting main critical task if needed.

Executing Event Non-Critical Section

Executing Event Critical Section

Waiting Waiting To Execute

Figure 18: Diagram representing the sequence when handling different types of
events concurrently with the main execution of non-critical and critical
-event code sections.

f i n a l C r i t i c a l T a s k E x e c u t o r c r i t i c a l E x e c =
C r i t i c a l T a s k E x e c u t o r . g e t I n s t a n c e () ;

boolean s t a t u s = f a l s e ;

/ / Run non e v e n t c r i t i c a l c o d e
i n i t a l i z e () ;

95 CHALMERS, Master Thesis 2010

t r y {
/ / 1 . Exec . . .
/ / Run c r i t i c a l c o d e
s t a t u s =

c r i t i c a l E x e c . execute (new F i r s t C r i t i c a l T a s k () , . . .) ;
} catch (. . .) { . . . }

i f (! s t a t u s) {
logError (” F i r s t c r i t i c a l task was canceled ”) ; / / 2 . C a n c e l e d !
/ / * Handle c a n c e l l a t i o n *

}

/ / Run non e v e n t c r i t i c a l c o d e
prepareSecondTask () ;

t r y {
/ / 3 .
/ / Run c r i t i c a l c o d e
s t a t u s =

c r i t i c a l E x e c . execute (new SecondCri t i ca lTask () , . . .) ;
} catch (. . .) { . . . }

i f (! s t a t u s) {
. . .

}
e lse {

/ / 4 . Done
}

Listing 52: The main thread running the CriticalTaskExecutor illustrated in figure
18.

6.2.4 Event-Handling

The events discussed in the previous chapters is handled by the
class EventHandler. The CriticalTaskExecutor has an internal in-
stance of this class, which should be obtained by CriticalTaskExecu-

tor.getEventHandler(), when handling events used while executing crit-
ical tasks.

To invoke events as the three different types defined on page 83 the dif-
ferent methods invokeNow(Event<E>), invokeLater*(Event<E>) and in-

vokeNowInterrupt(Event<E>) can be used. They correspond to Type 1, 2
and Type 3 —events. The methods, together with all EventHandler methods
can be viewed in listing 53.

96 CHALMERS, Master Thesis 2010

/ / Event i n v o k i n g methods
public void invokeLater (Event<Void> event)
public void invokeLaterLowPrio(<Void>event)
public void invokeLaterHighPrio (Event<Void> event)

public <E> E invokeNow (Event<E> event) throws Excpetion
public <E> E invokeNowInterrupt (Event<E> event) throws Excpetion

/ / Event l o c k / u n l o c k methods
public void l o c k C r i t i c a l E v e n t s ()
public void u n l o c k C r i t i c a l E v e n t s ()

/ / B l o c k s when Type 3 , i n t e r r u p t i n g , e v e n t s a r e e x e c u t e d
public void waitForInterruptEvent ()

/ / i n t e r n a l i n v o k i n g / queuing methods
private boolean t r y I n v o k e C r i t i c a l (Event<Void> event)
private <E> E i n v o k e B l o c k C r i t i c a l (Event<E> event)

private void addEvent (EventQueueEntry<Event<Void>> event)
private void processEventQueue ()

Listing 53: EventHandler methods.

The three invokeLater*(Event<E>), seen in listing 53, are all put in
an internal PriorityBlockingQueue. Depending on which invoke method
is used different instances of the abstract class CorbaEventQueueEntry are
created, for example CorbaEventQueueHighPrioEntry<E> for high prior-
ity entries and CorbaEventQueueFifoEntry<E> for First-In First-Out (FIFO)
entries. The FIFO entries are only FIFO ordered relative other instances of
the CorbaEventQueueFifoEntry<E> class, not relative to the high and low
priority events.

The EventHandler protects the execution of the events accordingly to
how they are invoked. This is primarily done through the Critical Event
Lock (criticalEventLock) seen in Figure 19 and the Phaser seen in the
same Figure. When for example the CriticalTaskExecutor wants to
protect a critical task from being interfered by any events that execute
event critical code sections it uses its internal EventHandler to take the
Critical Event Lock, as seen in listing 54. The eventQueue is processed
whenever the criticalEventLock is released, since the only time events
will be queued is when this lock is taken (must be done in a finally block
as seen in listing 49 on page 92).

public void l o c k C r i t i c a l E v e n t s () {
c r i t i c a l E v e n t L o c k . lock () ;

97 CHALMERS, Master Thesis 2010

}

Listing 54: Take critical lock in EventHandler

When this lock is taken a received Type 2 event will not be executed,
but queued instead as seen in listing 55.

public void invokeLater (Event<Void> e) {
/ / Try t o t a k e l o c k and invoke , o t h e r w i s e queue t h e e v e n t
i f (! t r y I n v o k e C r i t i c a l (e))

/ / Add e v e n t t o P r i o r i t y B l o c k i n g Q u e u e
addEvent (new EventQueueFifioEntry<Event<Void>>e) ;

}
}
. . .
private boolean t r y I n v o k e C r i t i c a l (Event<Void> e) {

i f (c r i t i c a l E v e n t L o c k . tryLock ()) {
t r y {

invokeNow (e) ;
}
catch (Exception exc) { . . . }
f i n a l l y {

c r i t i c a l E v e n t L o c k . unlock () ;
}

return true ;
}
return f a l s e ;

}

Listing 55: Type 2 events are queued if they can not be executed

Type 3 events may interrupt the running critical task and must be ex-
ecuted as soon as a critical task has been canceled, this is done as seen
in listing 56 and as illustrated in Figure 19. The call notifyListeners()
notifies any CriticalTaskExecutor (that must listen on its event-handler)
that a Type 3 event has been received and that the critical task must be
canceled if running. When the critical task is running it holds the crit-

icalEventLock lock, to make sure that this event is not executed until it
is released the invokeBlockCritical(event) call blocks waiting for this
lock to be available. This method is potentially dangerous since there is
a blocking operation while holding a lock (the event is registered on the
Phaser). The framework guarantees that the lock is released when the crit-
ical task finishes, but if the implementation of the critical task deadlocks,
the framework will deadlock. The CriticalTaskExecutor only waits us-
ing the waitForInterruptEvent() call when not holding this lock as well,
which assures that no deadlock will occur there.

98 CHALMERS, Master Thesis 2010

public <E> E invokeNowInterrupt (Event<E> event)
throws Exception {

E r es = null ;
c r i t i c a l I n t e r r u p t P h a s e r . r e g i s t e r () ;

t r y
{

n o t i f y L i s t e n e r s () ;
r e s = i n v o k e B l o c k C r i t i c a l (event) ;

} f i n a l l y {
c r i t i c a l I n t e r r u p t P h a s e r . arr iveAndDeregister () ;

}
nrDirec lyInvokedInterruptEvents . incrementAndGet () ;

return r es ;
}

Listing 56: Type 3 events are executed when any critical task has been canceled.
This is assured by the method invokeBlockCritical that blocks until
the cancellation of the critical task. New critical task execution are
prevented by using the Phaser instance where interrupt events register
them-self and new critical tasks are not allowed to execute until all of
them have deregistered.

As seen on page 95 in Figure 18 new Type 3 events may arrive when such
an event is already executing. To make sure that these important event gets
executed before a new critical task is executed the events registers on an
internal Phaser. Before launching a new critical task all these events must
unregister on this phaser before the method seen in listing 57 unblocks. The
CriticalTaskExecute.execute() calls this method on its internal event-
handler if it was recently canceled.

public void waitForInterruptEvent () {
c r i t i c a l I n t e r r u p t P h a s e r . arriveAndAwaitAdvance () ;

}

Listing 57: The Phaser unblocks when all registered parties has unregistered.
New parties may register during this waiting period.

7 Simulation

Since the TEWA implementation is a complex component that is dependent
on a lot of other components it requires a proper test environment. Major
design changes have been made and the only way to verify the correct-
ness, as well as any scalability and performance improvements, is through
proper simulation. The goal is that the simulation should resemble the real
complex environment as much as possible. To understand how the TEWA

99 CHALMERS, Master Thesis 2010

CorbaEventHandler

criticalInterruptsExecuting: Phaser

timeCritical: Event<E>

nonTimeCritical: Event<E>

interruptCritical: Event<E>

Type 1, 2 and 3 events received

eventQueue: PriorityBlockingQueue

entry: CorbaEventQueueEntry

criticalEventLock: ReentrantLock

:Add to Event-Queue

listeners: ConcurrentLinkedQueue

lockAcquired, lockNotAcquired

:wait for intterupt events to finish

:Alert listeners about interrupt

invokeLater*

invokeNowInterrupt

invokeNow

:Try to aqcuire lock

waitForInterruptEvent

:register self on Phaser

invokeLater*

:Aqcuire lock

Figure 19: A Composite Structure Diagram representing the internal structure of
the EventHandler class.

component is simulated its behavior must be roughly understood, this is
explained in Section 5.

7.1 Setting up the Environments

To allow for the testing and verification of the parallelized TEWA compo-
nent the different environments need to be configured. The basic details
about the environments are explained under Tools, Chapter 3.

The TEWA component is part of a set of components responsible for the
logical computations in the Giraffe AMB. Other set of components handle
GUI presentation and other details needed for the TEWA to operate. This is
simulated using different computers connected through a closed network
in the Linux based lab environment. The logic part, including the TEWA,
run on an 8-core server. On the Windows based development platform
this is simulated on a single dual-core system using a set of applications
instead.

100 CHALMERS, Master Thesis 2010

Since timing tests of algorithms are sensitive to different settings and
varying system load it is important to perform many varying test cases.
The settings that affect the execution of the TEWA component is: which
parts of the component that is active, how much that is supposed to be
processed, number of tasks, number of threads and old and new synchro-
nization methods. The different settings used are described in table 2. The
simulations where performed by designing test cases according to these
settings, the results of the computations are viewed a bit differently de-
pending on which environment is being used. The timings are collected in
the same way on both systems using a benchmark implementation, which
is an extension to the CELP library.

Algorithm Main Loop Settings
The main loop has two main bottlenecks which have been parallelized
Only Threat Evaluation: TE
Threat Evaluation and Weapons Allocation: TEWA

Input and System Load Settings
The system load is determined by the number of air units and the defended assets input.
The total System Load is defined as Low, Medium and High (L, M, H) and is
determined by the number of air units (AUs) and firing units (FUs):
System Load (L – 2 FUs 4 AUs, M – 8 FUs 22 AUs, H – 12 FUs 91 AUs)

Concurrency Settings
The performance can be optimized by tweaking the number of threads used,
as well as how many tasks the input is distributed among for the different algorithms.
Thread count: Threads (1+)
Task size: Tasks (1 – input size)

Implementations
The original sequential TEWA is compared with the new parallelized version.
Sequential unoptimized TEWA: ST
Concurrent TEWA: CT

Table 2: Different settings used to test the TEWA component

101 CHALMERS, Master Thesis 2010

7.1.1 Windows based, Basic Environment

Initial testing and simulation is done on the development platform which
is a Windows based dual-core system. To simulate the TEWA component,
a set of test applications, provided by Saab, have been used. An example
of this environment can be seen in appendix C. Since the components in
Saabs system communicate through the CORBA architecture, using a name
server to look-up class instances (which runs by default in the lab environ-
ment), such a server must be reachable when performing the simulation. A
name server called tnameserv.exe that comes bundled with the Java Run-
time Environment is run on the Windows system, as a part of the simulation.
It listens on a local port through which the different applications can com-
municate. The important applications used are (their purpose might be
better understood by comparing them to how the TEWA component func-
tion, this is explained in Chapter 5):

• SimMissionManager – Simulates the mission settings sent to the
TEWA component. For example radar position; firing units position,
ammo and status etc.; Protection values and engagements.

• TrackTest – Simulates air units (or air tracks) sent to the TEWA com-
ponent. For example position, velocity and identity. It also receives
updated from the TEWA about calculated threat values.

• SimMMI – Simulates the interface used to communicate with the
TEWA component, these commands are normally sent by an operator
in the Giraffe Amb. Could for example be Cease Fire orders and man-
ual engagements between firing —and air units. This interface also
determines if the only threat evaluation or both threat evaluation and
weapons calculation should be used in the TEWA.

7.1.2 Linux based, Lab Environment

As described in the Tools chapter, nr. 3, a lab environment that simulates
the Giraffe AMB system is present at Saabs facilities. This environment have
been used in this thesis to evaluate, benchmark and debug the concurrent
TEWA implementation. The simulations have been performed on an 8-core
server with hyper-threading running a Linux operative system. The sys-
tem is implemented in such a way that the different components run on
different JVMs and they are communicating via CORBA interfaces. The
logic part, which contains the TEWA component, is run on the 8 core sever
which means that the TEWA has to share the system resources with other

102 CHALMERS, Master Thesis 2010

components. The other logic components are not that CPU intense and
none of them are implemented to exploit a multi-core architecture, mean-
ing the TEWA can make full use of the system. Also sharing the resources
on the server system are some simulation applications which simulate the
actual radar of the Giraffe AMB. This requires some CPU but this is less then
a percentage of the total computing power, so it is not a problem when per-
forming the simulations and timed runs.

The lab environment is a closed environment with no Internet access,
so to be able to debug the software and to profile it we had to do use the
remote tools present in the applications used.

7.2 Parallelized TEWA: Varying Concurrency Settings

The Parallelized TEWA component has been run using a varying amount
of threads and tasks. To find the optimal settings, the benchmarking utility
from the CELP framework has been used, for more information see Sec-
tion 6.2.2. The benchmarking can be customized to run under different
settings. In this implementation it has been used to test the performance
of the TEWA component with varying task size and a few different thread
settings. The benchmarking is used to find the best settings for concurrent
loops, which the two main loops in the concurrent TEWA are. The result
when running the benchmarking on the threat evaluation loop and on the
weapons allocation loop during heavy load can be viewed in Figure 20 and
in Figure 21.

From the graphs it can be determined that both the threat evaluation and
the weapons allocation works best on around 16 threads and tasks. The threat
evaluation graph shows that the 8 threaded implementation is a bit faster
than the one with 16 threads, but the difference is barely noticeable. The
reasons for this behavior are the hyper threading, rounding of the mea-
surements and the very fast algorithm.

The benchmarking has also been run on medium and low load. The
threat evaluation then is almost negligible and when running the algorithm
on low load the task size and thread size does not matter since the execution
time is so low anyway. One could tweak the performance even further and
maybe gain one or two milliseconds, but at this stage it seems unnecessary.
The weapons allocation is still optimal on 16 threads and 16 tasks and the
graph is almost identical to Figure 21. Since each task created has about
the same execution time as the others, around 16 tasks and threads always
seems to be the optimal setting. When the load is too low this is limited by
the number of tasks that are possible to create from a given loop.

103 CHALMERS, Master Thesis 2010

Figure 20: Benchmarking of the threat evaluation during heavy load.

When using this optimal task and thread settings the scalability of the
TEWA component is as seen in Figure 22, during high load. At medium
system load the scalability is good as well, as seen in table 3 on page 109,
where the execution times during medium loads and full parallelization
level is shown. A decrease of the speedup can be seen per doubling of the
threads, this is due to the sequential part of the component that can not be
parallelized. This is in line with Amdahls Law about possible speedups in
parallelized software. The performance increase is less in the 8 to 16 threads
step, this is reasonable since the Hyper Threading technique only simulates
the extra doubling of available cores.

A summarization of the previous graphs can be seen together with the
sequential test data in table 3 on page 109, where some timings using spe-
cific settings on different loads are shown. The tasks size refers to the num-
ber of tasks that both the threat evaluation and the weapons allocation input
computations has been distributed among. This amount may vary some
but they are about the same in these test runs so one number is used for
both. For most cases in this parallelization it is very efficient to divide the

104 CHALMERS, Master Thesis 2010

Figure 21: Benchmarking of the weapons allocation during heavy load.

computations to an amount of tasks that are equal to the number of cores
and threads used. In the case of low loads there are simply not enough in-
put data to distribute the computations to that many tasks. This is not a
problem though, since the low load computations are very fast, even with
the lower parallelization level. Another note about the low load timing
runs; the total execution time of the TEWA during these runs are so short
that the benchmark graphs showing optimal task and thread settings has
been omitted. That data can be seen in the table in the low load column.

7.3 Parallelized TEWA: Varying Synchronization Methods

Before the TEWA algorithm had been fully parallelized it still contained old
means of synchronization, mostly with a lot of unnecessary synchronized

blocks. To see how the different worker threads in the loop parallelizations
worked when the old synchronization was still present, visual vm has been
used to monitor the TEWA algorithm running live in the lab simulation
system.

105 CHALMERS, Master Thesis 2010

Figure 22: 8-core w. Hyper Threading: The scalability of the TEWA, using optimal
task and thread settings, during heavy load.

The result of the simulation showed a huge difference in how the
worker threads used their time, the result can be viewed in Figure 23 and
in Figure 24. In the old implementation the threads spend a lot of time
waiting for and holding locks (monitor) and in the new implementation no
time is spent on waiting for locks. When a thread is waiting for a lock it
is actually waiting for another thread because another thread is currently
holding that lock. At some points in Figure 23 this is very obvious. The
Figure speak for them selves and a performance increase with almost 50
percent can be observed.

7.4 Timings Comparison of Parallelized and Sequential TEWA

Simulations, similar to the ones performed on the concurrent TEWA, has
been performed on the sequential TEWA as well to compare the two ver-
sions. The difference in execution times under high load can be seen in
Figure 25. As expected the sequential version does not scale at all when

106 CHALMERS, Master Thesis 2010

Running Sleeping Wait Monitor

Time

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 10

Thread 9

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Thread 16

Figure 23: A snapshot displaying the 16 worker threads running with the old syn-
chronization, a lot of waiting/holding locks (monitor) and a long exe-
cution time.

more threads are used since all computation in CPU intense loops, like the
threat evaluation and the weapons allocation, are performed in a single thread
and thus can not distribute the workload over more then one CPU.

The difference in execution times is also clear under medium load as
can be seen in table 3 on page 109. The input size under medium load is
still big enough to allow for good distribution of computations between
different tasks, without the overhead exceeding the gain of parallelization.

In Figure 25, as well from table 3 regarding lower loads, it is very clear
that the concurrent version of the TEWA component is significantly faster
then original sequential version, even in the single-threaded case. This can
not be explained by the parallelization of the CPU intense algorithms, since
they rely on threads to distribute the computations among several CPUs.
The explanation for this is, as described in Chapter 5, that all old synchro-
nization has been replaced in favor for more modern lock free methods
using tools form the java.util.concurrent package. The original code

107 CHALMERS, Master Thesis 2010

Running Sleeping Wait Monitor

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 10

Thread 9

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Thread 16

Time

Figure 24: A snapshot displaying the 16 worker threads running with the new
synchronization methods, no locking is required and the execution time
is greatly reduced.

also contained several layers of synchronization which in many cases was
unnecessary. Some of the optimization can also be explained by other code
optimizations, but not nearly enough to explain all the performance gain
seen in the single threaded case.

Some of the more important data collected from the previously men-
tioned graphs has been summarized in table 3. In this table the great impact
that the parallelization has had on the TEWA component on the execution
times, for all system loads, is clear.

The sequential and concurrent TEWA has also been run on the dual-core
windows based system, results of this are shown in table 4. An interesting
note about this table is that when the thread and task count is increased
above the number of cores the performance decreases. This is a result of
unnecessary overhead due to unused resources when using more threads
and tasks then can be utilized by the system. This table also shows that
the concurrent TEWA performs significantly better then the sequential one

108 CHALMERS, Master Thesis 2010

Figure 25: Comparison of execution times when running the TEWA component
under high system load.

TEWA Execution Time: 8-Core w. Hyper-Threading CPU
Sequential Concurrent

Test Nr. 1 2 3 4 1 2 3 4
Main Loop TEWA TEWA TE TEWA TEWA TEWA TE TEWA
System Load L M H H L M H H
Threads - - - - 16 16 16 16
Tasks - - - - 6 16 16 16
Time (ms) 15 125 67 1065 2 12 <1 65

Table 3: Comparison between the sequential and concurrent TEWA component,
showing the total execution times using different settings.

on this system as well. This is the type of system that is currently used
in the Giraffe AMB system which means that significant performance im-
provements are possible at Saab today, without the need for any hardware
upgrades.

109 CHALMERS, Master Thesis 2010

TEWA Execution Time: Dual-Core CPU
Sequential Concurrent

Test Nr. 1-2 3-4 1 2 3 4
Main Loop TEWA TEWA TEWA TEWA TEWA TEWA
System Load M H M M H H
Threads - - 4 2 4 2
Tasks - - 4 2 4 2
Time (ms) 200 1490 43 42 315 310

Table 4: Comparison between the sequential and concurrent TEWA component
running on a dual-core machine, showing the total execution times using
different settings.

8 Discussion

The results of the TEWA parallelization show good scalability on an 8-core
system, but the scalability with a multi-core system that uses more cores
can be discussed. As Amdahl states in his law, a software system is not
faster than its slowest sequential component. For a system to scale linear to
the number of processor cores, it must be completely parallelized, meaning
that there basically are no such sequential components. The TEWA imple-
mentation does not scale linear, since it still has some sequential parts, but
it scales very well with the 8-core system that has been used for the sim-
ulations. Following Amdahls law, the sequential part of the TEWA will
not increase in performance on a system with more cores, so the perfor-
mance gain will decrease when more cores are used. In the general case
this means that good scalability is always depended on how big a part of a
component that can be parallelized. This is important to take into account
when investing resources into parallelization of software, such as educa-
tion and refactoring. However, the only way to use modern hardware is
to parallelize software, so the pros and cons must be weighed against each
other.

The results show that, achieving a good scalability is done by minimiz-
ing a components sequential parts. The usage of low level constructs such
as synchronized, wait() and notify() should therefore be avoided as
far as possible. However, it can sometimes be hard to avoid for advanced
implementations, the CELP framework uses some locks and the concur-
rency library in Java uses a lot of low level constructs. These constructs are
hard to use, error-prone and hard to get a scalable behavior with, and the

110 CHALMERS, Master Thesis 2010

frameworks and libraries are implemented so that the developers does not
have to use them.

Other important aspects when investing in parallelization is that there
are other programming paradigms, some of which removes one of the main
problems that exists with concurrent programming in Java, shared data. The
most common ones are functional languages such as Ericssons Erlang, Mi-
crosofts F#, Haskell and Scala for the JVM. The advantage of these lan-
guages are that they are designed for concurrency from the start and have a
minimum of, or none, shared data. The main problem with them is that the
programming style is very different from traditional object oriented pro-
gramming that many developers are used to, and are therefore not widely
used.

9 Conclusions

The purpose of this thesis was to review the latest technology for concur-
rent programming in the Java programming language and to parallelize
an existing sequential component, running at Saab Electronic Defence Sys-
tems, making it concurrent and scalable. Based on the research of Java
concurrency and the parallelization of the Threat Evaluation and Weapons
Allocation component, it has been concluded that a lot of software is written
in a thread safe way but with none or very little scalability. The problem resides
in the fact that, up until recently, it has not been necessary to write software
that take advantage of multi-core architectures. This has resulted in that,
many programmers are not used to write scalable concurrent software. Our
research and implementations shows that, concurrent software can be de-
veloped efficiently and safely if: Software is designed for concurrency from the
beginning of the development process and if the developers are educated in Java
concurrency.

A problem seen in Saabs software components, including the TEWA,
was that they communicate with each other synchronously using CORBA,
which complicates parallelization of the components. To be able to safely
parallelize any of Saabs components, the CORBA communication between
components must be handled so it does not disturb important algorithms and paral-
lel computations. The CELP framework was developed to solve this problem
in a general way and also contains tools for parallelizing loops, to allow
for efficient parallel computations that scales to multi-core architectures.
From the research and implementation performed in this thesis the follow-
ing general conclusions can be drawn on the developed CELP framework

111 CHALMERS, Master Thesis 2010

and the Java concurrency library:

• Avoid older tools from before Java 5 and avoid using synchronized blocks,
since they greatly limits how many threads that can access shared re-
sources at the same time. Older tools may also result in safety issues.

• Use modern concurrency tools, as those found in the standard
java.util.concurrent package. They generally allows for many
threads to access shared resources at the same time, thus allowing
for scalability.

• The new Java 7 standard contains some new concurrency tools like
the fork/join framework. This framework, and other news from Java
7, are good for certain problems (divide and conquer problems, in the
fork/join case) but they are in no way any new general tools that should be
used for all problems. Much of the tools from Java 5 and 6 like atomic
variables, the executors framework and the concurrent collections are
more useful in the general case.

• The best scalability and performance increase is achieved with the right tools
and different problems require different tools. The TEWA parallelization
and the experimentation section both shows that different problems
are solved best with different tools. Tools from the entire Java concur-
rency library have been used, and just because a certain tool is more
recent than some other it does not mean that it is better for a certain
implementation.

• Design for concurrency from the beginning, make use of known design pat-
terns and use framework- or library tools to handle parallelization in a
general way. This can be achieved by using design patterns like the
ones mentioned in the theory chapter, understanding Javas Memory
Model and using the CELP framework from this master thesis.

• Parallelize CPU intense parts of the programs, such as loops, by dividing
them into tasks which can be computed concurrently, for increased
performance and scalability. This is seen in the results of the paral-
lelized TEWA component where modern concurrency tools are com-
bined with loop parallelization tools of the CELP framework. This has
resulted in the TEWA component scaling very well and a speedup of over
fifteen times was measured on an 8-core system with hyper-threading.

• Allow for time critical features by cancellation of long running compu-
tations. This is especially important in CORBA based components

112 CHALMERS, Master Thesis 2010

where important events can be received from other components dur-
ing a lengthy task. By using the CELP framework, long running tasks
can be canceled fast and safely, allowing for important time critical features.
This is seen in the parallelized TEWA component where a cease fire
event from other another component may cancel a running task, like
weapons allocation, very fast. This adds much better determinism
to the component than just waiting for a synchronized block until it
unblocks, which was the case in the sequential TEWA.

• Educate for concurrency. Implementation of concurrent software varies
a lot from traditional sequential software and developers need to be
aware of the tools and design patterns available. To be able to write
concurrent software that scales well to multi-core architectures in a
safe way, education is needed. Otherwise the result might be poor
scalability and safety issues.

It is important to take extra note about the last point regarding educa-
tion, since developing concurrent software requires a new way of thinking for the
developer. This regards issues such as how shared data is handled in the
Java Memory Model and when loops should be run in parallel instead of
sequential, all these issues requires education to be handled correctly. Since
developing concurrent programs with scalability properties is the only way
to make use of modern multi-core processor architectures, the cost required
for such education is likely to be covered by the features of the new concurrent
software. For example, as in the parallelized TEWA component, where the
number of air- and firing units that the system can handle has been greatly
increased, compared to the sequential version. It should also be noted that
if using modern concurrency tools instead of older synchronization, like
synchronized blocks, correctly, the components are likely to be faster even
in the single CPU case. This can also be seen in the TEWA, which is twice as
fast in the single CPU case. The parallelized TEWA component also uses
the CELP framework which, to be used efficient and safe, requires that it
is used with good knowledge of how concurrency in Java works, and thus
requires education to be used as well.

10 Future Work

The main future work should be done on the CELP framework and verify-
ing the usage of it. Possible extensions could be:

113 CHALMERS, Master Thesis 2010

• Allow for a single CriticalTaskExecutor to be shared among
threads, e.g. two concurrently running main loops, safely. That is,
to make it thread safe. Currently, it is only supported to be used in
one thread safely.

• Limit the usage of the important classes in the CELP framework, to
avoid problems with shared data when used in a multi-threaded con-
text.

• Implement critical tasks that can not be interrupted and implement
different priorities, similar to the event handling.

• Write more tests for validation of the framework.

• Extend the benchmarking utility for more customizable benchmark-
ing and more output.

The TEWA implementation does not execute on its own in the giraffe
system and if an overall performance increase is desired the rest of the
components in the Giraffe AMB should be parallelized as well. This could
require some kind of interface between the different components to tweak
the concurrency setting to maximum.

The TEWA component is not designed for concurrency to start with and
a lot performance and security could be gained if it would be rewritten with
that i mind from the start. If a lot more cores are added to the platform
some of the less performance intense loops could be required to parallelize
for the system to scale as much as possible.

References

[1] Brian Goetz, Java Concurrency in Practice, 2006.

[2] Clay Breshears, The Art of Concurrency, 2009.

[3] J Gosling, B Joy, G Steele, G Bracha The Java Language Specification,
Third Edition, 2005

[4] I.T. Foster, Designing and Building Parallel Programs, Addison-Wesley,
Reading, MA (1994).

[5] Danny Dig, John Marrero, and Michael D. Ernst, Refactoring Sequen-
tial Java Code for Concurrency via Concurrent Libraries, 2008

[6] WN Scherer III, D Lea, ML Scott, Scalable synchronous queues, 2006

114 CHALMERS, Master Thesis 2010

[7] Maged M Michael, Michael L. Scott, Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms, Department of
Computer Science University of Rochester, 1996

[8] Brian Goetz, Java theory and practice: Stick a fork in it, Part 1, IBM de-
veloperWorks, 2007

[9] java.util.concurrent package source(including
Java 6 and 7 updates), http://gee.cs.oswego.edu/cgi-
bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent.

[10] Doug Lea, A fork join framework for java, Proceedings of the ACM
2000 conference on Java, State University of New York at. Oswego,
2000.

[11] Doug Lea, Concurrency: where to draw the lines, research.ibm.com,
2004

[12] The Java HotSpot Options Page, internet:
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp.

[13] The Java HotSpot Documentation, internet:
http://java.sun.com/javase/technologies/hotspot

[14] Tuning Java GC , internet: http://java.sun.com/javase/technologies/hotspot/gc

[15] FindBugs Webpage, internet: http://findbugs.sourceforge.net

[16] Concurrency JSR-166 Interest Site, internet:
http://gee.cs.oswego.edu/dl/concurrency-interest/.

[17] API specs for package jsr166y, internet:
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/.

[18] Java SE 6 API, internet: http://java.sun.com/javase/6/docs/api/.

[19] Java Specification Request(JSR) #166: Concurrency Utilities, internet:
http://www.jcp.org/en/jsr/detail?id=166.

[20] Java 7 concurrency package(jsr166y) source, internet:
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166y/.

[21] Java 5-6 concurrency package(jsr166x) source, internet:
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166x/.

[22] Setting up a JMX connection, internet:
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

115 CHALMERS, Master Thesis 2010

Appendices

A List of Tools and Libraries

Tools
Name homepage Desc.
Eclipse IDE for Java eclipse.org Integrated Development and

debugging environment.

Doxygen doxygen.org API and documentation gen-
eration. Can be used together
with graphviz.

Graphviz graphviz.org Graph generating software,
can be used with Doxygen to
generate method

Eclipse Omondo ejb3.org UML generation and man-
ual design, integrated into
Eclipse.

FindBugs findbugs.sourceforge.net Automatic bugs detection
tool.

JConsole java.sun.com Monitor applications running
on Javas virtual machine. In-
cluded into Java JDK since
version 5.0

VisualVM visualvm.dev.java.net Monitor and visualize Java
applications. Includes sup-
port for profiling.

Perfmon Montor Windows operative
systems for data such context
switching frequencies.

Table 5: Table of tools

116 CHALMERS, Master Thesis 2010

Libraries
Name homepage Desc.
jsr166y.jar gee.cs.oswego.edu/dl/concurrency-interest/ Java 7 concurrency package.

JFreeChart www.jfree.org/ Open source chart generation
library.

Batik xmlgraphics.apache.org/batik/ SVG graphics generation
library.

Table 6: Table of libraries

117 CHALMERS, Master Thesis 2010

B CELP Framework Class Diagram

Figure 26: A class diagram overview of the CELP Framework.

118 CHALMERS, Master Thesis 2010

C Windows Simulation Environment

Figure 27: A print screen showing some of the running applications that simulate
the TEWA component on a Windows machine.

119 CHALMERS, Master Thesis 2010

	Introduction
	Method
	The Study stage
	The Implementation stage

	Java Concurrency and Theory
	Concurrency Concepts
	Java 5 and Java 6 Concurrency
	The Task Execution Framework
	Collections
	Other Tools

	Java 7 Concurrency
	Fork/Join
	Phaser
	ThreadLocalRandom

	Java Virtual Machine Tuning
	Java Ergonomics
	Garbage Collecting

	Code Analysis
	Findbugs
	Concurrencer

	Design
	General Design
	Design Patterns

	Theory Conclusion

	Tools
	Development and Debugging
	Analysis
	Simulation Environments

	Experimentation
	Merge sort Implementation
	Fork/Join Implementation
	ThreadPoolExecutor Implementation
	Comparison

	Matrix Multiplication
	Barrier Implementation
	ThreadPoolExecutor Implementation
	Fork/Join Implementation
	Comparison

	Minimum Spanning Tree
	ThreadPoolExecutor Implementation with ConcurrentLinkedQueue
	ThreadPoolExecutor Implementation with SynchronizedList
	ThreadPoolExecutor Implementation with Synchronization Block
	Comparison

	Producer/Consumer based Graph Viewer
	Synchonized LinkedList Implementation
	LinkedBlockingQueue Implementation
	Comparison

	Experiment Results
	Performance and Scalability
	Fork/Join Framework and ThreadPoolExecutor
	Context Switching vs. Work Stealing
	Memory
	Collections
	Atomic Variables

	Threat Evaluation and Weapons Allocation Component
	Sequential Implementation
	Problem

	Parallelization
	Method
	Exchanging Collections
	Exchanging Primitive Types for Atomic Wrappers
	Parallelizing Loops
	CORBA Event Handling

	Concurrent Event-Handling and Loop Parallelization Framework (CELP)
	Introduction
	Implementation
	Loop Parallelization
	Benchmarking Tool
	Critical Task Executor
	Event-Handling

	Simulation
	Setting up the Environments
	Windows based, Basic Environment
	Linux based, Lab Environment

	Parallelized TEWA: Varying Concurrency Settings
	Parallelized TEWA: Varying Synchronization Methods
	Timings Comparison of Parallelized and Sequential TEWA

	Discussion
	Conclusions
	Future Work
	Appendices
	List of Tools and Libraries
	CELP Framework Class Diagram
	Windows Simulation Environment

