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Abstract 

 

Music is an important part of most people’s lives; it is dominantly created by humans. 

In this thesis, an alternate source of music, which is hardware in the form of a field 

programmable gate array (FPGA), is presented. The designed FPGA can create and play 

its own music. The music is composed by an algorithm, which was developed in 

MATLAB by combining genetic programming concepts with music theory in order to 

increase performance of the composer. Initially, a population made of composition 

pieces created with respect to harmony, is generated. Later, the population goes through 

genetic processes resulting with the final composition. The fitness function that 

determines the individual’s ability to survive was optimized through listening tests. The 

virtual instrument was also developed in MATLAB as a waveform and an attack-decay-

sustain-release (ADSR) envelope by recording and analysing an acoustic-electric guitar. 

The synthesizer like approach allows use of less circuit elements then does a physical 

model. 

 

Hardware implementation is done in a Xilinx University Program Virtex II-Pro board. 

The audio coder/decoder, AC97 is used as the interface between the digital-to-analog 

converter (DAC) and the circuit block that handles the composition. The sampling 

frequency in the FPGA implementation is kept at 9.765 KHz due to problems with the 

design suite and a smaller population is employed in order to fit into the FPGA. The 

compositional performance of the implementation in FPGA is comparable to the 

performance of the algorithm in MATLAB.   

 

This work shows that a portable music player that composes its own music seems a 

possibility in the future with improvements in compositional capability or the sound 

quality of the instrument. Introduction of a more complex generation conditions and a 

more complex elimination conditions could be an improvement. Another improvement 

would be to enable the creation of polyphonic compositions rather than monophonic 

compositions. On the instrument side, one possible improvement can be using 

industrially used sampled instruments. 
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1. Preface   
 

Since pre-historic ages, music has been a part of most of the cultures [1, 2]; and for 

most of the people, music is an important aspect of their lives. Researchers show that, 

on average a person listens to music around from 1.72 [3] to 2.5 [4] hours intentionally 

excluding the unintentional music that we hear such as music coming from stores, cars, 

cafes, cell phones, television shoes, street performers. Listening to music changes our 

emotions [1, 5, 6], our moods [7], our efficiency [3], our shopping behaviour [8] and 

even our eating behaviour [9, 10].  

 

The music that we listen to comes from many sources such as radios, televisions, 

computers, internet, personal audio players, concerts and shows; and mainly it is 

recordings of compositions, performances of compositions or improvisations made by 

humans. The algorithmic composition approach tries to change the main source of 

music from humans to computers or machines. 

 

Algorithmic composition, never a mainstream field of study, has long been a topic that 

has captured attention of a number of composers. However, the earlier approach was 

mostly to imitate the composer while later approaches include machine learning to 

develop an intelligence that can compose music. Examples of this kind of works exist 

where the algorithm is in software and is operated in a computer either aiding the 

composer [11] or composing itself [12]. 

 

1.1. Aim of the Thesis 

 

In this thesis, the aim is to explore and understand the possibilities of implementing 

algorithmic composition as hardware in the form of an integrated circuit, which 

composes music for listeners or consumers. An ideal result of this work is to come up 

with a device like an mp3 player, which will compose and play its own music at the 

press of a button. By adding another option to the vast number of sources of music, I 

hope that new and different compositions will be achieved, introducing an improved 

understanding for music and different emotions caused by music. 

 

1.2. Method of the Thesis 

 

For the thesis work, initially previous works on algorithmic composition and virtual 

instruments are studied. After the literature search, a composition algorithm and an 

accompanying virtual instrument is developed in MATLAB. The algorithm is fine- 

tuned with listening tests, where the tests are developed by considering psychoacoustics 

and psychology. Finally, after all the development has been finished the design is 
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implemented on FPGA with Verilog and Very High Speed Integrated Circuit Hardware 

Design Language (VHDL). 

 

1.3. Limitations of the Thesis 

 

The main limitation of the thesis work is the time limit. The time of a master’s thesis 

work in Chalmers University of Technology is 20 weeks. During the development and 

research phase of the project a number of ideas have been discarded in order to reach 

the designated end, which is to see whether it is possible to have a portable audio player 

with the ability to compose and play satisfactory songs. 
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2. Introduction to Algorithmic Composition  
 

In this chapter, I will introduce algorithmic musical composition and talk about its 

history, starting from the early approaches to current works and trends. The conclusion 

at the end of this chapter will lead to the development of my own algorithm. 

 

2.1. Background 

 

An algorithm is a step-by-step solution to a problem where the number of steps is finite, 

thus algorithmic composition is using a systematic method for composing music. Even 

though, algorithmic composition is sometimes taken as electronic music, not every 

algorithmic composition is electronic. The algorithm can be done with pen and paper. 

Clarence Barlow argues that he can reach the same music without a computer while 

using the same algorithms [13].  

 

Algorithmic composition, even though is a relatively new name, have long been a point 

of interest. Ancient Greek philosophers such as Pythagoras, Ptolemy and Plato have 

mentioned the formalism and the mathematical rules that lie beneath the music [14]. 

Even, Plato calls the music created by the movements of the planets “the music of the 

spheres”. Later, in Middle Ages, algorithmic composition could be seen in canonical 

songs [15] where the composer was only creating a piece of melody and the rest of the 

song were derived from the core. In the 18
th

 century, some composers including Mozart 

and Haydn used algorithmic techniques to create a game where the music is composed 

by dice or just saying random numbers [16]. Works of John Cage include algorithmic 

composition where movements of a chess play are used for composing. However, it 

seemed inevitable to use computers for composing. The earliest example of computers 

used for composing, dates back to 1957 with the Illiac Suite [17].  

 

2.2. Types of Algorithms 

 

Today, different types of algorithms are used for composing. Mainstream algorithms 

include rule-based algorithms, grammar based algorithms, stochastic processes, Markov 

chains, chaotic algorithms, genetic algorithms and algorithms based on artificial 

intelligence. Some composition systems also include sound synthesis; thus, they can 

play the output composition. Examples for all the types is given in following sections. 

 

2.2.1. Rule-Based Algorithms 

 

With rule-based compositions, certain rules are used for forming up a composition. 

These rules are generally generated by investigating important works, and they are 

constructed such that the rules also define what will come next. Examples include 
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Ebcioglu’s CHORAL, which composes chorals, where the more than 350 rules are 

derived from works of J. S. Bach [18]. 

 

One criticism [19] of rule-based algorithm is that, since the composer, either a human or 

a computer, is limited by well-defined rules, the resulting music is not something that is 

exceedingly new. Thus, even though rule-based algorithms produce correctly sounding 

music, they do not introduce compositions that have not been heard before. On the other 

hand, the tedious work of extracting rules increases the understanding of the dynamics 

of composition. 

 

In this method, the composer’s main job is to collect or to extract rules for the program, 

while the output music carries resemblance to the pieces, which the rules are extracted 

from. 

 

2.2.2. Grammar-Based Algorithms 

 

Formal grammars are one of the main topics in computer science and linguistics, where 

the initial aim is to formalize the spoken languages and the programming languages. 

Grammar-based composition takes music as a language; later it analyses and formalizes 

music like a language. L-systems are also used as grammar based composition [13, 20]  

 

2.2.3. Stochastic Algorithms 

 

Stochastic processes include probabilistic methods, as purely random choosing making 

up the simplest form. The introduction of weights and selection that is more intelligent 

increases the quality of the compositions. 

 

The weighing functions can be generated by investigating compositions; later these 

statistics can be used for building a new composition. Markov chains are also used 

widely for composing. A Markov chain holds the probabilistic information in which a 

certain state can be followed by other states. Xenakis is among the pioneers in the use of 

stochastic processes for composition [21]. On the hand, even though randomness can be 

achieved many ways, random functions in software are pseudorandom, meaning that 

they are generated from deterministic processes such as the clock of the processor. Yet, 

completely random values can also be achieved using various noise sources in 

electronics such as radioactive decay, flicker noise, 1/f noise [22] or analog-to-digital 

converter (ADC) offset. Those techniques are also preferred in cryptology and security 

for their higher randomness. 

 

2.2.4. Chaotic Algorithms 
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The research in irregularity, non-linearity in nature has given birth to chaos theory. Use 

of chaos theory in music has two main applications; small-scale applications such as 

sound synthesis and large-scale applications such as composition. Fractals, which are 

equations that can output equations that are similar to the parent functions, are used as 

the main tools for computation. In addition, one must not forget that chaos is not 

random. Instead, it is non-linear. Thus, the output composition is unexpected, but has a 

general pattern. One interesting point is that since chaotic systems are highly sensitive 

to initial point, the result of an algorithm or a program might change due to any 

circumstances such as the computer used for running the program [23]. 

 

2.2.5. Artificial Intelligence Based Algorithms 

 

The main advantage of systems with artificial intelligence is their ability to learn. The 

system, Experiments in Musical Intelligence (EMI) has a database of rules like the rule-

based algorithms, yet the system also has the capability to create a database by itself 

[24]. Methods based on artificial intelligence have been applied on composition, 

improvisation and performance-based systems in jazz [25]. 

 

2.2.6. Genetic Algorithms 

 

With genetic algorithms, systems with evolution capability have been designed. 

Evolutionary algorithms are inspired after biology and biological concepts such as 

mutation, evolution and natural selection [26] and the algorithms search for optimum 

solutions. However, in the area of art in addition to optimum solutions other interesting 

solutions that result in satisfying aesthetics are also searched [27].  

 

Composing with genetic algorithms requires also an entity in which selection methods 

are defined. The composed music parts either survive or die with respect to the selection 

following a Darwinist fashion. In some cases, three entities are developed for 

algorithmic composition where one entity composes, another gives feedback and the 

last one evolves the composition [10, 11, 28, 29, 30]. 

 

2.3. Conclusions 

 

Algorithmic composition is an interesting interdisciplinary field, which mixes music, 

mathematics, physics, electronics, computer science and psychology. The aim of 

algorithmic composition is not only to recreate the creativity of a composer but also to 

understand and exceed it in order to reach new genres of music or unimagined types of 

compositions. 

 

On the other hand, the future trend in algorithmic composition seems to lie in hybrid 

solutions with an ability to listen and understand where the listening or understanding is 
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mainly implemented by evolving algorithms such as genetic algorithms or artificial 

intelligence [27, 29, 31, 32].  
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3. Introduction to Virtual Instruments  
 

In this chapter, virtual musical instruments are introduced. The introduction is followed 

by the literature search about the types of instruments with respect to implementation 

and realization issues. Finally, the chapter ends with a discussion and decision on 

implementing a virtual instrument by digital circuitry.  

 

3.1. Background 

 

With the advances in technology, a new set of musical instruments called virtual 

instruments have spawned. These instruments can be placed in two categories. The first 

type comprises the instruments that offer a new way of interaction between the player 

and the instrument.  Examples include a pen, which creates sounds according to the 

writing or drawing [33], an enhanced saxophone that adds sound effects based on the 

players gestures [34] or video tracking based instruments where the instrument creates 

sounds based on the movements of hands or dance figures [35]. These instruments all 

have a new kind of feedback from the musician to the instrument via use of sensors, 

accelerometers, microelectromechanical systems (MEMS) devices and optics. 

 

The second type of virtual instruments comprises instruments that create sound in a 

computer using either specific software or a hardware controller. Musical instrument 

digital interface (MIDI) is a standard and well-known example of implementation. 

These types of instruments employ either recorded samples or functions that create the 

sound dynamically. The functional types can be implemented in software by specific 

design kits in the form of certain formats. 

 

3.2. Methods for Realizing Virtual Instruments 

 

In this thesis, according to the above definitions, a virtual musical instrument of the 

second type will be implemented. It can be said that there are three methods for 

designing such an instrument. These are physical models, synthesizer method and 

wavetable method. 

 

3.2.1. Physical Models 

 

Physical models, as indicated by their name, try to model physically. However, what 

they model is not the sound, rather it is the instrument or any sound generating object 

itself. Using a physical model of an object is useful when doing an audio-video 

synthesis. On the instrument side, the physical models offer accuracy for some 

instruments that other methods cannot give. The reason is that physical models create 
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dynamic sounds that can duplicate the style of playing or the detailed and unique 

interactions between each note and the instrument. 

 

Examples include the modelling of a piano [36] as a combination of the hammer, the 

string and the board. The hammer introduces non-linear differential system based on the 

speed of the keys. The string is modelled as a sum of two travelling waves and the 

soundboard is modelled as a 2000-tap finite impulse response (FIR) filter. Hardware 

wise, the implementation requires a number of filters and digital waveguides and the 

stability conditions must be met. In addition, there exist piano models without the board 

[37], violin models focusing on vibrato effect [38], guitar model [39, 40, 41]. More 

information on physical modelling of instruments can be found in “Virtual musical 

instruments – natural sound using physical models” [42].  

 

3.2.2. Synthesizer Method 

 

This method is used in the synthesizers. In this method, the aim is to produce a sound 

that resembles the sound of the target instrument. Simply, a periodic waveform is 

combined with an envelope to form the sound signal. The periodic waveform can be  a 

simple sinusoidal, triangle, square, noise or more complex waveforms, which can be 

seen as the sound of the string, while the envelope adds the sound characteristic of the 

body or the room. 

 

3.2.3. Wavetable Method 

 

In fact, the wavetable method does not include any kind of sound generation. Instead, it 

is look-up-table method where recorded data is used. The sound quality of these 

instruments is based on the recorded instrument and recording gear and techniques, thus 

the quality can be as good as that of the instrument itself. One limitation of this method 

is that it cannot be used to realize new instruments. 

 

3.3. Conclusions 

 

In this project, a real-time virtual instrument will be designed in software and it will be 

implemented in an FPGA. The physical models, even though they are attractive due to 

the possibilities of sounds it offers, will not be used. The reasons for this decision are 

the design complexity of the mathematical and physical parts, and the implementation 

problems in hardware. The possible hardware problems can be argued as the necessity 

of a large circuitry for accuracy and stability reasons. Thus, in order to have a dynamic 

design the synthesizer method will be used. Yet, the single most important design 

criterion should be the performance of cognised sound, rather than the sound itself. 
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4. Software Implementation 
 

In this chapter, I explain the algorithm that operates as the composer. The algorithm is 

developed by using genetic programming and tonal harmony in MATLAB. Thus, there 

will also be related introductory information about MATLAB, genetic programming 

and tonal harmony. The pseudo codes can be found in Appendix A. 

 

4.1. MATLAB 

 

MATLAB is chosen as the algorithm development platform in software rather than any 

of languages including more generic languages like C or more specific languages like 

MusicXML. The main reasons behind choosing MATLAB can be summarized as 

follows. 

 

 Technical computing language: It allows easy implementation of mathematical 

functions such as signal creation, vector multiplications, statistical calculations, signal 

processing and filtering, which will be necessary for the thesis. 

 Toolboxes for various specific topics exist or they can be designed. Toolboxes like 

MIDI, genetic programming, signal processing might be necessary. 

 

4.2. Algorithm 

 

After the literature study described in Chapter 2, I decided to create the algorithm based 

on music theory and genetic programming. The initial study shows that the composition 

process can benefit greatly from genetic programming. With the introduction of initially 

creating a number of compositions and later choosing the best, the performance is 

expected to be better than a process, where no kind of iteration is allowed. 

 

4.2.1. Genetics and Evolution 

 

As briefly mentioned in Chapter 1, genetic programming is inspired by biology. It 

introduces concepts like evolution, survival and generation to create an artificial 

intelligence. The aim is to give the computer the ability to start from a number of partial 

solutions and improve them in order to reach the final solution or the final code. 

 

In order to provide a better understanding of the thesis, definitions of the genetic 

programming terms that are used in this work are given below [43]. 

  

Individual: In genetic programming, an individual is the unit partial solution that will 

form the final solution. The definition of the individual is important as it defines the 

structure of the algorithm.  
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Population: Population defines the number of individuals in the society. The number of 

individuals in a population increases the possibility of existence of fitter individuals 

with the cost of resources. In biology, these resources are food, water, shelter etc; while 

in genetic programming, resources mean complexity, power, memory and area. 

 

Fitness: In biology, fitness of an individual determines its ability survive conditions 

such as climate changes, food shortage and existence of a predator. In genetic 

programming, by using a fitness function one can eliminate the weaker individuals, thus 

the next generation of individuals can be created with fitter individuals thus reaching the 

fittest individual. The fitness is defined via a fitness function, which employs the 

survival of the fittest in this project. 

 

Tournament: With the employment of a tournament, the elimination process is not 

done on the whole population rather the elimination is done via direct comparison of 

two individuals. Thus, due to match-ups an individual may end up in a position that is 

much higher than the position it would be if a regular sorting were used. This may result 

with more variety if not fitter. It is also possible to employ tournaments where the 

participants are a randomly chosen subset of the whole population. 

 

Crossover: In biology, during meiosis reproduction crossover provides the variability 

through the exchange of genes in the chromosomes. In genetic programming, this can 

be achieved by exchanging information between individuals.  

 

Reproduction: In biology, reproduction means the production of an offspring and the 

offspring might have the same genetic information depending on the life form. 

However, in genetic programming, reproduction is the pass of an individual from one 

generation to another without any change.  

 

4.2.2. Music Theory 

 

Music theory is the study of music that investigates and analyses the working structure 

of music. The field has scholars focusing on music theory, psychology, acoustics, 

physics, physiology and psychoacoustics. Below are the explanations of the musical 

terms used in this thesis. 

 

Temperament: Temperament is a term related to the tuning of the instruments; thus, it 

determines the actual frequencies of the notes. There are two types of temperament; 

they are just temperament and equal temperament. In just temperament, each 12 notes in 

an octave have the correct frequency. In just temperament, different notes are realized 

by dividing the length of a string into certain ratios. However, this is not implementable 

in most of the instruments as once the notes are realized in a certain key, notes in other 
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keys will be off since the string is divided with respect to the initial key. In those cases, 

equal temperament is used. Equal temperament is built by keeping the frequency of an 

octave as in the just temperament, while adjusting the other notes so that they are all 

slightly off in a way to compromise the over all accuracy [44]. The relative frequencies 

in the equal temperament can be seen in the following Table 1. 

 

Place in a Major Scale Interval Relative Frequency 

1 Unison 1.0000 

#1 or ♭2 
Minor Second 1.05946 

2 Major Second 1.2246 

#2 or ♭3 
Minor Third 1.8921 

3 Major Third 1.25992 

4 Fourth 1.33483 

#4 or ♭5 
Diminished Fifth 1.41421 

5 Fifth 1.49831 

#5 or ♭6 
Minor Sixth 1.58740 

6 Major Sixth 1.68179 

#6 or ♭7 
Minor Seventh 1.78180 

7 Major Seventh 1.88775 

8 Octave 2.0000 

 

Table 1: Relative Frequencies of Tones in an Octave 

 

Scale: A scale is a set of notes from the 12 notes listed in Table 1. A scale has a 

reference, starting note, which is called the tonic, and the other notes in the scale are 

selected with respect to the tonic. Scales can include different number of notes, while 

most known scales like major and the minor scale have seven notes in them. Chromatic 

scale is the only scale that has 12 notes, where all the steps between the notes are 

chromatic and hence the name of the scale. 

 

4.2.3. Scales 

 

To limit the dissonancy and increase the tonality of the songs composed, libraries were 

created by using different scales. Even though, this ensures that the compositions will 

not wonder off-key notes, this also limits the sources that the algorithm can use. Thus, it 

can be seen as Rawls’ maximin [45] approach. 

 

The structure of MATLAB allows easy use of any scales or any signal at any frequency. 

All the scales have the tonal at A and in the A key. In addition, all the libraries are 

constructed around the note A4, which has a frequency of 440 Hz in equal temperament 
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and feature 16 notes for memory concerns. The number of notes is chosen as 16 since, it 

at worst gives two octaves of a scale and 16 can be index with four bits while using all 

the numbers generated efficiently. The scales that have been used in MATLAB 

implementation are as follows: 

 

 Byzantine Scale 

o A – A# – C# –D – E – F – G# 

 Be-Bop Scale 

o A – B – C# – D – E –F# – G – G# 

 Chinese Scale 

o A – B – C# – E – F# 

 Hungarian Gypsy Scale  

o A – B – C- D# – E – F – G  

 Major Scale 

o A – B – C# – D – E – F# – G#  

 Minor Blues Scale 

o A – C – D – D# – E – G  

 Minor Scale 

o A – B – C – D – E – F – G  

 Spanish Scale  

o A – A# – C# – D – E –F – G  

 

4.2.4. Fitness Function 

 

The fitness function concept, as introduced in Section 4.2.1 is a very important feature 

in genetic programming since it decides which individuals will be used and which will 

be discarded. However, one problem of using genetic programming in music is that 

even though the genetic algorithms evolve and search for the fittest or the optimal 

solution, there is no such solution in music since good music is a matter of personal 

preferences. 

 

In this work, a number of fitness functions, which are in fact functions of mean and 

variance, are developed. The final fitness function, which is implemented in the 

hardware, is determined via a set of listening tests. 

 

The inclusion of mean in a fitness function aims for the compositions that are not stuck 

either in the flat end or in the sharp end of the frequency spectra. This is done by 

calculating the mean of each individual and subtracting it from the index of the tonal, 

which is A4. The increase in the absolute difference between the mean and the tonal 

decreases the fitness of that individual. 
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On the other hand, variance is added to the fitness function in order to balance the effect 

of mean. If only mean is used as the fitness function, an individual that only has the 

tonal will be the fittest. Thus, in order to favour individuals that span a larger portion of 

frequency spectra, variance is included in the fitness function. I have designed the 

fitness function to be such that if the difference between the maximum variance in the 

population and the variance of the individual increases, the fitness of the individual 

decreases. 

 

In addition, the Hurst exponent is also considered as another dimension for the fitness 

function. However, for hardware concerns, it has not been implemented. The Hurst 

exponent is a number between 0 and 1. If the Hurst exponent is 0.5, it means that the 

distribution is random and the number of increases is equal to number of decreases. On 

the other hand, if it is larger than 0.5, it means the distribution has an increasing trend 

and if it is smaller than 0.5, it means the distribution has a decreasing trend. Finally, the 

fitness function can be summarized as the following formula: 

 

(tonic of the scale)-(mean of an individual) + (max variance in the population)-

(population of an individual) 

 

 

4.2.5. Structure of the Algorithm 

 

The flow of the algorithm can be seen in Figure 1. Each individual is a set of pitches 

and they are initially created using harmony knowledge and a random number 

generator.  The first pitch of the sequence, which is the first gene of the individual, is 

selected as the tonic of the key. The following pitches are decided via the random 

number generator.  

 

True random number generators require physical actions such noise from the circuits, 

atmospheric noise, a uniform dice or a coin. On the other hand, pseudo-random events 

are algorithmically computer generated deterministic number, which can satisfy some of 

the statistical tests for randomness [46]. The “randi( )” function of MATLAB is used as 

the pseudo-random number generator. It gives uniformly distributed integers from 1 to 

the defined limit. The random generator is not suitable for security reasons; also, the 

randomly generated numbers can be recreated by initializing the function with the same 

seeds.  

 

The range of the random generator is   . It means that a pitch can at most be 3 notes 

flatter or 2 notes sharper than the previous one. The reason behind such a limitation is 

that it has been shown that humans [47] prefer smaller changes in frequency in 

sequential notes and preliminary sound tests have also proven so. The most preferred 

movement is chromatic while certain leaps like perfect fifth or an octave are also 
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accepted generally. The algorithm is allowed to wander in both directions with equal 

probability except for at the boundaries, where the current pitch is either the sharpest or 

the flattest in the library. Thus, at the boundaries, the algorithm is encouraged to wander 

away from the boundaries. 

 

Tournament Tournament

Sorter

4th

3rd

2nd

1st

Pitch 

Generator

Pitch Generator 

Module

Individuals 

Carrying Pitch 

Information

Tournament w.r.t. 

Fitness Function

Fittest Two 

Individuals 

Survive

Survivors are 

Ordered w.r.t. 

Fitness Function

1st (Fittest among 

the Survivors)

2nd

3rd

4th (Least Fittest 

the Survivors)  
Figure 1: Flow of the Algorithm 

 

Once, the desired number of individuals are generated, the tournament starts. Here the 

size of the pitch sequences pool or the population is a trade-off between the 

computational power and performance of the algorithm. As the size of the population 

increases, the possibility of having a fitter and different individual increases. 

Simulations in the software implementation have shown that populations of at least 64 

individuals are necessary in this setup to have sufficient variety.  The sufficiency is 

determined by the population size that can provide the above-mentioned different 

fitness functions with different fitter individuals. 

 

Since there are two populations, two tournaments occur. One design question here is 

whether to have a tournament or a fitness proportional selection, which is the type of 

competition where all the individuals are sorted with respect to their fitness value. Even 

though, a tournament is computationally more complex and slow it might result in a 

better variety. In the regular competition, the fitter individuals will always end up as the 

survivors, in a tournament due to match-ups it is possible for an individual to end up 

with a rank that is higher than its fitness value suggests. This also explains why there 

are two different populations and tournaments, combining both populations and having 

a single tournament increases the chance that fitter individuals will be eliminated. Thus, 

I decided to use two independent tournaments where the finalists of the tournaments 

survive and the rest is destroyed. 
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Thus, at the end of the tournament section the algorithm is left with four sequences of 

pitches. These individuals are ordered with respect to their fitness values, and the final 

sets of pitches that will be used in the song are created as their children with crossovers 

between the individuals. This process can be seen in Figure 2. 

 

1st 2nd

3rd

4th

1st Part of 

Composition

3rd  Part of 

Composition

2nd Part of 

Composition

4th Part of 

Composition

 
Figure 2: Crossover Map 

 

Since there is no deterministic optimum solution that the program is trying to reach, no 

iteration is done. A single run of the algorithm ends with the second generation. 

 

The rhythm generator is independent of the pitch generation process. The rhythm 

generator determines the durations of each pitch and the occurrences of rests. Again, 

four different rhythm sequences of eight notes are produced, each are looped a number 

of times such that the first part of the song is composed of the first set of final pitches 

and the first rhythm sequence looped enough times. The four different rhythm 

sequences are generated with different aims, such that some have longer notes, while 

some are faster or some cannot include rests. The aim of creating a limited number of 

rhythm elements such as eight and looping them is to employ the musical memory of 

humans, which is reported to be between 2 to 10 seconds [47], so that the mind has a 

repetitive pattern to follow. 

 

Finally, a composition is achieved where initially a theme, which is in fact the fittest set 

of pitches, is introduced. Later, the theme is evaluated as the song deviates both 

rhythmically and melodically away from the main theme. At the last part, song makes a 

subtle return to theme by using the first-order child of the original theme. 

 

4.3. Virtual Instrument  

 

As described in Chapter 3, there are a number of ways to implement a virtual 

instrument. In this project, due to time limit, numerical or physical modelling of an 

instrument is not done. Instead, for creating a virtual instrument, synthesizer approach is 

selected.  
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In synthesizers, a periodic waveform and an envelope define the sound.  The envelope is 

composed of four elements: attack, decay, sustain and release and hence called ADSR. 

Attack represents the time where the amplitude of an instrument starts from zero to its 

maximum value. Decay represents the time where the amplitude decreases to the stable 

level. Sustain represents the main sequence of the sound and release represents the time 

where the sound level returns to zero.  

 

4.3.1. The Method 

 

Once the synthesizer approach has been selected, the methods for extracting the 

coefficients of ADSR and the periodic waveform are searched. One must remember that 

the analysis methods in this works do not have to be implemented in real time, however 

the amount of information necessary to reconstruct the sounds is important as the 

reconstruction will be done in real time. 

 

For the envelope, two different methods are found. Once the envelope is extracted from 

the signal, the corner points for the ADSR can be found either by using a differentiation 

method or a threshold method. The differentiation method is used in this work since it 

has been reported to detect the points more precisely [48, 49]. 

 

For the analysis of the periodical waveform, even though additive synthesis is seen as 

the most flexible and useful method, other methods are also investigated [50]. The 

linear time/frequency analysis method is an alternative to the fast Fourier transform 

(FFT) method; it increases the accuracy, which is decreased in FFT due to the 

windowing. The LTF method gives better frequency response in smaller times, and is 

useful for real time analysis [49]. However, that is not a problem in this case. Methods 

that define a sound with less information than the synthesizer method exists in [49], 

however the sound quality is reported to decrease. 

 

4.3.2. Analysis of the Guitar 

 

The target instrument is an Ovation 2771LX acoustic-electric guitar. That instrument is 

chosen due to its availability and due to is being equipped with electronics that allow 

direct recording through a sound card allowing a good signal-to-noise ratio (SNR).  

 

The below recordings are done with a 24-bit ADC with a sampling frequency of 44100 

Hz from the above mentioned guitar through a M-Audio Fast Track. The recorded 

signals in Figure 3 have a fundamental frequency of 440 Hz and each signal shows the 

production of the same note from different positions of the guitar. 440 Hz is chosen as 

the frequency to analyse since it is the tonal. In Figure 4, the periodic waveform is 

shown and in Figure 5, the extracted envelope is shown. 
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Figure 3: Recorded Sound Waves at 440 Hz 

 
Figure 4: Periodic Recorded Waveform 
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Figure 5: Extracted Envelope 

 

 
Figure 6: Results of the FFT Analysis 
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The recorded sound is analyzed by calculating the FFT of the wave with necessary 

amount of samples in MATLAB. The resulting harmonics and their amplitudes are 

shown in Figure 6. By comparing the results in Figure 6 with Table 1 in Chapter 4, one 

can have a better understanding of the sounds produced by a single stroke. 

 

In addition, by looking at Figure 6, one can see that after the fundamental the most 

powerful tones are the first sharper fifth and the first flatter octave. These are followed 

by the second and the third sharper octaves. 

 

4.3.3. Reconstruction of the Guitar Sound 

 

Two different waveforms and one envelope are created in this work. In Figure 7 and 

Figure 8, the reconstructed waveforms can be seen. The first signal in Figure 7 is 

reconstructed by using 15 of the harmonics with the largest amplitudes, which are in 

Figure 6. Sine waves constructed with the amplitudes and frequencies from Figure 6 are 

added to create the signal. Since the phase information is not important for most cases, 

it is not used for the synthesis of the sounds [51, 49]. The mathematical formula 

including the phase for the additive synthesis is: 

 

                      

 

   

 

 

Here ak is the amplitude coefficient of an harmonic, wk is the angular frequency of the 

harmonic, θk is the phase and t is the time. 

 

On the other hand, the second signal in Figure 8 is constructed via simple visual data 

fitting where the aim is to keep the main characteristic of the signal in Figure 4 in as 

simple as possible. The simpler signal is composed of two triangles, where the values of 

the triangle are the same except for the sign, thus the difference of the peaks and the 

wavy pattern in between the peaks are omitted. Preliminary sound tests have shown that 

the second signal is more pleasant. The reason is the existence of one of the high-end 

harmonics that causes obvious dislike for the first sound. 

 

In addition to two periodic waveforms, two ADSR envelopes are also developed. In 

Figure 9, one can see the regular 3-pointed waveform. In order to increase the 

resemblance with the envelope in Figure 5, the sustain part in Figure 9 is divided into 

two parts with different slopes. However, informal listening tests showed that the 

resulting envelope in Figure 10 did not cause any change in the perceived sound. 
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Figure 7: Periodic Waveform Reconstructed from 15 Harmonics 

 
Figure 8: Periodic Waveform Reconstructed by Visual Data Fitting 
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Figure 9: 3-Pointed ADSR Envelope 

 

 
Figure 10: 4-Pointed ADSR Envelope 
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4.4. Conclusions  

 

In this chapter, the MATLAB implementation of the composer algorithm and the virtual 

instrument was described. MATLAB has proven to be a good choice for development, 

the easy implementation of mathematical functions was useful in investigating different 

fitness functions, while the signal processing capabilities helped with the virtual 

instrument. 

 

When humans compose music, they have the chance to edit, modify, revise or even 

dismiss the pieces they have created. The genetic programming gives that ability to an 

otherwise randomly working composition system. With the fitness function, the system 

is able to understand what is good or bad, and modify the results with the operations 

like crossover. Yet, this only shows how important the role of the fitness function in the 

algorithm, thus the software can only benefit from the improvements in the fitness 

function. The combination of mean and variance serves as a good beginning for the 

fitness function; however, after listening to the results for extended amount of times, 

one can easily understand the style of the composer. Even though this is the case also 

with most human composers, the initial aim was to create a more creative system. The 

fitness function can be modified by adding other parameters or one could use an 

evolving fitness function that would change over time by either inputs from the user or 

internal inputs. 

  

The limitation of the available notes by using scales works both ways. Certain scales, 

like the major scale the produced music seemed uncorrelated, while using more 

characteristic scales result in better sounding pieces with the feel of the scale. 

Preliminary tests have shown that among the scales that are implemented the Hungarian 

gypsy, minor blues and the Spanish scales gave the better results. 

 

The built-in random generator successfully serves the purposes of this work, thus there 

were no reasons for implementing a real or more secure random generator. 

 

The construction of the virtual instrument via an ADSR envelope and a periodic 

waveform proved to be a successful method while maintaining the necessary 

information to create the signal as small as possible. The ADSR envelop requires the 

percentages of the three corner points in time and in amplitude, while for the periodic 

waveform the relative values of the frequency and the amplitude of the harmonics are 

sufficient. For the simple symmetric periodic wave, the total number of variables 

necessary for creation, including the envelope, is nine.  

 

Finally, there is always room for improvements. The possible abilities that were 

investigated but not implemented in this work are: 
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 Polyphonic Composition: Modifying the algorithm for polyphonic music will 

basically involve more music theory. Multi-instrument music such as one that 

has lead, bass, an accompanying chords or arpeggios and percussions is though 

to increase the performance dramatically. When creating such music, in addition 

to the harmony of the sequential notes of each instrument, the algorithm should 

also consider the harmony between the instruments at a timestamp and the 

rhythmical components. In addition, with the bass, the chords, or the arpeggios a 

progression, which that will give the song a more structured movement, can be 

added to the music. On the instrument side, it will mean designing more 

instruments with different frequency ranges. 

 Interaction with the User: As seen in Chapter 2, software has been reported 

where genetic programming is employed for composition, where due to the lack 

of an optimal solution, human response is introduced as the fitness function. In 

this project, during the development of the algorithm, a feedback from the user 

is also designed but not implemented. The feedback would be such that, upon 

the response from the user, the feedback function transfers the surviving 

individuals to the next run.  Even though, the performance might benefit from 

the iteration, it is also possible that the previous survivors can dominate the next 

runs. 

 More Psychoacoustics: The pleasantness [51] of the sounds can be increased 

with further study. Yet one must addition should be the use of Mel scales [50, 

52] or the masking effects [53], which adds the perception of the human ear to 

the spectral analysis of the signal. 

 More Listening Tests: Due to the time limit, formal listening tests on the sound 

performance of the instrument could not be done. Thus, listening tests would 

greatly help, since the term timbre does not provide much insight [49, 54]. 
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5. Hardware Implementation 
 

In this chapter, I describe the hardware implementation, which includes converting the 

MATLAB algorithm into a hardware-like algorithm, implementation issues and results. 

The hardware implementation is done into Xilinx University Program Virtex II pro, 

which is the most suitable of the available boards due to the existences of an audio 

coder/decoder (CODEC) and a 2.5” output jack. I have used both Verilog and VHDL 

while designing the hardware. The pseudo codes can be found in Appendix B. 

 

5.1. Algorithm 

 

The composer algorithm is implemented as a number of circuit blocks, where I have 

defined each block with their functionality in the algorithm. These blocks are: 

 

 Population Generation 

 Fitness Function 

 Tournament 

 Crossover 

 

5.1.1. Population Generation 

 

This block generates a population of 64 individuals, where 64 is the minimum number 

of individuals the population should have in order to have a sufficient variety in the 

MATLAB simulations. The nested for loops in the MATLAB code are implemented as 

nested ifs. The block has three control signals. One of them is an input to the block and 

activates or resets the block; the other one is an output that signals that the population 

generation block is sending data to the top module and the final control signal indicates 

the completion of sending of data, thus triggering the next block. This block, initiated 

twice in order to create the two sub-sets of population, is seen in Figure 1 of Section 

4.2.1. 

 

The random number generator is implemented as a 32-bit long linear-feedback shift 

register (LFSR). The registers create a series of periodic pseudo- random bits, where the 

period is      . Even though the basic shift register cannot be used in fields such as 

cryptology or security, for this application it provides the sufficient pseudo-random 

number. The advantages of the LFSR topology are that the period is independent of any 

word length, fast and that it is easy to implement as both software and hardware [55]. 

One simple improvement of the randomization will be to use LFSR with known values 

to initialize the second LFSR, which will give the random bits. The structure of the shift 

register can be seen in Figure 11. 
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Figure 11: 4-Bit Linear-Feedback Shift-Register 

 

If we assume that the registers are initially charged to “0001”, the sequence of pseudo-

random bits is as in Table 2. 

 

Index Bit4 Bit3 Bit2 Bit1 

1 0 0 0 1 

2 0 0 1 0 

3 0 1 0 0 

4 1 0 0 1 

5 0 0 1 1 

6 0 1 1 0 

7 1 1 0 1 

8 1 0 1 0 

9 0 1 0 1 

10 1 0 1 1 

11 0 1 1 1 

12 1 1 1 1 

13 1 1 1 0 

14 1 1 0 0 

15 1 0 0 0 

16 0 0 0 1 

 

Table 2: Bits of One Cycle 4-Bit Shift Register 

 

5.1.2. Fitness Function 

 

The fitness function block takes the genes of the individuals, which are in fact the 

indices of the pitches, as input and after a certain clock period gives out the fitness 

function of that individual. The processing time is defined by the number of genes an 

individual has, which is kept at 32 in the hardware implementation. 

 

The fitness function of mean and variance has been adjusted for more accurate hardware 

implementation. In the initial MATLAB algorithm, the actual values of mean and 

variance were not important rather their ratios to each other are important. The 
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calculation of mean and variance of a discrete distribution as seen below requires 

division.  

 

          
 

 
   

 
    and                      

 

However, when doing division the accuracy is directly related to the number of bits that 

will be used for representing the decimal part. Use of eight extra bits will result in 

accuracy of      which is 0.00390625.Thus instead of using the real values of mean and 

variance, in the hardware adjusted mean and adjusted variance are used in the fitness 

function, which are as follows: 

 

             
 
    and                   

 
              

   
 
 

 

Here, again, the sacrifice is the number of bits used however; we can have a better 

accuracy with less number of bits in this implementation. 

 

This block is run for each individual, which means in a single run it is initiated 128 

times. Thus, when the block sends a confirmation signal to the top module it sends out 

the fitness value of one individual. The block takes a single gene of an individual in 

each clock cycle. Once the fitness function block has been run 64 times, it is kept off 

and tournament is triggered. 

 

5.1.3. Tournament 

 

During the hardware implementation of the tournament function, the block did not go 

through any important changes. Thus, it was implemented as in the MATLAB code, 

except for the control signals and the finite state machine. A population of 64 can be 

reduced to two winners in 128 clock cycles. This block is run twice during the creation 

of a song; with the done signal, the block sends the address of the winner individuals to 

the top module. The block takes a single fitness value in each clock. The first time the 

tournament-done signal goes high, it re-initialises the population generation block. 

While the second time it goes, it high starts the crossover block. 

 

5.1.4. Crossover 

 

The crossover block also includes a designed sorter, which was a simple built-in 

function in MATLAB. The pseudo-random number generator in Section 5.1.1 is used 

for the occurrences of the crossover event, where in a clock cycle only a single pitch 

pair or a gene pair is evaluated for crossover. The crossover rate, which was 33.3% in 

the MATLAB code, has been changed to 37.5% in the hardware in order to keep the 

circuitry small. This block is run once, and takes in and sends out a single gene in each 
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clock. It has two control signals that are sent to the top module. The first one tells that 

data is being sent while the second one indicates that data send is done triggering the 

next block. 

 

5.1.5. Rhythm Generator 

 

The rhythm generator reflects the same structure and the functionality as in the  

MATLAB code, except again the built-in random integer random generator in software 

is replaced with the LFSR-based pseudo-random number generator. Like population 

generation, it initially sends out a control signal indicating data transfer. Then, the done 

signal goes high, indicating the start of the virtual instrument block. 

 

5.2. Virtual Instrument 
 

The virtual instrument block could be implemented in a number of ways. These options 

can be divided into as static and dynamic. The dynamic way would be to implement the 

instrument as a function as it is done in the software and the static way would be to load 

the pre-calculated signal samples into a memory and calling them. 

 

The first option allows more flexibility at the cost of design complexity and more 

circuitry like multipliers and state machines for controlling the frequency. On the other 

hand, the second option provides an easier design at the cost of memory. For a sampling 

frequency equal to 44000 Hz, the required memory is around 2 MB. 

 

Finally, I have decided to pre-calculate the signal and load it into memory, as this 

allows us to use less logic, keep the sound quality constant and use other virtual 

instruments that created by recording real instruments. Yet, in this thesis the virtual 

instruments that has been designed in Chapter 4 is used. 

 

Only one of the scales is implemented in the hardware. The Spanish scale is chosen for 

demonstration and the deciding factor was the preliminary listening tests. 

 

5.2.1. Audio CODEC 

 

The XUP Virtex-II Pro board is equipped with a National Semiconductor LM4550 

Audio CODEC [56]. The compatibility with AC97 allows easy interaction with PCs and 

MACs, however for this project; the LM4550 is a chip that controls the data sent to the 

DACs and thus needs to be employed properly. The schematic for the chip can be found 

as the Appendix D in Section 10.4. 

 

In order to communicate with the LM4550, a controller circuit has been designed. The 

controller circuit sends the necessary start signals, clock and the data bit in the correct 
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fashion. Data is sent to the CODEC in packages of 256 bits. The 256 bits comprises 

control bits, data bits for the four channels of the CODEC and the reserved bits [57]. 

The CODEC handles 20 bits of data for each output, however; the DACs have 18 bits 

resolution so only the 18 most significant bits (MSB) of the sent 20 bits are sent to the 

DACs. 

 

Thus, for each 256 bits sent to the CODEC, only one sample is sent. This gives the 

maximum sampling frequency possible with the system: 

 

        
            

   
 

       

   
            

 

Even though, the value is more than the necessary, even the sampling frequency of 

44000 Hz could not be implemented due to a software related limitation, where the 

computer that runs the synthesis tool goes stale due to the size of the read-only memory 

(ROM). This obstacle is passed by limiting the sampling frequency to 9765.625 Hz, 

thus limiting the size of the necessary ROM for loading the samples of the instrument. 

 

5.3. Top Module 

 

The top module is the circuitry that provides the interaction between the above blocks 

while also providing the input from the user to the FPGA. The structure of the whole 

system can be summarized with Figure 12. 
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Figure 12: Hardware Top Module 

 

The device is triggered with an input from the user. The top module sends the necessary 

control signals to the population generation module. Once the population generation 

sends back the done signal to the top module, fitness function block is triggered. After 
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receiving the done signal from the fitness function, the top module starts the tournament 

and waits for the done signal. This process is done twice for each population. Once the 

winners are decided, the top module enables the crossover and rhythm generator. 

Finally, upon the completion of their work, CODEC controller is triggered in order to 

latch the data to the LM4550 chip and the song is heard through the speakers. Finally, 

the top module not only enables a communication between the blocks but it also stores 

the necessary information so that they can be recalled later. 

 

5.4. Conclusions 

 

The effect of the population size on the circuitry can be guessed from the software side, 

still the resulting circuitry due to the population size is larger than the size initially 

guessed. The LFSR method is generally working sufficiently well, however the pseudo-

random number generator can be improved, since there were some individuals whose 

genes were all 0 in the vsim simulation in ModelSim. 

 

During the transfer of data between the block a semi-serial approach is used. The 

transferred data package is chosen as a gene or a pitch. When compared to using 

individual or song pieces as the data package, the used method decreases the wiring size 

but increases the number of clock periods required for a block to start its function. 

 

To realize the virtual instrument as a ROM loaded with samples had some drawbacks. 

Due to the size of the ROM being large, the synthesis tool caused the computer to go 

stale. Thus, in order to reduce the size of the ROM, sampling frequency was reduced to 

9.765 KHz. This caused a decrease in the quality of the sound, as the quantization noise 

became audible. In addition, since the audio codec was using unsigned data, the created 

signals were shifted to move the negative part to positive. This also caused a change in 

timbre, further decreasing the quality of the sound. However, all these problems could 

be solved by using better equipment and employing recorded virtual instruments. 

 



33 

 

6. Listening Tests  
 

As mentioned before music composition is not a problem where an optimum solution 

exists, instead the musical taste varies from person to person. In order to fine-tune the 

algorithm, listening tests are formed where the aim is to finalize the fitness function, 

mentioned in Section 4.2.4. 

 

6.1. Aim and Properties 

 

The listening test is being applied for fine-tuning the fitness function by applying 

different coefficients to the mean and variance in the fitness function.  

 

C1((tonic of the scale)-(mean of an individual)) +C2( (max variance in the population)-

(variance of an individual)) 

 

Since humans are the subjects of the test, it should be prepared such that the results of 

the test answer the right questions. For this reason, literature search in psychoacoustics, 

which is the science that relates the sound cognition, acoustics, psychology and 

physiology, were made. The final remarks, deducted from the literature [51, 58] for 

creating successful listening tests for this work, can be summarized as follows: 

 

 Minimize the errors caused by the test 

 Minimize the cultural effects  

 Provide proper instructions 

 Aim for sensory effects 

 Make it reproducible 

 

6.2. Listening Test I 

 

The aim of the first test was to test the test before finalizing it, so that the final test is 

free from cultural influences, wrong expectations, improper questions and biases that 

may occur due to the test.  For this reason, the draft version of the test is applied on ten 

subjects, where after completing the test they have been questioned to get feedback on 

the test. 

 

The questions asked were as follows: 

 

 Did the questions in the test ask what the introduction tells? If not, why? 

 Was the test too long or too short? Why? 

 Was it easy or hard to keep focus on the test? If hard, why? 
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According to the answers, the test was modified as follows: 

 

 Increase the size of the initial population to provide different fittest elements for all 

fitness functions. 

 Shorten the test by reducing the number of fitness functions tested. 

 

6.3. Listening Test II 

 

The test starts with some background information that describes the aim of the test, how 

to answer the questions and what the questions include. In addition, a short description 

of the type of the songs is given so that the subjects can have an idea of what to expect. 

The introduction is followed by three questions that collect the information regarding 

the testers. The collected information is the age, familiarity with western music and 

favourite musical genres. Following the first three data-collecting questions are the real 

questions, which asks the subjects to test their liking of the song they have listened on a 

scale of one to ten. An absolute unipolar scale of ten is chosen among other most used 

methods such as psychophysics, relative methods or sound maps since it gives more 

freedom for the tester and larger range for analysis and it is a standard [58]. However, 

the non-existence of a reference might cause a scaling problem depending on the tester. 

The last question is an optional one that asks the differences between the liked and 

disliked songs. The songs are presented in random order in order to avoid any biasing 

that might occur due to the song order. A sample of the test can be found in Appendix C 

in Section 10.3. 

 

The pieces are created in major scale since it is a widely known and used scale. The aim 

is to avoid testers’ having any special familiarity with certain local scales like Spanish 

scale or Byzantine scale. The length of the songs was 26 seconds and they had 128 

notes, where each part had 32 notes. 

 

Table 3 shows the tested fitness-function coefficients in the final test. The coefficients 

are chosen in order to provide a variety of fittest individuals and their efficiency is 

simulated in MATLAB. 
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Weigh of 

Mean (C1) 

Weigh of 

Variance (C2) 

1 1 

4 1 

1 4 

1 -1 

2 -1 

4 -1 

1 0 

0 1 

 

Table 3: Tested Fitness Function Coefficients 

 

At the process of testing, the virtual instruments were not complete, thus a simpler 

instrument consisting of sinus signal as the waveform and half-period sinus signal as the 

envelope is used. An example waveform can be seen in Figure 13. 

 

 
Figure 13: Sound Wave of the Testing Instrument 
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6.4. Results and Conclusions of Listening Test II 

 

The results of listening test II can be seen in the Figures 14 and 15. Figure 14 shows the 

results as they are while in Figure 15 shows the scaled results. Both figures show that 

the 50 participants of the listening test have chosen the fitness function coefficients to 

be C1=1 and C2=0, which means the function will only be including the mean. 

 

 
Figure 14: Original Listening Test Results 
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Figure 15: Scaled Listening Test Results 

 

The participants had an age distribution with mean equal to 28.84 and standard 

deviation equal to 17.2. Finally, answers to the Question 12 of the test shows that many 

listeners did not like the songs when the rhythm gets faster. In addition, one other 

important complaint was about the large leaps caused by the crossover operation; this 

can also explain the choice for the mean only as removing variance eliminates the 

individuals that wander a lot. This means statistically smaller leaps even after crossover. 

Moreover, the same comments also show that the parts with the fast rhythm should have 

the smaller movement, thus at least the fast rhythm should not be used with the parts 

that are created via crossover, and instead an original individual should be used. The full 

set of answers can be found in Appendix C. 
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7. Results 
 

In this chapter, the results of the MATLAB and hardware description language (HDL) 

implementation is evaluated. The evaluation is done on the compositional performance 

of the implementations and the synthesis results of the hardware. 

 

7.1. Compositional Performance 

 

In the figures below the results of a random MATLAB run and a random vsim run can 

be seen. In Figure 16.a the fittest individual, which is the theme of the song is seen. The 

song part in Figure 16.b is the generated via crossover between the theme and the 

second fittest individual. The melody in Figure 16.c is the child of the song part in 

Figure 16.b and the third fittest individual. Finally, the child of the fittest and the fourth 

fittest individual is seen in Figure 16.d as the last part of the song. 

 

 
Figure 16.a: MATLAB Run Part 1 

 Figure 16.b: MATLAB Run Part 2 

 Figure 16.c: MATLAB Run Part 3 

 
Figure 16.d: MATLAB Run Part 4 

 

The song in Figure 17 is created in vsim of ModelSim with the code implemented in 

VHDL.  
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Figure 17.a: vsim Run Part 1 

 

 
Figure 17.b: vsim Run Part 2 

 

 
Figure 17.c: vsim Run Part 2 

 

 
Figure 17.d: vsim Run Part 3 

 

7.2. Circuit Based Results 

 

The FPGA with its 100-MHz clock is able to compose a song in 97.29 µs. The 

generation of the song requires 9729 clock cycles after the device is activated. The 

population generation block needs 2049 clock cycles and it is summoned twice. The 

fitness function block consumes 36 clock cycles but it is used 128 times for the “   

 ” implementation. The tournament block takes 128 clock cycles and it is used twice. 

The crossover block consumes 358 clock cycles, and finally the rhythm generator block 

uses 32 clock cycles.  

 

However, even with the reduction of the size of the ROM mentioned in Section 5.4. , 

the designed hardware did not fit into the target FPGA due to routing problems and 
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memory size. In order to remove circuitry, the overall population size has been 

decreased from “    ” to “    ”, allowing a successful place and routing. 

 

The circuit inventory of the both designs can be seen in Table 4. In Table 5, the 

utilization ratio of the FPGA can be observed. Tables 4 and 5 do not only provide an 

insight in the size of the circuitry but they also show the change in circuit size with 

respect to the population size 

 

 

Item Type HDL 

Synthesis 

(32x2) 

HDL 

Synthesis 

(64x2) 

Advanced HDL 

Synthesis (32x2) 

Advanced HDL 

Synthesis (64x2) 

Random-Access 

Memory (RAM) 

5 4 10  10 

ROM 6 5 1 1 

Adder/Subtractor 35 36 35 36 

Counter 20 20 20 20 

Register 1896 2983 7871 12684 

Comparator 115 116 115 116 

Multiplexer 79 81 85 87 

Exclusive Or (Xor) 3 3 3 3 

 

Table 4: Circuit Inventory 

 

Item Type Amount/Available 

(32x2) 

Amount/Available 

(64x2) 

Ratio 

(32x2) 

Ratio 

(64x2) 

Slices 85885 out of 13696 14335 out of 13696    62% 104% 

Slice Flip Flops 7795 out of 27392 12586 out of 27392 28% 45% 

4-Input Look-up Table 

(LUT)  

14874 out of 27392 23700 out of 27392 54% 86% 

Input/Output (IO) 11 11 - - 

Input/Output Block 

(IOB) 

10 out of 556 10 out of 556 1% 1% 

Block Random-Access 

Memory (BRAM) 

134 out of 136 135 out of 136 98% 99% 

Global Clock Buffer  

(GCLK) 

4 out of 16 4 out of 16 

 

25% 25% 

Digital Clock Manager 

(DCM) 

1 out of 8 1 out of 8 12% 12% 

 

Table 5: FPGA Utilization 
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8. Conclusions  
 

In this thesis, a FPGA implementation of a music composing and playing circuit is 

presented. The current performance of the FPGA implementation is comparable to the 

MATLAB implementation composition wise. A successful FPGA implementation 

shows that it is possible to build a personal audio player that can compose and play its 

own music. However, in order to come up with a product that can be used daily, the 

design needs some improvements.  

 

On the composition side: 

 

 Today’s music is hardly monophonic, even when the performance includes only 

a single instrument, generally the music has more than one sound at the same 

time. Thus, the algorithm should be able to compose and arrange polyphonic 

music. 

 The methods for creation and survival of the individuals can be improved. 

Currently, individuals are created from a limited gene pool, which are the scales. 

Black notes, scale changes can be added. The survival method or the artificial 

intelligence of the system can be improved in many ways. Mathematical 

concepts like the Hurst exponent or musical concepts like tonality can be added 

to the current fitness function. Other possible changes can be the employing an 

interaction between the user and the composer, allowing the user to be a part of 

the fitness function or giving the composer a short-term memory so that a 

number of individuals from the previous composition can be added to the 

population of the next composition. 

 Currently, the songs have four individuals, where each individual has a different 

rhythm where the rhythm is generated as a progression. However, the rhythms 

are constant throughout the respective individuals; this causes a sense repetition 

rather than auditory resemblance and can be improved. In addition, the rhythm 

should be further adjusted with respect to the listening tests results. Large leaps 

due to crossover combined with fast notes result in a dislike for most of the 

testers. 

 The listening test results show that the usage of the fast rhythm and child 

individuals cause disliked songs, where the sequential change in frequency is 

high while the duration of a note is short.  Separating them may give better 

results; one other option could be using different movement limitations for 

different speed of rhythms. 

 Finally, as stated initially, the composer only composes the pitch and the 

duration of the notes. Thus, an improved version should have the ability to 

adjust dynamics, playing style and other concepts that are included in a musical 

composition 
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On the instrument side: 

 

 As depicted in Chapter 3, the virtual instruments that are created from sampling 

real life instruments are better than the instruments that are created functionally 

with the cost of memory. This also can be used in this work, with sufficient 

memory, the composer can be provided with a number of professionally used 

virtual instruments. 

With more time, the MATLAB implementation can only get better and the 

improvements’ reflection on the hardware side can be summarized as follows. The 

initial problem might be the required amount of memory, as the composer has more 

abilities and freedom such more pitches and dynamics, it will need to utilize more 

detailed virtual instruments that need to include every combination of pitch and 

dynamics. Today, sampled virtual instruments can be found to consume 10 GB of 

memory [59] and this could be a problem. For the FPGA implementation, the memory 

problem can be solved by using the external onboard RAM or the compact flash (CF) 

card slot. The external RAM can be used to store internal signals while the non-volatile 

CF card can be used to provide virtual instrument samples. 

 

The increase in the complexity of the composer will result in more hardware, which 

causes an increase in the area of the device, price of the device, computational time and 

the power dissipation. Here the power consumption is the most critical, since the ideal 

aim is to create a mobile device. Yet, it has been seen that the size of the population has 

a great effect on the size of the circuitry due to the amount of required storage elements. 

 

However, as a final note, it must be said that even if an ideal device that can replace 

human musicians is created, it might not be successful since many people might prefer 

music that humans create.  
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Appendix A – MATLAB Pseudo Codes  
 

Main algorithm 

 
constant declerations 

 

 

%%pitch generation 

 
for all sub-populations 
    for for all individuals 
        for for all genes except 1st and last 
            if first or last 

     gene=9 

  elseif previous gene is at the ends 

     fix out of bounds conditions 

            elseif 

      gene=previous_gene+movement 

  end; 

        end; 

    end; 

end; 

   
 

%%rhythm generation 
for all song parts 
    for 1 to 8 

  if (song part) 

     rhythm = random (song part) 
       if (verse==1) 
           rhytm(verse,n) = randi(4) 
       end        
    end 
end 

  
 

%%fitness function 
for all sub-populations 
    for all individuals 
        fitness=mean(individual) 
    end 
end 

  
 

%%tournament 
for all sub-populations 

    if(comparison of fitness function) 

  last2_1= individual 

  last2_2= individual 

    end 

end 

 

%%crossovers 

sort(survivors) 

1st=individual 

2nd=individual 
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3rd=individual 

4th=individual 
  

composition_1st_part=1st 

if(crossover) 

   composition_2nd_part=2nd 

else 

   composition_2nd_part=1st 

end 

if(crossover) 

   composition_3rd_part=3rd 

else 

   composition_3rd_part=composition_2nd_part 

end 

if(crossover) 

   composition_4th_part=4th 

else 

   composition_4th_part=1st 

end 

 

 
composition=[composition_1st_part,composition_2nd_part,composition_3rd

_part,composition_4th_part] 

 

for all genes in composition 

    song=cat(song,virtualinstrument(song(),rhythm(i))) 

end 
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Appendix B – HDL Pseudo Codes  
 

VHDL Entity Definitions of Blocks 

 
ENTITY top IS 

port (Clk : in std_logic; 

      start : in std_logic; 

      ac97_bit_clock : in std_logic; 

      led1 : out std_logic; 

      led2 : out std_logic; 

      led3 : out std_logic; 

      led4 : out std_logic; 

      ac97_synch : out std_logic; 

      ac97_sdata_out : out std_logic; 

      audio_reset_top : out std_logic); 

END top; 

 

ENTITY populationgeneration is                         

port ( popgen_start : in Std_Logic;   

       Clk : in Std_Logic;   

       pitch : out Std_Logic_Vector (3 downto 0);                         

       pitch_out : out std_logic; 

       popgendone : out std_logic); 

END populationgeneration; 

 

ENTITY fitnessfunction is                         

port ( Reset : in Std_Logic;  

       clk : in Std_Logic;  

       Start : in Std_Logic; 

       pitch_in : in Std_Logic_Vector (3 downto 0); 

       done :out Std_Logic;   

       fitness : out Std_Logic_Vector (15 downto 0));  

END fitnessfunction; 

 

ENTITY tournament is                         

port ( Reset : in Std_Logic; 

       clk : in Std_Logic;  

       Start : in Std_Logic; 

       Fitness_in : in Std_Logic_Vector (15 downto 0);  

       address1 : out Std_Logic_Vector (5 downto 0); 

       address2 : out Std_Logic_Vector (5 downto 0); 

       done :out Std_Logic);                            

END tournament; 

 

ENTITY crossover is                         

port ( Reset : in Std_Logic;  

       clk : in Std_Logic;  

       Start : in Std_Logic; 

       pitch_in : in std_logic_vector (3 downto 0); 

       ff_in : in Std_Logic_Vector (15 downto 0);  

       pitch_out: out std_logic_vector (3 downto 0); 

       crossover_out: out std_logic; 

       done:out Std_Logic);                            

END crossover; 
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ENTITY rhythmer is                         

port ( reset : in Std_Logic; 

       start : in Std_Logic;  

       Clk : in Std_Logic;   

       rhythm : out Std_Logic_Vector (3 downto 0);                         

       rhythm_out,rhythm_done : out std_logic); 

END rhythmer; 

 

 

ENTITY audio_top  

PORT ( clk : in std_logic; 

       pitch_in : in std_logic_vector(3 downto 0); 

       rhythm_in : in std_logic_vector(3 downto 0); 

       audiostart : in std_logic; 

       ac97_bit_clock : in std_logic; 

       ac97_sdata_out: out std_logic; 

       ac97_synch: out std_logic; 

       audio_reset_b: out std_logic; 

       done: out std_logic; 

       slow_clock: out std_logic); 

END audio_top; 
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Appendix C – Listening Test and Complete Results  
 

Listening Test 

Algorithmic Composition 

 
In the test, you will listen a number of songs generated by an algorithm. You will be 

asked to rate your likings of the songs. The answers will be used for fine-tuning the 

algorithm.  

 

The songs you will listen are monophonic. When they are composed, only rhythm, 

theme and exploration of the theme are taken into account.  Certain parts of the 

songs can be similar as different algorithms may end up with similar song parts so 

there are not any trick songs or questions. 

The data collected in questions 1, 2 and 3 will be used to understand the results of the 

following questions. 

For questions 4 to 11, click on the above play button to listen a song and rate your liking 

on a scale of 10, where 10 means most liked and 1 means least liked. There is no right 

or wrong answer. 

Question 12 is an optional free association question, where you can enter your thoughts 

freely in the text box. 

* 1. Are you familiar with western music (any song that is created with chromatic scale: 

notes (C-D-E-F-G-A-B or do-re-mi-fa-sol-la)?  

Yes No 

* 2. Enter your age.  

* 3. Write your favorite music genre(s).  

 

* 4. Rate your liking of the song ?  

1 2 3 4 5 6 7 8 9 10 

 

* 5. Rate your liking of the song ?   

1 2 3 4 5 6 7 8 9 10 

 

* 6. Rate your liking of the song ?  

1 2 3 4 5 6 7 8 9 10 

 

* 7. Rate your liking of the song ?   

1 2 3 4 5 6 7 8 9 10 
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* 8. Rate your liking of the song ?  

1 2 3 4 5 6 7 8 9 10 

 

* 9. Rate your liking of the song ?  

1 2 3 4 5 6 7 8 9 10 

 

* 10. Rate your liking of the song ?  

1 2 3 4 5 6 7 8 9 10 

 

* 11. Rate your liking of the song ?  

1 2 3 4 5 6 7 8 9 10 

 

12. (Optional) Shortly describe the differences between the most and least liked songs? 

 
* Indicates Response Required  

 

Full Answers for Question 3 

 

 Rock N Roll, metal 

 Tango, latin 

 metal rock 

 rock  

 hip-hop 

 rock 

 Americana, Roots 

 All 

 Excellence 

 classical 

 indie/progressive rock, progressive metal, baroque, romantic, folk 

 Rock n’Roll 

 orijinal eastern music 

 Pop music 

 New age 

 Pop 

 jazz 

 classical  

 folk, new age, world music 

 Rock 

 Rock 

 r & b 
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 jazz 

 metal, classic,  folk 

 country 

 alternative, British, progressive 

 rock 

 Metal 

 classical 

 funk, indie rock, blues, jazz, pop 

 classical 

 Rock, Heavy Metal 

 Rock 

 New age 

 Pop., soft rock, jazz, classical 

 dance, blues, ethnics 

 Smooth jazz 

 metal 

 Classic, Alternative Rock, Grunge, Power Metal 

 Nirvana 

 Classical, Ethnic 

 metal 

 rock, blues, country 

 Popular Music, R&B, Soul, Classical Music 

 Jazz 

 Classical 

 Metal, techno 

 pop  

Full Answers for Question 12 

 

 Clarity 

 I disliked all songs, mainly because of the lack of context needed to support the largely 

shapeless melodies. Those I liked better seemed to have a bit more structure and 

direction. 

 They all have too many notes 

 They sound like sad lullabies 

 Actually, they are basically the same for me. 

 No. 9 is more like song. No 5 I feel a lot noise in the song. 

 I feel that way, and least liked songs seemed to be more chaotic, which is trying to 

imply that I am chaotic, I am different, but when something strongly implies 

something, it is generally from reason, that it does not work that way. 

 I like when you play all of them at the same time! Why do they start with the same 

note? I enjoy the slower tunes more. 
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 in number four, the melody is not discrete, on the other hand in number 5 after 

lowering the volume the fast part at the end does not match with the start 

 there are some annoying intense transitions in my least liked song,  the music is very 

smooth in my most liked song 

 they lack tension and resolution 

 fro bad ones the rhythm was repeating itself too much in the beginning while th end of 

the song was too fast leasding tio sounds that sounded unrealistic.I liked the 9 th the 

most due to its variety in the beginning but ending is still problematic. 

 seems not only some parts but the complete theme is the same for each song. 

nevertheless I believe 6  contains the scale which best fits the melody. 

 Songs should be softer, also they can be happier but that may be caused by the flute 

like sound 

 The sense of rhythm/beat - is felt in those songs where it is clear. And then it gets very 

confusing towards the end of the track. If it's not really meant to have any set beat, 

then I have no comment. 

 In my view, for song number 11, the transitions between the notes are smoother. I did 

not hear sudden changes. For the songs I rated with 5, I heard sudden transitions that 

made the songs hard (or less interesting) to listen to. 

 Most liked: less random, Least liked: like R2-D2 singing! 

 non-random progressing makes it sound more like real music, instead of random noise 

 not cool 

 

Full Answers for the Fitness Functions 

 

 FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8 

Tester 1 3 4 3 5 3 4 3 4 

Tester 2 7 3 6 5 7 5 7 3 

Tester 3 5 3 6 2 8 5 4 5 

Tester 4 4 5 5 6 6 6 3 7 

Tester 5 3 4 4 5 4 4 4 5 

Tester 6 3 4 4 5 5 5 4 4 

Tester 7 4 5 4 6 4 4 6 5 

Tester 8 3 3 4 3 4 3 4 4 

Tester 9 2 3 3 4 5 5 6 4 

Tester 10 4 6 7 5 6 7 5 6 

Tester 11 2 2 3 1 3 2 2 2 

Tester 12 8 7 7 8 7 7 7 9 

Tester 13 5 6 6 5 6 6 6 6 

Tester 14 6 5 6 8 6 7 8 7 

Tester 15 3 4 5 4 4 6 5 4 

Tester 16 4 7 9 6 6 7 7 6 
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Tester 17 4 6 6 5 7 7 8 6 

Tester 18 3 5 4 6 4 6 5 5 

Tester 19 7 4 4 7 5 5 7 5 

Tester 20 7 5 5 8 6 4 8 3 

Tester 21 6 7 7 6 4 7 7 4 

Tester 22 5 5 3 5 4 7 5 5 

Tester 23 4 6 5 5 3 2 8 6 

Tester 24 7 7 4 7 1 3 9 5 

Tester 25 6 7 7 6 4 7 6 8 

Tester 26 5 5 4 7 3 7 5 3 

Tester 27 3 6 4 4 4 5 4 2 

Tester 28 3 3 2 3 2 2 1 1 

Tester 29 4 3 3 3 3 3 3 3 

Tester 30 1 1 8 1 5 3 4 6 

Tester 31 5 2 7 3 8 5 6 3 

Tester 32 4 3 6 8 4 3 4 5 

Tester 33 7 6 5 6 4 8 8 4 

Tester 34 7 7 9 8 7 7 7 7 

Tester 35 4 7 4 8 4 4 6 8 

Tester 36 1 1 1 1 1 1 1 1 

Tester 37 8 7 6 9 6 10 9 6 

Tester 38 6 8 7 8 6 7 7 6 

Tester 39 4 3 2 3 2 3 5 3 

Tester 40 3 6 4 5 3 3 4 3 

Tester 41 7 5 5 7 5 9 8 7 

Tester 42 4 7 7 5 6 5 4 6 

Tester 43 4 5 5 6 4 7 5 5 

Tester 44 5 5 6 5 6 7 7 5 

Tester 45 6 8 7 8 6 6 8 7 

Tester 46 2 6 6 9 5 9 5 2 

Tester 47 5 7 7 7 8 9 8 7 

Tester 48 5 7 7 7 8 9 8 7 

Tester 49 7 8 7 8 7 7 9 6 

Tester 50 7 5 5 8 6 4 8 3 
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Appendix D – Schematics  
 

Schematic of LM4550 [57] 

 

 
 


