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Abstract

Maintenance is a source of large costs; in the EU the maintenance costs amount to
between 4% and 8% of the total sales turnover. Opportunistic maintenance is an
attempt to lower the maintenance cost by considering the failure of one component
as an opportunity to replace yet non-failed components in order to prevent future
failures. At the time of failure of one component, a decision is to be made on which
additional components to replace in order to minimize the expected maintenance
cost over a planning period.

This thesis continues the work of Dickman et. al. [9] and Andréasson [1] on the
opportunistic replacement problem. In Paper I, we show that the problem with time-
dependent costs is NP-hard and present a mixed integer linear programming model
for the problem. We apply the model to problems with deterministic and stochastic
component lives with data originating from the aviation and wind power industry.
The model is applied in a stochastic setting by employing the expected values of
component lives. In Paper 1I, a first step towards a stochastic programming model
that considers components with uncertain lives is taken by extending the problem
to allow non-identical lives for component individuals. This problem is shown to
be NP-hard even with time-independent costs. We present a mixed integer linear
programming model of the problem. The solution time of the model is substantially
reduced compared to the model presented in [1]. In Paper III, we then study the
opportunistic replacement problem with uncertain component lives and present a
two-stage stochastic programming approach. We present a deterministic equivalent
model and develop a decomposition method. Numerical studies on the same data
as in Paper I from the aviation and wind power industry show that the stochastic
programming approach produces maintenance decisions that are on average less
costly than decisions obtained from simple maintenance policies and the approach
used in Paper I. The decomposition method requires less CPU-time than solving the
deterministic equivalent on three out of four problems.

Keywords: mixed integer linear programming; complexity theory; stochastic pro-
gramming
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1 Introduction

1.1 Maintenance optimization

The purpose of this thesis is to develop and solve mixed integer linear programming
(MILP, see [14] for more about integer programming) and stochastic programming (SP,
see Section 1.2) models for maintenance decision support problems. Applications of
the models developed here derive from the aviation industry (through a coopera-
tion with Volvo Aero Corporation on the maintenance of aircraft engines) and from
the energy production sector (on the maintenance of wind turbines and of feed wa-
ter pumps in nuclear power plants). We begin with a short overview of the field
of maintenance optimization (for more comprehensive overviews of maintenance
optimization see e.g. [15] and [17]).

The research on mathematical models of and methods for maintenance deci-
sion problems began during WWII at the military RAND institute at Santa Monica,
CA, USA. Richard Bellman, who was a member of RAND, invented dynamic pro-
gramming which was the first efficient method for maintenance optimization (see
[3]). The focus of the work up to the 1960s was on simple maintenance or replace-
ment policies for systems consisting of few components (often just one). The classi-
cal book by Barlow and Proschan [2] covers these types of methods. The focus of the
research since the 1960s has mainly been on extending the simple policies towards
more complex systems with more components and more complex system features
(such as several states of deterioration and different types of repairs). The field of
maintenance today is rather vast, and a characterization of a maintenance problem
is therefore necessary.

Firstly, maintenance problems can be characterized as either single- or multi-
component problems. Much of the early research on maintenance problems was
concerned with single-component systems and this area does still pose some inter-
esting challenges. Here, however, we focus on multi-component systems, in which
the dependencies between components are important. The dependencies may be
either economic, stochastic or structural (or a combination of these). We consider
positive economic dependencies, which here means that the cost of simultaneous
replacement of several components is lower than the sum of the costs of individual
component replacements.

A second important characterization of a maintenance problem is the type of
maintenance actions considered. An early categorization of maintenance actions
was into corrective maintenance (CM) or preventive maintenance (PM). CM is per-
formed upon failure in order to restore the system to a functioning state. PM, on
the other hand, is performed on functioning systems in order to avoid future fail-
ures. The scheduling of PM is often periodic and fixed over a long period of time.
More frequent PM implies that less CM is required and that fewer inconveniences
connected to system failures arise (such as system downtime etc.). Too much PM
will, however, increase maintenance costs and enforce system downtime due to
maintenance stops. Opportunistic maintenance (OM) is an approach that intends
to combine CM and PM. The idea is to consider the failure of a component as an
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opportunity to perform PM on other components. Instead of planning the PM ac-
tivities beforehand, a policy is used that decides which PM to perform at a given
state of the system. Condition based maintenance (CBM) is maintenance performed
based on information obtained from a condition monitoring system (CMS), which
performs system measurements and calculates the risk of future failures or provides
estimates of remaining useful component lives. The maintenance type considered in
this thesis is mainly OM.

A third important property of a maintenance problem is the types of component
lives considered; it is normally distinguished between stochastic and deterministic
lives. Deterministic lives are often assigned to critical components in such a way
that the probability of failure is very low before the assigned life is reached (this
is common in the aircraft industry, see [1, Ch. 2]). Other components, however, are
replaced at failure or when some critical indication level is reached. The lives of such
components are considered to be stochastic. In this thesis, we begin by studying a
problem comprising components with deterministic lives and then generalize it to
allow components to possess stochastic lives.

Stochastic maintenance problems, that is, problems that include components
with uncertain lives, can be approached by stationary or dynamic models. Station-
ary models are solved once for a given maintenance problem and the solution pro-
vided (such as a maintenance policy, or a frequency for PM) is then utilized for
all maintenance decisions. Stationary models often consider an infinite horizon. The
models can not incorporate dynamic information about the state of the system (such
as information from a CMS). Dynamic models, on the other hand, are solved each
time new information is available. The models often consider a finite planning hori-
zon and can incorporate dynamic information. The previous research on dynamic
problems mostly cover pure scheduling problems (such as in [6] and [13]), or prob-
lems where the risk of failure (see [16]) or the deviation from an infinite horizon
solution (see [8] and [20]) is penalized. To our knowledge, the only research done
on dynamic models which includes the cost of future failure is [7]; however, only
the maintenance costs until the next failure time was considered in that work.

Problems with deterministic component lives are not very well studied. An op-
portunistic maintenance problem with deterministic component lives is the topic of
[9]. This pioneering work develops a MILP model for the problem which is further
studied and improved in [1]. In this thesis, we continue the work on the problem
with deterministic component lives and extend it to include stochastic component
lives. We then create a dynamic model for the problem by extending the original
MILP model to a stochastic programming model.

1.2 Stochastic Programing

Stochastic Programming (SP), sometimes also denoted as optimization under uncer-
tainty, is concerned with decision making when data is random with a known prob-
ability distribution. We will here give a short overview of the field with the intention
to introduce some key concepts used in the SP models of maintenance problems in
Sections 2.3 and 3.1. For a more comprehensive introduction to SP see for instance
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[5] or [12].
Consider first a standard linear programming (LP) problem

minimize ¢z,
subjectto Az =0,
x> 0.

The data consists of the vectors ¢ and b, and the matrix A. If the data is deterministic
we obtain the optimal solution by solving the LP. However, if our model includes
phenomena such as future outcomes of financial markets, weather forecasts, or un-
certain future demand and price of a product, we may at best obtain probability dis-
tributions for the data. A simple approach is to use the expected values of ¢, band A,
and solve the corresponding deterministic LP. The resulting solution is denoted the
expected value solution. It often leads to suboptimal decisions, as it only considers
the expected value of the data and does not take the whole probability distribution
into account (for instance, for some events, which occur with a low probability, it
may yield very bad results).

In order to create a model which takes stochasticity into account, we need to
distinguish between two types of decisions. The first stage decisions are those taken
before the realization of the uncertainty (such as to decide on the production plan
for a product before knowing its demand and price). The second stage decisions are
taken once the uncertainty has been realized (such as to decide to which customers
the product should be sold given the realized demand and price). Let z and y de-
note the first and second stage variables, w a possible realization or scenario of the
uncertain parameters, and (2 the probability space of all possible realizations w. A
standard two-stage stochastic linear program is formulated as that to

minimize ¢’z + E,cq[Q(z,w)], (1a)
subjectto Ax = b, (1b)
x>0, (1c)
where
Q(z,w) = minimum ¢(w)’y, (1d)
Y
subjectto  W(w)y = h(w) — T(w)z, (Le)

and ¢(w), W(w), h(w) and T'(w) denote the stochastic parameters of the problem.
The function Q : R” — R defined by Q(z) = E,co[Q(x,w)], is called the recourse
function and the problem (1d)—(1e) is denoted the subproblem.

A common assumption in stochastic programs is that the probability space (2
is finite. For a continuous or finite but large probability space an approximation
of the same is obtained by sampling a finite number of scenarios. This is denoted
the sample average approximation. For finite probability spaces we can formulate a
(large) linear program, denoted the deterministic equivalent, the solution of which is
equivalent to the solution to the stochastic program. Let p(w) denote the probability
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of the scenario w € €. The deterministic equivalent of program (1) is to
L T .
minimize ¢z + p(@)q(w) Ty (w),
z;y(w),we Z (W)g(w)” y(w)
subject to Ax — b,

An equivalent formulation of this problem is to

minimize Z p(w)(c"z(w) + q(w)Ty(w)), (2a)
z(w),y(w),weR oen

subject to Az(w) =b(w), weQ, (2b)

W(w)y(w) + T(w)z = h(w), weQ, (2¢)

z(w1) = z(wa), wi,ws € Q, (2d)

z(w) >0, we (2e)

The constraints (2d) are denoted the non-anticipativity constraints. If these are re-
laxed, the problem separates into solving one smaller problem for each scenario
w € ). This means that we would anticipate the realization of the stochastic process
before determining the optimal value of the first stage variables or, equivalently, that
we have information about the realization of the stochastic process beforehand. The
solution obtained from solving the program (2a)—(2c),(2e) is denoted the expected
perfect information solution.

In order to solve instances of stochastic programs for which the deterministic
equivalent becomes to large to solve, decomposition techniques have been proven
useful. The most common technique is called the L-shaped (see [19]) method which
is an application of Benders” decomposition (see [4]).

We are going to consider stochastic integer programs, where integrality con-
straints are present for both the first and second stage variables. In such a setting,
the L-shaped method is not applicable, as it is based on the fact that strong duality is
satisfied for the subproblem, which is in general not fulfilled for subproblems with
integrality constraints. Decomposition techniques for integer stochastic programs
exist (see for instance [18]), but they are neither as general nor as efficient as the
L-shaped method for linear stochastic programs. In Paper III we present a decom-
position method adapted to the opportunistic replacement problem studied in this
thesis.

In many applications, including the maintenance problems studied in this the-
sis, a sequence of decisions are to be taken. First is a first stage decision taken (for
instance, to buy or sell a stock), then outcomes of a stochastic process is realized
(e.g., the price of the stock is altered), followed by a second stage decision (e.g., we
deciding whether or not to sell or buy more of the stock), and again the realization
of a stochastic process (the price is again altered), followed again by a third stage
decision (a new decision on buying or selling the stock), and so on. Such problems
are denoted multistage problems, and are generally much more difficult to solve
than two-stage problems. The mathematical formulation of a multistage problem
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includes a recourse function in the objective of the subproblem (1d)-(1e). The re-
course function is evaluated by solving one subproblem for each scenario, which
then again contains a recourse function, and so on. We can formulate a determin-
istic equivalent for multistage problems; the number of variables, however, tend to
become very large. Multistage problems can be solved by using nested decomposi-
tion approaches, which means that the subproblems in the decomposition are them-
selves solved by a decomposition, and so on (see [5, Ch. 7] for more on multistage
programs and nested decomposition). In the main part of this thesis (except in Sec-
tion 3.1) we ignore the multistage structure of the problem and approximate it by
either an expected value model or a two-stage model.

1.3 Problem overview

The goal of the research track, which this thesis is part of, is to analyze and solve
maintenance decision problems. We consider a system (for instance a wind power
turbine or a jet engine). Any maintenance stop for such a system generates a cost,
independent of the type of maintenance performed. We assume that a maintenance
stop is enforced at the current time because the system requires CM or scheduled
PM, or because of indications from a CMS. The maintenance stop is an occasion to
perform more PM than what is required and thus avoid costly maintenance stops
in the near future. However, performing PM also generates costs. We wish to take
a decision on which maintenance actions to perform at the current time! in order
to minimize the expected cost (or some alternative objective) over the remaining
planing horizon or contract period. This is denoted as the current problem. The vision
is to create a decision support system that, given the system state and a failure,
returns an optimal (wrt. expected costs) maintenance decision at the current time
by solving the current problem (see Figure 1).

The main part of the research presented in this thesis is on a fairly simple main-
tenance problem, although the intention is to generalize results for this problem to
more general settings in the future. The problem studied can be described as fol-
lows. A system consists of the components N = {1, ..., n} with known failure dis-
tributions. We assume that every component must be replaced at failure. Moreover,
each maintenance stop generates the maintenance occasion cost d and the replace-
ment of a component i € N generates the replacement cost ¢;. We wish to minimize
the expected maintenance cost over the planning period [0, S]. The problem is de-
noted the opportunistic replacement problem (ORP) or the stochastic opportunistic
replacement problem (SORP) depending on if component lives are deterministic or
stochastic respectively. Example 1 contains a small example instance of the SORP.

Example 1 (SORP). Consider a system consisting of two components. Each component has
a stochastic life with a known probability distribution. The replacement costs are c1, co and
the maintenance occasion cost is d. Minimize the expected maintenance cost over the time
period [0, 10].

!The current time can be a period that stretches from a couple of hours to weeks, months or years. It
is a period for which the decision to perform maintenance or not can not be postponed.
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failure failure failure

decision
decision

Figure 1: Illustration of a decision support system (DS) for a wind power turbine.
At failure, the system data is sent to the DS, which solves the current problem and
returns a decision on the type of maintenance action to perform at the current time.

For systems with deterministic lives, a minimal cost maintenance schedule for
the entire planning period exists. For systems with stochastic component lives we
can not create such a maintenance schedule, since the maintenance decisions de-
pend on the state of the system (for instance, it is always optimal not to perform any
maintenance on a system in which all components are working). Instead, we wish
to solve the current problem. Example 2 presents a current problem for the SORP
instance introduced in Example 1.

Example 2 (SORP cont.). Assume that component 1 failed at time 4. The current problem
is then defined as: Should component 2 be replaced or not in order to minimize the expected
total maintenance cost until time 10?7

In general, the current problem for the SORP is described as follows. Given the
failure of one or more components at the current time s € [0, S], we wish to decide
which (if any) additional (non-failed) components to replace in order to minimize
the expected maintenance cost over the remaining planning period [s, S].

In MILP and SP models, it is common to discretize time. For models of the cur-
rent problem, a time discretization ¢ is introduced such that failures and mainte-
nance decisions are assumed to occur at time steps {s,s + d,s + 24,...,s + 10},
where 7' = [%] These time steps will be denoted as {0, 1,...,T}. For models of
the ORP we set s = 0 and proceed similarly.

The remainder of this thesis is organized as follows. Section 2 contains a sum-
mary of and an introduction to the appended papers. The topic of Section 2.1 is Pa-
per I, which considers the ORP. The goal is to find an optimal maintenance schedule
for the system over the whole planning period. The topic of Section 2.2 is Paper II,
which is a first step towards solving problems with uncertain component lives. We
study an extension of the ORP in which the lives are deterministic but may differ
between individuals of each component. The problem is denoted as the opportunis-
tic replacement problem with individual lives (ORPIL). The topic of Section 2.3 is
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Figure 2: An illustration of a non-opportunistic maintenance schedule for the ORP
defined in Example 3.

Paper III, which presents a two-stage approximation for the current problem of the
SORP. Section 3 contains additional research on maintenance optimization not in-
cluded in the appended papers. In Section 3.1 we present a model that takes the
multistage structure of the current problem of the SORP into account but is com-
putationally demanding to solve. In Section 3.2 we present a method for assigning
the components a value at the end of the planning period and including it into the
objective. Finally, Section 4 summarizes the contribution of the thesis and outlines
future research possibilities.

2 Summary of the appended papers

2.1 Paper I: The opportunistic replacement problem

In this paper we study the opportunistic replacement problem (ORP), first intro-
duced in [9] and further studied in [1]. We begin by presenting an example of an
instance of the ORP.

Example 3 (ORP). Consider a system consisting of two components having deterministic
lives. Each component has to be replaced at the latest at failure. Assume that the replacement
cost of component 1 is ¢y, the replacement cost of component 2 is co, the life of component
1 is 5 time steps, the life of component 2 is 3 time steps, and that the maintenance occasion
cost is d. We wish to find a minimum cost maintenance schedule over a time period defined
by the time steps 1, . . ., 10.
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5 ]

Component 1 ‘ 5

Replacements ° °
01 .. 10
A Time

Replacements————e———o—0————————————
3
3

Component 2 3

Figure 3: An illustration of the optimal maintenance schedule for the ORP defined
in Example 3.

Fiqure 2 illustrates a non-opportunistic maintenance schedule for the system, that is,
each component is replaced at failure. The resulting maintenance cost is 2¢y + 3ca + 5d. Fig-
ure 3 illustrates an optimal maintenance schedule for the system with the resulting mainte-
nance cost 2c1 + 3co + 3d.

We now present a general problem definition, where we allow the replacement
and maintenance occasion costs to depend on time. Given a set of components
N = {1,...,n} and a time period defined by the set 7 = {1,...,T} the problem
is formally be defined as follows.?

Definition 1 (opportunistic replacement problem). Let d, be a fixed cost for a mainte-
nance occasion, c;; be the cost for replacing a component © € N at time t € T, and let T;
time steps be the life of component i € N. Find a maintenance schedule over the time period
defined by T that minimizes the total maintenance cost and such that each component i € N
is replaced at least once every T; time steps. O

A major contribution of the paper is the result that the set covering problem is
polynomially reducible to the ORP given in Definition 1 which implies that the ORP
is NP-hard (see [10] for more on complexity theory). The reduction relies on the fact
that the costs are allowed to be time dependent. The complexity of the ORP with
time independent costs is still unknown.

2The time period begins at time 0 and ends before time 7" + 1. These times are not included into 7
since an optimal maintenance schedule without replacements at time 0 and time 7" + 1 always exists.
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We present an integer programming model for the ORP. Let

1, if maintenance shall occur at time ¢,
2t = . le T7
0, otherwise,
and
2y — 1, if comgonent i shall be replaced at time ¢, ieN. teT.
0, otherwise,
The ORP optimization model is then to
minimize < Z CitTit + dtzt) , (3a)
(@.2) teT “NieN
subject to intzl, (=0,....T-T;, ieN, (3b)
t=0+1
Tir < 24, te T, 1€ N, (3C)
i > 0, teT, ieN, (3d)
Zt S 17 t S 77 (38)
zy €40,1}, teT, ieN, (3f)
2z € {0,1}, teT. (3g)

In Paper ], all non-superfluous constraints, out of the constraints (3b)-(3e), are shown
to describe facets of the convex hull of the set of feasible solutions to the ORP. Fur-
thermore, it is shown that the integrality requirements on z;; foralli € N'andt € T
can be relaxed.

The paper contains numerical tests on problem instances from the aircraft and
wind power industries; these include both stochastic and deterministic ORP:s. The
results for the deterministic problems indicate that the use of the model (3) can re-
duce costs by up to 40% compared to those gained by simple maintenance policies.
In the stochastic ORP (that is, the SORP) the component lives are uncertain; we thus
obtain a maintenance decision at the time of failure (i.e., a solution to the current
problem) by solving an instance of the ORP in which the expected values of the
component lives are employed. Using this expected value solution for the current
problem of the SORP does also show good results, although if the maintenance oc-
casion cost d is low or the standard deviations of the component lives are high,
using non-opportunistic maintenance yields lower costs on average. To improve
these results, a stochastic programming model for the current problem that take the
uncertainty explicitly into account is developed in Paper II and Paper III.

2.2 Paper II: Models and complexity analysis of the opportunistic
replacement problem with individual component lives

The purpose of this paper is to study an extension of the ORP (studied in Paper I)
which allows different lives for different individuals of the same component. This
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Individual 1 3
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Individual 3 4
Replacements ° °
01 .. 10
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Individual 2 4 1
Individual 3 3
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Component 2

Figure 4: An illustration of a non-opportunistic maintenance schedule for the ORPIL
defined in Example 4.

Component 1

Individual 1 3

Individual 2 \ 5 \
Individual 3 4 ]
Individual 4 4
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|
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Individual 1 [ 2
Individual 2 4 1
Individual 3 3
Individual 4 3

Component 2

Figure 5: An illustration of an opportunistic maintenance schedule for the ORPIL
defined in Example 4.
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problem is called the opportunistic replacement problem with individual lives (OR-
PIL). The motivation for studying the ORPIL is that solving a SORP (an ORP with
uncertain component lives, see Section 1.3) with perfect information (see Section
1.2) about individual component lives results in solving an ORPIL. Furthermore, as
shown in Paper III, a model for the ORPIL is the basis for a model of the current
problem for the SORP. We start by presenting an example.

Example 4 (ORPIL). Consider a system consisting of two components. The first failure of
component 1 occurs at time 3, that is, the life of individual 1 of component 1 is 3 time steps.
Individual 1 is replaced by individual 2, which fails after 5 time steps, and is then replaced
by individual 3, which fails after 4 time steps. All individuals r with r > 3 have lives of 4
time steps. For component 2, individual 1 has a life of 2 time steps, individual 2 has a life of
4 time steps and individual r such that r > 3 has a life of 3 time steps. Let ¢, and ¢y denote
the replacement cost of components 1 and 2 respectively, and let d denote the maintenance
occasion cost. We wish to find a minimum cost maintenance schedule over the period defined
by the time steps 0, . . ., 10.

Figqure 4 illustrates a non-opportunistic maintenance schedule for the system. The main-
tenance cost is 2c1 + 3ca + 5d. Figure 5 illustrates the most opportunistic maintenance
schedule for the system: at failure of one component both components are replaced. The main-
tenance cost is 3¢y + 3co + 3d. If 2d > ¢, this opportunistic schedule is optimal. If 2d < ¢y
a schedule which is similar to the non-opportunistic schedule in Figure 4, but in which the
first replacement of component 1 is made at time 2, is optimal.

We now present the general definition of the ORPIL. In order to obtain problems
that are less computationally difficult to solve, we only allow the first ¢ individuals
non-identical lives. Let again N' = {1,...,n} be the set of components and 7 =
{0,...,T} the time period®. To simplify the presentation, we consider a problem
with time independent costs, i.e. ¢;; = ¢; and d; = dforalli € N'andt € 7.

Definition 2 (opportunistic replacement problem with individual component lives
(ORPIL)). Let d be the fixed cost for a maintenance occasion, c; the cost for replacing a
component i € N, and Tj, the life of individual r € N of component i € N, and assume
that Ty = T; for r > q. Find a maintenance schedule over the time period defined by T that
minimizes the maintenance cost, and such that each individual r € N of component i € N
is used in the system no more than T;, time steps.

In Example 4 we have ¢ = 2,111 = 3,712 =5,and 11 = 4; 151 = 2, Too = 4, and
T> = 3. Note that for ¢ = 0 the ORPIL reduces to the ORP with time independent
costs and for ¢ = 7" we obtain a problem in which all individuals may posses non-
identical lives. The ORPIL problem for the cases ¢ = 1 and ¢ = T was briefly studied
in [1].

A major contribution of Paper II is the result that the ORPIL is NP-hard by re-
duction from the vertex cover problem. This problem reduction and the problem re-
duction performed in Paper I utilize different properties of the problems analyzed.

3We include time 0, as the model is intended for solving the current problem and hence a failure of
one of the components at time 0 may enforce the replacement of such a component.
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Here, we utilize the property that lives of the first two individuals may differ from
the remaining individuals. In Paper I, we utilize the property that the costs of the
component replacement may be time dependent. Hence the complexity of the OR-
PIL with ¢ € {0, 1} can not be determined by the analysis in Paper I and Paper II.

In the paper, we introduce two ILP models for the ORPIL — model I and model
II — and show that in model I the integer requirements on most of the variables
may be relaxed. We also show that in model I all the non-superfluous constraints
define facets of the convex hull of the feasible points of the model. Furthermore, we
demonstrate that relaxing the integer requirements in model II and Andréasson’s
model (the model initially studied in [1]) results in fractional optimal solutions. Nu-
merical studies confirm that the solution time of model I is significantly shorter than
that of model II and Andréasson’s model.

2.3 Paper III: The stochastic opportunistic replacement problem:
a two-stage solution approach

In this paper we develop and study a two-stage stochastic programming approach
for the current problem of the SORP, that is, the ORP with uncertain component
lives. The SORP is common in applications since future failure times of components
are seldom known. We can, however, estimate failure distributions from historical
data.

As noted in Section 1.3, for systems with stochastic component lives we can not
create a maintenance schedule for the entire planning period. Instead, we wish
to solve the current problem. Given is the system consisting of the components
N = {1,...,n}, with replacement costs ¢; for each i € N. Let v denote the state
of the system at the current time, which contains the age of each component and the
remaining planning period. Let {; = 1 if component i € N has failed and §; = 0
otherwise, and z; = 1 if we decide to replace component i € N at the current time
and z; = 0 otherwise. The current problem is formally to

minimize ¢’z + Qu(x)
subjectto  z; > &;, ieN,
z; € {0,1},i € N,

where Q, : B! — R is the recourse function (see Section 1.2) such that Q, (z) gives
the minimal expected future maintenance cost over the remaining planning period
given the current decision x.

The difficulty in solving the current problem stems from the fact that the recourse
function is hard to evaluate. Consider the discretized current problem of a system
with components that have failure rates which increase with the components” age.
In Paper III we show that an evaluation of the recourse function for such a problem,
given a replacement decision at the current time, provides a lower bound on the re-
course function of every other replacement decision. The bounds can be interpreted
as that by replacing less components we can not lower the recourse function value,
and by replacing an additional component j, we can at most lower the recourse
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(a) scenario 1 (b) scenario 2

Figure 6: Illustration of optimal replacement schedules for the ORPIL scenarios in
Example 6.

function value by ¢; + d. Example 5 illustrates the bounds on the current problem
from Example 2 in Section 1.3.

Example 5 (SORP cont.). Assume that the recourse function value for replacing both com-
ponents at the current time is o« = Q(1, 1). Then the recourse function value of only replac-
ing component 1 is bounded from below by Q(1,0) > «. If, on the other hand, the recourse
function value of replacing only component 1is 3 = Q(1,0), then then the recourse function
value of replacing both components is bounded from below by Q(1,1) > 5 — d — ca.

To solve the current problem, we generate a large number of scenarios for the
component lives. However, we can not solve each scenario individually, since there
must be only one decision at the current time; this decision is common for all the sce-
narios. The following example illustrates that the solution of ORPIL:s corresponding
to two different scenarios yield different suggestions for the current decision.

Example 6 (SORP cont.). Consider two following possible scenarios for the current prob-
lem. Using notation from Section 2.2 we can describe the scenarios by the life of each in-
dividual of every component. In scenario 1, we have Thy = 4, T1o = 7, T1=5, To1 = 2,
Tos = 6, Ty = 4. In scenario 2, we have T11 = 7, Tio = 6, T, = 5Th; = 2, Toy = 8§,
T, = 4. In both scenarios, T = 6. Figure 6 illustrates the optimal maintenance schedules for
the two scenarios (obtained by solving the ORPIL). The maintenance cost in scenarios 1 and
2 becomes 2¢y + co + 2d and c¢; + co + d respectively. For scenario 1, the optimal current
decision is to replace component 1 only, whereas in scenario 2 both components should be
replaced.

In order to impose a common current decision for the two different scenarios, we
formulate one ORPIL for each scenario and force the decisions at time 0 (i.e., the
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4 Component 1 ‘ 7

Component 1 | 7 |
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(a) scenario 1 - replace both components at time 0 (b) scenario 2 - replace component 1 only at time 0

Figure 7: Illustration of the optimal second stage decisions for scenario 1 and 2 if we
replace both components or component one only respectively.

current time) to be equal (i.e., we impose non-anticipativity at time 0). The decisions
at time 0 constitute the first stage variables, and all other decisions constitute the
second stage variables.

Example 7 (SORP cont.). After imposing non-anticipativity at time 0, we can either re-
place component 1 only (Figures 6(a) and 7(b)) or both components (Figures 7(a) and 6(b))
in both scenarios. Let p(w) denote the probability of scenario w = 1, 2. The minimal expected
cost in the two-stage model is p(1)(2d + 2¢1 + c2) + p(2)(2d + ¢1 + ¢2) if we replace com-
ponent 1 only, and p(1)(2d + 2¢1 + 2¢2) + p(2)(d + ¢1 + ¢2) if we replace both components.

In paper IIl we present a two-stage deterministic equivalent model and a decom-
position method for the discretized current problem. The deterministic equivalent
is based on the ORPIL model. The decomposition is based on the lower bounds on
the recourse function and the sub problems are instances of the ORPIL.

Numerical experiments on problems from the aviation engine and wind power
industries are performed (the applications formulated in Paper I) and on two smaller
test problems. By using the stochastic programming approach for solving the cur-
rent problem a lower average total maintenance cost is obtained compared to the
use of simple policies or the expected value approach (used in Paper I). The exper-
iments also show that the decomposition method requires a shorter solution time
compared to solving the deterministic equivalent on three out of four problems con-
sidered. The decomposition method reduces the solution time by up to 80 % and is
most efficient on problems requiring a long solution time, whereas the deterministic
equivalent is most efficient on problems with a short solution time.
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(a) scenario 1 - replace component 2 (b) scenario 2 - replace both components

Figure 8: Illustration of the optimal multistage solutions for scenario 1 and 2 if we
replace component 2 only or both components respectively.

3 Additional contributions

This section contains work on the ORP and the SORP which was not included in
the appended papers. Since it contains new research, the style of this section is more
technical than that of Section 2.

3.1 A multistage stochastic opportunistic replacement model

In Paper III we present a two-stage model for the current problem of the SORP. The
current problem is, however, a multistage problem since each time step should be
considered as a stage. We continue Example 7 in Section 2.3.

Example 8 (SORP cont.). Assume that we decide to replace only component 1 at time
0 (that is, we fix a first stage decision). The optimal two-stage solution is then shown i
Figures 6(a) and 7(b). Note that the decision at time 2 differs between scenarios 1 and 2.
If we consider the state of the system at time 2, in both scenarios component 2 has failed
and component 1 is working and has the age 2. The decision to replace both components in
scenario 1 but component 2 only in scenario 2 is based on the future lives of the components
and not on the state of the system, and thus violates non-anticipativity. In a multistage
model, we either replace both components or component 2 only in both scenarios at time 2.

If we replace component 2 only at time 2 (as shown in Figures 8(a) and 7(b)), the com-
ponent will fail at time 4 in scenario 1 but continue to function in scenario 2. We may,
thereafter, take different decisions in the two scenarios. If, on the other hand, we replace both
components at time 2 (as shown in Figures 6(a) and 8(b)), the decisions in both scenarios
must be equal during the whole planning period.



16 3 ADDITIONAL CONTRIBUTIONS

In [1, Sec 5.7] Andréasson writes that “every attempt to formulate a stochastic
multistage model resulted in a non-linear model”. As illustrated in Example 8, the
difficulty in constructing a multistage model for the current problem lies in the fact
that the outcome of the uncertainty (i.e., whether a failure occurs or not) depends
on the decisions. In standard multistage problems, decisions made in two scenarios
must be equal up to some time ¢, after which the decisions in the scenarios may
differ. This time ¢ is known a priori. We may thus construct equality constraints to
handle the non-anticipativity. Here, the non-anticipativity constraints at time ¢ € 7
depend on maintenance decisions made earlier than time ¢. Stochastic programming
models for problems with decision dependent uncertainty are not very well studied.
The model presented here is based on an approach similar to that in [11].

Before presenting the multistage deterministic equivalent model, we need to in-
troduce some notation. As in Paper III, in order to reduce the computational effort,
scenarios contain non-identical lives for component individuals r € R = {1, ..., ¢}.
Component individuals ¢ + 1,¢ + 1, ... are assigned the expected component lives.
We define a scenario w for the current problem as an instance of the ORPIL, i.e., by
assigning values to 7} for all r € R and i« € N, and to T; for all i € V. Let Q be
the probability space of all scenarios, p(w) the probability of scenario w, and & =1
if component ¢ € N has failed at the current time and &; = 0 otherwise. Observe
that the decisions in two scenarios wy,w2 € 2 of the current problem are allowed
to be non-identical at time ¢ € 7 if, at a time s < ¢, a failure of an individual r of
component ¢ has occurred in scenario w; and the same individual has not failed in
scenario wy (because then the scenarios can be distinguished). Define the following
set of triples

Sirws = {(w_,i,r) € {wi,we} x N xR | Ti < Tt forwy € {wl,wg}\{w_}}.

Consider a pair of scenarios (w1, we) € Q x Q. If (w_,4,7) € Sy, w,, then, for each
time s € 7, a failure of individual r of component 7 in scenario w_ at time s implies
that the scenarios w; and w, are possible to distinguish between at times ¢ > s.

We are now ready to present the multistage model. Define the variables
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1, if individual r of component ¢ in scenario w
Ty = shall be replaced at or before time ¢, iteN,teT,reR,weh,
0, otherwise,

1, if individual r of component ¢ in scenario w

v = fails at or before time ¢, ieN,teT,rcR,wc,
0, otherwise,
1, if an identical life individual of component ¢

Ty = in scenario w shall be replaced at time ¢, 1eN,teT,weq,
0, otherwise,
1, if maintenance shall occur at time ¢ in scenario w,

2 . teT,weq.
0, otherwise,

The model is then to

minimize Z p(w) (Z (Z Ty + ZcZ Zt) + Zdzt ) , (4a)

we iEN \reR teT teT
ieN,teT\{T},
subject to BT < FTY b
) Tit = Tjgq1 reRweQ, (4b)
sr4lw o zrw ieN,te T\{T},
Titr1 STt s (4c)
r € R\{q¢},w € Q,
~rw w 'LGN,tGT\{O},
zt+zxzt — T <2, 0 (4d)
reR w € il
T+ F5 < 2, ieN,weqQ, (4e)
ieN,r e R\{q},
T < T weq, (4f)
tef0,...,T—T; T+1}
H_ZTi N 'L'GN,LUEQ, (4)
Lig = Ty s g
Rared) 1€{0,...,T —T;},
ieN,teT\{0},
W< I 4h
Lig > wz,tfl we Q, ( )
T3 =0, ieN,weQ, (4i)
w e N
Tifw =1, ’ 4
i icjenms <7y,
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ieN,re R\{1},

rig =0, 4k
o w € Q, (4k)
t—1 .
e N,teT\{0},
S @ - a) = T, Z MOy
s=0 TER\{l},wGQ,
t—1 .
e N,teT\{0},
(- 3) > THul, ' VOB
=0 weQ,
vy’ =0, ieN,re RweQ, (4n)
~Twi ~Two fw_ W1,W2 EQ,iEN,
et S( )ZES Yt eRteT, (#0)
Ty > &, ieN,weQ, (4p)
ieN,teT,reR,
;" € {0, 1}, 4
Lt { } wEQ, ( q)
ieEN,teT,r eR,
i € 071 ) 4r
Vit { } WEQ, ( )
xy € {0,1}, ieEN,teT,we, (4s)
z € {0,1}, teT,weq. (4t)

The constraints (4b)—(4k) originate from the ORPIL model (model I in Paper II). The

constraints (41) and (4m) assure that if the age of the individual r and 1, respectively,
of component 7 in scenario w is less than the its life, then the individual has not failed
yet. The constraint (4n) states that no individual has failed at time 0. The constraint
(40) assures that two scenarios have equal decisions at time ¢, if no failure that can
distinguish the scenarios has occurred. The constraint (4p) implies that components
which are failed at the current time must be replaced.

The model presented is, unfortunately, computationally intractable already for a
small number of components and a small number of scenarios. In order to solve the
multistage problem for the current problem a different approach is necessary (such
as a nested decomposition or dynamic programming formulation).

3.2 Assigning values to the components at the end of the planning
period

In many applications, a value of the system state at the end of the planning period is
included into the objective. The value may be a price obtained by selling the equip-
ment or it may simply be included into the contract. In other applications, we wish
to use a rolling horizon and thus prevent end-of-horizon effects. These effects refer
to schedules which are optimal in the finite horizon setting, but result in systems
with many components close to failure at the end of the planning period. For in-
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stance, adding the value =L:¢; for each component i € N, where a is the age of the
component individual in the system at the end of the planning period and T; is the
component life, into the objective counteracts end-of-horizon effects.

The ORP model (paper I) can comprise a value 0 < v;, < ¢; of component i € N/
of age a € {1,...,T;} at the end of the planning period into the objective function.
Consider an instance of the ORP, and observe that if ¢;; > 0 forall ¢t € 7 the optimal
maintenance schedule contains at most one replacement of component i € \ in the
time period defined by the time steps T'—T;+1, . .., T. This replacement thus decides
the age of the component ¢ at time 7" + 1, that is, at the end of the planning period.
The model that includes the value of the component at the end of the planning
period into the objective is thus given by

T;
minimize E E TitCit + E dtth E E ViaXi,T—a+1

1EN teT teT €N a=1
I+T;

subject to intzl, 1eN,l=0,...,T—T;,
t=1+1

Tit < 2t 1eN,teT,
i € {0,1},ie N, teT
2t € {0,1},ﬁ€T

Note that this is an ORP with a special cost structure.

4 Summary of the contributions and future research

The focus of this thesis is to study the opportunistic replacement problem (ORP) and
extensions of this problem allowing uncertain component lives. The main contribu-
tions are the following. I have investigated the complexity of the ORP and shown
that it is NP-hard (Paper I). I have also shown that the ORP with non-identical in-
dividual lives (ORPIL) and time independent costs is NP-hard (Paper II). Further-
more, | have developed mixed integer linear programming (MILP) models of the
ORPIL which are both computationally and theoretically superior to the models in-
troduced in [1] (Paper II). Finally, I have developed a decomposition method for
the stochastic ORP (SORP), that is the ORP with uncertain component lives (Paper
III). T have also suggested a multistage deterministic equivalent MILP model for the
SORP, although the model is computationally intractable. The work resulting in this
thesis has improved our understanding of the important properties of maintenance
problems studied, and enables the solution of larger problem instances and the pro-
duction of solutions of improved quality for problems with uncertain component
lives.

There are several open paths for the future of this project. One path is to work
closer with the industry, study more complex problems and extend the current re-
sults to these problems. The applications we currently consider originate from the
aviation industry, energy production industry, and the railway sector. Examples of
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extensions are to include production or staff planning into the problem, systems
with redundancy, and systems with several levels of deterioration. A second path
is to attempt to solve the multistage SORP by a nested decomposition or dynamic
programming technique. This would enable maintenance decisions which addition-
ally reduce the expected maintenance cost. A third possibility is to investigate the
facial structure of the ORP and utilize this in a branch-and-cut algorithm in order
to be able to solve the ORP more efficiently. These research paths may, of course,
also be combined. The goal of the listed paths is to continue the work towards the
computational solution of larger and more complex maintenance problems.
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