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Abstract

There are several systems developed today to handle the problem of storing
large amounts of data. But for each type of data and set of operations different
systems differ in suitability. Burt AB stores a large dataset, enlarged in batches
in a regular and controlled way, but never updated. Query times are critical
and must have real-time performance.

This thesis describes a systematic exploration and testing of possible solu-
tions, with the goal of recommending one of these for Burt AB. Inherent prop-
erties of the dataset itself are investigated and a set of very different database
management systems are combined with a set of database schemas in order to
form a total of eleven potential solutions of interest.

We show that the relational model suits the data well and that the maturity
of MySQL gives us confidence when recommending it compared to the more
recently developed systems. Furthermore, indexing using an inverted index is
found to yield the best results.

Sammanfattning

Det finns ett stort antal system som utvecklats för att lösa problemet med att
hantera mycket data, men vilken lösning som är bäst beror p̊a vilken typ av data
man har. Burt AB hanterar en stor datamängd som fylls p̊a med mycket ny
data p̊a ett regelbundet och kontrollerat sätt, men aldrig uppdateras. Läsning
av datan m̊aste dock kunna ske i realtid.

Denna uppsats beskriver en systematisk utforskning och testning av möjliga
lösningar, med m̊alet att rekomendera en av dessa för Burt AB. Egenskaper hos
datan själv undersöks, och en handfull väldigt olika databashanteringssystem är
kombinerade med olika datasscheman för att skapa totalt elva olika potentiella
lösningar.

Vi visar att relationsmodeller passar datan väl, och att mognadsniv̊an hos
MySQL ger den ett övertag gentemot andra mer nyligen utvecklade system.
Utöver detta s̊a visar det sig att inverterade index är den bäst lämpade lösningen
för bra resultat.
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Chapter 1

Introduction

1.1 Burt and Rich

The main stakeholder for this masters thesis is a technology startup named Burt.
As described on their web page, ”Burt creates software to help advertisers and
agencies improve the efficiency and effect of their online campaigns”1. One
of their products is a metrics tool called Rich, which ”gives agencies faster
implementation, a more focused feature set and above all different - and better
- metrics. The result being a better understanding of the online advertising
environment, leading to more effective ads and increased ROI for all parts of the
ecosystem”2. In simple terms, Rich gathers advertisement traffic and produces
reports that are easy to understand. From a technical point of view, Rich is
non-trivial. The amount of data gathered is immense and the performance
requirements are extremely high, with billions of visits processed every day and
live reports available instantly over the web.

The flow of the system is visualized in figure 1.1, where the first step in
this process is the execution of a script inside an Internet advertisement using
Rich. This is usually a Flash ActionScript or JavaScript triggered to respond
to various user events, such as clicks and mouse movements, as well as timed
events like how long the user saw the advertisement. The script then sends
the associated data to a central log server. The parser reads these logs at
scheduled times and interprets the logged events into a session aggregated form.
The parsed data are then transformed into the final presentation data using
Hadoop, ”a Java software framework that supports data-intensive distributed
applications [...] inspired by Google’s MapReduce”3. This readily calculated
data is stored in a relational database in order to be accessible to an end user
via a web application.

There are two reasons for doing all of this processing, rather than simply
storing the logged user events directly in the database and perform calculations
on the fly when requested from the web application:

• Storing individual user data is not only superfluous as this kind of data is
never presented, it is also ethically unjustifiable.

1http://www.byburt.com, Retrieved on May 20, 2010
2http://richmetrics.com, Retrieved on May 20, 2010
3http://wiki.apache.org/hadoop/ProjectDescription, May 20, 2010
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Figure 1.1: The Rich system as designed today

• According to the CTO at Burt, a single large global advertisementcam-
paign may be viewed in the order of 109 times during a month. Calculating
statistical properties of this data on the fly is simply not viable.

1.2 Understanding the existing system

Today Rich arranges the gathered session data into two different piles; categories
and metrics. For one tuple of data there are around 35 to 45 measurements.
These measurements are divided as 20 to 30 ”categories”, and around 15 other
measurements we will call ”metrics”. The differentiation of these two groups
are just a simplification for Burt to handle the data, in the sense that questions
upon the data are only made on the categories, whereas the metrics are simply
interesting as output. What kind of measured value is considered a category or a
metric is decided by a domain expert at Burt, since there is no inherent property
of the data that puts it in either group. An example category is website, and
an example metric is the number of times an advertisement has been clicked.

What is then performed is a MapReduce job (described in section 2.4.1),
where the mapping is done on the tuples containing date, campaign id and a
category, for each possible category. The reduction step aggregates the metrics
in a non-trivial way, i.e. it is not simply an additive process, but the details
are not of interest for the project. The result of the MapReduce is stored in
accordance with a very minimalistic MySQL schema, with a column for date,
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campaign id, category name, value of the category and one column for each of
the metrics.

1.3 Initial problem statement

Even with a system like the one described above, the management of data of
this magnitude is a challenge. Due to this, Burt has currently limited the final
presentation of the data to only include metrics that are highly relevant and
relatively easy to calculate, as well as limiting themselves to only being able to
specify, or fixate, at most one of the categories at a time. The problem is that
agencies using Rich can not request information that is out of the ordinary. To
make things worse, ”the ordinary” is quite narrow. Hence our problem was to
find a way of redesigning the highlighted sections of figure 1.2 to allow for more
complex questions to be answered by the data.

Figure 1.2: The parts of the Rich system that we are to redesign

The first delimitation we have to make is what kind of more complex ques-
tions do we want to be able to answer. This was relatively straightforward to
determine since the request was to enable the querying of data where more than
one category was specified and fixed. In other words, we want to ask a question
where we specify a set of categories, and fix their values. This kind of question
we will henceforth call a closed question. The second kind of query is where
we ask for data where a set of categories are specified, and all but one of them
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are fixed. This kind of question we will henceforth call an open question. The
number of categories in a question is by Burt called the drill-down depth.

Whatever changes suggested, or whatever system to use, they are still subject
to the following criteria:

• Any query of the above described type should be able to be answered in
real-time.

• Insertion of data will be done once every 24 hours, and will be in the order
of 109 rows.

• The system must be able to scale well horizontally (often also refered to
as scale out, which means it should be possible to add more nodes to the
system, i.e. more computers).

11



Chapter 2

Concepts

2.1 Storage solutions

The term database is used to describe a variety of systems employed to organize
storage of data. There are different types of systems as well as models that do
this in different ways and here we try to examine the fundamental differences
of the more prominent ones.

First, we will explain the general concepts of row- vs column-oriented storage,
that can be applied in a variety of scenarios. Then we will cover the differences
between the traditional relational database systems that have been around for
several decades and some systems that have emerged from the recent NoSQL
movement, reflecting renewed interest in non-relational storage models.

2.1.1 Row-oriented

A row oriented system concerns tuples and attributes. A tuple represents an
object and an attribute represents one piece of information about an object.
Usually, this is then thought of (or even stored as) a table where the tuples
corresponds to rows and the attributes to columns.[2] This is the primary way
of thinking about data in the relational model and will be outlined further in
section 2.2.

2.1.2 Column-oriented

A column-oriented database is similar to a row-oriented, but as the name reveals
it focuses on columns (attributes) rather than rows (tuples). A row-oriented
database can easily operate on all the tuples in a system, while the column-
oriented one is tuned to operate efficiently on a set of attributes for all tuples
[4]. To make this clearer, consider this table of 1980’s heavy metal songs:
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Table 2.1: Table to illustrate column-oriented storage, as opposed to row-
oriented

Title Artist Album Year
Breaking the Law Judas Priest British Steel 1980
Aces High Iron Maiden Powerslave 1984
Kickstart My Heart Motley Crue Dr. Feelgood 1989
Raining Blood Slayer Reign in Blood 1986
I Wanna Be Somebody W.A.S.P. W.A.S.P. 1984

An example tuple is (Aces High, Iron Maiden, Powerslave, 1984) and an
example attribute is Album.

In a row-oriented database this would be stored somewhat like this:

Breaking the Law

Judas Priest

British Steel

1980

Aces High

Iron Maiden

Powerslave

1984

Kickstart My Heart

Motley Crue

Dr. Feelgood

1989

Raining Blood

Slayer

Reign in Blood

1986

I Wanna Be Somebody

W.A.S.P.

W.A.S.P.

1984

And in a column-oriented database:

Breaking the Law

Aces High

Kickstart My Heart

Raining Blood

I Wanna Be Somebody

Judas Priest

Iron Maiden

Motley Crue

Slayer

W.A.S.P.

British Steel

Powerslave

Dr. Feelgood

Reign in Blood
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W.A.S.P.

1980

1984

1989

1986

1984

Now, let us consider how 4 different database operations would perform in
these two systems.

Creating a new tuple in the first case simple involves writing the new tuple
to the end of the data. In the second case, this requires careful insertions at
different places in the data.

Creating a new attribute reverses the situation. In the column-oriented
case, data just has to be appended to the end, while it is non-trivial in the
row-oriented case.

Fetching all songs from the year 1984 is easier in a row-oriented system than
in a column-oriented one. For every tuple, we check if the fourth value is 1984
and if so we pull the whole tuple out. In the column-oriented system we have
to scan the years and remember the indexes of all occurrences of 1984 and then
scan though all the data and using the indexes to determine what to extract.

Getting the sum of all years is easiest in the column-oriented system since
they are all found consecutively.

As a summary, we can conclude that row-oriented system are best when
there is a need to create many new rows and retrieve many columns for the same
row at the same time. On the contrary, column-oriented system are best when
new columns have to be created often and there are aggregations performed
over many rows, but few columns, at a time. In other words, the row-oriented
systems are well suited for the class of systems referred to as OLTP (online
transaction processing) where the system has to respond immediately to user
requests. Column-oriented systems are a better match for OLAP (online ana-
lytical processing) which has to respond quickly to multidimensional analytical
queries [3].

2.2 Relational model

For the several decades the most common data storage model has been the
relational model. The term was originally defined by Edgar Codd at IBM Al-
maden Research Center in 1970 [2]. Software implementing this model is called
a relational database management system, or RDBMS. The less strict term
”relational database” is often used in its place.

A relation is defined as a set of tuples having the same attributes. Usually
one of these tuples represents an object and its associated information. A set
of one or more attributes has to be chosen as the primary key, which must be
distinct among all tuples in the relation. The relation itself is usually described
as a table where each tuple corresponds to a row and each attribute to a column.
Both rows and columns are unordered.

Relations can be modified using insert, delete and update operators. They
can also be queried for data by operators to identify tuples, identify columns,
combine relations and so on. The most common way to do this is by using the
”structured query language”, SQL.
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Furthermore, two concepts of importance are the foreign keys and indexes.
A foreign key is a reference to a tuple in a relation. Usually a different tuple in
a different relation, but not necessarily so. Compared to primary keys, foreign
keys need not be unique. This allows a single tuple to be referenced by any
number of tuples.

Indexes, just like primary and foreign keys, are defined as a set of attributes
on a relation. Querying a relation over the indexed set of attributes won’t
require the RDBMS to check each single tuple for a match, but rather use a
precomputed index to find them quicker.

2.3 NoSQL models

Carlo Strozzi first used the term NoSQL in 1998 as a name for his open source
relational database that did not offer a SQL interface1. The term was rein-
troduced in 2009 by Eric Evans in conjunction with an event discussing open
source distributed databases2. This time it did not refer to a particular sys-
tem, but rather a step away from the relational model altogether (as opposed
to the query language). Appropriate or not, the name attempts to describe
the increasing number of distributed non-relational databases that has emerged
during the second half of the 2000’s [1][9].

Some general, but not ubiquitous, traits most of the NoSQL systems share:

• They lack fixed schemas

• They avoid joins (the operation of combining relations)

• They scale horizontally

Furthermore, they all satisfy very different needs. Some systems, like the
document oriented ones, gain an immense ease-of-use, while most of the key-
value or column oriented ones make it easier to distribute data over clusters of
computers.

In order to fully understand the difference between all these systems and
their trade-offs, Brewer’s CAP theorem is of great help. It was first presented
in a talk by Eric Brewer in 2000 and is based on his work and observations
at UC Berkley. Seth Gilbert and Nancy Lynch provided a formalisation and a
proof of the theorem two years later [7].

The theorem states that it is impossible for a web service to provide guar-
antees for Consistency, Availability and Partition Tolerance at the same time.
All three of these properties are desirable and are defined as follows:

Consistency

”There must exist a total order on all operations such that each operation looks
as if it were completed in a single instant” [7]. A service that is consistent
operates fully or not at all.

Traditional relational databases work with transaction semantics which pro-
vides this proparty; each work-unit performed must either complete fully or

1http://www.strozzi.it/cgi-bin/CSA/tw7/I/en US/nosql/Home%20Page, Retrieved May
20, 2010

2http://blog.sym-link.com/2009/05/12/nosql 2009.html, Retrieved May 20, 2010
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have no effect at all. This is usually refered to as one of ACID properties which
states that a transaction must be atomic, consistent, isolated and durable.

Availability

”For a distributed system to be continuously available, every request received
by a non-failing node in the system must result in a response” [7]. Availability
means exactly what it sounds like; the service is available and will respond to
the messages it is being sent. Unfortunately it is a property that tends to desert
you when you need it the most. Services go down at busy times just because
they are busy.

Partition Tolerance

”In order to model partition tolerance, the network will be allowed to lose
arbitrarily many messages sent from one node to another. When a network is
partitioned, all messages sent from nodes in one component of the partition to
nodes in another component are lost.” [7]

If the service server runs on a single machine it acts as a kind of atomic
entity in that it either works or does not. If it has crashed it is not available,
but it won’t cause data inconsistencies either. Once the service gets distributed
then there’s a risk of partitions forming and the only way to handle these is to
compromise on either consistency or availability.

Dropping Partition Tolerance

If you want to run without partitions you have to stop them happening. One
way to do this is to put everything on one machine. There are, of course,
significant scaling limits to this.

Dropping Availability

This could be seen as the opposite of dropping partition tolerance. On encoun-
tering a partition event, the service simply waits until data the nodes are back
online. Implementing such a system in practice can be hard if everything is
supposed to come back online gracefully.

Dropping Consistency

Accept that things will become ”Eventually Consistent” [11]. Many inconsis-
tencies don’t actually require as much work as one might think. For example,
if two orders are received for the last book that’s in stock, there will be -1 book
left, but this can simply become a back-order and the customer does not have
to be affected by the inconsistency.

2.3.1 Key-Value

This class of storage systems arguably have the simplest data model. Rather
than tables or semi structured documents, data is just organized as an asso-
ciative array of entries. A unique key is used to identify a single entry and all
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of the three available operations use this key; delete the given key, change the
entry associated with the key, insert a new key with associated data.

”It is basically just a big, distributed, persistent, fault-tolerant hash table.”3

Noteworthy is that even though such a store is very straightforward to the
application programmer, implementations often store data using a more tradi-
tional model behind the scenes. While the key-value-store looks and acts like an
associative array, it may rely on tables, indexes and other artifacts of relational
systems to be efficient in practice.

2.3.2 Document-oriented

Document-oriented databases are semi structured data storages, usually imple-
mented without tables. The idea is to allow the client application to add and
remove attributes to any single tuple without wasting space by creating empty
fields for all other tuples. This means that all tuples can contain any number of
fields, of any length. Even if used in a structured way, there are no constraints
or schemas limiting the database to conform to a preset structure. This means
that the application programmer gains ease of use and the possibility to create
very dynamic data. The cost for all of this is the lack of a safety net and, to a
certain degree, performance.

A document-oriented database can be implemented as a layer over a re-
lational or object database. Another option is to implement it directly in a
semi-structured file format, such as JSON, XML or YAML.

Traditional concepts like indexes and keys are often employed in the same
sense as in relational databases. By using these, one is supposed to achieve
almost the same performance as would be possible in a system implemented
with tables.

2.4 Data processing

2.4.1 MapReduce

MapReduce is a programming model supporting distributed computing on large
data sets. It was first presented in the paper ”MapReduce: Simplified Data
Processing on Large Clusters” by the Google employees Jeffery Dean and Sanjey
Ghemawat [5].

The user of a MapReduce framework provides two functions; a ”map-function”,
which is meant to process a subset of the original problem and return the result
as a list of (A,B)-tuples, and a ”reduce-function”, which given an A value and a
list of B values produces a list of results that is the final answer for all A-parts.
The signatures are also explained by the listing 2.1.

Both the map- and the reduce-function should be written purely functional
(i.e. without side-effects), which is what allows them to be run in parallel. This
allows them to be easily distributed over a cluster of nodes. Coordination by
a master is then only required when grouping the outputs of the map-nodes
together, before sending them off to the reduce-nodes.

An example that creates an inverted index for a collection of documents can
be found below in listings 2.2 and 2.3.

3http://project-voldemort.com, Retrieved May 20, 2010
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map : ( subproblem ) −> l i s t (A, B)
reduce : (A, l i s t (B) ) −> l i s t ( r e s u l t )

Listing 2.1: Signatures for the map and reduce functions

void map( St r ing documentID , S t r ing documentContent ) :
for each word w in documentContent :

Emit (w, documentID ) ;

Listing 2.2: An example map function, in pseudo-code.

void reduce ( S t r ing word , L i s t documentIDs ) :
L i s t sortedIDs = so r t ( documentIDs )
L i s t d i s t i n c tSo r t ed IDs = d i s t i n c t ( sortedIDs )
Emit (word , d i s t i n c tSo r t ed IDs ) ;

Listing 2.3: An example reduce function, in pseudo-code.
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Chapter 3

Problem theory

3.1 Pre-study: Data generation

Before we try to find out how to store the data we need to make sure that it is
plausible to produce that data. By this we mean that the data can be generated
in reasonable time, and for this specific purpose that means in 24 hours, since
that will be the time between each MapReduce job.

3.1.1 The required data

In Burt’s current system each data row produced by the MapReduce job men-
tioned in section 1.2 contains:

• Date

• Advertisement ID

• Campaign ID

• Category

• Value in category

• Several metrics

Here the first five items were part of the key in the MapReduce job, whereas
the metrics were the aggregated data. What we will need the MapReduce job
to output in order to answer both open and closed questions is:

• Date

• Advertisement ID

• Campaign ID

• Category 1

• Value in category 1

• Category 2
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• Value in category 2

• ...

• Category n

• Value in category n

• Several metrics

where n may vary depending on which depth of drill-down we are currently
outputting. Also here all items except the metric items were a part of the
key in MapReduce. If we let c be the number of possible categories, n be the
number of categories you want in your MapReduce output, and v be the average
number of distinct values for each category then we can calculate the number
of output rows from the MapReduce job. First we will have to choose n of the
c categories, which can be done in

(

c

n

)

different ways. Then we will, for each of
those categories, choose all combinations of possible values. This can be done
in approximately vn ways. In total there are then

(

c

n

)

∗ vn unique keys in the
MapReduce job, each one creating one output row. Since the only variable we
can change here is n, we can call this number outputn.

But this is only for a fixed value for n, and we are interested in all com-
binations of aggregations where n goes from 1 to a set number m, so the final
equation for approximating the number of output rows from the Mapreduce job

will be outputtot =
m

∑

n=1

(

c

n

)

∗ vn.

3.1.2 Partial MapReduce jobs

If the reduction step in the MapReduce job were to be simple additive aggre-
gations of the metrics, then there is a possibility for an optimization. Given
that we have calculated all output rows outputn, then it is possible to calculate
outputn−1 from outputn. This can be done by:

1. For each key of n − 1 categories and their values you want to produce:

2. Choose an nth category that is not in the key.

3. Take all rows from outputn that matches the key and also have the nth
category, regardless of the values they have for that category.

4. Additively aggregate all the metrics for said rows, and put them as metrics
for the key in step 1.

5. output as a row in outputn−1.

This realization made us investigate what kind of operations where per-
formed in the current reduction step. Unfortunately there were several non-
trivial, non-additive operations performed and so we had to dismiss this opti-
mization. This led us to the conclusion that if MapReduce were to be used then
it would need to produce the complete set of data rows that were to be stored,
and not just a subset. Since the amount of computation that needs to be done
to compute outputtot is immense, we came to the conclusion that it is best that
MapReduce is performed, and we can focus on storing the data.
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3.1.3 Time consumption

How much time a MapReduce job takes is of course dependant on how many
computers are used in the cluster, and their respective performance. So to say
that a certain job may take at most 24 hours is not a valid constraint unless
you also limit the available computing power. What we did was to implement
our own MapReduce algorithm, and used that as well as the Hadoop MapRe-
duce (described in section 4.2) to try and get an idea of the expected time
consumption. Our tests suggested that it probably is not feasible to use an
n larger than 4. This made us question the necessity to actually perform the
MapReduce job for all combinations of possible keys, or in other words; is every
possible drill-down in the data really interesting, or is only a subset of them of
importance?

3.1.4 White-listing categories

By defining a set of drill-downs that should be possible to perform we can greatly
reduce the cost of the MapReduce job. This white-list is needed to be done on
the keys of the mapping in the MapReduce step, but intuitively done only on a
per-category basis, independent on the values of the categories. An example of
such a white-list could look like (if the possible categories where Site, Country,
Placement and Adload):

• Site

Country

Adload

Adload

• Adload

Placement

Country

• Placement

• Country

This would create the following tuples of categories for the MapReduce job
to produce: (Site), (Adload), (Country), (Placement), (Site, Country), (Site,
Adload), (Adload, Country), (Adload, Placement), (Site, Country, Adload).
Keep in mind that the order in these tuples does not matter, so the tuple (Site,
Country, Adload) is equivalent to the tuple (Adload, Country, Site). If we
denote the total number of tuples of size m for dm, and then assume that the
number of potential interesting drill-downs is limited, then we can change the

cost of the MapReduce job from
m

∑

n=1

(

c

n

)

∗vn to
m

∑

n=1

dn∗vn. This is a significant

improvement if dm is not immense for each value of m.
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3.1.5 Automating the white-list

But how would one decide what drill-downs to put down on the white-list? A
domain expert can try to produce a draft of the list, but in the end it will
be the customers that decide what statistics they are actually interested in.
For this purpose it could be interesting to be able to change this white-list
programmatically, as a reaction to a customer’s action on the website. For
example:

• There could be an interface where paying customers can request drill-
downs that do not exist at present.

• It could be that all drill-downs seem available to the customer, but once
he tries an attempt to access one that is not computed a request is sent
automatically.

3.2 Properties of the data

A noteworthy property of the data rows that are output by the MapReduce
job is that they are completely independent of any other data rows. What this
means is that for any arbitrary data row in the output, that data row does
not require the existence of any other form of data in order to convey all of its
information. The data is both self describing, and independent.

This observation simplifies the problem immensely, in the sense that scaling
the data horizontally is no longer a problem. This can for example be done
by spreading the data randomly across an arbitrary number of nodes. When
a query is being processed, it is sent to each node, and then the final result is
gained by taking the union of each node’s result. This kind design is possible
independent of database system, and therefore will simplify both the designs of
the systems being produced, and the testing to be performed.
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Chapter 4

Implementations

In this chapter we will discuss different implementations of database storage
systems. The systems that qualified for testing will each be presented in some
detail, but we will also mention several systems that we did not test. We try
here to focus on describing the systems both to give an understanding of their
design, but also their reliability, and the exact way in which we used them
in order to make our tests reproducible. We will also discuss the MapReduce
implementation currently used by Burt, Hadoop.

4.1 Database management systems

When deciding upon which systems to test we first needed to specify on what
criteria we should base our decision. We want each system to be tested to be
stable, that means no alpha-staged software, and the system should have been
in use of at least one large commercial application. We want to test systems
from all aspects of the CAP theorem, that is CA-systems, CP-systems and AP-
systems. We should try to limit our selection to fit the required time we have
at our disposal, in other words, we should not try out two systems that are
too similar, instead focus on finding differences in the set of possible systems.
We are also only interested in systems that conform to one of the paradigms
described in chapter 2, since our data is best modelled in those ways. In table
4.1 we can find all systems that we considered as candidates for testing, and in
figure 4.1 we see the five systems that where chosen among these candidates.

4.1.1 Cassandra

Cassandra is an Apache Software Foundation project [9]. It is a distributed
database management system based around a column-oriented architecture. It
was initially developed by Facebook to be a hybrid between Google’s BigTable
[1] and Amazon’s Dynamo system [6]. At its core it is a four to five dimensional
key-value store with eventual consistency. You can choose to model it as:

• Keyspace − > Column Family − > Row − > Column − > Value

• Keyspace − > Super Column Family − > Row − > Super Column − >

Column − > Value
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Table 4.1: The list of possible candidate systems

Name Design CAP Comment
Paradigm

CouchDB Document AP Similar to MongoDB.
MongoDB Document CP Chosen.
Neo4j Graph unknown Our data is not naturally

representable as a graph.
HBase Column CP Chosen.
Memcachedb Key-Value unknown Stores data in

memory, inapplicable.
Riak Key-Value CP Similar to Cassandra.
Project Voldemort Key-Value AP Chosen.
Redis Key-Value CP Stores data in

memory, inapplicable.
SimpleDB Key-Value AP Only available through

Amazon.
Cassandra Column AP Chosen.
Hypertable Column unknown Similar to HBase.
Db4o unknown Not open-source for

commercial use.
Mnesia Relational AP Restricted to the Erlang

programming Language.
MySQL Relational CA Chosen.
Mondrian OLAP unknown Wrong design paradigm.

We choose to work with Cassandra Version 0.6 Beta, using a Thrift gateway
[10].

4.1.2 HBase

HBase is a database developed as a part of the Hadoop project by Apache’s
Software Foundation. It can basically be seen as the Hadoop database, and it
runs on top of the Hadoop Distributed File System (HDFS). HBase is a column
oriented database modeled after Google’s BigTable design. HBase tables can be
used as both the input and output for MapReduce jobs run in Hadoop. HBase
can be accessed through a Java API, and also through a REST and Thrift
gateway.

The data model of HBase is most easily seen as a four dimensional dictionary.
The keys of this dictionary then are, in order: Table, Row, Column, Time-stamp,
which then point to a value.

Our use of HBase utilized the Thrift gateway, and we used HBase Version
0.20.3.

4.1.3 MongoDB

MongoDB is a scalable, high-performance, open source, document-oriented database.
Development started in October 2007, and it is still a active project. MongoDB
stores its data in binary JSON-style documents, and is mainly used for prob-
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Figure 4.1: The CAP-theorem and the investigated systems relations to it

lems without strong transactional requirements. Like other document oriented
databases it is schema-free, easy to set up and use, and easy to scale out on
different servers.

The version of MongoDB that we have used for our tests is the Linux 64bit
1.4.2 version. We are accessing MongoDB through the ruby gems Mongo API.

4.1.4 Voldemort DB

Voldemort is a distributed eventually consistent key-value storage system de-
veloped by LinkedIn. It is supported by a MySQL or Berkley DB back-end,
and what Voldemort DB provides for you is an easy way to distribute, repli-
cate, version, and partition your data. Each node is independent of other nodes
with no central point of failure or coordination, and it has a good single node
performance.

The data model for Voldemort is extremely straightforward, since it is used
as a simple key-value store with strings for both keys and values. It also provides
libraries for serialization of lists and tuples with named fields.

We choose to try this storage engine version 0.80 using the Berkley DB
back-end and we use the included ruby API to access the system.

4.1.5 MySQL

MySQL is a well known relational database management system first released
in 1995. It is typically used in small to medium scale single-server deployments.
But on larger scales multiple-server MySQL deployments can be used, and the
most common ways to do so is to use full replication to increase read capacity
or sharding to increase write capacity. What distinguishes MySQL from some
other relational DBMS systems are that it supports multiple storage engines,
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both native, partner developed and community developed.
We used MySQL version 14.14 distribution 5.1.37 with the MyISAM engine,

and used the ruby gems MySQL API to communicate with the system.

4.2 Hadoop MapReduce

Hadoop is an Apache project that develops open source software for distributed
computing. One of their sub-projects is Hadoop MapReduce which is a pro-
gramming model and software framework for writing applications that rapidly
process vast amounts of data in parallel on large clusters of compute nodes1.
This is the implementation of MapReduce that Burt are currently using, and is
the one that will be used for future work as well.

1http://hadoop.apache.org/mapreduce/, 21 May, 2010
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Chapter 5

Designs

In this chapter we will look at the different designs we used for the systems.
But before trying to come up with designs for the different database systems,
we must look at the problem, and the data, to see what designs might be
satisfying, and best model the data and information.

5.1 Requirements on the design

So how do we deem a design as satisfying? The requirements from Burt de-
scribed in section 1.3 must hold. Two of those requirements, real-time querying
of the data and horizontal scalability, are things we can guarantee at the design
level, whereas insertion time is what we will need to measure in our tests. To
guarantee real-time querying we will use different ideas of indexing, and to guar-
antee horizontal scalability we will either obtain it as an inherent property of the
system, or by making sure that we do not remove the quality of independence
of the data described in section 3.2.

5.2 Closed queries

If we start by creating a design able to answer the closed questions only, then
this can be done relatively straightforwardly. Given an output data row from the
MapReduce job we can form a string describing the categories and their values.
To create this string we simply concatenate the categories and their respective
values using a delimiter. For simplicity we will call this string a category-string.
If we then store this category-string together with the metrics using an index
on the category-string, anyone wanting to ask a closed question can then create
the category-string, and search the index.

5.3 Open queries

A row in the output data in the MapReduce job has a certain number of cate-
gories, lets call this number c. This row is then a part of the result of a total of
c open queries, one for each category you allow to be unspecified. This means
that for a data row which has the categories and values:
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• Category: Site, Value: www.awebpage.com

• Category: Country, Value: Swe

• Category: Adload, Value: 5

Then all the open queries that this row would be in the results of are (using
the pipe symbol as the delimiter in a category-string notation):

• ”Site|www.awebpage.com|Country|Swe|Adload|”

• ”Site|www.awebpage.com|Country||Adload|5”

• ”Site||Country|Swe|Adload|5”

If we express one of these in natural language, the second one would read:
Get all rows of drill-down depth 3 where the categories are Site, Country and
Adload, where the Site is www.awebpage.com and Adload is 5. Country can be
any value.

We here suggest a couple of different designs that will be able to handle
real-time querying of this kind of representation. The category-strings of closed
queries and open queries are sometimes refered to as ”full keys” and ”partial
keys” respectively.

5.3.1 Duplication of input

In this design we create c duplicates of each data row, and for each category-
string produced we exclude one of the category values, as in the example above.
The category-string is stored together with the excluded category value and
metrics, with an index on the category-string.

This design we use for one MySQL system.

5.3.2 Multiple indexes

In this design we create c category-strings where we exclude one of the category
values, as in the example above. The category-strings are stored together with
the closed category-string and metrics, with an separate index on each of the
category-strings.

This design we use for one MySQL system.

5.3.3 Inverted indexes

This design is a space optimization of the Duplication of input design, where
we divide the data in two different tables, one for the metrics (metrics table),
and one for the category-strings (questions table). Each data row from the
MapReduce job creates one row in the metrics table, containing the metric values
and the closed category-string, as well as a unique identifier. Each data row
also creates c entries in the questions table, one for each possible open category-
string, where the questions table basically works like a dictionary mapping the
category-strings to the unique identifiers in the metrics table. The metrics table
uses an index on the unique identifier, and the questions table uses an index on
the category-string.

This design we use for two MySQL systems, two Cassandra systems, one
HBase system, two MongoDB systems and one Voldemort DB system.
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5.4 Indexing on strings

In all of these designs we index upon strings, which can become a performance
issue, since those indexes can become rather large. A category-string with up
to six categories can be well over 80 characters long, and creating an index with
80 bytes can be difficult to do efficiently. To handle this problem we propose a
4-byte hashing of the string. This means that instead of storing just the string,
with the index on the string, you store both the string and a 4-byte hashing
of the string, and then index upon the hash value instead. When searching
for a particular string you then hash the string again, look up all hash values
matching the hash using the index, then do a secondary search on the result
set finding only the rows matching the exact string. We chose a 4-byte hashing
because it prooved to be efficient enough, creating on average of 0.0002 hash
collisions per hash value for our data1.

We used this technique on 3 MySQL systems, one Voldemort DB system
and one MongoDB system.

The hashing method we use is the Jenkins hash function [8].

1This was tested on a generated set of 1409919 distinct queries, yielding 1409625 different
hash values.
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Chapter 6

Method

6.1 Precondition

Hadoop produces data that describes all the data Rich can present to the end-
user. These data entries are organized in files with one entry per row. Every
entry, and hence every row in the file, contains three parts; a campaign id, a set
of category values and a set of metrics. An important property of this data is
that the union of the campaign id and the category values works as a key that
will be different for each row ever produced by Hadoop. The exact syntax of
these data rows is up to the user implementing the Hadoop script and should
be laid out in a way that is convenient for that data storage solution. Being
able to import this data quickly is an important property of any system, since
this puts an upper bound on how much data it can store over time.

6.2 Postcondition

After the data has been stored Burt must be able to retrieve metrics using
two methods. The first one is to query the storage system with a full key (a
campaign id and a set of category values) and have it return the corresponding
metrics, if any. The second one is to supply a partial key, which is the same as a
full key, except that for one of the categories, only the category name is supplied
and its value is left unspecified. In this case any value from the same category
will match the one left unspecified and the system should return all matching
entries, which could be any number from 0 and up. No queries will contain two
or more unspecified categories, even if such a generalization could be made quite
easily in most implementations. Both of these two retrieval methods must be
able to perform their tasks in less than a second, for any amount of data that
Burt would ever be able to store.

In our study we are interested in comparing how well a set of candidate
storage systems would perform these tasks. This has been split up into three
stages:

Stage 1, Culling In the first part we’re simply interested in culling the sys-
tems that cannot store data fast enough to be useful in practice. This will
be done with relatively small data sets and only on a local machine.
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Stage 2, Comparison In the comparison step the systems that passed the
culling test will be run in a production environment and with more realistic
data sets.

Stage 3, Scaling Finally, the system with the best performance in the com-
parison step will be run with an even bigger set of input data in order to
verify that it scales as well as anticipated.

Apart from being run in different environments and on data of different sizes,
every single test in every stage will be performed in the same fashion:

• A script will initialize the data storage by setting up the desired configu-
ration, starting a server and making sure that the system doesn’t contain
any data all.

• A data set of the desired size and syntax is deterministically generated
and stored in files as if Hadoop had produced them.

• The files are inserted into the storage system one by one. How this is done
differs between the systems, but all of them measure the time it takes to
perform this operation.

• After every insertion a fixed number of queries is made on the data that
have been inserted so far. Half of them are closed questions and the other
half are open questions. The elapsed execution time of these operations are
measured, and contingent behaviour and errors are caught and reported.
A fixed percentage of the measured values (on the low and high ends of
the scale) are discarded before any averages are computed, in order to
get closer to the actual average, and avoiding the measurement of initial
connection establishing etc.

• When all data has been inserted, measurement averages are collected in a
file and presented as plots of execution time as a function of data size.
Two graphs are created after each test, one for insertion and one for
querying. The insertion graph displays insertion time for one million rows
in seconds against the number of rows in the database. The querying
graph displays the average time in milliseconds against the number of
rows in the database. This graph distinguishes between open and closed
question.

The above steps are implemented as scripts for all systems in the test in
order to be reproducible in detail. As much as possible of these scripts are
implemented in a generic fashion so that only necessary parts will differ between
the different systems. This ensures that they all handle the same data, use the
same timing routines and produces the same kind of output.

6.3 Delimitations

None of the test stages were performed using distinct clients and servers; they
are always run within a single computer. No actual distribution is taking place
during the tests.
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6.4 Testing environment

The tests were performed on two different environments. The culling stage
were executed on one environment, and the comparison and scaling stages on
a second. The motivation for such a separation is basically for the sake of
simplicity. During the culling stage the tests were performed on a standard-
model laptop computer, which is sufficient since what we mostly want to detect
here if any system is orders of magnitude worse in comparison to the others.
The comparison and scaling stages were performed on a much more rigorous
platform, an instance in the Amazon S3 cloud. Once a test is initiated no other
task is performed on the system.

Table 6.1: Hardware specifications for the test platforms

Spec Laptop Amazon EC2 (Large Instance)
CPU XPS M1330 CORE 2 DUO 2 Intel(R) Xeon(R) CPU

T9300 2.50GHz E5430 @ 2.66GHz
Ram 4,0 GB 7,5 GB
HDD 500 GB 1000 GB
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Chapter 7

Tests

7.1 The culling stage

7.1.1 Experiments

We will here present measurements of the stage 1 tests mentioned in section
6.2. We produced two graphs for each system and configuration. The first
graph plots average insertion time per row against the number of rows in the
database. The second graph plots average querying time of both open and
closed questions (as described in section 1.3) against the number of rows in the
database.
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Figure 7.1: Insertion in Cassandra, inverted indexing

Figure 7.2: Querying in Cassandra, inverted indexing
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Figure 7.3: Insertion in Cassandra, inverted indexing, batch insertion

Figure 7.4: Querying in Cassandra, inverted indexing, batch insertion
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Figure 7.5: Insertion in HBase, inverted indexing

Figure 7.6: Querying in HBase, inverted indexing
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Figure 7.7: Insertion in MongoDB, inverted indexing, string hashing

Figure 7.8: Querying in MongoDB, inverted indexing, string hashing
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Figure 7.9: Insertion in MongoDB, inverted indexing

Figure 7.10: Querying in MongoDB, inverted indexing
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Figure 7.11: Insertion in MySQL, duplication, string hashing

Figure 7.12: Querying in MySQL, duplication, string hashing
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Figure 7.13: Insertion in MySQL, inverted indexing, string hashing

Figure 7.14: Querying in MySQL, inverted indexing, string hashing
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Figure 7.15: Insertion in MySQL, inverted indexing

Figure 7.16: Querying in MySQL, inverted indexing
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Figure 7.17: Insertion in MySQL, multiple indexes, string hashing

Figure 7.18: Querying in MySQL, multiple indexes, string hashing
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Figure 7.19: Insertion in Voldemort DB, inverted indexing, string hashing

Figure 7.20: Querying in Voldemort DB, inverted indexing, string hashing
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Table 7.1: Table of range of insertion times and querying times from stage 1

System Design Indexing on Insertion Querying
time (s) time (ms)

Cassandra Inverted indexes String hashing 5800-10400 10-780
Cassandra (Batch) Inverted indexes String hashing 4750-7250 10-780
HBase Inverted indexes String hashing 7200-14200 10-1160
MongoDB Inverted indexes String hashing 220-480 2-8
MongoDB Inverted indexes String indexing 225-243 2-7
MySQL Duplication String hashing 15-45 1.5-4.5
MySQL Inverted indexes String hashing 27-42 0.4-1.3
MySQL Inverted indexes String indexing 30-110 0.5-1.3
MySQL Multiple indexes String hashing 10-47 0.4-1
Voldemort DB Inverted indexes String hashing 6400-8100 5-120

7.1.2 Analysis

What is quite clear from the tests done at stage 1 is that we can divide the
systems into two groups, with basically different orders of magnitude of per-
formance. The slower group consists of Cassandra, HBase and Voldemort DB,
and the other group consists of MongoDB and MySQL. In rough terms we can
say that there is approximately a factor 100 in the difference of both input and
querying time between these groups. Since this stage of the testing is to sort
out systems that are highly likely not to be the best system, we will hereby
discard all the systems in the slower group when performing the tests in stage
2. If both of MySQL and MongoDB proves to be performing on the same order
of magnitude at later stages of testing, when testing on larger sets of data we
might choose to revise this decision.

7.2 The comparison stage

7.2.1 Experiments

We will here present measurements of the stage 2 tests mentioned in section
6.2. We produced two graphs for each system and configuration. The first
graph plots average insertion time per row against the number of rows in the
database. The second graph plots average querying time of both open and
closed questions (as described in section 1.3) against the number of rows in
the database. In this stage we insert approximately 7.5 million rows into each
system.
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Figure 7.21: Insertion in MongoDB, inverted indexing, string hashing

Figure 7.22: Querying in MongoDB, inverted indexing, string hashing
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Figure 7.23: Insertion in MongoDB, inverted indexing

Figure 7.24: Querying in MongoDB, inverted indexing
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Figure 7.25: Insertion in MySQL, duplication, string hashing

Figure 7.26: Querying in MySQL, duplication, string hashing
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Figure 7.27: Insertion in MySQL, inverted indexing, string hashing

Figure 7.28: Querying in MySQL, inverted indexing, string hashing
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Figure 7.29: Insertion in MySQL, inverted indexing

Figure 7.30: Querying in MySQL, inverted indexing
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Figure 7.31: Insertion in MySQL, multiple indexes, string hashing

Figure 7.32: Querying in MySQL, multiple indexes, string hashing
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Table 7.2: Table of insertion times and range of querying times from stage 2

System Design Indexing on Insertion Querying
time (s) time (ms)

MongoDB Inverted indexes String hashing 12500 10-45
MongoDB Inverted indexes String indexing 2200 10-65
MySQL Duplication String hashing 1600 0.5-0.8
MySQL Inverted indexes String hashing 1600 1-8
MySQL Inverted indexes String indexing 450 1-7
MySQL Multiple indexes String hashing 2000 1-4.5

7.2.2 Analysis

The results from stage 2 give some interesting insights in the behaviour of the
different solutions. From figure 7.21 we can see that the Mongo DB solution
that used our string hashing basically gave up at around 45 million rows, with
a huge input time of 12500 seconds per one million rows. All the other systems
succeded in inserting the targeted 70 million rows. The Mongo DB solution
that did not use our string hashing fared better, with a seemingly logarithmic
or linear growth peaking at 2200 seconds per one million rows in insertion time
as seen in figure 7.23.

The almost periodical apperance of the graph in figure 7.29 can be explained
by the fact that the data inserted is simulated for ten days of data, where each
day’s batch starts of with the lowest number of categories, and then increases.
This makes the category-strings mentioned in section 5.2 small in the beginning,
making the indexing periodically faster.

In terms of querying times not much needs to be said as all systems perform
well. The only thing notably interesting is that the duplication design yields by
far the fastest querying, always performing below one millisecond.

The curve of the duplication of input design used by the MySQL database
in figure 7.25 is extremely interesting. It has one of the the best insertion times
when there are below 30 million rows inserted, around 80 seconds per one million
rows. After 30 million rows the insertion time increases dramatically, ending up
approximately 20 times worse in an almost exponential fashion. This behaviour,
signified by a first slow logarithmic growth, then turning into a rapidly growing
curve can be seen in all four systems using our hashing design. With this
kind of behaviour none of these systems will be usable for large quantities of
data. The other two systems, who index on strings, have a much more linear
growth throughout the tests, but the MySQL version is without a doubt faster,
approximately 5 times.

7.3 Extending the comparison stage

So why did the four systems using our string hashing fail? From a purely
theoretical point of view they should have a logarithmic growth at worst. Is
this a problem rising from the hardware? Is it somehow related to the testing
server residing in the cloud? Is it something internal in the DBMS systems?
Since all the hash indexed MySQL-systems breaks this pattern roughly at the
same time, we were lead to believe that the schema itself was not the problem,
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but rather limitations in MySQL or the hardware used.
If the problem lies in that the indexes of the tables no longer fits in memory,

and whenever an insertion is done swaping of memory occurs, then that could
account for the loss of performance. A solution to this could be to split the data
over several otherwise identical tables and hence use a number of small indexes
rather than a single big one. Obviously this should have a negative impact on
query performance, since there might be a need for memory swapping then,
but given that queries are incredibly well-performing this might be a valuable
trade-off.

We decided to modify our simplest schema, the duplication of input using
MySQL, so that it would create and write to a new table whenever the insertion
time exeeded a fixed threshold.
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Figure 7.33: Insertion in MySQL, duplication, string hashing, multiple tables

Figure 7.34: Querying in MySQL, duplication, string hashing, multiple tables
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As can be seen in figure 7.33 and figure 7.34 this change alters performance
behaviour for both insertion and querying radically. Insertions reaches the
threshold (choosen as 120 seconds per million rows here) occasionally but then
goes back to being really quick, followed by a slow increase and the cycle re-
peats. There are no signs of this ever failing in such a way as the single table
solutions did, at least not because of the same reasons.

Querying on the other hand only performs well as long as a single table is
used. As soon as the first split occurs, performance degrades in a linear fashion.

As a conclusion from this intermediate step, we decided to proceed with
both this solution and one of the string indexed ones to the next stage to see if
any of their characteristics changed at larger scale.

7.4 The scaling stage

7.4.1 Experiments

We will here present measurements of the stage 2 tests mentioned in section
6.2. We produced two graphs for each system and configuration. The first
graph plots average insertion time per row against the number of rows in the
database. The second graph plots average querying time of both open and
closed questions (as described in section 1.3) against the number of rows in the
database. In this stage we try to insert rows into the system until it comes to
a halt, either because of disk space, or because of performance issues.

After running the tests we also measured how much diskspace they con-
sumed. The duplication of input with string hashing and splitting used up 693
GB of data, yielding in 2.20 KB of data per row inserted. The inverted index
used up 787 GB, yielding in 1.58 KB per row inserted.
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Figure 7.35: Insertion in MySQL, duplication, string hashing, multiple tables

Figure 7.36: Querying in MySQL, duplication, string hashing, multiple tables
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Figure 7.37: Insertion in MySQL, inverted indexing

Figure 7.38: Querying in MySQL, inverted indexing
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Table 7.3: Table of insertion times and range of querying times from stage 3

System Design Indexing on Insertion Querying
time (s) time (ms)

MySQL Inverted indexes String indexing 550 1-9
MySQL Split duplication String indexing 120 0-300

7.4.2 Analysis

As stated in section 7.4.1, these tests ran until the 1 TB disks we used were
full. As seen in the graphs, this occured at roughly 500 million rows for the
inverted index system and at 325 million rows for the split duplication system.
It comes as no surprise that the inverted index managed to handle more rows,
since there is no redundant data in that schema. The duplication system on the
other hand stores identical metrics tuples for several category strings.

The split duplication performed to a large extent as excepted; the insertion
time stayed within certain limits (figure 7.35) while querying time increased
linearly (figure 7.36). The problem is that an average querying time of several
hundred milliseconds is not good enough for our use case. It is not far from
it, but when taken into account that larger disks might be used, the further
increase that will be imposed will not be tolerable.

The inverted index system indexed on strings revealed itself to be even more
useful on a large scale. While the the first few million rows took a relatively
long time to insert, the increase when hundreds of additional millions of rows
were inserted was very modest (figure 7.37). At the very end, when containing
half a billion rows, the system still managed to insert a million rows in no more
than around 550 seconds. The interesting part is that no performance penalty
whatsoever seemed to arise from the fact that the indexes grew big and no
further optimizations had to be made.

The exact same goes for querying time (figure 7.38), for which fixed queries
could performed in less than a millisecond independant of the number of stored
rows. Open queries degraded slightly in performance as the number of stored
rows increased, but still never above 10 milliseconds except in rare cases.
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Chapter 8

Discussion

8.1 Transportation of data

One non-trivial issue that we have yet to reflect upon is the cost, or effort, to
transport the data from the Hadoop cluster to wherever the data may be stored.
One of the complications that arises when we discuss great sizes of data is that
it might be cheaper to transport the code, or system, to the data rather than
the other way around. Since the data when created by the Hadoop MapReduce
job is in the HDFS file system, it could prove to be an advantage to use HBase,
which also stores its data in HDFS. Another option might be to use a different
MapReduce implementation that is better suited for the other systems.

8.2 Testing improvements

In hindsight, the methods we used for testing insertion could have been slightly
different for a clearer result. In the tests that produced the querying graphs,
each data point in the graph is calculated from 200 tests, as described in section
6.2. The insertion graphs on the other hand were created using only a single
test run, which can possibly explain some of the spikes in those graphs. The
main reason for why we did this was the time it took to excecute a test, but
since we did our final test in the Amazon S3 cloud we could have scaled out
easier since we could have initialized more instances and run tests in parallel
(even copies of the same tests).

8.3 Effort of configuration

One of the factors left out of the study is the effort of configuration. This is a
twofold issue; initially it concerns setting the system up and secondly it concerns
adding new nodes to scale the system horizontally.

Apart from the installations (which turned out to be non-trivial in some
cases) setting the various tested systems up mainly dealt with creating schemas
for them. It is important to observe that even though NoSQL-stores in general
claim to be schema-less, this is only partially true. For example, while a key-
value store does not require the user to specify a schema, the data is always, by
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definition, expressed as an associative array.
Simply put, the tested systems can be split into three categories depending

on the type of schema they use, as described below.

Table 8.1: Schema alteration possibilities for the tested systems

System Schema type Comment
Cassandra Static The schema cannot be changed while the

system is running
MySQL Dynamic The schema can be altered during runtime,

at great expense
HBase Dynamic The schema can be altered during runtime
Mongo None Any hierarchical structure can be represented

and changed at any time
Voldemort None The user is limited to a single key-value store

The flip-side of the configuration-coin, adding new nodes to scale horizon-
tally, varies between the systems as well. This time the system can roughly be
split into two categories; the ones that are built to scale horizontally and those
which are not.

• Built-in scaling capabilities

Cassandra

HBase

Voldemort

• No inherent scaling capabilities

MongoDB 1

MySQL

The level of configuration required of MongoDB and MySQL to add new
nodes to a cluster depends completely on the schema used in the first place.
This leads us to a new issue not covered in detail by the study; the distribution
problem.

8.4 Distribution problems

The possibility to scale the system horizontally, i.e. distributing data over a
cluster rather than keeping it in a single machine, is a central requirement
for Burt. Hence, it is important to understand why we have decided against
focusing on that issue in particular. To do this, the data, the reads and the
writes all have to be covered.

As long as the quality of independence of the data (as described in section
3.2) is maintained, it is possible to shard it arbitrarily among nodes. In retriev-
ing the data, one could choose from two different schemes. The first one would
be to issue the query to every node in the cluster and concatenate all the re-
ceived results. This alternative imposes no new requirements on any part of the

1Seamless sharding will be introduced in an upcoming version.
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system and any data tuple can be stored in any node, the downside being simply
the fact that the number of queries increase as the number of nodes increase.
Another scheme would be to shard data among the nodes in a more structured
way, so that a client (or intermediate server) knows which one to query depend-
ing on the nature of the query. This imposes the restriction that data has to be
sent and stored at well-defined locations at all times, while relieving the clients
from the burden of issuing the same query to a (possibly large) set of nodes.
Since no external part performs writes in the system, and no tuples are ever
updated, this might be the best approach for Burt.

In any case, what remains would be to implement a layer of abstraction above
the sharding (handling data replication, fault-tolerance etc.), so that queries can
be made without knowledge of the underlying structure. Any of the two schemes
could be implemented ”under the hood”.

Of course, this is only an issue if a system without build-in scaling capabilities
(MySQL or MongoDB in this case) is used.

8.5 Reliability of beta software

MySQL was first released in 1995 as an open source implementation of a re-
lational database management system. The idea of relational databases them-
selves dates back to 1970. The NoSQL movement emerged in recent years with
systems like Cassandra (2008), HBase (2008), MongoDB (2007) and Project
Voldemort (unknown start of development). Companies with huge distribu-
tion needs, like Amazon and Google, developed their systems (Dynamo and
BigTable) slightly earlier (around 2004), but kept them proprietary [1][6].

In the light of this, one must ask: are these fairly new systems as stable,
understood and optimized as the relational databases? Anyone who has worked
with relational databases for a time long enough to be comfortable with them
will experience one thing in particular in switching to the new systems; a trade
of the set of well-understood problems and limitations for a set of not so well-
understood problems and limitations.

Learning and understanding aside, our experience of simply installing the
various systems and getting them and their interfaces to work is that it is
a bumpy ride. Compiling the systems yourself, finding functions yet to be
implemented, crashes in accompanying tools and lack of documentation and
examples are common cases. All of this can be overcome, but the price is time
and effort.

8.6 Generalization of open queries

If we look at the open and closed queries as described in section 1.3, closed
queries are created by choosing a set of categories, and fixating their values and
open queries are created by specifying a set of categories and fixating all but
one of them. It is quite easy to see a generalization here where we can say that
an open query of depth n is a query where you specify a set of categories, and
specify all but n of them, where n is smaller than or equal to the number of
categories specified. As with the data required to answer the regular open and
closed queries, there is no need for any extra data to be able to answer these
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queries. The only thing you need is to store the data in a way that you can ask
these queries in an efficient way. Among the designs described in section 5.3,
the easiest one to extend to handle these queries is the inverted index design.
By using the same string notation and example as in section 5.3 we can find all
the open queries of depth 2:

• ”Site|www.awebpage.com|Country||Adload|”

• ”Site||Country|Swe|Adload|5”

• ”Site||Country||Adload|5”

These strings are unique both in comparison with each other, but also for
any other possible string created by any other open query depth.
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Chapter 9

Conclusion

The first and most straightforward conclusion we can draw is that using MySQL
with the inverted indexes design (as described in section 5.3.3) and indexing on
strings seems to be the most reliable choice for Burt, both in terms of insertion
and querying time.

9.1 MySQL

MySQL turned out to be the most solid performer. But why were the other
systems inferior in this case? The key here is the nature of our data, and the
nature of how we want to manipulate it. All the NoSQL systems are designed to
handle masses of simultanious insertions, reads and modifications in real time.
But we did not need that. What we needed was only batch insertion, and fast
querying. No modifications or alterations where needed. What the NoSQL
systems did provide, which we did need, was horizontal scaling. But this can
due to the nature of our data be handled in a much easier fashion, as explained
in 3.2.

9.2 Inverted indexes

In terms of which schema, or design, to use to store the data the two most
prominent were the duplication of input and the inverted indexes designs. And
even though the duplication of input design yielded faster querying time, we
felt that the non-redundancy and the space saved from not having redundant
data made the inverted indexes the better option. This redundacy could also
possibly grow if new kinds questions would be needed to be answered by the
data, making the duplication of input scale badly in this sense.

9.3 String indexing

When it comes to indexing on strings (80 bytes) or hashed values of strings (4
bytes), it much depends on the amount of data rows that you will need store.
Since these limits surely are related to the hardware that is beeing used we can
only claim to see it for the hardware that we have used, but by looking at figure
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7.27 in comparison to figure 7.29 we can see that if you are going to store fewer
than 40-50 million rows, then string hashing offers a good performance boost. If
you are going to store more than 40-50 million rows, then you should probably
index on the string. In our case, as Burt will need to store much more than 50
million rows, we recommend hashing on strings.
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Appendix A

Schemas

A.1 Cassandra inverted index

Schema expressed as a Cassandra configuration file (storage-conf.xml).

<Storage>

...

<Keyspaces>

<Keyspace Name="Rich">

<ColumnFamily CompareWith="BytesType" Name="Metrics" />

<ColumnFamily CompareWith="BytesType" Name="Queries" />

<ReplicaPlacementStrategy>

org.apache.cassandra.locator.RackUnawareStrategy

</ReplicaPlacementStrategy>

<ReplicationFactor>

1

</ReplicationFactor>

<EndPointSnitch>

org.apache.cassandra.locator.EndPointSnitch

</EndPointSnitch>

</Keyspace>

</Keyspaces>

...

</Storage>

A.2 HBase inverted index

Schema expressed as a Ruby script, utilizing Thrift.

#!/bin/usr/ruby

require "hbase"

require "hbase_constants"
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class HbaseClient

def initialize(host, port)

transport = Thrift::BufferedTransport.new(

Thrift::Socket.new(host, port)

)

transport.open

@client = Apache::Hadoop::Hbase::Thrift::Hbase::Client.new(

Thrift::BinaryProtocol.new(transport)

)

end

def create_table(name, column_families)

@client.createTable(name, column_families.map {|cf|

Apache::Hadoop::Hbase::Thrift::ColumnDescriptor.new(

:name => cf

)

})

end

end

c = HbaseClient.new("localhost", "9090")

c.create_table("Metrics", ["name"])

c.create_table("Queries", ["id"])

A.3 MySQL duplication of input

Schema expressed as a MySQL script.

CREATE DATABASE mysql_dupe;

USE mysql_dupe;

CREATE TABLE metrics (

# dates

date DATE DEFAULT ’2000-01-01’,

# keys

api_key CHAR(12),

# categories

category_hash INT UNSIGNED NOT NULL,

category_string CHAR(80) NOT NULL,

missing_segment CHAR(30) NOT NULL,

# metrics

metrics01 BIGINT NOT NULL DEFAULT 0,

metrics02 BIGINT NOT NULL DEFAULT 0,

metrics03 BIGINT NOT NULL DEFAULT 0,

metrics04 BIGINT NOT NULL DEFAULT 0,

metrics05 BIGINT NOT NULL DEFAULT 0,
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metrics06 BIGINT NOT NULL DEFAULT 0,

metrics07 BIGINT NOT NULL DEFAULT 0,

metrics08 BIGINT NOT NULL DEFAULT 0,

metrics09 BIGINT NOT NULL DEFAULT 0,

metrics10 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics11 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics12 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics13 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics14 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics15 MEDIUMINT NOT NULL DEFAULT 0,

metrics16 SMALLINT NOT NULL DEFAULT 0

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE INDEX hash_index ON metrics(category_hash);

A.4 MySQL multiple indexes

Schema expressed as a MySQL script.

CREATE DATABASE mysql_multiple_hash;

USE mysql_multiple_hash;

CREATE TABLE metrics (

# dates

date DATE DEFAULT ’2000-01-01’,

# keys

api_key CHAR(12),

# categories

category_hash1 INT UNSIGNED NOT NULL,

category_hash2 INT UNSIGNED NOT NULL,

category_hash3 INT UNSIGNED NOT NULL,

category_hash4 INT UNSIGNED NOT NULL,

category_hash5 INT UNSIGNED NOT NULL,

category_hash6 INT UNSIGNED NOT NULL,

category_string CHAR(80) NOT NULL,

# metrics

metrics01 BIGINT NOT NULL DEFAULT 0,

metrics02 BIGINT NOT NULL DEFAULT 0,

metrics03 BIGINT NOT NULL DEFAULT 0,

metrics04 BIGINT NOT NULL DEFAULT 0,

metrics05 BIGINT NOT NULL DEFAULT 0,

metrics06 BIGINT NOT NULL DEFAULT 0,

metrics07 BIGINT NOT NULL DEFAULT 0,

metrics08 BIGINT NOT NULL DEFAULT 0,

metrics09 BIGINT NOT NULL DEFAULT 0,

metrics10 DECIMAL(3,1) NOT NULL DEFAULT 0,
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metrics11 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics12 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics13 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics14 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics15 MEDIUMINT NOT NULL DEFAULT 0,

metrics16 SMALLINT NOT NULL DEFAULT 0

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE INDEX hash_index1 ON metrics(category_hash1);

CREATE INDEX hash_index2 ON metrics(category_hash2);

CREATE INDEX hash_index3 ON metrics(category_hash3);

CREATE INDEX hash_index4 ON metrics(category_hash4);

CREATE INDEX hash_index5 ON metrics(category_hash5);

CREATE INDEX hash_index6 ON metrics(category_hash6);

A.5 MySQL inverted index without hashing

Schema expressed as a MySQL script.

CREATE DATABASE mysql_inverted_index_nohash;

USE mysql_inverted_index_nohash;

CREATE TABLE metrics (

# dates

date DATE DEFAULT ’2000-01-01’,

# keys

api_key CHAR(12),

# id

id BIGINT UNSIGNED NOT NULL,

# categories

category_string CHAR(80) NOT NULL,

# metrics

metrics01 BIGINT NOT NULL DEFAULT 0,

metrics02 BIGINT NOT NULL DEFAULT 0,

metrics03 BIGINT NOT NULL DEFAULT 0,

metrics04 BIGINT NOT NULL DEFAULT 0,

metrics05 BIGINT NOT NULL DEFAULT 0,

metrics06 BIGINT NOT NULL DEFAULT 0,

metrics07 BIGINT NOT NULL DEFAULT 0,

metrics08 BIGINT NOT NULL DEFAULT 0,

metrics09 BIGINT NOT NULL DEFAULT 0,

metrics10 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics11 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics12 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics13 DECIMAL(3,1) NOT NULL DEFAULT 0,

68



metrics14 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics15 MEDIUMINT NOT NULL DEFAULT 0,

metrics16 SMALLINT NOT NULL DEFAULT 0

# Primary key

PRIMARY KEY (id)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE queries (

category_string CHAR(80) NOT NULL,

id BIGINT UNSIGNED NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE queries LIKE historical_queries;

CREATE INDEX hash_index ON queries(category_string(80));

A.6 MySQL inverted index with hashing

Schema expressed as a MySQL script.

CREATE DATABASE mysql_inverted_index;

USE mysql_inverted_index;

CREATE TABLE metrics (

# dates

date DATE DEFAULT ’2000-01-01’,

# keys

api_key CHAR(12),

# id

id BIGINT UNSIGNED NOT NULL,

# categories

category_string CHAR(80) NOT NULL,

# metrics

metrics01 BIGINT NOT NULL DEFAULT 0,

metrics02 BIGINT NOT NULL DEFAULT 0,

metrics03 BIGINT NOT NULL DEFAULT 0,

metrics04 BIGINT NOT NULL DEFAULT 0,

metrics05 BIGINT NOT NULL DEFAULT 0,

metrics06 BIGINT NOT NULL DEFAULT 0,

metrics07 BIGINT NOT NULL DEFAULT 0,

metrics08 BIGINT NOT NULL DEFAULT 0,

metrics09 BIGINT NOT NULL DEFAULT 0,

metrics10 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics11 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics12 DECIMAL(3,1) NOT NULL DEFAULT 0,
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metrics13 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics14 DECIMAL(3,1) NOT NULL DEFAULT 0,

metrics15 MEDIUMINT NOT NULL DEFAULT 0,

metrics16 SMALLINT NOT NULL DEFAULT 0

# Primary key

PRIMARY KEY (id)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE queries (

category_hash INT UNSIGNED NOT NULL,

category_string CHAR(80) NOT NULL,

id BIGINT UNSIGNED NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE queries LIKE historical_queries;

CREATE INDEX hash_index ON queries(category_hash);
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