

A content management tool for the QES system
Developing of a web-based content management tool for touch printers
Master of Science Thesis of in the programme Software Engineering & Technology

DEJAN MILOJEVIC

Department of Computer Science and Engineering

CHALMERS UNIVERITY OF TECHNOLOGY

Gothenburg, Sweden 2010

A content management tool for the QES system

The author grants to Chalmers University of Technology and University of

Gothenburg the non-exclusive right to publish the work electronically and in a non-

commercial purpose make it accessible on the Internet.

The Author warrants that he is the author to the work, and warrants that the work does

not contain text, pictures or other material that violates copyright law.

The author shall, when transferring the rights of the work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the

author has signed a copyright agreement with a third party regarding the work, the

author warrants hereby that he has obtained any necessary permission from this third

party to let Chalmers University of Technology and University of Gothenburg store the

work electronically and make it accessible on the Internet.

A content management tool for the QES system
Developing of a web-based content management tool for touch printers

DEJAN MILOJEVIC

© DEJAN MILOJEVIC, June 2010.

Examiner: JOACHIM VON HACHT

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Department of Computer Science and Engineering

Gothenburg, Sweden, June 2010

A content management tool for the QES system

Abstract

Queuing systems are an important part of stores, hospital, banks and other departments.

QMatic AB is a world-leading company in the area of queuing systems and

effectiveness of customer flows. The core products when handling customer flows are

the touch printers, containing a screen where a visitor at i.e. a bank office can choose

the type of service demand. The visitor gets a ticket printed and is then put into a virtual

queue; there is a computer system is taking care to call the waiting clients to different

workstations to be served.

 The problem QMatic has is that the customers buying the touch printers are not

able to manage the content in a feasible way. To solve the problem an investigation has

been done by developing a proof of concept content management tool for editing

content that can be presented on the touch printers. This report will show how the

analysis and modeling is done to finally in an iterative way implement defined use

cases, to finally produce a prototype of an editor tool integrated into QES; a web-based

enterprise system to handle customer flows. With the tool an administrator is able to in

a straightforward way produce content that could be presented and used on the touch

printers.

 The result is a web-based editor where end-users can create content by using

drag-and-drop and finally publish the content on the touch printers. In the appendix of

this report there is screenshots of the developed application.

A content management tool for the QES system

Acknowledgments

This Master Thesis report has been written as the final part of the Master programme

Software Engineering & Technology at Chalmers University of Technology, Sweden.

The subject was chosen in collaboration with QMatic in Gothenburg, where the thesis

also has been performed.

I would like to thank the supervisors for their help and the support that they have given

throughout my work:

QMatic

Jonny Dahlberg

Niclas Bentley

Also thanks to rest of the RnD-team, including external consultants.

Chalmers University of Technology

Joachim von Hacht

Dejan Milojevic
Gothenburg, Sweden
2010

A content management tool for the QES system

Table of Contents
1 Introduction .. 1

1.1 Queuing and Queuing systems ... 1

1.1.1 Types of queuing .. 1

1.2 QMatic AB .. 2

1.2.1 About QMatic .. 2

1.2.2 Customer Flow Management ... 2

1.2.3 QMatic Enterprise Suite ... 4

1.2.4 Touch printers .. 4

2 Background ... 5

3 Problem .. 5

4 Purpose ... 6

5 Scope .. 6

6 Method ... 6

6.1 Development process ... 6

7 Technical background ... 7

7.1 Java Enterprise Edition .. 7

7.1.1 EJB3 .. 7

7.1.2 Java Server Faces ... 7

7.1.3 RichFaces .. 7

7.2 QMatic Enterprise Suite ... 7

8 Vocabulary .. 8

9 Pre-study ... 8

9.1 Market analysis ... 8

9.2 Domain description ... 9

10 Requirement elicitation ... 10

10.1 Use cases ... 10

10.2 Functional requirements.. 11

10.3 Non-functional requirements... 11

10.4 Usability requirements .. 11

10.5 Excluded from requirements ... 11

11 Analysis ... 12

11.1 Usage – Workflow ... 12

11.1.1 Activity diagram ... 13

A content management tool for the QES system

11.1.2 Preliminary GUI .. 14

11.2 Domain model ... 16

12 System architecture/High-level design... 17

12.1 Server-Client architecture .. 17

12.2 Modularized architecture .. 17

12.3 Design ... 18

12.3.1 Holding the state .. 18

12.3.2 Client-server interaction ... 19

12.3.3 Content relation between editor and display mode .. 20

12.3.4 Rendering .. 20

13 Development... 21

13.1 Iteration 1.. 21

13.1.1 Use case #13 Choose a branch type ... 21

13.1.2 Use case #3 Select page template .. 22

13.2 Iteration 2.. 23

13.2.1 Use case #1 Create a page flow .. 23

13.2.2 Use case #2 Add pages to page flow ... 24

13.3 Iteration 3.. 25

13.3.1 Use case #4 Add components... 25

13.3.2 Use case #5: Remove component... 28

13.4 Iteration 4.. 29

13.4.1 Use case #6 Modify page properties... 29

13.4.2 Use case #7 Modify component properties .. 30

13.5 Iteration 5.. 32

13.5.1 Use case #8 Link components to next page .. 32

13.5.2 Sub-task: Switching among pages... 33

13.5.3 Use case #9 Connect components to service .. 34

13.6 Iteration 6.. 36

13.6.1 Use case #12 Add overlays ... 36

13.7 Iteration 7.. 37

13.7.1 Use case #10 Preview a page flow .. 37

13.8 Iteration 8.. 38

13.8.1 Use case #11 Publish page flow .. 38

13.9 Summary ... 39

A content management tool for the QES system

14 Result .. 40

15 Discussion ... 40

15.1 Does the tool cover all needs? .. 40

15.2 Is the tool usable enough? .. 40

16 Conclusion .. 40

17 Future work ... 40

17.1 Input Components ... 40

17.2 Conditional overlays .. 41

18 References... 42

19 Appendixes ... 44

A content management tool for the QES system

1

1 Introduction

1.1 Queuing and Queuing systems

“Amazingly 70% of people will walk out of a shop if the queue is too long and with so

much pressure on our time we are always looking for ways to avoid wasting it in a

queue.” [1]

“On average we spend 273 days of our lives in queues so it is not surprising that

impatience gets the better of us and we start to get seriously annoyed after 13 minutes

of queuing. What's more, nearly 10% of adults become seriously annoyed the moment

they are in a queue.” [1]

Queuing systems are a core part of the infrastructure in banks, stores, hospitals, and

other departments. Because of grown complexity and amount of visitors the focus of

using computer systems to handle different queuing systems is important.

In this report the keyword queue references to a line of people waiting in a row

to get some service.

1.1.1 Types of queuing

The difference between following two queuing type should be understood before

continuing.

Physical queuing, also called linear queuing,

means that people are standing in a sequence row

where the first one is served first and so on (see

Figure 1.1). New people are staying behind the last

person in the row and the procedure continues in that

way. The advantage with physical queuing is that it is

simple to maintain but the disadvantages is that

people has to physically stay in row which can be

boring and annoying.

Virtual queuing means that people are not ordering of in a physical queue but

instead there is some system that holds the state of the queue. I.e. each person can have

a paper ticket (see Figure 1.2) with a sequence number and the system

controls that will be served next. The disadvantage with this types of

queues it that they require systems to control the queuing; however

there are many advantages person doesn’t have to stand and wait in a

row but can sit and rest or do other activities while waiting. The

queuing waiting time is a psychological experience that can be

managed and this is what virtual queuing does; it makes the

waiting people gives the impression of feel like the waiting time is

shorter than it really is. [2]

Figure 1.1 People standing in a
physical queue waiting to be served.

Figure 1.2 A ticket with

a number representing

the place in a virtual

queue.

A content management tool for the QES system

2

1.2 QMatic AB

1.2.1 About QMatic

QMatic AB is a world-leading company in the area of queuing systems and

effectiveness of customer flows. The company was founded in 1981 by a Swedish

entrepreneur and an engineer who had a restaurant business in Gothenburg, Sweden.

They devised a system whereby customers could not only choose their meal but, by

adding a display panel to their numerical system, see when it was their turn to collect it.

QMatic's focus is to take care of the whole customer flows with help of their own

developed Customer Flow Management process, CFM (see below).

The company operates in more than 110 countries with 40 000

installations of their systems over the world. The main office is located in Mölndal

(Sweden) but there are subsidiary companies and distributors over the whole world. The

systems are used in retail, retail finance, healthcare, education, and the public sector.

Each year 1.7 billion users pass through a QMatic system. [3]

1.2.2 Customer Flow Management

Customer Flow Management (CFM) is a process, developed by QMatic, for managing

customer flows - from arrival to the service. But it is also about getting information in

form of throwback and feedback from the clients (i.e. clients of a bank) after they have

been served. During the whole process different information is collected. The goal of

the CFM process is to help their customers (i.e. a bank or store) to increase sales and

productivity and to reduce costs by ensuring that a customer is at the right place, at the

right time and is serviced by the most appropriate staff member. It also increases client

and staff satisfaction by reducing the actual waiting time as well as the perceived

waiting time. It also aims to create a relaxed environment and importantly for the

clients, it establishes a controlled and fair waiting process. CFM can also generate data

and insights about how customers' clients behave and how the staff serves them. [4]

The CFM process in divided into six steps:

1. Pre-arrival

Before clients physically visits the shop, bank, hospital or public service centre

the can book appointments via phone or the Internet before arrival. This reduces

the time spent waiting can deliver the pre-visit data required for the service

provider to staff more appropriately and deliver better customer service. [4]

2. Arrival

On arrival, the visiting clients need to be placed in an appropriate queue. CFM

stresses the possibility of segmenting the visiting clients in different queues if

appropriate, rather than entering all customers in the same queue. The most

common segmentation is based on clients needs, e.g. separate queues for

separate services. It also allows the service provider to match customers with the

staff who have the most suitable competence to respond to their needs. Another

possibility for segmentation is to base it on clients’ attractiveness. VIP clients

that are considered important for the service provider could for example be

positioned at the front of the queue. For the service provider the arrival and

queue entry is the first opportunity to start tracking the client on site. This

A content management tool for the QES system

3

requires client identification and the creation of an initial data point. Usually

touch printers are used when clients gives different information about their

appointment and finally receives a ticket representing their queuing place. [4]

3. Queuing/waiting

From a customer perspective an important criteria to ensure a high service

experience is to secure an “in-process feeling”, e.g. the customers need to know

and feel that they have entered the queue correctly and will be served in the

appropriate time by the appropriate service person. [2]

The main purpose of this step is to minimize the perceived waiting

time. This can be made by engaging the clients in active waiting, e.g. fill the

waiting time with activities that reduce the perceived waiting time and hence

enhance the waiting experience [2]. By identifying and keeping track of who is

currently visiting targeted media can be broadcasted on television screens to

keep clients informed and/or entertained while waiting. Other opportunities that

both reduce the perceived waiting time and create additional value for the

service provider are to engage the client in activities to prepare for the service

and reduce workload for staff, e.g. by filling out forms etc.

Also this can create opportunities for further shopping while waiting,

either through strategically placed goods where the clients are waiting or by

allowing the clients to move freely around the service providers premises while

waiting to be served use media to stimulate further sales. If the service provider

knows which individual clients are waiting, the media content can be adapted to

target the specific needs of the clients waiting. [4]

4. Serving

Because of that the visiting clients are identify and start tracked as soon as they

enter the queue, the staff providing the services can start preparations before the

customer actually arrives at the service point. For example, staff could call up

the client’s history on their screen. They can see every visit the client has made

before, who they saw and what the enquiry was about. When the client is being

served, data on their visit can be captured and made available for real-time

insight through management dashboards. It can also be stored for later use. For

instance, management could use the information to view customer wait times or

find out how long different transactions actually take to complete. [4]

5. Post-serving

After a client has been served, staff closes the transaction and relevant data –

like wait-time and transaction time – are recorded. It is also possible to engage

the client in other value-adding activities like answering client surveys. The

information gained could be highly valuable for the service provider as it could

reveal the client’s perception of the service they have just received and highlight

areas with improvement potential. It could also improve the client’s service

experience if they feel that they have the opportunity to make their voice heard.
[4]

6. Managing

This part means all the managing, i.e. queuing statistics etc.

A content management tool for the QES system

4

If data from the CFM process is gathered and stored then managers can, at any point

in time, evaluate the current processes. Reports can be generated on service times

and client wait times. Operational inefficiencies can be identified and adder through

process changes or training. Trend analysis and statistical reports are also useful

tools for achieving and reporting on a variety of organization. [4]

Figure 1.3 An overview of the CFM process

1.2.3 QMatic Enterprise Suite

QMatic Enterprise Suite (QES) is a web-based software platform that is the central

point for handling the customer flow. The platform may handle the whole CFM process

with functions as registering queuing events, calculating statistics, supporting dashboard

management, and much more. Although there are a few standalone products (especially

at smaller premises) QES is the centralized point for distributed products. A more

technical description of QES will be done in Technical background section.

1.2.4 Touch printers

The touch printers are (hardware) devices

consisting of a touch screen part and a printer

part (see Figure 1.4). The touch screen is used to

present a view for arriving clients and give the

clients to interact by using the touch feature.

Often the screen displays a number of buttons

representing some services that a client is

supposed to choose. It can either be that a client

should register its arrival or just get a ticket for a

queue to some workstation to be served. The

printer part of a touch printer is used to print a

piece of paper representing a queuing ticket, mainly

with a number on it (placed in a virtual queue).

There are two models of touch printers; TP3xxx (Figure 1.4) and Vision (Figure 1.5).

The mainly different is the design and hardware specifications.

The touch printers are the core part of the arrival step in the CFM process.

They give the opportunity to direct clients to workstation that best matches their needs.

This is done when clients are interacting with the touch screen. In the most simple way

a number of services offered by current premises are listed there each service if linked

to a workstation. But in more complex way there could be a number of choices to make

on the screen, i.e. adding personal data like birthday number as input. Then software if

used to calculate which workstation that would serve that client best. Furthermore the

Figure 1.4 A touch printer

A content management tool for the QES system

5

system can also send information to the serving workstation before the client arrives to

it. This means that when that client gets in turn to be served the staff working at the

workstation can get personal data presented to decreasing the number of questions

needed to the client. Fewer questions to ask means that the

serving time is decreased and overall queuing will be more

effective. Some touch printers may have cameras taking a photo

of the client that staff on the workstation uses for faster

identification, not forcing the client to pick up any id cards.

The information can be stored for statistics used later by

management parties. The main office can get an overview when

there should be more workstation open and when there doesn’t

have to be so many. Also what sort of staff should be working

when can be scheduled from the statistic data.

Finally a very powerful function is to show directed

advertisement. I.e. when a client has gone through a flow of

pages and waits for the ticket to be printed the touch screen can

display some advertisement that is connected to the client’s

issue.

2 Background

QMatic has indications that there is a demand among their customers to being able to

manage the content displayed on the touch printers by themselves. Therefore a study

has been demanded, by QMatic, to investigate whether or not a tool can be built that

satisfies the customer needs; that almost everyone, even non–experienced computer

users, should be able to manage content displayed on the touch printers.

3 Problem

The content displayed on the touch printers is created programmatically, by QMatic

engineers. The problem for QMatic is that updating has to be done in the same manner,

makes it impossible for non-technicians to handle.

 Although there are some possibilities to modify the content by using some sort

of scripting it often introduces fails and bugs when customers are trying to modify the

content. A very common “quick fix” in the real world is that customers are putting

scotch over part of the screens to avoid that clients are pressing some screen areas not in

use anymore.

The summarization of the problem is that staff, especially non-experience

computer users, of customers buying the touch printers cannot change the content

displayed.

Figure 1.5 Vision

A content management tool for the QES system

6

4 Purpose

The purpose of this thesis is to investigate whether or not it is possible to build and

integrate, into QES, an editor tool to be used by non-technical experienced end-users

and that can handle all the functionalities demanded. If the problem could be solved it

should be presented how to accomplish that. If it would be shown that the problem

cannot be solved a result of the bottlenecks or other problems should be presented and

discussed.

5 Scope

Within the scope of this thesis an investigation should show how the problem could be

handled. The investigation should take in concern a suggestion of some prototype of a

final tool. Following paragraphs should limit the scope:

 The usability of a possible tool should be good enough in measurement of some

usability best practices together with feedback from the project customer,

QMatic.

 Although prototyping would be a tool for the investigation to solving the

problem, the output should not be a complete product but more an illustration of

a suggestion.

 There should not be any complete market studies.

 There should not be any interaction studies.

6 Method

The method used to try to solve the problem will be to implement a prototype of a

content management tool. The prototype should be a suggestion for a final product.

6.1 Development process

The development process will start by a pre-study part where a more detailed

description of the domain will be analyzed of what a user should be able to perform by

the tool.

 The domain description will be an input to the second part which will be the

requirement elicitation. In this part all use cases and requirements will be derived from

the domain description.

 After it has been analyzed what the user should be able to perform with the tool

an analysis will be done to design how the tool should be used and how it should look

like. Usage diagrams and GUI sketches will be done here matching the uses cases and

the requirements from previous part. Also a domain model will be constructed.

 After the domain has been analyzed and modeled, an initial system architecture

and design will be done before starting any implementation. The step should how the

tool should be technically built.

 Finally the use cases will be detailed designed and implemented. The

implementation will be divided into a number of iterations where each of the iterations

will contain one or more use cases.

A content management tool for the QES system

7

7 Technical background

All techniques important for the development process will here be briefly explained. For

details please see references.

7.1 Java Enterprise Edition

Java Enterprise Edition (JEE) is a platform-independent, Java-centric environment for

developing, building and deploying Web-based enterprise applications..The J2EE

platform consists of a set of services, APIs, and protocols that provide the functionality

for developing multi-tiered, Web-based applications. JEE includes many API’s from the

Java Standard Edition (JSE). [5][6]

7.1.1 EJB3

Enterprise JavaBeans (EJB) technology is the server-side component architecture for

Java EE. EJB technology enables rapid and simplified development of distributed,

transactional, secure and portable applications based on Java technology. [7]

7.1.2 Java Server Faces

Java Server Faces (JSF) technology establishes the standard for building server-side

user interfaces. JSF is a request-driven MVC web framework based on component

driven UI design model. [8]

JSF has managed beans, which provide the logic for initializing and controlling

components for managing data across page requests (a single round trip between the

client and server), user sessions, or the application as a whole. [9]

7.1.3 RichFaces

RichFaces is a component library for JSF and an advanced framework for easily

integrating AJAX capabilities into business applications. [10]

7.2 QMatic Enterprise Suite

The QMatic Enterprise Suite (QES) is built on J2EE and EJB3. The system is divided

into a number of modules. The system works as a centralized node for a lot of QMatic

products; from it the most products can be administrated, i.e. generating statistical

report, handling media content, and so on. I.e. all queuing processes pass this central

system (i.e. clicking a button on a printer machine sends events to the system that

registers and delegates commands further). The system is web-based taking us of

JSF/RichFaces as front-end web-tire.

A content management tool for the QES system

8

8 Vocabulary

Page flow

A page flow is a sequence of pages.

Page

A page represents what is displayed. A page will have a number of components placed

in it.

Page cell

A page cell is an area of a page where the components are placed. It is the cell that

holds the components and a page that holds a number of page cells.

Page template

A page template describes the look of a page, i.e. how many page cells it has and how

they are divided into a number of rows and or columns.

Component

A component represents a piece of content. It is be a button, an image, or a piece of

text. This is something an end-user can see on the screens.

Property

A property describes the look of a component. It could be i.e. color, size, or margin.

Service

A service is something that a branch offers (i.e. House loan, in a bank). These are

defined in the system configurations of QES. Already exists and used in QES.

Branch

A branch represents premises, i.e. a bank office in Gothenburg, or an IKEA store in

Stockholm. Already exists and used in QES.

Branch type

A branch type is a collection of branches divided into some logical way. Already exists

and used in QES.

(Touch) Printer

A printer in QES represents a touch printer device. Already exists and used in QES.

9 Pre-study

9.1 Market analysis

Looking at the solution of the problem the QES has to be extended with software taking

care of content management for the touch screens. This means that the software has to

be web-based and well-integrated into QES. A quick look at the market hasn’t shown

that there exists a product that can cover this, instead an assumption has been done that

the most effective way in form of time and money is to build the software.

The only question is whether existing techniques used in QES will be enough.

However the goal is to take use of the existing techniques, but there can be decisions

made to import other frameworks if it would be required.

A content management tool for the QES system

9

9.2 Domain description
From previous section it has been determined that QES needs a sub system as

complement that handles the content management on the touch printers. The tool should

give users opportunity to create content in a simple way that can be added to the touch

printers.

Below a more detailed domain description on how the tool should be will be

presented. This can be seen as delivery demands from the project customer. The domain

description will works as a direct input to retrieve use cases and requirements. Also

concepts will be retrieved to later design the domain model. The concepts will be

underlined and explained in next section.

A brief description of the domain

The tool should be an editor where users can create page flows. A page flow should

consist of a number of pages that would be populated with different types* of

components; i.e. images, texts, and buttons. Furthermore it should be able to customize

the look of the components by changing different properties i.e. setting a color and size.

The user should be able to link button components to navigate to another page in same

page flow. Also the user should be able to link button components to services from the

system configurations. It should be possible to be preview a created page flow and also

publish to touch printers configured in the system configurations. The collection of

services available for each page flow should depend on which branch the user chooses.

The pages in a page flow should have a template consists of cells structured in some

special way.
* (Motivation for these types: One could think to have cool flash animations and so on, but because of

that we want a user of touch printers to not stay to long here).

A content management tool for the QES system

10

10 Requirement elicitation

10.1 Use cases
These use cases are found out from the domain description in previous section.

Furthermore each use case will be detail designed and implement inside iteration.

There are two main use cases; Create page flow and display (created) page

flow. These use cases have a number of sub use cases, see Figure 10.1.

Figure 10.1 Overall use cases

A content management tool for the QES system

11

10.2 Functional requirements

 User should be able to create a page flow

 User should be able to add pages to a page flow

 User should be able to add components to a page

 User should be able to modify a component

 User should be able to link a component to another page

 User should be able to add services from the system configurations

 User should be able to choose from with branch he wants the services

 User should be able to choose template for a page flow

 User should be able to preview created page flow

 User should be able to display created page flow on a touch printer

10.3 Non-functional requirements

 Because the tool should fill in the missing functionality in the existing platform

it should also be integrated as a part of it, furthermore; the content management

tool should follow the techniques and architecture from the enterprise platform,

i.e. it should…

o Be web-based

o Integrated in QES, i.e.

 Being able to communicate with other sub systems

 Try to use as much as possible of current techniques and

frameworks from QES

 The content management should not produce content with format only possible

to present on specific displays.

 The tool should support different types of components

10.4 Usability requirements

 The tool should be able to be used be non-experienced computer users, so it

should…

o Be used in a clear and straightforward way

o Be fast to learn to use

10.5 Excluded from requirements

 The way to present created content

 The way to push created content to printers

 System performance

 System security

 Support for different browsers

A content management tool for the QES system

12

 The output will not be a complete product, i.e.;

 Bugs are accepted

 No exception handling included

 No stable system expected

 No expectation on clean code

 No expectation on testable code

11 Analysis

11.1 Usage – Workflow
“People have a limited short-term memory – we can instantaneously remember about

seven items of information. Therefore, if you present users with too much information at

the same time, they may not be able to take it all in”. [11]

The goal of the tool is to make it possible for the end-user to accomplish to

create a page flow. With the usability requirements in mind the end-user should use

simple and preferably an intermittently behavior when working with the tool. According

to the 3-click rule [12] the number of clicks to accomplish each action will tried to be

decreased as possible. Also, with directions from the citation above number of different

selection will be decreased as much as possible.

 To decrease number of information displayed at the same time the information

should be divided at different pages; the end-user should perform a minor action at each

step. Because some of the use cases above are dependent of other to be done before a

wizard would be a good solution [13].

 Looking at the use cases some of them will be performed once and some will

be performed intermittently when creating a page flow (a publishing).

Done once Done intermittently

Create a page flow

Publish page flow

Preview
Select page template

Select branch type

Add page

Add component

Remove component
Modify page properties

Modify component properties

Link component to page
Link component to service

Add overlay

Table 11.1 Use cases grouped by how often they are used when end-user would create and publish a page flow.

A content management tool for the QES system

13

All use cases in the right column in Table 11.1 can be done right after the “Create a

page flow” use can has be done in the left column. Furthermore is dependent on other of

the use case.

Use case dependencies

Select

page

template

Select

branch

type

Create

a page

flow

Add

page

Modify

page

properties

Add

component

Modify component properties

Link component to page

Link component to service

Remove component

Add overlay

Preview

Publish page flow

Table 11.2 Use cases dependencies. Use cases in each column are dependent of use cases in the nearest column
to the left and so on.

11.1.1 Activity diagram

With Table 11.1 and 11.2 in mind the following activity diagram has been constructed

describing in what order the end-user will perform each of the use case. There are one

activity diagram describing the whole working flow and a separate to describe how to

manage the content more detailed.

Figure 11.1 Activity diagram of the wizard steps the end-user should pass through.

A content management tool for the QES system

14

Figure 11.2Activity diagram of the content management part. Describes in what order the end-user should
manage the content.

11.1.2 Preliminary GUI

Figure 11.3 Preliminary GUI sketch of the wizard steps.

The wizard is divided into four steps which end-user should go through after done a

choice at each of them.

Step 1: Choose a branch type

At this step the end-user gets all available branch types listed. The end-user selects one

of the listed choices and continues to next step.

A content management tool for the QES system

15

Step2: Choose a page template

The end-user gets all available page templates listed. The end-user selects one of the

listed page templates and continues to next step.

Step3: Manage content

This step consists of an editor. At this step the end-user creates the page flow and

populates it with pages and furthermore components. A more detailed sketch is

presented in Figure 11.4.

Step4: Select touch printer

At this final step all available touch printers will be listed. The end-user should select

one of them and choose to publish the created content at selected touch printer.

Figure 11.4 Preliminary GUI sketch of the content management editor.

Left column

Here a list of all component types should be listed. When the end-user wants to add one

of them to the display area he drags a component from this list and drops in on the

display area.

Center column

This is what is supposed to be displayed on a touch printer. The area here represents a

page that would be divided into cells; depending of which template that the page (and

other pages in same page flow) is using. In the cells the different types of component

should be dropped.

A content management tool for the QES system

16

Left column

The end-user should be able to modify each of the content added to the display area.

When to so the end-user should get a couple of properties shown that he can modify and

then save, then the content should be modified.

Mouse clicks

The end-user should be able to click on added content (right-, left-, or double click) to

display the property parts. Double click: Go to next page, right click: show the menu,

left click: show properties.

11.2 Domain model

Figure 11.5 The domain model.

A content management tool for the QES system

17

12 System architecture/High-level design

12.1 Server-Client architecture
As mentioned in introduction section QES is a central point communicating with other

distributed products. For interaction with end-users QES uses a server-client

architecture running the server part at an application server with web browser as client

part. This will also be the case with the developed tool; the end-users will interact with a

web browser when using the tool, and the web browser will in background interact with

the server part.

Figure 12.1 The client-server architecture.

12.2 Modularized architecture
QES consists of a number of modules, where each module consists of a Web module

part and a corresponding EJB module part. To follow the architecture also the

developed tool will be built in same manner. The tool will be a module called Touch

Solution and divided at a Web module part and an EJB module part. The modules will

have dependencies to the already existing core EJB module in QES to retrieve data from

the system configurations (stored in database).

Figure 12.2 The integration of the TouchSolution module.

TouchSolution Web

This module will contain the web part of the touch solution part. I.e. all pages and

managed beans (read about JSF for more understanding).

TouchSolution EJB

This module will contain the domain model. It is responsible to, in future, persist the

objects.

A content management tool for the QES system

18

Core EJB

This module is the core module in QES. Its responsibility is the communication with the

database. To handle the persistence of the core domain objects.

12.3 Design

12.3.1 Holding the state

As shown in Figure 11.3 the end-user will go through a wizard making a choice at each

step before continuing to the next. The first issue to consider is how the choices should

be stored. The state of the whole wizard from previously steps has to be stored and

available during the following steps.

 A first design suggestion is to send request containing choices made in all

previously steps. Although this is a straightforward way, there are unnecessary

parameters to handle, at steps then are not related to. A more robust and maintenance-

effective way would be to take use of some external framework for handle sequence of

pages [14].

 The solution made is instead to create a page sequence handler by adding a

managed bean into the scope session. This bean, called PageSequenceBean, will hold

the choices made at each step.

Figure 12.1Describing how the choices after each step in wizard will be stored in PageSequenceBean. Notice
that the manage content step is more complex and will therefore analyzed more detailed later.

A content management tool for the QES system

19

12.3.2 Client-server interaction

Second issue to solve is how the client and server would communicate with each other.

When end-user are editing the content on the client-side, the browser, the changes needs

to be sent to the server, so the server and the client have to be synchronized with each

other.

Figure 12.3 Showing a button component (object) on the server and a button-element on the client. How
should they be synchronized?

The following is required:
- Changes on the client side have to be up-to-date on the server.

- Each Html-element on the client has to have a corresponding object on the server-side.

One solution could be to store all data in html-elements. The advantage is the

performance but there is a disadvantage in growing complexity and robustness in

holding the state, especially when switching between different pages with many

components. A solution to decrease the complexity could be to just store selected page

on the client and then use Ajax when switching selected page. Disadvantage is that a

render engine has to be created on the client side.

A more robust solution is to take advantage of using RichFaces. Using

managed beans the state can be held on the server side and then automatically update

the client-side. This means that the server will hold the state of current page flow,

including its pages and components.

How much data would it be in the memory?

Answer: An assumption of number of objects, in average:

1 page flow + 1 page template + 4 pages each with 3 page cell containing 1 component

per page cell each having 4 properties.

Calculation: 1 + 1 + 4(3 + (3 * 1) + (3 * 4)) = 74 objects, which is no memory problem.

A content management tool for the QES system

20

12.3.3 Content relation between editor and display mode

Another question is how to handle the content while it is in editing mode and when it is

shown on the touch printers. In editing mode the editor-view has to be different in way

so all components should be editable and so on, while when displaying the components

on the touch printers they should be performing some action instead. The preliminary

solution is to have different methods for generating code for current object for editing

and presenting modes, see Figure 12.4.

Figure 12.4 Showing how a button component should be represented differently depending on whether it is in
the editor mode or the display mode.

The content created should be represented in an abstract way, object tree, so it later on,

after easily persisted, can be presented in different ways. The presentation of the content

on the touch printers will be discussed later.

12.3.4 Rendering

After the end-user has performed an action, i.e. drag-and-dropped a component to a

page cell, and the information has been sent to the server, the editor-view has to be

updated too. There are two suggested solution; either let the client-side, the web

browser, take care about the updating of the editor-view by itself, or let the server send

information to the client-side about what has to be updated, and how.

 The first suggestion requires developing some developing engine on the client-

side. A disadvantage is that when the client-side is updating itself it doesn’t really know

about what have happened with the information it has sent to the server.

Figure 12.5 An overview of the information chain after the end-user has performed some action.

Instead the second suggestion will be realized; after the server-side has received the

information from the client-side, and handled it, then it will send a response back and

tell the client-side what to do; i.e. how to update its view.

A content management tool for the QES system

21

 The technique used to solve this will be to dynamically create JSF and

RichFaces elements on the server-side, and finally the client-side will update pieces of

its view depending on what action that has been performed.

Figure 12.6 Showing an overview of the solution when the end-user performs an action, how the information is
exchanged between the server-side and the client-side.

13 Development

The development section will present the iterations of the development. During these

iterations the use cases identified in the requirements elicitation section will be detailed

designed and implemented. Each of the iterations will involve one or more of the use

cases.

13.1 Iteration 1

This iteration will handle following use cases:

 Use case #3 Select page template

 Use case #13 Choose a branch type

13.1.1 Use case #13 Choose a branch type

The first choice the end-user has to do is to decide which branch type to create a page

flow for. Branch types are retrieved from the system configurations in QES. Dependent

of which branch type a branch belongs to tells which services the branch supports.

 A managed bean, called BranchDataBean, will be used to retrieve the all

available branch types and present them in the web browser. When arriving to this step

the end-user will get a list of retrieved branch types where one of them has to be choose,

in this case simply radio buttons.

After user has selected one of the listed branch types he navigates to the second

step.

A content management tool for the QES system

22

Figure 13.1 Overview of the process when end-user has arrived to the page to choose a branch types, and after

a choice has been made and the next button pressed.

This use case has implemented the first step in the wizard, where the end-user

chooses a branch type.

13.1.2 Use case #3 Select page template

The second step in the wizard is to let the user choose which page template that should

be used for current page flow. A template is simple a page structure divided into rows

and columns, which shows areas where components can be added. Because of that the

content management tool should support different types of touch screens, there should

be possible to have different types of templates. The decision for this thesis is to use

same template on all pages in a page flow, this is not because of any usability but

because of that this is an investigation and not a final product.

 The creation of a template is made in a programmatically way (further template

editors are to taken in concern and are out of the scope). The available templates will be

listed so the user can select the one he wants and then continue to the next step in the

wizard.

A content management tool for the QES system

23

Figure 13.2 Overview of the process when end-user arrivies to the second step in the wizard, and chooses page
template.

This use case has implemented the second step in the wizard, where end-user

chooses one of the available page templates.

13.2 Iteration 2

This iteration will handle following use cases:

 Use case #1 Create a page flow

 Use case #2 Add pages to a page flow

13.2.1 Use case #1 Create a page flow

This use case is completely handled by the system. When end-user enters the editor the

system does following:
 Creates a page flow

 Creates a page template (of type chosen previously during the wizard) and assigns it to

the page flow

 Creates a page and assigns it as the start page of the page flow

 Populates the page with a number of page cells. The quantity depends of type of page

template.

 Creates a managed bean, called PageFlowStateBean; Assigns it a reference to the page

flow and add the bean to the session.

A content management tool for the QES system

24

Figure 13.3 Overview of the created page flow populated with a generated start page and its page cells. The
PageFlowStateBean is a managed bean placed in the session used to access the page flow tree.

On the client-side a web page will be presented for the user representing the current

state of the page flow. The page flow itself is never represented in a view; instead the

first page will be shown divided into its page cells.

Figure 13.4 An overview of the GUI representing the page flow tree from Figure 13.3

This use case has implemented the generation of a page flow; prepared with a

page and page cells that end-user can start working with.

13.2.2 Use case #2 Add pages to page flow

The page flow will have a list of all its pages. Each time a new page is created it should

both have a reference to its page flow but also a reference of that page should be stored

in the list of pages in the page flow. Also each time a new page is created it gets a

couple of page cells generated (dependent of the page template). A page is never

containing components but instead the components are stored in its page cells.

A content management tool for the QES system

25

 A page never refers to any other page. Instead there will always be a button

component that refers to the following page, which it navigates to.

Figure 13.5 Showing how a new page is added the page flow. The tree is extended with a new page and two
page cells; because all pages follow same page template, they will have same number of page cells.

 This use case has implemented support for adding new pages to the page flow.

13.3 Iteration 3
This iteration will handle following use cases:

 Use case #4 Add components

 Use case #5 Delete components

13.3.1 Use case #4 Add components

As decided earlier components will be added by using drag-and-drop. Looking at

RichFaces library it is possible to add drag-and-drop support on elements by adding a

dragSupport or dropSupport element as child element. When changing the state of the

view the page flow tree on the server should be updated.

When the user drops a component into a cell of the current page the following will

happen:

 The server state has to be synchronized with the client:

o The client has to send the type of component dropped

o The client has to send the cell of current page the was dropped to

 The client-side view will be updated with the new state

A content management tool for the QES system

26

Before starting to develop the drag-and-drop support the view has to be created;

Available component types have to be listed and the drag- and drop-support to be

added.

 The component types will be listed as panel elements adding dragSupport

element as a child in each of them. Furthermore the component type has to be described.

This will be done by adding an attribute with the component type to the dragSupport

element; this will later make it possible to identify the dragged component type.

 Also each page cell (panel element) has to be added a dropSupport element as

child. Furthermore each page cell will be assigned an attribute with a number unique for

each page cell of current page.

After the end-user has dropped a component type into a page cell, the server-side

should be notified. This is done by adding an action listener to the drag- or drop-

element (dependent of data needed, see RichFaces reference for more information). The

invoked server part will be a managed bean, called RenderBean. When this bean is

invoked it will retrieve data from the event and perform following actions:
 Create a new component with type retrieved from the event

 Find the cell with number retrieved from the event

 Add the component to the cell

Figure 13.6 Overview of the created component types and page cells in the view, and how the process looks like
after the end-user has dropped a component type into a page cell.

After the server state has been updated the final step is to update the client view. A first

possible solution is to send data in Json or xml format and serialize/deserialize the

component on client-size, using JavaScript to append html code to cells. A disadvantage

A content management tool for the QES system

27

of this solution is that a rendering engine has to be created on the client-side. A better

solution is to create the elements on the client-side dynamically. This means that java

objects corresponding html elements are created on the server and then appended to the

client view.

Figure 13.7 Showing how the page flow will be (manually) tranformed to an html object tree, that further
automatically is transformed to html element on the client-side.

To accomplish the chain above the page cell panels in the view has to be bound to the

RenderBean. This is done by adding bind property to the panel elements. Each page cell

will then be bound to corresponding html object in the RenderBean (for detailed

information about binding elements to managed bean please the RichFaces reference).

Figure 13.8 An overview of how a new component it created in the view after the server state has been
updated.

This use case has implemented the support for end-user to add components by

drag-and-drop arbitrary component type into a page cell.

A content management tool for the QES system

28

13.3.2 Use case #5: Remove component

When adding a component in previous step an id unique (at least) within the

component’s page cell has to be assigned to the component. When user chooses to

remove the component it has to be removed from the page flow tree and the html tree.

After that the state is up-to-date and the view can be updated on the client-side.

To remove a component a RichFaces content

menu is dynamically created for each component. In this

menu a remove item is added invoking a method in

RenderBean. For more detailed information about

content menu in RichFaces please see RichFaces

reference.

When removing an already added component

from a page cell following scenario is performed:

Figure 13.10 Overview of the process after the end-user has chosen to remove a component.

This use case has implemented functionality for end-user to remove added

components from the page cells.

Figure 13.9 A context menu in

RichFaces. See RichFaces

documentation for details.

A content management tool for the QES system

29

13.4 Iteration 4
This iteration will handle following use cases:

 Use case #6 Modify page properties

 Use case #7 Modify component properties

This iteration implements the customization of the page and its components. The end-

user should be able to change some properties and then the view should be updated with

respect to the properties. The types of properties developed are just arbitrary to illustrate

how the customization could be implemented.

13.4.1 Use case #6 Modify page properties

To customize a page the end-user will be able to change its background color or adding

a background image. The end-user will be able to choose within a property box for

current page. The property box should be updated when switching page.

Figure 13.11 The picture shows the look of the box for the page properties. The user can change the
background by choosing a color or image.

When the end-user has changed the properties and chosen to save the changes the view

will be updated; i.e. the background of current page will immediately be updated in the

view, but also stored in the page flow tree on the server.

 To accomplish that the following will be done:

 The end-user modifies the properties and chooses to save

 The property data is sent to the server that updates current page in the page flow

 The view is updated

The first thing to do is to add the properties to the page. In this case it will be simply

done as variables, one for the background color and one for the background image.

 In the (editor) view the panel grid element that is representing the page has to

be added style attribute with the values of the page’s background color and background

image.

 To set the properties to the page the property box in the view (see Figure

13.11) has to be linked to the page. This will be done in a simple way through the

PageFlowStateBean which has a reference to the page. The page’s setter and getter

methods will be assigned to the properties, so when the view is updated then the page

will get its own properties.

A content management tool for the QES system

30

Figure 13.12 Overview of process after the end-user has changes page properties.

This use case has implemented functionality for the end-user to customize the

look of a page.

13.4.2 Use case #7 Modify component properties

There are different types of component which can be modified in different ways.

Button component

The button component is supposed to represent a button on the screen and have the

feature that a click on it navigates to another of the pages in the page flows. The

modifications that should be supported is width and height of the button, background

color, font color, and margin.

Image component

An image component represents an image on the screen; it is simple an image container.

The modifications should be width and height of the image, margin, and a reference to

its image file.

Text component

The text component type represents a text on the screen. The modification should be the

font size, the font color, and margin.

The property entity

Because components could have a lot of different properties they will have a collection

of property entities. This should also be the case for a page but because of a page had so

few properties that solution was just enough for this thesis.

 The property entity has a property name, a property value and an optional

property suffix. On the client-side these are represented in form of cascading style sheet

(CSS).

A content management tool for the QES system

31

Figure 13.13 The structure of a property.

With difference from the page property box in the view the component properties

should be shown when a component is selected. Because that different component types

have different properties there should be a view for each component type. Initially each

component property view should be hidden. When the user chooses to modify

properties for a component the property box should appear in the view for that

component type.

Figure 13.14 Showing overview of the process after the end-user has changed properties of a button
component.

This use case has implemented the functionality for end-user to change

properties for components.

A content management tool for the QES system

32

13.5 Iteration 5
This iteration will handle following use cases:

 Use case #8 Link components to next page

 Use case #9 Connect components to services

13.5.1 Use case #8 Link components to next page

The button component is supposed to be able to navigate the client finally using it on

the touch printers to another page in the page flow. Following has to be done to link a

button component to a page:
 The end-user chooses in the editor-view to link a button component to one of the

existing pages in the page flow, or to a new page

 The information is sent to the server-side that identifies the component and which page

it should link to

 If it is an existing page the component gets that page assigned as the linked page, if it

isn’t an existing page then a new page is created and added to the page flow and the

component is then linked to that new page

 The client-side gets updated

As for some previous use cases the end-user will use the context menu after right-

clicked on a components to get a list of all pages in the page flow. The link to a page

will be a menu item group.

 The menu group will be created and append to each button component when at

same time the component it created. There will be a condition for linking to a page; the

component type has to be a button component. First a “new page” item will be created

that is bound to a method on the server. Second a list of existing pages has to be added;

also they will be bound to a method. The item for the “new page” has to contain an

attribute with the component id. The items for existing pages have, besides to hold id to

its component, also hold an id to the page. Because of that, as with components, each

page has to have an id unique for a page in current page flow.

 When the end-user clicks to link a button component to a page the server-side

is invoked. The component is identified and linked to the page. The difference between

a new page and an existing page is that a new is created and appended to the page flow

while an existing will be found from the page flow and the linked to. The end-user can

whenever change to link a component to another page.

A content management tool for the QES system

33

13.15 Showing the processes when the end-user links a button component to a page.

This use case has implemented support for the end-user to link button

components to a page in the page flow.

13.5.2 Sub-task: Switching among pages

At this point there are a couple of pages in the page flow. What has to be decided, and

implemented, is how the end-user should switch between the pages in the editor.

First decision to make is whether the pages should be passed through a

sequence as a wizard or if the user should be able to from each page navigate to all other

pages. To make the content management more flexible and efficient the end-user will be

able to switch between the pages in its own manner.

Adding to vocabulary

Current page

This means the page that the end-user sees, in the editor, or on the touch printer at the

moment. When the end-user chooses to switch to another page in the page flow the

current page is then switched.

The following process will be performed:

 All available pages in the page flow should be listed and clickable for the end-

user in the editor-view

 When the user clicks on a page in the list

o Current view should be cleared

o The new page should be pointed as current page

o The view should be populated with the data of the new page

A content management tool for the QES system

34

To accomplish that first the server-side has to be invoked. To update the view the

following will be done:

 The html objects corresponding to the element on the client-side has to be

updated for the new page

 The client-side has to be updated

To update with the new pages content the page has to be found. This is done by adding

an id to each page that is unique within its page flow. So when the client-side invokes

the server-side the id has to be sent to the server-side so correct page could be found. In

the PageFlowStateBean that page will be referenced as the current page, so the server-

side has the knowledge of which page new components should be added to.

13.16 Showing the (behind) process when the end-user is switching between the pages in the page flow, in the

editor.

At this subtask the implementation of switching between the pages in the editor-

mode was implemented.

13.5.3 Use case #9 Connect components to service

To connect a component to a service data from the system configurations has to be

retrieved. The first suggested solution of this issue is to append all services (that

matches the chosen branch type) to the context menu of a button. The end-users would

then, in same way as when linking to a page, right-click on a button component and

choose which service it should be connected to. The process is then pretty same as when

linking page to a button component.

A content management tool for the QES system

35

13.17 The process when the end-user connects a service to a button component.

With this solution the button component is actually of two different types; either it is a

navigation button that navigates to another page, or it is a service button that performs

some service.

 To make the activity more user-friendly the button component will be split into

two different components. This means that choosing to add a component of type button

the user can only choose a page the button component would navigate to.

 With the services there is instead a component of type service component.

What will do with these is that they will all be listed in the view, each already connected

to a service. So when user adds a service component no configuration has to be done; it

is already connected to the service. With this solution instead both the design is better in

form of that the components are split to perform a specific task. But also the solution

makes it more user-friendly because of to accomplish the use case requires less clicks of

the user, which is a 3-clicks rule best practice [12].

13.18 The difference between the two suggested solutions.

This use case has implemented the functionality for end-users to add service

components connected to services from the system configurations.

A content management tool for the QES system

36

13.6 Iteration 6
This iteration will handle following use cases:

 Use case #12 Add overlays

13.6.1 Use case #12 Add overlays

As described in the introduction sections overlays can be a powerful tool to showing

targeted advertisement. The time that a client waits for a ticket to be printed some

advertisement could be displayed on the screen. This editor

will support end-users to add this ability. The overlays

should be connected to service components.

 The first question to answer is how the overlay

should be done technically. Although the developed tool

will have functions that cover editing of pages with

components there will not be any editing mode for

overlays. Instead an overlay will be a predefined image;

this would also be most simple for a user; to have already

predefined advertisement overlays when creating a page

flow.

The overlays will be listed as images in view of the property box for button

components, although it will only be visible when modifying properties for service

components. The end-user will be able to choose an overlay from the list, preview it in a

miniature box, and finally save the properties.

13.20 Showing how the end-user will be able to add overlay to a service component.

This use case has implements functionality for end-users to add overlays.

13.19 An overlay display over the
page.

A content management tool for the QES system

37

13.7 Iteration 7
This iteration will handle following use cases:

 Use case #13 Preview a page flow

13.7.1 Use case #10 Preview a page flow

This use case gives the user opportunity to see how (the current state of) created page

flow would look like in a presentation mode (on a touch printer). Because the created

page flow is stored as an object graph in the memory (would be retrieved from a

database in a final product) the page flow can be presented in many different ways.

There are two possible choices:

 Create the presentation using JSF/RichFaces-tag library

 Create the presentation with native HTML and JavaScript

With the first choice there is a more powerful way to accomplish that. This was also

done. But later on, because wanting to display the content on a touch printer, the second

choice was chosen. This is because the first choice requires more from the hardware.

For the small touch printers it is not possible to use that choice. So to give a hint of

further solution (for a final product) the preview will be made using the second choice.

 The page flow object will be iterated and all pages will be created represented by

native HTML

 Each column of each page will be iterated and components created represented

by native HTML

 For button components JavaScript will be used to switch currently displayed

page

 For service components later some Ajax-solution has to be made

The previewed page flow will be one simple generated HTML-page with all pages

listed as parts under each other. All pages will be hidden but not the first one. Later on

when navigating to a new page then that page will be shown and the previous one will

be hidden. In this ways always the current page will be shown on top of the HTML-

page.

A content management tool for the QES system

38

13.21 Showing how the page flow is transformed into native html, to be previewed.

This use case has implemented the functionality for end-users to preview created

page flow.

13.8 Iteration 8

This iteration will handle following use cases:

 Use case #11 Publish page flow

13.8.1 Use case #11 Publish page flow

This use case is more of a suggesting solution, to get hint of further work. To publish

the page flow, the QES has to send data to the touch printer. This will be done using

reverse-Ajax technique with help of DWR [15]. DWR gives opportunity to update part

of a web page. But in this case we will just tell the browser to refresh and then the new

content will be downloaded from the server.

A content management tool for the QES system

39

13.22 Shows how the created page flow is pushed to the touch printer.

DWR will also be used to show that the service integration works. When user clicks on

a service button a request has to be

sent to the server. This will be

done using DWR to send a simple

Ajax-request with some data of the

server. Furthermore the received

request will be handled to send a

ticket. Below an image shown

how the data is sent between

different devices to print a ticket:

This use case has implemented functionality for end-users to publish created page

flow on touch printers, and make it work with the ticket printing.

13.9 Summary

Now all use cases have been covered and a final result will be presented in the

following section. There are functionalities sketched but not implemented; these will be

discussed in the Future Work section.

13.23 Overview of printing a ticket. The collaboration
between different system parts.

A content management tool for the QES system

40

14 Result

By implementation of the prototype it has been proved that it is possible to solve the

problem. For a presentation of the prototype please see the appendix.

15 Discussion

15.1 Does the tool cover all needs?

The main point to discuss is how much of the needs the tool covers. First thing to look

at is to compare the problem and requirement elicitations with the result. I think that this

shows that the tool covers almost everything mentioned. There are a couple of functions

brainstormed that will be presented in the future work section. Also talking to QMatic

the response is that the functionalities supported by this tool cover a lot of marketing

demands.

15.2 Is the tool usable enough?

Because of this thesis has excluded a usability research it cannot be any discussion

referencing to any study material. Instead it can be said is that the developed tool makes

it much easier and faster for an end-user to manage the content. It also involves more

human because of that it doesn’t require any programming skills at all.

16 Conclusion

The conclusion is that with help of this tool it is much easier and efficient for end-users

to manage content on the touch printers. This has also been confirmed by QMatic.

17 Future work

17.1 Input Components

One type of components not analyzed is their clients can get some data as input to the

touch printers. This could i.e. be adding a personal number with a touch keyword or

drawing its bank card. These types of components would require the user that managing

the content to add conditions of the input data. For this type of components I would

recommend to have another part split from the editor. At this part some administrator

could set up a couple of conditions for the input component, i.e.:
 “If the age of the person is under 18”

 “If the drawn card belongs to a VIP customer”

Then in the editor the user should just add the component as it is done in the prototype

and use the properties to add navigation to a page or service for each condition.

A content management tool for the QES system

41

17.1 Input component.

17.2 Conditional overlays

In the prototype the user can add an overlay to each service. This means that the user

can add redirect advertisement by adding overlays to related services.

 An extension of the overlays would be to set a number of condition for the

overlay to be shown; i.e. when client has pressed a service button on a touch printer and

the ticket is getting printed, then there could be a condition “if the user chosen button 1

on first page and button 5 on second page then shown overlay 2”.

 To solve this in the editor the properties for service components could be

extended with a matrix of all (navigation) buttons on each page. Then the user could

mark a number of them that means that all these buttons have to be pressed by a client

on the touch screen to make some overlay to be displayed.

17.2 Conditional overlay.

An example result could be “If the client have pressed that he is under 18 years old and

pressed that he has no student account then show the overlay with advertisement about

student account offer”.

A content management tool for the QES system

42

18 References

[1] Visa Promotion. Intolerance to queues changing UK shopping habits
Available: https://www.visapromotions.net/pressandmedia/newsreleases/press233_pressreleases.jsp
Accessed: 1 April, 2010

[2] David Maister. The Psychology of Waiting Lines
Available: http://davidmaister.com/articles/5/52/
Accessed: 1 April, 2010

[3] QMatic. The QMatic homepage
Available: http://www.qmatic.com/
Accessed: 26 April, 2010

[4] CFM. Customer Flow Management white paper
Available: http://www.q-matic.com/PageFiles/238/CFM%20white%20paper_ver%20L1.5.pdf
Accessed: 24 May, 2010

[5] Sun. Java EE
Available: http://www.java.com/en/download/faq/j2ee.xml
Accessed: 10 April, 2010

[6] Sun. Java EE
Available: http://java.sun.com/javaee/index.jsp
Accessed: 10 April, 2010

[7] Sun. Enterprise Java Beans
Available: http://java.sun.com/products/ejb/
Accessed: 12 April, 2010

[8] Sun. Java Server Faces
Available: http://java.sun.com/javaee/javaserverfaces/

Accessed: 12 April, 2010

[9] Sun. Managed beans
Available: http://www.oracle.com/technology/tech/java/newsletter/articles/jsf_pojo/index.html
Accessed: 12 April, 2010

[10] JBoss community. RichFaces
Available: http://www.jboss.org/richfaces
Accessed: 12 April, 2010

[11] User interface design
Software Engineering 8, Sommerville 2006

[12] Testing the three-click rule
Available: http://www.uie.com/articles/three_click_rule/
Accessed: 28 March

[13] When to use a wizard
Available: http://www.uie.com/articles/wizard/

Accessed: 16 April

A content management tool for the QES system

43

[14] Spring Source. Spring MVC
Available: http://static.springsource.org/spring/docs/2.0.x/reference/mvc.html
Accessed: 12 February

[15] DWR
Available: http://directwebremoting.org/dwr/index.html
Accessed: 26 April

Figure 1.1 A physical queue
Source: http://www.supanet.com/where-does-our-time-go-queue-queuing-people-standing-in-line-

5804633.jpg

Figure 1.2 A virtual queuing ticket
Source: http://www.faqs.org/photo-dict/photofiles/list/3185/4240queue_ticket.jpg

Figure 1.3 CFM Process
Source: http://www.q-matic.com/Global/International%20site/Images/CFM-Steps-2.gif

Figure1.4 Touch printer
Source: http://www.qmatic-caribe.com/english/images/D.jpg

Figure1.5 Vision touch printer
Source: http://www.q-matic.it/prodotti/immagini/Vision.jpg

A content management tool for the QES system

44

19 Appendixes

Appendix I – Prototype demo.

A content management tool for the QES system Appendix I – Prototype demo

- 1 -

Appendix I – Prototype demo

Login to QES.

The touch solution module listed as available

application.

Main menu.

Choose branch type.

Choose page template.

A content management tool for the QES system Appendix I – Prototype demo

- 2 -

The editor.

Choose page background color.

Background color changed.

Choose page background image.

Background image changed.

A content management tool for the QES system Appendix I – Prototype demo

- 3 -

Drag a component type.

Drop to a page cell.

A text component dropped.

Right-click on the text component.

The context menu shown. Choose properties.

A content management tool for the QES system Appendix I – Prototype demo

- 4 -

The component properties shown. Label

changes to “Welcome” and font-size changed.

Drop a new component.

An image component dropped. Right-click.

Click on properties.

Properties for the image component shown.

Choose image.

A content management tool for the QES system Appendix I – Prototype demo

- 5 -

Image chosen and component updated.

Drag a new component.

Drop.

A service component dropped to second page

cell.

Right-click on the service component.

A content management tool for the QES system Appendix I – Prototype demo

- 6 -

Properties for service component shown.

Change properties.

Service component updated.

Choose an overlay for service component.

Preview chosen overlay.

A content management tool for the QES system Appendix I – Prototype demo

- 7 -

Drag a button component.

Drop.

A button component dropped to second page

cell.

Right-click on the button component.

The properties for button component shown.

A content management tool for the QES system Appendix I – Prototype demo

- 8 -

Change properties.

Button component updated. Right-click for

linking to a new page.

All pages in the page flow available, now just

the start page.

Choose “New page…”.

New page created and the button component

linked to it.

A content management tool for the QES system Appendix I – Prototype demo

- 9 -

Switched to the new page.

Set a background color.

Background updated.

Adding new component and modifying their

properties.

Preview.

A content management tool for the QES system Appendix I – Prototype demo

- 10 -

Preview of the overlay.

Preview of the second page.

Preview of another overlay.

Touch printers listed. Choose which to publish

the page flow to.

A touch printer device with the created page

flow.

A content management tool for the QES system Appendix I – Prototype demo

- 11 -

Showing an overlay while printing a ticket.

