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Abstract

Volumetric data is a convenient representation of shape on many
occasions. One application area is remeshing, where a poorly trian-
gulated model is converted to a volumetric representation and then
transformed back into a model of better triangle quality. In certain
areas, for example medical scans, volumetric data arise naturally. To
render the shapes captured by such a scan, a common approach is to
convert the volumetric data into a triangle mesh. Since both types of
representations are valuable, it is interesting to find reliable and effi-
cient ways of converting between them. Here, we will exclusively look
at the conversion from volume data to triangle mesh. Many methods
exist for performing such an operation, where one of the most popu-
lar is Marching Cubes. The meshes resulting from this algorithm will
however have properties often undesirable. Furthermore, the method
is not applicable when storing the volumetric data in an adaptive
structure, such as an octree. In this report, we will describe how
meshes without these undesirable properties can be generated from
an octree in a straightforward manner.
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1 INTRODUCTION

1 Introduction

1.1 Background

Geometrical shapes can be stored and processed in a computer in several
different ways. One common representation is to approximate the contour of
a shape using polygons. For example, the vast majority of 3D console and
computer games use models where triangles are the basic building block. A
reason for this is that modern graphics cards are heavily optimized toward
triangle rendering.

Another way of representing shape is to define it volumetrically. In this
case we have a field where each point contains the shortest distance from that
point to the surface. An advantage with this representation is that the un-
derlying surface easily can be modified, through operations like Constructive
Solid Geometry (CSG) [10].

Since both types of representations are useful, finding reliable and efficient
ways of converting between them is an active field of study. In this thesis, we
will in particular look at the conversion from volumetric model to triangle
mesh. This procedure is commonly referred to as contouring [30]. Depending
on the application domain, preferred properties and requirements imposed
on the conversion results might vary [31]. If the meshes are to be used in
real-time rendering for instance, the focus might be on finding an optimal
trade-off between visual aspects and performance.

In the field of mechanical engineering, mesh quality is more important,
since higher quality meshes reduce numerical errors [27]. The work presented
here was undertaken at Enmesh AB, a simulation company based in Gothen-
burg, specializing in easy-to-use tools for the evaluation of industry designs
[1]. We will therefore be more interested in mesh quality rather than speed.

1.1.1 Finite Element Analysis

The main product currently under development at Enmesh is called De-
signCheck. Using this program, engineers can quickly verify that the designs
they are working on can handle the real world conditions they will face when
deployed. DesignCheck is based on the finite element method, a numeri-
cal method for solving mechanical engineering problems like heat transfer
and structural analysis. Since these kinds of problems involve many compli-
cated factors, solving them analytically is usually not possible, and numerical
methods are thus necessary [15].

The finite element method is a divide-and-conquer approach in that a
geometrically complex domain is broken down into smaller subdomains of



1.2 Purpose 1 INTRODUCTION

simple geometry. These subdomains are called finite elements and a given
problem is independently solved for each element. The elements are then as-
sembled together again in order to obtain the solution over the whole domain
[19].

1.1.2 Incentives

The finite elements are defined over a 3D-net, in this case an octree, where
each corner of the octree cells contains the shortest signed distance from that
point to the underlying surface. This data might then be used to extract a
polygonal representation of the surface. There are many reasons why this
functionality is needed. One is that we want to be able to render the geometry
at a resolution corresponding to the current refinement level of the octree
grid [29]. Another is that geometry extracted from CAD files might result
in suboptimal triangle meshes. This will enlarge the errors in the solutions.
One way to cope with this problem is to convert the original model to a
volumetric representation and then extract a new contour. This process is
referred to as remeshing [27].

1.2 Purpose

The data structure we start out with is a signed distance field defined over
an octree. Our task is to convert this representation into a manifold triangle
mesh. The definition of a manifold surface will follow, and why it is important
that the meshes obey this property.

1.3 Method

Before the software construction work began, a pre-study was made where
relevant research material was studied in order to get a broad overview of
the field. The starting point was a handful of articles given by the supervisor
at the company. During the pre-study, which lasted for about a month, the
in-house framework that the implementation was going to be a part of was
also studied. This framework was entitled Boz and we will refer to it by that
name from here on.
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1.4 Materials

Since Box was implemented in C++, this was the language of choice. Also, a
couple of frameworks were included; namely OpenSceneGraph', boost? and
QT3. The coding environment used was Visual Studio 2008, and git* was
chosen for source version control.

A few files with distance fields, as well as a tool for generating such fields
for some simple shapes in a desired sampling resolution, were provided by
the supervisor at Enmesh.

A tool developed at the company was used for testing various aspects
of the extracted surfaces. It was specifically utilized for verifying that the
generated meshes became manifold. For visually studying the meshes and
manually asserting their quality, the open source program Meshlab® was used.
Some additional visualization applications were developed during the course
of the project. These are discussed in the appendix.

1.5 Scope and Contributions

This report provides an overview on the subject of generating manifold sur-
faces from an adaptive distance field. The main contributions are imple-
mentation details and more thorough descriptions of certain aspects of the
utilized algorithms. The hope is to reduce the development time for other
software developers who seek to implement these techniques.

There will be no discussion on how to generate the distance fields since
a tool for this was already provided in Box. We therefore point interested
readers to [2] which provides detailed instructions.

1.6 Report Structure

After introducing some basic terminology and concepts important for this
particular field of study, the previous work that our implementation is based
on follows. A description of the implementation is then given, and thereafter
the results. Conclusions, discussion and possible future improvements end
the report.

1
2

www.openscenegraph.org/
www.boost.org/
3qt.nokia.com/
4git-scm.com/
®meshlab.sourceforge.net/
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2 Fundamental Concepts

2.1 Implicit Surfaces

One of the most basic terms in the subject area for this thesis is implicit
surfaces. An implicit surface is defined as the set of points satisfying the
implicit functionS f(z,y,z) = c. cis called the isovalue and the surfaces are
often referred to as isosurfaces [28].

A point p is on one side of the surface if f(p) < ¢ and on the other side
if f(p) > c¢. All points where f(p) = c therefore lie exactly on the surface.
The convention is to classify negative values as being outside the surface and
positive values as being inside the surface [13]. In order to adhere to this
convention, we can always rewrite the implicit function as f(x,y,2) —c¢ =0
[25]. This will make matters simpler for us since we can always assume that
the surface partitions the universe into negative and positive space. In the
following we will therefore always assume that the surface is located where
the distance function evaluates to zero.

There are basically three different ways in which an implicit function can
be specified; as a mathematical function, procedural method or by discrete
samples. An example of an implicit mathematical function is the unit sphere,
which is the set of all points satisfying f(z,y,z) = 22 + y*> + 2> = 1. For a
procedural method (also referred to as a black box function), the evaluation
is done algorithmically.

In this work, f is specified by discrete samples, i.e. we have a grid of values
approximating f at the vertices of the grid. This is commonly referred to as
a scalar field. Adjacent points form cubes, also referred to as voxels or cells.
Intermediate values are calculated by trilinear interpolation over each voxel
[13]. As we have mentioned, our dataset specifically describes the minimum
signed distance from each point to the surface. In the rest of the report, the
terms scalar field, signed distance field and volume data are interchangeable.

2.2 Spatial Hierarchies

If the samples are laid out uniformly spaced, all voxels will be of equal size,
and we denote these grids uniform g¢rids. However, for reasons that will
become evident later, it is often desirable to sample the distance field non-

5Functions of this type are defined as being implicit because they do not describe
how to obtain the value of a dependent variable explicitly from an independent variable.
In contrast, an explicit function gives us a mapping from an independent variable to a
dependent variable, i.e. an equation of type y = f(x) where we have a direct way of
evaluating y through z [37].
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Figure 1: Example of a quadtree that is adaptively refined in order to capture
features of the underlying surface. If the subdivided cell giving raise to
the vertex marked out by the red circle is not subdivided, this is also
a restricted quadtree.

uniformly. We call these structures adaptive grids. A number of alternatives
exist for how to store such data [9] and in the work presented here, octrees
are used. Specifically, we work with restricted octrees, since this is what is
provided by Box. Restricted octrees differ from unrestricted octrees in that
adjacent voxels cannot differ by more than one level of refinement [18].

2.3 Gradient

The gradient of a scalar field is a vector field, where each vector points in
the direction of the greatest rate of increase from that point, and the length
of the vector gives the magnitude of that increase [35]. At every point along
the surface, f is constant and equals the isovalue. The gradient component
for all vectors tangent to the surface is thus zero, and it follows that the
gradient vectors are parallel to the surface normals at these points [33].

If we follow the convention that points with negative distance values are
located outside the surface, and points with positive distance values are lo-
cated inside the surface, we need to flip the gradient vectors if they should
be used as surface normals. This is because the scalar field grows toward the
surface.

Formally, gradients are defined as the partial derivatives of the function
f. For this to work, the function must be continuous and differentiable. For

10
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scalar fields, where f is not evaluated as a function in the standard sense,
other ways of calculating the gradient are used. In [13], Bloomenthal states

two ways of performing these calculations, along with the error estimate for
both.

2.4 Manifoldness

Usually, our starting point is a body generated from a 3D Computer Aided
Design (CAD) program. Since the designs are created for real life production,
it is important that they are described in a mathematically exact way. In
CAD software, this is often achieved using NURBS curves [34].

Due to the exact description of the original model, we do not want to
introduce unnecessary errors when constructing our meshes. Such an error
would for example be to duplicate an edge in the triangulation since this leads
to an unconnected model, and thus a non-closed surface. Certain algorithms
that we might want to execute on the surface later also require a closed and
well-behaved triangulation [29].

We are now touching upon the mathematical concept of manifolds. Ev-
ery manifold has a dimension, which in our case is 2, since we are producing
surfaces in 3D space’ [16]. We will thus more specifically be interested in
2-manifolds. The terms manifold and 2-manifold will hereafter be used in-
terchangeably.

The formal definition of a manifold surface is that for every point on the
surface, the neighborhood is homeomorphic to a disk. With neighborhood
we simply mean an arbitrarily small region surrounding a point. The mean-
ing of a shape being homeomorphic to another shape is that they can be
transformed into each other by stretching and bending, but no tearing [11].
It is then said that a homeomorphism exists between the two shapes and
that they are topologically equivalent [36]. A classic example of this concept
is the topological equivalence that holds between a coffee cup and a donut®.

A consequence of the definition is that the intersection between any two
triangles in the mesh has to either be the empty set (i.e. no intersection), a
common vertex, a common edge or a common face [4]. Thus, there will be
no overlapping triangles. Additionally, there can be no boundary triangles or
holes in the surface since this would oppose the demand that all points should
be locally homeomorphic to disks. The surface will therefore be bounded and
closed, i.e. it will be watertight. For completeness, it should be noted that

"In mathematics, there is a difference between a sphere, which describes a surface and
thus is of dimension 2 and a solid ball which has a volume and therefore is of dimension 3.

8This animation shows the concept:
http://upload.wikimedia.org/wikipedia/commons/2/26 /Mug_and_Torus_morph.gif

11
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Figure 2: The non-filled vertex is a so called hanging node.

the concept of manifold with boundary exists, and that each point then is
approximated either with a disk, or with a half-disk [13].

Before ending the discussions on manifolds, we also note that the defini-
tion prohibits the existence of hanging nodes (see figure 2). A hanging node
refers to the occurrence of a vertex lying on the edge of another triangle [20].
This is undesirable since it introduces a discontinuity [14].

3 Previous work

In the following, we will first look at how contouring can be done on uniform
grids. We will look at one such algorithm, Marching Cubes, which is arguably
the most popular one and also one of the earliest. The algorithm as described
in the original paper might however produce meshes with properties often
undesirable, and since its publication, much research has been devoted to
improve the algorithm [10]. We will specifically discuss one drawback with
standard Marching Cubes, namely face ambiguity. The reason why we focus
on this particular problem is because it leads to non-manifold geometry.

For representing shape, uniform grids are usually not the best choice
[9]. We will show the gains by instead using an adaptive grid, specifically an
octree. Unfortunately, contouring methods designed for uniform grids are not
easily adapted to octrees. Marching Cubes is attractive due to its simplicity
and efficiency, and many attempts have therefore been made to extend the
algorithm to work on adaptive structures [25]. The method implemented in
this thesis, Dual Marching Cubes, will be discussed. We will also describe
why it was chosen instead of other candidate methods.

3.1 Marching Cubes

In 1987, William E. Lorensen and Harvey E. Cline published a now classic
paper where they describe an algorithm for converting a scalar field into a
triangle mesh. They were at this time working for General Electric. The

12
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company was then developing a new rendering system for visualization of
volumetric data from medical scans. At a seminar, one of the developers
in this project proposed a challenge for the attendants; to come up with a
technology that could replace the current rendering technique with a polygon
based approach.

Lorensen and Cline were participating in the seminar, and took on the
challenge [7]. After a while they came up with a solution, and named it
Marching Cubes. The reason for the name is because after processing each
voxel (cube), the algorithm marches on to the next [8].

Marching Cubes was not the first algorithm for extracting an isosurface
[24]. Tt has however become one of the most popular methods, most likely
due to its simplicity and efficiency [25] [28]. The algorithm was patented,
but since the patent has expired, the algorithm is now free to use [3].

3.1.1 Algorithm Description

Since each cube consists of eight corners and each corner is either inside
(positive) or outside (negative) the surface, there are 256 (2%) different basic
ways for how the surface might intersect a cube. If we know the relation of
each corner to the surface, we also know which edges of each cube that are
intersected by it. Since we have a scalar value specifying the signed distance
to the surface at each corner, we can then interpolate over each edge with
different signs at its two vertices to find out where the scalar value equals zero.
This is the point of intersection. The connectivity of the triangles formed
by the vertices on the cube edges are determined by a triangle lookup table.
Note that due to the fact that polygons cannot extend outside their parenting
voxels, meshes produced by Marching Cubes contain no hanging nodes and
no overlapping geometry.

Voxel Triangulation Describing the triangulation for all the 256 cube
configurations is both tiresome and error prone. By utilizing rotational and
reflective symmetry, Lorensen and Cline identified 15 basic cases. Starting
out with these 15 cases, all the remaining 241 combinations can then be
generated algorithmically [8]. However, since the base cases have to be pinned
down manually, the process is still subject to human error.

As a consequence, more systematic approaches have been developed.
Bhaniramka et al. gives convex hull based algorithms in [21] and [22] that
generates lookup entries automatically for any dimension. Given the time
frame available for this project, it was decided that such approaches would
be too time consuming to implement. Moreover, such methods were mainly

13
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Figure 3: Marching Cubes in two dimensions, called Marching Squares [6]. The
red dots indicate vertices that are outside the surface, the blurred black
shape is the distance field, and the blue lines represent the extracted
contour.

developed for constructing isosurface patches when the table sizes become un-
manageable for manual handling; in four dimensions for example the number
of table entries becomes 2'¢ = 65536.

3.1.2 Face Ambiguity

One of the major problems with standard Marching Cubes is that adjacent
cube faces might be ambiguous. For a face to be ambiguous, it needs to
have two opposite vertices marked as outside, and the other two marked as
inside. Referring to figure 4, we see that this is true for certain faces of cases
3, 6, 7, 10, 12 and 13. Figure 5 shows what will happen at the interface
between two adjacent cubes sharing such a face; we get holes in the surface
and thus non-manifold geometry. There have been many attempts to solve
this problem, where some involve face tests for resolving the ambiguities, for
example [32]. However, a direct solution is to note that it is the reflective
symmetry that is the source of the problem. By extending the 15 base cases
to 23 and only make use of rotation when constructing the remaining cases,
the problem is avoided [24]. This, together with the absence of intersecting
geometry, makes it possible to use Marching Cubes for extracting manifold
contours.

14
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Figure 4: The 15 base cases of Marching Cubes. Filled vertices have a negative
sign, i.e. they are outside the surface.
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Figure 5: Two adjacent cubes sharing an ambiguous face, leading to a crack in
the surface.
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Figure 6: The additional 8 cases for avoiding face ambiguity.
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Figure 7: The face ambiguity shown in figure 5 resolved by enhancing the lookup
table. In this particular example, the addition of base case 19 solves
the problem.

3.2 Adaptive Distance Fields

Distance fields laid out uniformly have been extensively used, but have a
major drawback; the grid has to be very fine grained in order to capture thin
features and sharp edges of the underlying surface. Ultimately, the grid size
becomes unmanageable in terms of memory [9]. Furthermore, if we increase
the grid density to capture these features, we will as a consequence end up
with a grid that is excessively fine grained at areas where the surface exhibits
little or no change (flat areas for example) [25].

An alternative to uniform grids is to construct an adaptive distance field,
where the surface is more densely sampled at interesting locations, i.e where
the surface exhibits rapidly changing curvature. In [9], Frisken et al. provides
a discussion on how to construct such a field. An octree is a natural way for
structuring the resulting data, and is what we will use here.

3.3 Isosurface Extraction on Octrees

As we have seen, there are good reasons for adaptively sampling the distance
field. Unfortunately, applying Marching Cubes directly to the cells of an
octree yields poor results. The problems arise at the interfaces between
neighboring voxels at different subdivision levels. This leads to cracks in
the surface. When applying Marching Cubes to a uniform grid, the same
decisions are taken on both sides of a face and the surface will therefore
always be connected [18].

3.3.1 Dual Marching Cubes

Numerous articles have been written on the subject of making Marching
Cubes work with adaptive grids. For our purposes, the optimal choice seemed
to be the Dual Marching Cubes method, developed by Scott Schaefer and
Joe Warren in 2004. The idea is to construct a new grid from the octree,

16
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Figure 8: The connectivity of the dual grid (red) constructed from a quadtree
(black). The dashed lines form cells connected to the boundary of the
octree. These boundary cells are not generated in our implementation
since they were unneeded; the isosurfaces we worked with never crossed
octree voxels at the boundary.

where the properties of this new grid make it possible to contour it with
Marching Cubes. As have been shown above, if the face ambiguity problem
is solved, Marching Cubes can be used for extracting crack-free surfaces.
Since Marching Cubes only works for grids where there are no differences in
subdivision depth, this new grid must enjoy these qualities. Figure 8 shows
that this indeed is the case.

As can be seen from the figure, the dual cells are not always square, but
might degenerate into other types of quadrilaterals and even triangles. This
happens when the refinement depths differ for the quadtree cells holding
the binding vertices. In three dimensions, we will get an even larger flora
of different polytopes. However, since the algorithm constructing the dual
grid actually duplicates the coinciding vertices and thus also duplicates the
collapsed edges, the resulting cells are still topologically equivalent to cubes.
The cells can thus be contoured using standard Marching Cubes lookup tables
[25].

Reasons for choosing Dual Marching Cubes We will now explain why
we chose to base our implementation on Dual Marching Cubes. In addition,
we will compare certain of its qualities to other algorithms. Obviously, an
important factor was the time frame available for the project. As a conse-
quence, algorithms that would require modifications or extensions to the Box
framework were considered less interesting.

17
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1. Compatible Data Dual Marching Cubes operates on a scalar field,
which is what is provided through the Box interface. Methods like Mani-
fold Dual Contouring [26] and Cubical Marching Squares [10] both produce
surfaces of high quality. These methods however rely on edges being tagged
with exact intersection points and precise normals, so called hermite data.

Even if we could use the scalar field for interpolating the intersection
points and evaluating the surface normals through the gradient, it was un-
certain whether this would give any good results for such algorithms since
neither the interpolated intersection points nor gradient normals would enjoy
such high quality as when using hermite data.

2. Flexibility Dual Marching Cubes consists of well defined steps,
where the details of the steps are somewhat flexible. The first step for ex-
ample is to place dual vertices inside each voxel of the octree, where these
vertices are placed on features of the implicit function. In the Dual March-
ing Cubes article, this process is referred to as feature isolation. In this way,
a more accurate representation of the surface will be generated. However,
other strategies for vertex placement are possible. For example, the vertices
could simply be placed in the center of each voxel.

This is an approach mentioned by the authors of the article, and it was for
instance chosen for the Dual Marching Cubes implementation discussed in
[18]. The surfaces produced when centering each dual vertex resemble those
generated by SurfaceNets [25], an extraction method aimed at producing
high-quality meshes for finite element analysis [5]. By choosing this strategy,
we could focus on generating manifold surfaces first. Given time, features
could be implemented later.

3. Straightforward Solution Many methods make use of some sort
of patching for connecting the mesh where cracks have occurred due to dif-
ferences in node refinement depth. Omne such method is called Adaptive
Marching Cubes. Even if the meshes produced by this algorithm contain no
holes, the surface will be discontinuous in areas where patching have occurred.
This could probably be solved by executing some sort of post processing on
the mesh [23]. However, compared to Dual Marching Cubes, this procedure
would be less straightforward and the result more uncertain.

4. No Inter-cell Dependencies Dual Marching Cubes does not in-
troduce inter-cell dependencies. Inter-cell dependency means that the sur-
face extracted inside one voxel might depend on neighboring voxels. This
increases algorithm complexity and might severely impact contouring time.

18
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N T

Figure 9: In the left figure, the dual vertices are placed at the centers of the
voxels, and the dual cells are always convex. In the right figure, the
dual vertices have been moved to better align with the underlying
surface, resulting in non convex dual cells. This, in turn, leads to
intersecting triangles and a non-manifold surface.

Even if we are not targeting real-time, models might contain several millions
of voxels, and introducing inter-cell dependency could be a problem.

Problems and Solutions

1. Non-convex Cells Surfaces of higher quality might be generated
if the feature isolation step of Dual Marching Cubes is implemented prop-
erly. However, when not placing the dual vertices regularly, the algorithm
might produce intersecting triangles due to non-convex dual cells. Figure 9
illustrates this problem. The original Dual Marching Cubes paper did not
discuss this drawback, but it was later pointed out in [12]. Since we use the
strategy of always centering the dual vertices inside each voxel, the problem
is avoided altogether.

2. Sliver Polygons Our dual vertex placement strategy unfortunately
leads us to another problem, namely that of sliver polygons. A sliver polygon
is a polygon of zero, or very small area [25]. For finite element methods, the
stability of the solution is increased if the triangles are more equally sized [5].
Figure 10 shows a close-up of the surface of a contoured sphere containing
sliver polygons. The authors of Dual Marching Cubes solve the problem by
snapping the dual vertices to lie exactly on the isovalue if it lies within some
tolerance. This is done when performing feature isolation.

3. Topological Holes In a paper from 2007, Kazhadan et al. compares
an implementation of their own for unrestricted octrees with Dual Marching
Cubes [18]. They proceed in the same way as is done is this thesis, namely

19
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Figure 10: Part of the surface of a sphere containing sliver polygons.

Figure 11: Due to a rapidly fluctuating distance field, the dual grid (green
square) misses a portion of the surface (blue shape). The dashed
line shows the contour as it is defined for the quadtree.

that they place the dual vertices in the centers of each voxel, thus leaving out
the feature isolation procedure. In their results, they show that topological
holes might appear at locations where the surface is thin. Note that the
surface is still closed though as this is not the same as a crack. To see why
this might happen, consider a situation in two dimensions where the surface
intersects the quadtree edges in such a way that the dual vertices are all
classified as being outside the surface (see figure 11). The new dual edges
between the vertices will thus not intersect the surface. We are currently
unaware of any solution to this problem.

20
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\4

1. Create dual vertices ——>» 2. Construct dual grid

3. Apply Marching Cubes

Figure 12: The three steps of our implementation. The output from each step is
used as input to the next.

4 Implementation

The implementation is based on the octree traversal algorithm from Dual
Marching Cubes for generating a grid dual to the octree. This dual grid
is then contoured using a Marching Cubes implementation that avoids face
ambiguities. The process can be broken down into three steps, shown in
figure 12. Our main contribution in this section will be to provide details for
the second step of the algorithm, since the original article on Dual Marching
Cubes restricts the discussion to quadtrees.

4.0.2 Creating the Dual Vertices

Box provided an easy way of traversing the octree in a top-down manner,
enumerating all the voxels. For each voxel, the center position is first cal-
culated. The gradient is thereafter sampled, inverted and normalized for
use as the surface normal. Finally, the distance field at the center point is
sampled. This data is stored in a DualVertex class. When building the dual
grid, we need to access this data for each voxel we visit. All the instances of
DualVertex are therefore stored in a map where lookup is done by voxel.

4.0.3 Constructing the Dual Grid

In this step, the octree is traversed top-down for the second time, in order
to bind together the dual vertices belonging to the eight voxels that share a
common vertex in the octree. In other words, for each vertex in the octree,
we create a topological cube where the corners of that cube are the dual
vertices of the voxels sharing that octree vertex.

The procedure is simpler to implement if the dual cells defined for vertices
on the octree boundary are avoided. This is because the traversal algorithm
finds voxels sharing a common vertex. Since the vertices on the borders are
not shared by eight voxels, they have to be handled in a special way. Refer
to figure 8 for a visual explanation of border cells.

For the distance fields used, the contour never crossed any octree cells
at the boundary of the octree. It was therefore unnecessary to implement
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support for boundary cells since they would never contribute to the surface
anyway. In the paper on Dual Marching Cubes, Schaefer and Warren suggest
how the boundaries can be included for quadtrees. Should the border cells
be needed later, the approach they describe should be easily extendable to
octrees.

Driving the construction of the dual grid are four recursive methods;
nodeProc(n), faceProc(nl,n2), edgeProc(nl,n2,n3,n4) and
vertProc(nl,n2,n3,n4,n5,n6,n7,n8). The nx arguments are all nodes in
the octree. Figure 13 shows how these methods are called from a subdivided
node in nodeProc. The recursion is started by calling nodeProc with the
root node of the octree as argument.

In the implementation, edgeProc is divided into edgeProc_X, edgeProc_Y
and edgeProc_Z. Similarly, faceProc is broken up into faceProc_XZ,
faceProc_XY and faceProc_YZ. The reason for this is that we need to keep
track of how the nodes we recurse on are spatially related. An alternative
is to send an additional argument to the methods, specifying the adjacency
relationship. This however led to cluttered code. Since further recursion
on a face/edge always happen along the same plane/axis, the methods nat-
urally lend themselves to specialization. In the pseudo-code below we will
exemplify with edgeProc_X and faceProc_XY. The only code differing in the
other versions are which nodes are picked out for further recursion.

On many occasions we will have a situation in faceProc, edgeProc or
vertProc where one or several nodes are subdivided while one or several
nodes are leaves. In that case, the leaf nodes are reused as arguments in
further recursive calls. Therefore, when we write that we “call vertProc with
the nodes sharing the face center vertex” in the pseudo-code for faceProc_XY
for example, some of these nodes might be duplicated; it is not always the
case that we have eight unique nodes. This type of recursion on an octree
with different refinement depths is the reason why we end up with several
different types of polytopes in the dual grid and not only cubes. Following
is pseudo-code for the four methods.
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bl
-

faceProc_XY

H

edgeProc_X edgeProc_Y edgeProc_Z

z
X
Y

vertProc is called for all eight children since they share the center vertex

Figure 13: This image shows how nodeProc, faceProc, edgeProc and vertProc
are called from nodeProc for a subdivided node.
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Procedure 1 Recursive method nodeProc

1: procedure NODEPROC(n)

2 if n is subdivided then

3 call nodeProc for all eight children

4: call faceProc_XZ for children sharing a face in the XZ plane
5: call faceProc_XY for children sharing a face in the XY plane
6 call faceProc_YZ for children sharing a face in the YZ plane
7 call edgeProc_X for children sharing an edge along the X-axis
8 call edgeProc_Y for children sharing an edge along the Y-axis
9 call edgeProc_Z for children sharing an edge along the Z-axis
10: call vertProc with all eight children; they share a common vertex
11: end if
12: end procedure

Procedure 2 Recursive method faceProc XY

1: procedure FACEPrROC_XY (nl, n2)
> When at least one of the two nodes sharing a face is subdivided, we get
four sub-faces and four edges meeting at a single vertex at the center of
the face
if n1 is subdivided or n2 is subdivided then
call faceProc_XY for nodes sharing sub-faces
call edgeProc_X for nodes sharing an X-edge
call edgeProc_Y for nodes sharing a Y-edge
call vertProc with the nodes sharing the face center vertex
end if
end procedure

Procedure 3 Recursive method edgeProc_X

1: procedure EDGEPROC_X(nl, n2, n3, nd)
> When at least one node sharing an edge is subdivided, the edge is split
into two smaller edges separated by a vertex
if at least one node nl..n4 is subdivided then
call edgeProc_X for nodes sharing smaller edges
call vertProc with the nodes sharing the separating vertex
end if
end procedure
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Procedure 4 Recursive method vertProc

1: procedure VERTPROC(nl, n2, n3, nd, n5, n6, n7, n8)

2 if all arguments nl..n8 are leaves then

3 init DualCell d

4: for all n € n1..n8 do

5: add the DualVertex for node n to d

6 end for

7 add d to DualGrid

8 else

9 call vertProc using the nodes themselves as arguments if they are

leaves. For subdivided nodes, pick the child that shares the vertex we
are recursing on.

10: end if

11: end procedure

|
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N

Figure 14: Dual grid (red) created from octree (black).
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Figure 15: Vertex and edge numbering.

4.0.4 Applying Marching Cubes to the Dual Grid

The Marching Cubes implementation makes use of two different lookup ta-
bles. The first one, EdgeTable, is an array of 12-bit numbers, where the
indexing into the array is done with an 8-bit number. Each bit in the num-
ber used as index corresponds to a vertex in the cube. If a bit is 1, that
vertex is outside or exactly on the surface. A bit set to 0 means that ver-
tex is completely inside the surface. EdgeTable consists of entries for all
256 voxel configurations, where each 12-bit number specifies which of the 12
edges that are intersected by the surface for that particular configuration.
The numbering scheme we chose is shown in figure 15. The second table,
TriTable, is indexed by the same 8-bit number as EdgeTable. Each entry
is an array of 15 integers and each triplet of numbers in the array specifies
which of the intersected voxel edges to connect to form a triangle. The reason
why the array is of size 15 is that the maximum number of triangles for a
voxel is five.
The workflow of our Marching Cubes implementation is:

1. Construct an 8-bit index k£ based on the vertex classifications of the
cell.

2. Use bitmasking on the number fetched at index k of EdgeTable to pick
out which edges in the voxel that are intersected.

3. For each edge, interpolate between its endpoints to calculate the inter-
section point and normal.

4. Finally, store the connectivity of the generated vertices, specified at
index k of TriTable.
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5 Results

For the tested input files, the algorithm has so far not failed in generat-
ing manifold meshes. This has been verified by an in-house tool for asserting
mesh quality, and also by manually inspecting the meshes in Meshlab. Avoid-
ing reflective symmetry when generating the Marching Cubes lookup tables
removed some small cracks which otherwise occurred. In figure 16 we see a
close up of the same section of two meshes, where the left one was generated
from 15 base cases, and the right one from 23. Most meshes contain sliver
polygons.

The time it takes to create the meshes is acceptable. Of the total time
approximately 50% is spent creating the dual grid, 40% is spent placing the
dual vertices, and 10% is spent running Marching Cubes. For models of
larger size than the ones we have tested with, memory consumption might
lead to problems.

Table 1: The time is the total contouring time (all the three steps of the algo-
rithm) and the memory usage specifies the maximum amount simulta-
neously allocated while extracting the contour.

Model  Num voxels Num faces Time (s) Memory usage (MB)

Sphere 14232 9740 0.36 13
Bunny 88019 60900 2.3 o1
Cube 105400 47516 3.1 61
Console 117958 93462 3.2 68
CSG 994092 791346 31 248
Knuckle 2066772 1596964 62 1080
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Figure 16: Cracks appear when using Marching Cubes lookup tables making use
of reflective symmetry. By only exploiting rotational symmetry, the
problem disappears.

6 Conclusions

By using the simple strategy of placing the dual vertices uniformly spaced,
and by avoiding reflective symmetry when generating the Marching Cubes
lookup tables, Dual Marching Cubes always generates manifold surfaces. Be-
cause of how the dual grid is defined, some parts of the contour defined on the
octree might however be left out in the dual grid. This leads to topological
holes in the final surface. We have not observed this problem for the sur-
faces in our test suite, but there is currently nothing in our implementation
preventing it from happening.

In the paper describing Dual Marching Cubes, the authors mention that
their Marching Cubes algorithm is an extension of Marching Cubes adjusted
to work on the dual grids. No such extension was needed; in our implemen-
tation we contour the cells exactly as would have been done on a grid of
axis-aligned cubes of uniform size.
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Figure 17: Some extracted contours. From left to right, top to bottom: Bunny,
Cube, Knuckle and CSG (referring to the models listed in table 1).
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7 Discussion

Much literature has been written on the subject of extending Marching Cubes
to avoid ambiguities, and also for making the algorithm work on adaptive
distance fields. Even if the algorithm has been around for well over twenty
years, and its drawbacks have been well described and studied, the large
amount of methods proposed for solving these problems? hints that it is
difficult to construct an algorithm that solves them all while not introducing
new ones. For example, the feature isolation step of Dual Marching Cubes
aims to solve the problem that sharp edges become rounded in the original
Marching Cubes algorithm. However, allowing the dual vertices to move
freely inside their parent voxels might lead to overlapping triangles and a
non-manifold surface.

Choosing a contouring method might be hard since so many variants
exist, often producing seemingly similar results. If a requirement exists on
watertight surfaces and the distance field is defined over an octree, we def-
initely recommend the approach presented in this report. It is reasonably
fast for non-realtime applications, and is relatively easy to implement. It
however proved to be somewhat harder than originally thought to extend
the quadtree traversal algorithm described by Schaefer and Warren to three
dimensions. Hopefully, the pseudo-code given in this report might speed up
the process for other developers who want to implement and evaluate the
algorithm.

9We have only described the problems most relevant for this particular study and refer
to [24] which provides an excellent overview of the research done on the subject of Marching
Cubes.
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8 Future Work

Sliver Polygon Elimination Apart from making the models look unattrac-
tive, meshes containing sliver polygons are not optimal from a finite element
method perspective. When discussing the problem, we pointed out that
Schaefer and Warren solve the problem in the feature isolation step of Dual
Marching Cubes. Their solution makes use of the somewhat involved proce-
dures developed for finding the features of the implicit function. If feature
isolation was to be integrated, it would be natural to use their approach for
eliminating sliver polygons. If not, this approach might be too complicated
for a relatively simple problem.

A different solution is proposed in [28]. Here, an extended Marching
Cubes lookup table is used with 6561 (3%) entries instead of the standard
256. A vertex of a voxel might then be classified as lying on the surface in
addition to being outside or inside. When the distance field value is close
enough to the isovalue, the value is snapped to exactly equal the isovalue
(this contrasts the approach used in the Dual Marching Cubes paper where
it is the position of the dual vertex that is snapped). We see no reason why
this method should not work with the polytopes of the dual grid as well. It
should also be easy to test this approach since the authors have released a
tool for building these extended lookup tables'®.

Minimizing Memory Usage In the current implementation, memory us-
age is a problem for larger models. When generating the surface from the
largest octree we have been testing on, the application peaks at over one
gigabyte of RAM. Certain volumetric datasets might be up to sixty times
larger, for example the high resolution scan of Michelangelo’s David from
the Digital Michelangelo Project [17].

However, this problem could be improved upon by collapsing steps two
and three of the algorithm. That is, instead of creating the dual grid and
storing it for Marching Cubes later, we would contour each cell directly in
vertProc and also immediately write the resulting polygons to disk. We
can thereafter dispose the memory for the dual cells directly. Should this
not be enough, we can also calculate the positions of the dual vertices and
sample the gradient and distance field in vertProc. We then no longer need
to keep more than eight dual vertices in memory at the same time. The field
sampling procedure is however computationally expensive. Processing each
octree voxel more than once might therefore have a major impact on total
contouring time.

Ohttp://www.cse.ohio-state.edu/research /graphics/isotable/
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9 Appendix A: Tools Developed

It was realized from the beginning that much time would be devoted to
tracking down the causes of errors in the produced surfaces. To help with
this, two applications were developed during the course of the project. They
will briefly be described in this appendix along with some screenshots.

9.1 MC Table Viewer

Even if test code was developed for making sure that the transform methods
for calculating the Marching Cubes tables from the base cases were working as
intended, being able to evaluate the results visually was considered valuable.
For this purpose, an application where each of the 256 entries could be viewed
independently was created. In parenthesis after each entry, the base case from
which that entry was derived is printed. This makes it easy to go through
all entries derived from a certain base entry to make sure it remains correct
through the transformations. The triangle faces are rendered in two passes,
where the first pass fills the faces with light-blue color, and the second pass
renders the magenta outlines. Backface culling is turned off for the outlines
and turned on for the filled triangles. This makes it possible to always see the
triangles (if they are not depth culled), and to distinguish which are front
facing and which are back facing. This was a helpful feature, since there
sometimes were problems with triangles having the wrong winding order.

9.2 ContourViewer

This purpose of this application was to be able to view the octree, the dual
grid, and the extracted isosurface simultaneously. During development, many
of the surface errors were due to some error in the construction of the dual
grid. It was then useful to be able to see how the dual grid was connected in
relation to the octree.

For tracking down errors, small octrees however had to be used. Only
after a few subdivisions of the octree, it became hard to see how the dual grid
connected the voxels. Some sort of picking would have been useful, so that
only certain voxels/dual grid cells of interest could be selected, for example
at regions where the surface exhibited erroneous features.

36



9.2 ContourViewer

9 APPENDIX A: TOOLS DEVELOPED

o0

Ee)

10

01

350

45012)

si12)

eaten)

7200)

e

soii0)

o9012)

to8(12)

w7

126018)

13502)

1440

1s3(10)

1625

w7

to002)

te3018)

1s8012)

2n(zn)

216(19)

225(12)

234017)

213(a0)

252020)

10
100)

196)

76

8a1)

Ss17)

)

0]

206

9106)

100(6)

109(15)

19(16)

127621)

1362)

195(6)

15402)

163(11)

172014)

191016)

1s00)

199016)

20(s)

2te)

2614)

23519)

2407,

2%21)

2

1165)
)
209
=06
)
ss(6)
)
)
£
()
101¢12)
11016)
115)
1220)
13706)
19607)
155(16)
1e4(6)
173416)
1e2015)
110
20(5)
20%11)
21s(te)
216)
2417)
29stz0)

e

122)

a6

w02)

14)

a2

s12)

=2)

o)

a17)

102(10)

111619)

120012)

12501

13265

19702)

© 1se12)

testio)

174047)

153019)

1526

1012)

210(12)

21519)

22s(11)

z09)

256019)

2s(zz)

Eee)

ss(1e)

L)

755)

=)

ss(16)

103018)

11265

121(15)

130

13504)

156)

157018)

16612)

175)

1os011)

1536)

a2q11)

2116)

220(17)

z2st1e)

239(a0)

2s7621)

06

s9(17)

)

06

as012)

ss(zn)

1040)

1136)

12206

1316

1405

143012)

1sa(15)

s67016)

1769

105016)

1946)

aw3016)

2126)

221(20)

20(16)

a9tan)

2s8017)

Figure 18: A screenshot of the MC Table Viewer application.
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